au -
22 UNIVERSITAT ¥ etsinf
POLlTECNICA Escola Tecnica
DE V/_\LENCI/.\ Superior d’'Enginyeria

Informatica

Escola Tecnica Superior d’Enginyeria Informatica

Universitat Politécnica de Valéncia

Simulation of Orbiting Solar Array

Final Degree Project

Bachelor’s Degree in Informatics Engineering

Author: Manuel Martinez Lopez-Saez
Co-Tutors: Brian Vinter
Isabel Galiano Ronda

2017-2018

I would like to dedicate this thesis to my loving parents ...

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

Manuel Martinez Lopez-Saez
May 2018

Acknowledgements

I would like to thank my advisor, Brain Vinter for guiding and supporting me over the du-
ration of this thesis. You have set an example of excellence as a researcher, mentor and
instructor. I would like to thank my co-tutor Isabel Remedios Galiana as well for her sup-

port during this last semestre.

Table of contents

List of figures xi
List of tables xiii
1 Introduction 1
1.1 Motivation oo e e 2

1.2 Objective e e e 2

1.3 Methodology e 3
1.3.1 Research Approach 3

1.32 DataCollection 3

1.3.3 Limitations 4

1.4 Stateoftheart. 5

2 Context 7
2.1 Requirements 7
2.1.1 Javascript 8

2.1.2 Python 8

2.2 Design e e 9

3 Implementation 11
3.1 Array Simulationo 11
3.1.1 Orbital Ephemerides 12

3.1.2 ShapeFactor 14

3.1.3 OrbitFunction 19

314 MainLoop 19

32 WebDevelopment. 21
32.1 AngularJSApp 21

3.2.2 Mathbox OrbitMath 24

323 HTML-Design. 28

X Table of contents
324 WebServerCode 29

4 Results 33
5 Discussion 35
5.1 Analysisofresults. 35

5.2 Efficiency 40

References

List of figures

2.1
2.2
2.3

3.1
3.2
3.3
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
322
3.23
3.24

JS Precision errors 8
Traditional web architecture L oo

Project architecture L L 10
Ephemerides Function oL, 12
Range-Kutta Function Pair 13
Surface element in spherical coordinates 14
Sphere implementation 15
Sphere2 implementation o 16
Beta function implementation Lo 17
Shape factor implementation 18
Angular]S App structure L. 21
Mathbox initialization 22
Mathbox set-up e 22
Mathbox view set-up L. 23
Mathbox objectset-up 23
Quaternion animationo e e e e e e 24
Orbital Elements L 25
Orbital equation implementation 26
Orbit Visual Implementation 26
Example Orbit Mathbox Visualization 27
Applayout. 28
Orbit Parameters 29
OrbitInfo 30
App Settings e 30
Solar simulation settings 30
Server defaultapprouteo 31

Server simulation approute Lo 31

xii List of figures
4.1 Web ApplicationResulto oo 33
5.1 Parameters used for simulationresults 37
5.2 Results- Solar Irradiance L Lo 37
5.3 Results- Efficiency versus Temperature 38
5.4 Efficiency - No optimisation 40
5.5 PythonvsNumPy 41
5.6 PythonvsNumPy-2 41
5.7 Numpy optimization 42
5.8 Efficiency - Optimised 42

List of tables

4.1 Raw results from array simulation

5.1 P, _ for orbit simulation

max

Chapter 1
Introduction

CubeSats have served as teaching tools for thousands of students and researchers all across
the globe. They are now also being considered as commercial assets thanks to the miniatur-
isation of hardware and thus thanks to the increased capabilities they can offer. The hostile
environment in which they are designed to work requires careful analysis and testing of the
systems on the ground before launching into space.

One of the main concerns and difficulties with designing and building CubeSats is the rela-
tively low power requirements they have to meet due to their small size/weight and thus low
solar panel surface area. Often times, calculating the available power on orbit for a CubeSat
can be challenging, but necessary for mission assurance. Accurate knowledge of how much
energy is received in orbit is required in order to correctly set the dimensions of the onboard
batteries.

As satellites orbit around the Earth, for example, they have periods of darkness, where they
do not receive any solar radiation and thus have to run on their internal batteries. Calculat-
ing these periods of darkness and the amount of solar irradiance received during the periods
of sunlight is a challenge. There are many factors that can change the outcome of this cal-
culation. Accurate simulations require not only sunlight to be taken into account, but also
the irradiance reflected by earth’s surface and atmosphere. This project will not calculate
with absolute accuracy the albedo reflection as one can take into account many factors such
as, terrain and cloud cover for which the satellite is passing over. Polar orbits, for example,
have greater albedo values due to the fact that the poles reflect more light than other latitudes.
However, orbital altitude will be taken into account.

This project has a profound impact on aerospace industry, because the uses of accurate sim-
ulation of solar irradiance of a solar array orbiting the Earth can have numerous practical
applications. This accurate simulation of solar irradiance also allows for different orbited

bodies such as Venus or Mars. As it will be explained in the following sections, we will

2 Introduction

need to use a combination of view factor equations to calculate the solar incidence on the
array, calculating before the orbit of both bodies and angles between the bodies in the sim-

ulation.

1.1 Motivation

This project is in part motivated by the creation of the CubeSat UPV group. A group of
students at the Polytechnic University of Valencia looking to design a CubeSat from scratch.
This project would therefore serve as a tool to calculate the required solar panel area needed
to power the hardware they intend to fly.

1.2 Objective

The objective of this project is to design and develop a web application capable of calculating
the available power received from the sun for an orbital solar array. This simulation will take
into account the direct solar radiation received, the reflected radiation from the orbited body,
and cosmic radiation. The user will be able to input their data for their specific satellite and

receive the results of the simulation.

Main Objective: Accurately output the amount of solar energy received by a solar cell
during a complete orbit taking into account the previously mentioned simulation. The ap-

plication will allow the following parameters to be configurable for the simulation:
e Orbital parameters

e Array surface area

Number of arrays

Planet [Venus, Earth, Mars]

Date

Secondary Objectives: The application will include the following features:
e Gravitational interaction between bodies in our simulation
e Science-ED friendly

e Allow results’ to be downloaded in .CSV and .txt formats

1.3 Methodology 3

1.3 Methodology

This section provides an outline of the research methodology used to develop the proposed
project. This includes: the research approach, a description of primary data collection for the
comparative techniques that ensure correct results and the limitations of the adopted research
method.

1.3.1 Research Approach

The research approach influences design and provides an opportunity to consider benefits
and limitations of various approaches available to the researcher. Due to the practical nature
of this project and the various fields needed to solve it, fundamental research was chosen as
the preferred method since applied research seeks generalisations and aims to develop basic
processes at a more theoretical level.

A fundamental research approach aims to solve a problem by often using several disciplines.
Due to the nature of the problem and the necessary solution, methods and theories needed to
solve this problem are well known and accepted principles of science. It is therefore heavily
based off of accepted laws of physics and mathematics.

In order to verify results, comparative research was used to compare results with real world

test cases. Some generalisations were made with regards to certain data points.

1.3.2 Data Collection

Due to the nature of the project, processed data was deemed to be important due to the com-
plexity of the mathematics involved. Obtaining processed data in the real world would allow
comparative techniques to be used to ensure the correct implementation of the proposed so-
lutions.

Various web tools were used to extract data manually. Data was also downloaded from
trusted sources such as PDAS! in TXT file format. This information was saved for later
use and would serve as a comparison for the results obtained during testing. Physics laws
and mathematical equations were extracted from trusted sources as-is, in order to implement
them in the programming language of choice. Apart from the aforementioned data, no other
data was extracted as there was no need for it, taking into consideration the practical aspects
of the project

'Public Domain Aeronautical Software

4 Introduction

1.3.3 Limitations

Currently most data regarding electrical power requirements and specific solar panel effi-
ciencies in orbit for commercial satellites are proprietary information and thus not disclosed
to the public. Therefore, meaningful and useful information for modern systems was not
available.

Some general and estimated values for specific efficiencies do exist and thus these were in-
terpolated. Data was also found for older systems dating back to the 1980s and 1970s, which

required certain generalisations for its later use.

1.4 State of the art 5

1.4 State of the art

This section presents a short summary of the current state-of-the-art techniques available for
use to calculate and simulate the radiation received by an orbital array during a full orbit. As
of the publication date of this project there is no software, commercial or non-commercial,
that solves the problem related with the simulation. It is however a possibility that major
satellite manufacturers have proprietary software developed in order to calculate this impor-
tant data.

There is however relevant literature that does tackle this problem in some way. Most inves-
tigation on satellites and solar arrays are focused on the challenges of materials and efficien-
cies. For example, in the journal for Proceedings of the XIII Space Photovoltaic Research
and Technology Conference, a paper was published that explored solar cell temperature coef-
ficients in space (Landis, 1994)[4]. Solar cells had to be modeled in orbit taking into account
solar incidence, distances and black body calculations. These findings present some impor-
tant results with which we can validate the resulting efficiencies and P,,, we obtain. This
value is the maximum temperature coefficient. It indicates how much power a certain panel
will lose or gain when the temperature changes 1C° above or below 25C°.

Other literature also studies the lifespan of orbital solar arrays. The harsh environment has
adverse affects on the hardware as it degrades over time. In the study 'Thermal distortion
analysis of orbiting solar array’ (Shin, 2001)[3], the thermal environment the solar array is
subjected to is calculated. The deemed maximum solar flux is 1393W /m?* and minimum is
1305W /m*. They make an important point that specifies the dependability of the outcome
with the solar array solar vector. Additionally the calculated values of solar flux will be con-
sidered for comparison.

More research in this field looks at the thermal analysis of solar arrays during orbits. The
paper 'Thermal analysis of composite solar array subjected to space heat flux” (Junlin Li,
2012)[1] calculated using view factor equations all sources of radiation received by a satel-
lite in orbit. It includes the results for both LEO? satellites and GEO? satellites. The results
show very different thermal environments depending on the chosen orbit. Earth reflected
radiation was found to have a very big influence on overall temperatures and thus should be
taken into account in our simulation. This paper proves to have a special significance for
aerospace engineering.

One of the complexities in this field is the numerical analysis of the solutions for calculat-
ing the amount of radiation satellites receive while in orbit. Certain papers can be found

for the possible approaches that can be taken, such as the paper ’Analytical and numerical

2Low Earth Orbit
3Geostationary orbit

6 Introduction

approaches of a solar array thermal analysis in a low-earth orbit satellite’ (Hui Kyung Kim,
2010)[2] that explores the numerical solutions for this problem. They also approached the
problem from an analytical perspective which was quite useful for calculating the worst max-
imum and minimum temperatures of the solar array. The analytical approach showed rea-
sonable results when compared with the numerical approach. This paper therefore showed
that max. and min. temperatures can be easily calculated serving an important purpose for
the aerospace industry.

Other features of this project, specially visually are available on online sources using an
array of different tools and programming languages. The representation and manipulation
of orbits have been implemented in several educational websites* > ©. The methods used for

these solutions are all heavily based in Javascript as they are all web-based.

*http://lasp.colorado.edu/education/outerplanets/orbit imul ator/
Shttps://theskylive.com/3dsolarsystem
®http://orbitsimulator.com/gsim.html

Chapter 2
Context

Before we begin to look at how we might solve the problem mathematically, we must figure
out what are the best technologies and methods we might use for the solution. This particular
task is essential as choosing one programming language over another can affect the real time
aspect of the system. A preliminary analysis of the problem must be evaluated to know what
kind of problem size we will have to work on. These decisions will be made depending on

the requirements the project has and through testing.

2.1 Requirements

One key aspect of the project is accessibility. As previously mentioned, the motivation be-
hind this project is to provide scholars’, ‘researchers’ in the field” with a tool for an accurate
simulation of an orbital array. However, it can also be used as a teaching tool both for orbital
dynamics as well as for mechanics with solar energy. In order to have the most exposure,
a web-based platform would be the most useful for both advanced and high level students.
With this web requirement in mind, there are several considerations that must be taken into
account. The technological context around this project is another issue that requires exami-
nation.

Web-based solutions offer accessibility to the application through a web browser, allowing
it to be used by a larger target audience than any other solution. However web browsers,
have limited performance and thus, running heavy complex tasks is not recommended as the
client applications vary in performance depending on the host computer. A decision has to
be made on how to confront this problem and which programming language can be used for
the front and back end of the web application.

8 Context

2.1.1 Javascript

Javascript is a lightweight compiled programming language, otherwise known as the script-
ing language for Web pages. There are also non browser uses for JS such as Node.JS and
other server-side frameworks. It is a dynamic scripting language, prototype-based, object-
oriented, imperative and declarative.

Regarding Javascript, we will go into a bit of detail into one important aspect. One of the
main problems Javascript faces when operating with floats is rounding errors. The represen-
tation of floating points in JavaScript follows the format as specified in IEEE-754. Specif-
ically, it is a double-precision format, meaning that 64 bits are allocated for each floating
point. Due to inadequacies when representing numbers in base-2, as well as a finite ma-
chine, we are left with a format that is filled with rounding errors. Javascript therefore does

not fit well with the Math-intensive simulation we wish to conduct.

0.1 + 0.2 = 0.300000000000000004

Fig. 2.1 Floating point sum precision error

There are some possible solutions to this problem; one of them is Math.js, a library capable
of solving these rounding errors and adding functionality and functions to the suite of al-
ready available math functions javascript provides. This is a good simulation for the visual
aspect of the application, rendering orbits with math functions, though we can explore other
server-side programming languages to fill this need.

2.1.2 Python

Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics. Its high-level built-in data structures, combined with dynamic typing and dy-
namic binding, make it very attractive for programmers. It has also grown in popularity
among researchers thanks to modules such as numpy ! and scipy 2, Numpy is a very at-
tractive package for scientific computing. It contains, among other elements, N-dimensional
array objects, sophisticated broadcasting functions, linear algebra, Fourier transformations,
and several random number capabilities. All very useful tools when developing a simula-
tion with accuracy in excess of 1 x 10e — 8. Regarding mathematical operations in python
and more specifically Numpy, we have access to a default 64-bit precision float with the

added option of using long doubles. Depending on the architecture of the system it will be

Thttp://www.numpy.org/
“https://www.scipy.org/

2.2 Design 9

an 80-bit floating point representation or an 128-bit floating point representation. Later on
we will explore why this long double is of special use for us. Nonetheless, with the default
64-bit floating point numbers used by default in Numpy, we can have an accuracy of up to
1% 10e — 153,

Python can also be used as a server-side language with the help of modules like Flask 4
Running python server-side allows us to efficiently run any python code and use REST calls
for bidirectional communication between the browser and server-side code. Flask is a micro-

framework for python based on Werkzeug > and Jinja 2 ©.

2.2 Design

After taking into consideration the technologies available to us for the implementation, we
can make a decision on the architecture of the system. When designing and developing web-

based applications a certain distinction has to be made on how the system works. 7

VISITORS WEB SERVER STAFF
[(I
| Frowt D BACK
o END DATA END
= : presentation BASE presentation : =
[E : layer layer : E]
= —C =)

X T
O | el I -

layers : =
. F——\

Fig. 2.2 Traditional web architecture

Traditional web architectures have a front-end and a back-end. Front-end is the presentation
layer of the web; usually the HTML® and CSS® are considered the front-end. These are

served by web servers upon request from client browsers when accessing a certain webpage.

3This precision was obtained after testing python operations within the environment in comparison with
the same operations in Fortran90

“http://flask.pocoo.org/

Shttp://werkzeug.pocoo.org/ - Advanced WSGI utility module

®http://jinja.pocoo.org/ -Jinja2 is a full featured template engine for Python

"https://www.tonymarston.net/php-mysql/an-end-to-end-ecommerce-solution-requires-more-than-a-
fancy-website.html

8Hypertext Markup Language

%Cascading Style Sheets

10 Context

Back-end systems contain certain logic and data layers, which give functionality to the front-
end side of the web-application.

The web-architecture for our system will be the following:

Eﬁ REST
_g Angular)S WebAPI = Plython
classes
ko 4
] »n 2
3 i)
Al = ‘—E_ =) =5 =) Pl = ==) WebApi Controllers
S| s & 2 Repositories P
& &3
© .
© Angular)S Context ViewModels
(o Json

Fig. 2.3 Web architecture

The front-end of the web-application will utilise the Javascript framework AngularJS. This
framework will take care of all the logic between the HTML views and the data and infor-
mation displayed in them. Angular]S is widely considered one of the best libraries thanks
to its ease of use and widely understood MVC! structure. The visual aspects, such as the
representation of orbits, will be implemented using a myriad of JS libraries such as Three.js
1" and Mathbox js'2.

The back-end system will be based off of a Python web-server using the previously men-
tioned Flask library. This will allow us to run the CPU intensive simulation server-side and
not bog down the client browser in the process. Having access to Numpy is also an added
benefit as the implementation of the simulation will need the use of N-dimensional array
objects. In the section on efficiency we will comment on the benefits of using python and
specifically Numpy when operating over n-dimensional arrays.

"Model-view controller architecture
Uhttps://threejs.org/
Phttps://github.com/unconed/mathbox

Chapter 3

Implementation

The implementation of the project has to be divided in two distinct development efforts:
On the one hand the design and development of the front-end javascript code and on the
other hand the python webAPI/array simulation. With this in mind we can proceed with the

implementation.

3.1 Array Simulation

The array simulation is by far the most challenging development of the two previously men-
tioned efforts. After appropriate analysis and research the following techniques need to be
developed in order to achieve the required results: techniques for constructing an ephemeris
of an orbiting body, the calculation of black-body radiation from the sun with corrections
for reflection and shadowing of the earth, and the radiation from a photoelectric array. The
calculation of the temperature of the satellite can be done by numerical solutions of the dif-
ferential equations of heat absorption and radiation.

As a general setup, the Earth ephemerides and solar array ephemerides need to be calculated,
followed by the location of the Earth in heliocentric coordinates according to a specific date
provided by the user. With these coordinates we can then calculate the surface elements on
the orbital track of the solar array from which the generation of the shape factor parameters in
heliocentric coordinates can be stipulated. The solar beta angle is then calculated for which
a Solar model is generated. For the albedo calculation, element shape factors are required.
Based on the information above we can then iteratively calculate time-step through time-step
the necessary information.

The process of debugging and validating the results from this simulation will be talked about
in a later section. Some problems were encountered with precision errors when comparing

results by the math and numpy modules with a calculator for example. The necessity for

12 Implementation

precision is paramount, as in some cases a difference of one hundred thousands could alter

results quite considerably.

3.1.1 Orbital Ephemerides

The purpose of calculating the orbital ephemerides of both bodies is to create a table of
orbital position as a function of time. We can analyse one complete period with theta going
from O to 2x in equal increments. The time required for each step is then computed by a
numerical solution of the differential equation of orbital motion. The time for one complete
period is computed and returned. The array is then normalised by this quantity and thus goes
fromOto 1.

ephem(self, a, e, w, tp, theta):

n = min(tp.shape, theta.shape) [0]

dth = (np.pi % 2) / int(n - 1)

c=((1.0 - e x e) *k 1.5) / (np.pi *x 2)
st = 0.0

th 0.0

ds = 0.0

sts = 0.0

for j range(@, n):

jrks =1

tplj] = st

theta[j] = th

while 1 <= jrks < 4:
f =1.0 + e x np.cos(th)
dst = c / (f x f)
temp = f.rsfdx(st, dst, ds, dth, sts, jrks)
st = temp.get('y"')
ds = temp.get('dy")
sts = temp.get('ys")
temp = f.rscon(th, dth, jrks)
th = temp.get('xc')
jrks = temp.get('kc")

f=1.0/ tpln - 1]
tp = np.multiply(tp, f)
p = (math.pi % 2) % (a %k 1.5) / (3600. * np.sqrt(1.068E-9 * w))

return {'p': p, 'tp': tp, 'theta': theta}

Fig. 3.1 Implementation of ephem function

For each iteration within the Ephem function rsfdx is called. It is the implementation
of the Range-Kutta, a method of numerically integrating ordinary differential equations by

using a trial step at the midpoint of an interval to cancel out lower-order error terms. Used

3.1 Array Simulation 13

here is the fourth-order formula.

Ky : Ky=hf(x,,y, (3.1)
K, : K,=hf(x,+ %h, v, + %kl) (3.2)
Ky: Ky=hf(x,+ %h, v, + %kz) (3.3)
Ky: Ky=hf(x,+hy,+ks) (3.4)
y,+1 y, +1=y + %kl + %kz + %1@ + ék4 +0(h) (3.5)

rsfdx(self, y, dydx, dy, dx, ys, kr): rscon(self, xc, dxc, kc):
if kr == H if kc == 1:

ys =y XC = XC + 0.5 * dxc
dy = dydx *x dx kc = 2
y =ys + 0.5 x dy elif kc == 2:
elif kr == 2: kc = 3
dy = dy + 2.0 * dydx * dx elif kc == 3:
y = ys + 0.5 % dydx * dx XC = XC + 0.5 % dxc

elif kr == 3: kc = 4
dy = dy + 2.0 * dydx * dx elif kc ==
y = ys + dydx * dx kc =1
elif kr ==
dy = ((dy + dydx * dx) / 6.0) return {'xc': xc, 'kc': kc}
y =ys + dy

return {'y': y, 'dy': dy, 'ys': ys}

Fig. 3.2 Implementation of rsfdx and rscon functions called by Ephem

The function is called iteratively through the main ephem function and therefore iterated
through the values [1,4] of the rsfdx and rscon function. After every execution of the rsfdx
function, the rscon method is also called. It is the control procedure of the Range-Kutta

function.

14 Implementation

3.1.2 Shape Factor

The shape factor equation is used various times during execution. It is more commonly
known as the view factor and it is the proportion of the radiation which leaves a surface A
that strikes a surface B. In a complex scenario there can be any number of different objects,
which can be divided in turn into even more surfaces and surface segments.

In order to apply this shape factor equation we need to first calculate the heliocentric position
of the Earth or Planet in question at a certain date. We then calculate the orbital surface track
the orbital array passes over during its orbit. The portion of the surface that affects our solar

array is calculated using the following formula:

dphi : dphi = arccos(RE/(a * (1.0 + e)) (3.6)
phimax phimax = %7[+ dphi (3.7)
phimin phimin = %7[— dphi (3.8)

RE = Radius of earth, a = Array altitude, e = Array eccentricity

Both phimin and phimax are measured from the poles in radians. After obtaining these
values, we need the surface position tensor, the surface area vector, the surface normal tensor
and the actual number of surface elements for the orbited body and the sun. In order to
calculate the spherical surface tensors in the general coordinate system we use functions
sphere2 and sphere. Sphere2 is called to obtain the spherical surface tensors in the sphere’s
coordinate system as the solar array is orbiting this body. Sphere is called to obtain the

spherical surface tensors in order to create a solar model.

" SIngAGA rde

Y911\ rsing do
T
L — .y
o ldp

Fig. 3.3 Surface element in spherical coordinates

3.1 Array Simulation

15

sphere(self, xo, r, x, a, vn, phimin, phimax, n):

phi = phimin

dphi = (phimax - phimin) / n
the =
j=0

0.0

for k in range(@, n):
sinp = np.sin(phi + dphi / 2.0)
cosp = np.cos(phi + dphi / 2.0)
da = np.float64(np.divide(dphi, sinp))
Xm = np.pi *x (2 / da) + 0.5
m = np.trunc(xm)
da = np.pi * (2/m)
the = the + da / 2.0
area = r x r * da * (np.cos(phi) - np.cos(phi + dphi))
na =na+m

for i range(@, np.int(m)):
vn[@, j]l = sinp * np.cos(the + da / 2.0)
temp = the + np.divide(da, 2.0)
vn[1, j] = sinp * np.sin(the + da / 2.0)
vn[2, j1 = cosp
aljl = area

x[0, jl x0[0] + r x vn[0, jI
x[1, jl xo0[1] + r x vn[1, j]
x[2, j1 = xo[2] + r % vn[2, j]
the = the + da

j=3j+1

phi = phi + dphi
return {'x': x, 'a':

Fig. 3.4 Implementation of sphere function

16 Implementation

For the body orbited by the solar array we need to execute several additional operations.
After calculating the spherical surface tensors in the sphere’s coordinate system, we need to
transform them to the general coordinate system. This is done by rotating about the x axis,
rotating about the z axis and rotating for earth’s inclination. We iteratively call methods Rtop
and Ptor. Ptor executes a polar to rectangular conversion and Rtop executes a rectangular to

polar conversion. An angle in [0,r] range is returned instead of [-&t,x].

sphere2(self, xo, phi, ra, r, x, a, vn, phimin, phimax, n, na):
Xc = np.zeros(3)

result = self.sphere(xc, r, x, a, vn, phimin, phimax, n)
x = result.get('x")

a = result.get('a')

vn = result.get('vn')

na = result.get('na')

for j range(@, np.int(na)):
result = f.rtop(x[1, jl, x[2, jl)
rx = result.get('r")
td = result.get('th')
rn = np.sqrt(vn[1, j] % vn[1l, j1 + vn[2, j]l * vn[2, jI)
td = td + phi
result = .ptor(rx, td)
x[1, j] = result.get('x')
x[2, j] = result.get('y')
result = f.ptor(rn, td)
vn[1, jl result.get('x")
vn[2, jl result.get('y")

result = .rtop(x[0, jl, x[1, j1)
rx = result.get('r")

td = result.get('th')

rn = np.sqrt(vn[@, j] * vn[0, j] + vn[1, j] % vn[1, jl)
td = td + ra

result = f.ptor(rx, td)

x[0, j] = result.get('x")

x[1, j] = result.get('y")

result = .ptor(rn, td)

vn[o, jl result.get('x")

vnll, jl result.get('y")

result = .rtop(x[1, j1, x[2, jI)
rx = result.get('r")

td = result.get('th')

rn = np.sqrt(vn[1, jl % vn[1, j1 + vn[2, j1 % vn[2, j])
td td - 0.409274

result = .ptor(rx, td)

x[1, j]1 = result.get('x")

x[2, j] = result.get('y"')

result = .ptor(rn, td)

vn[l, j]l = result.get('x")

vn[2, j]l = result.get('y"')

x[0:2, j] = x[0:2, j] + x0[0:2]

return {'x': x, 'a': a, 'vn': vn, 'na':

Fig. 3.5 Implementation of sphere2 function

3.1 Array Simulation 17

The next step is calculating the beta angle between the sun and the solar array. We input
the location of the earth in x,y coordinates and then transform the coordinates, to take into
account the inclination of the orbit of the satellite and the right ascension node of the orbit.
A slight correction for the earth’s inclination is also needed. After the transformations we

calculate the beta angle with the following formula:

beta : beta = arccos [S XD T 0 *ya) (3.9)

VG242 - 31

beta(deg) : beta(deg) = 2512 180 (3.10)
T

beta(self, re, phi, ra):
xa 0.0
ya 0.0
za 1.0

result = f.rtop(ya, za)
theta = result.get('th')

r = result.get('r")

theta += phi

result = .ptor(r, theta)
ya = result.get('x")

za = result.get('y")

result = self.rtop(xa, ya)
theta = result.get('th')

r = result.get('r")

theta += ra

result = .ptor(r, theta)
xa = result.get('x")

ya = result.get('y")

result = .rtop(ya, za)
theta = result.get('th')

r = result.get('r")

theta -= -0.409274

result = f.ptor(r, theta)
ya = result.get('x")

za = result.get('y")

bet = np.arccos((re[@] * xa + re[l] * ya) / np.sqrt(re[@] *x re[@] + re[l] * re[1])) - np.pi * 0.5
bet = bet x 180 / math.pi

return bet

Fig. 3.6 Beta function implementation

After obtaining the beta angle between the solar array and the sun we can finally pro-

ceed to the Shape Factor calculation mentioned above. This is done for the albedo radiation

18 Implementation

calculation. Considering two finite surfaces, computing the view factor (shape factor) is a

problem of mathematical integration.

cos fi, cos i
F: F=21 / — 1244,) dA, (3.11)
AJu\Ja2 wr?
X =Coordinate array for each nodal plane

A =Area of each nodal plane

VN =Components of unit normal vector for each nodal plane

N =Number of nodal planes in each body

1,2 =Bodies for shape factor computation

B = All surface between Body 1 and Body 2 (if no intervening surfaces, XB=1, NB=1)
Shfac=Black body shape factor referenced to body 1

shfac(self, x1, al, vnl, nl, x2, a2, vn2, n2, xb, ab, vnb, nb):
np.zeros(3)
np.zeros(3)
= 0.0
fl = 0.0
for j range(@, np.int(nl)):
a=a+ alljl
for k range(@, np.int(n2)):
r[0:2] = x2[0:2, kl-x1[0:2, jl
rmag = np.sqrt(np.sum(r *x 2))

cosl = ((vni[@, jl = r[0]) + (vnll[1, jl % r[1]) + (vnl[2, jl % r[2])) / rmag
cos2 = 0. - (((vn2[@, k]l * r[0]) + (vn2[1, k] % r[1]) + (vn2[2, k] * r[2])) / rmag)

if cosl <= 0.0 cos2 <= 0.0:
pass
else:
for 1 in range(@, np.int(nb)):
b[0:2] = xb[0:2, il - x1[0:2, j]
xdotn = np.dot(b[@:2], vnb[0:2, il)
rdotn = np.dot(r[0:2], vnb[0:2, i])

if rdotn == 0.0:
pass
else:
¢ = xdotn / rdotn
if ¢ <= 0.0 c >= 1.0:
pass
else:
s = np.sum((c * r[0:2] - b[0:2]) %k 2)
if s <= ab[i] / 2.0:
fl = f1
f=ff1/ (np.pi % a)
return f
fl = f1 + cosl * cos2 x all[j] * a2[k]l / (rmag * rmag)
f =1/ (np.pi % a)
return f

Fig. 3.7 Shape factor implementation

3.1 Array Simulation 19

3.1.3 Orbit Function

Regarding other functions used in the simulation, the orbit function is of special importance
as it returns the coordinates of the solar array for a specific time from the perigee. We use
the heliocentric coordinates of the earth, the time to perigee, the position of the arrays from
ephem(calculated previously) and the orbital period.

The location is calculated in orbit coordinates after a linear interpolation of the solar array

orbit ephemerides(result saved as variable ®).

a(l —é%)

A combination of rectangular to polar conversions are made to rotate for orbit inclination,

ascension node, and earth inclination. With the result being outputted as a [x,y,z] coordinate.

3.1.4 Main Loop

As mentioned at the beginning of point 3.1, there is a general setup that must be calculated
before extracting the necessary values from the simulation. After processing the elements’
shape factors mentioned in the previous sub-section, we can proceed to tackle the main prob-
lem.

A variable dt is instantiated, which is equal to the period of the orbit divided by the number
of time-steps for one orbit. Changing this number can reduce or increase the size of the prob-
lem. The loop will iterate through the points in the orbit, saving to several arrays the values
of time, direct Kw, reflected Kw, total Kw, temperature of the panels, power generated per
Kw and the perceived efficiency.

At the beginning of each iteration, the orbit coordinates are calculated with the above-
mentioned orbit function. The direct solar radiation is calculated using the shape factor
function(f ¢, »)- Direct solar radiation is then calculated:

qdljl : qdljl= fgyy * ¢ * areas fo, (3.13)

Next reflected radiation is calculated. If the direct radiation is equal to O, then reflected
radiation is not calculated as it too will be 0. The reflection received from both the cell side
and back side are calculated using the Falbedo function (Shape factor of the sun as reflected
off the earth). Terrestrial radiation and cosmic background radiation is also calculated at this

point using once again the shfac function and crad function respectively.

20 Implementation

With the effective direct solar radiation being received by the solar array, the effective heating
rate and heating capacity can be calculated. At the end of each iteration the calculated values
are saved and we increment the current time once for the next point. This is repeated until
the whole orbit has been iterated through.

To calculate the operating temperature of the array we must equate the power incedence on

the array P;, with the power produced, plus that radiated away P,,,.

Pin = Ggolar + Psun + Palbedo + Xthermal + Pthermal (314)

3.2 Web Development 21

3.2 Web Development

The development of the web-application is made up of two parts: the Angular]JS code and the
python web server code. They function together to provide a fast and efficient system. The
Python web server doubles as both the API! and as the web server. As mentioned in Chapter
2, the design of the python web server is based on what is called a micro-framework. Upon
request it serves the static files to browsers and it also allows, in this case, to pull simulation
data through REST? commands.

3.2.1 AngularJS App

4 app
4 modules
4 app
Js controller.js

index.html
4 home
Js controller.js
index.html
Js app.js
index.html
4 assets
bower_components
css
extras
fonts

Fig. 3.8 Angular]S project structure

We start with an Angular skeleton. The app folder contains the modules folder. This
folder contains all the different pages the application has to offer, each in their View-Controller
pair. The app.js contains high-level code such as the router which is in charge of routing the
user through the different webpages available inside the app. The index.html is the static file
the web-server hosts which, in turn, loads all the dependencies, including the controllers, css
and js files. The index file also contains meta-data for SEO and browser information.

As stated in the design portion of Chapter 2, we will be using two special dependencies to

! Application Program Interface
2Representational State Transfer

22 Implementation

draw our simulation. Three.js is a cross-browser JavaScript library and Application Pro-
gramming Interface (API) used to create and display animated 3D computer graphics in a
web browser. We will use it in conjunction with Mathbox.js, which is a library for rendering
presentation-quality math diagrams in a browser using WebGL. Built on top of Three.js and
ShaderGraph, it provides a clean API to visualise mathematical relationships and animate
them declaratively.

We start with mathbox and create a global variable called Orbital into which we will instan-
tiate and append all of our information and parameters.

Orbital.mathbox = mathBox({
plugins: ['core', 'controls', 'cursor', 'mathbox'],
controls: {

klass: THREE.OrbitControls,
}
});

Fig. 3.9 Mathbox initialization

Following the documentation and examples available for Mathbox we obtain the refer-
ence for Three.js from the Mathbox object. We set the scene attributes, its lighting and create
arenderer. We also set-up the view, in this case, a Cartesian view. This allows us to visualise

the orbit trajectory as a math function on a grid.

Orbital.three = Orbital.mathbox.three;

Orbital.three.renderer.setClearColor(THREE.Color(0x000000), 1.0);
Orbital.light = HREE.AmbientLight(@xcccccc);
Orbital.three.scene.add(Orbital.light);

Orbital.z_index = @

directionallLight = THREE.DirectionalLight (exffffff, 0.2);
directionallLight.position.set (1000, 0, 0);
directionalLight.name = "directional";
Orbital.three.scene.add(directionalLight);

. renderer THREE er();
renderer.setClearColor(0x333333);
renderer.setPixelRatio(window.devicePixelRatio);
renderer.setSize(window. innerWidth, window.innerHeight);

Fig. 3.10 Mathbox set-up

3.2 Web Development 23

Orbital.camera = Orbital.mathbox.camera({
proxy: ,
fov: 45,
position: [1.5, 1.5, 4]

1);

Orbital.view = Orbital.mathbox.cartesian({
range: [[-1, 1], [-1, 1], [-1, 111,
scale: [1, 1, 1],

1);

Fig. 3.11 Mathbox view set-up

The following steps require us to create 3D objects. Due to the nature of three.js, the
values for sizes and speeds are all in base(REVISE) of arbitrary values. The size of Earth is
an arbitrary unit of 1 in the scene and thus the Moon, for example, has a size of 0.36, as that
is the relation between their sizes. All values seen in the configuration are in relation to the

size of the Earth, that is, the number 1.

Orbital.earth_geometry THRE Ge (1, 128, 128);

Orbital.earth_material 1PhongMate 1();

Orbital.earth_mesh = HR Mesh(Orbital.earth_geometry, Orbital.earth_material);
Orbital.earth_material.map = THREE.ImageUtils.loadTexture('static/assets/img/earthmap_w_clouds.jpg', {});
Orbital.earth_material.specular = THREE.Color('grey');

Orbital.three.scene.add(Orbital.earth_mesh);

Orbital.moon_geometry HR eGeometry(0.3668, 64, 64);

Orbital.moon_material ongMaterial();

Orbital.moon_mesh = THREE.Mesh(Orbital.moon_geometry, Orbital.moon_material);
Orbital.moon_material.map = THREE.ImageUtils.loadTexture('static/assets/img/moon.jpg’, {});
Orbital.three.scene.add(Orbital.moon_mesh);

Orbital.moon_mesh.position.set(60/ $scope.scale, 0, 0);

Fig. 3.12 Mathbox object set-up

To implement rotation and animations, we require the use of Quaternion, a number
system that extends complex numbers. It has special use in calculations involving three-
dimensional rotations such as, as is this case, computer graphics. We instantiate Quaternion
in our three.js attribute and create a render function which sets a rotation speed for the Earth
mesh created beforehand and a Moon mesh position which will slowly move in an ellipsis
around the Earth.

24 Implementation

tor3(0, 1, 0).normalize();

quaternion = w THREE.Quaternion();
render() {
Orbital.earth_mesh.rotation.y += 0.00001 *x $scope.timestep;

quaternion.setFromAxisAngle(axis, 0.0000001 x $scope.timestep);
Orbital.moon_mesh.position.applyQuaternion(quaternion);

renderer.render(Orbital.three.scene, Orbital.camera);

Fig. 3.13 Quaternion animation set-up for Three.js

3.2.2 Mathbox Orbit Math

As previously mentioned, Mathbox allows us to draw functions on a 3D grid in realtime. We
can use this to our advantage, as an orbit is really a third order equation.

In order to draw an orbit, we need to understand classical orbital mechanics. Orbital me-
chanics or astrodynamics is the application of ballistic and celestial mechanics. The motion
of these objects can be calculated from Newton’s laws of motion and Newton’s law of uni-
versal gravitation. However, we must focus on what compromises an orbit.

It is possible to specify an orbit entirely using a set of 5 parameters. With these 5 parameters,
we can specify precisely where an orbit is, how it is oriented in 3-D space, and what size it
is. We also have an optional sixth parameter that determines exactly where the satellite is in
its orbit at any arbitrary time 7. These 6 parameters are called the Keplerian Elements and
they are the following:

e T, (Epoc): Epoch time, number which specifies the time at which a "snapshot’ of the

orbit is taken.

e i (Inclination): Inclination is the angle between the orbital plane and the equatorial

plane. By convention, inclination is a number between 0 and 180 degrees.

e Q (Longitude of Ascending Node): is an angle, measured at the center of the earth,

from the vernal equinox to the ascending node.

e o (Argument of perigee): angle that specifies orientation of the orbit ellipse in the

orbital plane.

3.2 Web Development

25

o ¢ (Eccentricity): is the shape of the orbit, 0 being a circle.

e a (Semi-major axis): is an Ellipsis longest diameter.

True anomaly

Qg

Longitude of ascending node

Argument of pgriapsis

(\(1

Reference
direction

i
Inclination
§3

P
lane of reference

Ascending node

Fig. 3.14 Orbital Mechanics (Elements)

The next challenge is representing an orbit in a coordinate system [X,y,z]. We use the

following equations derived from Newton’s laws of motion.

_a+(- e2)
I —ecos(f + n)

x =rcos(f)

y =rsin(0)
x1l = xcos(w) + ysin(w)
yl = —xsin(w) + ycos(w)
x2 = x1cos(i)
y2 =yl
x3 = x2cos(2) + y2sin(L2)
y3 = —x2sin(Q) + y2 cos(Q)

orbit Equation = (x3, x1 sin(i), y3)

(3.15)

(3.16)
(3.17)
(3.18)
(3.19)
(3.20)
(3.21)
(3.22)
(3.23)
(3.24)

26 Implementation

Orbital.orbitEquation = (a, e, 6, inclination, w, Q) {
=ax*x(1l-exe)/ (1L-ex*Math.cos(® + m));
r % Math.cos(®)
th.sin(0);
.cos(w) + y * Math.sin(w);
.sin(w) + vy * .cos(w);
ath.cos(inclination);

= - sin(Q);
= ath.sin(Q) + y2 * | .cos(Q);
return ([x3, x1 * Math.sin(inclination), y3]);

Fig. 3.15 Orbital equation implementation

In order to draw the orbit, we need to create a view area inside the Mathbox module. We
specify certain parameters such as the range and width/height of the area. We then append
an array with which we draw a line on its path. The array expression emits the results from
the orbital equation. Some parameters need to be passed to radians as the visual sliders use
degrees as the unit of measure.

.array({

width: Orbital.samples,

channels: 3,

classes: ['widget', 'orbit_' + Orbital.z_index],

expr: (emit, i, t, dt) {
a = $scope.slider_a * 1;
e = $scope.slider_e * 1;
inclination = Orbital.deg_to_rad * $scope.slider_i * 1;
w = Orbital.deg_to_rad * $scope.slider_w *x 1 — Orbital.mhalf;
Q = Orbital.deg_to_rad * $scope.slider_omega * 1;
6 = i * Orbital.sampling_scale;
coordinates = Orbital.orbitEquation(a, e, 6, inclination, w, Q);

emit(coordinates[@], coordinates[1], coordinates[2]);

},
})
. line({
color: Oxffffff,
opacity: 0.8,
points: '<',
width: 6,
depth: 0.5,
zOrder: -1000 + Orbital.z_index,
id: 'orbit_trajectory_' + Orbital.z_index,
classes: ['widget', 'orbit_' + Orbital.z_index]

Fig. 3.16 Orbit Visual Implementation

As an additional visual aid we also add arrays with lines for the semi-major and minor
axis of the ellipse.

3.2 Web Development

27

Fig. 3.17 Result of implementation

28 Implementation

3.2.3 HTML - Design

We start by creating a layout for the App. We will have four main areas. The first, and largest,
the visual representation of the space around the planet. This will be in the background. In

the foreground there will be three windows, two of which will be toggleable.

@ Science-Ed Home About App Facts

¥

Orbit Parameters Orbit Info

Simulation Start
Settings

Fig. 3.18 Web app layout

The design of the windows will be mainly based on angularjs material design, using the
components available from that library. There will be 5 main parameters, all the Keplerian
elements except the Epoch, which will be the visual representation of the satellite in orbit.
There are also 2 settings modals used in the app. One for the app general settings, and another

one for the solar simulation settings. Regarding the calculation of the satellite orbital info:

3.2 Web Development 29

@ (®~, Satellite Orbital Parameters
a= —@ 2
0
e =
- ~ 30¢
0
w=
Q= 0
Fig. 3.19 Orbit Parameters view
Apogee =d=x(1+e) (3.25)
Perigee =dx*x(1—e) (3.26)

Orbital Speed = / G+ M (3.27)
r

Orbital Period =2n d - (3.28)
velocity

Orbital Altitude =d (3.29)

(3.30)

It is important to take into account the radius of the Planet when calculating values. 1 Radius

is always subtracted from the distance parameter in the equations.

3.2.4 Web Server Code

The server Python code is relatively simple. Inside the file run by the server (server.py) we
import all necessary modules for Flask and we import the array simulation class file. We

instantiate two routes for the app. The generic (’/°) returns the render of the index.html. We

30

Implementation

® <& satellite Orbital Info

Apogee (Km) 6378.40
Perigee (Km) 6378.40
Orbital Speed (km/s) 5.59

Orbital Period 3:58:59
(hh:mm:ss)

Orbital altitude (Km) 6378.40

Fig. 3.20 Orbit Info view

App Settings
Timestep 100x ~ Distances n
Changing planet will alter solar power
Planet - imulation. Making the jons for the

planet selected.

SAVE SETTINGS CANCEL

Fig. 3.21 App settings view

Changing these settings will heavily impact simulation spee

Solar Simulation Settings

. Number of planet latitude
Array Size (m*2) divisions

Number of array elements e Number of solar latitude divisions

Number of timesteps per orbit M

SAVE SETTINGS CANCEL

Fig. 3.22 Solar simulation settings view

3.2 Web Development 31

then create a route that will be called when requesting the simulation through REST. With
this method we save all the arguments sent in the request and call the initialise method of the

class which returns the information in an array of objects.

@app.route('/")

hello(name=)&
return render_template('index.html', name=name)

Fig. 3.23 Server default app route implementation

@app.route('/simulation')
simulation():
phi = float(request.args['phi'])
float(request.args['omega'l)
(request.args['a'l)
at (request.args['e'])
array_size = int(request.args['as'])
date = float(request.args['date'])
ra = float(request.args['ra'l])

a * 6371) * 3280.84
t(a)

= int(request.args['na'l)
int(request.args['ne'l)

= int(request.args['ns'])

nt = int(request.args['nt'])

print(phi,omega,a,e,array_size,date, ra,na,ne,ns,nt)

v = Array_Simulation()
result = v.initialize(a, phi, omega, e, array_size, date, ra, na, ne, ns, nt)
return json.dumps(result)

Fig. 3.24 Server simulation app route implementation

Chapter 4

Results

&) Science-Ed Home About App Facts Qe

O (®~, Satellite Orbital Parameters O G Satellite Orbital Info
Apogee (Km) 10970.85
Perigee (Km) 1785.95
Orbital Speed (km/s) 5.59

Orbital Period
(hh:mm:ss)

Orbital altitude (Km) 6378.40

%ﬁ’ Solar Power Simulation

‘ CALCULATE Qo

Fig. 4.1 Result of web application

The resulting web-application allows users to visualise orbits accurately and manipulate
them as they wish. The orbital info updates accordingly and animations show the satellite
accurately moving through the orbit with the planet rotation and moon movement. Clicking
the solar simulation calculate button allows the user to visualise the data the simulation out-

puts. The information can be seen in raw format and graphically within the web-application.

34

Results

The orbit used for these results was one similar to that of the International Space Station,
with a period of 1.52 hours and an orbital altitude of 442km.

Table 4.1 Raw results from array simulation

Time | Direct Kw | Reflected Kw | Total Kw | Temperature | Pwr Gen | Efficiency
0.0000 1.3859 0.0464 1.4323 4.6278 0.1741 27.9588
0.0311 1.3859 0.0813 1.4673 5.7508 0.1775 32.6665
0.0623 1.3860 0.0936 1.4795 6.9273 0.1781 32.5045
0.0934 1.3860 0.0852 1.4712 8.1752 0.1762 32.3326
0.1245 1.3860 0.0711 1.4571 9.4400 0.1735 32.1584
0.1557 1.3860 0.0514 1.4374 10.8082 0.1702 31.9700
0.1868 1.3860 0.0306 1.4166 12.4261 0.1666 31.7472
0.2179 1.3860 0.0138 1.3998 14.1328 0.1634 31.5121
0.2490 1.3860 0.0038 1.3898 15.9343 0.1609 31.2640
0.2802 1.3860 0.0002 1.3863 17.8268 0.1592 31.0033
0.3113 1.3860 0.0000 1.3860 19.7889 0.1578 30.7331
0.3424 1.3860 0.0000 1.3860 21.7822 0.1564 30.4586
0.3736 1.3860 0.0000 1.3860 23.7631 0.1550 30.1858
0.4047 1.3860 0.0000 1.3860 25.6897 0.1536 29.9204
0.4358 1.3860 0.0000 1.3860 27.5202 0.1523 29.6683
0.4670 1.3860 0.0000 1.3860 29.2205 0.1509 29.4003
0.4981 1.3860 0.0004 1.3864 30.7649 0.1499 29.1871
0.5292 1.3860 0.0047 1.3907 32.1393 0.1494 28.9973
0.5604 1.3860 0.0157 1.4017 33.3487 0.1497 28.8303
0.5915 1.3860 0.0332 1.4192 34.4147 0.1508 28.6832
0.6226 1.3860 0.0541 1.4401 35.3646 0.1523 28.5520
0.6538 1.3860 0.0722 1.4582 36.2292 0.1536 28.4326
0.6849 1.3860 0.0878 1.4738 37.0404 0.1546 28.3206
0.7160 1.3860 0.0927 1.4787 37.8419 0.1545 28.2100
0.7471 1.3859 0.0771 1.4631 38.6635 0.1522 28.0965
0.7783 1.3859 0.0396 1.4256 39.5385 0.1477 27.9757
0.8094 1.3859 0.0075 1.3934 40.3255 0.1438 27.8671
0.8405 1.3859 0.0009 1.3868 409118 0.1427 27.7861
0.8717 | 0.0000 0.0000 0.0000 41.3213 0.0000 | 27.7296

Chapter 5
Discussion

In this chapter we will discuss two main areas. First and foremost, the results have to be
analysed to make sure they are accurate and secondly, the efficiency of the simulation has
to be measured and, if necessary, adjusted. Before diving into the results, we will analyse
possible factors that can change the results. The simulation only accounts for satellites which
are orientated towards the sun to achieve the best possible efficiencies throughout their or-
bit. This means that they have active stabilisation either with reaction control thrusters or
more commonly reaction control wheels. For larger satellites there are methods for passive
stabilisation using the differences in gravity at one point of the satellite compared to another
point further away from the centre of mass. In fact, knowing the optimum efficiencies and
values, we can stipulate the curves for non stabilised satellites. Chitra Seshan’s paper on
"Cell efficiency dependence on solar incidence angle’ [S] gives useful insights into the cell
efficiencies for different incidence angles. The calculated model from the article can be used

to include a variation of options when visualising the solar simulation results.

5.1 Analysis of results

As discussed in the first chapter, there is little to no literature or practical data to cross-
reference in order to make sure the results are valid. However, panel efficiencies from well
known cubesat providers can be compared with the resulting efficiencies from the simulation.
Additionally, we can use relevant literature to estimate the amount of solar irradiance that
reaches the Earth’s atmosphere.

In order to start with these comparisons, we have to understand how the results are returned
from the simulation. These results should be divided into two important datasets. The first
being the direct kW, reflected kW and total kW that hit the solar panels. This is effectively

the amount of available solar energy the panel has at a specific moment during its orbit. A

36 Discussion

solar cell with 100% efficiency would generate the total kW value outputted by the results.
The second dataset: temperature, power generated and efficiency are all related to a specific
solar panel with a specific efficiency. These values are dependant on the solar panel used for
the simulation.

5.1 Analysis of results 37

Fig. 5.1 Parameters used for simulation results

a=12756.8(km)

e=0.0

i=0.0

0=0.0
® =90.0
Q=00

1,6

1,4

1,2

0,8

kw

0,6

0,4

0,2

o o, o C, Xy X e s X 2 O T Q@
Q) e W T 6, T8y (95 Y0, Y Yz Y Y Y9, YOy T, Y Y&y T e Yo, Yo Yo, Yy, Yo Yo

Time in hours

Fig. 5.2 Total solar irradiance received by orbiting satellite as a function of time

Regarding the first dataset, we obtain a direct kW value of approximately 1.38 for a solar
panel with an area of 1m/s®>. We can calculate the amount of solar energy the sun radiates
based on its temperature. With this figure we can initially prove the accuracy of the results
comparing the theoretical values with the simulation result. Furthermore, the amount of so-
lar irradiance the Earth receives according to the NREL! is 1.36kW /m?. When comparing
it to aforementioned 1.38kW, we observe a difference of around 0.014% with the results of
the solar simulation. Comparing with the relevant literature mentioned in the state of the
art section we observe a difference of around 0.02kW. Furthermore, the data for different
orbits were calculated in order to have additional data-points, one of which has an average

orbital distance of more than 2 million kilometres from the Earth. This orbit resulted in a

"National Renewable Energy Laboratory of the United States of America

38 Discussion

max value of direct kW received of 1.42, accounting for an increase of 0.04 kW for a distance
of 2 million kilometres. Using the radiation flux law we can calculate exactly the increase

in radiation for a set distance and effectively compare results.

Flux, S, from a star drops off with increasing distance. In fact, it decreases with the

square of the radial distance, r, from the star.

S: S=85, (%0)2 (5.1)

The resulting solar irradiance with the flux equation is 1.40kW/m?, an increase of 0.04kW
for a distance of 2 million Km from Earth. This further validates the accuracy of the results
obtained from the simulation.

Regarding the efficiency of the solar panels, it can be observed that there is a clear correlation

between the temperature of the panels and their efficiency.
50
45
40
35
30
25
20
15

10

O, O 0. O, O, 2, ¥y % Ca ¥y Lo O O s Ca Oy T P, P, O, O P 9
Q) “s T2 T 26, C8) D98 Y7, Yy Yz Y5y Y Y9, Yoy VO, Yoy Y&y Y V& Yo, Y Yo, Y9, Yey Yo

Time in hours

- === Efficiency % Temperature (Celcius)

Fig. 5.3 Efficiency of solar panels and temperature as a function of time

5.1 Analysis of results 39

The temperature coefficient (P, ,) 1s the maximum temperature coefficient. It indi-

ax
cates how much power a certain panel will lose when the temperature changes 1C° above
or below 25C°. Further investigation yields temperature coefficients ranging from +0.13
to +0.19[4](Nasa-study) . Generally the efficiency change with temperature is non-linear;
however, in ranges around -100C° and +100C°, efficiency is well-modeled as a linear func-
tion of temperature. The results obtained from our simulation yield temperature coefficients
of +£0.1367%, which align well with the literature for solar cell temperature coefficients for

Space mentioned previously.

Table 5.1 P, for orbit simulation

Time | Temperature | P,

0.79 30.01 0.1360
0.87 29.76 0.1359
0.95 29.51 0.1359
1.03 29.26 0.1359
1.11 29.00 0.1555
1.19 28.78 0.1362
1.27 28.58 0.1363

In conclusion, the results obtained from the simulation are accurate within +0.014%
when compared with relevant scientific literature. As stated above, various data-points were
taken into account for the analysis. Taking into account the objective of the project is to
provide an accurate simulation of the amount of power a solar array receives while in orbit,
it is important to assure a certain precision in the results. The objective of the project has
been reached as the criteria have been met.

40 Discussion

5.2 Efficiency

When developing web applications there are many important factors to take into considera-
tion, in this section we will mainly focus on response time and in this case, execution time.
Due to the interactive nature of the project, user wait time has to be taken seriously into
account.

It is important to understand what simulations are in order to consider various factors about
the efficiency and consequently program execution time. The very act of simulating some-
thing first requires that a model be developed; this model represents the key characteristics,
behaviours and functions of the selected physical system. The simulation represents the op-
eration of the system over time. This operation over time is the size of our problem. The
bigger the size, the more we divide the time it takes to orbit in segments and therefore, the
more data-points the simulation has. The more data-points we have, the more precise our
simulation is considered. Accuracy is also important, but in this case we have already dis-
cussed the precision of the results the program outputs.

B No optimization

120000
100000
80000

103128 104762
60000 51514 50214

50 100 100

Fig. 5.4 Initial results for program execution times. No optimisation done.

Time inms

40000

20000

50

Problem Size

The first results of program execution times were surprising due to various factors. A
set of 4 initial runs were timed with two different problem sizes. The first 50 and the second
100. This means that we divided the amount of time it takes the orbital array to complete one
orbit by 50 and 100 respectively. As can be observed it takes an average of 50.86 seconds
for a problem size of 50. This was initially considered acceptable, however some improve-

ments could still be made to improve execution times. Problem sizes of 50 were considered

5.2 Efficiency 41

accurate enough for LEO? and MEO? but anything above GEO* would need slightly larger
problem sizes to maintain sufficient data-points including orbits with high eccentricity.

The code was revised taking a few details into consideration. The first being the use of
NumPy functions for non ndarray’ calculations. NumPy basic operations contain additional
code that provides flexibility in order to handle NumPy arrays. Tests were carried out com-

paring native Python operations with NumPy operations.

python -m timeit 'abs(3.15)"'
10000000 loops, best 3: 0.146 usec per loop

python -m timeit -s 'from numpy import abs as nabs' 'nabs(3.15)’
100000 loops, best 3: 3.92 usec per loop

Fig. 5.5 Basic math operation performance difference between NumPy and Python native
math module

We observe a 25 fold improvement in performance when using a native python function
rather than a NumPy function. However when testing operations for arrays we observe a 28

fold improvement with NumPy functions.

python -m timeit -s = [3.15]1%1000' '[abs(x) for x in al'

1
a
10000 loops, best 3: 186 usec per loop

python -m timeit -s 'import numpy; a = numpy.empty(1000); a.fill(3.15)' 'numpy.abs(a)’
100000 loops, best 3: 6.47 usec per loop

Fig. 5.6 Array math operation performance difference between NumPy and Python native
math module

Worst performance usually occurs when mixing python built in math functions with
NumPy due in part to type conversions. The code was reviewed to take this into account. For
statements were also simplified using the builtin NumPy array functionalities which heavily

lower execution times.

2Low Earth Orbit, 160km-2000km
3Medium Earth Orbit, 2000km-35786km
“Geostationary Orbit, 35786km
SN-dimensional arrays

42 Discussion

x[0:2, j1 = x0[0:2] + r * vn[0:2, j]

Fig. 5.7 "For’ loop statements

Additionally, times were observed to be higher when running both the WebGL web appli-
cation front-end on the same computer as the server. The decision was made to emulate the
environment that users would find while using the webpage and therefore only the simulation
would need to be run on the server. When accounting for all these changes the following

was observed.

B Not Optimized # Optimized

120000
104762

100000

80000

60000 51514

Time inms

40000

25559

20000

13660

Fig. 5.8 Results for program execution times with optimisation

50 100

Problem Size

We can see a 3.77 fold reduction in execution times and like before a linear progression
between problem sizes. A 2x increase in size has a 2x increase in execution time.
Due to the accuracy of the simulation, a wait time of around 13 seconds was deemed usable.
Even for problem sizes where the number of latitude and longitude divisions for the shape

factor equations were increased would still yield reasonable execution times.

References

[1]

(2]

(3]

[4]

[5]

Li Junlan and Yan Shaoze. Aerospace Science and Technology. Elsevier, 2013, pp. 84—
94.

Hui Kyung Kim and Cho Young Han. Advances in Space Research. Elsevier, 2010,
pp. 1427-14309.

Shin Kwang-Bok and Kim Chun-Gon. Composites Part B: Engineering. Elsevier, 2001,
pp- 271-285.

G. A. Landis. “Review of Solar Cell Temperature Coefficients for Space”. In: Proceed-
ings of the XIII Space Photovoltaic Research and Technology Conference (SPRAT XIII)
13 (1994), pp. 385-440.

Chitra Seshan. “Cell efficiency dependence on solar incidence angle”. In: Proc.35th
IEEE Photovolt. Spec. Conf. 35 (2010), pp. 2102-2105.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Motivation
	1.2 Objective
	1.3 Methodology
	1.3.1 Research Approach
	1.3.2 Data Collection
	1.3.3 Limitations

	1.4 State of the art

	2 Context
	2.1 Requirements
	2.1.1 Javascript
	2.1.2 Python

	2.2 Design

	3 Implementation
	3.1 Array Simulation
	3.1.1 Orbital Ephemerides
	3.1.2 Shape Factor
	3.1.3 Orbit Function
	3.1.4 Main Loop

	3.2 Web Development
	3.2.1 AngularJS App
	3.2.2 Mathbox Orbit Math
	3.2.3 HTML - Design
	3.2.4 Web Server Code

	4 Results
	5 Discussion
	5.1 Analysis of results
	5.2 Efficiency

	References

