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Abstract

Machine learning has becoming a trending topic in the last years, be-
ing now one of the most demanding careers in computer science. This
growing has lead to more complex models capable of driving a car or
cancer detection, however this models improvements are also thanks
to the improvements in computational power. In this study we inves-
tigate a data exploration technique for creating synthetic data, a field
of Machine learning that does not have as much improvements in the
last years. Our project comes from a industrial process where data is a
valuable asset, this process has both computational power and power
full models but struggles with the availability of the data. In response
for this a model for generating data is proposed, aiming to fill the lack
of data during data exploration and training of this industrial process.

This model consist of a Hidden Markov Model where states repre-
sent different distributions the data follows, data is created by travel-
ing through this states with an algorithm that uses the prior distribu-
tion of these states in a Dirichlet distribution.

The method to infer data distributions from the given data and cre-
ate this Hidden Markov Model model has been explained along with
the technique used to travel between states. Results have been pre-
sented showing how the data inferring performed and how the syn-
thetic data reproduces the original one, taking special care for the re-
production of specific features in the original data. To get a better per-
spective of the data we created we tricked the states for our model,
creating data from all of the states or from the states with less prior
probability. Results showed that the model is capable of creating data
similar to the real one but it struggled with data with a small amount
of significant outliers. In conclusion a model to create reliable data
have been introduced along with a list of possible improvements.



Sammanfattning

Maskininldrning har blivit ett populédrt &mne de senaste dren, nu en av
de mest krdavande karridrvdgarna inom datavetenskap. Att dmnet véaxt
har lett till att mer komplexa modeller utvecklats, kapabla till exem-
pelvis bilkérning och upptickt av cancer. Dessa framgangar dr dock
ocksd mojliga pa grund av 6kad berdkningskraft. I den hir undersok-
ningen undersoker vi ett omrdde som utvecklats mindre jamfort med
andra de senaste aren, data utforskning. En modell for att generera da-
ta foreslds, med malet att atgdrda bristen pd data under datautforsk-
ning och traning. Denna modell bestdr av ett HMM dar tillstand re-
presenterar olika fordelningar av dataflodet. Data skapas genom att
fardas genom dessa tillstdnd med en algoritm som anvander a priori-
fordelningen av dessa tillstdnd i en Dirichlet-fordelning.

Metoden for inferens av datadistributionerna frdn den givna da-
tan och dédrigenom skapa HMM modellen har forklarats tillsammans
med tillvigagangssattet for att forflytta sig mellan tillstdnd. Resultat
har dven presenterats som visar hur inferensen av datan presterade
samt hur syntetisk data prestererade jamfort med den riktiga. For att
fa ett béttre perspektiv av datan vi skapat lurade vi tillstdinden i var
modell, skapade data fran alla tillstdinden eller fran tillstdinden med
lagre a priori sannolikhet. Resultaten visade att modellen &r kapabel
att skapa data lik den riktiga, men den hade svart med data med en
liten andel signifikanta outliers. Sammanfattningsvis sa har en modell
for att skapa pdlitlig data introducerats tillsammans med en lista av
mojliga forbattringar.
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Chapter 1

Introduction

The last decade has seen a growing trend in Machine Learning, lead-
ing to the use of it in multiple fields. This growing has been thanks to
the last years improvements in more complex models and computa-
tional power. In this paper we want to introduce and explore the idea
of spending our resources in the actual data rather than in the more
complex models or more power. Our proposal for data exploration
is to create a model with the ability to recreate synthetic data from a
given data collection. We also propose a use scenario where we believe
this project could really make an impact.

Nowadays we count with both good computational power and ca-
pable models but our dataset exploration techniques have remained
the same, we reached a point were spending our resources in improv-
ing models or computation do not report as much improvement as
before. As stated this project wants to explore the capabilities of ex-
ploring the data, our work is based in the idea that exploring the data
may lead to better results. The idea of focusing in the data rather
that in models comes from several articles where they discuss the data
importance[1] and the dataset size[2]. We also found some previous
work when using synthetic data for training purposes, in particular
this synthetic data was used to optimize the weights of a model-based
reasoning neural network [3], we find this paper really interesting as
it deals with using the synthetic data for training purposes, something
we would like to research into in future work.

We want to show in figure 1.1 how Dataset, Model and Computa-
tions have improved for the last years, with the dataset size remaining
the same we need to improve our data exploration[4].
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tion [1] Therefore this project aims to create
a tool of data exploration for those sit-
uations where dataset size is a problem, the synthetic data will lead to
better preprocessing and better train results.

The method we propose to generate synthetic data will analyze the
distributions in the data itself and infer them to later on be replicated.
We will take special care when replicating the distributions inferred in
the data in order to create the most similar data we can.

If this synthetic data is properly created it will be an extra tool
when creating models with low event population for both evaluat-
ing and understanding them. Finding a way of generating this data
can have multiple applications regarding Machine Learning, from just
making developing and debugging easier or to make viable the cre-
ation of models for datasets with not enough valid data.
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1.1 Problem Statement

Machine learning has become more trending in the last decade and
so the tools to implement those technique have improved, this im-
provement is mainly based in more efficient and bigger model creation
and more computational power. The purpose of this paper is to re-
search the effect of focusing the efforts in the dataset we deal with and
not models or computational power. We aim to answer the following
questions: How to create reliable synthetic data given a data collection
and does this data reproduces the special features from the original
data? and by reliable data we mean data similar to the original.

1.2 Scope

This project studies a reliable method to generate synthetic data given
an existing data collection, so that the synthetic data is capable of repli-
cating special features from original data such as special shapes or out-
liers that makes the original data valuable.



Chapter 2

Background

In this chapter we will explain the key concepts involved in our project.
Concepts concerning the data generator will be treated first, we will
start with Hidden Markov models and move to the probability theory
used in the project. Secondly we will explain the goodness of fit, the
measurement we used to choose the distributions we infer from the
data. Lastly the technologies and data used will be discussed.

2.1 Hidden Markov Models

A Hidden Markov Models (HMM) is a statistical tool used to repre-
sent the probability distributions over sequences of observations when
traveling between states[5]. Hidden Markov models will be used in
the project to represent the statistical distributions we observed from

the data. A Hidden Markov Model consist of :

e N Number of states.
e K Number of events.

e Initial state probabilities,
T=m =Pl =i)forl<=i<=n

e State-transition probabilities,
A:ai]' :P(xt:j|xt_1 :Z) for 1 <:Z,J<:’rl,
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e Discrete output probabilities,
B=bj(k)=Po=k|lry=1i)forl <=i<=nand 1l <=k <=n

4 02 4

A 0.45 A 0.06
C 0.05 C 0.5
G 0.05 G 0.4
T 0.45 T 0.04

Figure 2.1: Hidden Markov Model representation

In figure 2.1 we find a Hidden Markov Model representation where
we can see the parameters previously explained. In this case N is 2
and K is 4, if we look to the state 1 we can find the his State-transition
probabilities (0.95 of traveling to state 1 and 0.05 of traveling to state
2) and the discrete-output probabilities.

2.2 Probability distribution

The mathematical definition for a probability distribution in the prob-
ability theory and statistics field is a function that provides the proba-
bility of occurrence of outcomes in a specific experiment[6]. It satisfies
the following properties:

e The probability of x resulting in a specific value is p(z) , having
PIX = z| = p(x) = p,.

e p(z) is a non-negative value for all real x.

e The sum of p(x) for all the possible values of x is 1.

Probability distributions are usually divided into 2 classes, discrete
probability distributions and continuous probability distributions. Dis-
crete probability distributions are those where the set of possible out-
comes is discrete , meaning that the distribution can be defined by a
discrete list containing the probability for each outcome. Alternatively
the continuous probability distribution consist of those where the pos-
sible outcome takes values from a continuous range.
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Probability distributions can have different sample spaces, distribu-
tions with whose space is a set of real numbers are called univariate
and the ones with a vector space multivariate. univariate distributions
give the probability of one single variable while multivariate distri-
butions gives the probabilities of the vector (joint probability distribu-
tion).

One of the key concepts in probability distributions is the probability
density function (pdf), a function whose value at any given sample in
the sample space (all the possible values for the random variable) can
be seen as the relative likelihood of the value of the random variable
which would equal that sample.

2.2.1 Dirichlet distribution

The Dirichlet distribution (usually denoted as Dir(«) is a multivariate
distribution that describes K >= 2 variables X1, ..., X}, such that for
every z; € (0,1) and >N 2, = 1, those X are parameterized as a
vector a = (ay, ..., ay) [7]. We define the probability density function
for Dir(«) as:

where x
B(Oé) — [Tiz; Des)
r(sk o)

Dirichlet distributions are mostly used as the prior distribution for
categorical variables in Bayesian mixture models or other hierarchical
Bayesian models. It is also known as the a multivariate generalization
of the beta distribution. Figure 2.2 presents an example of a Dirichlet
probability density function along o
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(1,1,1) (3,3.3)

(7,7,7) (5.2,2)

(5,5,2) (0.2,0.2,0.2)

Figure 2.2: Example of a Dirichlet probability density function along «

2.2.2 Beta distribution

The Beta distribution is a continuous probability function defined on
the interval [0, 1] with parameters a and j [8]. These two parameters
act as exponents of the random variable and also shape the distribu-
tion. The probability density function of the beta distribution:

z~1(1—g)P 1
flz;a,8) = ((a”g))
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Figure 2.3: Beta pdf and cdf

In figure 2.3 we can see how beta distribution pdf and cdf and also
how it shapes as a uniform distribution when o« = g = 1.

2.3 Goodness of fit

The goodness of fit for a statistical model describes how well does this
statistical model fits for a set of observations[9]. In other words, it tells
you if your sample data represents the data you can expect from that
statistical model. Some of the goodness of fit test commonly used in
statistics:

e The chi-square.
e Kolmogorov-Smirnov.
e Anderson-Darling.

e Shipiro-Wilk.

2.3.1 The chi-square

This test is used for discrete distributions as binomial or Poisson, al-
ternatively the Kolmogorov-Smirnov can only be used for continu-
ous distributions. The chi-square distribution is a special case of the
gamma distribution and is one of the most widely used probability
distributions in inferential statistics.
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Chi-square test can only be used for labeled data and it usually re-
quires a lot of samples for the approximation to be valid. The formula
for the chi-square test:

~2 _ 1xn  (Op—Eg)?
X° =32k Er

2.3.2 Kolmogorov-Smirnov

Kolmogorov-Smirnov test (K-S test) does not actually tell you if a sam-
ple comes from a specific probability distribution, instead it tells if you
can reject the hypothesis of that data coming from the probability dis-
tribution so it does not make assumptions about the distribution of the
data.The Kolmogorov-Smirnov Test is based on the cumulative distri-
bution function of the underlying distribution[10].

Samples can be compared to distributions using one-sample K-S
test (against a probability distribution and his parameters) or two-
sample K-S test (against other set of different samples).

Being F'(z) the probability distribution we are given and the em-
pirical distribution function F,, for n observations X; we define the
empirical distribution function F,,(z as:

1, ify, <=z
Fn ) = 1 7'L_ 7 7 )
(@) =% 2ima {O, otherwise
We also define the Kolmogorov-Smirnov test statistic as:
e For K-S 1 sample: D,, = sup,|F,(z) — F(z).

e For K-S 2 samples: D,, ,, = supy|F1,(z) — Fom(2).

1.0‘7.\.| T T

Figure 2.4: KS test comparison cumulative plot
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In the figure 2.4 we can see the Kolmogorov-Smirnov test statistic
between two different samples.

2.3.3 Anderson-Darling

This test is a modification from the previous Kolmogorov-Smirnov
test, being more sensitive to deviations in the distribution tail we are
testing against. It works as the Kolmogorov-Smirnov test, it will tell
you when it is unlikely that your data comes from the distribution you
are comparing to. The formula for this test:

S=Y  EL I F(Y:) +In (1 — F(Yyi1-p)))

2.3.4 Shapiro-Wilk

This test is slightly different from the previous ones, Shapiro-Wilk re-
turns a value W that tell us if the sample we are testing comes from
a normal distribution. This test only works for normal distributions
unlike the other tests.

D aimgy))?
W=+

2.4 Technologies and data used in the project

This project was entirely coded in python, several data processing li-
braries were used such as: Numpy, Pandas, Scipy. Numpy and pandas
libraries were responsible for the data pipelines and Scipy for the dis-
tributions inferring. The generating method was entirely coded from
scratch.

Regarding the data we will be using data from telecom nodes, we
selected the tables containing the throughput of internet connections
that go through a node. This data is time-stamped and contains 59
variable, we collected more than 120 millions of samples with a size of
60gb. Scaling by Minmax has been applied to this data to improve our
results.



Chapter 3
Method

In this chapter we want to give a deep and clear explanation of how
our model works. We propose a new method for generating synthetic
data, remember that this method pursues synthetic data capable of
replicating special features from the real data. The main advantage of
this method when replicating data is the structure of states with dif-
ferent probability distributions, making it capable of replicating those
special features by capturing them in states.

3.1 Creating the model

To create our model we will analyze the statistical distributions fol-
lowed by the given data and estimate their parameters. Then a Hid-
den Markov Model will be created where each state will contain the
parameters for the statistical distribution inferred from the data collec-
tion. More than one state can be created in the same Hidden Markov
Model as we can encounter multiple distributions inside a single vari-
able and by identifying them we increase the ability to replicate special
features from the data. We present now an example of what this model
consist of.

16
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(P(\1), B(n, B),burr(c, k), Exp(As))

Figure 3.1: Representation example of our Hidden Markov Model

The figure 3.1 is a representation of our Hidden Markov Model for
a dataset with 4 variables. In this example we have 3 states A, B, C'and
each one of them contains a list of statistical distributions parameters.
One example for this parameter distributions would be: P()\;) a Pois-
son distribution. In this model the dataset contains 4 variables so each
state contains 4 statistical distribution parameters. By the definition
of our model states can not have the same list of statistical distribu-
tions parameters so we find different list for each state, each of those
list represents an specific behaviour of our data that we have captured
with the statistical distributions inferred. An example of this special
behaviour would be the third variable for the dataset that in B and C
follows a burr(c, k) distribution while in A is a N(u, o) distribution.

To create this Hidden Markov model we first need to figure out
how many states we need to represent our data and also infer the sta-
tistical distributions for those states, we explain this in the following
section.
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3.1.1 Probabilistic distribution parameters inferring

We need the inferring to be as precise as possible as conversely it will
lead to non similar data when we move to the generation process. We
will first infer from all the data collection to later infer different win-
dows in the data, this will allow us to find different distributions in
the same data and create more than one state for the HMM.

When performing the inferring for the given data we will fit the
data variables one by one for a set of both Discrete and Continuous
distributions. To ensure we choose the distribution that fits better our
data two test will be performed. The first test will be performing a
Goodness of fit test with Chi-square test used for discrete variables and
Kolmogorov-smirnov test for Continuous variables. The second test
will consist of creating a probabilistic data function for the each most
likely distributions and compare it with an histogram of the variable,
we will measure the sum of square error and choose the distribution
with the lower one. With this two test we will chose the distribution
that replicates our data in the best way, we will then store its parame-
ters.

Once the inferring for all the data is done a first state will be cre-
ated, containing a finite number of distribution parameters equal to
the number of variable in the data. For the windowing inferring we
will check if the distributions we obtain represent a difference with
the first state, if 20 percent of the distributions are different a new state
will be created.

3.2 Generating data

We want the algorithm to travel between states to be smooth and non
drastic so this project presents an algorithm to travel between states
where a sample is created in each step and traveling requires multiple
steps. Traveling between states takes S (number of total states of the
model or ten if Nstates < 10)steps to perform a change from state S1
to S2 and work as follows.

First we create a Dirichlet distribution Dir(a) where a parameters
represent each state percentage of occurrence, o parameters will be
normalized. This will be the prior distribution to be in each state.

To start generating data we choose a state S1 to start from the
Dir(a) prior distributions and create a sample of data from the dis-
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tribution parameters contained in it. In the next step we will choose
again a state S2 to travel from Dir(«) prior distributions, if 52 = S1
we will stay in the current state and sample again from the distribution
parameters contained in it, otherwise we will start traveling from S1 to
S2 where S consecutive steps pointing 52 are required to change to 52
and finish the traveling. If while traveling between states S1 and S2 a
state 53 is chose as destination state we will stop the traveling process
and start again from S1. While in this traveling between states the data
generated will be a weighted sum of data generated from the distribu-
tions from the starting state and the destination state, this weighted
sum will take in account how many consecutive steps traveling to the
destination we have done so far.



Chapter 4

Resulis

This chapter describes the results retrieved from the experiment with
their respective discussion. A total of 12 millions samples where used
to create the model. Each sample contains 59 continuous parame-
ters. After the data inferring we created synthetic data with our HMM
model. Here we present charts comparing the real data with the data
we created, remember that this project seeks to replicate data that main-
tains the original data features. The measure rate for the distribu-
tions we infer from the data is the P value we obtain from the Kol-
mogorov—Smirnov test or Chi square test.

4.1 Overview and discussion

4.1.1 Fitting distributions

We present now charts with some of the variables with inferred from
where we compare the histogram of the data with the distributions
pdf we fit the data to. In the first chart we present all the possible
distributions we were capable to fit for the variable and in the second
the distribution pdf of the top distribution in terms of goodness of fit.

20
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Figures for the statistical distribution inferring of variable
throughput_downlink.

All Fitted Distributions pdf for parameter: throughput_downlink
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Figure 4.1: All pdf from distributions fitted to our data, variable
throughput_downlink.

throughput_downlink with best fit distribution
burr(c=17.69, d=0.06, loc=-5.89, scale=1083.14)
0.0012 -
0.0010 -

0.0008 -

0.0006 -

Frequency

0.0004 -

0.0002 -

0.0000 -
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Figure 4.2: Pdf from the distribution burr(c = 17.69,d = 0.06,loc =
—5.89, scale = 1083.14) with best goodness of fit P=0.45, variable
throughput_downlink .
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First we see the fitting for the variable throughput_downlink whose
tfigure 4.1 represents all of those pdf from the distribution we fitted
to our data. Between all of those pdf we choose the one for the burr
distribution in figure 4.2. This burr distribution obtains the best result
in the goodness of fit Kolmogorov-Smirnov test where P=0.45.
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Figures for the statistical distribution inferring of variable
mbr_uplink.

All Fitted Distributions pdf for parameter: mbr_uplink

Value

Figure 4.3: All pdf from distributions fitted to our data, variable
mbr_uplink.

mbr_uplink with best fit distribution
gennorm(beta=1.61, loc=0.02, scale=0.68)

0.8 -

Frequency

0.2 -

0.0-

Figure 4.4: Pdf from the distribution gennorm(beta = 1.61,loc =
0.02,scale = 0.68) with best goodness of fit P=0.77, variable

mbr_uplink.
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Moving on to the next variable mbr_uplink we see how in figure
4.3 there are a lot of pdf that are very similar to our data, meaning
that our resultant pdf will have a high score in the goodness of fit test.
In figure 4.4 we see the resultant pdf that comes from a Generalized
normal distribution with a result of P=0.77, if we compare this result
with the previous variable throughput_downlink and his resultant pdf
with P=0.45 we see how having a pdf more likely to our data translates
in a higher goodness of fit result.
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Figures for the statistical distribution inferring of variable
peak_throughput_uplink.

Al Fitted Distributions pdf for parameter: peak_throughput_uplink

111
Value

Figure 4.5: All pdf from distributions fitted to our data, variable
peak_throughput_uplink.

peak_throughput_uplink with best fit distribution
le-9 gennorm(beta=6.13, loc=11007408027.96, scale=760103166.40)

0.8 -

Frequency

0.2 -

Value lel0

Figure 4.6: Pdf from the distribution gennorm(beta = 6.13,loc =
11007408027, scale = 760103166.40) with best goodness of fit P=0.68,
variable peak_throughput_uplink.
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By last we analyze the peak_throughput_uplink, with this variable
we find that the pdf from the distributions we fit are more similar than
in throughput_downlink but less that in mbr_uplink. The resultant pdf
comes from a Generalized normal distribution (beta=0.63, 10c=11007408027.96,
scale=760103166.40) as in mbr_uplink but with a lower goodness of fit
result P=0.68, this lower result compared with mbr_uplink comes from
the gap in the histogram between values 1075 and 1150, if there would
not have any gap there the resultant distribution would probably have
been a normal distribution.



CHAPTER 4. RESULTS 27

4.1.2 Generating data

Now we present charts comparing the real data against the synthetic
data.

Value for: start

200 00
Number of sample

Figure 4.7: Real data against synthetic data for the variable star.

\ W ‘\IW"/

0 300
Number of sample

Value for: gtp_u_teid_uplink

Figure 4.8: Real data against synthetic data for the variable
gtp_u_teid_uplink.
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Value for: mm:
= ———
e

G0 300
Number of sample

Figure 4.9: Real data against synthetic data for the variable mme.

Moving on to results with synthetic data generation we find the
synthetic data generated for different variables, first we find the vari-
able start where we see that our inferred distributions create big sig-
nificant outliers (sample 90 and 290) which does not replicate the real
data. We think that this outliers are due to the real outlier in the data
(sample 550). Our model is not capable of isolating this single outlier
and this translates in several synthetic outliers that do not correspond
with the data.

Next synthetic data created comes from gtp_u_teid_uplink and seems
to have better results than the previous start, here the real data does
not have any big outlier and is more consistent, the spikes in the data
are something usual. Here the synthetic data does a better job that
with the previous variable, those spikes are correctly replicated and
we can see how the data is nearly similar to the real one.

The final synthetic data to analyze is the one for mme, here the real
data and synthetic data are not as similar as in the previous examples,
the synthetic data is slightly biased to lower values but it still keeps
the shape from the real data. We see how synthetic data replicates the
spikes in samples 50-150, 200-300,300-370. We think this bias is due to
the lower values from the real data, in gtp_u_teid_uplink we had more
similar synthetic data but values where in the order of 10®, here our
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values are in the interval 15 — 40. This leads us to the hypothesis that
our model is more capable of replicating data when higher values are
treated but his ability to replicate data shape remains the same despite
the value size.

So far the synthetic data we have presented comes from the method
where we transit between states, now we present data generated from
the state with less prior probability in our Dirichlet distribution, there
is no state traveling.

Value for: mme

200 300
Number of sample

Figure 4.10: Real data against synthetic data for the variable mme, data
generated from the state with less prior probability.
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Value for: mnc

200 00
Number of sample

Figure 4.11: Real data against synthetic data for the variable mmc, data
generated from the state with less prior probability.

This data is generated with the statistical distributions contained
in the state with less prior probability in our Dirichlet distribution so
we were not expecting any reliable results, our expectations were con-
firmed. The first figure 4.10 we see the variable mee the same as in
figure 4.9 (data generated for the same variable but from all the states).
We compare them now side by side:

(a) label 1 (b) label 2
Figure 4.12: mme data from all the states against mme data from the

state with less prior probability.

We see how the synthetic data in figure 4.12 (a) is more similar than
4.12 (b), figure b corresponds with the data from the state with less
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prior probability, meaning that is the distribution less likely to simu-
late real data. We think this state reproduces the lower outliers from
the real data.

Figure 4.11 represents data generated from the state with less prior
probability for the variable mnc. We can see how the synthetic data
that comes from this state does not reproduce the real data at all, the
probability of this state was by the order of —10%. This state is useless
in terms of generating data similar to the real one, it probably was
created due an outlier.



Chapter 5

Discussion

This chapter discuss the possible improvements, limitations and fu-
ture work for the project.

5.1 Limitations

This project was mostly limited by the tremendous amount of cpu
power required to infer data distributions from such a big dataset as
we had (12 millions samples). The inferring computations were han-
dled by the library Scipy for python and the lack of a gpu support
really slowed us during the process. More states could have been ex-
plored if the computations would have been faster.

We also encounter some limitations when dealing with such a big
dataset. A pipeline was needed to handle all the data transferring
along the model, limiting the time used for perfecting the model.

5.2 Ethics and sustainability

When we think about the ability to replicate data there is an infinity of
purposes we can use it for. One possible use case would be medical
data such as heart rate histograms. Synthetic data allows us to fulfill
data gaps for a tremendous number of use cases. It helps with the data
exploration allowing the user to understand the data better and iden-
tify special features of the data. Generating synthetic data also helps
us to get a view of how a bigger dataset would be, this view could save
us from actually getting a bigger dataset and all the consequences and

32
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work necessary. In the same line the synthetic data allows us to know
if a model would be useful with our data by providing early results
with the synthetic data, giving us a performance preview without the
need of fetching more real data.

5.3 Possible improvements and future work

As stated in the result discussion our model lacks of efficiency when
generating data with a small amount of big outliers. Removing these
outliers is not an option as we are not aiming to reproduce the most
of the data we possibly can, we aim to reproduce special shapes or
features (such as this outliers) from the data while reproducing the
majority of the data. An interesting improvement for our model would
be to improve the ability of replicating data when dealing with such
outliers. Implementing the distribution inferring with gpu support
would improve our computation time and allow us to spend more
time looking for the right distribution.

We also plan to test this model with other kinds of datasets, explore
how our model behaves when dealing with other datasets will help us
to test and improve it. In this dataset we only had a few categorical
variables so the inferring was mostly for continuous variables. An-
other possible improvement would be to be able to infer multivariate
data distributions, right now only univariate distributions are tested
and the addition of multivariate could improve our model efficiency
when replicating data by extracting more accurate distributions from
it. In summary we now have demonstrated a reliable way to create
synthetic data but only for one dataset, we need to test this method in
other datasets to see how in behaves.



Chapter 6

Conclusion

The result of this study showed that the model we propose is able to
create data capable of simulating the real one but that there are still
some improvements that could perfect the model. Additionally and
to answer our research question, the data we create its similar to the
original one and can also replicate those special features in some cases,
there is still room for improvements in this special features replica-
tion. In this study we have seen how we can replicate one dataset but
that does not prove it will work with other kinds of datasets so more
datasets need to be tested to have a better perspective of this method
results. By last we want to remark how the method to travel between
states is able to provide smooth data creation.
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