
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Desarrollo y experimentación de un
sistema de aprendizaje profundo para

redes neuronales convolucionales y
recurrentes.

Development and experimentation of a deep learning system for
convolutional and recurrent neural networks

Degree final work

Degree in Informatics Engineering

Author: Mocholí Calvo, Carlos
Tutor: Vidal Ruiz, Enrique
Experimental director: Puigcerver i Pérez, Joan

Course 2017/2018

This work would not have been possible without
the opportunity to be part of the PRHLT research
center.
I am especially indebted to Enrique Vidal,
who offered this possibility to me, and to Joan
Puigcerver, who was a teacher and mentor
throughout the making of this work.

I would also like to express my gratitude to
my parents, who always encouraged me to keep
going over any problems that I might have faced
as well as to my close friends, who are always
there for me even when I prioritized other things
over them.

Thank you.

iii

iv

Resum
En l’actualitat, hi ha molt pocs toolkits d’aprenentatge profund centrat en la

tasca de Reconeixement de Text Manuscrit (HTR) . HTR es referix al problema
de reconéixer una seqüència de caràcters en una imatge d’entrada. Per aquest mo-
tiu, hem decidit crear PyLaia, un toolkit per a realitzar experiments d’anàlisi de
documents manuscrits.

PyLaia és flexible, de codi obert, independent del dispositiu en què s’executa i es
pot utilitzar per a expressar una àmplia varietat d’experiments, inclòs l’entrenament
i la inferència sobre models de xarxes neuronals profundes convolucionals i recur-
rents. S’ha utilitzat per a realitzar investigacions sobre els conjunts de dades IAM
i RIMES. PyLaia també és un successor de Laia, escrit en Lua.

Este treball descriu la implementació del sistema que hem construït utilitzant
PyTorch com a base per al nostre toolkit. El programari és extensible i fàcilment
configurable i proporciona un ampli conjunt de capes funcionals amb un enfocament
particular en HTR. A més, també descrivim la implementació de l’arquitectura
del nostre model personalitzat que combina capes convolucionals i recurrents per a
competir amb les arquitectures actuals d’avantguarda en el camp.

Una àmplia gamma d’experiments s’han dut a terme per a validar la nostra
implementació. Els experiments presentats aconseguixen millors resultats que els
obtinguts amb el predecessor del toolkit. També comparem l’impacte de diverses
característiques, com l’ús del model que permet l’entrada d’imatges d’altura variable
o l’ús del dropout.

PyLaia es manté com un paquet de codi obert sota la llicència de MIT i està
disponible en https://github.com/jpuigcerver/PyLaia

Paraules clau: aprenentatge automàtic, xarxes neuronals, xarxes neuronals con-
volucionals, xarxes neuronals recurrents, reconeixement de text manuscrit, PyTorch

Resumen
En la actualidad, hay muy pocos toolkits de aprendizaje profundo centrado en

la tarea de Reconocimiento de Texto Manuscrito (HTR). HTR se refiere al proble-
ma de reconocer una secuencia de caracteres en una imagen de entrada. Por este
motivo, hemos decidido crear PyLaia, un conjunto de herramientas para realizar
experimentos de análisis de documentos de texto manuscrito.

PyLaia es flexible, de código abierto, independiente del dispositivo en el que
se ejecuta y se puede utilizar para expresar una amplia variedad de experimentos,
incluido el entrenamiento y la inferencia sobre modelos de redes neuronales profundas
convolucionales y recurrentes. Se ha utilizado para realizar investigaciones sobre los
conjuntos de datos IAM y RIMES. PyLaia también es un sucesor de Laia, escrito
en Lua.

Este trabajo describe la implementación del sistema que hemos construido uti-
lizando PyTorch como base para nuestro toolkit. El software es extensible y fácil-
mente configurable y proporciona un amplio conjunto de capas funcionales con un
enfoque particular en HTR. Además, también describimos la implementación de la

https://github.com/jpuigcerver/PyLaia

v

arquitectura de nuestro modelo personalizado que combina capas convolucionales y
recurrentes para competir con las arquitecturas actuales de vanguardia en el campo.

Una amplia gama de experimentos se han llevado a cabo para validar nuestra
implementación. Los experimentos presentados logran mejores resultados que los
obtenidos con el predecesor del toolkit. También comparamos el impacto de varias
características, como el uso del modelo que permite la entrada de imagenes de altura
variable o el uso del dropout.

PyLaia se mantiene como un paquete de código abierto bajo la licencia de MIT
y está disponible en https://github.com/jpuigcerver/PyLaia

Palabras clave: aprendizaje automático, redes neuronales, redes neuronales con-
volucionales, redes neuronales recurrentes, reconocimiento de texto manuscrito, Py-
Torch

Abstract
At present, there are very few deep learning toolkits focused on the task of

Handwritten Text Recognition (HTR). HTR refers to the problem of recognizing a
sequence of characters in an input image. For this reason, we have decided to build
PyLaia, a toolkit for performing handwritten text document analysis experiments.

PyLaia is flexible, open-source, device-agnostic, and can be used to express a
wide variety of experiments, including training and inference over Convolutional
and Recurrent based deep Neural Network models. It has been used for conducting
research over the IAM and RIMES datasets. PyLaia is also a successor to Laia,
written in Lua.

This work describes the implementation of the system that we have built using
PyTorch as the basis for our toolkit. The software is extensible and easily config-
urable and provides a rich set of functional layers with a particular focus on HTR.
Additionally, we also describe the implementation of our custom model architec-
ture which combines convolutional and recurrent layers to compete with current
state-of-the-art architectures in the field.

A wide array of experiments have been carried out to validate our implementa-
tion. The experiments presented achieve improved results over those done using the
toolkit’s predecessor. We also compare the impact of several features such as the
usage of a model which allows inputs of variable height or the use of dropout.

PyLaia is mantained as an open-source package under the MIT license and is
available at https://github.com/jpuigcerver/PyLaia

Key words: machine learning, neural networks, convolutional neural network, re-
current neural network, handwritten text recognition, PyTorch

https://github.com/jpuigcerver/PyLaia
https://github.com/jpuigcerver/PyLaia

Contents

Contents vii
List of Figures ix
List of Tables x

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 1
1.3 Objectives . 2
1.4 Thesis structure . 2
1.5 Contributions . 3

2 Pattern Recognition 5
2.1 Neural Network (NN) . 5
2.2 Convolutional Neural Network (CNN) 6
2.3 Recurrent Neural Network (RNN) . 7
2.4 The multidimensional case . 8
2.5 The Long Short Term Memory (LSTM) block 8
2.6 The Connectionist Temporal Classification (CTC) loss function . . . 9

3 Handwritten Text Recognition 11
3.1 History . 11
3.2 Data . 12

3.2.1 The IAM dataset . 12
3.2.2 The RIMES dataset . 13

4 State-of-the-art 15
4.1 Critique . 17

5 Proposal 19
5.1 Chosen toolkit backend . 19
5.2 Chosen technologies . 20
5.3 System architecture . 20
5.4 Detailed design . 23

6 Solution development 25
6.1 Model architecture . 25
6.2 Training . 27
6.3 Experiments . 28

6.3.1 Dropout comparison . 28
6.3.2 Sweep over learning rate (η) 30
6.3.3 Input height comparison . 32
6.3.4 PyLaia compared to Laia . 35

7 Conclusion and future work 39
8 Degree relationship 41

vii

viii CONTENTS

Bibliography 45

List of Figures

1.1 Commit graph for the Torch and PyTorch GitHub repository respec-
tively as of the date of this writing. Notice the y axis scale difference. 2

2.1 Mathematical model of artificial neuron. Figure adapted from SPINN:
a straightforward machine learning solution to the pulsar candidate
selection problem . 6

2.2 3-layer neural network with three inputs, two hidden layers of 4 neu-
rons each and one output layer. Source: Stanford’s Convolutional
Neural Networks for Visual Recognition course 6

2.3 Example of a 2D convolution operation. The kernel size is 2 × 2 and
the stride is 2 . 7

2.4 In this example, the red input layer holds the image, so its width and
height would be the dimensions of the image, and the depth would
be 3 (Red, Green, Blue channels). Source: Stanford’s Convolutional
Neural Networks for Visual Recognition course 7

2.5 A recurrent neural network and the unfolding in time of the com-
putation involved in its forward computation. The artificial neurons
get inputs from other neurons at previous time steps. Adapted from
LeCun, Bengio, and G. Hinton 2015 8

2.6 Instead of having a single neural network layer, there are four different
gates interacting between each other (represented in yellow). Source:
Cristopher Olah . 9

2.7 Example of how the CTC function might collapse an input image.
The image represents the input of the network and the box represents
the CTC output. This is later decoded by removing duplicates and
ϵ, a CTC specific symbol. Figure adapted from Hannun, “Sequence
Modeling with CTC”, Distill, 2017. 10

3.1 A sample dataset image . 12
3.2 A sample dataset image . 13

4.1 General model architecture used in most of the SOTA results. Figure
taken from Théodore Bluche’s paper “Joint line segmentation and
transcription for end-to-end handwritten paragraph recognition” [21]. 16

5.1 PyTorch’s logo. Image taken from [22] 20

6.1 Architecture of the neural network presented in this work. Figure
adapted from [3] . 25

6.3 Comparison of the loss function between Laia and PyLaia. N is the
number of samples in the batch, T is the number of frames in each
sample of the batch . 30

ix

6.5 Example of how deformation may occur. Imagine the case where
figures 6.5a and 6.5c are part of our dataset, take into account that
their character size is exactly the same but 6.5c’s bounding box was
poorly chosen. If we were to resize the height of all images to that
of figure 6.5c we would end up with a very stretched character in the
case of 6.5a. On the other hand, if we did the opposite resizing to
the height of 6.5a the opposite effect would happen 32

6.8 Combination of two 2D tensors into a single 3D tensor. The images
whose width is less than the widest image in the batch are centered
and padded with zeros . 37

List of Tables

4.1 Comparison of the character and word error rate (%) on IAM and
RIMES paragraphs of previously published competitive state-of-the-
art results. 16

6.1 Details of the configuration used in the convolutional blocks of our
architecture. 26

6.2 Dropout comparison of the character and word error rate on IAM
and RIMES paragraphs for the test partition. 28

6.3 Comparison between the toolkits’ processed samples per second in
both the training and decoding steps using the IAM dataset. 35

x

CHAPTER 1
Introduction

1.1 Background

Due to the recent success of deep learning, a large number of Deep Learning focused
software has emerged. Even though they are open source software and allow external
contributions, they are mostly maintained by employees of multinational technology
companies such as Google and Facebook. Their purpose is to provide a general
purpose computing framework that fulfills most of the users’ necessities. However,
for a field-focused research group, having an in-house system tailored to the groups’
needs is a very valuable asset to ensure code re-utilization and to improve the speed
of research and ease of collaboration within the group members.

This is the case for the Pattern Recognition and Human Language Technology
(PRHLT) research center. In 2016, three of its members released Laia, an open
source deep learning toolkit to transcribe handwritten text images [1]. This toolkit,
which was built using Torch, aimed to facilitate common HTR experiments and has
been extensively used through the research center’s projects.

1.2 Motivation

Torch is a versatile numeric computing framework and machine learning library that
extends the Lua scripting language [2]. It supports both CPU and GPU devices.
However, in October 2016, Facebook Artificial Inteligence Research (FAIR) released
PyTorch, a successor to Torch, thus most of the experiments done on Torch have been
migrated to PyTorch. Additionally, Torch’s development has stopped completely as
seen in Figure 1.1

The key differences are the improved bridge to the core implementation written
in performing languages such as C and CUDA as well as the possibility to use the
vast ecosystem of Python scientific libraries.

Based on the experience with Laia and a more complete understanding of the
desirable system properties and requirements for HTR experiments, we have decided
to build PyLaia as a second-generation system.

1

2 Introduction

Figure 1.1: Commit graph for the Torch and PyTorch GitHub repository respectively
as of the date of this writing. Notice the y axis scale difference.

1.3 Objectives

The aim of this work is to further explore the task of statistical modeling of hand-
written text and to convert handwritten text into the digital format by writing a
general purpose HTR toolkit.

The toolkit is supposed to be built in a modular way. Allowing the user to
perform the same tasks that are available in Laia. Even though the focus of this
work is handwriting recognition, the system must not be tied to this task, allowing
similar handwriting document analysis tasks such as Keyword Spotting or Line
Segmentation to be performed reusing at least part of the codebase.

Handwritten text is a very general term so to validate the results in this project
we have decided to validate our experiments against those done previously for Laia
with the IAM and RIMES datasets [3].

1.4 Thesis structure

In Chapter 2 of this document we first review the basics of Pattern Recognition by
introducing the basic model architectures used throughout this work.
In Chapter 3, we introduce the field of HTR to the less familiar readers and then
describe the datasets used in this work.
Chapter 4 discusses current state-of-the-art results in the field of HTR.
Chapter 5 lays out the technological alternatives for this work and briefly mentions
the system architecture.
Chapter 6 contains the results obtained for each experiment performed.
In Chapter 7, we present the conclusions drawn from the obtained results and what
additional research is necessary is to further the goals of this work.

1.5 Contributions 3

Finally, in Chapter 8, we mention how the skills learned through the degree were
applicable to this work’s development.

Additionally, a list of the acronyms used in this work is present before the bib-
liography.

1.5 Contributions

The project’s first commit is dated as of 30th of October, 2017. The reasons why it
was created to replace Laia are those aforementioned in Section 1.2

I was not the sole developer working in PyLaia. Joan Puigcerver, experimental
director of this work and creator of both Laia and PyLaia, had already written 2192
lines of code1 by the time I entered the project, around the 20th of February.

The foundations and main structure of the software were already laid out so my
main (but not exclusive) focus was to write all of the code necessary to perform
robust and reproducible experiments necessary for this work. These relate mostly
to the packages common, conditions, engine, experiments, hooks, and meters, as
described in Section 5.3. By the time of this writing, we have reached 10170 lines
of code.

1 Counting only the number of lines of the core library source code files

CHAPTER 2
Pattern Recognition

Pattern recognition is the science of making inferences from perceptual data based
on either a priori knowledge or on statistical information. Neural networks have
become a key component in modern pattern recognition systems.

In a typical pattern recognition application, the raw data is processed and con-
verted into a form that is amenable for a machine to use, usually features taken
together into vectors. Features may be represented as continuous or discrete vari-
ables. A feature can be obtained from one or more measurements that quantify
some significant characteristics of the object.

There are several neural network architectures which can be used to accomplish
different tasks with different techniques. I will focus on those designed for classifi-
cation tasks.

2.1 Neural Network (NN)

The area of Neural Networks has originally been primarily inspired by the goal of
modeling biological neural systems but has since diverged and become a matter of
engineering and achieving good results in Machine Learning tasks.

The network is based on neurons, also called units. Each neuron receives input
signals (which get all summed) and produces output signals after altering its internal
state. The idea is that the connection strengths (the weights W) are learnable and
control the strength of influence of one neuron on another. If the final sum is above
a certain threshold, the neuron can fire, sending a spike along its axon. We model
the firing rate of the neuron with an activation function σ, which represents the
frequency of the spikes along the axon. In practice, this activation function must be
differentiable (continuous) to be able to apply optimization algorithms to it.

The simplest type of Neural Networks are Feedforward Neural Networks, where
the connections between the neurons do not form a cycle. The signal chain is
transmitted from the inputs through the hidden layers all the way to the output
layer. This layer consists of the set of nodes that we measure and whose output is
not connected to any other neurons.

5

6 Pattern Recognition

Figure 2.1: Mathematical model of artificial neuron. Figure adapted from SPINN: a
straightforward machine learning solution to the pulsar candidate selection problem

Figure 2.2: 3-layer neural network with three inputs, two hidden layers of 4 neurons
each and one output layer. Source: Stanford’s Convolutional Neural Networks for Visual

Recognition course

2.2 Convolutional Neural Network (CNN)

Convolutional Neural Networks are very similar to ordinary Feedforward Neural
Networks: they are made up of neurons that have learnable weights and biases.
Each neuron receives some inputs, performs a dot product and optionally follows it
with a non-linearity. The whole network still expresses a single differentiable score
function: from the raw signal elements on one end to class scores at the other. And
they still have a loss function on the last (fully-connected) layer. One essential
property of CNNs is that the layers are exclusively connected to their immediate
neighbours.

The key is that parameters are reused independently of their position in the
image, meaning that a neuron may activate with the same magnitude when a certain
feature is recognized even in different positions. This helps with generalization
thus avoiding overfitting. Moreover, this architecture makes an explicit assumption
about the input dimensions, which allows us to encode certain properties into the
architecture. These then make the forward function more efficient to implement and
vastly reduce the number of parameters in the network.

https://arxiv.org/abs/1406.3627
https://arxiv.org/abs/1406.3627
https://cs231n.github.io
https://cs231n.github.io

2.3 Recurrent Neural Network (RNN) 7

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

*
0.5 0.1

-0.1 0.8
=

5 7.6

15.4 18

[x ∗ W]i,j = ∑l ∑m xi−j,j−mWl−m

Figure 2.3: Example of a 2D convolution operation. The kernel size is 2 × 2 and the
stride is 2

A CNN arranges its neurons in three dimensions (width, height, depth). Every
layer transforms the 3D input volume to a 3D output volume of neuron activations.

Figure 2.4: In this example, the red input layer holds the image, so its width and
height would be the dimensions of the image, and the depth would be 3 (Red, Green,
Blue channels). Source: Stanford’s Convolutional Neural Networks for Visual Recognition

course

2.3 Recurrent Neural Network (RNN)

While Feedforward Neural Networks are able to process individual vectors of a fixed
size (the input from the previous layer), this is not the case for RNNs which can
cope with unlimited sequences of such vectors. RNNs can in principle make use of
an arbitrary amount of context by storing information in their internal state. This,
in addition to the ability to process sequences of variable length, makes them ideal
for processing sequences of values as is required in HTR.

The key idea is parameter sharing (the weights W) across different time steps.
Parameter sharing makes it possible to extend and apply the model to examples of
different shapes while generalizing across them. Thus a RNN can be considered as
a layered, Feedforward Neural Network with shared weights

The recurrence formula at every time step is defined by:

st = σ(Uxt, Wst−1)

where st is the new state, σ is an activation function, st−1 is the state at the previous
step, xt is the input vector at the t-th time step and W, U are weight matrices.

https://cs231n.github.io
https://cs231n.github.io

8 Pattern Recognition

Figure 2.5: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation. The artificial neurons get inputs from other neurons

at previous time steps. Adapted from LeCun, Bengio, and G. Hinton 2015

Although their main purpose is to learn long-term dependencies, theoretical and
empirical evidence shows that it is difficult to learn to store information for very
long [4].

2.4 The multidimensional case

A Multidimensional Recurrent Neural Network is a generalization of a RNN, which
can deal with higher-dimensional data. These can use a recurrence over either one
or two dimensions in order to model the variations on both axes [5] and potentially
capturing long-term dependencies across both axes.

Restricting ourselves to the 2D case, commonly used for HTR, we can describe
how does it process an input. A 2D RNN scans the input image along both axes and
produces a transformed output of the same size. The hidden state su,v for a position
(u, v) of a 2D layer is computed based on the previous hidden states of both axes,
su−1,v and su,v−1, and the current input xu,v by:

su,v = σ(Uxu,v + Wsu−1,v + Vsu,v−1 + b)

where U, W and V are weight matrices, b a bias vector and σ a nonlinear activation
function

In the HTR field, these networks are used to transcribe images of text lines,
where multiple multidimensional layers are stacked in combination with other types
of layers.

2.5 The Long Short Term Memory (LSTM) block

Long Short Term Memory Recurrent Neural Network (LSTM-RNN) have been very
successful both in general machine learning tasks and in the HTR community. The
use of LSTM blocks in a RNN allows the network to store information for longer
amounts of time by exploiting more context and leads to more stable training by

https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf

2.6 The Connectionist Temporal Classification (CTC) loss function 9

avoiding the vanishing/exploding gradient problem [6], where the influence of a given
input on the hidden layer either decays or blows up exponentially as it cycles around
the network’s recurrent connections.

These use special hidden layers which consist of recurrently connected subnets,
called memory blocks, the natural behaviour of which is to remember inputs for a
long time. A special unit called the memory cell acts like an accumulator or a gated
leaky neuron: it has a connection to itself at the next time step that has a weight of
one, so it copies its own real-valued state and accumulates the external signal, but
this self-connection is multiplicatively gated by another unit that learns to decide
when to clear the content of the memory.

Figure 2.6: Instead of having a single neural network layer, there are four different gates
interacting between each other (represented in yellow). Source: Cristopher Olah

For many tasks, it is useful to have access to “future” as well as “past” con-
text1 . The identification of a given letter is helped by knowing the letters beside
itself. Bidirectional RNNs (and LSTMs) are able to access context in both directions
along the input sequence. They work by using two separate hidden layers, each one
processing the input in each direction. Both of these layers are connected to the
same output layer, providing it with access to the past and future context of every
point in the sequence.

2.6 The Connectionist Temporal Classification (CTC)
loss function

Unfortunately, in HTR, we don’t know how the characters in the transcript align to
the image. This makes training an image transcriber harder than it might at first
seem. We could devise a rule like “one character corresponds to ten inputs” but peo-
ple’s rates of handwriting vary. Another alternative is to hand-align each character
to its location in the image thus we would know the ground truth for each input
time-step. However, for any reasonably sized dataset, this is prohibitively time-
consuming. Also, in the case of very cursive handwriting, the input segmentation is
very difficult to determine.

1 Processing an image from right-to-left and left-to-right in the case of HTR

https://colah.github.io/posts/2015-08-Understanding-LSTMs

10 Pattern Recognition

Figure 2.7: Example of how the CTC function might collapse an input image. The
image represents the input of the network and the box represents the CTC output. This
is later decoded by removing duplicates and ϵ, a CTC specific symbol. Figure adapted

from Hannun, “Sequence Modeling with CTC”, Distill, 2017.

CTC is a way to get around not knowing the alignment between the input and the
output. Consider mapping input sequences x = [x1, x2, . . . , xn], to corresponding
output sequences y = [y1, y2, . . . , ym]. We want to find an accurate mapping
between these given the following limitations:

• Both x and y can vary in length.

• The ratio of the lengths of x and y can vary.

• We don’t have an accurate alignment (correspondence of the elements of x
and y).

The CTC algorithm overcomes these challenges. For a given sequence x it out-
puts a distribution over all possible labels y. We can use this distribution either to
infer a likely output or to assess the probability of a given output and thus calculate
a loss. To get the probability of an output given an input, CTC works by summing
over the probability of all possible alignments between the two, this is possible be-
cause it assumes that every output alignment is conditionally independent on each
other, which might sometimes be a bad assumption [7]. Most state-of-the-art HTR
systems use CTC as the loss function with which the model is trained [8].

https://distill.pub/2017/ctc

CHAPTER 3
Handwritten Text Recognition

For centuries, the most common way of preserving and disseminating ideas and
facts through posterity was to write it by hand. Nonetheless, with the advent of
digital storage, it has been replaced by technological writing tools. This has the
convenience of allowing the indexing of the documents so searches and analysis can
be quickly performed in addition to the ability to instantly create duplicates and to
share them with others.

Handwritten Text Recognition (HTR) is an area of pattern recognition which
defines an ability of a machine to analyze patterns and recover the handwritten text
represented in an input signal. Particularly, In the case of offline1 handwriting recog-
nition, the input signal is typically a variable-sized two dimensional image in the
form of a segmented line of a scanned document (e.g. forms, historical manuscripts,
etc), and the output is a sequence of characters.

This problem can be addressed statistically by solving the following optimization
problem:

ŷ = arg max
y

Pr(y | x)

Where x is the input signal, representaed as a sequence of frames, and y is a sequence
of symbols. Since the real probability distribution Pr(y | x) is unknown, it is modeled
by a parametric distribution PΘ(y | x) whose parameters are fit according to the
Maximum Likelihood Estimation criterion.

It is important to keep in mind that handwriting recognition research will not
be finished once most of the historic documents have been digitalized and published
in online digital libraries since some data types are much more comfortable to input
by a pen. Examples of these are mathematical equations, music composition, etc.
These are the main reasons why HTR has proven to be an increasingly important
task.

3.1 History

The first occurrences of handwritten text classification were done with Optical Char-
acter Recognition (OCR) machines, these were primitive mechanical devices with

1 As opposed to online recognition, where the input is a time series of coordinates, representing
the movement of the pen-tip.

11

12 Handwritten Text Recognition

fairly high failure rates. After some false starts, OCR became a competitive com-
mercial enterprise in the 1950’s [9].

The next major upgrade in producing high OCR accuracies was the use of a Hid-
den Markov Model for the task of OCR. This approach uses letters as a state, which
then allows for the context of the character to be accounted for when determining
the next hidden variable [10].

The cursive nature of handwriting makes it hard to first segment the text into
characters to recognize them individually. This method has been progressively re-
placed by the sliding window approach, in which features are extracted from vertical
frames [11]. For instance, a CNN can be applied to identify text by moving the slid-
ing window across the image to find a potential instance of a character being present.

Finally, the most recent advances in deep learning and the new architectures
have allowed building models that can handle both the 2D aspect of the input and
the sequential aspect of the prediction. In particular, Long Short Term Memory
based Recurrent Neural Networks, using the Connectionist Temporal Classification
objective function [12] have yielded low error rates and became the state-of-the-art
model for HTR [13]

3.2 Data

In this work, we used two popular resources to validate our work. They are both
quite large datasets, which is a very important characteristic for deep learning tasks.

3.2.1. The IAM dataset

Compiled by the FKI-IAM Research group2 , this dataset consists of handwritten
(modern) English sentences based on the Lancaster-Oslo/Bergen (LOB) corpus.
The corpus is a collection of texts that comprise about one million word instances.

The dataset includes 1 066 forms produced by approximately 400 different writ-
ers. A total of 82 227 word instances out of a vocabulary of 10 841 words occur in
the collection. The database consists of full English sentences [14]. This database,
given its breadth, depth, and quality tends to serve as the basis for many handwrit-
ing recognition tasks.

Figure 3.1: A sample dataset image

It is split into writer-independent training, validation and test partitions of 6 161,
966 and 2 915 lines, respectively. The original lines images in the training set have
an average width of 1 751 pixels and an average height of 124 pixels. There are 79
different characters in the dataset including the white-space.

2 https://www.fki.inf.unibe.ch/databases/iam-handwriting-database

https://www.fki.inf.unibe.ch/databases/iam-handwriting-database

3.2 Data 13

3.2.2. The RIMES dataset

Compiled by A2iA3 , an HTR focused business, this dataset consists of handwritten
(modern) French sentences [15].

The database was collected by asking volunteers to write handwritten letters.
They were given a fictional identity (same sex as the real one) and up to 5 scenarios
regarding business interaction themes such as change of personal information, mod-
ification of contract or complaint among others. The volunteers composed a letter
with those pieces of information using their own words. The layout was free and it
was only asked to use white paper and to write in a readable way with black ink.

Figure 3.2: A sample dataset image

The dataset split consists of 11 333 training lines and 778 test lines. Since the
original release does not include a separated validation partition, 10% of the total
training lines were sampled for validation purposes. Thus, the final division of the
dataset into training, validation, and test consists of 10 171, 1 162 and 778 lines,
respectively. The original line images in the training set have an average width of
1 658 pixels and an average height of 113 pixels. There are 99 different characters
in the dataset including the white-space.

3 https://www.a2ia.com

https://www.a2ia.com

CHAPTER 4
State-of-the-art

The metrics used to evaluate and compare any system are critical. In particular, for
HTR, two different metrics are used:

• Character Error Rate (CER). Computed with the minimum number of oper-
ations required to transform the reference text into the hypothesis generated
(a number which is known as the Levenshtein distance [16]). It is defined by
the formula:

CER = (ic + sc + dc)/nc

where nc is the number of characters in the reference, sc is the number of sub-
stitutions, dc the number of deletions and ic the number of insertions required
to transform the output hypothesis into the reference.

• Word Error Rate (WER). This is defined in a similar way, but using words as
the Levenshtein unit instead of characters.

WER = (iw + sw + dw)/nw

Note that the number of errors can be larger than the length of the reference and
lead to percentages larger than the unit.

Current state-of-the-art results for the datasets used in this work are shown in
Table 4.1. These have been achieved using a language model (unlike the results in
this work), the number of epochs has not been disclosed by the authors.

Most of these1 use a MDLSTM-RNN, with bidirectional LSTMs. These may be
optionally followed by convolutions as is the case for Pham et al. [20] and Voigt-
laender et al. [18] All of them use the CTC loss function to calculate the backward
gradients.

Most of these authors have not disclosed the results obtained without the lan-
guage model applied after training the network. However, assuming that NN train-
ing is independent to the language model training we can conclude that our model
would benefit equally if a language model was applied to it. The application of the
language model is equal to the application of a monotonically increasing function

1 RIMES does not have a predefined validation set, so the validation sets are likely to be different.
1 Excluding Puigcerver’s results, whose LSTM layer is one dimensional

15

16 State-of-the-art

Table 4.1: Comparison of the character and word error rate (%) on IAM and RIMES
paragraphs of previously published competitive state-of-the-art results.

IAM Dataset CER (%) WER (%)
System Validation Test Validation Test
Puigcerver. [3] 2.9 4.4 9.2 12.2
Bluche. [17] — 4.4 — 10.9
Voigtlaender et al. [18] 2.4 3.5 7.1 9.3
Doetsch et al. [19] 2.5 4.7 8.4 12.2
Pham et al. [20] 3.7 5.1 11.2 13.6
RIMES Dataset CER (%) WER (%)
System Validation1 Test Validation1 Test
Puigcerver. [3] 2.3 2.5 8.9 9.0
Bluche. [17] — 3.5 — 11.2
Voigtlaender et al. [18] — 2.8 — 9.6
Doetsch et al. [19] — 4.3 — 12.9
Pham et al. [20] 3.3 3.3 13.1 12.3

thus if it were to be applied to an inequality, this inequality would uphold. This
can be expressed as:

∀NA, NB : eNA > eNB =⇒ eL(NA)
> eL(NB)

where NA and NB are two neural networks trained over the same dataset, e is the
error obtained and L is the same language model for both cases.

Since a language model is not going to be used after training our network. We
can not directly compare our results to the results displayed in Table 4.1. Luckily,
we can compare our results with those performed by Puigcerver using Laia. With
the previously mentioned property, if our results are similar to his, we then know
that our results compete with current state-of-the-art results if a language model
was applied to them.

Figure 4.1: General model architecture used in most of the SOTA results. Figure taken
from Théodore Bluche’s paper “Joint line segmentation and transcription for end-to-end

handwritten paragraph recognition” [21].

4.1 Critique 17

4.1 Critique

Multidimensional LSTM networks are quite computationally expensive, especially
compared to convolutions. This is due to the fact that the convolutions computa-
tional cost is one or two orders of magnitude smaller. Even if we had an infinite
number of processing units, a clever implementation of a 2D LSTM would have a
computational complexity of O((W + H) · D + C) whereas in the case of a 2D con-
volution its O(C · S) where W and H are the width and height of the image, D and
C the number of input and output channels and S the kernel size of the convolution.

Human language is also naturally one-dimensional, it is composed by sequences
which can be read from either left-to-right or right-to-left. This suggests a lack of
need to learn long-term dependencies in the extra dimension that a MDLSTM would
provide.

Since the first layers of a Neural Network have to process a larger amount of
inputs, we can greatly improve our model efficiency by stacking a few convolutional
layers at the start of our net, especially knowing that they have been shown to
extract similar features to those extracted by a LSTM at these initial layers.

As Puigcerver laid out in his paper [3], the combination of a CNN and a LSTM-
RNN can achieve the same results whilst drastically reducing the memory consump-
tion and inference runtime.

CHAPTER 5
Proposal

PyLaia is meant to be a platform for research on deep learning methods in handwrit-
ten document analysis which aims to significantly lower the barrier to high-quality
research. It is also designed to support researchers who want to build experiment
pipelines as quickly and easily as possible.

Most existing deep learning toolkits are designed for general machine learning,
and a significant effort can be required to develop research infrastructure for par-
ticular model classes. PyLaia provides custom operators to fill the gaps that are
required for HTR research.

5.1 Chosen toolkit backend

There are multiple competing toolkits for building deep learning models. These ex-
plore different tradeoffs between usability and expressiveness, research or production
focus and supported hardware. All of them operate on a Directed Acyclic Graph
(DAG) of computational operators, wrapping high-performance libraries such as
CUDNN (for NVIDIA GPUs) and automate memory allocation, synchronization,
and distribution.

The two largest toolkits as of the time of this writing are Tensorflow and PyTorch.
Both of them represent a computation in terms of a graph, where data flows between
nodes and dependencies are defined between individual operations. The nodes in
the graph represent variables (tensors, scalars, etc.) and the edges represent some
mathematical operations. During the optimization step, the chain rule and the
graph are combined to compute the derivative of the output with respect to the
learnable nodes in the graph.

PyTorch makes use of dynamic computation graphs meaning that they are built
and executed at runtime. It provides a flexible data management API that handles
intelligent batching and padding, high-level abstractions for common operations and
a modular and extensible experiment framework. It is imperative, meaning that
the computation is run immediately, this allows the use of debugging tools. Being
dynamic, it is very easy to modify and execute different nodes as the computation
is done.

Several neural network architectures can benefit from this, for example, in RNN
based models where the input sequence length is variable. This means that the

19

20 Proposal

dataset samples do not have to be resized to some fixed length (either by cutting or
padding)

Other declarative frameworks such as TensorFlow use a static computation graph.
This is given and run by an execution engine provided by the framework. This ap-
proach gives easier deployment, potentially improved efficiency and the ability to
do compilation ahead of time.

5.2 Chosen technologies

We chose to build PyLaia on PyTorch. This allows swift model development by
reusing PyTorch’s heavily tested modules and adds functionality for data manage-
ment and experimentation on common HTR problems.

Figure 5.1: PyTorch’s logo. Image taken from [22]

The main reasons why we chose it are the aforementioned dynamic nature, nec-
essary for HTR where all of the input sequences lengths may vary and the fact that
since Laia was written in Torch we could keep the overall design and structure of
the software, principally because of the API similarity between Torch and PyTorch.

Moreover, when we started writing PyLaia1 , some benchmarks were performed
comparing the memory usage and speed of the different LSTM implementations
in both toolkits. The results showed that TensorFlow consumed around double
the memory yet still was slower. The reason for this is that their implementation
supporting variable length input sequences is not as optimized as their basic LSTM
implementation, written on top of CUDA. Considering that the ability to process
variable length inputs was one of the main motivations of the rewrite2 , PyTorch
came as a clear winner in this front. However, keep in mind that this might have
changed significantly due to both software’s active release cycle.

We also use existing implementations of several operations to reduce the cost of
implementation and risk of bugs. Most notably we use Baidu’s CTC loss function
implementation, which is compatible with both the CPU and GPU.

5.3 System architecture

PyLaia’s core is structured into separate packages designed to be as minimalist and
modular as possible, aiming to follow the UNIX philosophy:

1 Around October 2017
2 As we describe in Section 6.3.3

http://www.linfo.org/unix_philosophy.html

5.3 System architecture 21

• common. Contains all of the general purpose classes that might be used any-
where in the codebase such as logging, arguments parsing utilities and the
state saver and loaders.

• conditions. Contains several classes that act as preconditions to fire an action.
See hooks.

• data. Contains any classes whose purpose is to feed data into the experiment
pipeline. In addition, it also contains any classes whose purpose is to apply a
transformation to an input.

• decoders. As the name implies, this contains the different decoders to trans-
form an input feature representation into an output. As of the time of this
writing, there are only CTC related decoders, for example, the one represented
in Figure 2.7.

• engine. This contains the Engine and Trainer. They perform the model
inference by running the forward and backward steps and notifying the system
through the hooks.

• experiments. This package contains the different high-level classes to run any
kind of experiment. Their responsibility is to keep track of whatever metrics
are appropriate by taking control of their internal model and trainer. They
also take care of running the validation step during the training.

• hooks. Hooks are a critical part of the training phase in an experiment. They
are designed to activate at some pre-defined steps during the training3 . They
might make use of a condition in order to perform the action that they have
been assigned. This way a PyLaia user can run their own code during the
training without modifying the source code or rewriting it.

• losses. Contains any loss functions. Mostly wrappers to PyTorch’s loss func-
tions and Baidu’s CTC loss implementation.

• meters. Contains the different classes that compute any kind of metric to be
used during the experiment. Some notable examples are the SequenceErrorMeter
used to compute the model’s CER and WER and the RunningAverageMeter
which is used to compute the average and standard deviation of the loss.

• models. Contains the different model architectures and layers related to hand-
written document analysis that PyLaia provides.

• nn. This package consists of general NN layers and utilities. The main differ-
ence with models is that these are not tied to handwritten document analysis.

• utils. This is where utility functions which do not completely belong any-
where else are located.

Furthermore, PyLaia provides generic plug-and-play scripts to be executed with-
out having to build a custom pipeline.

3 Concretely, at each epoch and iteration start and end

22 Proposal

A main design goal of PyLaia is to allow custom configurations for the abstrac-
tions provided by the toolkit to ease the important decisions that define a new model
without having to implement all of the details from scratch.

5.4 Detailed design 23

5.4 Detailed design

Since the codebase is too large to be described with detail, we are only going to
describe the critical parts of the code related to the experiments performed.

Below is the pseudocode of the script provided by PyLaia to start the HTR
model training:

1 # Create the model
2 model = Model(hyperparameters)
3

4 # Prepare the trainer with its input training partition.
5 # It also contains the model which will be trained,
6 # the loss function and the gradient optimizer.
7 tr_dataset_loader = ImageDataLoader(...)
8 trainer = Trainer(
9 model=model,

10 criterion=CTCLoss(), # HTR loss function
11 optimizer=RMSprop(...),
12 data_loader=tr_dataset_loader,
13 ...)
14 # Same for the evaluator with its validation partition.
15 # We don't update any parameters so the criterion
16 # and optimizer are not necessary.
17 va_dataset_loader = ImageDataLoader(...)
18 evaluator = Evaluator(
19 model=model,
20 data_loader=va_dataset_loader,
21 ...)
22 # We can now create the experiment
23 experiment = HTRExperiment(trainer, evaluator)
24

25 # Set the trainer hooks. This will save the
26 # experiment if the model accuracy has improved
27 trainer.add_hook(EPOCH_END, SaveIfBestModel(...))
28

29 # We are ready to start training. Run!
30 experiment.run()
31

32 # Experiment finished. Save the model!
33 ModelCheckpointSaver(model).save()

Listing 5.1: Pseudocode for the pylaia-htr-train-ctc script

One can see how PyLaia’s API abstracts the implementation details of the ex-
periment in a short and concise manner thus allowing the user to focus on other
duties to accomplish their goals.

24 Proposal

As far as how the Trainer is implemented, below is the (simplified) core routine
which performs the training:

1 while must_train:
2 call_hooks(EPOCH_START)
3 # For each input signal and its reference
4 for input, target in batches:
5 if not must_train: break
6 call_hooks(ITER_START)
7 # Zero all of the optimizer gradients for the tensors
8 # it will update (the learnable weights of the model)
9 optimizer.gradients = 0

10 # Forward pass. Compute the output of the model
11 # for the input
12 prediction = model(input)
13 # Compute the loss
14 loss = compute_loss(target, prediction)
15 # Compute gradient of the loss with respect to
16 # model parameters
17 loss.backward()
18 # Update the model parameters
19 optimizer.step()
20 # An iteration is defined as a forward and backward
21 # pass. Increment the counter
22 iterations += 1
23 call_hooks(ITER_END)
24 # An epoch is defined as a pass through the entire
25 # dataset. Increment the counter
26 epochs += 1
27 call_hooks(EPOCH_END)

Listing 5.2: PyLaia’s training algorithm

Throughout the codebase our custom code is interweaved with PyTorch’s API,
the later doing the heavy computation. Some examples are the call to .backward(),
.step() or that our model is implemented as a PyTorch nn.Module which overrides
the __call__ operator so that you can use it as a function (see line 12 as an example).

The hooks execute any custom code that the user may have defined before start-
ing the experiment. For example, the validation pass is set to be run by default
when the EPOCH_END hook gets called.

CHAPTER 6
Solution development

Figure 6.1: Architecture of the neural network presented in this work. Figure adapted
from [3]

A general overview of the architecture is depicted in Figure 6.1. In this section,
we explain the details of each of the blocks of our architecture and some other
details of our system, we then explain the conditions under which our training was
performed and display the results obtained with our system.

6.1 Model architecture

Convolutional blocks

Each convolutional block contains a two-dimensional convolutional layer (Conv)
with a kernel size of 3 × 3 pixels, with both horizontal and vertical stride of 1 pixel.
The number of filters at the n-th Conv layer is equal to 16n.

In order to reduce overfitting, Dropout may be applied [23] at the input of some
Conv layers (with dropout probability equal to 0.2). Dropout is implemented by
only keeping a neuron active with some probability p (a hyperparameter), or setting
it to zero otherwise. This helps prevent overfitting where the model has learnt some
features of the training data which do not generalize well to the problem.

We use Leaky Rectifier Linear Units (LeakyReLU) [24] as the activation function
(σ) in the convolutional blocks. The LeakyReLU function is defined by the following

25

26 Solution development

Configuration Values
Conv. filters 16 – 32 – 48 – 64 – 80
Maxpool (2 × 2) Yes – Yes – Yes – No – No
Dropout (if used) 0 – 0 – 0.2 – 0.2 – 0.2

Table 6.1: Details of the configuration used in the convolutional blocks of our architec-
ture.

expression:

σ(x) =

{
x if x ≥ 0
a · x otherwise

where a controls the angle of the negative slope (we use 1 · 10−2).
Finally, the output of the activation function is fed to a Maximum Pooling

layer (Maxpool) with non-overlapping kernels of 2 × 2 pixels. The Maxpool layer is
commonly used to reduce the dimensionality of the input images.

Table 6.1 shows the configuration used in each convolutional block. We use a
total of 5 convolutional blocks in our architecture.

Recurrent blocks

Recurrent blocks are formed by bidirectional LSTM layers, that process the input
image columnwise (meaning the different columns are arranged in rows, see “Colum-
nwise concat” in Figure 6.1) in left-to-right and right-to-left order. The output of the
two directions is concatenated depth-wise (see “Depth concat” in Figure 6.1). Thus,
if D is the number of hidden units in each direction, the output of the bidirectional
LSTM block has a depth of 2D channels.

Before each LSTM layer, Dropout is also applied here (with probability 0.5).
The number of hidden units of all 1D-LSTM layers is fixed to D = 256. We use

a total number of 5 recurrent blocks.

Linear layer

Finally, each column after the recurrent LSTM blocks must be mapped to an output
label. In order to do so, the depth is transformed from 2 · D to L using an affine
transformation (where L is equal to the number of characters + 1, for the CTC
blank symbol).

As we did in the recurrent blocks, Dropout is applied before the Linear layer to
prevent overfitting (also with probability 0.5).

The total number of model parameters for IAM and RIMES is 9601 508 and
9591 248, respectively. The difference lies in the number of output symbols.

6.2 Training 27

6.2 Training

Some notes on the training process:

• All parameters of the network are trained by minimizing the CTC loss.

• Random distortions were not used to augment the training data.

• Batch normalization was not used in any of the experiments

• The RMSProp optimization algorithm [25] was used in all of the executions to
incrementally update the parameters of the model using the gradients of the
CTC loss.

• All of the experiments were performed on NVIDIA GTX 1080 GPUs

• The batch size varied between executions due to memory limitations since
the GPUs were shared. However, the results are comparable among different
batch sizes since no batch normalization was used in any execution.

• All of the images had some pre-processing done to increase the sharpness and
contrast.

• In the case of the fixed height experiments, the images were resized to 128px,
the median of all the samples.

• No lexicon or language model was applied to the network in any of the exper-
iments.

During the training, we measure the label error rate, i.e. the lowest Character
Error Rate (CER) of the network itself on the validation data. Training stops when
the measure does not improve for 20 epochs.

Images for which the output sequence have a shorter length than the number
of characters in the reference are a problem during training, as the loss cannot
be computed correctly by the CTC function. Hence, a few1 training images from
RIMES were ignored, while on IAM this problem didn’t occur.

1 Images [train2011-686-10, train2011-58-08] for the fixed height images and images [train2011-
686-03, train2011-58-04, train2011-58-08, train2011-101-00] for the variable height images. All of
them erroneously transcribed

28 Solution development

6.3 Experiments

6.3.1. Dropout comparison

First, a comparison of the use of dropout in both Laia and PyLaia is shown. For
both datasets, a learning rate of η = 3 · 10−4 was used. The CER is computed at
line-level.

It seems like there is an implementation bug in Laia as seen by the number of
epochs it takes the error rate to converge for both datasets compared to that of
PyLaia. In the case of IAM, the error does ultimately converge around epoch 280
but reaching a higher CER than our implementation.

For both datasets, PyLaia achieves a good validation CER in a fair number of
epochs. Table 6.2 displays the achieved test partition paragraph-level results after 20
consecutive epochs without an improved validation CER. As is expected the use of
dropout improves the model accuracy for the test partition, however, the difference
is not very significant especially in the case of the RIMES dataset.

Table 6.2: Dropout comparison of the character and word error rate on IAM and RIMES
paragraphs for the test partition.

IAM RIMES
Toolkit CER (%) WER (%) CER (%) WER (%)

Laia without dropout 8.2 25.1 3.4 13.6
[7.5–8.9] [23.5–26.7] [2.6–4.2] [11.5–15.7]

Laia with dropout 8.5 25.8 3.7 14.2
[7.8–9.2] [24.3–27.3] [2.9–4.4] [12.3–16.1]

PyLaia without dropout 7.6 23.8 3.2 12.8
[7.0–8.3] [22.4–25.3] [2.5–3.9] [10.9–14.8]

PyLaia with dropout 7.4 23.4 3.1 13.0
[6.8–8.1] [21.8–24.7] [2.4–3.9] [10.9–15.0]

6.3 Experiments 29

0 10 20 30 40 50 60 70 80 90 100 110 120

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)
Laia without dropout

Laia with dropout
PyLaia without dropout

PyLaia with dropout

(a) Dropout comparison between toolkits for the IAM dataset

0 10 20 30 40 50 60 70 80 90 100 110 120

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)

Laia without dropout
Laia with dropout

PyLaia without dropout
PyLaia with dropout

(b) Dropout comparison between toolkits for the RIMES dataset

30 Solution development

6.3.2. Sweep over learning rate (η)

In PyLaia, the loss function is slightly different from that of Laia, which can have
an effect on the magnitude of the learning rate.

Laia: 1
N · T

N

∑
n=1

log PΘ(y | x)

PyLaia: 1
N

N

∑
n=1

log PΘ(y | x)

Figure 6.3: Comparison of the loss function between Laia and PyLaia. N is the number
of samples in the batch, T is the number of frames in each sample of the batch

The main difference is that Laia’s loss function has a constant T which depends
on the number of frames in the batch while PyLaia does not. The reason for this is
that in PyLaia we do not assume that all of the samples have the same size, so T is
not a constant for the whole batch. T would then have to be inside the sum as it
would vary per sample. This requires the modification of the CTC library used.

Considering that we are not dividing by T, the gradients computed in PyLaia
have a larger magnitude which suggests that a smaller step size (learning rate) would
be more appropriate. For this reason, we decided to validate the choice of learning
rate for PyLaia instead of just using Laia’s value (η = 3 · 10−4).

Below, a comparison of the impact of η in PyLaia per dataset is shown. The
CER is computed at line-level. No dropout was used.

Judging by the results for both dataset, a learning rate of 3 · 10−4 seems to still
be a good generic choice. Increasing or decreasing the learning rate too much seemed
to cause bad curves in some executions. This is expected due to our choice of the
optimizer. RMSprop divides the learning rate by an exponentially decaying average
of squared gradients thus adapting itself to the magnitude of the gradients.

6.3 Experiments 31

0 10 20 30 40 50 60 70 80 90 100

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)
η = 1 · 10−4

η = 2 · 10−4

η = 3 · 10−4

η = 4 · 10−4

η = 5 · 10−4

(a) Learning rate comparison for the IAM dataset

0 10 20 30 40 50 60 70 80 90 100

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)

η = 1 · 10−4

η = 2 · 10−4

η = 3 · 10−4

η = 4 · 10−4

η = 5 · 10−4

(b) Learning rate comparison for the RIMES dataset

32 Solution development

6.3.3. Input height comparison

One of the biggest advantages of PyLaia is the ability to use input images of different
heights. This circumvents the pre-processing step where all of the images are resized
to fit a median height.

Issues may arise from the pre-processing in some cases, for example, if images
heights are widely varying for a given character size, (maybe because the writers
did not write in a straight line but diagonally, or because the dataset’s bounding
boxes were not chosen properly) then some input deformation occurs as shown by
Figure 6.5. This also happens when images of the same height have varying character
sizes. For HTR, it is in our best interest that the character size to image height
proportion does not change much throughout the dataset.

(a) 50 × 50px image (b) 6.5a resized to 200 × 200px

(c) 200 × 150px image (d) 6.5c resized to 66 × 50px

Figure 6.5: Example of how deformation may occur. Imagine the case where figures
6.5a and 6.5c are part of our dataset, take into account that their character size is exactly
the same but 6.5c ’s bounding box was poorly chosen. If we were to resize the height of
all images to that of figure 6.5c we would end up with a very stretched character in the
case of 6.5a . On the other hand, if we did the opposite resizing to the height of 6.5a the

opposite effect would happen

6.3 Experiments 33

The solution to this issue is to use custom adaptive pooling layers at the end
of the convolutional block since its the recurrent block who requires a fixed input
height. Our implementation takes into account the size of each individual image
within the batch to apply the adaptive pooling and divides each image into k sections
where k is the desired image height.

In the experiments showcased below, average adaptive pooling was used which is
equivalent to a linear interpolation. For both datasets, a learning rate of η = 3 · 10−4

was used. The CER is computed at line-level.
A difference can be appreciated in the case of RIMES. This indicates that a

greater amount of pre-processing noise is added, thus making the use of a variable
height model worthwhile.

Keep in mind that the cost of the extra computation performed every epoch
instead of once before training is negligible compared to that of the backward pass.

34 Solution development

0 10 20 30 40 50 60 70 80 90 100

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)
128 pixels
Variable

(a) Input height comparison for the IAM dataset

0 10 20 30 40 50 60 70 80 90 100

10

25

50

75

100

Epochs

Va
lid

at
io

n
C

ER
(%

)

128 pixels
Variable

(b) Input height comparison for the RIMES dataset

6.3 Experiments 35

6.3.4. PyLaia compared to Laia

The following figures directly compare the toolkit’s results. The error rates are
computed at paragraph-level for a fixed height model. A learning rate of η = 3 · 10−4

was used. Below we demonstrate the performance of PyLaia. Our aim is to show
that PyLaia successively obtains comparable results to Laia.

Our system considerably improves Laia’s results. The main reason for this is that
Baidu’s CTC algorithm implementation can handle sequences of different lengths,
however, Torch’s standard API for neural networks does not support this. Thus, in
Laia, all of the input images in a single batch are centered and padded with zeros
to match the size (width) of the largest image in the minibatch (as shown in Figure
6.8). PyLaia, being built on top of PyTorch did not have this limitation.

The results obtained show that our system competes with the current state-of-
the-art approaches shown in Table 4.1 considering the lack of an explicit language
model. We can make this assumption because of the improvement over Puigcerver’s
results without a language model applied. In his paper, he provides metrics for
Laia with and without a language model applied [3]. Meaning that if he already
challenged previous best publications when a language model was applied, we would
gain similar improvements if we were to do the same. However, additional research
should be performed to confirm this hypothesis.

Finally, a comparison of the samples per second processed in each toolkit for
the IAM dataset can be seen in Table 6.3. The results were obtained using an
Intel Core i5-7500 CPU (3.40GHz) for the CPU decoding. PyLaia is shown to be
2 times faster in training and around 3.6 times faster in the decoding step over
Laia. In addition, PyLaia benefits much more of having more GPU memory. The
importance of using a GPU can be appreciated by looking at the results. Only GPU
training was performed because CPU training would be too slow for the experiments
to be finished in a reasonable time. In the case of CPU training, the clock speed is
the main bottleneck in performance.

Table 6.3: Comparison between the toolkits’ processed samples per second in both the
training and decoding steps using the IAM dataset.

Training Decoding
Batch size Toolkit GPU CPU1 GPU

5 Laia 12.2 — 21.5
PyLaia 22.5 4.6 69.0

10 Laia 15.71 — 26.1
PyLaia 30.8 5.8 91.1

15 Laia — 2 — 28.4
PyLaia 37.6 6.1 107.3

1 Laia does not support running using the CPU
2 Laia ran out of memory for this batch size using our 8GB memory GPU

36 Solution development

Validation CER Test CER Validation WER Test WER
2

4

6

8

10

12

14

16

18

20

22

24

26

28

5.1% 8.2% 18.0% 25.1%4.7% 7.6% 16.3% 23.8%

Laia
PyLaia

(a) Toolkit comparison for the IAM dataset

Validation CER Test CER Validation WER Test WER

2

4

6

8

10

12

14

16

3.2% 3.4% 13.0% 13.6%3.0% 3.2% 12.2% 12.8%

Laia
PyLaia

(b) Toolkit comparison for the RIMES dataset

6.3 Experiments 37

0
0

5
4

0
0

0
0

4
7

0
0

0
0

7
9

0
0 0

2

0
9

0
4

0
0

9
7

0
0

2
7

6
5

1
0

2 1 0 5 2 4

6 6 2 5 2 9

0 1 5 6 7 2

7 9

4 7

5 4

Figure 6.8: Combination of two 2D tensors into a single 3D tensor. The images whose
width is less than the widest image in the batch are centered and padded with zeros

CHAPTER 7
Conclusion and future work

We have developed a fully-fledged deep learning toolkit for convolutional and recur-
rent neural networks, capable of performing handwritten document analysis exper-
iments with proper architectural design and usability.

We have successfully replicated the experiments previously done using Laia to
check their validity. By using two widely accepted datasets for HTR experiments,
the correctness of our PyLaia implementation has been validated by comparing its
results to Laia’s and have found an improvement over all of the metrics evaluated.

Multiple PRHLT researchers have already started using PyLaia successfully in
their experiments, even for other tasks different from HTR such as Keyword Spot-
ting, which was one of the goals we aimed to achieve. What is more, a few research
publications are being prepared using the toolkit.

Several questions remain unanswered, such as the real impact of using a language
model to further improve the recognition accuracy and to explicitly compare our
results to those performed by other papers without making any assumptions over
the language model independence with the model training process. Furthermore, we
have not explored the impact of either the usage of distortions for data augmentation
nor the use of batch normalization.

A question is raised as well on the comparison between toolkits for other metrics
such as memory usage. We could not scientifically compare this in this work due
to environment limitations regarding shared graphics processing units with other
users. However, we have perceived that the memory usage is significantly reduced.

Finally, as is the case for any piece of software, its development is never com-
pletely finished. Bugs could appear and new features may be implemented. This is
critical to ensure that the software stays up to date and to avoid legacy software.

39

CHAPTER 8
Degree relationship

Having taken the degree specialization most closely related to the subject of this
work, I have had the opportunity to employ a large array of the skills that have been
taught to me. This is especially the case for the subjects “Perception” and “Machine
Learning” which directly relate to the concepts used throughout this work.

In addition, by writing PyLaia, I have had the chance to apply many algorith-
mics, data structures, and software engineering concepts. The internal architecture
components were designed to pursue a clean and clear interaction, achieving a ver-
satile system to the best of my ability. Moreover, relevant software development
technologies and practices were used such as git for version control, Travis for con-
tinuous integration, Docker for easy deployment and the usage of unit testing to
validate the code correctness.

Lastly, during the making of this work, I got to develop myself in relation to
some critical transversal competencies such as “Design and project”, “Application
and critical thinking” and “Continuous learning” among others.

41

https://git-scm.com/
https://travis-ci.org/
https://www.docker.com/

Acronyms

CER Character Error Rate. 15, 16, 21, 27–31, 33, 34, 36

CNN Convolutional Neural Network. vii, 6, 7, 12, 17

CTC Connectionist Temporal Classification. vii, 9, 10, 12, 15, 20, 21, 26, 27, 30,
35

CUDA Compute Unified Device Architecture. 1, 20

DAG Directed Acyclic Graph. 19

FAIR Facebook Artificial Inteligence Research. 1

HTR Handwritten Text Recognition. iv, v, 1, 2, 7–13, 15, 19, 20, 23, 32, 39

IAM Institut für Informatik und angewandte Mathematik. iv, v, vii, x, 2, 12, 16,
26–29, 31, 34–36

LOB Lancaster-Oslo/Bergen. 12

LSTM Long Short Term Memory. vii, 8, 9, 12, 15, 17, 20, 26

LSTM-RNN Long Short Term Memory Recurrent Neural Network. 8, 17

MDLSTM-RNN Multidimensional Long Short Term Memory Recurrent Neural
Network. 15

NN Neural Network. vii, 5, 15, 17, 21

OCR Optical Character Recognition. 11, 12

PRHLT Pattern Recognition and Human Language Technology. 1, 39

RIMES Reconnaissance et Indexation de données Manuscrites et de fac similÉS.
iv, v, vii, x, 2, 13, 15, 16, 26–28, 31, 33, 34, 36

RNN Recurrent Neural Network. vii, 7–9, 12, 19

WER Word Error Rate. 15, 16, 21, 28, 36

43

Bibliography

[1] J. Puigcerver, D. Martin-Albo, and M. Villegas.“Laia: A deep learning toolkit
for htr”.https://github.com/jpuigcerver/Laia, 2016.GitHub repository.

[2] R. Collobert, K. Kavukcuoglu, and C. Farabet. “Torch7: A matlab-like envi-
ronment for machine learning”. In BigLearn, NIPS Workshop, 2011.

[3] J. Puigcerver. “Are Multidimensional Recurrent Layers Really Necessary for
Handwritten Text Recognition?” In 2017 14th IAPR International Conference
on Document Analysis and Recognition (ICDAR), IEEE, nov 2017

[4] Y. Bengio, P. Simard, and P. Frasconi.“Learning long-term dependencies with
gradient descent is difficult”.IEEE Transactions on Neural Networks, 5(2):157–
166, Mar 1994.

[5] P. Voigtlaender, P. Doetsch, and H. Ney. “Handwriting recognition with
large multidimensional long short-term memory recurrent neural networks”. In
2016 15th International Conference on Frontiers in Handwriting Recognition
(ICFHR), pages 228–233, Oct 2016.

[6] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”. Neural
Computation, 9(8):1735–1780, November 1997.

[7] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals.“Listen, attend
and spell”.CoRR, abs/1508.01211, 2015.

[8] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhu-
ber.“A novel connectionist system for unconstrained handwriting recognition”.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(5):855–
868, May 2009.

[9] George Nagy. “Disruptive developments in document recognition”. Pattern
Recognition Letters, 79:106 – 112, 2016.

[10] H. Bunke, M. Roth, and E.G. Schukat-Talamazzini.“Off-line cursive handwrit-
ing recognition using hidden markov models”. Pattern Recognition, 28(9):1399
– 1413, 1995.

[11] Théodore Bluche, Jérôme Louradour, and Ronaldo O. Messina. “Scan, attend
and read: End-to-end handwritten paragraph recognition with MDLSTM at-
tention”.CoRR, abs/1604.03286, 2016.

45

https://github.com/jpuigcerver/Laia

46 BIBLIOGRAPHY

[12] Alex Graves and Jürgen Schmidhuber. ”Handwriting recognition with multidi-
mensional recurrent neural networks”. In Proceedings of the 21st International
Conference on Neural Information Processing Systems, NIPS’08

[13] Joan Andreu Sánchez, Verónica Romero, Alejandro Toselli, and Enrique Vi-
dal. “ICFHR 2014 HTRtS: Handwritten Text Recognition on tranScriptorium
Datasets”.In International Conference on Frontiers in Handwriting Recognition
(ICFHR), 2014.

[14] U.-V. Marti and H. Bunke. “The IAM-database: an english sentence database
for offline handwriting recognition”.International Journal on Document Analy-
sis and Recognition, 5(1):39–46, Nov 2002.

[15] a2ia “The RIMES dataset”. https://www.a2ialab.com/doku.php?id=rimes_
database:start

[16] Vladimir I Levenshtein. “Binary codes capable of correcting deletions, inser-
tions, and reversals”.In Soviet physics doklady, volume 10, pages 707–710, 1966.

[17] Théodore Bluche. “Deep Neural Networks for Large Vocabulary Handwritten
Text Recognition”.Theses, Université Paris Sud - Paris XI, May 2015.

[18] P. Voigtlaender, P. Doetsch, and H. Ney.“Handwriting Recognition with Large
Multidimensional Long Short- Term Memory Recurrent Neural Networks”. In
2016 15th International Conference on Frontiers in Handwriting Recognition
(ICFHR), pages 228–233, Oct 2016.

[19] P. Doetsch, M. Kozielski, and H. Ney.“Fast and Robust Training of Recurrent
Neural Networks for Offline Handwriting Recognition”. In 2014 14th Interna-
tional Conference on Frontiers in Handwriting Recognition, pages 279–284, Sept
2014.

[20] V. Pham, T. Bluche, C. Kermorvant, and J. Louradour. “Dropout Improves
Recurrent Neural Networks for Handwriting Recognition”. In 2014 14th Inter-
national Conference on Frontiers in Handwriting Recognition, pages 285–290,
Sept 2014.

[21] Théodore Bluche. “Joint line segmentation and transcription for end-to-end
handwritten paragraph recognition”. CoRR, abs/1604.08352, 2016.

[22] A. Paszke, S. Gross, and S. Chintala “PyTorch: Tensors and Dynamic neural
networks in Python with strong GPU acceleration”.https://pytorch.org

[23] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting”.Journal of Machine Learning Research, 15:1929–1958, 2014.

[24] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. “Rectifier nonlinearities
improve neural network acoustic models”. In Proc. ICML, volume 30, 2013.

[25] T. Tieleman and G. Hinton. Lecture 6.5—“RmsProp: Divide the gradient by
a running average of its recent magnitude”.COURSERA: Neural Networks for
Machine Learning, 2012.

https://www.a2ialab.com/doku.php?id=rimes_database:start
https://www.a2ialab.com/doku.php?id=rimes_database:start
https://pytorch.org

	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	Motivation
	Objectives
	Thesis structure
	Contributions

	Pattern Recognition
	nn
	cnn
	rnn
	The multidimensional case
	The lstm block
	The ctc loss function

	Handwritten Text Recognition
	History
	Data
	The iam dataset
	The rimes dataset

	State-of-the-art
	Critique

	Proposal
	Chosen toolkit backend
	Chosen technologies
	System architecture
	Detailed design

	Solution development
	Model architecture
	Training
	Experiments
	Dropout comparison
	Sweep over learning rate ()
	Input height comparison
	PyLaia compared to Laia

	Conclusion and future work
	Degree relationship
	Bibliography

