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Abstract

The Network on Chip (NoC) has become the key element for an efficient communication

between cores within the multiprocessor chip (CMP). The use of parallel applications in

CMPs and the increase in the amount of memory needed by applications have pushed

the network communication to gain importance. The NoC is in charge of transporting

all the data needed by the processors cores. Moreover, the increase in the number of

cores pushes the NoCs to be designed in a scalable way, but at the same time, without

affecting network performance (latency and productivity). Thus, network-on-chip design

becomes critical.

This thesis presents different proposals that attack the problem of improving the network

performance in three different scenarios. The three scenarios in which our proposals

are focused are: 1) NoCs with an adaptive routing algorithm, 2) scenarios with low

memory access time needs, and 3) high-assurance NoCs. The first proposals focus on

increasing network throughput with adaptive routing algorithms via the improvement

of the network resources utilization, the first proposal SUR, and avoiding congestion

spreading when an intense traffic to a single destination occurs, second proposal ECP.

The third one and main contribution of this thesis focuses on the problem of reducing

memory access latency. PROSA, through a hybrid circuit-packet switching architecture

design, reduces the network latency by getting benefit of the memory access latency

slack and to establishing circuits during that delay. In this way the information when

arrives to the NoC is served without any delay. Finally, the proposal Token-Based TDM

focuses on the scenario with high assurance networks on chips. In this type of NoCs the

applications are divided into domains and the network must guarantee that there are

no interferences between the different domains avoiding this way intrusion of possible

malicious applications. Token-based TDM allows domain isolation with no design impact

on NoC routers.

The results show how these proposals improve the performance of the network in each

different scenario. The implementation and simulations of the proposals show the effi-

cient use of network resources in CMPs with adaptive routing algorithms which leads

to an increasement of the injected traffic supported by the network. In addition, using

a filter to limit the adaptivity of the routing algorithm under congested situations pre-

vents messages from spreading the congestion along the network. On the other hand, the

results show that the combined use of circuit and packet switching reduces the memory

access latency significantly, contributing to a significant reduction in application execu-

tion time. Finally, Token-Based TDM increases network performance of TDM networks

due to its high flexibility and efficient arbitration. Moreover, Token-Based TDM does
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not require any modification in the network to support a different number of domains

while improving latency and keeping a strong traffic isolation from different domains.



Resumen

La red en el chip (NoC) se han convertido en el elemento clave para la comunicación

eficiente entre los núcleos dentro de los chip multiprocesador (CMP). Tanto el uso de

aplicaciones paralelas en los CMPs como el incremento de la cantidad de memoria nece-

sitada por las aplicaciones, ha impulsado que la red de comunicación gane una mayor

importancia. La NoC es la encargada de transportar toda la información requerida por

los núcleos. Además, el incremento en el número de núcleos en los CMPs impulsa las

NoC a ser diseñadas de forma escalable, pero al mismo tiempo sin que esto afecte a las

prestaciones de la red (latencia y productividad). Por tanto, el diseño de la red en el

chip se convierte en cŕıtico.

Esta tesis presenta diferentes propuestas que atacan el problema de la mejora de las

prestaciones de la red en tres escenarios distintos. Los tres escenarios en los que se

centran nuestras propuestas son: 1) NoCs que implementan un algoritmo de encami-

namiento adaptativo, 2) escenarios con necesidad de tiempos de acceso a memoria bajos

y 3) sistemas con previsión de seguridad a nivel de aplicación. Las primeras propuestas

se centran en el aumento de la productividad en la red utilizando algoritmos de encami-

namiento adaptativos mediante un mejor uso de los recursos de la red, primera propuesta

SUR, y evitando que se ramifique la congestión cuando existe tráfico intenso hacia un

único destinatario, segunda propuesta EPC. La tercera y principal contribución de esta

tesis se centra la problemática de reducir el tiempo de acceso a memoria. PROSA, medi-

ante un diseño h́ıbrido de conmutación de paquete y conmuntación de circuito, permite

reducir la latencia de la red aprovechando la latencia de acceso a memoria para establecer

circuitos. De esta forma cuando la información llega a la NoC, esta es servida sin retar-

dos. Por último, la propuesta Token Based TDM se centra en el escenario con redes de

interconexión seguras. En este tipo de NoC las aplicaciones esta divididas en dominios

y la red debe garantizar que no existen interferencias entre los diferentes dominios para

evitar de este modo la intrusión de posibles aplicaciones maliciosas. Token-based TDM

permite el aislamiento de los dominios sin tener impacto en el diseño de los conmutados

de la NoC.

Los resultados obtenidos demuestran como estas propuestas han servido para mejorar las

prestaciones de la red en los diferentes escenarios. La implementación y la simulación de

las propuestas muestra como mediante el balanceado de la utilización de los recursos de la

red, los CMPs con algoritmos de encaminamiento adaptativos son capaces de aumentar el

tráfico soportado por la red. Además, el uso de un filtro para limitar el encaminamiento

adaptativo en situaciones de congestión previene a los mensajes de la ramificación de

la congestión a lo largo de la red. Por otra parte, los resultados demuestran que el
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uso combinado de la conmutación de paquete y conmutación de circuito reduce muy

significativa de la latencia de red acceso a memoria, contribuyendo a una reducción

significativa del tiempo de ejecución de la aplicación. Por último, Token-Based TDM

incrementa las prestaciones de las redes TDM debido a su alta flexibilidad dado que

no requiere ninguna modificación en la red para soportar una cantidad diferente de

dominios mientras mejora la latencia de la red y mantiene un aislamiento perfecto entre

los tráficos de las aplicaciones.
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Resum

La xarxa en el xip (NoC) s’ha convertit en un element clau per a una comunicació efi-

cient entre els diferents nuclis dins d’un xip multiprocessador (CMP). Tant la utilització

d’aplicacions paral·leles en el CMP com l’increment de la quantitat de memòria neces-

sitada per les aplicacions, hi ha prodüıt que la xarxa de comunicació tinga una major

importància. La NoC és l’encarregada de transportar tota la informació necessària pels

nuclis. A més, l’increment del nombre de nuclis dins del CMP fa que la NoC haja de ser

dissenyada d’una forma escalable, sense que afecte les prestacions de la xarxa (latència

i productivitat). Per tant, el disseny de la xarxa en el xip es converteix cŕıtic.

Aquesta tesi presenta diferents propostes que ataquen el problema de la millora de les

prestacions de la xarxa en tres escenaris distints. Els tres escenaris en els quals se cen-

tren les nostres propostes són: 1) NoCs que implementen un algoritme d’encaminament

adaptatiu, 2) escenaris amb necessitat de temps baix d’accés a memòria i 3) sistemes

amb previsió de seguretat en l’àmbit d’aplicació. Les primeres propostes se centren en

l’augment de la productivitat en la xarxa utilitzant algoritmes d’encaminament adap-

tatiu mitjançant una millor utilització dels recursos de la xarxa, primera proposta SUR,

i evitant que es ramifique la congestió quan existeix un trànsit intens cap a un únic desti-

natari, segona proposta EPC. La tercera i principal contribució d’aquesta tesi es basa en

la problemàtica de reduir el temps d’accés a memòria. PROSA, mitjançant un disseny

h́ıbrid de commutació de paquet i commutació de circuit, redueix la latència de la xarxa

aprofitant la latència d’accés a memòria i establint els circuits durant aquesta latència.

D’aquesta forma la informació quan arriba a la NoC pot ser enviada sense cap retràs. Per

últim, la proposta Token-based TDM se centra en l’escenari amb xarxes d’interconnexió

d’alta seguretat. En aquest tipus de NoC les aplicacions estan dividides en dominis i

la xarxa deu garantir que no existeixen interferències entre els diferents dominis per a

evitar d’aquesta forma la intrusió de possibles aplicacions malicioses. Token-based TDM

permet l’äıllament dels dominis sense tindre impacte en el disseny dels encaminadors de

la NoC.

Els resultats demostren com aquestes propostes han servit per a millorar les prestacions

de la xarxa en els diferents escenaris. La seua implementació i simulació demostra

com mitjançant el balancejat de la utilització dels recursos de la xarxa, els CMP amb

algoritmes d’encaminament adaptatiu són capaços d’augmentar el trànsit suportat per la

xarxa. A més, l’ús d’un filtre per a limitar l’adaptabilitat de l’encaminament adaptatiu

en situacions de congestió permet prevenir els missatges de la congestió al llarg de la

xarxa. Per altra banda, els resultats demostren que l’ús combinat de la commutació de

paquet i commutació de circuit redueix molt significativament de la latència d’accés a

memòria, contribuint en una reducció significativa del temps d’execució de l’aplicació.

Per últim, Token-based TDM incrementa les prestacions de les xarxes TDM debut a la

seua alta flexibilitat donat que no requereix cap modificació en la xarxa per a suportar



una quantitat diferent de dominis mentre millora la latència de la xarxa i mantén un

äıllament perfecte entre els trànsits de les aplicacions.
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Chapter 1

Introduction

Nowadays, our society is immersed in a constant technological revolution with the adop-

tion of new technologies and new ways of communication and interaction. In order to

sustain this revolution, the computational power required increases dramatically every

year. Therefore, the performance of new computing systems must increase to sustain the

required computational power. As an example, new emerging multimedia applications

in the personal computer or embedded systems landscape or the need of High Perfor-

mance Computing (HPC) for solving challenging and complex problems pushes more

computational power needs.

In order to meet these new performance levels, in the last years, computing architec-

ture realm has suffered a radical change in its paradigm. Traditionally, performance

improvements in microprocessors have been achieved by improvements over the archi-

tecture (multitasking, cache memories, etc...), but, also by taking benefit of system’s

clock speed, which has a direct effect on system performance. For instance, first 80286-

based[1] processors accounted with system’s clock frequency in the order of few MHz’s.

In contrast, in 15 years processors raised the frequency to the order of GHz’s. Increas-

ing the frequency is the straight approach to increase processor throughput. However,

recently, clock frequency has reached its feasible limits. As seen in Equation 1.1, power

roughly depends quadratically with the frequency, therefore, it is evident that above

a given threshold dissipated power will reach unfeasible values. Several solutions have

been used in order to increase the clock frequency as much as possible. As an example,

processor cooling systems have evolved from simple aluminium heat sinks with no fan to

modern liquid cooling systems. However, advanced cooling systems are expensive and

consume huge amounts of power. Therefore, associated costs become unaffordable in

production platforms such as HPC systems.

P = CV 2f (1.1)

1
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Because of the unfeasibility of speeding processors up by increasing the frequency, re-

cently, chip manufacturers set the frequency increase strategy aside and opted to increase

performance by means of implementing more cores in the same chip, which are termed

chip multi-processors (CMPs). The idea behind this new strategy consists of, instead of

relying on a big and complex monolithic processor running at high frequencies, to design

simpler processors and physically replicate them several times while running at lower

frequency values. In this way, applications can be mapped into different cores, hence,

allowing them to run completely in parallel. This clearly implies a significant improve-

ment in performance and power efficiency due to the benefits of parallelism. Due to the

use of more power-efficient cores, a set of such cores can lead to same performance levels

(or even higher) for the same power budget in monolithic processors.

In Figure 1.1 we can see the evolution of key microprocessor parameters since 1970. As

seen, until 2005, manufacturers kept increasing clock frequency for single-core processors.

In 2005, the clock frequency reached the top value, after which, the clock frequency has

been kept roughly constant while the increased factor has been the number of cores,

causing only a slight power consumption increment.

Currently, multi-core architectures range typically from 2 to 24 cores. However, in order

to increase parallelism and take even more advantage of the multi-processor paradigm,

the trend is to move forward in this approach by adding tens, hundreds or even thousands

of cores. These processors are termed many-core processors.
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The multi-core and many-core paradigm is not only restricted to CMPs. CMPs are

typically composed of several general-purpose microprocessors interconnected in order

to run any application in any of their nodes. This could be seen as the evolution of the

general-purpose microprocessor. Similarly, Systems-on-Chip (SoC) consist in a complete

and specific system integrating on the same chip most of the required components (cores,

encoders, specific function modules, memories, . . . ). As the integration scale continued

its evolution, SoCs, similarly to CMPs, evolved to MPSoCs (Multi-Processor System-

on-Chip), in which, regular SoCs implement several processors to take advantage of the

multi-core approach.

Both CMPs and MPSoCs need an interconnect fabric in order to work. This on-chip

network[2][3], termed network-on-chip or NoC, is necessary in order to support the

internal traffic between components in the same chip. Protocol commands and memory

blocks are forwarded through the network where some applications are executed on the

CMP. These applications share the whole NoC resources. As some cores or applications

can access to the same data at the same time a memory coherence protocol is needed to

guarantee accesing data in a consistent way. Therefore, the NoC must be extremely fast

and capable of serving data at very low latencies, otherwise the overall chip performance

will be negatively affected. On the other hand, due to the intrinsic design restrictions

inside the chip, the NoC must be carefully designed according to tight constraints in

terms of area and power. In initial multi-core designs, since only a few nodes were

typically implemented, such processors usually relied on simple buses or rings, as is the

case of the IBM Power8 [4], shown in Figure 1.2. Bus and ring topologies are simple and

relatively inexpensive. However, since all nodes connected to the network share the same

physical media, they do not scale in performance with the number of interconnected

nodes, since the network can be used by only one node at a time (for the bus case).

Therefore, to make many-core processors feasible, other network designs must be used

in order to allow concurrent communication between all nodes. In this sense, currently,

point-to-point mesh network topologies are emerging as the most popular interconnect

strategy in many-core systems. Indeed, as microprocessors are manufactured over a

2D silicon substrate, 2D meshes fit naturally well in the floorplan. An example of this

network topology is the Tilera TILE-Gx72 platform[5] with 72 cores shown in Figure 1.3

which is provisioned with 5 completely independent 2D mesh networks each one intended

to a specific type of traffic.

NoCs have been deeply researched for the last 15 years. These NoCs adopted many

design styles and methods from networks designed for HPC systems. NoCs have been

researched with two main goals in mind, network throughput and network latency. While

network throughput is an important aspect of the NoC, the network latency becomes a

key design point due to the low network load requirements inside the chip. Moreover,

these NoCs are not exempt from well known problems such as network routing deadlock,

failures, network congestion and security issues, to name a few. Also, the increment in
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Figure 1.2: IBM Power 8 CMP chip layout.

Figure 1.3: TILE-Gx72 platform provided with 100 tiles. 5 2D-meshes built in.

the number of units in CMPs and MPSoCs, makes the network utilization to increase,

therefore, its design increases in size and complexity in order to allow better performance,

leading to an increment of network latency.

In this thesis we address the improvement of NoC performance. There are different ways

to address NoC optimization and they depend mainly on the context where the NoC

is deployed and the application requirements set on the communication infrastructure.

In this thesis we address different contexts thus providing different solutions for NoC

performance improvement. Next, we describe each context and then we describe briefly

each proposal.

Context 1: Adaptive Routing and Congestion

Routing in NoCs is quite similar to routing on any high-performance interconnection

network. A routing algorithm determines the path that the message must take from
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source to destination. Routing algorithms are divided in two categories depending on

where the routing function is applied. If the path along the network is determined before

the packet is injected from the source node, then, the routing algorithm is termed source

routing. However, if the routing algorithm chooses hop by hop the path that the packet

must follow, then, it is termed distributed routing. Depending on the adaptability of the

routing algorithm to the network status, routing algorithms can be further categorized

into deterministic, partially adaptive and fully adaptive.

Fully adaptive routing algorithms achieve higher performance and lower network latency

in highly loaded conditions. These algorithms are usually preferred to avoid or minimize

congestion effects. Indeed, congestion is one of the most complex problems in intercon-

nection networks. It occurs when network resources are oversubscribed and network

bandwidth is lower than the requested one. As network size increases, this effect is

more apparent and problematic. Under an scenario where congestion is severe, adaptive

routing algorithms may even spread congestion, thus worsering the congestion problem.

The root cause of performance degradation in a congested situation is the Head-of-

Line (HoL) blocking effect caused by congested packets to non-congested ones. Packets

passing through congested spots block at the head of queues, keeping resources and

impeding packets not passing through those spots from advancing. This phenomenon

produces an increase in network latency, getting down network performance.

Although there are many techniques to solve the congestion problem (mainly by injection

throttling or resources over provisioning), or the HoL blocking problem (resources over

provisioning), they either require sophisticated implementations [6] or exhibit reaction

times dependent of network size.

Context 2: Memory Access Latency

Switching techniques refer to the allocation of network resources at each hop when a

packet travels through the network. Switching can be divided into Circuit Switching

(CS) and Packet switching (PS). Packet Switching is a buffer switching technique where

the packet is stored at every router. Virtual Cut-through (VCT) switching allocates the

downstream buffer space and the packet is transmitted as soon as possible, not neces-

sarily waiting the whole packet to be received. In Wormhole (WH) a similar approach is

used, however, WH requires a buffer size lower than the packet size. In both approaches,

the header flit carries the address information, which is used to set the path and the rest

of the packet carries the data. However, wormhole switching imposes large performance

penalty. This penalty occurs when a packet is blocked and blocks at several routers,

then, it may introduce severe congestion problems increasing network latency.

Circuit Switching is a bufferless switching technique, where the links between the source

and destination nodes are globally reserved to form a circuit. A request is propagated

from source to destination, booking at each hop the links. When the request reaches
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the destination an acknowledgement (ACK) is sent back to the source. Once the ACK

message arrives to the source, the packet or stream of packets are sent through the

circuit. Later, an END-OF-CIRCUIT message is sent to tear down the circuit. Long

messages are good candidates to configure circuits, as they will amortize the time spent

in setting up the circuit. However, in CMPs where the messages are not large, the

network performance is affected due to the setup delay. Some more aggressive proposals

implement a multi-hop circuit switching allowing the network to forward the packet more

than one hop each cycle. Following this approach, SMART [7] proposes an architecture

where a message can cross the whole network in a single cycle.

One critical aspect of CMP systems is memory access latency. Data needs to travel

from memories to the cores (caches mainly) via the NoC. If we could smartly set circuits

between memories and caches then the performance of applications would be boosted.

Context 3: High-Assurance NoC

Network performance (both latency and throughput) can be severely impacted when

security property has to be enforced. An example of security break occurs when a

malicious application injects messages at a high rate, flooding the network, and thus,

performing a denial of service attack on the memory controller, causing the rest of

applications not to continue with their execution, as they cannot access the memory

controller. On the other hand, side channel attacks are one of the most dangerous treats

that target hardware components and specially the NoC can suffer. Usually, timing

leakage is used by the attackers on the cache memory to monitorize the network latency

and indirectly obtaining information about the other applications (Meldown). In order

to guarantee security, Time Division Multiplexing (TDM) is widely used. In TDM the

network usage is divided in time slots and each slot is assigned to an application. The

network only transports messages belonging to a slot at a time, thus, avoiding traffic

collisions between slots (applications). By doing this, application flows are isolated.

However, this approach harms both latency and throughput of the network.

1.1 Thesis contributions

This thesis focuses on improving NoC performance for the three context scenarios pre-

sented above. Different strategies are proposed, presented and evaluated. The different

contributions in this thesis address the network performance improvement from differ-

ent requirements perspective and with different systems, representing the three previous

contexts. In particular, we address the two standard problems of performance improve-

ments both in terms of network throughput (under congested scenarios) and network

latency. Indeed, one central contribution of the thesis is the achievement of network

latency reduction by combining both types of switching strategies, circuit and packet
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switching combining it with the SMART technology. We also address the achievement

of a high-assurance NoC for perfect application flow isolation guarantees.

Figure 1.4 shows the different contributions of the thesis. The first contribution is a novel

flow control strategy, referred to as Type-Based Flow-Control (TBFC). This mechanism

is tailored to buffer resources with minimum capacity but still allowing virtual cut-

through switching (thus enabling its benefits). In addition, TBFC is prepared for a

new type of routing algorithms which, depending on the type of a packet may take

different routing decisions. Indeed, we apply a novel adaptive routing algorithm on top

of TBFC. The algorithm, referred to as Safe/Unsafe routing (SUR), classifies packets

as safe of unsafe depending on the chances of packets to induce deadlock. Safe packets

move through the network in an unrestricted manner, while unsafe packets are routed

only through deadlock-free paths. When both methods are combined, TBFC and SUR,

the performance results show a boost in performance when the algorithm is used in 2D

torus networks. Also, performance is kept maximum in 2D mesh configurations while

using less resources. This proposal does not improve the network latency compared with

previous fully adaptive routing algorithm, but is able to reach a higher injection rate

before reaching the saturation point.

The second proposal addresses the problem of high network latency in congested situa-

tions. We propose a congestion filter to be used together with the adaptive routing algo-

rithm. The filter, referred to as End-Point Congestion Filter (EPC), prevents congested

packets from spreading through the network. The filter disables temporarily adaptivity

for those packets that participate in a congestion situation. By doing this, congestion is

prevented from spreading and taking much network resources, thus allowing the rest of

non-congested packets to adapt and avoid congested ones. This proposal shows a total

decoupling of congestion from adaptive routing, thus guaranteeing no interference on

network and system performance.

The main contribution of this thesis is the one listed as the third contribution. We

propose PROSA, a PROtocol-oriented circuit Switch Architecture, which co-designs

both the NoC and the coherence protocol and put them to play together. Our approach

enhances the NoC with a new clustered component, the PROSA controller (PC), which

is in charge of managing circuits and to resolve any possible conflict. The controller is

in charge of four NoC PROSA routers (PR) and steers their local circuits when needed.

The proposal sets circuits only for long multi-flit protocol messages. Circuits for those

messages are configured before they are indeed injected, taking advantage of the time

slack obtained with the cache access and for the processing delay incurred in the network

interface (NI). Thus, hiding the circuit setup time.

The fourth proposal of the thesis is PROSA-DD. This proposal enhances the previous

work. In that case PROSA-DD tries to setup circuits for all messages, either short or

long taking as a premise that even with a small delay at injection (because we need
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Figure 1.4: Thesis outline.

to setup the circuit) the transmission latency of the message will still be smaller than

the transmission time in packet switching (PS) mode (as we use SMART technique).

Another alternative relies on message distance to destinations, using circuits only for

messages with closer destinations, thus circuit setup time is shorter. Finally, few addi-

tional cycles (slack) can be provided to the circuit setup process, increasing the success

rate of circuits established and used by the application. All these alternatives are ex-

plored in PROSA-DD.

The last contribution of this thesis is Token Based-TDM. It put the focus on security

problems. Token based-TDM creates a TDM network based on the Channel Dependecy

Graph (CDG) for an efficient time slot propagation through the network. The arbitration

domain is performed at each router instead of being performed at network level; as is

the case of standard TDM network. Tokens are used to set the arbitration domain

at each router and these tokens are propagated following the CDG along the network.

This new approach enables the network to achieve low latency while ensuring strong

isolation. Moreover, our contribution is able to support different number of domains

without any change in the network, being highly flexible. State-of-the-art contributions

propose static solutions working for a hardwired number of isolated domains and pre-

defined network-on-chip characteristics.

To summarize, our contributions in this thesis are the following ones:

• TBFC+SUR: co-design of flow control and routing algorithm to achieve a balanced

buffer utilization for fully adaptive routing algorithms.

• EPC: A congestion control mechanism that avoids spreading of congestion by

isolating the congested flows when using fully adaptive routing.
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• PROSA: a new circuit-packet switching NoC architecture driven by the coherence

protocol. PROSA reduces the latency of data messages using the coherence pro-

tocol knowledge to setup the circuits before they are needed and only for the time

period they are required.

• PROSA-DD: PROSA extensions to setup circuits for both type of messages, control

and data, including new functionalities such as additional slack for setting up

circuits and distance-driven circuit setup strategy.

• Token-Based TDM: a strong isolation network based on the CDG to improve the

flexibility of TDM designs. It supports different number of domains without any

change in the NoC design.

1.2 Thesis Outline

Following the rules of Universitat Politècnica de València, this thesis has been written

as a compendium of articles and is structured as follows:

• In Chapter 2 the background of this thesis is described as well as related work.

Although subsequent chapters will include related work sections, we provide in

this chapter a complete and integrated background and related work description

in order to provide a unified view to the reader.

• In Chapter 3 we put together all the descriptions of this thesis contributions,

together with their evaluations and an assessment of their similarities, differences

and complementaries. The goal of this chapter is to ease the understanding of the

contributions and to let the reader be focused on them.

• From Chapter 4 to Chapter 8 reflects the compendium of publications arranged

as follows:

– In Chapters 4 we describe the first NoC architecture proposed, TBFC+SUR.

– In Chapters 5 we propose EPC to avoid spreading the congestion.

– In Chapters 6 and 7 we propose PROSA and PROSA-DD, a new NoC archi-

tecture driven by the coherence protocol.

– In Chapters 8 we propose a high assurance NoC.

• Finally, in Chapter 9 we expose the conclusions and enumerate all conferences in

which the articles of this thesis have been published in.





Chapter 2

Background and Related Work

In this chapter we collect basic concepts required to fully understand all the contributions

described in this thesis. First, we describe basic concepts and terminology related to

networks on chip. Then, in each specific topic we provide the state-of-the-art.

2.1 Network on Chip (NoC)

The Network on Chip (NoC) concept is the result of several design choices such as

network topology, switching and flow control techniques or routing algorithms. The

network topology defines the physical interconnection between the different elements

inside the chip. Switching and flow control define how the information is transmitted

through the network and the routing algorithm chooses the path to communicate end

nodes through the network.

The elements that the NoC is composed of are nodes, routers, and links. The nodes

are typically the compute elements and they communicate with other nodes through

the network using the network interface. Nodes may include caches, which are smaller,

faster memories. These caches store copies of the recently used data. Main memory is

not accessed directly. Instead, a memory controller is accessed through the NoC to reach

main memory. Routers provide the connectivity between end nodes by connecting to

other routers and to the end nodes. The links are the physical connection that connect

all the elements in the NoC (nodes, routers, and memories). In this section we describe

briefly these concepts. Deeper details can be found in [3].

2.1.1 Topology

Before NoCs were conceived, communication within a chip were performed with busses,

as is the case of the Cell processor [8], were all the elements access to the same bus

11
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(a) Tiled CMP. (b) Heterogeneous CMP.

Figure 2.1: Different CMP designs.

(a) Mesh topology. (b) Torus Topology.

Figure 2.2: Different CMP desings.

to communicate. However, this approach is only suitable for systems with a small

number of nodes. Indeed, nowadays industry integrates many simpler cores on the same

chip. Buses in these systems make nonsense as they offer a poor scalability and limited

bandwidth.

The NoC concept emerged as the solution to achieve effective on-chip bandwidth. Cur-

rent multiprocessor systems are typically composed of a collection of tiles. A tiled chip

multiprocessor (CMPs) design is shown in 2.1a. The node, cache memories, and routers

are the elements that compose the tile. Every tile is connected to a subset of tiles through

an on-chip network. There is a major difference between homogeneous (inducing regu-

lar topologies) and heterogeneous designs (more suited to irregular topologies). Instead,

high-end multiprocessor systems-on-chip (MPSoCs) are an example of heterogeneous

designs, Figure 2.1b shows an example, where tiles are different in many aspects: size,

functionality, performance, throughput, etc.

CMPs usually derive in orthogonal topologies. This type of design allocates nodes in

regular patterns, making easier and regular the tiles connection. Orthogonal topologies

allocate nodes in an n-dimensional array with k nodes along each dimension. Every

router has at least one link connecting to a neighbour router for each direction and every

router is labelled with an identifier depending on its coordinates. The communication

links between a pair of routers are bidirectional, having one channel in each direction.
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Figure 2.3: Cannonical architecture of the router.

The most popular design in NoC architectures is the n-dimensional mesh, shown in

Figure 2.2a, used in most of the commercial and non-commercial NoCs designs. The

2-dimensional mesh is the most widely studied topology as it fits with the chip surface

layout. However, some proposals assume 2-dimensional torus, Figure 2.2b. The torus

floorplan is similar to the one assumed for the mesh topology, but connecting the nodes at

the boundaries of every row and column. These long links are denominated wraparound

links. We assume 2-dimensional mesh and torus topologies in our proposals.

2.1.2 Router

Routers, or switches, are the building block of the network. They forward messages from

their inputs to their outputs. Nodes are attached via a link, and routers are connected to

other routers. Routers are pipelined and have typically the following modules: buffers,

routing unit, arbiter unit, and crossbar.

When a message arrives at an input port, it is stored in a buffer. Buffers are the most

important element inside the router. Buffers are typically associated to one channel,

also called port (input or output). The buffers associated to an input port receive the

messages and store them waiting for routing decisions. The buffers occupy a large part

of the router area and they are the main power consumers inside the NoC. Notice that,

to save area and power, usually buffers at output ports are not implemented.

The routing unit is the next step inside the router. This unit is in charge of deciding

the output port a message must take. Routing unit feeds the arbiter unit. This unit
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Figure 2.4: Data Units.

arbitrates between the different requests to allow the input ports to access the output

ports.

The crossbar is a non-blocking switching element. The crossbar allows connecting all

the input ports with all the output ports. These connections are set depending on the

arbiter unit decisions.

2.1.3 Data Unit

The Data Unit, or message, is the information that one node wants sends to another

node. The message is a collection of bits that the sender transmits to the destination.

Depending on the switching strategy the message can be divided into smaller units,

called packets. A packet is divided further into flits (flow control digits), which are the

smallest unit of information flow controlled by routers. As the width of the link can be

lower than the size of a flit, the flit is further divided at the physical level, into phits

(physical digits). It is left to the designer and the parameters involved, to determine the

size of every unit. However, in on-chip networks, due to the vast amount of bandwidth

available, the phit size usually equals to the flit size. Message splitting into packets and

reassembly of these packets back to a message are performed at the network interface.

Commonly, the packet or message is composed of the header flit, body flits and tail flit.

The header flit contains the information for routing and control. Body flits contain data

and the tail flit determines the end of the message or packet. Often, packet and message

terms are interchangeable by the community, when both are equal in size.

2.1.4 Switching Technique

The switching techniques determine how messages or packets advance through the

routers. Indeed, switching sets connections between the input and the output ports.

Depending the switching technique implemented the router may have a significant im-

pact on performance, area and power consumption.
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In Circuit Switching (CS) the routers establish a reserved path between the source and

destination nodes before sending data. A circuit request message is injected into the

network. It contains the destination information and reserves the required channels

for message transmission at each hop. When the request reaches the destination an

acknowledgement is sent back to the source. Once the acknowledgement arrives to

the source, the message or multiple messages are sent to the destination not using

any buffer and without any conflict with other flows inside the network. The tail flit

releases the booked links allowing other flows to get the resource. The effectiveness of

the CS approach relies on the type of traffic that will be using circuits. This switching

technique is a perfect choice for long messages or very frequent messages (bursty traffic).

Nevertheless, if the circuit setup time is longer to the transmission time of data, then,

the network performance will be strongly penalized.

Packet Switching (PS) is a buffer switching technique where the packet is stored at every

router, instead of reserve the whole path at a time. The three main packet switching

alternatives in a NoC are store and forward (SAF), Virtual Cut-Through (VCT) and

Wormhole (WH).

Store and forward (SAF) is the easiest packet switching technique. When a packet

arrives to a router, it is fully stored at the input port. Once is completely received,

the message can be forwarded to the next router or node. Notice, that with SAF the

buffer size should be at least equal to message size. Moreover, the packet latency is

multiplicative with the number of hops along the path.

Another switching technique with the same buffer resource requirement is Virtual Cut-

Through (VCT). However, with this technique, the message can be forwarded when the

header flit arrives at the input port buffer without having to wait all flits are received.

This approach improves the network latency, in that case, the base latency is mostly

additive to the distance between the source and destination nodes. In fact, in high

load traffic conditions, VCT behaves as SAF. VCT is commonly used in off-chip high-

performance networks, where the buffer size is not a critical design factor.

Both previous switching techniques require a high amount of buffer resource. However,

in Wormhole (WH) switching buffers at the ports have to provide enough space to store a

few flits instead of the whole packet. For efficiency reasons, the buffer size depends on the

round-trip-time delay (RTT). RTT is the delay period between a flit is forwarded and the

acknowledgement of the transmission is received. As it happens in VCT, the message is

forwarded as soon as possible, without waiting to receive more flits. However, the buffer

can not store the entire message, so, a blocked message will be stored in several routers

along the path. This effect is the most important drawback because it could lead to a

high contention effect inside the network, increasing the network latency and reducing

network throughput.



Chapter 2. Background and Related Work 16

To solve this effect, virtual channels are proposed in (ref VC). VCs divide the buffer into

a set of virtual buffers and the port and the channel are shared between these virtual

buffers. This technique requires a multiplexing and also has to take into account for

switching techniques and flow control. Virtual channels offer an improvement in latency

and performance to the network. The weakest point of this approach is that when

multiple VCs are mapped on one physical channel, then, the link bandwidth is shared

between all the VCs. VCs are not restricted to WH switching, they are also used for

example to support adaptive routing algorithms and quality of service.

Related Work Linked with Switching

As a summary, circuit-switching has been used in NoC architectures in order to reduce

on-chip communication latency. Once a circuit is set, data does not travel through the

routing and arbitration stages on each router. However, setup time usually causes low

resource utilization and performance degradation. On the other hand, packet switching

improves resource utilization and network performance, splitting the entire message into

smaller blocks and forwarding them along the network.

Some works try to get benefit from both mechanisms by implementing a hybrid circuit-

packet switching strategy. Kumar [9] proposes Express Virtual Channels (EVC) allowing

packets to bypass intermediate routers along their path. EVCs only allow to connect

nodes along the same dimension, so circuits cannot turn from one dimension to another.

Jerger [10] proposes circuit switched coherence, setting permanent circuits between pairs

of frequent data sharers instead of tearing them down. It allows to quickly send data

between the same nodes. However, if another circuit requires the resource, the data is

switched to packet switching until it reaches destination. Yin [11] proposes a hybrid

circuit-packet switched network in which the packet is forwarded along the packet net-

work while the circuits can be set in parallel, using TDM. Yim’s proposal also spends

time in the setup latency. Mazloumi [12] proposes another hybrid packet-circuit switched

router. This mechanism setups the circuit along the network while the request message

is being forwarded between the requestor and the destination. When the request reaches

the destination and the data is ready, the mechanism sends a probe message activating

the reserved circuit, after that the data is sent. Chen [13] proposes an implementation of

a hybrid circuit-packet switching. Ma, et al. in [27] proposes a hybrid wormhole/VCT

switching technique to reduce buffering while improving the performance of fully adap-

tive routing. All these mechanisms require a setup period.

Van Lear [16] proposes a coherence-based message predictor for optical interconnection

networks. In the proposal a global predictor establishes the circuits between nodes.

All the traffic in the network has to cross the predictor, thus potentially causing a

bottleneck in the network. This proposal is also for optical interconnects where a full

optical crossbar is assumed. This makes scalability a major issue. Shacham [17] proposes
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Figure 2.5: Single-cycle Multi-hop Asynchronous Repeated Traversal Example

an hybrid optical-electrical network. In this proposal the electrical network is used to

establish the optical circuit. Peh [18] presents flit-reservation flow control. In this

proposal the circuit is setup hop by hop.

Liu et al. [19] propose an effective setup circuit procedure, in which the setup procedure

is guaranteed to terminate in 3D+6 cycles, where D is the distance. Xue et al. [20] pro-

pose a general mathematical framework for reconfigurable networks in order to optimize

the network by configuring subnetworks to transmit data. Hollis et al. [21] propose a

reconfigurable NoC using the Skip-link. This proposal configures the Skip-link to allow

packets to bypass the channel, avoiding to cross the router.

A cluster approach has been proposed previously by some authors. Xue et al. [22]

propose a cluster approach to send multicast messages, encoding these messages and

decoding them at destination. They support dropping parts of the message. Qian et al.

[23] propose a cluster approach by connecting clusters through Express Virtual Channels

(EVC) and a Hub router. They use an adaptive routing algorithm to choose between

regular network, the EVC or the Hub router. Both approaches implement a packet

switching approach.

Abousamra [14] proposes Deja Vu. This proposal pre-allocates the circuit between nodes

in order to hide the setup latency by dividing the NoC in two planes: control and data

plane. The control plane is in charge of configuring the circuits. This plane has higher

voltage and frequency, so being faster. In this NoC, the request packet pre-allocates

the path in backward direction as it approaches destination. The destination node can

forward the response to the requestor whenever data is ready with no circuit setup.

This approach can produce conflicts. Deja Vu configures the circuits in the order they

are reserved. Then, the selected order schema can produce underutilization of network

resources. In [15] authors alleviate the problem by using a different order. However, it

still requires the high frequency and voltage control plane. Two of our contributions,

PROSA and PROSA-DD are compared with the current Deja Vu.

Krishna in [7] presents SMART (Single-cycle Multi-hop Asynchronous Repeated Traver-

sal). This is a proposal more aggressive to reduce latency network. Smart proposes a

multihop network with single-cycle data-path for all the communications between source

to destination. So, any communication can be performed in the best case in one cycle
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Smart implements an extra network to setup the circuits. Figure 2.5 shows an example

of how SMART implements a multihop network. SMART try to setup the circuit one

cycle before the data is sent and partial circuits can be established. SMART do not add

any additional fast physical express links in the data-path; instead it drive the shared

crossbars and links asynchronously up to multiple-hops within a single cycle. Our con-

tribution, PROSA is based on this technology forwarding data flits in a single cycle from

the memory controller to L2 cache memories and between L2 and L1 cache memories.

2.1.5 Flow Control

Flow control dictates how traffic flows advance between routers. Buffers are a finite

resource, so they can not store more data than their capacity. The NoC needs a flow

control technique to avoid buffer overruns. The flow control mechanism dictates when a

flit, message, or packet can be sent, guaranteeing always that the flit, message, or packet

will be stored at the receiving router.

There are three flow control techniques that are frequently used: ACK/NACK, stop&go,

and credits. The ACK/NACK flow control mechanism is the simplest one. When a

router sends a flit it has to wait until the ACK message is received keeping the flit. If a

NACK is received, then, the flit is retransmitted again. When a flit arrives at the input

port, if the buffer has space available, then the flit is stored in the buffer and an ACK

message is sent back. Otherwise, the buffer is full and a NACK message is sent back

and the incoming message is dropped.

ACK/NACK requires a high amount of control traffic. Contrary to this, Stop&Go

reduces the control traffic between routers. Stop&Go is a flow control mechanism based

on two thresholds set in the receiving queue. Thresholds are set based on the round-

trip time of the link. When the buffer is getting full and the occupied space of the

buffer reaches the stop threshold, then a stop signal is sent back to the sender. As

the mechanism takes into account the round-trip time, all the flits sent by the sender

before the stop signal is received can be stored in the input port buffer. When the buffer

occupation goes below the go threshold, a go signal is sent back to the sender, in order

to resume the injection of flits.

Credit-based flow control is based on the knowledge of the sender of the free space at

the receiving buffer. Every output port keeps a count of credits, which is equal to the

number of flits that can be stored at the input port connected to the output port. When

a router transmits a flit for one output port, then the count associated with this output

port is decreased by one. This counter with a zero value means that there is no available

space at the input port, thus the router can not forward more flits along this output

port. On the other hand, when a flit is forwarded and frees the allocated space at the
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receiving buffer, a credit signal is sent back to the previous router to increment the

credit counter associated with this port.

Related Work Linked with Flow control

These three are the main flow control mechanisms used. However, there are other

proposals that improve performance. Tang in [24] proposes a flow control in which

they limit the injection rate dynamically in the network. This flow control strategy can

be only used in meshes. Nousias in [25] proposes an adaptive rate control strategy in

wormhole switching with virtual channels. When the contention changes, the destination

node sends a signal to the source node to regulate the injection rate accordingly. Avasare

in [26] proposes a centralized end-to-end flow control for packet switching. This flow

control requires two networks, the control network, and the transmission data network.

Ma, et al. [28] proposes a flit bubble flow control scheme by refining the baseline bubble

flow control scheme. Chen, et al. [29] proposes worm bubble flow control (WBFC),

which reduces the buffer requirements and improves buffer utilization in torus networks.

However, the methods in [27–29] still need to separate the virtual channels into adaptive

and escape channels.

2.1.6 Routing Algorithm

Network topology defines the physical organization of the network and the possible paths

between the elements. The routing algorithm, instead, computes which is the path that

the message takes to reach its destination. Routing algorithms must be carefully designed

in order to avoid collateral issues such as deadlock, livelock, and starvation.

Deadlock occurs when a set of messages can not advance because they request buffers

that are occupied by those messages and a cyclic dependency appears between all the

messages. There are two common ways to deal with deadlock events. The first one is

implementing deadlock-free routing algorithms, usually based on designing an acyclic

Channel Dependency Graph (CDG) and the second one providing a recovery method-

ology to escape from the deadlock situation.

In a livelock situation, a message keeps moving but never reaches its destination. In this

case, the message is misrouted and never reaches its destination because the required

links are always reserved to other messages. Livelock arises when non-minimal paths

are allowed. Livelock can be easily avoided by limiting the number of misrouted hops

performed by a message.

The starvation issue occurs when a message is permanently blocked holding a resource

and cannot advance because the network traffic is high and the resource requested is

granted to other messages with higher priority. This issue can be avoided by a proper

arbitration design with a correct priority mechanism.
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Related to routing algorithms support, there are two implementation trends, table-

based, and logic-based. The first approach, table-based is based on row-like structures

that match destinations with the table entries. So, given a destination, the row of the

table associated with the destination is accessed, in order to know the routing output.

Usually, these tables are implemented with memory structures. On the other hand, in

logic-based routing, the algorithm is implemented as a set of logic gates. Then, when

a header flit arrives at the input port and it is decoded, the output port is computed

based on the logic function. Table-based routing algorithms are flexible in the sense that

many algorithms can be encoded in the tables. However, logic-based routing algorithms

get more efficient implementation in terms of delay, area, and power consumption.

Routing algorithms can be classified by several key factors. One possible classification,

as said above, is based on where the routing function is implemented. In source-based

routing algorithms the complete path to follow is encoded in the packet’s header at the

source end node. Alternatively, in distributed-based routing the path is computed at

each router. Another possible classification takes into account the number of receiver end

nodes of messages. Following this approach, the routing algorithm can be classified as

unicast, multicast, and broadcast. In unicast communication, packets only have a single

destination. In some situations, however, a message must be sent to several destinations.

In this case, the routing algorithm must support collective communications (multicast

and broadcast). If one message is sent from a source to the rest of the nodes in the chip,

the routing operation is termed broadcast communication. However, if the message is

sent to a group of end nodes, the routing operation is termed multicast communication.

Depending on the adaptability of the routing algorithm, it can be further categorized

into a deterministic, partially adaptive and fully adaptive. In deterministic routing, the

packets from one source to one destination always take the same path. On the other

hand, fully adaptive routing algorithms allow the packet to choose between all the output

ports to bring the packet closer to its destination. Fully adaptive routing algorithms

should have lower latency network, but the routing functions are more complex than

deterministic ones. Partially adaptive routing algorithms try to combine the advantages

of the two mentioned above. These algorithms provide limited adaptability for packets.

Related Work Linked with Routing Algorithms

A large set of works related with routing algorithms have been proposed. Here we briefly

comment on some basic references mainly proposing adaptive routing algorithms (since

one of our proposals addresses adaptive routing algorithms). It is not our intention to

cover most of the related work spectrum of routing algorithms. Dally and Aoki [30]

described the dynamic miss routing algorithm by tagging packets based on how many

misroutes they have incurred and allow any packet to request any VC as long as it’s not

waiting for a packet with a lower dimensional reversal number.
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Glass and Ni in [31] proposed turn model for designing partially adaptive deadlock-free

algorithms in a mesh. The west-first routing algorithm in a 2D mesh traverses the west

hops first, if necessary, and then adaptively south, north and east. The negative-first

routing (NFR) algorithm in a 2D mesh routes a packet first adaptively west and south,

and then adaptively east and north. Chiu [32] proposed the improved partially adaptive

routing algorithm odd-even turn model by constraining turns, that can introduce dead-

locks, to occur in the same row or column. Wu [33] proposed a fault-tolerant odd-even

turn model-based routing algorithm for 2D meshes.

Dally and Seitz in [30] presented the sufficient and necessary condition for deadlock-free

routing in an interconnection network. Several routing algorithms were proposed for

meshes and tori [32, 34, 35]. Load-balanced, non-minimal adaptive routing algorithms

for tori were proposed by Singh, et al. [35, 36] with three virtual channels. The method

in [37] presented an adaptive minimal deadlock-free routing algorithm for 2D tori. How-

ever, the number of virtual channels required by the method was not well-controlled

in [37].

Duato [38] proposed a necessary and sufficient condition for deadlock-free adaptive rout-

ing in WH-switched networks. Methodologies for a design of deadlock-free adaptive

routing algorithms are also presented in [39]. The adaptive bubble router [40] for the

VCT-switched torus is based on Duato’s protocol. It requires an escape channel with

dimension-order routing (DOR) and an adaptive channel. A flow control function is

added to the escape channel in order to avoid deadlocks.

In NoCs, Marculescu in [41] proposed a new routing technique (DyDA) which switches

between deterministic and adaptive routing based on the network’s congestion condi-

tions. When the network is not congested DyDA router works with deterministic routing.

When the network becomes congested, then DyDA router works with adaptive routing.

Ebrahimi in [42] proposed a new fully routing algorithm (DyXYZ) for 3D NoCs. In this

new routing, the congestion information is used as a congestion metric to select the best

output port.

Mejia [43] proposes Segment-based routing algorithm. This proposal divides the topol-

ogy into subnets, and subnets into segments. Then, a bidirectional turn restriction is

placed locally within a segment. As segments are independent, the restrictions can be

placed inside the segment independently where the turn restrictions are allocated on

the other segments. This technique reaches a high flexibility compared with previous

proposals.

2.1.7 Congestion

A highly loaded NoC can easily become congested, even if this situation occurs during

a limited period of time. To define congestion, first we need to define contention effects.
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Figure 2.6: Contention example.

Contention is defined as the situation when two packets arrive to the same router (pos-

sibly through different input ports) and they request the same output port, as shown

in Figure 2.6b. In that situation only one packet will win the access to the output port

and will advance. The other packet will block temporarily. This is a small contention

effect and is due to the excess input bandwidth requesting the same output port.

Contention can occur without degrading significantly system’s performance. If con-

tention occurs sporadically, the router buffer absorbs accumulated traffic in a lesser or

greater extent, depending on the router buffer size, softening contention effects, thereby

causing negligible network turbulence. However, when the contention occurs for mod-

erate or large period of time, buffers will quickly fill. This causes flow control to trigger

the stop signal to upstream routers, stopping the incoming flows. The stop signals cause

those router buffers to be filled as well, therefore propagating this effect to the rest of

routers. When this occurs the contention is spread over the network starting from the

first contended router and creating branches due to the interaction of other data flows

with the congested flow. When this happens, the network becomes congested.

Congestion is defined as the effect of suffering contention along the time, moreover,

when a high congestion appears on the NoC, the NoC performance decreases due to the

network saturation.

Related Work Linked with Congestion

Congestion can be addressed in different ways. First, congestion avoidance techniques

guarantee congestion never builds in the network (e.g. ATM networks [44]). However,

this leads to low network throughput and utilization. The second approach is to detect

congestion, notifying the sources, and removing congestion by injection throttling [45].
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Although it is effective in some scenarios, effectiveness of these techniques depend on

the network bandwidth and network size as they rely on a closed control loop approach.

The third approach is to attack directly to the side effects of congestion: HoL blocking

[46]. In this case, mechanisms detect congestion and dynamically allocate new queues

to isolate congested packets. One clear example of this approach is RECN [6]. In these

cases, however, the implementation overhead is non-negligible. Another example of this

approach is speculative reservation [47], which provides end to end flow control in order

to alleviate the congestion using different VCs with different priorities, first sending the

speculative packet and some flits with high priority and the rest of the packets with low

priority. VOQ solutions [48] statically separate traffic, thus may alleviate congestion.

However, they impede the use of adaptive routing.

Some works propose to replace DOR by dynamic routing policies which collect some

networks metrics and use this information to decide an alternative path to route the

messages avoiding congested areas, thus increasing network performance. This adaptive

routing approach is the basis of solutions like RCA [49], which uses a composition of mul-

tiple global metrics collected using a piggybacking data in the messages from the whole

network to decide which is the output port selected to forward a message, then avoiding

the hotspots. Similarly, in [50] authors propose to collect congestion information from

the whole network and to take routing decisions based on network status. On the other

hand, PARS, proposed in [51], avoid the piggybacking problem on a saturated network

using a dedicated network for sending congestion metrics based on the buffer state at

certain routers. Like RCA, PARS uses the buffer state metrics to select proper paths

in order to avoid hotspots. However, the effectiveness of such methods depend on the

severity of congestion since the adaptive routing algorithm may also spread congestion

over the network, thus worsening the situation.

2.1.8 Cache Coherence Protocols

Chip multiprocessor systems usually employ a shared memory programming model,

which requires a cache coherence protocol to keep the information stored in cache mem-

ories coherent along the cache hierarchy. The on-chip cache is organized hierarchically,

smaller and faster caches are allocated at cache levels near to the processors and the

bigger and slower caches are allocated at lower cache levels. This structure provides

to the processors an efficient on-chip storage capacity. The last-level cache (LLC) in

CMP systems can be implemented in a distributed manner using cache banks, one on

each different tile. While the higher levels of the cache hierarchy are always private to

the associated core, different policies can be implemented for the LLC, but the common

choices are two. First choice, an LLC bank can also be private to a core, then this LLC

bank extends the core private cache capacity. The second choice is when each LLC bank

can be a slice of the shared distributed LLC. This approach is usually preferred because,
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although this approach has higher access latencies than private LLCs, it provides higher

cache capacity, thus avoiding to access main memory accesses that are more frequent

when private LLCs are used. Notice that main memory accesses suffer an expensive

access time to get the required data.

To keep the stored information coherent, the cache hierarchy requires a cache coherence

protocol. The cache coherence protocol keeps data coherent among the different cores,

private caches and shared caches. Several copies of a block can be allocated at different

caches, thorough the cache hierarchy, but only one of such copies can be written at

a time in oder to guarantee data coherency between all the block copies. Therefore,

the cache coherence protocol usually is implemented as Single-Writer, Multiple Readers

(SWMR). Where one cache has a copy of the block with write permissions, and the

other copies of the block allocated on different caches only can read the data.

Cache coherence protocols can be classified in two types, invalidation-based protocols,

and update-based protocols. When a write operation is performed on the cache, it has

to be propagated along the network and notify to caches that store a copy of the block

affected by the write operation. Update-based protocols send a copy of the new value to

the caches with a copy (sharer caches). Invalidation-based protocols instead of sending

the new value, they send an invalidation request to all the sharers. When the invalidation

reaches the L1 cache the block is invalidated and an acknowledgment is sent back to the

writer cache. If the cache wants to access to an invalidated block, it has to request the

block again. Finally, when the writer cache receives all the acknowledgments from the

sharer caches then the block is written.

The typical way of defining and implementing a cache coherence protocol is through a

finite state machine (FSM) which indicates the evolution of the state of a cache block

depending on the type access and coherence actions performed to it. One of the design

choices of a coherence protocol is the number of steady states the blocks can have in

L1 caches; typically the properties of each cache block are encoded using the five states

proposed by Sweazey and Smith [52]; focusing on a private L1, the state of a cache block

can be in one of the following states:

• M (Modified): only this L1 cache has a copy of the block with read and write

permissions; the copy has been modified and the copy in the L2 cache is thus stale

• O (Owned): this L1 cache has a copy of the block with read-only permission and

must provide the block when it is requested by other L1s; other L1 caches may

have a read-only copy of the block in state S; the copy in the L2 cache may be

stale

• E (Exclusive): only this L1 cache has a copy of the block with read and write

permissions; the copy has not been modified
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Figure 2.7: Simplefied FSM for the MOESI protocol.

• S (Shared): this L1 cache has a read-only copy of the block; other L1 caches may

also have a read-only copy

• I (Invalid): the block is either not present in this cache or it is present but not

valid

The three states M, S and I are the basic ones and allow to define the simpler MSI

protocol, while states O and E are two optimizations which can be used to extend the

MSI protocol, thus obtaining MOSI, MESI and MOESI protocols. An L1 cache which

has a copy of a block in state M, O or E is referred to as the owner of that block, while

the set of L1 caches holding a copy of a block in state S are referred to as sharers of that

block.

Figure 2.7 shows a simplified FSM of the MOESI protocol (transient states are not

shown). A cache block is initially in state I; then, when the core issues a read in exclusive

mode (LoadX) and the block is not present in the cache, the block is fetched in the upper

level cache hierarchy, and when arrives the block state changes to E. However, if the

block issues a regular load (LoadS), the block state, when received, is switched to S. If a

write (Store) request is triggered, the block goes to M state. The block is requested by

sending respectively a GetS or a GetX request through the NoC; the requested data is
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Figure 2.8: Simplefied FSM for L2 caches.

provided by the LLC or by the owner L1 depending on the state of the block. If the cache

line is replaced (Repl), the block state goes back to I. The block is also invalidated if the

cache receives a write request issued by another core (GetX), to preserve the SWMR

invariant. If a store request from the local core is received in the L1 cache while the

block state is E, O or S, then the block state changes to M. However, before writing

the block the L1 cache must trigger a coherence request to get write permissions and

must invalidate all the copies in the L1 caches. If a read request from the local core is

received in the L1 when the state is not I, then the block keeps the same state and the

read operation completes. If the cache receives a read request from another core (GetS)

while the block state is M or E, the block is now shared, but this L1 cache changes the

block state to O, this owner cache still having to write permissions and in charge of

providing the block when it is requested by another L1 cache.

In the PROSA and PROSA-DD contributions in this thesis, we assume the MOESI

protocol [53] at L1 while at L2 blocks we assume the protocol with the following cache

block states: P (private), S (shared), C (cached), and I (Invalid) state. The Figure 2.8

shows a FSM of the protocol for L2 cache. A block in a P state means that only one L1

cache has a copy of this block. A block in S state on the L2 cache means that more than

one L1 cache has this block allocated with read permission, but only one has the write
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Figure 2.9: Coherence protocol transactions.

permission. In C state no L1 cache has a copy of the block. If the block is in I state,

then the cache hierarchy has no copy of this block, and a new request to main memory

is triggered. Inclusive caches are assumed and a write-back policy is used.

Figure 2.9 summarizes how the protocol manages the load and store transactions along

the network and the cache hierarchy. In the figure, nodes are represented by circles.

The current block state is represented with text placed just above the circle while the

new state after the transaction is represented under the circle. Messages sent between

nodes are represented by arrows. Messages for load and store operations are combined

(e.g. GetS/GetX).

Whenever a L1 load miss occurs, a GetS message is sent to the L2 Home bank. Based

on the block state at L2 different actions are performed. If the block is in S or C state

(Figures 2.9a and 2.9c), the L2 sends the data to the L1 requestor. If the block is in P

state (Figure 2.9b), the L2 sends a forward (FWD) message to the L1 with the block and

the block state at L2 changes to S. When the FWD message arrives, the L1 cache sends

the data to the L1 requestor cache and the block state changes to O. Finally, if at the L2

the block is in I state (meaning a miss occurs, Figure 2.9d), a REQ message is forwarded

to the MC. The L2 receives the data and forwards it to the L1 cache requestor. The

state of the block is set to P in the L2 and to E in the L1.

Whenever an L1 store miss occurs, a GetX message is sent to the L2 Home bank.

Similarly, if the block is in C state (Figure 2.9a), the L2 sends the data to the requestor

and changes the block state to P. A different case occurs when the block is in P state

(Figure 2.9b). The L2 sends an invalidation message (INV) to the L1 owner cache.

When the INV message arrives, the data is sent to the L1 requestor and the block

changes from E to I. When the block is in S state (Figure 2.9c), the L2 sends the data

to the L1 requestor and sends INV messages to all the L1 sharers. When each L1 sharer

receives the INV message, it sends an ACK message to the requestor and changes the
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block state to I. Finally, if the block is in I state (miss) (Figure 2.9d), then a REQ

message is forwarded to the MC. Once the data is received, it is forwarded to the L1.

The block is put in P state in L2 and in M state in L1.

As we see, the protocol faces mainly four possible paths depending on the type of

operation (load/store), L1 access type (miss/hit) and L2 access (miss/hit). Whenever a

miss occurs at L1 and L2 the NoC gets involved and the memory transaction latency is

increased. Factors that may affect significantly memory latency are the distance between

the L1 requestor and the L2 Home bank, distance between the L2 Home bank and the

MC, and the network congestion.

2.2 High-Assurance NoCs

Different security levels may be required when multiple applications run on the CMP

at the same time. Sometimes, mission-critical applications require their execution in a

bounded time period and/or these applications transport data that must be inaccessible

by other applications. When high-assurance property is required, CMPs need to be

adapted in order to deliver security and reliability guarantees.

In high-assurance systems it is a common practice to break the system into a set of do-

mains, which are to be kept separate and should have no effect (i.e., interference) on one

another. In CMPs, however, such controlled domain partitioning is not straightforward

since the on-chip interconnection network (NoC) is a shared resource by all domains.

Even assuming to spatially isolate domains inside physical compute and memory parti-

tions, memory controller (MC) reachability becomes an issue, due to the need to cross

intermediate partitions. As a result, the NoC resources are necessarily shared between

communication flows from different domains, and the proper course of action should be

taken to avoid domain interference.

Several degrees of non-interference can be enforced on the NoC. A first approach to

loosening interdependencies among communication flows consists of delivering quality

of service (QoS) guarantees. In fact, most QoS techniques aim at limiting flow rates,

while restoring nominal rates in the absence of contention. While QoS-augmented NoCs

can typically protect from denial-of-service (DoS) and bandwidth depletion attacks be-

tween domains, they cannot easily avoid an information leak associated with latency

and throughput variations of communication flows as a function of network state. In

fact, they can be used as timing channels by an attacker either to infer confidential

information from a protected high-security program (side channel attacks) or to have

a malicious program deliberately leak information covertly when direct communication

channels are protected (covert channel attacks) [54].
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Figure 2.10: Reference solution: VC partitioning coupled with time-division multi-
plexing.

When the protection against such timing channel attacks is required, even cycle-level

variations of communication performance should be prevented, a scenario that we here-

after denote as strong isolation of domains. Interestingly, implementing strongly isolated

domains makes it also easier to contain the propagation of faults, and does not require

to account for all possible system-level interactions for the sake of certification.

In order to deliver strong isolation to networked domains, the NoC must be designed to

guarantee the non-interference property in its strictest sense: injection of packets from

one domain cannot affect the timing of packet delivery from other domains.

2.2.1 Time Division Multiplexing

The reference solution to avoid any kind of domain interference consists of partitioning

the virtual channels and time-multiplexing the physical channels and crossbars between

different domains such that channels are only allowed to propagate packets from different

domains on different cycles. Figure 2.10 shows an example of this approach, in that case

with two domains, where domain one (VC 1) only can transmits messages in odd cycles,

and domain two (VC 2) transmits the even cycles. This TDM partitioning scheme

ensures that latency and throughput of each domain are completely independent of the

other domain’s load. However, this baseline scheme is heavily sub-optimal and non-

scalable, since packets will have to wait as many cycles as the number of concurrent

domains minus one at each hop. The incurred penalty grows significantly with the

physical distance of the receiver end node.

Related Work Linked with Time Division Multiplexing

Prior approaches to TDM-based scheduling in NoCs loose relevance when they are viewed

from the viewpoint of the concurrently conflicting requirements of latency optimization,
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area efficiency and architectural flexibility. Numerous designs perform TDM scheduling

at the time-slot level [55][56][57]. When using such architectures, the scheduling is

typically performed offline (and assumes perfect a priori knowledge of the applications

expected to be running on the system), and then statically applied to the entire NoC

[58] [7]. However, in this type of approach the latency overhead can be quite substantial.

AEthereal [55] employs pipelined TDM (at the time-slot level) and circuit-switching to

guarantee performance services. Traffic is separated into two main classes: 1) guaranteed

service (GS) and 2) best effort (BE). Excess bandwidth not used by GS flows is given

to BE flows. Packets on a single connection are always ordered, but ordering cannot

be enforced between connections. This approach incurs a substantial programming

overhead of time slots at network interfaces.

The SuperGT NoC [59] is an evolution of AEthereal providing three QoS classes. Aelite[56]

simplifies the router architecture by providing only GS, and AElite moves one step fur-

ther by including multicast traffic and fast virtual-circuit setup. Argo [57] allows sched-

ules to evolve at the granularity of a single cycle, even when the routers have more than

one pipeline stage. The resulting hardware cost is quite low, but the latency overhead

can be substantial. In [54], static network partitioning in space and time is employed

to provide multi-way isolation among the supported domains. This multi-way isolation

property comes at a high performance cost, which is alleviated by the introduced re-

versed priority with static limits (RPSL) mechanism. It uses priority-based arbitration

and static limits to guarantee one-way isolation between high-security and low-security

flows.

A recently introduced architecture, called SurfNoC [60], employs optimized TDM schedul-

ing, also applied at the VC level, to minimize the latency overhead. However, the re-

quired hardware is expensive. Achieving low-cost implementations with SurfNoC would

increase the latency overhead of static scheduling. The current state-of-the-art in TDM-

based scheduling is PhaseNoC [61]. It improves the VC-level scheduling proposed by

SurfNoC by pre-configuring the network in order to receive packets from the same do-

main at all the input ports in the router each cycle, and performing the arbitration in

the next cycle of this incoming domain,

Figure 2.11a shows an example of PhaseNoC network configuration for a 2D mesh.

Notice that for each router all the incoming links transport data for the same domain.

Following this approach, PhaseNoC implements a perfect scheduling behavior. This

perfect schedule allows PhaseNoc forward messages along the network without any stop,

due to the domains are scheduled following the router pipeline at the same time as the

the message advances crossing the router, Figure 2.11b shows an example of cycle-

by-cycle operation for a 4-stage pipelined PhaseNoC router. In each cycle, all router

parts are utilized, with each pipeline stage serving (allocating or switching) a different

domain (group of VCs). PhaseNoC meets the first requirement, by minimizing the
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(a) NoC Domain Configuration. (b) PhaseNoC Scheduling Pipeline.

Figure 2.11: PhaseNoC Scheduling and PhaseNoC Network Configuration

latency overhead. However, it lacks flexibility, because PhaseNoC needs to modify the

network (adding stages at the router) to support a higher number of domains. PhaseNoC

proposes to divide the network into x+ y+ and x− y− to support a higher number of

domains. However, following this approach, it can not guarantee the non-interference

property any more, for which it would need input speedup similarly to SurfNoC. One of

our contributions, Token-based TDM, is compared with the current state-of-the-art on

TDM, PhaseNoC.

In this chapter we have introduced background for networks-on-chip and some related

work addressing the topics this thesis tackles. In the next chapter we introduce and

evaluate all the contributed techniques.





Chapter 3

Thesis Contributions

In this chapter we describe the different techniques provided in this thesis and their

evaluation. For the sake of understanding, they are collected from the associated publi-

cations exposed in the previous chapters, avoiding in this chapter any duplicity between

publications.

In this thesis, we propose some techniques to network performance improvement fol-

lowing different approaches. As said previously, the two first proposals are oriented to

maximize the throughput of the network for NoCs when using fully adaptive routing

algorithms. One is oriented to improve buffer utilization and in that way improving

the network throughput. The second one is focused on congestion situations identifying

the congested destinations and isolating the flows with this destination, thus, reducing

latency of non-congested traffic.

The second approach focuses on network latency reduction, this proposal is a novel

hybrid circuit-packet switching network. This approach gets benefit from the coherence

protocol to setup the circuit before it is needed, thus, hiding the setup latency.

The last proposal of this thesis is a new TDM network based on the CDG. This approach

changes the basic idea of TDM networks using a router arbitration domain instead of a

network arbitration domain to reduce the network latency in high assurance scenarios.

3.1 Performance Improvement with Fully Adaptive Rout-

ings

3.1.1 Type Based Flow Control and Safe/Unsafe Routing

The first proposal is a codesing of flow-control and an adaptive routing algorithm. A

novel flow control mechanism is presented, referred to as Type-Based Flow Control

33
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(TBFC), which implies a the reduced flow control strategy using minimum buffer re-

sources, while still allowing virtual cut-through switching. Then, on top of TBFC we

implement the Safe/Unsafe Routing algorithm (SUR). This algorithm achieves the same

low network latency as previous adaptive routings, however, our proposal has a higher

performance due to a properly balanced utilization of input port buffers. Then, our pro-

posal achieves a lower network latency after the saturation point for adaptive routing

algorithms.

3.1.1.1 Type Based Flow Control (TBFC)

TBFC aims to offer balanced buffer utilization to the routing algorithm. But, before

entering into details, we need to differentiate between two crossbar switching strategies

that may be implemented inside the router. The first one is termed flit-level switching

and improves buffer utilization by allowing the router to multiplex flits of different

packets to advance through the crossbar while directed to the same output port, but

mapped to different virtual channels. The second one is termed packet-level switching

and consists in preventing the router to multiplex flits from different packets to the

same output port. In this approach, when a packet header gets access to the crossbar,

the remaining flits of the packet will keep the crossbar connection and follow without

interruption.

Flit-level switching is conceived for wormhole switching while packet-level switching is

conceived for virtual cut-through. However, both approaches can be used for any switch-

ing mechanism. Nevertheless, taking flit-level or packet-level switching into account is

important since it affects how flow control can be implemented. In the next two sections

we describe our flow control method for both crossbar switching strategies.

3.1.1.1.1 TBFC with Flit-Level Crossbar Switching

Figure 3.1 shows a traditional credit-based flow control implementation for a pair of

output-input ports. Flit-level crossbar switching is assumed. At each output port the

router needs some control information. Indeed, for each VC we need: one field for the

number of credits available (CRED), one field to determine whether the VC is being

used or not (USED), and the input port and VC that has this VC granted (establishes

a link between the input port and the granted VC).

When a packet header is routed, the router sends a request to the target output port.

At that port, the virtual channel allocator (VA) checks whether there is any free VC

that has enough credits at the next router for the whole packet (we assume virtual cut-

through switching). Then, the router arbitrates (in round-robin fashion) among all the

requests and assigns the VC to the winning request. It stores the winning input port
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Figure 3.1: Traditional credit-based flow control assuming flit-level crossbar switch-
ing.

and virtual channel in the control info structure associated to the VC. It also decrements

the available credits in the control info associated to the VC.

At Switch Allocation (SA) stage, the arbiter selects the input port that will send a flit

through the output port the next cycle. SA selects this port between the input ports

assigned to this output port by the VA stage. The arbiter rotates the priorities whenever

an input wins the access, thus implementing flit-level crossbar switching. The router

sends the flit together with the VC ID to the next router. The next router uses the VC

ID to demultiplex and allocate the flit into the correct VC. When a tail flit is forwarded

the VC is freed and can be assigned again to a new packet header.

At the input port, when one flit is forwarded, the Flow Control Logic (FCLogic) sends

a credit back to the upstream router. To do this, the router needs at least log2 (V)+1

wires to indicate the VC that will receive the credit (signals VC ), where V is the

number of virtual channels at each input port. It also sends the control signal CRED.

Upon reception, the credit counter associated with the VC is incremented.

Figure 3.2 shows TBFC when applied to flit-level crossbar switching. The first difference

between the traditional flow control and TBFC is the flow control information structure.

TBFC adds two new fields per output port: FREE field, which accounts for the number

of available VCs, and TYPE field, which accounts for the number of packets stored at

the input port labelled with a particular type (we will later describe the type usage in

the routing algorithm). Then, for each VC, the control info keeps the CRED counter

and the associated info for the assigned input port and VC. However, the USED field is

removed.

Contrary to the baseline flow control, the rules (at VA stage) to assign a VC to an

incoming request are different. An improvement in the VC selection was proposed in

[62]. In our design, the VA stage checks only the number of free VCs and the number of

labelled packets (TYPE field) (more details described in the next section). When one

request wins the output VC, the input port of this request is assigned to the output
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Figure 3.2: TBFC flow control assuming flit-level crossbar switching.

VC. The winning input port and input VC are associated to the control info for the VC.

The number of FREE VCs is decremented by one and, if the packet sent downstream is

labelled, then the TYPE field is incremented by one.

At SA stage, the router selects the input port to pass through the output port and

forwards the flit to the next router. At crossbar stage, the router does not send the

VC selected. Instead, it performs a packet → ID mapping (ML block) to assign one

identifier to the packet. When a head flit is sent, the router sends also the type of the

packet. The identifier, the packet type and the flit are sent through the link to the next

router. All the flits of the same packet will use the same identifier and only the packet

header will contain the type field.

When the downstream router receives the head flit, the packet type and the identifier, a

new mapping is performed (ML block). In this case, an ID → V C mapping is performed,

thus allocating the new packet in one free VC. After the head flit, all flits that arrive

with the same identifier are kept in the same VC through the mapping logic.

Each input VC has one bit associated, referred to as Last token (LT). When one head

flit arrives and is allocated in one VC, this VC sets its LT bit to one and the LT bit

of the other VC is reset to 0.1 This field is used to guarantee in-order delivery of

packets. Indeed, if two VCs at the same input port have a header packet with the same

destination, then the oldest one (the one with LT bit set to zero) is the one to access

the VA stage. Otherwise, both packets may access the VA stage. Notice that if the

routing algorithm implemented on top of the flow control allows out-of-order delivery,

then the LT bit and its associated logic can be removed. This will be the case of the

SUR algorithm. In addition, each input VC will contain a TYPE bit which will indicate

if the packet allocated on that VC is labelled or not. This bit is updated with the type

information received when a header flit arrives.

Whenever a head flit is sent downstream, the TYPE bit is transmitted upstream. Upon

reception, the upstream router decreases the TYPE counter. In any case, the FREE

1If the router has more than 2 VCs, the LT field will need log2 (V) bits and will be updated following
an algorithm similar to the ones used in caches with Least Recently Used (LRU) replacement policies.
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Figure 3.3: TBFC flow control assuming packet-level crossbar switching.

field is increased by one. Notice also that the CRED field is still used in TBFC. This

is needed as we are assuming flit-level crossbar switching, which may provoke different

reception and transmission rates at the input ports.

3.1.1.1.2 TBFC with Packet-Level Crossbar Switching

Now, we focus on the TBFC mechanism when packet-level crossbar switching is enabled.

Notice that in this case packets will not be mixed in the crossbar. This fact, together

with the VCT switching we assume will guarantee that reception and transmission rates

of packets at the input ports will be equal. This means that whenever a packet header

wins the access to the crossbar, the whole packet can be transmitted and will not stop

its transmission until reception at the downstream router. This fact simplifies greatly

the TBFC mechanism, as we will see.

Figure 3.3 shows the TBFC mechanisms with packet-level crossbar switching. The first

thing to notice is the simplification of the control structures. Now, we do not need

credits anymore and we only need to keep which input port and VC got access to the

VCs downstream through an output port. In particular, the FREE and TYPE fields

are still used. Also, the mapping logic blocks are removed. Indeed, when a packet gets

access to the output port will be transmitted uninterruptedly.

The VA stage is not modified as it takes into account only the number of free VCs

(FREE field) and number of packets labelled at the downstream router (TYPE field).

The SA stage is also simplified since there is no flit multiplexing at the output. The SA

stage needs only to arbitrate among competing packets but must keep the token priority

fixed until the packet’s tail leaves the router. This guarantees no multiplexing at the

crossbar.

At the downstream input port side the logic is also simplified. There is no ML logic and

the FCLogic only sends back upstream the type of the packet that just started to leave

the input port. LT bits are still used if in-order delivery is needed to be guaranteed and
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the type field per VC is needed to remember whether the packet in the VC is labelled

or not.

3.1.1.2 Safe/Unsafe Routing Algorithm (SUR)

Safe/Unsafe Routing (SUR) is a new fully adaptive routing algorithm adapted to the

TBFC strategy. Each input port contains two VCs, while each VC is assigned a buffer to

keep the whole packet. The SUR algorithm is fully adaptive and relies on an escape path

to prevent deadlocks. The underline routing algorithm to implement this escape path

is XY. The algorithm can work either on switches using flit-level crossbar switching or

packet-level crossbar switching. SUR works on n-dimensional meshes and n-dimensional

tori.

TBFC enables packet labeling and exposes this information to the routing stage. In our

case, the SUR algorithm labels packets as safe or unsafe. Packets are labelled when

they are sent to a downstream router as follows:

• In an n-dimensional mesh a packet is delivered and kept in the next router as a

safe packet if the next hop conforms to the baseline routing algorithm. Otherwise,

the packet is labelled as unsafe.

• In an n-dimensional torus a packet is delivered and labelled in the next router as

safe if one of the following conditions is met:

– The next hop of the packet is to traverse a wraparound link along dimension

d, and the packet does not need to traverse a wraparound link with a lower

dimension than d.

– The packet does not need to traverse any wraparound link from the current

router to the destination and the next hop conforms to the baseline routing.

If any of these two conditions is not met, then, the packet is delivered and labelled

as unsafe packet.

With this classification, the routing algorithm will decide which outputs ports are eligible

for packets. In detail, output ports along the minimal paths to destination will be

eligible. Safe packets will be routed without any restriction and unsafe packets will be

routed only in some particular conditions. To assist this routing algorithm we define a

check port function suitable for meshes and tori. Algorithm 1 show the function check-

port(f ,s). This function avoids filling any input port with only unsafe packets. It checks,

for a given input port, the number of free VCs (f) and safe packets (s) as follows:
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Input:
The number of free VCs in the downstream node, f ;
The number of safe packets in the downstream node, s;

Output:
Whether the packet can route to the downstream node;

1: if f > 1 then
2: return true;
3: end if
4: if f = 1 and s ≥ 1 then
5: return true;
6: end if
7: if f = 1 and s = 0 then
8: and the packet will be delivered and labelled as a safe packet in the next router
9: return true;

10: end if
11: return false;

Algorithm 1: check-port(f,s)

• f > 1, the packet can be delivered because there is more than one free VC in the

input port at the next router.

• f = 1 and s > 0, the packet can be delivered because there is at least one safe

packet in the next router.

• f = 1 and s = 0, the packet can be delivered only if the packet is safe at the next

router; otherwise, the packet is blocked or takes another output port.

• f = 0, the packet is blocked or takes another output port.

The proposed fully adaptive routing algorithm for 2-D mesh is shown in Alg. 2, where

fi+, si+ represent the number of free VCs and safe packets in the input port in the

neighbor router attached to the current node C along dimension i in the positive di-

rection, respectively. Similarly, fi− and si− represent the number of free VCs and safe

packets in the input port along dimension i in the negative direction, respectively. The

algorithm takes as inputs the coordinates of the current and destination nodes, number

of free slot and number of safe packets of all neighboring input ports. The available

channel set and the selected output channel are initialized to ∅ and null, respectively.

If the current node is the destination, the internal channel is selected to consume the

packet. Otherwise, if the offset along dimension i (dimensions 1 and 2 in Alg. 2) is

greater than 0 and check-port(fi+,si+) returns a true value, then the packet can be

delivered along a ci+ channel. If the offset along dimension i is less than 0 and check-

port(fi-,si-) returns a true value, the packet can be delivered via a ci− channel. The

check-port(fi,si) function allows to add the channel ci+ or ci− to S if the packet can

advance along dimension i.
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Input:
coordinates of the current node C : (c1, c2),
coordinates of the destination D : (d1, d2),
free buffers: (f1−,f1+, f2−, f2+),
safe packets: (s1−, s1+, s2−, s2+);

Output:
selected output channel;

1: S=0;ch=null;
2: if C == D1 then
3: ch=internal; return true;
4: end if
5: for i == 1 to 2 do
6: if di − ci > 0 and check − port(fi+, si+) then
7: S =← S ∪ {ci+};
8: end if
9: if 0 > di − ci and check-port(fi−, si−) then

10: S ← S ∪ {ci−}.
11: end if
12: end for
13: if S 6= ∅ then
14: ch = select(S);
15: end if
16: if if S = ∅ then
17: ch = null;
18: end if

Algorithm 2: safe-unsafe-2D-meshes

Alg. 3 presents the fully adaptive routing algorithm for 2-D torus. The difference lays

in the computation of the direction to take in each dimension. Also, the check-port

function must take into account the additional rule to define a packet as unsafe based

on the crossing of wraparound links (see previous conditions).

Finally, the proposed routing algorithm randomly selects an output channel from S if it

is not null. Otherwise, the packet is blocked and routed in the next cycle.

3.1.1.2.1 Deadlock-freedom Property

Deadlock-freedom is a very important property to routing algorithms. In our case, SUR

algorithm is deadlock-free. We deduce this property using a contradiction approach. We

first focus on 2-D meshes and then extended it to 2-D torus.

Let us assume we have a cycle in a 2D mesh. Such a cycle will have dependencies

between x→ y and y → x channels. x→ y dependencies are allowed by the underlying

routing algorithms but y → x dependencies are not allowed. Packets stored in an Y

input port will be labelled as unsafe as they are requesting an X output port. In order

to create deadlock, packets inside a cycle should not advance. This means either all the
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Input:
coordinates of the current node C : (c1, c2),
coordinates of the destination D : (d1, d2),
free buffers: (f1−,f1+, f2−, f2+),
safe packets: (s1−, s1+, s2−, s2+);

Output:
selected output channel;

1: S=0;ch=null;
2: if C == D1 then
3: ch=internal; return true;
4: end if
5: for i == 1 to 2 do
6: if 0 < di − ci ≤ k/2 or di − ci < −k/2 and check − port(fi+, si+) then
7: S =← S ∪ {ci+};
8: end if
9: if di − ci > k/2 or −k/2 ≤ di − ci < 0 and check-port(fi−,si−) then

10: S ← S ∪ {ci−}.
11: end if
12: end for
13: if S 6= ∅ then
14: ch = select(S);
15: end if
16: if if S = ∅ then
17: ch = null;
18: end if

Algorithm 3: safe-unsafe-2D-torus

buffers are full in the cycle or the routing restrictions do not allow packets to advance.

The first condition does not hold since it would mean that in the Y input port both VCs

are storing unsafe packets. This can not happen since unsafe packets can be forwarded

only if both VCs are available, or one VC is available and the other VC is holding a safe

packet. The second condition (the routing restrictions do not allow packets to advance)

does not apply neither. Indeed, if one packet is at a Y input port requesting an X

output port the associated X input port will store either one, or two safe packets, or

will be completely empty. In the case of storing one safe packet or being empty the

unsafe packet at input Y can advance, thus no deadlock. In case of storing two safe

packets, both can advance since they will always have in front of them safe packets,

which potentially will move as they are using acyclic paths (conformed by safe packets

using the underlying deadlock-free baseline routing algorithm). Therefore, not blocking

packets in the cycle. In other words, safe packets, stored through deadlock free paths

have always a reserved VC, thus always advancing. Unsafe packets can cross cycles but

never filling up input buffer, thus avoiding deadlocks. Therefore, for any potential cycle,

unsafe packets will never take all resources in an input buffer. They, in turn, will also

advance when both VCs are available to them.

For the n-D torus case we follow a similar approach. In this case wraparound links
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Figure 3.4: Example of deadlock-freedomness in a 1D ring network.

take also an important role. If the packet does not need to traverse any wraparound

link, the packet follows the behaviour described above. So, the packet will not create a

deadlock. If the packet is stored in a router connected to a wraparound link, then if the

packet requests the wraparound link with the lowest dimension that the packet needs to

traverse, the packet is following the baseline routing. This means that the packet will

be delivered and labelled as safe. On the other hand, if the packet requests an output

port connected to a wraparound link and the dimension of this wraparound link is not

the lowest dimension that the packet needs to cross, then the packet will be delivered

and labelled as unsafe. As we have shown before this happens only if the next input

port is empty or has one free VC and the packet stored in the other is safe. So, input

buffers will never fill with unsafe packets. In other words, in the case of 2D torus, all

the input buffers will always allow safe packets to advance.

Let us expose an example in Figure 3.4, to simplify only west input port are shown.

In this 1-D torus all switches want to send messages to a router located at two hops

to their right. R0 keeps in the west input port two packets from R4 with destination

node R1, packets labelled as PR1. These two packets are safe because they arrived

from R4 crossing the wraparound link with the lowest dimension required. R1 contains

two packets with destination R2 that came from R0, packets labelled as PR2. These

two packets are safe because they do not require to cross any wraparound link and the

packets follow the baseline routing. R2 and R3 have the same situation as R1. R4 has

one packet with destination to R0, packet labelled as PR4. This packet is unsafe because

the packet comes from a router not connected to the wraparound link and needs to

traverse the wraparound link to reach its destination node. Therefore, R3 will not send

another unsafe packet to R4. Then all the packets can advance because the packets at

R3 can be forwarded and consumed in R4.

3.1.1.2.2 TBFC+SUR Example

Figure 3.5 shows an example of TBFC+SUR. Suppose two switches, one above the other.

The north input port of the router located below is empty, so the values stored in the

fields FREE and SAFE at the output port control info are 2 and 0 at router located

above, respectively. Also let us assume 1 cycle of fly link. At time t=1 the header

flit of packet one (P1) with destination located at south, in the figure the blue packet,
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Figure 3.5: Logic example at the router’s input port.

arrives to VA/SA stage. The arbiter selects this packet to be forwarded in the next cycle

through the south output port, as this packet will be forwarded following the baseline

routing it will be sent as safe packet. The output port control is updated, FREE is

decremented by 1 and SAFE is incremented by 1 because the packet will be forwarded

as safe packet. At t=2 the header flit is in the crossbar stage then the mapping logic

computes the ID and the router sends this ID, the packet type (safe) and the flit to the

next router. In this cycle the next flit of P1 will be forwarded in the next cycle. At time

t=3 a new header flit arrives to VA/SA stage, in this case the destination of this new

packet (P2), red packet, is located at south-east. The arbiter checks if this packet could

win the output port (check-port() function). Using the south port P2 will be delivered

as unsafe packet because it does not follow the baseline routing. However, the field safe

is 1, meaning that the next input port has one safe packet, so an unsafe packet can be

forwarded. Then, the arbiter selects this new packet to be forwarded in the next cycle

through the south output port. The output port control is updated, Free is decremented

by 1. In this case the SAFE field is not incremented because the router sets the packet
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type as unsafe.

At t=4, the header flit of P1 arrives to the input port with identifier equal to 1. Both

VCs are empty, and the local variables to assign the virtual channel to an identifier are

empty also. Then, the mapping logic allocates the flit to V C1, and keeps the identifier

and the packet type in the local variable. P2 is in the crossbar stage and follows same

procedure as P1. At time t=5 a body flit of P1 with identifier 1 arrives. The mapping

logic knows where it has to allocate the flit and puts it in V C1. In the next cycle, t=6,

packet header of P2 arrives to the input port with identifier equal to 0, then the mapping

logic allocates the new message at V C0 and keeps the identifier in the local variable.

Also, packet P1 arrives to VA/SA stage in the second router and wins the output. So

the router sends back the flow control information, VC FREE and the type of the packet

stored in the local variable. And in the router above, two news packets arrive at the

VA/SA stage, but the function check-port() does not allow to win this output port.

Therefore, the tail flit of the packet P1 is selected to be forwarded in the next cycle.

At time t=7 flow control information is received, so the router updates the output port

control information, increasing FREE by 1 and decreasing SAFE by 1. This means that

a new packet could be forwarded through of this output port. Packets P3 and P4 are

waiting to be forwarded. P3 has the destination at south, and P4 at south-east. This

means that the function check-port allows P3 to be forwarded and blocks P4, because

if P4 is forwarded both packets in the input port will be unsafe, and this could produce

deadlock. Then P3 is selected to be forwarded in the next cycle as safe packet. At time

t=9, the tail of P1 arrives at the input port, as the header has been forwarded, then the

mapping logic cleans the identifier from the local variable. If at this point a new header

flit arrives, this VC can be allocated again. In the router located above, the packet P3

is at crossbar stage, and is forwarded as we explain above. At time t=10, the flit header

of P3 reaches the input port and the mapping logic allocates this new message to V C1,

keeping in the local variable the identifier and the type of the message.

3.1.1.3 Performance Evaluation

In this section, we perform an evaluation and analysis of TBFC+SUR. In particular,

we first describe the analysis tools and simulation parameters. Then, we show the

performance results for TBFC and SUR. We analyze two scenarios: a 2D mesh with 64

switches and a 2D Torus with 64 switches.

3.1.1.3.1 Analysis Tools and Parameters

The tool we use for this analysis is an event-driven cycle-accurate simulator coded in

C++. The simulator models any network topology and router architecture. We modelled

a 4-stage pipelined router with VCs and flit-level crossbar switching. Table 3.1 shows
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the simulation parameters used for the 2D mesh scenario. Transient and permanent

messages relate to the number of messages processed until the simulator enters the

permanent state and finishes the simulation, respectively. In this scenario, we analyze

three routing algorithms: deterministic routing (XY), fully adaptive routing (FA) using

the typical credit-based flow control and SUR routing (SUR) with TBFC.

Parameter FA, SUR 2VC, XY

Network topology 4x4 mesh

VCs at each input port 2

Message size, Flit size 80 bytes, 4 bytes

Queue size 20 flits

Fly link 1 cycle

Transient, Permanent msgs 10000, 10000

Table 3.1: Parameters and values used for the experiments in 2D mesh.

For the torus scenario, the same parameters were used except for the number of VCs

and queue size at each input port. These parameters depend on the routing algorithm

and flow control scheme used. Table 3.2 shows the values in the torus scenario. In torus

scenario we analyze five routing algorithms: deterministic routing (XY), fully adaptive

with one adaptive channel and two escape channels (FA), fully adaptive with the bubble

flow control [40] (FA bubble) using one adaptive channel and one escape channel with

double size (to implement the bubble). Also, we analyze SUR with two and three virtual

channels (SUR 2VC and SUR 3VC). These configurations (except SUR 3VC) are the

ones with minimum buffer requirements to become deadlock-free and to guarantee VCT

switching.

Routing VCs Queue Size

FA Bubble 2 20 flits adap, 40 flits esc

FA 3 20 flits

SUR 2VC 2 20 flits

SUR 3VC 3 20 flits

XY 2 20 flits

Table 3.2: Parameters and values used for the experiments in 2D torus.

We evaluate four traffic distributions: bit-reversal, transpose, uniform and hotspot. In

bit-reversal traffic, the node with binary value an−1, an−2,..., a1, a0 communicates with

node a0, a1,..., an−2, an−1. For transpose traffic with binary value an−1, an−2,..., a1,

a0 sends packets to node an/2−1,... a0, an−1, ....an/2. Finally, in hotspot traffic, ten

randomly chosen nodes send 20% of their traffic to an specific node and the rest of

traffic to any other node with equal probability. The rest of nodes keep injecting using

a random uniform distribution.
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3.1.1.3.2 Performance Results

Figures 3.6 presents the results for the 2D mesh scenario. Figures 3.6a and 3.6b show

the performance results for the bit-reversal traffic. In this scenario, our method reaches

similar results on throughput than the ones achieved by FA. However, SUR improves

latency close to saturation, when compared to FA algorithm. In any case, both adaptive

algorithms (SUR and FA) outperform XY. With transpose traffic, Figures 3.6c and 3.6d,

SUR outperforms FA by about 10% in network throughput. Latency is also improved

by SUR when working close to saturation. For the other traffic distributions (uniform

and hotspot; rest of Figure 3.6) we see similar results for the three routing algorithms.

SUR, FA, and XY achieve similar network throughput. However, SUR latency is slightly

improved close to network saturation.

Next, we analyze the results for the torus scenario. In this case, differences are much

more significant. Figures 3.7a and 3.7b show the performance for bit-reversal traffic.

SUR 2VC improves network latency achieved by FA and FA bubble. This is achieved

by using less buffer resources (2VCs each with 20 slots, instead of either 3 VCs each

with 20 slots or 2 VCs one with 20 slots and the other with 40 slots). Moreover, for

the same number of resources, SUR 3VC works much better than FA and FA bubble on

both, network latency and throughput (9% better). Also, in transpose traffic, Figures

3.7c and 3.7d, SUR routing performs much better than FA and FA bubble. In this case,

both versions of SUR achieve a boost in throughput of 20% when compared to FA. Also

both SUR versions perform better on network flit latency.

Next, we analyze the results for the torus scenario. In this case, differences are much

more significant. Figures 3.7a and 3.7b show the performance for bit-reversal traffic.

SUR 2VC improves network latency achieved by FA and FA bubble. This is achieved

by using less buffer resources (2VCs each with 20 slots, instead of either 3 VCs each

with 20 slots or 2 VCs one with 20 slots and the other with 40 slots). Moreover, for

the same number of resources, SUR 3VC works much better than FA and FA bubble on

both, network latency and throughput (9% better). Also, in transpose traffic, Figures

3.7c and 3.7d, SUR routing performs much better than FA and FA bubble. In this case,

both versions of SUR achieve a boost in throughput of 20% when compared to FA. Also

both SUR versions perform better on network flit latency.

Finally, improvements are also achieved in uniform and hotspot. Figures 3.7e and 3.7f

present the performance comparison for uniform traffic. SUR 2VC and FA perform

similar on latency and throughput. SUR 3VC has the best performance on network flit

latency and throughput (14% better than FA). With hotspot traffic, Figures 3.7g and

3.7h illustrate as SUR 3VC works better than FA and FA bubble on network flit latency,

and all routing algorithms have similar throughput.

As we have seen in the results, SUR algorithm (together with the TBFC strategy)

improves network throughput and latency over FA. In Figure 3.8 we show an example
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(a) latency bit reversal. (b) throughput bit reversal.

(c) latency transpose. (d) throughput transpose.

(e) latency uniform. (f) throughput uniform.

(g) latency hotspot. (h) throughput hotspot.

Figure 3.6: TBFC+SUR performance evaluation in 8× 8 mesh networks.
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(a) latency bit reversal. (b) throughput bit reversal.

(c) latency transpose. (d) throughput transpose.

(e) latency uniform. (f) throughput uniform.

(g) latency hotspot. (h) throughput hotspot.

Figure 3.7: TBFC+SUR performance evaluation in 8× 8 torus networks.
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Figure 3.8: 2D Mesh Example.

Figure 3.9: TBFC+SUR scalability

that highlights why we are achieving such improvement over FA. The Figure represents

a 2x2 mesh. Assume that R0 wants to send a packet to R3. In FA, R0 can send the

packet to R1 or R2. In case of R1 it can send the packet adaptively or through the

escape channel (conforming to XY routing), and in case of R2 can send the packet only

via the adaptive channel. Therefore, it can allocate this packet only in two VCs at R1

or in one VC in R2. The default fully routing algorithm (which promotes adaptive VCs

over escape VCs) would then use only two possible VCs (one in each router). In case

of an optimized FA algorithm (which gives the same priorities to adaptive and escape

VCs), three VCs can be used (two in R1 and one in R2). However, in SUR algorithm

safe packets can be allocated in any of the four VCs. Even unsafe packets can use any

of the four VCs (taking into account there is an empty VC in the input port router). So

SUR has more options to allocate the packet, allowing SUR to improve the performance

obtained by FA.

Figure 3.9 shows how the benefits of TBFC+SUR scale with the number of VCs.

TBFC+SUR with one VC less than FA achieves the same behaviour on throughput.
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Figure 3.10: VC utilization.

As can be appreciated TBFC+SUR with 3VC achieves the same maximum throughput

as FA with 4 VC, and the same for TBFC+SUR with 4 VC compared to FA 5VC.

Figure 3.10 show the VC utilization at the mesh scenario, with uniform traffic. SUR

with low traffic achieves a balanced use of the resources. However FA use mainly the

VC0, the adaptive channel.
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D

(a) Fully adaptive.

D

(b) Fully adaptive with EPC.

Figure 3.11: Example of congestion spread.

3.1.2 End Point Congestion Filter

In this section we describe the second contribution of this thesis, which aims to reduce

the side problems created by congested scenarios, and focuses on improving performance

of non-congested traffic (in terms of latency and throughput).

End-Point Congestion Filter, EPC, detects congestion formed at the end-points of the

network, and prevents the congestion from spreading through the network. Basically,

EPC disables adaptivity of congested packets.

The EPC filter works as follows. When the router has a packet (pa) to forward, it checks

whether the packet potentially contributes to a congestion situation. If the router re-

cently forwarded a packet (pb) with the same destination, then pa’s adaptivity is forbid-

den until pb makes progress at the downstream router. Otherwise pa is forwarded using

the adaptiveness capability of the routing algorithm. The fact that pb moves is a clear

indication that packets towards that destination are not building a congestion situation.

Thus, EPC enables again adaptivity for pa. Notice that pb, while its adaptiveness is

disabled, may potentially take the same port used by pa.

Fig. 3.11 shows an example of a 3 × 3 mesh with 2 VCs per port (a line represents a

VC) and assuming fully adaptive routing algorithm with one adaptive VC (black color)

and one escape VC (implemented with DOR routing, grey color). All nodes send traffic

to node D (hotspot). Solid lines mean the VC is assigned to those packets. Dotted lines

represent unused VCs. Figure 3.11a shows almost all VCs (adaptive and escape VCs)

being used for the hotspot destination, thus, building a congestion situation. In our

proposal, Figure 3.11b, the router only allows one VC to forward messages to hotspot

destination per router. Thus, congestion is not spread and non-congested traffic can still

advance. Notice that in the central router the south port is selected to forward traffic
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Figure 3.12: Baseline router architecture including EPC.

to D, then east port cannot be selected as an output until this traffic is completely

forwarded.

Fig. 3.12 shows the pipelined router architecture with the EPC logic. In RT, the router

keeps the requested outputs based on the fully adaptive routing algorithm [63]. Output

port IDs (OPs) and destination ID (dst) are kept in the Control Info. In VA, the router

allocates the resources (VC) to the requesting flits. In SA, the arbiter selects which

input port is selected at each cycle to forward a flit through an output port. Both

stages, VA and SA, are arbitrated following a round robin strategy (RR). A 3-phase

arbiter (request, grant, accept) is implemented and VA and SA stages run in parallel.

Output port selection is made on buffer occupancy. The crossbar is multiplexed (only

one flit can access the crossbar at a time from each input port). Flit multiplexing is

allowed (also known as wormhole flow control [64]). The router is implemented with

credit-based flow control and Virtual Cut-Through (VCT) switching. Notice that the

EPC mechanism can also be used in a WH network.

EPC is implemented in VA at each output port VC (Fig. 3.13a) and keeps the following

info (Fig. 3.13b): the number of available credits (cred) located at the control informa-

tion, the destination (dst) of last forwarded packet, and number of credits to wait in

order to unlock the destination (wcred). When a header flit arrives to VA, it provides

the OPs and the dst of the packet from routing control info. Then, EPC matches the

dst with the one located at the output port control info with a non-zero wcred value.

If there is no match, the flit accesses VA as usual. Otherwise, it will wait for the next

cycle. To do so, the Filter in x signals are sent back to the input ports and they disable

the generation of accept signals in the third phase of the arbiter.
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Figure 3.13: EPC and Output port control.

When the header flit wins one VC, the router sets the dst and wcred registers at the

output port information accordingly. In dst the router sets the destination of the packet.

The wcred field is updated as follows: wcred=queue size-cred+1, where queue size

is the length of the queue in flits and cred is the number of credits available at the VC.

This value guarantees that whenever the header leaves the downstream router the wcred

register will reach the zero value, enabling again packet forwarding to that destination.

When a credit is received, the router updates the fields, adding 1 to cred and subtracting

1 from wcred.

3.1.2.1 EPC Example

Fig. 3.14 shows an example of a 2 × 2 mesh assuming fully adaptive (FA) routing

algorithm. At t0, p0 arrives to r1 and p1 is in the RT stage both packets have the same

destination, d1. At t1, p0 is in the RT stage at r1 and p1 competes for the outputs, then

p1 is forwarded. At t2, p1 has been forwarded and the filter is set with Wcred = 1 and

dst = d1. This means that p0 cannot get any output port until r1 receives 1 credit from

r2. Then p0 is blocked because the filter disables adaptivity. At the same time, packet

p2 arrives to r1 with destination d2. At t4, p2 arrives to the VA/SA stage and wins

the south output port. Finally, at t5, p2 is forwarded and r1 sets the filter in the south

output port with Wcred = 1 and dst = d2. p0 will be routed once the filter at the east

output port is removed, meaning that p1 is leaving router r2 and, thus, experiencing no

congestion.
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(a) t0; p0 arrives to r1 and p1 at RT
stage with same destination d1.

(b) t1; p0 in RT and p1 at VASA stage
in r1.

(c) t2; p0 blocked and p2 arrives. (d) t=5; P2 advances.

Figure 3.14: EPC filter walk-through example.

(a) cache refill. (b) Burst traffic.

Figure 3.15: EPC application scenarios.

3.1.2.2 EPC Application Scenario Examples

Fig. 3.15a shows an scenario in which EPC can be useful. Node D requests a cache refill

using fully adaptive routing. The node sends the requests to the four memory controllers

(MCs), and then, the MCs send data to D. In this case, when XY paths get congested,

the routing algorithm starts to use alternative paths spreading this way congestion over
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the network. With EPC, only XY paths get congested. Another useful case for EPC

can be seen in Fig. 3.15b where bursty traffic from S to D is injected, potentially by a

multimedia application.

3.1.2.3 Switching, VC, and Routing Impact

The previous conditions are set for a VCT router. For a WH router those conditions

would slightly differ, being the wcred count dependent of message size instead of queue

size. Indeed, in WH what is difficult to achieve is a clear detection of the congestion

situation to disable adaptiveness. However, HOL blocking will be more pronounced due

to the typical less buffering exercised.

On the other hand, the more VCs implemented the less HOL blocking will be seen, thus

less congestion effect (making the baseline case perform better). However, if the same

amount of traffic is sent to the same destination, regardless of the number of VCs, the

same degree of congestion will be seen, thus, having the same impact on the network.

Moreover, VCs are typically used to classify traffic, thus, congestion can occur in isolated

traffic classes, at each VC. Thus, the effectiveness of EPC will be lower as network has

more buffer capacity and congestion is less severe. But for a declared congestion situation

EPC will help. Related to routing, EPC does not change the routing algorithm, and is

orthogonal to the number of VCs. Therefore, is orthogonal to deadlock conditions, at

network and protocol level.

EPC does not isolate congested packets in separate VCs. In the presence of several

hotspots, and two packets addressed to different hotspots reach one router, both will

be requesting the same resource (VCs) their previous counterparts (previous packets)

were using, thus, those packets will not spread congestion. Indeed, VC strategies for

congested packets are orthogonal to EPC.

3.1.2.4 EPC Overhead Comparison

EPC is compared against two congestion control techniques, ICARO [65] and RCA [49].

Both need more resources than EPC. ICARO needs an extra Virtual Network for bursty

traffic and a Dedicated Signaling Network to notify the hotspot situation to end nodes. In

addition, it needs at each node two vectors with length equal to the number of nodes and

some logic to manage bursty traffic. RCA needs a low bandwidth monitoring network to

propagate the congestion information. RCA routers need two extra modules per port for

aggregating and propagating the congestion information. RCA needs also Congestion

Value Registers (CVR). Notice that the notification network is not required in EPC, thus

exhibiting lower area overheads. Note that EPC just prevents congestion ramification

by the adaptive routing algorithm, thus being complementary to ICARO/RCA.
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3.1.2.5 Performance Evaluation

This section presents an evaluation and analysis of the EPC filter, first describing the

analysis tools and simulation parameters and then, analyzing the performance results

for three configurations. In the first two, we use deterministic (XY) and fully adaptive

(FA) routing algorithms, in both cases without EPC. FA uses two VCs (one for adaptive

and one for escape paths[63]). In the third one, we use FA with EPC (FA-EPC).

3.1.2.5.1 Analysis Tools and Parameters

We model a 4 × 4 mesh with 2 VCs per port, virtual cut-through switching, 4-stage

pipeline routers, and 16-byte message size, 4-byte flit size, and queues with 4 flit slots.

XY, FA and FA with EPC (FA-EPC) is modelled.

Three scenarios are analyzed. The first one (UNIF) refers when a uniform random

distribution is used and no congestion in the network is produced. The second one

(C LOW) refers when there is a small congestion spot in the network (background

traffic). In particular, eight nodes (selected randomly) send traffic to node 11 with a

30% probability (the rest of traffic is uniformly distributed). The third one (C HIGH)

refers when the hotspot probability is increased to 70%.

Results for two types of traffic are shown. The first one is for the uniform (foreground)

traffic and the second one is for the hotspot (background) traffic. For this, the first

10000 packets generated after the stable network state has been reached (after initial

100000 packets reached destination) are labelled. We take into account only those pack-

ets at reception for statistics purposes. Doing this, the traffic distribution is kept the

same both, at generation and at reception time, thus ensuring traffic distribution is not

modified by the congestion situation.

3.1.2.5.2 Performance Results

Figs. 3.16a and 3.16b show results for foreground (uniform) traffic in C LOW scenario.

End to end latency in FA-EPC is up to four times lower than the one achieved by FA. As

seen, flit latency for FA has a sharp increase around 0.3 flit/cycle/node injection rate.

This is when congestion affects the uniform traffic. Also, FA-EPC slightly improves

the results achieved by XY. However, in FA-EPC and XY, latency increases linearly

due to the increase of foreground traffic only. This difference in latency is produced

because the hotspot spreads through the network when no EPC filter is used with FA.

Regarding network throughput for uniform traffic (Fig. 3.16b), FA reaches saturation at

0.25 flits/cycle/node, whereas EPC reaches 0.32 flits/cycle/node injection rate. Notice

that even XY behaves better than FA. For the hotspot traffic (Figs. 3.16c and 3.16d)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.16: EPC results. C LOW (abcd) C HIGH (ab), UNIF (cd). Uniform traffic
(abefgh), background traffic (cd)
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FA-EPC keeps packet latency lower (50 percent lower) during the network congestion

situation (beyond network saturation point).

The impact of EPC in C HIGH is higher (Fig. 3.16e). Foreground end to end latency in

FA becomes up to five times higher than the one achieved by FA-EPC. FA throughput

(Fig. 3.16f) is doubled when using EPC. The hotspot traffic achieves a very similar

behaviour. Finally, in UNIF, the EPC filter has about an 8% end to end latency over-

head, as the filter without congestion situation may also block non-congested packets

temporarily. Network throughput, however, is roughly the same for the different rout-

ings. This small overhead in uniform traffic suggests us to use the EPC filter in very

specialized scenarios, and possibly dynamically.

One interesting comparison comes from Figures 3.16e and 3.16g. Comparing the latency

of background traffic for C HIGH and the packet latency for uniform traffic (without

hotspot). As shown, packet latency is very similar for both cases. This means that

congestion traffic effects are decoupled from background traffic.
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3.2 Network Latency Reduction on CMP

3.2.1 Standard PROSA

Now, we focus our attention on a different contribution with a different target. Now,

we focus on latency reduction. The PROSA (PRotocol Oriented Switch Architecture)

will be developed in phases. At each phase additional functionality will be provided, in

order to achieve more efficiency and performance. Also, we will extend PROSA with

complementary designs such as the memory latency estimator device or the inclusion of

slack time to circuit setup logic. For the sake of understanding, we will start with the

baseline design that focuses only on predictable coherence actions without slack time

for setup circuits. We refer to this method as standard PROSA. Then, we will extend

PROSA.

PROSA sets up circuits between the memory controller and the L2 banks (MC-L2) and

between L2 banks and L1 caches (L2-L1) before they are needed. First, we show mod-

ifications performed in the coherence protocol and then describe modifications needed

in the NoC (the PROSA controller and PROSA router) and MC (the Memory Latency

Control Unit, MLCU).

3.2.1.1 PROSA Coherence Protocol

In order to program circuits, we add a new protocol action termed SETCIRC . This

action involves the source and destination of the circuit, and the time period the circuit

will be needed (Delta T). The action is triggered by the coherence protocol when MC

and ReqResp transactions are issued (see Figure 3.17a). In MC transactions, whenever

a request is received by the MC, a Memory Latency Control Unit (MLCU; described in

Section 3.2.1.4) predicts when the data will arrive from main memory. Based on this

delay, the MC triggers a SETCIRC action that will setup a circuit after a delay period.

The delay period equals to the predicted memory latency minus the circuit setup period,

(CSP), which is the required time to setup a circuit between the MC and the destination

node. The SETCIRC action sets the circuit. By the time the block arrives to the MC

the circuit has been set and is kept during the time the data will be transmitted. When

SETCIRC arrives to L2, the circuit is confirmed (acknowledged) but in parallel a new

SETCIRC command between L2 and L1 is triggered. Thus, when the data arrives to L2,

after accessing the L2, the block is sent also to L1 using a circuit. These two circuits are

predictable as they will be necessary regardless of network status. Figure 3.17b shows

timings of both circuits.

In ReqResp transactions (between L1 cache and L2), whenever a GETS/GETX message

is received, a SETCIRC action is triggered between the L2 and the L1. Again, the
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Figure 3.17: PROSA new actions triggered by the coherence protocol and circuit
establishment time line for MC transaction.

connection will be set only for the time period the data is available. However, contrary

to the two previous triggered circuit scenarios (in MC transactions) now this circuit is

speculative, in the sense the circuit may not be needed if the block is in P or I state.

Therefore, for this type of circuit we will need to automatically and efficiently tear down

the circuit when transmission is finished or when it is known the circuit is not needed.

Notice that this modification does not introduce out of order delivery or duplicates,

because for the same transaction the protocol never sends two messages to the same

destination. Either the circuit is used for transmission of the message or the message

uses the regular packet-switched (PS) network for transmission.

3.2.1.2 PROSA Circuit Network

PROSA follows a clustered approach where one PROSA Controller (PC) controls four

routers (Figure 3.18a). When the SETCIRC action is triggered in an L2 or MC, a request

circuit (ReqCir) message is forwarded to the local PC. If the ReqCir wins the needed

resources in the cluster, it advances to the next PC along the path. If not, a NACK

response is sent to the source of the ReqCir message. When ReqCir reaches the PC that

controls the destination and wins the resources, an ACK response is sent back to the

source via the PC network. Routers are not affected by ReqCir messages, neither ACKs

nor NACKs. All them travel via PCs.
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Figure 3.18: PROSA controller, detailed components.
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Figure 3.19: PROSA basic resource arbiter unit.

On top of Figure 3.19, we show the ReqCir message is composed by eight fields. P

refers to the input port from which the ReqCir arrives to the cluster. src and dst are the

source and destination for the circuit. Delta T and Delta T’ carry the number of cycles

to wait until the circuit will be established and torn down, respectively. Type carries the

type of the ReqCir message (REQUEST, ACK, NACK). ID identifies the circuit inside

the network, and finally, Golden Token, refers to the distance between src and dst. This

field is used in the PC to assign priorities between requests.

Below the ReqCir structure, in Figure 3.19, we show the Resource Arbiter (ResArb) that
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controls whether a specific resource can be reserved for a particular period of time. A PC

consists of several ResArb modules, one ResArb per output port in the cluster controlled

by the PC. In total, each cluster has twenty eight ResArb, all shown in Figure 3.20 (e.g.

R0S corresponds to the south output port at the north-west router in the cluster). Each

ResArb module arbiters between some requests, the number of requests depends on the

number of inputs ports that have dependencies with the resource (the output port). This

depends on the routing algorithm, in our case XY routing. In order to support other

routing algorithms or topologies, the path comparator logic would need to be adapted

together with the wiring connections between resource modules.

When an ReqCir message arrives to ResArb, the dst field is checked to decide whether

the output port controlled by the ResArb is along the path between src and dst. If so,

the ReqCir goes to the Static Arbiter which arbiters between the incoming requests at

this point. The srbiter gives priority to requests with larger values in the Golden Token

field (longer paths have priority). Then, ReqCir advances to the Time Comparator (TC)

module where it checks that the request does not overlap in time with any previously

programmed circuit. Finally, if there is no conflict with programmed circuits the ReqCir

is stored in the Register Table and forwarded along the PC network. Notice that only

one ReqCir message gets access to the table. As we will see, this does not impact

performance and reduces complexity.

The register table keeps circuits information. For each circuit the following fields are

stored: Delta T, Delta T’, ID, src, and ST. When an ordinary request wins the resource,

Delta T, Delta T’, ID, src get the values from the ReqCir message. ST keeps the state

of the circuit, which can be unconfirmed, confirmed, or empty. Delta T is decremented

by one every cycle. When it reaches zero, the ResArb module activates the outputs

Cir to P which control the circuit establishment in the PROSA router (described later).

Delta T’ is also decremented by one every cycle. When Delta T’ arrives to zero the

signals and the register are cleared.

When an ACK or a NACK arrives to ResArb, it follows the same path than an ordi-

nary request, with some small differences. First, the ReqCir message advances to Static

Arbiter. ACK/NACK messages have higher priority than ordinary requests. By con-

struction we guarantee only one ACK/NACK enters one PC each cycle, thus they will

always win the Static Arbiter access. Then, in Time Comparator the ReqCir message

checks the information stored in the table. An ACK consolidates the stored information

while a NACK removes it. Then, the ReqCir is forwarded (to next ResArb along the

path inside the cluster or to the next PC).

The PC is shown in Fig. 3.20. It contains 28 ResArbs, 7 per router. For the sake of

simplification, we group all outputs of a router (L1, L2, MC) into a single ResArb (RxL),

showing only twenty ResArbs. The PC implements two queues to store generated and

incoming ACK/NACKs. ReqCir requests can be dropped. A demultiplexer located at
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Figure 3.20: PROSA Controller.

the input port (left-hand side) divides requests by ACK/NACK messages (type field of

the ReqCir message is used as selector). When a request arrives, it continues through the

PC. However, if the incoming request is an ACK/NACK, it is sent to the corresponding

ACK or NACK queue. The next stage in PC is a multiplexer, which multiplexes between

incoming ReqCir message and queued ACK/NACKs, giving priority to ACK/NACKs.

In case of conflict the request is discarded (generating a NACK which will be queued).

Finally, the selected message enters the ResArb tree.

ResArb modules are linked following the resources dependencies imposed by the routing

algorithm (XY in our case). An example of linked arbiters are R0E → R1S → R3S

for messages coming through router PR0 and leading to a destination below router

PR3. An ResArb module has several input and output dependencies as multiple routing

combinations exist. Along this path, if a request wins all the required ResArb modules

(from left to right) the request will be forwarded to the next PC, or will generate an

ACK if the destination is controlled by the current PC. A comparator at the output

of the PC module (right-hand side) checks whether one ReqCir message won all the

required resources (it was at the input side and also succeeds at the output side). If not,
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a NACK message is triggered and stored in the NACK queue. When a ReqCir is sent to

the next PC, the value of Delta T is decremented by 1. When this value reaches zero,

the ReqCir is discarded by the PC.

Figure 3.20 shows the ACK and NACK queues and its control logic block. The logic

guarantees only one ACK/NACK message will access the PC each cycle, ensuring that

they will always win all RAs. NACK messages have higher priority than ACK messages.

Moreover, the logic changes the input port of the ACK response, computing the input

port of the ordinary request corresponding to this ACK response. Thus, ACK messages

cross the same ResArb path used by the associated request messages, but in opposite

direction. Notice that NACK generated messages locally in a PC need to be re-injected

in the ResArb tree again to remove all the reserved resources, and then sent back to the

previous PC.

3.2.1.3 PROSA Router

Figure 3.21 shows the modifications performed in the baseline router. We only add

one demultiplexer per input port, one multiplexer per output port, connections between

those elements and an asynchronous repeater per output port. The repeater allows to

forward the flit very fast reducing wire delay, as is used in SMART [7]. This technology

allows one flit to cross all the network in one cycle.

The router works as usual until signals Circ to X are activated, where X is the output

port (L1, L2, MC, N , E, W , S). In this situation, the corresponding input and output

ports are switched in and the arrived flits are blindly forwarded through them. At the

same time, VA and SA arbiters associated to the output port are disabled. Notice that

the circuits will not use buffer resources, therefore circuits cannot introduce deadlocks.

Circ to X signals are generated by the PC, each generated by a single ResArb module

(the one that manages the output port). Circ to X indicates the input port that has

to be switched in to the ’X’ output port. One wire is used for each possible input port.

Thus, the demultiplexer at an input port is selected from the ORing of all inputs bits

on Circ to X signals associated to the input port (e.g Circ to 1[1] or ... or Circ to n[1]),

and the multiplexer at an output port is selected from the ORing of all the wires from

the associated Circ to X signal. During the setup process, PROSA sets at each router

the exact cycle where the ports need to be switched in. Programming those values is

the most critical part to guarantee correct operation. Robustness is guaranteed by the

correct implementation of the circuit setup process.

Circuits are cleared in a distributed and silent mode. When T and T’ values reach zero

on a resource arbiter (ResArb), the connection is eliminated as well. This is a valid

point for addressing correctly miss speculation of circuits or when the data gets delayed

more time than expected, for instance from the memory bank through the MC.
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3.2.1.4 Memory Latency Control Unit

Figure 3.22 shows the MLCU module that assists the PC at the MC. It predicts arrival

time of memory blocks. MLCU works at bank level by monitoring its status (which row

is open) and memory requests (which bank/row to access). The REG register keeps the

information required per bank to correctly compute block arrivals: ID for the request

identifier, ROW for the bank row where data is located, and Tpred and Tend define the

time period when data arrives to MC. Each bank has also a buffer to store pending

requests.

When a request arrives, the MLCU unit computes the bank associated. A comparator

checks if the bank is idle (memory controller is not waiting for data from this bank).

If idle, MLCU computes the block arrival time (LAT COMP logic block). The request

ID is stored in REG register associated to the bank. Otherwise, the address, requestor

ID, and required information to compute the memory latency are queued in the buffer

associated to the bank. In both cases the request is sent to DRAM.
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A circuit setup process is triggered whenever the expected arrival time for a requested

stored in REG is equal to the maximum time required to cross the whole PROSA

network, in our case is set to 16 cycles. When data arrives from DRAM the data is

injected through the circuit (if set) or using packet switching. At the same time, if the

buffer associated to the bank has a stored request, the MLCU dequeues the request and

computes the new data arrival time from DRAM and stores the request in the REG

register associated to the bank.

The MLCU computes to times Tpred and Tend. The Tpred is the time when the MLCU

predicts the data arrival from the main memory, and Tend is the addition of the Tpred

and the data length. To properly compute arrival times (Tpred), we need some timings

from the memory, mainly the activation (Latact), precharge (Latpre) and read Latread

latencies. The last Tpred and Tend values are stored in the register (associated to the

bank). If the current row is open the next Tpred is set as the maximum between the last

Tend and current time plus the read latency. Otherwise, Tpred is set to the maximum

between the last Tend and current time plus activation, precharge and read latency. The

next algorithm shows how the Tpred is computed.

if destination row is open then

Tpred = Latread

else

Tpred = Latact + Latpre + Latread

end if

if Tpred < Tend then

Tpred = Tend

end if

Whenever a new Tpred is computed, the MC schedules a SETCIRC action. This action is

scheduled sixteen cycles before the data arrives to MC, this is the maximum number of

cycles that the PC needs to setup a new circuit with the farthest node. When the first

flit from the incoming data arrives to the MC, the MLCU dequeues a request from the

queue associated to the bank of the incoming data and computes the new Tpred value.

3.2.1.5 PROSA Circuit Setup Example

Figure 3.23 depicts an example of a successful PROSA setup circuit process between MC

and L2, following a SETCIRC action triggered by the coherence protocol. The circuit

establishment process starts when the REQ message arrives to the MC. Let’s assume

that this event occurs at t0 and all resources are available (no circuit conflicts will arise).

Also, the MC knows the requested data will be available in 10 cycles from memory
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Figure 3.23: PROSA setup circuit example.

(suppose 10 cycles of memory latency to simplify the example). MC will process the

request in one cycle, then, in t1, will send a ReqCir message to PC0.

At t1, ReqCir reaches PC0 and attempts to get all the necessary resources in the cluster

along the MC-L2 path. The resources ReqCir will compete for are R0E → R1E (east

port of PR0 and PR1). At each ResArb the request will be stored. Delta T will be set

to 9 (Delta T at request) in the R0E , R1E ResArb modules. Delta T’ will be set to the

number of cycles needed for the transmission of the block.

At t2, the ReqCir message is forwarded from PC0 to PC1. Notice stored values of Delta

T are decreased by one. At PC1, the same process described for PC0 applies, but now

for resources R2E → R3S → R7L. After winning the resources, PC1 generates an ACK

message that will be stored in the ACK queue. Delta T fields at ResArb modules for

R2E , R3S and R7L are set to 8.

At t3, all the resources with one circuit established (even in unconfirmed state) decrease

Delta T value by 1. Also, at t3, PC1 processes the ACK message. As said above, ACKs

and NACKs messages have higher priority, and then this ACK will win the necessary

ResArb modules, thus confirming the circuit at PC1 and sending back the ACK message

to PC0. Finally, at t4, the ACK message arrives to PC0, being processed at t5 and

winning all the ResArb modules and confirming the circuit at PC0. The ACK message

is forwarded to the MC, confirming the circuit at the NIC.

If one of the resources is not available during the circuit setup time, the affected PC will

generate a NACK and will enqueue it into the NACK queue. Resources will be freed

the next cycle and the NACK message will be transferred to the previous cluster. If a

NACK is received at the NIC, the packet will be injected using packet switching (PS).

At time t11, Delta T at ResArb module associated with R0E reaches 0, thus the signal

Circ to W (in R0E) is activated and set to point to the local port. This signal switches

in input port from MC and output port E at PR0. This circuit will last the required

number of cycles for the message (Delta T’). All other programmed output ports (R1E ,
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R2E , R3S and R7L) router the input and output ports making the circuit just for Delta

T’ cycles. In this cycle MC receives the block from memory and injects the first flit. The

flit is forwarded and crosses the entire network reaching L2 output port at PR7. When

Delta T’ reaches 0, the circuit is torn down in a distributed manner on each router just

when the last flit of the message crossed the router.

3.2.2 PROSA Enhancements

As mentioned above, different design alternatives exist when dealing with CS. To analyze

them, we extend the baseline PROSA design with four enhancements. First, all the

protocol messages (including single-flit messages) will be considered for the setup and

usage of circuits (we name this method as PROSAall). The fact that circuits, when used,

are much faster than the standard PS network suggests that a small penalty can be paid

in the circuit setup process. In the second enhancement, we will allow a small slack

to the circuit setup process (we name this method as PROSAslack). As ACK messages

may contend in the PC some delays may be incurred. A single cycle delay will ruin the

circuit as the message will not use it. Therefore, by adding a small slack more circuits

will be effectively used. The third enhancement refers to the use of circuits only for

messages with destinations located closer than a given threshold. The larger the circuit

the larger the penalty in setting up the circuit. Different thresholds will be analyzed

(we name this method as PROSAdd; distance driven). Finally, we will enhance baseline

PROSA with different priority schemes in the PCs when dealing with ReqCir, ACK and

NACK messages. This will affect the success rate of circuits being used. This method

will be named PROSApriorities.

3.2.2.1 Coherence Protocol Extension

First enhancement is the use of circuits for all protocol messages. Figure 3.24 shows the

new diagrams for the PROSAall protocol. All events (control and data messages) request

a setup circuit process by triggering the SETCIRC action. New requests are plotted in

red. In ReqResp transactions, the L1 cache requests a circuit between L1 and L2 to send

a GETS/GETX message. If the circuit is confirmed then the GETS/GETX message

is sent using CS. Otherwise, the message is sent using PS. When the GETS/GETX

message arrives to the L2 cache it follows the baseline PROSA behaviour. A speculative

circuit is setup between L2 and L1.

In MC transactions the L2 Home cache requests a circuit between L2 and MC to send

the REQ message. If the circuit is confirmed the message is sent through the circuit,

otherwise is sent using PS. Upon arrival, the MC sets a circuit for the incoming data to

be delivered to the L2.
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Figure 3.24: Transaction diagram for PROSAall coherence protocol.

Finally, in FWD transactions, when a load or store misses in L1, a new circuit is re-

quested between L1 and L2 trying to setup a new circuit for the GETS/GETX message

(as is the case for ReqResp transactions). When the request reaches the L2 and the

block is in P state, a new circuit is requested between the L2 and the L1 owner to send

the FWD message. When the message reaches the L1 Owner, a final circuit is set to

send the block to the original L1 requestor.

Every SETCIRC action is classified either as speculative or predictable. Predictable

actions occur between the L1 and the L2 cache, between the L1 owner and the L1

requestor, between the L2 cache and the MC controller and between the L2 and the L1

owner (FWD transaction). Speculative actions occur when a GETX/GETS reaches the

L2 cache, triggering a request from L2 to L1 requestor.

3.2.2.2 Slack on Circuit Setup Process

Figure 3.25 shows the timings of a message injected through PS and through PROSA.

The case refers to an speculative circuit in ReqResp transactions. As we can see, when

using PROSA, upon arrival of a message to the network interface a new circuit setup

process is triggered. During this process the message is processed and the cache is

accessed. Notice, however, that the confirmation message (ACK) may be delayed some

cycles as it may encounter contention within the PCs. Therefore, before the circuit

is confirmed the data is ready to be injected through the network. With standard

PROSA, the circuit would fail and the message would then be injected through the

network in PS mode. However, now in PROSAslack, a slack of time is allowed to avoid

this problem. Thus, the NIC will wait more time for the confirmation of the circuit.

Once the confirmation arrives the message is injected through the network in CS mode.
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Figure 3.25: PROSAall and PS timings.

Notice that depending on the slack and on the relative speed of the circuit compared to

the network in PS mode, PROSAslack may still deliver the message faster.

We define a slack constant (Slackcir) which is assumed by the PC and by the NIC in-

jector. Notice that by using this slack the number of circuits successfully used increases,

potentially increasing performance. Also, notice that the confirmation of a circuit may

be received before the slack expires (if no contention is encountered by the ACK mes-

sage). In that case, the message is injected using the circuit as early as the confirmation

arrives and the slack does not expire. Notice that the circuit will be programmed in the

network for the transmission time plus the slack constant.

The latency on a circuit setup process is determined by the distance to destination and

the slack constant:

Setuplatency = MAX(cachelatency, d ∗ 2 + Slackcir)

where cachelatency is the cache access latency, d is the distance in hops in PROSA

(number of PCs crossed) and Slackcir is a small delay due to the contention in the

PROSA network. Notice that this formula can get Setuplatency smaller than cachelatency.

As an example, if d equals 0 when source and destination are in the same PC and Slack

is smaller than cachelatency, in this case, the Setuplatency is set equal to cachelatency.

When a successful circuit is configured, PROSAslack guarantees the circuit transmis-

sion time (Setuplatency plus CSlatency) is lower than the message transmission time

(cachelatency plus PSlatency).
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3.2.2.3 Distance Driven Setup Circuit

As a further enhancement, PROSAdd allows selective configuration of the circuits based

on the distance to destination. Thus, when a circuit is requested to be configured,

PROSAdd analyzes the Setuplatency which is mainly determined by the number of PC

hops. A MaxHops parameter can be configured in PROSAdd. If the distance is larger

than MaxHops, then the circuit is cancelled and the data is forwarded through the

network using PS. Later we analyze the behavior of PROSAdd with different thresholds.

3.2.2.4 PROSA Messages Priorities

As a final enhancement, PROSApriorities enables the use of different priorities between

ReqCir, ACK and NACK messages within the PC network. In the standard PROSA,

NACK messages get higher priority than ACK messages, and ACK messages get higher

priority than ReqCir messages (NACK > ACK > ReqCir). This priority scheme

guarantees all NACK messages get delivered to end points. However, many circuits

cannot be set due to a conflict with NACK or ACK messages. Remind that ReqCir

messages convert to NACK messages if they conflict with a NACK or ACK message.

Now, in PROSApriorities, the endpoints will inject the message through the network in

PS mode when the Setuplatency expires. Also, PCs will remove circuits automatically.

Thus, there is no need to guarantee all NACK messages are delivered to the end points.

Indeed, NACK messages could be simply removed from the network. The only benefit

they produce is that a message can be injected earlier into the network once it receives

the NACK message (before the Setuplatency expires).

Thus, in PROSApriorities we can use two different priority schemes. In the first one, ACK

messages get now highest priority, so to speed up injection of messages through circuits,

then ReqCir messages get higher priority than NACKs, which have the lowest priority

(ACK > ReqCir > NACKS). The second one is more radical as NACK messages will

simply be removed from the system. They will not be generated by PCs. In this scheme,

ACK messages get higher priority than ReqCir messages (ACK > ReqCir).

Notice that removing the NACK support we ease the design of the PC. Figure 3.26 shows

the new PC structure. In particular, the comparator column and the NACK queue

structure and associated logic have been removed. Also, the TYPE field is reduced to

only two types (one bit encoding). Also the logic at RCs is greatly simplified as partial

circuit elimination is not longer needed when NACKs do not exist. This means the area

and power overheads of PROSA will be reduced (will be presented later).
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Figure 3.26: PROSA Controller without NACKs.

3.2.3 PROSA Evaluation

For the performance analysis we use gNoCsim [66], an event-driven cycle-accurate sim-

ulator that models any network topology and router architecture. We model a 2-stage

pipelined router with VCs and flit-level crossbar switching, as used in Garnet [67]. Table

3.3 shows the simulation parameters for the router and the cache hierarchy. L1 is private

to the core and L2 is shared but distributed among all tiles.

In a first analysis, we evaluate three mechanisms: the baseline router (BASELINE), the

Dejavu (DEJAVU) solution [14] and PROSA (no optimizations involved). In PROSA

data sent through circuits take one cycle (using SMART). We analyze applications from

SPLASH [68] and PARSEC [69]. Table 3.4 shows the applications with their observed

loads.
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Parameter Network L1 L2 per tile MC

Topology 8x8 mesh

# VCs/fly link 4/1 cycle

Message sizes 8/72 bytes

Flit/Queue size 64 bits/9 flits

sets/way/line size (B) 32/4/64 128/16/64

cache/tag latency 2/1 4/2

# MCs 2

Memory controller delays (open/activate/read rows) 16/16/16

Table 3.3: Parameters and values used for routers and caches.

Application Benchmark Abbr. Runtime L1 miss L2 miss

BARNES SPLASH BAR High Low Med

BLACKSCHOLES PARSEC BLA High High High

BODYTRACK PARSEC BOD Med Low Low

CANNEAL PARSEC CAN High High High

CHOLESKY SPLASH CHO Med Low High

FERRET PARSEC FER Low Low High

FFT SPLASH FFT High Low Med

FMM SPLASH FMM Med Med High

LU SPLASH CHO Low Low Low

OCEAN SPLASH OCE Low Med High

OCEANNC SPLASH OCNC Low High Low

RADIX SPLASH RAD Med High High

RAYTRACE SPLASH RAY Med Med Med

STREAMCLUSTER PARSEC STR High Low High

WATERNSQ SPLASH WNSQ Med Med High

WATERSPACIAL SPLASH WSPA Med Med High

Table 3.4: Applications tested with observed runtime and L1/L2 miss.

3.2.3.1 Results

Figure 3.27a shows application runtime. PROSA reduces, on average, BASELINE ap-

plication runtime by 33.11%, reaching lower gains in applications with a low number

of L2 misses (BODYTRACK), or with short application runtimes (LU) where the re-

duction in runtime is 5.45% and 4.0%, respectively. However, with balanced applica-

tions (OCEANNC), or applications with a high number of MC requests (FFT, CAN-

NEAL, FMM, BLACKSCHOLES) PROSA reaches an improvement up to 50%. Deja

Vu achieves negligible benefits in performance, as seen in [14].

Figure 3.27b shows latency results. DEJAVU outperforms BASELINE by 10% on av-

erage. PROSA, in applications with a low number of MC requests and small datasets

(e.g. BODYTRACK), achieves a 7% improvement on end-to-end latency. However,

PROSA outperforms BASELINE up to 39% on applications with a high number of L2
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(b) Flit Latency

Figure 3.27: Performance results for different architectures (BASELINE, DEJAVU,
PROSA in column order).
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Figure 3.28: Memory latency results for different architectures. Normalized to base-
line case (BASELINE, DEJAVU, PROSA in column order).

misses (e.g. CANNEAL). On average, PROSA outperforms BASELINE end-to-end la-

tency by 31.14%. For network latency, blue solid color, on average, PROSA outperforms

BASELINE by 34.16%. Notice PROSA outperforms significantly DEJAVU.

For L1 miss latency normalized to BASELINE (Figure 3.28), as it occurs with runtime,

DEJAVU slightly improves BASELINE and PROSA achieves better performance. On

average, our proposal outperform BASELINE by 23%.

REC.ACK REC. NACK

MIN (OCNC) 85.98% (LU) 4.28%

AVG 90,62% 9,38%

MAX (LU) 95.72% (OCNC)14.02%

Table 3.5: Number of ACK and NACK messages generated in PROSA in PC module.

Table 3.5 shows statistics about PROSA circuits. The first column shows the received

ACKs (the number of circuits established successfully). In all cases this is higher than

85.58% and the average is 90.62%. The second column shows the received NACKs and

is the sum of the next five columns of Table 3.6, which list the different types of conflicts
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CONF. INPUT CONF. RA

NACK ACK FB TMP ARB

MIN (LU) 0.01% (BOD) 0.63% 0% (WSPA) 1.92% (WSPA) 0.31%

AVG 0,04% 3,94% 0,00% 4,61% 0,79%

MAX (WSPA) 0.18% (WSPA) 9.27% 0% (OCNC) 9.04% (OCNC) 1.70%

Table 3.6: Number of conflicts generated in PC module.
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Figure 3.29: Results for PROSA with delay circuits equal to 2.

in the PC. The first and second column show the number of NACKs generated at the

input of the PC as a normal request and an ACK/NACK conflicted at the same time.

The last columns show conflicts generated at the ResArb arbiters due to (1) the register

table being full (FB), (2) the required period of time of one request overlaps with one

established circuit (TMP), and (3) two requests collide in the same ResArb module

(ARB) due to the static arbiter. As we can see, most conflicts are generated because of

temporal conflicts in generating circuits or because of concurrent requests conflict with

an ACK in the same resource. However, the current table size at ResArb modules (2

entries) seems to be properly sized (even could be reduced thus saving more area) as the

number of conflicts due to the table being full is negligible.

One critical aspect of PROSA is the technological ability to transmit via circuit one

flit from one network corner to the opposite. To analyze the impact of a more relaxed

circuit design, 2-cycle circuits have been tested (PROSA2C). Figure 3.29 shows, for

some applications, the runtime application results assuming two 2-cycle circuits (for

every source-destination pair). As can be seen, PROSA2C reaches similar results as

PROSA, on average worsening performance by 1.2%.

3.2.3.2 PROSA Implementation

We have implemented all the PROSA infrastructure for a 4× 4 CMP system. Each PC

module has been implemented in Verilog and tested. We use a canonical router design

with 64-bit flits, four 9-flit depth VCs, and with seven ports to attach 2D-mesh ports and

L1, L2, and MC (including the MLCU). We use Design Vision tool from Synopsys with

45nm Nangate open cell library [70]. Power results are obtained from Orion-3 power

library [71].
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Figure 3.30: Power consumption results. First column represents BASELINE and
second PROSA.

Table 3.7 shows the area overheads of PROSA for different configurations. In all of

them, and for the sake of comparison, we also account for the components to build a

cluster of four routers. In the case of PROSA we consider all the components (including

the PC and the four PRs) and the logic and resources used for NACK messages.

Configuration area (µm2) overhead

Baseline router 243784 -

PROSA router (PR) 248200 1.8%

PROSA Controller (PC) 76547 -

Baseline cluster 975136 -

PROSA cluster 1069347 9.66%

Flattened Butterfly cluster 1380109 41%

2xBaseline cluster 1658560 70%

Table 3.7: Area overheads for different router and NoC organizations.

As we can see, the PROSA router takes only 1.8% more area than the baseline router.

The PROSA controller (PC) takes less area than a baseline router (22% of baseline router

area). However, this component is new and needs to be considered as an additional

overhead. To make this comparison fair, the table shows area of cluster regions. In this

case, the PROSA cluster takes 9.66% more area. The NIC’s overhead can be considered

as negligible.

PROSA overheads can be seen as high. However, we should consider the performance

gains that PROSA circuits enable. In order, however, to better assess the overheads,

the table shows two additional configurations worth being analyzed. The first one,

flattenedbutterfly, is the overhead for a flattened butterfly topology which has more

connectivity along each dimension and direction. In this case, because of the larger

number of input ports, the area overhead is increased by 41%. The second one is for the

case where the baseline cluster is enhanced with double flit size. This can lead to faster

transfer times between the nodes. However, as we can see, overhead skyrockets to 70%

additional area. This is mainly due to the larger buffer requirements.

Figure 3.30 shows the power consumption results for the entire network, PROSA and

PS network. Although the leakage power increases by 42% the total power consumption

is reduced by 3%. This reduction is due to switching and internal power, which are
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(b) Flit Latency

Figure 3.31: Performance results for different architectures (PROSA, PROSAall−nn,
PROSAall−nm in column order).

reduced by 10%. As described in [14] Deja Vu achieves a 30% power reduction, which

is similar to our results (but without the latency improvements). Notice that the 30%

execution time reduction will translate in major power savings as shown in [72]2.

Notice that in some applications (BAR, FMM, LU, WSPA) overall power consumption

is slightly higher with PROSA. In these applications, internal and switching power con-

sumption is roughly the same with PROSA and BASELINE (due to the higher number

of delayed circuits that could not be used). This fact, combined with PROSA incurring

in higher leakage (due to its additional network), makes the overall power consumption

to be slightly higher. Notice, however, PROSA achieves energy savings by reducing

application runtime.

3.2.3.3 Enhanced PROSA

In this section we analyze the performance achieved by PROSA with the different added

functionalities presented before. First, we analyze PROSAall when circuits are config-

ured for all messages. In this version, no slack is provided nor distance threshold. Dif-

ferent priorities between PROSA messages will be explored. Then, we focus on PROSA

version with distance thresholds and slack for circuit setup process. This method is

called PROSAall−dd−slack−xy where x and y will identify threshold and slack values.

2In [72] authors show that in modern computing systems, DVFS gives much more limited power
savings with relatively high performance overhead as compared to running workloads at high speed and
then transitioning into low power state.
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Figure 3.32: Memory latency results for different architectures. Normalized to base-
line case (PROSA, PROSAall−nn, PROSAall−nm in column order).

3.2.3.4 Circuits for all Messages and Different Priorities

Figure 3.31 shows the comparison between baseline PROSA and PROSAall with two

different versions. The first one (PROSAall−nn) with no NACKs on the PROSA cir-

cuit network, and the second one (PROSAall−nm) with NACKs with lowest priority

(ACK > ReqCir > NACK). Figure 3.31a shows the normalized execution time for

different applications. Notice the Y axis which does not start from zero value (for the

sake of clearly showing differences). As we can see, differences in execution time are

very small. However, when comparing flit latency (Figure 3.31b) differences are much

more noticeable. Both PROSA configurations (PROSAall−nn and PROSAall−nm) reduce

baseline PROSA flit latency by 35%. In flit latency PROSAall benefits range from 67%

(in applications where PROSA achieves a small improvement in terms of flit latency; see

Fig. 3.27), e.g. BODYTRACK) to 18% or 32 % (in applications in which PROSA gets

higher improvement in that metric; see Fig. 3.27), e.g. RAD or CANNEAL and FFT

respectively.

It has to be noted that although flit latency is significantly improved, the execution time

of applications barely changes. This effect is due to the extra delay paid by PROSAall−nm

and PROSAall−nn at the protocol level. Indeed, by tunneling all messages through

circuits some protocol messages are delivered out of order, triggering race conditions

in the coherence protocol. Those races have been fixed by adding additional protocol

states or by delaying some protocol requests in order to enforce the strict ordering of

messages. Indeed, Figure 3.32 shows the average L1 miss latency results. As we can

observe, the different PROSA versions achieve almost identical miss latency values.

More interesting is the fact that both new versions achieve almost the same flit latency

values. Indeed, lowering the priority of NACK messages has the same effect as of re-

moving them completely. This result suggests that NACK messages can be removed

as they will hardly affect performance. Indeed, some area and power savings will be

achieved by removing NACK support. Table 3.8 shows the overhead implementation of

the PC without NACKs. As can be seen PC and cluster area is reduced by 16% and 2%

respectively. Thus, PROSAall−nn reaches similar performance results as PROSAall−nm

but reducing the area.
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Configuration area (µm2) overhead

PROSA router (PR) 248200

PROSA Controller (PC) 76547

PROSAall,nn Controller (PC) 64918 -16%

PROSA cluster 1069347

PROSAall,nn cluster 1057718 -2%

Table 3.8: Area overheads for PROSA controller without NACK .

We concluded PROSAall−nn and PROSAall−nm being almost identical in performance

was in average terms. However, for every application results are slightly different and

significant in BAR. The trend is that not using NACKs increases performance. In BAR,

the pollution created by NACK messages leads to critical circuits to get delayed and thus

miss shorter message latencies. This is, on average, cancelled due to the large amount

of traffic each application injects. However, delaying a process punctually will lead to a

higher execution time because of barriers and synchronization events between processes.

This is the root cause of higher runtime but similar average latencies.

REC.ACK REC. NACK

MIN (OCNC) 62.81% (LU) 14.36%

AVG 73.25% 26.75%

MAX (LU) 86.64% (OCNC) 37.21%

Table 3.9: Number of ACK and NACK messages generated in PROSAall−nm.

CONF. INPUT CONF. RA

NACK ACK FB TMP ARB

MIN 0 (STR) 5.25% (BOD)0.02% (LU) 5.75% (LU) 3.15%

AVG 0 7.84% 0.18% 12.30% 6.71%

MAX 0 (BOD) 17.15% (FMM) 0.55% (OCNC) 15.96% (OCNC) 9.41%

Table 3.10: Number of conflicts generated in PROSA Controller.

Tables 3.9 and 3.10 show statistics about PROSA circuits for PROSAall−nm. Notice

that the current circuit setup success rate (73.25% on average for all applications) is

much smaller than the one achieved with baseline PROSA. This is due to the higher

traffic of the PROSAall network to establish circuits. Now, for every message a circuit

setup process is launched. However, what is noticeable is that NACK messages do not

introduce any conflict at the input of the PC device. Full bank conflicts at ResArb mod-

ules is also low (0.18% on average). The more prominent conflicts now are those related

to the temporal conflict with already programmed circuits (12.30% on average) and due

to arbiter conflicts (two concurrent requests, 6.71% on average). Notice that in this

configuration each ResArb module implements a circuit table with four entries. These

results are similar to the ones achieved by PROSAall−nn. Because of the more efficient

implementation, from now, we use PROSAall−nn for all the following experiments.
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(b) Flit Latency

Figure 3.33: Performance results for different architectures (PROSA and PROSA DD
in column order).
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Figure 3.34: Memory latency results for different architectures. Normalized to base-
line case

3.2.3.5 Bounded Circuits and Slack

Now we focus on the full deployment of PROSA, which includes the distance threshold

and the slack for circuit setup process (PROSAall−dd−slack−xy). We analyze two slack

(x) values (1 cycle and 2 cycles) and two distance (y) thresholds (3 and 4 hops in PC, 6

and 8 routers, respectively). Thus, PROSAall−dd−slack−13 represents PROSA with 3 PC

hops distance threshold and 1 cycle for slack. All these versions do not include NACKs

(similar to PROSAall−nn).

Figure 3.33a shows the application runtime for the four new configurations and for the

previous PROSAall−nn version. On average, all these four configurations slightly im-

prove PROSAall−nn. Among all, PROSAall−dd−slack−13 is the best configuration, which

outperform applications execution time up to 6% in some applications (CANNEAL,

CHO, RADIX). On average performance improves by 3%.

Figure 3.33b compares flit latencies for these configurations. PROSAall−nn always gets

the lowest flit latency for all applications. As can be seen, PROSAall−dd−slack−xy gets

worse latency results with low threshold value. However, this does not affect L1 miss
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Figure 3.35: Power consumption results. First column represents BASELINE, sedond
PROSA and third PROSAall.

latency. Figure 3.34 shows the miss latency results which follows the same trend observed

for the execution time of applications. Applications with higher miss latencies (LU)

have higher execution runtimes. As it occurred with PROSAall−nn, improvements in

the network (faster messages) is not reflected in execution time of applications due to

the extra delay incurred in the protocol.

3 HOPs 4 HOPS 5 HOPS unbounded

ACK NACK ACK NACK ACK NACK ACK NACK

BARNES 77.52 22.48 72.78 27.22 70.51 29.49 68.25 31.75

CHO 80.31 19.69 76.90 23.10 75.09 24.91 73.03 26.97

FFT 83.38 16.62 80.10 19.90 77.61 22.39 75.41 24.59

OCEAN 84.44 15.56 80.19 19.81 77.29 22.71 75.24 24.76

LU 91.20 8.80 88.65 11.42 86.24 13.76 84.27 15.73

Table 3.11: Percentage of ACKs/NACKs for PROSAall−dd with different distances.

Table 3.11 shows PROSA statistics for different applications when varying the maximum

distance of circuits inside the PC network. As we observe, the number of NACKs

increases as the allowed distance of circuits increases. This is mainly motivated by the

traffic increase in the PC network. As seen in the table more NACKs are generated,

delaying injection of associated messages. Therefore, maximum distances of 3/4 PC hops

looks like the right approach to minimize NACKs while still guaranteeing long circuits.

Finally, Figure 3.35 shows the power results for PROSAall−dd−slack−xy. On average, the

new PROSA version reduces the power consumption by 7% and 4% to BASELINE and

baseline PROSA, respectively. Network traffic in the PC network in PROSAall−dd−slack−xy

is 5 times larger than the observed in PROSA. However, the new PROSA reduces power

consumption in the standard network by 35% on average.

3.2.3.6 Discussion

From the previous results we can observe different aspects worth being highlighted. The

first one is the clear benefit of building an infrastructure to setup circuits for coherence

protocol-oriented systems. By taking advantage of large memory access latencies the

network can be configured with communication circuits configured and kept only for
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the transmission duration of the message. PROSA is able to achieve remarkable results

in execution time and flit latencies. PROSA can set a circuit in less than 16 cycles

in the worst case for an 8 × 8 mesh network. Although this can be enough for stan-

dard memories, for faster ones or larger networks maximum circuit distance has to be

bounded.

The second conclusion is the fact that tunnelling all the messages (short and long)

through circuits does not necessarily lead to benefits in application performance. Ex-

ecution time is barely the same and, most important, the coherence protocol must be

adapted to support new race conditions triggered by messages arriving out of order.

What is more interesting to note is the fact that negative acknowledgments of circuits

can be discarded and it is worth relying on an automatic and silent circuit tear down

process. Further savings in power and area implementation are achieved. Indeed, per-

formance is not significantly affected.

A third conclusion we obtain is related with the circuit setup delay and its effects on per-

formance. Indeed, by bounding the reachability of circuits performance of applications

can be improved with a further 6%. This is easily achieved by adding a simple compara-

tor on each NIC. Longer circuits tend to have a larger circuit setup time, which indeed

is larger than the cache access time, incurring on a extra delay to send the message

through a circuit.

Finally, the use of a slack for circuits should be introduced with care. A large slack

may lead to worse results as it induces more temporal conflicts in the network. Indeed,

contention in the circuit setup network is low and, thus, with only one cycle of slack

most of the circuits are successfully configured and used, leading to good performance.

One critical aspect of PROSA is its scalability. First, the current design allows only

one ReqCir request to access the RT. This may create a bottleneck. However, the

low/medium load traffic seen on the PC network does not compromise its performance.

Anyway, if scalability problems appear, it would be solved by implementing a two-port

RT module. On the other hand, for PROSAall, small-sized messages with distant desti-

nations could prevent long-sized messages with nearer destinations, potentially affecting

performance. However, some of those small-sized messages are in the critical path of

memory access by the processor, thus, having a high impact on performance. This fact

makes the distinction between short and long messages less significant.

As a final conclusion, the best PROSA configuration would be the one with no NACK

support, one cycle slack, and with a threshold of distance three for the 8× 8 network.
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(a) Requirement for router-level
strong isolation.

(b) Scenario where domain inter-
ference may cause latency varia-

tions.

Figure 3.36: Scenarios for router-level slot allocation to domains Di.

3.3 High Assurance Networks for CMPs

The previous contributions focused on NoC performance improvements by using mech-

anisms addressing both throughput and latency optimizations. Now, in this last con-

tribution we focus our attention on high assurance property for the network. More

specifically, we target the domain of systems with multiple applications running on the

same chip and with strong isolation requirements mainly due to security reasons. When

strong isolation is required even cycle-level variations must to be prevented in order to

avoid timing channel attacks in which the attacker can get information from timing vari-

ations. For these reasons Token-Based TDM enforces non-interference between traffic

logically belonging to different partitions. Therefore both types of flows, flows between

sender-receiver pairs within the same partition, and flows from/to tiles of a partition

to/from any MC, must be prevented from a timing variation.

3.3.1 Router-Level Strong Isolation

To achieve such property, the network relies on a token propagation scheme. Tokens

contain scheduling orders to local router-level domain schedulers. For this purpose,

tokens carry a domain identifier (DI), which identifies the domain whose packets can

be forwarded from a specific router input upon arrival of the token. In order to deliver

strong isolation between domains, we need to synchronize the timing of token propagation

throughout the network in such a way that every router gets the same DI at each input

port on every cycle (see Fig.3.36). This means that the router will arbitrate and forward

messages belonging to the same domain/partition, and messages from different domains

will never compete.
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The goal is to create and propagate as many types of tokens as the number of running

domains, each one with its own Domain Identifier (DI). All different types of tokens are

triggered back-to-back in sequence from a source node in the network, and propagated

through it following the CDG. The proposal triggers one new kind of token at each cycle,

and repeats the domain sequence every D cycles, where D is the number of domains. As

tokens are received in sequence at router input ports, they command the local scheduler

to serve packets with a specific identifier from those ports.

3.3.2 Synchronized Token Propagation

Since tokens traverse router ports and links in the order of the CDG, synchronized same-

ID token arrival at all router input ports depends on the CDG and nominal router and

link latencies.

Assuming an horizontal Segment-based Routing algorithm [73] and single-cycle routers

and links, tokens would be triggered from the bottom right corner, and would be propa-

gated throughout the network as illustrated in Figure 3.37. With this routing algorithm,

there are two token propagation phases, a scroll-up one (left) and a scroll-down one

(right), which occur one after the other. Their combined effect is the traversal of all

router ports and NoC links. Numbers in the figure indicate token propagation latencies

since initial injection. The diagonal arrows represent routing restrictions, that is, direc-

tions that packets can NOT take as dictated by the routing algorithm at hand. They

are set in order to prevent cyclic dependencies, that is, deadlock from occurring.

If we focus on a single router and a single token crossing the network as specified in

the CDG, the token will reach different input ports of the same router at different

timestamps t1-t2-t3 and t4, as seen in Figure 3.38.

Let us define relative latencies as the time periods elapsed between any two consecutive

timestamps. router-level operation with strong domain isolation requires that the result of

the modulo operation between any of these relative latencies and the number of domains

is always 0:

∀(y, x) ∈ A→ (ATy −ATx)modD = 0, whereATy > ATx

where A is the set of router input ports, D is the number of running domains, and ATi is

the arrival time of same-ID tokens at input port i. In fact, as the proposed architecture

injects the same domain identifier token into the network every D cycles, this ensures

that a token with the same identifier will reach a specified port every D cycles.

Therefore, if the previous condition is met, at regime all the router input ports will receive

tokens with the same domain identifier exactly at the same time, and can thus work in

strong isolation mode. The number of domains D that enables this operating condition
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Figure 3.37: Network-level token propagation, with latency annotated, in the order
of the CDG with horizontal segment-based routing and single-cycle routers and links.

Figure 3.38: Arrival times (in clock cycles) of same-ID tokens at router input ports.

Figure 3.39: Perfect scheduling at network level for minimum latency.

is the Maximum Common Divisor (MCD) of all relative latencies between consecutive

pairs of arrival times (in increasing order).

Following the example in Figure 3.38, relative latencies from initial token arrival to its

presence on all input ports amount to 4, 32, and 8 cycles. Hence, the router delivers

strong isolation with 4 domains.

To extend this property to the whole network, we first compute the maximum number of

domains for every router as the MCD illustrated above (if any). If such an MCD can be

computed for each router, then the topology, coupled with the target routing algorithm,

supports strong isolation of domains. In this case, the MCD of all router-level computed
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Figure 3.40: Token propagation flow at regime in a specific time slot. Numbers denote
the token ID served on a specific NoC resource at that clock cycle.

domains is the ideal number of domains which delivers strong isolation for the network

as a whole. In the 2D mesh example in Figure 3.37, perfect scheduling is achieved with

4 domains.

Notice that the ideal number of domains for perfect scheduling can be directly deter-

mined by the smallest relative latency inside the network. In our case, the smallest

relative latency of the NoC in Figure3.37 is exactly the one reported in Figure 3.38

(which is 4 cycles), and corresponds to the latency of the smallest cyclic path spanned

by a token in the network to reach two different ports of the same router. Clearly, this

cyclic latency depends on router and link latency, and is equal to: (R − 2) ∗ (P + L)

where R is the number of routers in the smallest cycle, P is the router latency and L is

the link latency.

A relevant side effect of this theory is that the composition of strongly-isolated router-

level operations at network level through the dependencies of the CDG gives rise to a

Perfect Schedule, which consists of the onset of unstopped propagating waves of same-

ID tokens throughout the network (see Figure3.39). This guarantees minimum-latency

operation of the NoC.

Figure 3.40 shows token propagation flow over the network at regime, which is estab-

lished once the first token comes back to the injecting router. Each router works in

strong isolation mode, and globally a perfect schedule takes place.

This methodology generalizes the constraints for perfect scheduling identified in [61]

from local scheduling loops, which we instead base on the observation of the CDG. This

generalization is at the core of the new approach proposed, featuring enhanced flexibility

as hereafter illustrated.
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(a) Building segments out of the shortest
token cycle.

(b) Selective stall placement to support 5
domains with strong isolation. Only scroll-

up phase shown.

Figure 3.41: Extending the number of domains under strong isolation.

3.3.3 Supporting a Higher Number of Domains

In order to handle a larger number of domains than the ideal one, PhaseNoC (see a

description of how it works at Chapter 2) requires deep modifications of the router archi-

tecture, thus proving unsuitable for runtime reconfigurability. In particular, the pipeline

depth of all routers needs to be increased, which would preserve strong isolation and

perfect scheduling. As we will see in the experimental results, for some configurations

this leads to suboptimal performance. Alternatively, the NoC can be split into commu-

nicating subnetworks, similar to SurfNoC. In this case, the strong isolation property is

lost (i.e., domains can affect timing of packet propagation), unless area-expensive input

speedup is implemented to avoid VC contention at crossbar inputs.

Our CDG-inspired approach is less invasive and more easily reconfigurable at runtime,

and aims at preserving strong isolation in router-level operation while giving up the

perfect schedule globally.

As we have seen previously, in a regular 2D mesh network all relative latencies are

multiples of the latency of the shortest cycle SCL (i.e., of SCL = (R − 2) ∗ (P + L)).

Therefore, we can split the critical path of the tokens throughout the CDG into segments

of length SCL cycles (see Figure 3.41a). With the ideal number SCL of domains, all

inputs to these segments will be in the same domain at a given time slot.

In order to support a higher number of domains D, our intuition is that only SCL

domains should be in flight at any given point in time. The remaining D−SCL domains

should be stalled. This would enable to preserve the strong isolation property, while

breaking the perfect scheduling assumption. As we will show in the experimental results,

preserving perfect scheduling at all costs may not be the best performing solution.
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In order to implement this concept, we need to place domain propagation stalls selec-

tively within segments. The constraint to be met for correct operation is to place these

stalls at the same positions within segments (e.g., either in the first router, or in the

second one). Figure 3.41b shows an example of stall placement to support 5 domains.

As can be observed, the stalls allow the network to receive the same domain identifier

at all the input ports at every router.

Depending the target number of domains D and the ideal number of domains SCL, the

number of stalls in each segment can be calculated as follows:

if D > SCL then

Stalls = D − SCL;

else

Stall = 0;

end if

3.3.4 Supporting a Lower Number of Domains

If at any given point in time, a lower number of domains than the ideal one needs to be

enforced, then strong isolation and perfect scheduling can be preserved provided the target

number of domains is an integer divider of the ideal number. The reason is because this

way the latency of the shortest cycle spanned by tokens to bridge two consecutive ports

of the same router is a multiple of the repetition period of domain identifiers. Therefore,

previous conclusions are still valid. As an example, with ideally 12 domains in a perfect

schedule with strong isolation guarantees, the same property can be derived with 2, 3,

4 and 6 domains.

With a different number of domains (e.g., 5 or 7), the same stall-based methodology

explained before can be applied here, which preserves strong isolation but not perfect

scheduling. In particular, the procedure that follows should be used to realign token

domain identifiers at segment inputs with d < SCL domains:

• compute an integer n such that n× d > SCL;

• compute the number of stalls per segment as stalls = n× d− SCL;

• enforce this number of stalls at the same position within each segment.

3.3.5 Handling the Transient to Regime

Before getting to regime, tokens start propagating in the network by following the CDG.

However, not all input ports have received a token at a given point in time.
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(a) (b) (c)

Figure 3.42: Token propagation mechanism.
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Figure 3.43: Proposed router architecture: the concept.

Figure 3.42 shows an example of initial token propagation through a router. For the sake

of simplification, the figure only shows output port north, and input ports east, west and

south. Arrows denote routing restrictions between the east and the north ports. Then,

based on this CDG, only packets from the south and west input ports can be forwarded

to the north output port. Figure 3.42a shows that a token has been received from south.

However, this token cannot be forwarded downstream, since not all the input ports with

routing dependencies with the north output port have received such a token. Therefore,

the south token is dropped. When the token reaches the west input port as well (Figure

3.42b), it will appear again also in the south input port (see Section 8.6.2), then a new

token can be forwarded to the north output port.

3.3.6 Router Architecture

Figure 3.43 shows a simplified version of the Token-based TDM router architecture.

Only one input port is shown in order facilitate understanding, assuming one VC per

domain. Single-cycle routers and links are considered.
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Tokens are in charge to set the domain processed within the router. The incoming token

(TOKEN IN) is used as a selector in the first demultiplexer stage to define in which

domain buffer the incoming data flit will be stored. The TOKEN IN is stored in a

register for the sake of retiming, so that in the next clock cycle it can select the active

domain within the router. Following this approach, only one domain can access to the

VA/SA/X per cycle, then no conflicts between different domains can occur.

The token advances until the token logic, which is active only during the initial config-

uration transient, till the regime is reached. Until then, the logic checks whether tokens

are available at all input ports with routing dependencies with the target output port.

If not, tokens are dropped. At regime, all such tokens will be available, and an output

token (TOKEN OUT ) will be fired.

This initialization procedure is slightly more complex in case the network is initialized

with a higher number of domains than the ideal one for perfect scheduling. In this case,

the first domain identifier token carries the required number of domains. At the same

time, the STOP signal is set to one. The token logic then computes the number of stalls

to be enforced. Negation of the STOP signal enables to enforce stalls selectively once

every two routers. After this, domain identifiers are injected in sequence at every cycle

as usual. As an incoming domain identifier token arrives at the input port, it has to

wait in a token buffer (of size Dmax − SCL) until it reaches the first position in the

queue.

The proposed architecture can be inherently reprogrammed to support any number

of running domains, since the adaptation is not in the architecture itself, but in the

scheduling commands sent through the tokens. In the most complex case, the token

logic has to compute, from the initialization procedure, the number of stops for tokens

in transit. While in this contribution we are experimentally characterizing the offered

architectural flexibility, the precise reconfiguration protocol to exploit it at runtime (i.e.,

to safely transition from one network configuration to another) is left for future work.

Finally, in a traditional router with M-ports, D domains and v VCs per domain, there

exist M×D×v input and outputs VCs. Then, virtual channel allocation maps M×D×v
inputs to M × D × v outputs VCs. However, our proposal only allows one domain to

access the VA arbiters at a time, then only M × v VCs perform VA at every cycle.

Similarly, the M ×D× v to M ×D× v router allocator in traditional routers is reduced

in our implementation to a M × v to M × v allocator.

3.3.7 Experimental Results

For the experiments, we use the VirtualSocLite virtual platform [74], targeting the full-

system simulation of massively parallel heterogeneous SoCs. It is coded in SystemC
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Figure 3.44: Different number of domains considered on a 16-tile 4x4 network.

and models operation of a 2D mesh topology of any size with RTL-equivalent accuracy.

The platform has been extended to model the proposed NoC architecture, and synthetic

traffic generators have been instantiated and linked to the NoC.

For all the results, we inject write transactions from the tiles to the distributed L2

banks of a partition (intra-domain traffic). Inter-domain traffic is obtained by injecting

additional write transactions from domain tiles to memory controller nodes (MC traffic).

Two topologies sizes are simulated: 4× 4 and 8× 8 2D-mesh topologies. In both cases,

there is one core per tile.

Different configurations of domains are used. In all cases, domains are of the same size

and geometry. Figure 3.44 shows the domains for the 16-tile network.

In the 8x8 2D mesh, in case of 2 domains, the network is divided into 2 domains of 32

tiles each. For 3 and 4 domains, the domain size is 16 tiles. For 5 domains, the network

is split into domains of 12 tiles; if the networks requires between 6 and 8 domains, these

domains are composed by 8 tiles. In case more than 8 domains are required, the domain

size is set to 4 tiles.

We evaluate four mechanisms across a different number of running domains, to test the

flexibility requirement:

• TDM. A baseline TDM network where at each time slot the whole network is used

for a specific domain. All domains are served in consecutive order. At each time

slot, both intra- and inter-domain traffic for the associated partition is served.
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Figure 3.45: Zero-load latency for the 4x4 2D-mesh.

• Custom TDM, where the TDM scheme is made aware of spatial partitioning. In

practice, a dedicated time slot is concurrently used for intra-partition traffic of

all domains. Partition-specific local traffic is kept segregated by the regularity of

partition shapes. Then, every partition has one additional reserved slot to transmit

or receive its own MC traffic. This scheme will be briefly referred to as TDM-esp

in the results.

• PhaseNoC, which delivers strong isolation and minimum communication latency

under specific configuration options (no. of domains). For each tested configura-

tion, we tune the PhaseNoC router with the proper number of pipeline stages for

perfect schedule and strong isolation (although this would be problematic to apply

at runtime). However, in some cases PhaseNoC ends up in a suboptimal configu-

ration. For instance, PhaseNoC with two pipeline stages per router can support 6

fully-isolated domains in perfect schedule, but if the required number of domains

is 5, one domain would go unused. In contrast, if we revert back to 1 stage per

router, strong isolation cannot be provided with 5 domains. For a fair comparison,

we allocate such an unused time slot to the active domains in a round robin fash-

ion. With PhaseNoC, both intra-domain traffic and MC traffic are served when

a domain is active. PhaseNoC would also enable the partitioning of the network

into subdomains to handle the critical cases. However, we verified that in this case

the strong isolation property is lost, unless input speedup is implemented. We do

not consider this case here, since it would amplify the implementation complexity

gap between PhaseNoC and our approach.

• Token-based TDM. This is our approach, which serves both inter- and intra-

domain traffic when a domain is active.

3.3.7.1 Zero-Load Latency

Figure 3.45a shows the zero-load latency results for local intra-domain traffic. The x-

axis represents the number of domains and the y-axis the zero-load latency. As can be
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Figure 3.46: Zero-load latency for the 8x8 2D-mesh.

observed, both PhaseNoC and Token-based TDM improve upon the baseline TDM vari-

ants. However, our proposal improves upon PhaseNoC in scenarios where PhaseNoC’s

pipeline has to be oversized for strong isolation (5 and 7 domains). The improvement on

the network latency is 13% and 9 % for 5 and 7 domains, respectively. In these scenar-

ios, we claim ”generalized perfect scheduling” through selective placement of stalls. In

scenarios where PhaseNoC achieves perfect scheduling by increasing the router pipeline

depth (with 4, 6 and 8 domains), our proposal provides the same perfect scheduling

as PhaseNoC. Thus, our approach provides increased flexibility without wasting per-

formance. In order to properly read the plot, it should be noted that the higher the

number of domains the smaller the partition size (Figure 3.44). However, latency tends

to increase because there is a higher waiting time to pay in the network interfaces to

wait for the suitable injection time slot.

Figure 3.45b plots the zero-load latency results for MC traffic. The performance reached

with this type of traffic is similar to the local traffic one. Again, we appreciate the ca-

pability of Token-based TDM to keep up with PhaseNoC whenever the latter delivers

perfect scheduling, while improving the network latency to access the MCs by about 20%

for 5 domains and by 12 % for a 7-domain configuration. Thus, our approach proves

capable of generalizing the high performance efficiency of PhaseNoC to the whole con-

figuration space, while exposing inherent reprogrammability of the number of domains

without pipeline modifications. We instead just change the scheduling commands we

give to the routers. Another architectural difference explains the above results: while

our approach tends to introduce a configurable number of stops for domain identifier

tokens in specific points of the NoC in order to preserve the non-interference property,

PhaseNoC tends to spread the latency overhead everywhere in order to achieve the same

goal.

Figure 3.46a shows the zero-load latency results for local intra-domain traffic in a 64-

tile scenario. As in the 16-tile network, Token-based TDM improves upon PhaseNoC

in scenarios where the pipeline is oversized. Even the reallocation of the unused slot

is not able to compensate for this inefficiency. The improvement of Token-based TDM
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Figure 3.47: Performance with uniform traffic for 4 Domains
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(c) 75 % Local traffic
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Figure 3.48: Performance with uniform traffic for 5 Domains.

oscillates between 20 % (5 domains) and 9% (15 domains). For MC traffic (Figure 3.46b),

Token-Based TDM reaches the best performance improving up to 30 % the PhaseNoC

network latency. For a number of domains higher than 8, the cases where PhaseNoC gets

perfect scheduling are not shown because in those cases Token-based TDM performs the

same, as we have shown previously. Notice that, the higher the number of domains the

smaller the benefit achieved by Token-based TDM. This is due to the fact that as the

number of domains gets larger, the bandwidth underutilization by PhaseNoC decreases.
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Figure 3.49: Performance with uniform traffic for 7 Domains.

3.3.7.2 Network Performance

Figure 3.47a shows the network saturation curve for local traffic under uniform random

traffic. The characterized scenario consists of four domains. If our approach is correct,

we expect both PhaseNoC and our approach to deliver perfect scheduling. As shown in

the Figure, the Token-based TDM exactly matches the performance of PhaseNoC, thus

validating the claim. Figure 3.47b shows the performance for MC traffic with 4 MCs,

in the same characterized scenario. These plots further validate the same conclusion,

hence validating the efficiency of our approach in matching the best case for PhaseNoC,

while delivering extended flexibility.

Next we analyze the network saturation curves in those cases where our proposal can set

a “generalized” perfect scheduling while PhaseNoC can not. The unused slot domain is

assigned in round robin fashion to the active domains. For this study we analyze four

scenarios: one where the whole traffic is local, another with only MC traffic, and two

scenarios with mixed traffic, one with fifty percent of each type of traffic and another

one with 75 % of local traffic and 25 % of MC traffic.

Figure 3.48a shows the results for local traffic for the 5-domain scenario. As can be seen,

PhaseNoC and Token-based TDM improve the network performance of TDM. In addi-

tion, Token-based TDM reduces the network latency against PhaseNoC by 10 % along

the complete network saturation curve, reaching the saturation point at similar injection
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rates. Figure 3.48a plots the results for MC traffic. Similar as the previous case, Token-

based TDM outperforms PhaseNoC by up to 20 % before reaching the saturation point.

Moreover, our approach increases the network capacity. When a mixed-flow scenario is

presented, Token-based TDM continues to reach the best performance. Figures 3.48c

and 3.48d show the results for local and MC traffic for a scenario with 75 % of local

traffic and 25 % of MC traffic, respectively. Similarly to previous cases, Token-based

TDM is able to reduce the PhaseNoC latency by roughly 10% and 20% for local and

MC traffic, respectively. Moreover, in this scenario the customized TDM scheme (TDM-

esp) has higher network latency compared with baseline TDM. However, for MC traffic

TDM-esp is able to match the accepted traffic before reaching the saturation point.

This behavior occurs because for a given domain with mixed flows, TDM-esp provides

higher bandwidth than baseline TDM, because each domain has two time slots, one for

intra-domain traffic and one for inter-domain traffic (for access to the MC).

Focusing on a 7-domain scenario, Figure 3.49 plots the latency results. Similarly to the

5-domain scenario, Token-based TDM reduces network latency by 8% in intra-partition

traffic scenario and 15% in MC traffic scenario. Figures 3.49c and 3.49d plot the results

for the mixed-flows scenario, where the traffic is divided in equal parts between both

types of traffic. Token-based TDM gets the minimum network latency, improving over

PhaseNoC by 7 % on local traffic and 12 % on MC traffic. However, similarly to what

happens in the mixed-flows scenario for 5 domains, TDM-esp is able to accept a higher

injection rate of traffic.
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3.4 Proposals Digest

In order to provide a global picture, in Table 3.13 we show, for each contribution, its

key characteristics. To summarize, the proposals presented in this chapter are:

• TBFC+SUR: this proposal presents a co-design of flow control and routing algo-

rithm. It focuses the network throughput improvement on NoC with FA routing

algorithms by optimizing the use of resources, achieving a balanced buffer uti-

lization which improves the accepted traffic on the NoC and slightly reduces the

network latency.

• EPC: This proposal achieves a new congestion control mechanism. It avoids

spreading congestion by isolating the congested flows when using fully adaptive

routing. EPC limits the adaptability of the FA routing algorithm to minimize

spreading congestion.

• PROSA: This proposal presents a new circuit-packet switching NoC architecture

driven by the coherence protocol. Coherence protocol messages are forwarded using

a packet switching strategy, while for the data packets sets up circuits. PROSA

reduces the latency of data messages using the coherence protocol access slack to

set up the circuits before they are needed and only for the time period they are

required.

• PROSA-DD: An extension of PROSA is shown in this proposal. This proposal sets

up circuits for both type of messages, control, and data, including new function-

alities such as additional slack for setting up circuits and distance-driven circuit

setup strategy.

• Token-Based TDM: This proposal presents a novel TDM. It guarantees the strong

isolation property required on high assurance network with a novel architecture

based on the CDG. This new architecture is able to reduce network latency and it

also increases the flexibility of previous TDM designs. Token-based TDM supports

a different number of domains without any major change in the NoC design.

All proposals in this chapter are presented separately focusing on three different contexts.

However, some combinations of these proposals can be applied to different contexts at

the same time.

Table 3.12 shows the compatibility degree table between all the contributions (PROSA-

DD is embedded in PROSA entry). An score of 3 means perfect compatibility, an score

of 2 means high degree compatibility and an score of 1 means low degree of compatibility.

TBFC+SUR and EPC are highly compatible since they focus on the same context (fully

adaptive routings algorithms) and they can be integrated easily in the router design. In
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Contribution TBFC+SUR EPC PROSA TOKEN-BASED TDM

TBFC+SUR X 3 2 1

EPC 3 X 2 1

PROSA 2 2 X 1

TOKEN-BASED TDM 1 1 1 X

Table 3.12: Contributions compatibility degree

TBFC+SUR, the packets set as unsafe are the ones that are routed adaptively, and thus,

forwarding of those packets can be limited (restricted) by the EPC filter. Therefore,

there is a direct relationship between the EPC filter and the set of paths that needs to

be filtered out.

On the other hand, PROSA and TBFC+SUR and/or ECP are not 100 % fully com-

patible. The main reason is that PROSA is used in deterministic routing whereas

TBFC+SUR and EPC is used in adaptive routing algorithms. However, we can still put

them together in a complementary way. As an example, PROSA can be used to setup

circuits and those circuits sets in the router. But for those packets that loose the cir-

cuit setup they can be injected in the network following the adaptive routing algorithm,

possibly extended with TBFC+SUR and/or EPC filter.

Finally, Token-based TDM can be loosely complemented whit the other contributions.

This could be achieved if the TBFC+SUR, EPC, and PROSA contributions are im-

plemented at virtual network level, with one virtual network holding the traffic for a

different application and the Token-based TDM working as top of a set of domains.

This configuration seems, however, too complex and with no clear benefit.
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4.1 Abstract

Buffer resource minimization plays an important role to achieve power-efficient NoC de-

signs. At the same time, advanced switching mechanisms like virtual cut-through (VCT)

are appealing due to their inherited benefits (less network contention, higher through-

put, and simpler broadcast implementations). Moreover, adaptive routing algorithms

exploit the inherited bandwidth of the network providing higher throughput.

In this paper we propose a novel flow control mechanism, referred to as type-based flow

control (TBFC), and a new adaptive routing algorithm for NoCs. First, the reduced

flow control strategy allows using minimum buffer resources, while still allowing virtual

cut-through switching. Then, on top of TBFC we implement the safe/unsafe routing

algorithm (SUR). This algorithm allows higher performance than previous proposals

as it achieves a proper balanced utilization of input port buffers. Results show the

same performance of fully adaptive routing algorithms but using less resources. When

resources are matched, SUR achieves up to 20% throughput improvement.

4.2 Introduction

Nowadays, there is no doubt that network-on-chip [64] has moved from concept to tech-

nology. NoCs are the natural way to allow efficient communication inside a chip in

terms of performance, area, and power. NoCs replace complex all-to-all communication

solutions, or simple solutions as busses or crossbars which do not have good scalability.

The NoC concept was inherited from the off-chip domain, where high-performance in-

terconnects were designed to build large HPC installations or datacenter systems. This

shift in the environment (from HPC/datacenters to chip) makes NoC design a challenge,

since the engineer must face very limiting constraints in the chip design environment.

Area constraints impose optimized designs trying to use as less resources as possible.

This forces the engineer to very optimized resource designs. However, more important

is to provide a power-efficient design. The chip power budget is highly limited and this

imposes severe constraints in the resources used within the chip. Power-hungry compo-

nents (mainly buffers) must be minimized if not removed at all. However, the engineer

faces the problem of complying with those constraints while still delivering the expected

performance. These two are usually conflicting requirements.

One clear example of this problem is the fact that engineers usually rely on wormhole

switching where blocked packets keep in the network along their paths, keeping buffers

in different routers. This allows buffers to be reduced in size, smaller than the packet

size. However, this switching mechanism imposes large performance impact. Indeed, by

blocking several routers, a packet may introduce severe congestion problems. In addition,
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wormhole switching imposes more architectural constraints. For instance, broadcast/-

multicast operations can not be implemented unless more buffers are allocated. This is

needed to avoid chances of inducing deadlock situations.

In addition, the way buffer components are managed may lead to power waste. Indeed,

their use should be as balanced as possible in order to economize energy. Typically,

routing algorithms rely on different virtual channels, specially in wormhole switching.

Also, several virtual channels are implemented to cope with protocol-level deadlocks in-

duced by dependencies between messages generated by higher-level coherence protocols.

This leads to a large number of buffers and, thus, to a waste of resources if they are not

equally balanced, which is the typical case.

In this paper we address the problem of balanced buffer utilization. In order to address

this challenge we first propose a novel flow control strategy, referred to as Type-Based

Flow-Control (TBFC). This mechanism is tailored to buffer resources with minimum

capacity but still allowing virtual cut-through switching (thus enabling its benefits). In

addition, TBFC is prepared for a new type of routing algorithms which, depending on the

type of a packet may take different routing decisions. Indeed, we apply a novel adaptive

routing algorithm on top of TBFC. The algorithm, referred to as Safe/Unsafe routing

(SUR), classifies packets as safe of unsafe depending on the chances of packets to induce

deadlock. Safe packets move through the network in an unrestricted manner, while

unsafe packets are routed only through deadlock-free paths. When combined, TBFC

and SUR achieve a perfect balanced utilization of resources thus achieving an optimal

use. Performance results show a boost in performance when the algorithm is used in 2D

torus networks. Also, performance is kept maximum in 2D mesh configurations while

using less resources.

The rest of the paper is organized as follows. In Section 4.3 we describe the new flow

control mechanism. Then, in Section 4.4 we describe the SUR routing algorithm working

on top of the new flow control mechanism.In Section 4.5, we provide the performance

evaluation and its analysis. The related work is described in Section 4.6, and the paper

is concluded in Section 4.7.

4.3 TBFC Description

In this section we describe TBFC that enables balanced buffer utilization to the routing

algorithm. But, before entering into details, we need to differentiate between two differ-

ent crossbar switching strategies that may be implemented inside the router. The first

one is termed flit-level switching and consists of improving buffer utilization by allowing

the router to multiplex flits of different packets to advance through the crossbar while

directed to the same output port, but mapped in different virtual channels. The second
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Figure 4.1: Traditional credit-based flow control assuming flit-level crossbar switch-
ing.

one is termed packet-level switching and consists in preventing the router to multiplex

flits from different packets to the same output port. In this approach, when a packet

header gets access to the crossbar, the remaining data of the packet will keep the crossbar

connection and follow without interruption.

Flit-level switching is conceived for wormhole switching while packet-level switching is

conceived for virtual cut-through. However, both approaches can be used for any switch-

ing mechanism. Nevertheless, taking flit-level or packet-level switching into account is

important since it affects how the flow control can be implemented. In the next two

sections we describe our flow control method for both crossbar switching strategies.

4.3.1 TBFC with Flit-Level Switching

Figure 4.1 shows a traditional credit-based flow control implementation for a pair of

output-input ports. Flit-level crossbar switching is assumed. At each output port, the

router needs some control information. Indeed, for each VC we need: one field for the

number of credits available (CRED), one field to determine whether the VC is being

used or not (USED), and the input port and VC that has this VC granted (stablishes a

link between the input port and the granted VC).

When a packet header is routed, the router sends a request to the target output port.

At that port, the virtual channel allocator (VA) checks whether there is any free VC

that has enough credits at the next router for the whole packet (we assume virtual cut-

through switching). Then, the router arbitrates (in round-robin fashion) among all the

requests and assigns the VC to the winning request. It stores the winning input port

and virtual channel in the control info structure associated to the VC. It also decrements

the available credits in the control info associated to the VC.

At Switch Allocation (SA) stage, the arbiter selects the input port that will send a flit

through the output port the next cycle. SA selects this port between the input ports

assigned to this output port by the VA stage. The arbiter rotates the priorities whenever

an input wins the access, thus implementing flit-level crossbar switching. The router
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Figure 4.2: TBFC flow control assuming flit-level crossbar switching.

sends the flit together with the VC ID to the next router. The next router uses the VC

ID to demultiplex and allocate the flit into the correct VC. When a tail flit is forwarded

the VC is freed and can be assigned again to a new packet header.

At the input port, when one flit is forwarded, the Flow Control Logic (FCLogic) sends

a credit back to the upstream router. To do this, the router needs at least log2 (V)+1

wires to indicate the VC that will receive the credit (signals VC ), where V is the

number of virtual channels at each input port. It also sends the control signal CRED.

Upon reception, the credit counter associated with the VC is incremented.

Figure 4.2 shows TBFC when applied to flit-level crossbar switching. The first difference

between the traditional flow control and TBFC is the flow control information structure.

TBFC adds two new fields per output port: FREE field, which accounts for the number

of available VCs, and TYPE field, which accounts for the number of packets stored at

the input port labeled with a particular type (we will later describe the type usage in

the routing algorithm). Then, for each VC, the control info keeps the CRED counter

and the associated info for the assigned input port and VC. However, the USED field is

removed.

Contrary to the baseline flow control, the rules (at VA stage) to assign a VC to an

incoming request are different. An improvement in the VC selection was proposed in

[62]. In our design, the VA stage checks only the number of free VCs and the number of

labelled packets (TYPE field) (more details described in the next section). When one

request wins the output VC, the input port of this request is assigned to the output

VC. The winning input port and input VC are associated to the control info for the VC.

The number of FREE VCs is decremented by one and, if the packet sent downstream is

labelled, then the TYPE field is incremented by one.

At SA stage, the router selects the input port to pass through the output port and

forwards the flit to the next router. At crossbar stage, the router does not send the

VC selected. Instead, it performs a packet → ID mapping (ML block) to assign one

identifier to the packet. When a head flit is sent, the router sends also the type of the

packet. The identifier, the packet type and the flit are sent through the link to the next
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router. All the flits of the same packet will use the same identifier and only the packet

header will contain the type field.

When the downstream router receives the head flit, the packet type and the identifier, a

new mapping is performed (ML block). In this case, an ID → V C mapping is performed,

thus allocating the new packet in one free VC. After the head flit, all flits that arrive

with the same identifier are kept in the same VC through the mapping logic.

Each input VC has one bit associated, referred to as Last token (LT). When one head

flit arrives and is allocated in one VC, this VC sets its LT bit to one and the LT bit

of the other VC is reset to 0.1 This field is used to guarantee in-order delivery of

packets. Indeed, if two VCs at the same input port have a header packet with the same

destination, then the oldest one (the one with LT bit set to zero) is the one to access

the VA stage. Otherwise, both packets may access the VA stage. Notice that if the

routing algorithm implemented on top of the flow control allows out-of-order delivery,

then the LT bit and its associated logic can be removed. This will be the case of the

SUR algorithm. In addition, each input VC will contain a TYPE bit which will indicate

if the packet allocated on that VC is labelled or not. This bit is updated with the type

information received when a header flit arrives.

Whenever a head flit is sent downstream, the TYPE bit is transmitted upstream. Upon

reception, the upstream switch decreases the TYPE counter. In any case, the FREE

field is increased by one. Notice also that the CRED field is still used in TBFC. This

is needed as we are assuming flit-level crossbar switching, which may provoke different

reception and transmission rates at the input ports.

4.3.2 TBFC with Packet-Level Crossbar Switching

Now, we focus on the TBFC mechanism when packet-level crossbar switching is enabled.

Notice that in this case packets will not be mixed in the crossbar. This fact, together

with the VCT switching we assume will guarantee that reception and transmission rates

of packets at the input ports will be equal. This means that whenever a packet header

wins the access to the crossbar, the whole packet can be transmitted and will not stop

its transmission until reception at the downstream router. This fact simplifies greatly

the TBFC mechanism, as we will see.

Figure 4.3 shows the TBFC mechanisms with packet-level crossbar switching. The first

thing to notice is the simplification of the control structures. Now, we do not need

credits anymore and we only need to keep which input port and VC got access to the

VCs downstream through an output port. In particular, the FREE and TYPE fields

1If the router has more than 2 VCs, the LT field will need log2 (V) bits and will be updated following
an algorithm similar to the ones used in caches with Least Recently Used (LRU) replacement policies.
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Figure 4.3: TBFC flow control assuming packet-level crossbar switching.

are still used. Also, the mapping logic blocks are removed. Indeed, when a packet gets

access to the output port will be transmitted uninterruptedly.

The VA stage is not modified as it takes into account only the number of free VCs

(FREE field) and number of packets labelled at the downstream router (TYPE field).

The SA stage is also simplified since there is not flit multiplexing at the output. The SA

stage needs only to arbitrate among competing packets but must keep the token priority

fixed until the packet’s tail leaves the router. This guarantees no multiplexing at the

crossbar.

At the downstream input port side the logic is also simplified. There is no ML logic and

the FCLogic only sends back upstream the type of the packet that just started to leave

the input port. LT bits are still used if in-order delivery is needed to be guaranteed and

the type field per VC is needed to remember whether the packet in the VC is labeled or

not.

4.4 Safe/Unsafe Routing Algorithm

In this section we present the new routing algorithm adapted to the TBFC strategy.

Each input port contains two VCs, while each VC is assigned a buffer to keep the whole

packet. The SUR algorithm is fully adaptive and relies on an escape path to prevent

deadlocks. The underline routing algorithm to implement this escape path is XY. The

algorithm can work either on routers using flit-level crossbar switching or packet-level

crossbar switching. SUR works on n-dimensional meshes and n-dimensional tori.

TBFC enables packet labeling and exposes this information to the routing stage. In our

case, the SUR algorithm labels packets as safe or unsafe. Packets are labeled when they

are sent to a downstream router as follows:

• In an n-dimensional mesh a packet is delivered and kept in the next router as a

safe packet if the next hop conforms to the baseline routing algorithm. Otherwise,

the packet is labeled as unsafe.
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• In an n-dimensional torus a packet is delivered and labeled in the next router as

safe if one of the following conditions is met:

– The next hop of the packet is to traverse a wraparound link along dimension

d, and the packet does not need to traverse a wraparound link with a lower

dimension than d.

– The packet does not need to traverse any wraparound link from the current

router to the destination and the next hop conforms to the baseline routing.

If any of these two conditions is not met, then, the packet is delivered and labeled

as unsafe packet.

Input:
The number of free VCs in the downstream node, f ;
The number of safe packets in the downstream node, s;

Output:
Whether the packet can route to the downstream node;

1: if f > 1 then
2: return true;
3: end if
4: if f = 1 and s ≥ 1 then
5: return true;
6: end if
7: if f = 1 and s = 0 then
8: and the packet will be delivered and labeled as a safe packet in the next router
9: return true;

10: end if
11: return false;

Algorithm 4: check-port(f,s)

With this classification, the routing algorithm will decide which outputs ports are eligible

for packets. In detail, output port along the minimal paths to destination will be eligible.

Safe packets will be routed without any restriction and unsafe packets will be routed

only in some particular conditions. To assist this routing algorithm we define a check port

function suitable for meshes and tori. Algorithm 4 show the function check-port(f ,s).

This function avoids filling any input port with only unsafe packets. It checks, for a

given input port, the number of free VCs (f) and safe packets (s) as follows:

• f > 1, the packet can be delivered because there is more than one free VC in the

input port at the next router.

• f = 1 and s > 0, the packet can be delivered because there is at least one safe

packet in the next router.
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• f = 1 and s = 0, the packet can be delivered only if the packet is safe at the next

router; otherwise, the packet is blocked or takes another output port.

• f = 0, the packet is blocked or takes another output port.

Input:
coordinates of the current node C : (c1, c2),
coordinates of the destination D : (d1, d2),
free buffers: (f1−,f1+, f2−, f2+),
safe packets: (s1−, s1+, s2−, s2+);

Output:
selected output channel;

1: S=0;ch=null;
2: if C == D1 then
3: ch=internal; return true;
4: end if
5: for i == 1 to 2 do
6: if di − ci > 0 and check − port(fi+, si+) then
7: S =← S ∪ {ci+};
8: end if
9: if 0 > di − ci and check-port(fi−, si−) then

10: S ← S ∪ {ci−}.
11: end if
12: end for
13: if S 6= ∅ then
14: ch = select(S);
15: end if
16: if if S = ∅ then
17: ch = null;
18: end if

Algorithm 5: safe-unsafe-2D-meshes

The proposed fully adaptive routing algorithm in 2-D mesh is shown in Alg. 5, where

fi+, si+ represent the number of free VCs and safe packets in the input port in the

neighbor router attached to the current node C along dimension i in the positive di-

rection, respectively. Similarly, fi− and si− represent the number of free VCs and safe

packets in the input port along dimension i in the negative direction, respectively. The

algorithm takes as inputs the coordinates of the current and destination nodes, number

of free slot and number of safe packets of all neighboring input ports. The available

channel set and the selected output channel are initialized to ∅ and null, respectively.

If the current node is the destination, the internal channel is selected to consume the

packet. Otherwise, if the offset along dimension i (dimensions 1 and 2 in Alg. 5) is

greater than 0 and check-port(fi+,si+) returns a true value, then the packet can be

delivered along a ci+ channel. If the offset along dimension i is less than 0 and check-

port(fi-,si-) returns a true value, the packet can be delivered via a ci− channel. The
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check-port(fi,si) function allows to add the channel ci+ or ci− to S if the packet can

advance along dimension i.

Input:
coordinates of the current node C : (c1, c2),
coordinates of the destination D : (d1, d2),
free buffers: (f1−,f1+, f2−, f2+),
safe packets: (s1−, s1+, s2−, s2+);

Output:
selected output channel;

1: S=0;ch=null;
2: if C == D1 then
3: ch=internal; return true;
4: end if
5: for i == 1 to 2 do
6: if 0 < di − ci ≤ k/2 or di − ci < −k/2 and check − port(fi+, si+) then
7: S =← S ∪ {ci+};
8: end if
9: if di − ci > k/2 or −k/2 ≤ di − ci < 0 and check-port(fi−,si−) then

10: S ← S ∪ {ci−}.
11: end if
12: end for
13: if S 6= ∅ then
14: ch = select(S);
15: end if
16: if if S = ∅ then
17: ch = null;
18: end if

Algorithm 6: safe-unsafe-2D-torus

Alg. 6 presents the fully adaptive routing algorithm in 2-D torus. The difference lays

in the computation of the direction to take in each dimension. Also, the check-port

function must take into account the additional rule to define a packet as unsafe based

on the crossing of wraparound links (see previous conditions).

Finally, the proposed routing algorithm randomly selects an output channel from S if it

is not null. Otherwise, the packet is blocked and routed in the next cycle.

4.4.1 Deadlock-freedom property

In this subsection we demonstrate that the SUR algorithm is deadlock-free. We deduce

this property using a contradiction approach. We first focus on 2-D meshes and then

extended it to 2-D torus.

Let us assume we have a cycle in a 2D mesh. Such a cycle will have dependencies

between x→ y and y → x channels. x→ y dependencies are allowed by the underlying
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routing algorithms but y → x dependencies are not allowed. Packets stored in an Y

input port will be labeled as unsafe as they are requesting an X output port. In order

to create deadlock, packets inside a cycle should not advance. This means either all the

buffers are full in the cycle or the routing restrictions do not allow packets to advance.

The first condition does not hold since it would mean that in the Y input port both VCs

are storing unsafe packets. This can not happen since unsafe packets can be forwarded

only if both VCs are available, or one VC is available and the other VC is holding a safe

packet. The second condition (the routing restrictions do not allow packets to advance)

does not apply neither. Indeed, if one packet is at a Y input port requesting an X

output port the associated X input port will store either one, or two safe packets, or

will be completely empty. In the case of storing one safe packet or being empty the

unsafe packet at input Y can advance, thus no deadlock. In case of storing two safe

packets, both can advance since they will always have in front of them safe packets,

which potentially will move as they are using acyclic paths (conformed by safe packets

using the underlying deadlock-free baseline routing algorithm). Therefore, not blocking

packets in the cycle. In other words, safe packets, stored through deadlock free paths

have always a reserved VC, thus always advancing. Unsafe packets can cross cycles but

never filling up input buffer, thus avoiding deadlocks. Therefore, for any potential cycle,

unsafe packets will never take all resources in an input buffer. They, in turn, will also

advance when both VCs are available to them.

For the n-D torus case we follow a similar approach. In this case wraparound links take

also an important role.

If the packet does not need to traverse any wraparound link, the packet follows the

behaviour described above. So, the packet will not create a deadlock. If the packet

is stored in a router connected to a wraparound link, then if the packet requests the

wraparound link with the lowest dimension that the packet needs to traverse, the packet

is following the baseline routing. This means that the packet will be delivered and

labeled as safe. On the other hand, if the packet requests an output port connected to a

wraparound link and the dimension of this wraparound link is not the lowest dimension

that the packet needs to cross, then the packet will be delivered and labeled as unsafe.

As we have shown before this happens only if the next input port is empty or has one

free VC and the packet stored in the other is safe. So,input buffers will never fill with

unsafe packets. In other words, in the case of 2D torus, all the input buffers will always

allow safe packets to advance.

Let us expose an example in Figure 4.4. In this 1-D torus all routers want to send

messages to a router located at two hops to their right. R0 keeps in the input port two

packets from R4 with destination node R1. These two packets are safe because they

arrived from to R4 crossing the wraparound link with the lowest dimension required.

R1 contains two packets with destination R2 that came from R0. These two packets are

safe because they do not require to cross any wraparound link and the packets follow
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Figure 4.4: Example of deadlock-freedomness in a 1D ring network.

t=1 Free= 1  Safe=1
t=3 Free= 0  Safe=1

P1=safe, Id=1
P2=unsafe, Id=0

VC0= ---, Id= -
VC1= ---, Id= -

t=1

t=3 

t=6 Free= 0  Safe=1

P1=safe, Id=1
P2=unsafe, Id=0

VC0= P1, Id= 1
VC1= P2, Id= 0

t=6

t=7 Free= 0  Safe=1

P3=safe, Id=1
P2=unsafe, Id=0

VC0= P1, Id= 1
VC1= P2, Id= 0

t=7

t=8 Free= 0  Safe=1

P3=safe, Id=1
P2=unsafe, Id=0

VC0= ---, Id= -
VC1= P2, Id= 0

t=9

t=9 Free= 0  Safe=1

P3=safe, Id=1
P2=unsafe, Id=0

VC0= P3, Id= 1
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t=10

t=4 Free= 0  Safe=1

P1=safe, Id=1
P2=unsafe, Id=0

VC0= P1, Id= 1
VC1= ---, Id= -

t=4

Figure 4.5: Logic example at the router’s input port.

the baseline routing. R2 and R3 have the same situation as R1. R4 has one packet

with destination to R0, this packet is unsafe because the packet comes from a router not

connected to the wraparound link and needs to traverse the wraparound link to reaches

its destination node. Therefore, R3 will not send another unsafe packet to R4. Then all

the packets can advance because the packets at R3 can be forwarded and consumed in

R4.

4.4.2 TBFC+SUR Example

Figure 4.5 shows an example of TBFC+SUR. Suppose two routers, one above the other.

The north input port of the router located below is empty, so the values stored in the

fields FREE and SAFE at the output port control info are 2 and 0 at router located

above, respectively. Also let us assume 1 cycle of fly link. At time t=1 the header flit

of the packet one (P1) with destination located at south, in the figure the blue packet,

arrives to VASA stage. The arbiter selects this packet to be forwarded in the next cycle

through the south output port, as this packet will be forwarded following the baseline

routing this packet will sent as safe packet. The output port control is updated, FREE

is decremented in 1 and SAFE is increased in 1 because the packet will be forwarded

as safe packet. At t=2 the header flit is in the crossbar stage then the mapping logic

calculates the ID and the router send this ID, the packet type (safe) and the flit to the

next router. In this cycle the next flit of the P1 is setting to be forwarded in the next

cycle. At time t=3 a new header flit arrives to VASA stage, in this case the destination
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of this new packet (P2),red packet, is located at south-east. The arbiter in VASA checks

if this packet could win the output port, for do this the function check-port() are called.

Using the south port P2 will be delivered as unsafe packet because this way do not

follow the baseline routing. However, the field safe is 1, this means that in the next

input port has one safe packet, so a unsafe packet can be forwarded. Then, the arbiter

selects this new packet to be forwarded in the next cycle through the south output port.

The output port control is updated, Free is decremented in 1, in this case the SAFE

field is not incremented because the router set the packet type as unsafe.

At t=4, the header flit of P1 arrives to the input port with identifier equal to 1. Both

VCs are empty, and the local variables to assign the virtual channel to an identifier are

empty also. Then, the mapping logic allocates the flit to V C0, and keeps the identifier

and the packet type in the local variable. P2 is en the crossbar stage and follow same

procedure as P1. At time t=5 a body flit of P1 with identifier 1 arrives. The mapping

logic knows where it has to allocate the flit and puts it in V C0. In the next cycle, t=6,

packet header of P2 arrives to the input port with identifier equal to 0, then the mapping

logic allocates the new message at V C1 and keeps the identifier in the local variable.

Also the packet P1 arrives to VASA stage in the second router and win the output. So

the router send back the flow control information, VC FREE and the type of the packet

stored in the local variable. And in the router above, two news packets arrives at the

VASA stage, but the function check-port() don’t allow to win this output port. Then,

the tail flit of the packet P1 are selected to be forwarded in the next cycle.

At time t=7 the information of the flow control is received, so the router updates the

output port control information, increasing FREE in 1 and decreasing SAFE in 1. This

means that a new packet could be forwarded through of this output port. Packets P3

and P4 are waiting to be forwarded. P3 has the destination at south, and P4 at south-

east. This means that the function check-port allow to P3 to be forwarded and block P4,

because if P4 is forwarded both packets in the input port will be unsafe, and this could

produce deadlock. Then P3 is selected to be forwarded en the next cycle as safe packet.

At time t=9, the tail of the packet P1 arrives at the input port, as the header have been

forwarded, then the mapping logic cleans the identifier from the local variable. If at this

point a new header flit arrives, this VC can be allocated again. In the router located

above, the packet P3 is at crossbar stage, and is forwarded as we explain above. At

time t=10, the flit header of P3 reaches the input port and the mapping logic allocates

this new message to V C0, keeping in the local variable the identifier and the type of the

message.
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4.5 Performance Evaluation

Now, in this section, we perform an evaluation and analysis of our proposal. In partic-

ular, we first describe the analysis tools and simulation parameters. Then, we show the

performance results for TBFC and SUR. We analyze two scenarios: a 2D mesh with 64

routers and a 2D Torus with 64 routers.

4.5.1 Analysis Tools and Parameters

The tool we use for this analysis is an event-driven cycle-accurate simulator coded in

C++. The simulator allows to model any network topology and router architecture.

We modeled a 4-stage pipelined router with VCs and flit-level crossbar switching. Table

4.1 shows the simulation parameters used for the 2D mesh scenario. Transient and

permanent messages relate to the number of messages processed until the simulator

enters the permanent state and finishes the simulation, respectively. In this scenario,

we analyze three routing algorithms: deterministic routing (XY), fully adaptive routing

(FA) using the typical credit-based flow control and SUR routing (SUR) with TBFC.

Parameter FA, SUR 2VC, XY

Network topology 4x4 mesh

VCs at each input port 2

Message size, Flit size 80 bytes, 4 bytes

Queue size 20 flits

Fly link 1 cycle

Transient, Permanent msgs 10000, 10000

Table 4.1: Parameters and values used for the experiments in 2D mesh.

For the torus scenario, the same parameters were used except for the number of VCs

and queue size at each input port. These parameters depend on the routing algorithm

and flow control scheme used. Table 4.2 shows the values in the torus scenario. In torus

scenario we analyze five routing algorithms: deterministic routing (XY), fully adaptive

with one adaptive channel and two escape channels (FA), fully adaptive with the bubble

flow control [40] (FA bubble) using one adaptive channel and one escape channel with

double size (to implement the bubble). Also, we analyze SUR with two and three virtual

channels (SUR 2VC and SUR 3VC). These configurations (except SUR 3VC) are the

ones with minimum buffer requirements to become deadlock-free and to guarantee VCT

switching.

We evaluate six traffic distributions: bit-complement, bit-reversal, transpose, perfect

shuffle, uniform and hotspot. For the sake of space we only show four of them: bit-

reversal, transpose, uniform, and hotspot.2 In bit-reversal traffic, the node with binary

2We achieved similar conclusions with the not-shown traffic distributions.
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Routing VCs Queue Size

FA Bubble 2 20 flits adap, 40 flits esc

FA 3 20 flits

SUR 2VC 2 20 flits

SUR 3VC 3 20 flits

XY 2 20 flits

Table 4.2: Parameters and values used for the experiments in 2D torus.

(a) latency bit rever-
sal. (b) latency transpose. (c) latency uniform. (d) latency hotspot.

(e) throughput bit re-
versal.

(f) throughput trans-
pose.

(g) throughput uni-
form.

(h) throughput
hotspot.

Figure 4.6: Performance evaluation in 8× 8 mesh networks.

value an−1, an−2,..., a1, a0 communicates with node a0, a1,..., an−2, an−1. For transpose

traffic with binary value an−1, an−2,..., a1, a0 sends packets to node an/2−1,... a0, an−1,

....an/2. Finally, in hotspot traffic, ten randomly chosen nodes send 20% of their traffic

to an specific node and the rest of traffic to any other node with equal probability. The

rest of nodes keep injecting using a random uniform distribution.

4.5.2 Performance Result.

Figure 4.6 presents the results for the 2D mesh scenario. Figures 4.6a and 4.6e show

the performance results for the bit-reversal traffic. In this scenario, our method reaches

similar results on throughput than the ones achieved by FA. However, SUR improves

latency close to saturation, when compared to FA algorithm. In any case, both adaptive

algorithms (SUR and FA) outperform XY. With transpose traffic, Figures 4.6b and 4.6f,

SUR outperforms FA by about 10% in network throughput. Latency is also improved

by SUR when working close to saturation. For the other traffic distributions (uniform

and hotspot; rest of Figure 4.6) we see similar results for the three routing algorithms.

SUR, FA, and XY achieve similar network throughput. However, SUR latency is slightly

improved close to network saturation.
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(a) latency bit rever-
sal. (b) latency transpose. (c) latency uniform. (d) latency hotspot.

(e) throughput bit re-
versal.

(f) throughput trans-
pose.

(g) throughput uni-
form.

(h) throughput
hotspot.

Figure 4.7: Performance evaluation in 8× 8 torus networks.
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Figure 4.8: 2D Mesh Example.

Next, we analyze the results for the torus scenario. In this case, differences are much

more significant. Figures 4.7a and 4.7e show the performance for bit-reversal traffic.

SUR 2VC improves network latency achieved by FA and FA bubble. This is achieved

by using less buffer resources (2VCs each with 20 slots, instead of either 3 VCs each

with 20 slots or 2 VCs one with 20 slots and the other with 40 slots). Moreover, for

the same number of resources, SUR 3VC works much better than FA and FA bubble on

both, network latency and throughput (9% better). Also, in transpose traffic, Figures

4.7b and 4.7f, SUR routing performs much better than FA and FA bubble. In this case,

both versions of SUR achieve a boost in throughput of 20% when compared to FA. Also

both SUR versions perform better on network flit latency.

Finally, improvements are also achieved in uniform and hotspot. Figures 4.7c and 4.7g

present the performance comparison for uniform traffic. SUR 2VC and FA perform

similar on latency and throughput. SUR 3VC has the best performance on network flit

latency and throughput (14% better than FA). With hotspot traffic, Figures 4.7d and

4.7h illustrate as SUR 3VC works better than FA and FA bubble on network flit latency,

and all routing algorithms have similar throughput.
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(a) SUR Scalability. (b) VC utilization.

Figure 4.9: Scalability and VC utilization.

As we have seen in the results, SUR algorithm (together with the TBFC strategy)

improve network throughput and latency over FA. In Figure 4.8 we show an example

that highlights why we are achieving such improvement over FA. The Figure represents

a 2x2 mesh. Assume that R0 wants to send a packet to R3. In FA, R0 can send the

packet to R1 or R2. In case of R1 it can send the packet adaptively or through the

escape channel (conforming to XY routing), and in case of R2 can send the packet only

via the adaptive channel. Therefore, it can allocate this packet only in two VCs at R1

or in one VC in R2. The default fully routing algorithm (which promotes adaptive VCs

over escape VCs) would then use only two possible VCs (one in each router). In case

of an optimized FA algorithm (which gives the same priorities to adaptive and escape

VCs), three VCs can be used (two in R1 and one in R2). However, in SUR algorithm

safe packets can be allocated in any of the four VCs. Even unsafe packets can use any

of the four VCs (taking into account there is an empty VC in the input port router). So

SUR has more options to allocate the packet, allowing SUR to improve the performances

obtained by FA.

Figure 4.9a shows how the benefits of TBFC+SUR scale with the number of VC.

TBFC+SUR with one VC less than FA achieves the same behaviour on throughput.

As can be appreciated TBFC+SUR with 3VC achieves the same maximum throughput

as FA with 4 VC, and the same for TBFC+SUR with 4 VC compared with FA 5VC.

Figure 4.9b show the VC utilization at the mesh scenario, with uniform traffic. SUR

with low traffic achieves a balanced use of the resources. However FA use mainly the

VC0, the adaptive channel.

4.6 Related Work

In this section we describe relevant previous work about flow control and adaptive routing

algorithms in NoCs. In the recent years, a lot of papers about flow control and routing

for NoCs have been presented. Here, we introduce some of them.
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Tang in [24] proposes a flow control in which they limit the injection rate dynamically

in the network. This flow control strategy can be only used in meshes. Nousias in [25]

proposed an adaptive rate control strategy in wormhole switching with virtual channels.

When the contention changes, the destination node sends a signal to the source node to

regulate the injection rate accordingly.

Avasare in [26] proposed a centralized end-to-end flow control for packet switching.

This flow control requires two networks, the control network and the transmission data

network. In [18], flit reservation control is presented. In this flow control strategy, the

flit control traverses the network in advance of data flits reserving the virtual channels.

After that the packet is sent to the destination node. In all the previous works, either

congestion is addressed or end-to-end flow control. Also, additional structures (parallel

networks) are needed. Dally and Aoki [30] described the dynamic misrouting algorithm

by tagging packets based on how many misroutes they have incurred and allow any

packet to request any VC as long as its not waiting for a packet with a lower dimensional

reversal number. Glass and Ni in [31] proposed turn model for designing partially

adaptive deadlock-free algorithms in a mesh. The west-first routing algorithm in a 2D

mesh traverses the west hops first, if necessary, and then adaptively south, north and

east. The negative-first routing (NFR) algorithm in a 2D mesh routes a packet first

adaptively west and south, and then adaptively east and north. Chiu [32] proposed

the improved partially adaptive routing algorithm odd-even turn model by constraining

turns, that can introduce deadlocks, to occur in the same row or column. Wu [33]

proposed a fault-tolerant odd-even turn model based routing algorithm for 2D meshes.

Dally and Seitz in [30] presented the sufficient and necessary condition for deadlock-free

routing in an interconnection network. Several routing algorithms were proposed for

meshes and tori [32, 34, 35]. Load-balanced, non-minimal adaptive routing algorithms

for tori were proposed by Singh, et al. [35, 36] with three virtual channels. The method

in [37] presented an adaptive minimal deadlock-free routing algorithm for 2D tori. How-

ever, the number of virtual channels required by the method was not well-controlled

in [37].

Duato [38] proposed a necessary and sufficient condition for deadlock-free adaptive rout-

ing in WH-switched networks. Methodologies for design of deadlock-free adaptive rout-

ing algorithms are also presented in [39]. The adaptive bubble router [40] for VCT-

switched torus is based on Duato’s protocol. It requires an escape channel applied

dimension-order routing (DOR) and an adaptive channel. A flow control function is

added to the escape channel in order to avoid deadlocks.

In NoCs, Marculescu in [41] proposed a new routing technique (DyDA) which switches

between deterministic and adaptive routing based on the network’s congestion condi-

tions. When the network is not congested DyDA router works with deterministic routing.

When the network becomes congested, then DyDA router works with adaptive routing.
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Ebrahimi in [42] proposed a new fully routing algorithm (DyXYZ) for 3D NoCs. In this

new routing the congestion information is used as a congestion metric to select the best

output port. Ma, et al. in [27] proposed a hybrid wormhole/VCT switching technique

to reduce buffering while improving the performance of fully adaptive routing. Ma, et

al. [28] proposed a flit bubble flow control scheme by refining the baseline bubble flo

control scheme. Chen, et al. [29] proposed worm bubble flow control (WBFC), which

reduces the buffer requirements and improves buffer utilization in torus networks. How-

ever, the methods in [27–29] still needs to partition virtual channels into adaptive and

escape channels.

The previous flow control methods need more information control than our proposal.

Some of them use circuit switching [26], so they need two different networks. Therefore,

these flow control strategies use more resources than our proposal. Also, our proposal

does not limit the injection rate, as happens in [24]. Finally, the SUR algorithm with only

two virtual channels can provide fully adaptive routing for TBFC. Two virtual channels

are not classified into escape and adaptive channels. Therefore, the buffer resources can

be used more equally. Indeed, none of previous proposals focused on balancing buffer

resources by co-designing the flow control and routing algorithm.

Kumar, et al. [62] present a detailed design of a network-on-chip router targeted at a 36-

core shared-memory CMP system in 65nm technology with an aggressive clock frequency

of 3.6GHz, thus posing tough design challenges that led to several unique circuit and

microarchitectural innovations and design choices.

4.7 Conclusion

This paper presents a novel flow control Type-Based Flow-Control (TBFC) with Safe/Un-

safe routing algorithm (SUR) which allows an optimized balanced buffer utilization. This

is achieved because our proposal does not differentiate between VCs and does not di-

vide the virtual channels into adaptive and escape channels. The combination of TBFC

and SUR allows us to reduce the number of VCs required to implement fully adaptive

routing algorithms. Sufficient simulation results were presented by comparison with the

previous methods. The results showed that the proposed TBFC with SUR algorithm

outperform better than the previous methods under different communication patterns.
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5.1 Abstract

Interconnection networks are a critical component in most modern systems nowadays.

Both off-chip networks, in HPC systems, data centers, and cloud servers, and on-chip net-

works, in chip multiprocessors (CMPs) and multiprocessors system-on-chip (MPSoCs),

play an increasing role as their performance is vital for the performance of the whole

system. One of the key components of any interconnect is the routing algorithm, which

steers packets through the network. Adaptive routing algorithms have demonstrated

their superior performance by maximizing network resources utilization. However, as

systems increase in size (both in off-chip and on-chip), new problems emerge. One of

them is congestion where traffic jams inside the network lead to low throughput and high

packet latency, significantly impacting overall system performance. We propose a mech-

anism to eradicate this phenomena and to allow adaptive routing algorithms to achieve

the expected performance even in the presence of congestion situations. End-Point Con-

gestion Filter, EPC, detects congestion formed at the end-points of the network, and

prevents the congestion from spreading through the network. Basically, EPC disables

adaptivity in congested packets. Preliminary results for mid and high congestion situa-

tions show EPC is able to totally decouple congestion from routing.

5.2 Introduction

Congestion is one of the complex challenges in interconnection networks. It occurs when

network resources are oversubscribed and network bandwidth is lower than the requested

one. As network size increases, this effect is more apparent and problematic, both in

off-chip (data centers, HPC installations, cloud servers), and in on-chip interconnects

(chip multiprocessor systems; CMPs, and multiprocessor systems-on-chip; MPSoCs).

A congested situation degrades performance due to its spread over the network. Indeed,

the root cause of performance degradation is the Head-of-Line (HoL) blocking caused

by congested packets on non-congested ones. Packets passing through congested spots

block at the head of queues, keeping resources and impeding packets not passing through

those spots from advancing.

Although there are many techniques to solve the congestion problem (mainly by injection

throttling or resources over provisioning), or the HoL blocking problem (resources over

provisioning), they either require sophisticated implementations or exhibit reaction times

dependent of network size (see Section 5.5 for an overview).

0This work was supported by the Spanish Ministerio de Economı́a y Competitividad (MINECO)
and by FEDER funds under Grant TIN2012-38341-C04-01 and by Ayudas para Primeros Proyectos de
Investigación from Universitat Politècnica de València under grant ref. 2370.
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The routing algorithm is one of the key components in any interconnect. Indeed, it

steers packets towards their destination and thus, can be used to avoid, or at least

minimize, the congestion effects by choosing alternative congestion-free paths. Indeed,

adaptive routing algorithms perform better than deterministic ones as they can adapt

to the current network situations thus, avoiding congested spots. However, as shown in

this paper, when congestion is severe, adaptive routing algorithms also help in spreading

congestion, thus worsening the congestion problem and leading to low performance.

This paper identifies this problem and provides a compact and simple solution. A

congestion filter is proposed to be used together with the adaptive routing algorithm.

The filter, referred to as End-Point Congestion Filter (EPC), prevents congested packets

from spreading through the network. The filter disables temporarily adaptivity for

those packets that participate in a congestion situation. By doing this, congestion is

prevented from spreading and taking much network resources, thus allowing the rest

of non-congested packets to adapt and avoid congested ones. Results show a total

decoupling of congestion from adaptive routing, thus guaranteeing no interference on

network and system performance. Congested traffic can not be improved due to an

excess of resources demand.

The paper is organized as follows. In Sect. 5.3 EPC is described. In Sect. 5.4 evaluation

results are shown. Then, Sect. 5.5 describes previous related works. The paper concludes

in Sect. 5.6 with conclusions and future work.

5.3 EPC Filter

The EPC filter works as follows. When the router has a packet (pa) to forward, it

checks whether the packet potentially contributes to a congestion situation. If the router

recently forwarded a packet (pb) with the same destination, then pa’s adaptivity is

forbidden until pb makes progress at the downstream router. Otherwise pa is forwarded

using the adaptiveness capability of the routing algorithm. pb moving is a clear indication

that packets towards that destination are not building a congestion situation. Thus, EPC

enables again adaptivity for pa. Notice that pa, while its adaptiveness is disabled, may

potentially take the same port used by pb.

Fig. 5.1 shows the pipeline router architecture with the EPC logic. In RT, the router

keeps the requested outputs following the fully adaptive routing algorithm [63]. Output

port IDs (OPs) and destination ID (dst) are kept in the Control Info. In VA, the router

allocates the resources (VC) to the requesting flits. In SA, the arbiter selects which

input port is selected at each cycle to forward a flit through an output port. Both

stages, VA and SA, are arbitrated following a round robin strategy (RR). A 3-stage

arbiter (request, grant, accept) is implemented and VA and SA stages run in parallel.
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Figure 5.1: Baseline router architecture including EPC.

Output port selection is made on buffer occupancy. The crossbar is multiplexed (only

one flit can access the crossbar at a time from each input port). Flit multiplexing is

allowed (also known as wormhole flow control (WH) [64]). The router is implemented

with credit flow control and Virtual Cut-Through (VCT). Notice that the mechanism

can also be used in a WH network.

EPC is implemented in VA at each output port VC (Fig. 5.2a) and has to keep some info

(Fig. 5.2b): the number of available credits (cred) located at the control information,

the destination (dst) of last forwarded packet, and number of credits to wait in order to

unlock the destination (wcred). When a head flit arrives to VA, it provides the OPs and

the dst of the packet from routing control info. Then, EPC matches the dst with the

one located at the output port control info with a non-zero wcred value. If there is no

match, the flit accesses VA as usual. Otherwise, it will wait for the next cycle. To do so,

the Filter in x signals are sent back to the input ports and they disable the generation

of accept signals in the third stage of the arbiter.

When the flit header wins one VC, the router sets the dst and wcred registers at the

output port information accordingly. In dst the router sets the destination of the packet.

The wcred field is updated as follows: wcred=queue size-cred+1, where queue size

is the length of the queue in flits and cred is the number of credits available at the VC.

This value guarantees that whenever the header leaves the downstream router the wcred

register will reach the zero value, enabling again packet forwarding to that destination.

When a credit is received, the router updates the fields, adding 1 to cred and subtracting

1 from wcred.
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Figure 5.2: EPC and Output port control.

5.3.1 EPC Example

Fig. 5.3 shows an example of a 2 × 2 mesh assuming fully adaptive (FA) routing al-

gorithm. At t0, p0 arrives to r1 and p1 is in the RT stage both packets have the same

destination, d1. At t1, p0 is in the RT stage at r1 and p1 competes for the outputs

then p1 is forwarded. At t2, p1 has been forwarded and the filter is set with Wcred = 1

and dst = d1. This means that p0 cannot get any output port until r1 receives 1 credit

from r2. Then p0 is blocked because the filter disable the adaptivity. At the same time,

packet p2 arrives to r1 with destination d2. At t4, p2 arrives to the VA/SA stage and

wins the south output port. Finally, at t5, p2 is forwarded and r1 sets the filter in the

south output port with Wcred = 1 and dst = d2. p0 will be routed once the filter at the

east output port is removed, meaning that p1 is leaving router r2 and, thus, experiencing

no congestion.

5.3.2 EPC Application Scenario Examples

Fig. 5.4a shows an scenario in which EPC can be useful. Node D requests a cache refill

using fully adaptive routing. The node sends the requests to the four memory controllers

(MCs), and then, the MCs send data to D. In this case, when XY paths get congested,

the routing algorithm starts to use alternative paths spreading this way the congestion

over the network. With EPC, only XY paths get congested. Another useful case for
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(a) t0; p0 arrives to r1 and p1 at RT
stage with same destination d1.

(b) t1; p0 in RT and p1 at VASA stage
in r1.

(c) t2; p0 blocked and p2 arrives. (d) t=5; P2 advances.

Figure 5.3: EPC filter walk-through example.

EPC can be seen in Fig. 5.4b where bursty traffic from S to D is injected, potentially

by a multimedia application.

5.3.3 Switching, VC, and Routing Impact

The previous conditions are set for a VCT router. For a WH router those conditions

would slightly differ, being the wcred count dependent of message size instead of queue

size. Indeed, in WH what is difficult to achieve is a clear detection of the congestion

situation to disable adaptiveness. However, HOL blocking will be more pronounced due

to the typical less buffering exercised.

On the other hand, the more VCs implemented the less HOL blocking will be seen, thus

less congestion effect (making the baseline case perform better). However, if the same

amount of traffic is sent to the same destination, regardless of the number of VCs, the

same degree of congestion will be seen, thus, having the same impact on the network.

Moreover, VCs are typically used to classify traffic, thus, congestion can occur in isolated

traffic classes, at each VC. Thus, the effectiveness of EPC will be lower as network has

more buffer capacity and congestion is less severe. But for a declared congestion situation
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(a) cache refill. (b) Burst traffic.

Figure 5.4: EPC application scenarios.

EPC will help. Related to routing, EPC does not change the routing algorithm, and is

orthogonal to the number of VCs. Therefore, is orthogonal to deadlock conditions, at

network and protocol level.

EPC does not isolate congested packets in separate VCs. In the presence of several

hotspots, and two packets addressed to different hotspots reach one router, both will

be requesting the same resource (VCs) their previous counterparts (previous packets)

were using, thus, those packets will not spread congestion. Indeed, VC strategies for

congested packets are orthogonal to EPC.

5.3.4 EPC Overhead Comparison

EPC is compared against two congestion control techniques, ICARO [65] and RCA [49].

Both need more resources than EPC. ICARO needs an extra Virtual Network for bursty

traffic and a Dedicated Signaling Network to notify the hotspot situation to end nodes. In

addition, it needs at each node two vectors with length equal to the number of nodes and

some logic to manage bursty traffic. RCA needs a low bandwidth monitoring network to

propagate the congestion information. RCA routers need two extra modules per port for

aggregating and propagating the congestion information. RCA needs also Congestion

Value Registers (CVR). Notice that the notification network is not required in EPC, thus

exhibiting lower area overheads. Note that EPC just prevents congestion ramification

by the adaptive routing algorithm, thus being complementary to ICARO/RCA.
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5.4 Performance Evaluation

This section presents an evaluation and analysis of the EPC filter, first describing the

analysis tools and simulation parameters and then, analyzing the performance results

for three configurations. In the first two, we use deterministic (XY) and fully adaptive

(FA) routing algorithms, in both cases without EPC. FA uses two VCs (one for adaptive

and one for escape paths[63]). In the third one, we use FA with EPC (FA-EPC).

5.4.1 Analysis Tools and Parameters

We model a 4 × 4 mesh with 2 VCs per port, virtual cut-through switching, 4-stage

pipeline routers, and 16-byte message size, 4-byte flit size, and queues with 4 flit slots.

XY, FA and FA with EPC (FA-EPC) is modeled.

Three scenarios are analyzed. The first one (UNIF) refers when a uniform random

distribution is used and no congestion in the network is produced. The second one

(C LOW) refers when there is a small congestion spot in the network (background

traffic). In particular, eight nodes (selected randomly) send traffic to node 11 with a

30% probability (the rest of traffic is uniformly distributed). The third one (C HIGH)

refers when the hotspot probability is increased to 70%.

Results for two types of traffic are shown. The first one is for the uniform (foreground)

traffic and the second one is for the hotspot (background) traffic. For this, the first

10000 packets generated after the stable network state has been reached (after initial

100000 packets reached destination) are labelled. We take into account only those pack-

ets at reception for statistics purposes. Doing this, the traffic distribution is kept the

same both, at generation and at reception time, thus ensuring traffic distribution is not

modified by the congestion situation.

5.4.2 Performance Results

Figs. 5.5a and 5.5b show results for foreground (uniform) traffic in C LOW scenario.

End to end latency in FA-EPC is up to four times lower than the one achieved by FA. As

seen, flit latency for FA has a sharp increase around 0.3 flit/cycle/node injection rate.

This is when congestion affects the uniform traffic. Also, FA-EPC slightly improves

the results achieved by XY. However, in FA-EPC and XY, latency increases linearly

due to the increase of foreground traffic only. This difference in latency is produced

because the hotspot spreads through the network when no EPC filter is used with FA.

Regarding network throughput for uniform traffic (Fig. 5.5b), FA reaches saturation at

0.25 flits/cycle/node, whereas EPC reaches 0.32 flits/cycle/node injection rate. Notice

that even XY behaves better than FA. For the hotspot traffic (Figs. 5.5c and 5.5d)
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: EPC results. C LOW (abcd), C HIGH (ef), UNIF (gh). Uniform traffic
(abefgh), background traffic (cd).

FA-EPC keeps packet latency lower (50 percent lower) during the network congestion

situation (beyond network saturation point).

The impact of EPC in C HIGH is higher (Fig. 5.5e). Foreground end to end latency in

FA becomes up to five times higher than the one achieved by FA-EPC. FA throughput

(Fig. 5.5f) is doubled when using EPC. The hotspot traffic achieves a very similar behav-

ior. Finally, in UNIF, the EPC filter has about an 8% end to end latency overhead, as

the filter without congestion situation may also block non-congested packets temporar-

ily. Network throughput, however, is roughly the same for the different routings. This

small overhead in uniform traffic suggests us to use the EPC filter in very specialized

scenarios, and possibly dynamically.

One interesting comparison comes from Figures 5.5e and 5.5g. Comparing the latency

of background traffic for C HIGH and the packet latency for uniform traffic (without

hotspot). As shown, packet latency is very similar for both cases. This means that

congestion traffic effects are decoupled from background traffic.

5.5 Related Work

Congestion can be addressed in different ways. First, congestion avoidance techniques

guarantee congestion never builds in the network (e.g. ATM networks [44]). However,

this leads to low network throughput and utilization. The second approach, is to detect

congestion, notifying the sources, and removing the congestion by injection throttling

[45]. Although it is effective in some scenarios, effectiveness of these techniques depend

on the network bandwidth and network size as they rely on a closed control loop ap-

proach. The third approach is to attack directly to the side effects of congestion: HoL
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blocking [46]. In this case, mechanisms detect congestion and dynamically allocate new

queues to isolate congested packets. One clear example of this approach is RECN [6].

In these cases, however, the implementation overhead is non-negligible. Another ex-

ample of this approach is speculative reservation [47], which provides end to end flow

control in order to alleviate the congestion using different VCs with different priorities,

first sending the speculative packet and some flits with high priority and the rest of

the packets with low priority. VOQ solutions [48] statically separate traffic, thus may

alleviate congestion. However, they impede the use of adaptive routing. Finally, the

last approach is to use adaptive routing algorithms to circumvent congestion spots [49].

However, the effectiveness of such methods depend on the severity of congestion since the

adaptive routing algorithm may also spread congestion over the network, thus worsening

the situation. As shown, the EPC filter is a good complement to those solutions.

5.6 Conclusions

The EPC filter can help to manage and prevent spreading congestion within the network

when adaptive routing is used. A router with EPC significantly reduces network latency

and reaches higher throughput. We plant to evolve EPC as a dynamic mechanism

activated only when congestion is persistent. Also, an accurate implementation analysis

will be developed.
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• Type: Conference

• Conference: Tenth IEEE/ACM International Symposium on Networks-on-Chip

(NOCS)

• Location: Nara, Japan

• Year: 2016

• DOI: 10.1109/NOCS.2016.7579320

• URL: http://ieeexplore.ieee.org/document/7579320/

• Citation: [77]

131



Chapter 6. PROSA: Protocol-Driven NoC Architecture 132

6.1 Abstract

Nowadays chip multiprocessors tend to have an increasing number of cores, usually im-

plementing a distributed shared last level cache. The network on chip (NoC) is in charge

of interconnecting the cores, memory controller(s) and cache banks, largely impacting

memory access latency. Packet switching in usually used in NoCs, but circuit switching

may achieve better performance if the setup time of the circuit is shadowed (established

before it is needed). In this paper we propose PROSA, a novel NoC architecture to

improve memory access latency by using circuits. In PROSA, the coherence protocol

steers the circuit establishment logic in order to setup circuits before needed and only for

the time frame they are required. Also, a memory latency control unit (MLCU), imple-

mented in the memory controller, assists PROSA by computing arrival time of memory

blocks. A clustered router approach is followed where groups of routers are combined

and attached to a PROSA circuit controller. We detail all the implementation issues of

PROSA, including circuit establishment logic with acknowledgment messages, protocol

modifications, and router modifications to setup circuits when required. Results from

real applications demonstrate reduction of network flit latency by 34% which translates

into a reduction of miss load (and store) latency of 21% (in 64-core systems). PROSA

needs 9.66% more area, but reduces power by 3%.

6.2 Introduction

Chip Multiprocessor systems (CMPs) rely on networks-on-chip (NoCs) [78] to achieve

fast communication between resources, mainly processors, memory caches and mem-

ory controllers. It is by no doubt that NoCs play a vital role on CMPs performance,

mainly as they lay along the critical path of communication, and thus, affect process

communication latencies and most important, memory access latency.

During more than one decade, NoCs have been researched (not only for CMPs) with two

main goals in mind, network throughput and network latency. While network through-

put is an important aspect of the NoC, in CMPs the average load of links found for

accepted benchmarks (PARSEC, SPLASH, ...) is typically low. This means latency

becomes the significant metric when dealing with NoCs for CMP systems. Indeed, a

memory transaction is started when one processor requests a load or a write on its pri-

vate L1 data cache, and finishes when the data is delivered. The NoC is used to send

request commands and data between cache levels and the memory controller (MC).

Therefore, the NoC plays a vital role as the memory request gets blocked until data is

delivered.

0This work was supported by the Spanish Ministerio de Economı́a y Competitividad (MINECO) and
by FEDER funds under Grant TIN2015-66972-C5-1-R
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In this paper we address the issue of latency reduction of memory transactions. We

propose PROSA, a PROtocol-oriented circuit Switch Architecture, which co-designs

both the NoC and the coherence protocol and put them to play together. Our approach

enhances the NoC with a new clustered component, the PROSA controller (PC), which

is in charge of managing circuits and to resolve any possible conflict. The controller is

in charge of four NoC PROSA routers (PR) and steers their local circuits when needed.

Results show that PROSA outperforms the baseline design by reducing network latency

by about 34% on average. PROSA reduces the load and store miss latency by 21%.

PROSA correctly sets up 90% of the circuits ahead of time. The PROSA cluster takes

9.66% more area but saves more than 3% in power consumption.

PROSA differs from previous circuit-switching methods by means of the feedback pro-

vided by the coherence protocol. Although some previous works also combined protocols

and NoC designs [7, 10–12, 16], our proposal lets the coherence protocol to steer the

network in programming circuits before they are needed, hiding the set up circuit de-

lay. Moreover, PROSA does not need extra buffer resources at the router. Just a pair

of multiplexer/demultiplexer is needed on each bidirectional router port. Section 6.6

describes related work.

The rest of the paper is organized as follows. In Section 6.3, we describe and analyze

the coherence protocol. This will center our proposal and will provide justification of

its need. In Section 6.4 we describe PROSA. In Section 6.5, we provide the evaluation

and its analysis. Related work is described in Section 6.6 and the paper is concluded in

Section 6.7.

6.3 Coherence Protocol Analysis

We assume the CMP uses private L1 caches for each core and shared but distributed

L2 banks along a tile-based organization. Two memory controllers (MC) are placed on

each top corner of the system. A 4×4 mesh NoC uses a 4-stage pipelined 7-radix router

design (four ports to connect to neighbor routers and three to connect L1, L2, and MC).

The system implements the MOESI protocol [53] at L1 while at L2 blocks can be in P

(private), S (shared), C (cached), or I (Invalid) state. In C mode no L1 cache has a

copy of the block. Inclusive caches are assumed and a write back policy used. A static

mapping policy of blocks to L2 banks is assumed.

Figure 6.1 shows the simplified finite state machine (FSM) related to load and store

operations. In the figure nodes are represented by circles. The current block state is

represented with text placed just above the circle while the new state after the trans-

action is represented under the circle. Messages sent between nodes are represented by

arrows. Messages for load and store operations are combined (e.g. GETS/GETX).
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Figure 6.1: Coherence protocol transactions.

Whenever a L1 load miss occurs, a GETS message is sent to the L2 Home bank. Based

on the block state at L2 different actions are performed. If the block is in S or C state

(Figures 6.1a and 6.1c), the L2 sends the data to the L1 requestor. If the block is in P

state (Figure 6.1b), the L2 sends a forward (FWD) message to the L1 with the block and

the block state at L2 changes to S. When the FWD message arrives, the L1 cache sends

the data to the L1 requestor cache and the block state changes O. Finally, if at the L2

the block is in I state (meaning a miss occurs, Figure 6.1d), a REQ message is forwarded

to the MC. The L2 receives the data and forwards it to the L1 cache requestor. The

state of the block is set to P in the L2 and to E in the L1.

Whenever a L1 store miss occurs, a GETX message is sent to the L2 Home bank.

Similarly, if the block is in C state (Figure 6.1a), the L2 sends the data to the requestor

and changes the block state to P. A different case occurs when the block is in P state

(Figure 6.1b). The L2 sends an invalidation message (INV) to the L1 owner cache.

When the INV message arrives, the data is sent to the L1 requestor and the block

changes from E to I. When the block is in S state (Figure 6.1c), the L2 sends the data

to the L1 requestor and sends INV messages to all the L1 sharers. When each L1 sharer

receives the INV message, it sends and ACK message to the requestor and changes the

block state to I. Finally, if the block is in I state (miss) (Figure 6.1d), then a REQ

message is forwarded to the MC. Once the data is received, it is forwarded to the L1.

The block is put in P state in L2 and in M state in L1.

As we see, the protocol faces mainly four possible paths depending on the type of

operation (load/store), L1 access type (miss/hit) and L2 access (miss/hit). Whenever

a miss occurs at L1 and L2 the NoC gets involved and the memory transaction latency

is increased. Factors than may affect significantly memory latency are the distance

between the L1 requestor and the L2 Home bank, distance between the L2 Home bank

and the MC, and the network congestion.

To better analyze these effects, Figure 6.2a shows memory transactions classified by
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Figure 6.2: Memory transactions types for different SPLASH-2 applications.
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Figure 6.3: PROSA new actions triggered by the coherence protocol and circuit
establishment time line for MC transaction.

type: MC transactions (due to miss both in L1 and L2 banks), RR transactions (request-

response due to an L1 miss and an L2 hit to a clean block), FWD transactions (forward

transactions due to an L1 miss and an L2 forward to the owner) and REPL transactions

(replacement transactions due to L2 being full). Different SPLASH-2 applications are

run in a system described in Section 6.5.

First thing to note is the different amounts of transactions between applications. This

depends on the complexities of the applications. However, when we normalize the num-

bers, Figure 6.2b, we see similarities. A high percentage of REPL transactions exist

in all applications (more than 50% of the transactions). This is mainly due to the L2

cache size and the dataset of the applications and these transactions can not be pre-

dicted from the coherence protocol point of view. Noteworthy, we can observe the small

percentage of FWD transactions. All applications exhibit less than 3% of this type,

and for OCEANNC and RADIX lower than 1%. This indicates shared blocks mainly

follow a multiple sharers pattern and not a producer-consumer pattern. Now, we focus

on a more interesting transaction type. Some applications (FFT and RADIX) trigger a

large percentage of MC transactions while others (BARNES and WATERNSQ) have a

marginal percentage. This difference is due to the L2 hit rate and the memory footprint

of the application. Finally, RR transactions are highly representative in some applica-

tions (BARNES and WATERNSQ) while minimal in others (FFT). This is due again to
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the hit rate in L2 and the memory footprint. Thus, applications either have large per-

centage of MC transactions or large percentage of RR transactions. In both cases, MC

and RR, traffic needs between L2 and MC, and between L2 and L1 (requestor) can be

predicted. PROSA will exploit this fact by using circuits for MC and RR transactions.

6.4 PROSA

PROSA sets up circuits between MC-L2 and L2-L1 before they are needed. First,

we show the modifications performed in the coherence protocol and then, show the

modifications in the NoC (the PROSA controller and PROSA router) and MC (the

Memory Latency Control Unit, MLCU).

6.4.1 PROSA Coherence Protocol

In order to program circuits, we add a new action termed SETCIRC . This action involves

the source and destination of the circuit, and the time period the circuit will be needed

(Delta T). The action is triggered by the coherence protocol in MC and RR transactions

(see Figure 6.3a). In MC transactions, whenever a request is received by the MC, a

Memory Latency Control Unit (MLCU; described in Section 6.4.4) predicts when the

data will arrive to the MC. Based on this delay, the MC triggers a SETCIRC action after

a delay period (DP). DP equals to the predicted memory latency minus the circuit setup

period (CSP). The SETCIRC action sets the circuit. By the time the block arrives to

the MC the circuit has been set and is kept during the time the data will be transmitted.

When SETCIRC arrives to L2, the circuit is confirmed but in parallel a new SETCIRC

between L2 and L1 is triggered. Thus, when the data arrives to L2, after accessing the

L2, the block is sent also to L1 using a circuit. These two circuits are predictable circuits

in the sense they will be necessary regardless of network status. Figure 6.3b shows the

timing of both circuits.

In RR transactions (between L1 cache and L2), whenever a GETS/GETX message

is received, a SETCIRC action is triggered between the L2 and the L1. Again, the

connection will be set only for the time period the data is available. However, contrary

to the two previous triggered circuit scenarios (in MC transactions) now this circuit is

speculative, in the sense the circuit may not be needed if the block is in P or I state.

Therefore, for this type of circuit we will need to automatically and efficiently tear down

the circuit when transmission is finished or when it is clear the circuit is not needed.This

modification does not introduce out of order delivery, because for the same transaction

the protocol never sends two messages to the same destination.
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Figure 6.4: PROSA controller, detailed components.

6.4.2 PROSA Circuit Network

PROSA follows a clustered approach where one PROSA Controller (PC) controls four

routers (Figure 6.4a). When the SETCIRC action is triggered in an L2 or MC, a request

circuit (RC) message is forwarded to the local PC. If the RC wins the needed resources

in the cluster, it advances to the next PC along the path. If not, a NACK response

is sent to the source of the RC message. When one RC message reaches the PC that

controls the destination node and wins the resources, then an ACK response is sent back

to the source via the PC network. Note that routers are not affected by RC messages,nor

ACKs neither NACKs. All this traffic travels via PCs.

On top of Figure 6.5, we show the RC message is composed by eight fields. P refers to

the input port from which the RC arrives to the cluster. src and dst are the source and

destination for the circuit. Delta T and Delta T’ carry the number of cycles to wait

until the circuit will be established and torn down, respectively. Type carries the type of

the RC message (REQUEST, ACK, NACK). ID identifies the circuit inside the network,

and finally, GT, Golden Token, refers to the distance between src and dst. This field is

used in the PC to assign priorities between requests.

Below the RC structure, in Figure 6.5, we show the Resource Arbiter (RA) that controls

whether a specific resource can be reserved for a particular period of time. A PC consists

of several RA modules, one RA per output port in the cluster controlled by the PC. In

total, each cluster has twenty eight RA, all shown in Figure 6.6 (e.g. R0S corresponds to

the south output port at the north-west router in the cluster). An RA module arbiters

between some requests, the number of requests depends on the number of inputs ports

that have dependencies with the resource (the output port). This depends on the routing

algorithm, in our case we assume DOR routing.
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Figure 6.5: Resource.

When an RC message arrives to RA, the dst field is checked to decide whether the output

port controlled by the RA is along the path between src and dst. If so, the RC goes to the

Static Arbiter (SA) which arbiters between the incoming requests at this point. SA gives

priority to requests with larger values in the GT field (longer paths have priority). Then,

RC advances to the Time Comparator (TC) module where it checks that the request

does not overlap in time with any previously programmed circuit. Finally, if there is

no conflict with programmed circuits then the RC is stored in the Register Table and

forwarded along the PC network. Notice that only one RC message gets access to the

table. As we will see, this does not impact performance and reduces complexity.

The register table (RT) keeps circuits information. For each circuit the following fields

are stored: Delta T, Delta T’, ID, src, and ST. When an ordinary request wins the

resource, Delta T, Delta T’, ID, src get the values from the RC message. ST keeps the

state of the circuit, which can be unconfirmed, confirmed, or empty. Delta T is decre-

mented by one every cycle. When it reaches zero, the RA module activates the outputs

Cir to P which control the circuit establishment in the PROSA router (described later).

Delta T’ is also decremented by one every cycle until it reaches zero. When Delta T’

arrives to zero the signals and the register are cleared.

When an ACK or a NACK arrives to RA, it follows the same path than an ordinary re-

quest, with some small differences. First, the RC message advances to SA. ACK/NACK

messages have higher priority than ordinary requests. By construction we guarantee

only one ACK/NACK enters one PC controller each cycle, thus they will always win

the SA access. Then, in TC the RC message checks the information stored in the table.

An ACK consolidates the stored information while a NACK removes it. Then, the RC

message is forwarded (to the next RA along the path inside the cluster or to the next

PC).

The PC controller is shown in Figure 6.6. It contains 28 RAs, 7 per router. For the sake of

simplification, we group all outputs of a router (L1, L2, MC) into a single RA (RxL), thus
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Figure 6.6: PROSA Controller.

showing only twenty RAs. The PC controller implements two queues to store generated

and incoming ACK/NACK messages. RC requests can be dropped. A demultiplexer

located at the input port (left-hand side) separates requests from ACK/NACK messages

(type field of the RC message is used as selector). When a request arrives, it continues

through the PC. However, if the incoming request is an ACK/NACK, it is sent to

the corresponding ACK or NACK queue. The next stage in PC is a multiplexer, which

multiplexes between the incoming RC message and queued ACK/NACKs, giving priority

to ACK/NACKs. In case of conflict the request is discarded (generating a NACK

message which will be queued). Finally, the selected message enters the RA tree.

RA modules are linked following the resources dependencies imposed by the routing

algorithm (DOR in our case). An example of linked arbiters are R0E → R1S → R3S for

messages coming through router PR0 and leading to a destination below router PR3. An

RA module has several input and output dependencies as multiple routing combinations

exist. Along this path, if a request wins all the required RA modules (from left to right)

the request will be forwarded to the next PC, or will generate an ACK if the destination

is controlled by the current PC. A comparator at the output of the PC module (right-

hand side) checks whether one RC message won all the required resources (it was at the

input side and also succeeds at the output side). In not, a NACK message is triggered

and stored in the NACK queue.

Figure 6.6 shows the ACK and NACK queues and its control logic block. The logic guar-

antees only one ACK/NACK message will access the PC controller each cycle, ensuring

that they will always win all RAs. NACK messages have higher priority than ACK
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Figure 6.7: PROSA router.

messages. Moreover, the logic changes the input port of the ACK response, computing

the input port of the ordinary request corresponding to this ACK response. Thus, ACK

messages cross the same RA path used by the associated request messages. Notice that

NACK generated messages locally in a PC controller need to be re-injected in the RA

tree again to remove all the reserved resources, and then sent back to the previous PC

controller.

6.4.3 PROSA Router

Figure 6.7 shows the modifications performed in the baseline router. We only add one

demultiplexer per input port, one multiplexer per output port, connections between

those elements and an asynchronous repeater per output port. The repeater allows to

forward the flit very fast reducing wire delay, as is used in SMART [7]. This technology

allows one flit to cross all the network between source and destination in one cycle.

The router works as usual until signals Circ to X are activated, where X is the output

port (L1, L2, MC, N , E, W , S). In this situation, the corresponding input and output

ports are switched in and the arrived flits are blindly forwarded through them. At the

same time, VA and SA arbiters associated to the output port are disabled. Notice that

the circuits won’t use buffer resources, therefore circuits cannot introduce deadlocks.

Circ to X signals are generated by the PC controller, each generated by a single RA

module (the one that manages the output port). Circ to X indicates the input port that

has to be switched in to the ’X’ output port. One wire is used for each possible input

port. Thus, the demultiplexer at an input port is selected from the ORing of Circ to X

signals, and the multiplexer at an output port is selected from the ORing of all the wires

from the associated Circ to X signal.
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Circuits are cleared in a distributed and silent mode. When T and T’ values reach zero

on a resource arbiter (RA), the connection is eliminated as well. This is a valid point

for addressing correctly miss peculation of circuits or when the data gets delayed more

time than expected, for instance from the memory bank through the MC.

6.4.4 Memory Latency Control Unit

Figure 6.8 shows the MLCU module that assists the PC controller at the MC. It com-

putes arrival time of memory blocks. MLCU works at bank level by monitoring their

status (which row is open) and memory requests (which bank/row to access). The regis-

ter keeps the information required per bank to correctly compute block arrivals: ID for

the request identifier, ROW for the bank row where data is located, and Tpred and Tend

define the time period when data arrives to MC. When a request arrives to the MC, the

MLCU computes the bank associated. Then, a comparator checks if the bank is idle. In

that case MLCU proceeds to calculate the block arrival time (LAT COMP logic block)

and the request is sent to main memory. Otherwise, the address and requestor ID are

queued and the request is sent to main memory. Queued bank requests are dequeued

when a new block arrives from the bank.

To properly compute arrival times (Tpred), we need some timings from the memory,

mainly the activation, precharge and read latencies. The last Tpred and Tend values are

stored in the register (associated to the bank). If the current row is open the next

Tpred is computed as the maximum between the last Tend and current time plus the read

latency. Otherwise, Tpred is equal to the maximum between the last Tend and current

time plus activation, precharge and read latency.

Whenever a new Tpred is computed, the MC schedules a SETCIRC action. This action

is scheduled sixteen cycles before the data arrives to MC. When the first flit from the

incoming data arrives to the MC, then the MLCU dequeues a request and computes its

Tpred value.
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Figure 6.9: PROSA setup circuit example.

6.4.5 PROSA Circuit Setup Example

Figure 6.9 depicts an example of a successful PROSA setup circuit process between MC

and L2, following a SETCIRC action triggered by the coherence protocol. The circuit

establishment process starts when the REQ message arrives to the MC. Let’s assume

that this event occurs at t0 and all resources are available (no circuit conflicts will arise).

Also, the MC knows the requested data will be available in 10 cycles (from memory).

The MC will process the request in one cycle, thus, in t1, will send an RC message to

its PC (PC0).

At t1, RC reaches PC0 and attempts to get all the necessary resources in the cluster

along the path between MC and L2. The resources RC will compete for are R0E → R1E

(east port of PR0 and PR1). At each RA the request will be stored. Delta T will be

set to 9 (Delta T at request) in the R0E , R1E RA modules. Delta T’ will be set to the

number of cycles needed for the transmission of the block.

At t2, the RC message is forwarded from PC0 to PC1. Notice stored values of Delta

T are decreased by one. At PC1, the same process described for PC0 applies, but now

for resources R2E → R3S → R7L. After winning the resources, PC1 generates an ACK

message that will be stored in the ACK queue. Delta T fields at RA modules for R2E ,

R3S and R7L are set to 8.

At t3, all the resources with one circuit established (even in unconfirmed state) decrease

Delta T value by 1. Also, at t3, PC1 processes the ACK message. As said above, ACKs

and NACKs messages have higher priority, and then this ACK will win the necessary

RA modules, thus confirming the circuit at PC1 and sending back the ACK message to

PC0. Finally, at t4, the ACK message arrives to PC0, being processed at t5 and winning

all the RA modules and confirming the circuit at PC0. The ACK message is forwarded

to the MC node, confirming the circuit at the Network Interface (NI).

In case that any of the resources were not available during the circuit setup time, the

affected PC would generate a NACK message and would enqueue it into the NACK
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queue. The resources would be freed the next cycle and the NACK message would be

transferred to the previous cluster. If a NACK is received at the NIC, the packet will

be injected using packet switching.

Time advances and at time t11, Delta T value at RA module associated with R0E reaches

0, thus the signal Circ to W (in R0E) is activated and set to point to the local port.

This signal switches in input port from MC and output port E at PR0. This circuit will

last the required number of cycles for the message (Delta T’). All other programmed

output ports (R1E , R2E , R3S and R7L) switch the input and output ports making the

circuit just for Delta T’ cycles. In this cycle the MC receives the block from memory

and injects the first flit. The flit is forwarded and crosses the entire network reaching

the L2 output port at PR7. Finally, when Delta T’ reaches 0, the circuit is torn down

in a distributed manner on each router just when the last flit of the message crossed the

router.

6.5 PROSA Evaluation

Now, we perform an evaluation of PROSA and analyze its behavior. First, we describe

the analysis tools and simulation parameters. Then, we show the performance results

of PROSA in a 8× 8 mesh configuration. Finally, we provide implementation overheads

of PROSA and an analysis about its area and power consumption requirements.

For the performance analysis we use an event-driven cycle-accurate simulator that mod-

els any network topology and router architecture. We model a 2-stage pipelined router

(Input Buffer (IB), Routing (R), VC allocator and Switch allocator (VASA), that three

in only one stage, and Crossbar (X)) with VCs and flit-level crossbar switching, as used

in Garnet [67]. Table 6.1 shows the simulation parameters for the router and the cache

hierarchy. L1 caches are private to the core and L2 cache is shared but distributed

among all the tiles.

Parameter Network L1 L2 per tile MC

Topology 8x8 mesh

VCs/fly link 4/1 cycle

Message sizes 8/72 bytes

Flit/Queue size 8/72 bytes

sets/way/line size (B) 32/4/64 128/16/64

cache/tag latency 2/1 4/2

Num. MCs 2

Topen/Tact/Tread 16/16/16

Table 6.1: Parameters and values used for routers and caches.

We evaluate three mechanisms: the baseline router, the Dejavu solution [14] and PROSA.

In PROSA data sent through circuits take one cycle (using SMART). We analyze appli-

cations from SPLASH [68] and PARSEC [69]. Deja Vu pre-allocates the circuit between

nodes in order to hide the setup latency by dividing the NoC in two planes: control and
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Figure 6.10: Performance results for different architectures (BASELINE, DEJAVU,
PROSA in column order).

data plane. The control plane is in charge of configuring the circuits. This plane has

higher voltage and frequency, so is faster than the data plane. In this NoC, the request

packet pre-allocates the path in backward direction as it approaches destination. The

destination node can forward the response to the requestor node whenever the data is

ready with no circuit setup. This approach can produce conflicts. Deja Vu configures

the circuits in the order they are reserved.

6.5.1 Results

Figure 6.10a shows the application runtime. PROSA reduces, on average, BASELINE

application runtime by 33.11%. PROSA reaches lower gains in applications with a low

number of L2 misses (BODYTRACK), or with short application runtimes (LU) as it

improves those application runtimes by 5.45% and 4.0% respectively. However, with

balanced applications (OCEANNC), or applications with a high number of MC requests

(FFT, CANNEAL, FMM, BLACKSCHOLES) PROSA reaches an improvement up to

50%. Deja Vu achieves negligible benefits in performance, as already seen in [14].

Figure 6.10b shows latency results. DEJAVU outperforms on average BASELINE by

10%. PROSA, in applications with a low number of MC requests and small datasets (e.g.

BODYTRACK), achieves a 7% improvement on end-to-end latency. However, PROSA

outperforms BASELINE up to 39% on applications with a high number of L2 misses

(e.g. CANNEAL). On average, PROSA outperforms BASELINE end-to-end latency by

31.14%. For network latency (solid color), on average, PROSA improves by 34.16 %.
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Figure 6.11: Memory latency results for different architectures. Normalized to base-
line case.

Now, we analyze results for L1 miss latency normalized to BASELINE (Figure 6.11). In

this case, as it occurs with runtime, DEJAVU slightly improves BASELINE and PROSA

achieves better performance. On average, our proposal improves BASELINE by 23 %.

REC.ACK REC. NACK

MIN (OCNC) 85.98% (LU) 4.28%

AVG 90,62% 9,38%

MAX (LU) 95.72% (OCNC)14.02%

Table 6.2: Number of ACK and NACK messages generated in PROSA in PC module.

CONF. INPUT CONF. RA

NACK ACK FB TMP ARB

MIN (LU) 0.01% (BOD) 0.63% 0% (WSPA) 1.92% (WSPA) 0.31%

AVG 0,04% 3,94% 0,00% 4,61% 0,79%

MAX (WSPA) 0.18% (WSPA) 9.27% 0% (OCNC) 9.04% (OCNC) 1.70%

Table 6.3: Number of conflicts generated in PC module.

Table 6.2 shows statistics about PROSA circuits. The first column shows the received

ACKs (the number of circuits established successfully). In all cases this is higher than

85.58% and the average is 90.62%. The second column shows the received NACKs and

is the sum of the five columns of Table 6.3, which list the different types of conflicts in

the PC controller. The first and second column show the number of NACKs generated

at the input of the PC controller as a normal request and an ACK/NACK conflicted

at the same time. The last columns show conflicts generated at the RA arbiters due

to (1) the register table is full (FB), (2) the required period of time of one request

overlaps with one established circuit (TMP), and (3) two requests collided in the same

RA module (ARB) due to the static arbiter. As we can see, most conflicts are generated

because of temporal conflicts in generating circuits or because of concurrent requests

enter with conflict with an ACK is the same resource. However, the current table size at

RA modules (4 entries) seems to be properly sized (even could be reduced thus saving

more area) as the number of conflicts due to the table being full are negligible.
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6.5.2 PROSA Implementation

We have implemented all the PROSA infrastructure for a 4× 4 CMP system. Each PC

module has been implemented in Verilog and tested. We use a canonical router design

with 64-bit flits, four 9-flit depth VCs, and with seven ports to attach 2D-mesh ports and

L1, L2, and MC (including the MLCU). We use Design Vision tool from Synopsys with

45nm Nangate open cell library [70]. Power results are obtained from Orion-3 power

library [71].

Table 6.4 shows the area overheads of PROSA for different configurations. In all of

them, and for the sake of comparison, we also account for the components to build a

cluster of four routers. In the case of PROSA we consider all the components (including

the PC and the four PRs).

Configuration area (µm2) overhead

Baseline router 243784 -

PROSA Router (PR) 248200 1.8%

PROSA Controller (PC) 76547 -

Baseline cluster 975136 -

PROSA cluster 1069347 9.66%

Flattened Butterfly cluster 1380109 41%

2xBaseline cluster 1658560 70%

Table 6.4: Area overheads for different router and NoC organizations.

As we can see, the PROSA router takes only 1.8% more area than the baseline router.

The PROSA controller (PC) takes less area than a baseline router (22% of baseline router

area). However, this component is new and needs to be considered as an additional

overhead. To make this comparison fair, the table shows area of cluster regions. In this

case, the PROSA cluster takes 9.66% more area. The NIC’s overhead can be considered

as negligible.

PROSA overheads can be seen as high. However, we should consider the performance

gains that PROSA circuits enable. In order, however, to better assess the overheads,

the table shows two additional configurations worth being analyzed. The first one,

flattenedbutterfly, is the overhead for a flattened butterfly topology which has more

connectivity along each dimension and direction. In this case, because of the larger

number of input ports, the area overhead is increased by 41%. The second one is for the

case where the baseline cluster is enhanced with double flit size. This can lead to faster

transfer times between the nodes. However, as we can see, overhead skyrockets to 70%

additional area. This is mainly due to the larger buffer requirements.

Figure 6.12 shows the energy results. Although the leakage energy increases by 42%

the total energy consumption is reduced by 3%. This reduction is due to switching and

internal energy, which are reduced by 10%. As described in [14] Deja Vu achieves a 30%
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Figure 6.12: Power consumption results. First column represents BASELINE and
second PROSA.

energy reduction, which is similar to our results (but without the latency improvements).

Notice that the 30% execution time reduction will translate in major power savings.

6.6 Related Work

Circuit-switching [64] has been used in a number of previous works in NoC architectures

in order to reduce on-chip communication latency. Once a circuit is set, data does not

travel through the routing and arbitration stages on each router. However, setup time

usually causes low resources utilization and performance degradation. On the other

hand, packet switching improves resource utilization and network performance, splitting

the entire message in smaller blocks and forwarding them along the network.

Some works try to get benefit from both mechanisms by implementing a hybrid circuit-

packet switching strategy. Kumar [9] proposes Express Virtual Channels (EVC) allowing

packets to bypass intermediate routers along their path. EVCs only allow to connect

nodes along the same dimension, so circuits cannot turn from one dimension to another.

PROSA, on the other hand, allows to connect nodes regardless their location, thus

offering more flexibility.

Jerger [10] proposes circuit switched coherence, setting permanent circuits between pairs

of frequent data sharers instead of tearing them down. It allows to quickly send data

between the same nodes. However, if another circuit requires the resource, the data is

switched to packet switching until it reaches destination. Yin [11] proposes a hybrid

circuit-packet switched network in which the packet is forwarded along the packet net-

work while the circuits can be set in parallel, using TDM. Yim’s proposal also expends

time in the setup latency. Mazloumi [12] proposes another hybrid packet-circuit switched

router. This mechanism setups the circuit along the network while the request message

is being forwarded between the requestor and the destination. When the request reaches

the destination and the data is ready, the mechanism sends a probe message activating

the reserved circuit, after that the data is sent. All these mechanisms require a setup

period. However, PROSA hides the setup circuit latency based on the coherence proto-

col and when the circuit usage finishes, resources are freed allowing the packet switching
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to forward packets without having to tear down any circuit, the data is sent without

delay.

Abousamra [14] proposes Deja Vu (briefly described in Section 6.5). In Deja Vu, the

selected order schema can produce underutilization of network resources. In [15] authors

alleviate the problem by using a different order. However, it still requires the high

frequency and voltage control plane. PROSA, as Deja Vu, preallocates the circuit in

order to hide the setup circuit delay, However, as per our evaluation, PROSA achieves

better performance results. Van Lear [16] proposes a coherence-based message predictor

for optical interconnection networks. In the proposal a global predictor establishes

the circuits between nodes. All the traffic in the network has to cross the predictor,

thus potentially causing a bottleneck in the network. This proposal is also for optical

interconnects where a full optical crossbar is assumed. This makes scalability a major

issue. Krishna in [7] presents SMART, a multihop network with single-cycle data-path

all the way from source to destination. Setup circuit is required one cycle before the

data is sent and partial circuits can be established. An extra network is required to send

SMART-hop Setup Request, SSR. This mechanism is not based on coherence cache as

PROSA and our mechanism relies on SMART circuits. Peh [18] presents flit-reservation

flow control. In this proposal the circuit is setup hop by hop. However PROSA uses

clusters to setup circuits, improving the time required to establish the circuit. PROSA

does not require to buffer messages, contrary to flit-reservation. Our proposal anticipates

the circuit setup process.

As a summary, PROSA allows to establish circuits between any pair of nodes hiding

the setup latency. PROSA uses the coherence protocol information to establish these

circuits. In addition, PROSA programs circuits for their exact period of time they will

be needed, thus not conflicting with other circuits using the same resources (in other

time periods). Indeed, PROSA circuits can be steered by coherence protocols or even

for other higher-level applications where traffic bursts can be predicted and requested

ahead of time. The previous strategies do not rely on coherence protocols or they rely

on more expensive architectures and technologies.

6.7 Conclusions

In this paper we introduce PROSA, a circuit-switched enabled NoC architecture which

allows the coherence protocol to steer circuit connections for future predictable and spec-

ulative connections between memory controllers (MC), L2 cache banks and L1 caches.

Connection establishment is performed as single-packet based and established for the

required time period for L2 to L1 an MC to L2. On a miss predict the circuit is silently

removed. PROSA builds a separate infrastructure to manage circuits, thus the main

NoC network is not affected by the additional control traffic.
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Results show network latency is reduced up to 35% by correctly predicting and us-

ing circuits with PROSA. Also, PROSA outperforms the baseline designs by reducing

application runtime by 33% and PROSA improves the DEJAVU performance results

achieving similar energy results. PROSA takes an overhead of 9.66% more than the

baseline proposal, however, it saves more than 3% in power consumption. Overhead of

PROSA is reasonable given the benefits in performance. In a future work, we plan to

extend our proposal with partial circuits, increasing the number of MCs and studying

the table size scalability.
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7.1 Abstract

Nowadays chip multiprocessors (CMPs) tend to increase the number of cores, usually

implementing a distributed shared last level cache (LLC). The network on chip (NoC)

is in charge of interconnecting the cores, memory controller(s) and cache banks, largely

impacting memory access latency. Packet switching (PS) is typically used in NoCs but

circuit switching (CS) may complement PS achieving higher performance if the circuit

is established before its need. In this paper we propose PROSA, an architecture to

improve memory access latency by using CS. In PROSA, the coherence protocol steers

the circuit setup logic in order to configure circuits before they are needed and only for

the time they are required. PROSA uses a clustered router approach where groups of

four routers are clustered and their circuit control logic is combined. Based on key design

decisions, we present different PROSA versions, analyzing their impact on applications

and NoC performance. PROSA is able to reduce applications’ execution time by 35%

while it significantly reduces average network flit latency by 54%, leading to a reduction

of miss load (and store) latency of 21% (in CMP systems with 64 processors). PROSA

needs 8.4% more area, but reduces power consumption by 7%.

7.2 Introduction

Chip multiprocessors (CMPs) rely on networks-on-chip (NoCs) [78] to achieve fast com-

munication between processor cores, memory caches and memory controllers (MC). It is

by no doubt that NoCs play a vital role on CMPs performance, mainly as they lay along

the critical path of communication, and thus, affect process communication latencies

and most important, memory access latency.

During more than one decade, NoCs have been researched (not only for CMPs) with

two main goals in mind, network throughput and network latency. While throughput

is an important aspect, in CMPs the average load of links found for accepted bench-

marks (PARSEC [69], SPLASH [68], ...) is typically low. This means latency becomes

the significant metric when dealing with NoCs for CMP systems. Indeed, a memory

transaction is started when one processor requests a load or a write on its private L1

data cache, and finishes when the data is delivered. The NoC is used to send request

commands and data between cache levels and the MC. Therefore, the NoC plays a vital

role as the memory request gets blocked until data is delivered.

In this paper we address the issue of latency reduction of memory transactions. We

propose PROSA, a PROtocol-oriented circuit Switch Architecture, which co-designs

both the NoC and the coherence protocol and put them to play together. Our approach

enhances the NoC with a new clustered component, the PROSA controller (PC), which

is in charge of managing circuits and to resolve any possible conflict. The PC is in charge
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of four NoC PROSA routers (PR) and steers their local circuits when needed. For the

transmission of data through circuits, PROSA relies on the SMART [7] asynchronous

repeater technique where a multihop network with single-cycle data-path can be achived.

Circuit Switching (CS) has been explored and used in the past in many different network-

related fields. PROSA differs from previous circuit-switching methods by means of

the feedback provided by the coherence protocol. Although some previous works also

combined protocols and NoC designs [7, 10–12, 16], our proposal lets the coherence

protocol to steer the network in programming circuits before they are needed, hiding

the set up circuit delay. Moreover, PROSA does not need extra buffer resources at the

router. Just a pair of multiplexer/demultiplexer is needed on each bidirectional router

port. Section 7.7 describes related work.

The effectiveness of the CS approach resides on the type of traffic that will be using

circuits. Long messages or messages sent to distant destinations are good candidates to

configure circuits for them, as they will pay off the time spent in setting up the circuit.

Moreover, bursty traffic is the best candidate for CS. However, in a CMP scenario, bursty

traffic is not common. Instead, short single-flit messages (carrying protocol commands)

and long multi-flit messages (carrying memory blocks) define the network traffic.

As expected, there exist multiple key design decisions when building a CS-based system

for CMPs. Different design alternatives are explored in PROSA. One alternative is

to setup circuits only for long multi-flit protocol messages injected by the coherence

protocol. Circuits for those messages may be setup before they are indeed injected,

taking advantage of the cache latency when accessing the L1 and L2 caches and for the

incurred processing delay in the network interface (NIC). Thus, hiding the circuit setup

time. Another alternative is to setup circuits for all messages, either short or long taking

as a premise that even with an small delay at injection (because we need to setup the

circuit) the transmission latency of the message will still be smaller than the transmission

time in packet switching (PS) mode (as we use SMART technique). Another alternative

relies on message distance to destinations, using circuits only for messages with closer

destinations, thus circuit setup time is shorter. Finally, few additional cycles (slack) can

be provided to the circuit setup process, increasing the success rate of circuits established

and used by the application. All these alternatives will be explored in PROSA.

Evaluation results show different benefits when using PROSA. When PROSA is used

for long predicted messages, the base line design is improved in average network latency

by about 34%. Indeed, PROSA reduces the load and store miss latency by 21%. This

is achieved because PROSA correctly sets up 90% of the circuits ahead of time. For

implementation overheads, the PROSA cluster takes 9.66% more area but saves more

than 3% in power consumption.

Although different PROSA versions improve network latency by up to 35%, all the

different PROSA versions proposed in this paper obtain similar runtime performance
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Figure 7.1: Chip Multi Processor Architecture.

for the different tested applications. This is mainly due to the delay introduced in

the coherence protocol and the setup circuit. However, the best PROSA configuration

achieves and additional 7% of power saving and reduces area by 2% when compared to

the original PROSA version.

The paper is organized as follows. In Section 7.3, we describe and analyze the coherence

protocol. This will center our proposal and provide justification of its need. In Section

7.4 we describe PROSA and the different alternatives we will explore. In Section 7.5,

we provide the evaluation and analysis. Results are discussed in Section 7.6. Related

work is described in Section 7.7 and the paper concluded in Section 7.8.

7.3 Coherence Protocol Analysis

Figure 7.1 shows the CMP architecture assumed for this work. The CMP uses private L1

caches for each core and shared but distributed L2 banks along a tile-based organization.

Two memory controllers (MC) are placed on each top corner. A 4 × 4 mesh NoC uses

a 2-stage pipelined 7-radix router design (four ports to connect to neighbor routers and

three to connect L1, L2, and MC).

The system implements the MOESI protocol [53] at L1. L2 blocks can be in P (private),

S (shared), C (cached), or I (Invalid) state. In C mode no L1 cache has a copy of the

block. Inclusive caches and a write back policy is used. A static mapping policy of

blocks to L2 banks is used.

Figure 7.2 shows the transaction diagrams related to load and store operations. In the

figure nodes are represented by boxes. The current block state is represented with text

placed just above the boxes while the new state after the transaction is represented

under the boxes. Messages sent between nodes are represented by arrows. Messages for

load and store operations are combined (e.g. GETS/GETX).

Whenever an L1 load miss occurs, a GETS message is sent to the L2 Home bank. Based

on the block state at L2 different actions are performed. If the block is in S or C state

(Figures 7.2a and 7.2c), the L2 sends the data to the L1 requestor. If the block is in P

state (Figure 7.2b), the L2 sends a forward (FWD) message to the L1 with the block.

The block state at L2 changes to S. When the FWD message arrives, the L1 cache sends
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Figure 7.2: Coherence protocol transactions.

the data to the L1 requestor cache and the block state changes to O. Finally, if the block

at L2 is in I state (meaning a miss occurs, Figure 7.2d), a REQ message is forwarded to

the MC. The L2 receives the data and forwards it to the L1 cache requestor. The state

of the block is set to P in L2 and to E in L1.

Whenever a L1 store miss occurs, a GETX message is sent to the L2 Home bank.

Similarly, if the block is in C state (Figure 7.2a), the L2 sends the data to the requestor

and changes the block state to P. A different case occurs when the block is in P state

(Figure 7.2b). The L2 sends an invalidation message (INV) to the L1 owner cache.

When the INV message arrives, the data is sent to the L1 requestor and the block

changes from E to I. When the block is in S state (Figure 7.2c), the L2 sends the data

to the L1 requestor and sends INV messages to all the L1 sharers. When each L1 sharer

receives the INV message, it sends an ACK message to the requestor and changes the

block state to I. Finally, if the block is in I state (miss) (Fig. 7.2d), then a REQ message

is forwarded to the MC. Once data is received, it is forwarded to L1. The block is put

in P in L2 and in M in L1.

As we see, the protocol faces mainly four possible paths depending on the type of oper-

ation (load/store), L1 access type (miss/hit) and L2 access type (miss/hit). Whenever

a miss occurs at L1 and L2 the NoC gets involved several times and the memory trans-

action latency is significantly increased. Factors that may affect significantly memory

latency are the distance between the L1 requestor and the L2 Home bank, distance

between the L2 Home bank and the MC, and the network congestion.

To better analyze these effects, Figure 7.3a shows memory transactions classified by type:

MC transactions (due to miss both in L1 and L2 banks), ReqResp transactions (request-

response due to an L1 miss and an L2 hit to a clean block), FWD transactions (forward

transactions due to an L1 miss and an L2 forward to the owner) and REPL transactions

(replacement transactions due to L2 being full). Different SPLASH-2 applications are

run in a system described in Section 7.5.
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Figure 7.3: Memory transactions types for different SPLASH-2 applications.

First thing to note is the different amounts of transactions between applications. This

depends on the complexities of the applications. However, when we normalize the num-

bers, Figure 7.3b, we see similarities. A high percentage of REPL transactions exist

in all applications (more than 50% of the transactions). This is mainly due to the L2

cache size and the dataset of the applications. These transactions can not be predicted

from the coherence protocol point of view. Noteworthy, we can observe the small per-

centage of FWD transactions. All applications exhibit less than 3% of this type, and

for OCEANNC and RADIX lower than 1%. This indicates shared blocks mainly follow

a multiple sharers pattern and not a producer-consumer pattern. Now, we focus on

a more interesting transaction type. Some applications (FFT and RADIX) trigger a

large percentage of MC transactions while others (BARNES and WATERNSQ) have a

marginal percentage. This difference is due to the L2 hit rate and the memory foot-

print of the application. Finally, ReqResp transactions are highly representative in some

applications (BARNES and WATERNSQ) while minimal in others (FFT). This is due

again to the hit rate in L2 and the memory footprint. Thus, applications either have

large percentage of MC transactions or large percentage of ReqResp transactions. In

both cases, MC and ReqResp, traffic needs between L2 and MC, and between L2 and

L1 (requestor) can be predicted. PROSA will exploit this fact by using circuits for MC

and ReqResp transactions.

7.4 PROSA

PROSA will be developed in phases. At each phase more functionality will be provided,

in order to achieve more efficiency and performance. Also, we will extend PROSA with

complementary designs such as the memory latency estimator device or the inclusion

of slack time to circuit setup logic. For the sake of understanding, we will start with

the base design that focuses only on predictable coherence actions without slack time
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Figure 7.4: PROSA new actions triggered by the coherence protocol and circuit
establishment time line for MC transaction.

for setup circuits. We refer to this method as standard PROSA. Then, we will extend

PROSA.

7.4.1 Standard PROSA

PROSA sets up circuits between MC-L2 and L2-L1 before they are needed. First, we

show modifications performed in the coherence protocol and then describe modifications

needed in the NoC (the PROSA controller and PROSA router) and MC (the Memory

Latency Control Unit, MLCU).

7.4.1.1 PROSA Coherence Protocol

In order to program circuits, we add a new protocol action termed SETCIRC . This action

involves the source and destination of the circuit, and the time period the circuit will be

needed (Delta T). The action is triggered by the coherence protocol in MC and ReqResp

transactions (see Figure 7.4a). In MC transactions, whenever a request is received by

the MC, a Memory Latency Control Unit (MLCU; described in Section 7.4.1.4) predicts

when the data will arrive from main memory. Based on this delay, the MC triggers a

SETCIRC action that will setup a circuit after a delay period. The delay period equals

to the predicted memory latency minus the circuit setup period,(CSP), required time

to setup a circuit between the MC and the destination node. The SETCIRC action sets

the circuit. By the time the block arrives to the MC the circuit has been set and is kept

during the time the data will be transmitted. When SETCIRC arrives to L2, the circuit

is confirmed (acknowledged) but in parallel a new SETCIRC command between L2 and

L1 is triggered. Thus, when the data arrives to L2, after accessing the L2, the block is

sent also to L1 using a circuit. These two circuits are predictable one as they will be

necessary regardless of network status. Figure 7.4b shows timings of both circuits.

In ReqResp transactions (between L1 cache and L2), whenever a GETS/GETX message

is received, a SETCIRC action is triggered between the L2 and the L1. Again, the

connection will be set only for the time period the data is available. However, contrary

to the two previous triggered circuit scenarios (in MC transactions) now this circuit is
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Figure 7.5: PROSA controller, detailed components.

speculative, in the sense the circuit may not be needed if the block is in P or I state.

Therefore, for this type of circuit we will need to automatically and efficiently tear down

the circuit when transmission is finished or when it is clear the circuit is not needed.

Notice that this modification does not introduce out of order delivery or duplicates,

because for the same transaction the protocol never sends two messages to the same

destination. Either the circuit is used for transmission of the message or the message

uses the regular PS network for transmission.

7.4.1.2 PROSA Circuit Network

PROSA follows a clustered approach where one PROSA Controller (PC) controls four

routers (Figure 7.5a). When the SETCIRC action is triggered in an L2 or MC, a request

circuit (ReqCir) message is forwarded to the local PC. If the ReqCir wins the needed

resources in the cluster, it advances to the next PC along the path. If not, a NACK

response is sent to the source of the ReqCir message. When ReqCir reaches the PC that

controls the destination and wins the resources, an ACK response is sent back to the

source via the PC network. Routers are not affected by ReqCir messages, neither ACKs

nor NACKs. All them travel via PCs.

On top of Figure 7.6, we show the ReqCir message is composed by eight fields. P refers

to the input port from which the ReqCir arrives to the cluster. src and dst are the

source and destination for the circuit. Delta T and Delta T’ carry the number of cycles

to wait until the circuit will be established and torn down, respectively. Type carries the

type of the ReqCir message (REQUEST, ACK, NACK). ID identifies the circuit inside

the network, and finally, Golden Token, refers to the distance between src and dst. This

field is used in the PC to assign priorities between requests.
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Below the ReqCir structure, in Figure 7.6, we show the Resource Arbiter (ResArb) that

controls whether a specific resource can be reserved for a particular period of time. A PC

consists of several ResArb modules, one ResArb per output port in the cluster controlled

by the PC. In total, each cluster has twenty eight ResArb, all shown in Figure 7.7 (e.g.

R0S corresponds to the south output port at the north-west router in the cluster). Each

ResArb module arbiters between some requests, the number of requests depends on the

number of inputs ports that have dependencies with the resource (the output port). This

depends on the routing algorithm, in our case XY routing. In order to support other

routing algorithms or topologies, the path comparator logic would need to be adapted

together with the wiring connections between resource modules.

When an ReqCir message arrives to ResArb, the dst field is checked to decide whether

the output port controlled by the ResArb is along the path between src and dst. If so, the

ReqCir goes to the Static Arbiter which arbiters between the incoming requests at this

point. Static Arbiter gives priority to requests with larger values in the Golden Token

field (longer paths have priority). Then, ReqCir advances to the Time Comparator (TC)

module where it checks that the request does not overlap in time with any previously

programmed circuit. Finally, if there is no conflict with programmed circuits then the

ReqCir is stored in the Register Table and forwarded along the PC network. Notice that

only one ReqCir message gets access to the table. As we will see, this does not impact

performance and reduces complexity.

The register table keeps circuits information. For each circuit the following fields are

stored: Delta T, Delta T’, ID, src, and ST. When an ordinary request wins the resource,

Delta T, Delta T’, ID, src get the values from the ReqCir message. ST keeps the state

of the circuit, which can be unconfirmed, confirmed, or empty. Delta T is decremented

by one every cycle. When it reaches zero, the ResArb module activates the outputs

Cir to P which control the circuit establishment in the PROSA router (described later).
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Figure 7.7: PROSA Controller.

Delta T’ is also decremented by one every cycle. When Delta T’ arrives to zero the

signals and the register are cleared.

When an ACK or a NACK arrives to ResArb, it follows the same path than an ordi-

nary request, with some small differences. First, the ReqCir message advances to Static

Arbiter. ACK/NACK messages have higher priority than ordinary requests. By con-

struction we guarantee only one ACK/NACK enters one PC each cycle, thus they will

always win the Static Arbiter access. Then, in Time Comparator the ReqCir message

checks the information stored in the table. An ACK consolidates the stored information

while a NACK removes it. Then, the ReqCir is forwarded (to next ResArb along the

path inside the cluster or to the next PC).

The PC is shown in Fig. 7.7. It contains 28 RAs, 7 per router. For the sake of

simplification, we group all outputs of a router (L1, L2, MC) into a single ResArb

(RxL), showing only twenty RAs. The PC implements two queues to store generated

and incoming ACK/NACKs. ReqCir requests can be dropped. A demultiplexer located

at the input port (left-hand side) divides requests by ACK/NACK messages (type field of

the ReqCir message is used as selector). When a request arrives, it continues through the

PC. However, if the incoming request is an ACK/NACK, it is sent to the corresponding

ACK or NACK queue. The next stage in PC is a multiplexer, which multiplexes between

incoming ReqCir message and queued ACK/NACKs, giving priority to ACK/NACKs.

In case of conflict the request is discarded (generating a NACK which will be queued).

Finally, the selected message enters the ResArb tree.
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ResArb modules are linked following the resources dependencies imposed by the routing

algorithm (XY in our case). An example of linked arbiters are R0E → R1S → R3S

for messages coming through router PR0 and leading to a destination below router

PR3. An ResArb module has several input and output dependencies as multiple routing

combinations exist. Along this path, if a request wins all the required ResArb modules

(from left to right) the request will be forwarded to the next PC, or will generate an

ACK if the destination is controlled by the current PC. A comparator at the output

of the PC module (right-hand side) checks whether one ReqCir message won all the

required resources (it was at the input side and also succeeds at the output side). If not,

a NACK message is triggered and stored in the NACK queue. When a ReqCir is sent to

the next PC, the value of Delta T is decremented by 1. When this value reaches zero,

the ReqCir is discarded by the PC.

Figure 7.7 shows the ACK and NACK queues and its control logic block. The logic

guarantees only one ACK/NACK message will access the PC each cycle, ensuring that

they will always win all RAs. NACK messages have higher priority than ACK messages.

Moreover, the logic changes the input port of the ACK response, computing the input

port of the ordinary request corresponding to this ACK response. Thus, ACK messages

cross the same ResArb path used by the associated request messages. Notice that NACK

generated messages locally in a PC need to be re-injected in the ResArb tree again to

remove all the reserved resources, and then sent back to the previous PC.

7.4.1.3 PROSA Router

Figure 7.8 shows the modifications performed in the baseline router. We only add one

demultiplexer per input port, one multiplexer per output port, connections between

those elements and an asynchronous repeater per output port. The repeater allows to

forward the flit very fast reducing wire delay, as is used in SMART [7]. This technology

allows one flit to cross all the network in one cycle.

The router works as usual until signals Circ to X are activated, where X is the output

port (L1, L2, MC, N , E, W , S). In this situation, the corresponding input and output

ports are switched in and the arrived flits are blindly forwarded through them. At the

same time, VA and Static Arbiter arbiters associated to the output port are disabled.

Notice that the circuits will not use buffer resources, therefore circuits cannot introduce

deadlocks.

Circ to X signals are generated by the PC , each generated by a single ResArb module

(the one that manages the output port). Circ to X indicates the input port that has

to be switched in to the ’X’ output port. One wire is used for each possible input port.

Thus, the demultiplexer at an input port is selected from the ORing of all inputs bits

on Circ to X signals associated to the input port (e.g Circ to 1[1] or ... or Circ to n[1]),
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Figure 7.8: PROSA router.

and the multiplexer at an output port is selected from the ORing of all the wires from

the associated Circ to X signal. During the setup process, PROSA sets at each router

the exact cycle where the ports need to be switched in. Programming those values is

the most critical part to guarantee correct operation. Robustness is guaranteed by the

correct implementation of the circuit setup process.

Circuits are cleared in a distributed and silent mode. When T and T’ values reach zero

on a resource arbiter (ResArb), the connection is eliminated as well. This is a valid

point for addressing correctly miss speculation of circuits or when the data gets delayed

more time than expected, for instance from the memory bank through the MC.

7.4.1.4 Memory Latency Control Unit

Figure 7.9 shows the MLCU module that assists the PC at the MC. It computes arrival

time of memory blocks. MLCU works at bank level by monitoring its status (which row

is open) and memory requests (which bank/row to access). The REG register keeps the

information required per bank to correctly compute block arrivals: ID for the request

identifier, ROW for the bank row where data is located, and Tpred and Tend define the

time period when data arrives to MC. Each bank has also a buffer to store pending

requests.

When a request arrives, the MLCU unit computes the bank associated. A comparator

checks if the bank is idle (memory controller is not waiting for data from this bank). If

idle, MLCU computes the block arrival time (LAT COMP logic block) and the request

is sent to DRAM. The request ID is stored in REG register associated to the bank.

Otherwise, the address, requestor ID, and required information to compute the memory

latency are queued in the buffer associated to the bank. The request is sent to DRAM.
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A circuit setup process is triggered whenever the expected arrival time for a requested

stored in REG is 16 cycles. When data arrives from DRAM the data is injected through

the circuit (if set) or using packet switching. At the same time, if the buffer associated

to the bank has a stored request, the MLCU dequeues the request and computes the

new data arrival time from DRAM and stores the request in the REG register associated

to the bank.

To properly compute arrival times (Tpred), we need some timings from the memory,

mainly the activation, precharge and read latencies. The last Tpred and Tend values are

stored in the register (associated to the bank). If the current row is open the next Tpred

is set as the maximum between the last Tend and current time plus the read latency.

Otherwise, Tpred is set to the maximum between the last Tend and current time plus

activation, precharge and read latency.

Whenever a new Tpred is computed, the MC schedules a SETCIRC action. This action

is scheduled sixteen cycles before the data arrives to MC, this is the maximun number

of cycles that the PC needs to setup a new circuit with the farthest node. When the

first flit from the incoming data arrives to the MC, then the MLCU dequeues a request

and computes its Tpred value.

7.4.1.5 PROSA Circuit Setup Example

Figure 7.10 depicts an example of a successful PROSA setup circuit process between MC

and L2, following a SETCIRC action triggered by the coherence protocol. The circuit

establishment process starts when the REQ message arrives to the MC. Let’s assume

that this event occurs at t0 and all resources are available (no circuit conflicts will arise).

Also, the MC knows the requested data will be available in 10 cycles (from memory).

MC will process the request in one cycle, then, in t1, will send an ReqCir message to

PC0.

At t1, ReqCir reaches PC0 and attempts to get all the necessary resources in the cluster

along the MC-L2 path. The resources ReqCir will compete for are R0E → R1E (east

port of PR0 and PR1). At each ResArb the request will be stored. Delta T will be set
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Figure 7.10: PROSA setup circuit example.

to 9 (Delta T at request) in the R0E , R1E ResArb modules. Delta T’ will be set to the

number of cycles needed for the transmission of the block.

At t2, the ReqCir message is forwarded from PC0 to PC1. Notice stored values of Delta

T are decreased by one. At PC1, the same process described for PC0 applies, but now

for resources R2E → R3S → R7L. After winning the resources, PC1 generates an ACK

message that will be stored in the ACK queue. Delta T fields at ResArb modules for

R2E , R3S and R7L are set to 8.

At t3, all the resources with one circuit established (even in unconfirmed state) decrease

Delta T value by 1. Also, at t3, PC1 processes the ACK message. As said above, ACKs

and NACKs messages have higher priority, and then this ACK will win the necessary

ResArb modules, thus confirming the circuit at PC1 and sending back the ACK message

to PC0. Finally, at t4, the ACK message arrives to PC0, being processed at t5 and

winning all the ResArb modules and confirming the circuit at PC0. The ACK message

is forwarded to the MC, confirming the circuit at the NIC.

If one of the resources is not available during the circuit setup time, the affected PC will

generate a NACK and will enqueue it into the NACK queue. Resources will be freed

the next cycle and the NACK message will be transferred to the previous cluster. If a

NACK is received at the NIC, the packet will be injected using packet switching (PS).

At time t11, Delta T at ResArb module associated with R0E reaches 0, thus the signal

Circ to W (in R0E) is activated and set to point to the local port. This signal switches

in input port from MC and output port E at PR0. This circuit will last the required

number of cycles for the message (Delta T’). All other programmed output ports (R1E ,

R2E , R3S and R7L) switch the input and output ports making the circuit just for Delta

T’ cycles. In this cycle MC receives the block from memory and injects the first flit. The

flit is forwarded and crosses the entire network reaching L2 output port at PR7. When

Delta T’ reaches 0, the circuit is torn down in a distributed manner on each router just

when the last flit of the message crossed the router.
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Figure 7.11: Transaction diagram for PROSAall coherence protocol.

7.4.2 PROSA Enhancements

As mentioned above, different design alternatives exist when dealing with CS. To analyze

them, we extend the baseline PROSA design with four enhancements. First, all the

protocol messages (including single-flit messages) will be considered for the setup and

usage of circuits (we name this method as PROSAall). The fact that circuits, when used,

are much faster than the standard PS network suggests that a small penalty can be paid

in the circuit setup process. In the second enhancement, we will allow a small slack

to the circuit setup process (we name this method as PROSAslack). As ACK messages

may contend in the PC some delays may be incurred. A single cycle delay will ruin the

circuit as the message will not use it. Therefore, by adding a small slack more circuits

will be effectively used. The third enhancement refers to the use of circuits only for

messages with destinations located closer than a given threshold. The larger the circuit

the larger the penalty in setting up the circuit. Different thresholds will be analyzed

(we name this method as PROSAdd; distance driven). Finally, we will enhance baseline

PROSA with different priority schemes in the PCs when dealing with ReqCir, ACK and

NACK messages. This will affect the success rate of circuits being used. This method

will be named PROSApriorities.

7.4.2.1 Coherence Protocol Extension

First enhancement is the use of circuits for all protocol messages. Figure 7.11 shows the

new diagrams for the PROSAall protocol. All events (control and data messages) request

a setup circuit process by triggering the SETCIRC action. New requests are plotted in

red. In ReqResp transactions, the L1 cache requests a circuit between L1 and L2 to send

a GETS/GETX message. If the circuit is confirmed then the GETS/GETX message

is sent using CS. Otherwise, the message is sent using PS. When the GETS/GETX
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message arrives to the L2 cache it follows the baseline PROSA behavior. A speculative

circuit is setup between L2 and L1.

In MC transactions the L2 Home cache requests a circuit between L2 and MC to send

the REQ message. If the circuit is confirmed the message is sent through the circuit,

otherwise is sent using PS. Upon arrival, the MC sets a circuit for the incoming data to

be delivered to the L2.

Finally, in FWD transactions, when a load or store misses in L1, a new circuit is re-

quested between L1 and L2 trying to setup a new circuit for the GETS/GETX message

(as is the case for ReqResp transactions). When the request reaches the L2 and the

block is in P state, a new circuit is requested between the L2 and the L1 owner to send

the FWD message. When the message reaches the L1 Owner, a final circuit is set to

send the block to the original L1 requestor.

Every SETCIRC action is classified either as speculative or predictable. Predictable

actions occur between the L1 and the L2 cache, between the L1 owner and the L1

requestor, between the L2 cache and the MC controller and between the L2 and the L1

owner (FWD transaction). Speculative actions occur when a GETX/GETS reaches the

L2 cache, triggering a request from L2 to L1 requestor.

7.4.2.2 Slack on Circuit Setup Process

Figure 7.12 shows the timings of a message injected through PS and through PROSA.

The case refers to an speculative circuit in ReqResp transactions. As we can see, when

using PROSA, upon arrival of a message to the network interface a new circuit setup

process is triggered. During this process the message is processed and the cache is

accessed. Notice, however, that the confirmation message (ACK) may be delayed some
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cycles as it may encounter contention within the PCs. Therefore, before the circuit

is confirmed the data is ready to be injected through the network. With standard

PROSA, the circuit would fail and the message would then be injected through the

network in PS mode. However, now in PROSAslack, a slack of time is allowed to avoid

this problem. Thus, the NIC will wait more time for the confirmation of the circuit.

Once the confirmation arrives the message is injected through the network in CS mode.

Notice that depending on the slack and on the relative speed of the circuit compared to

the network in PS mode, PROSAslack may still deliver the message faster.

We define a slack constant (Slackcir) which is assumed by the PC and by the NIC

injector. Notice that by using this slack the number of circuits successfully used increase,

potentially increasing performance. Also, notice that the confirmation of a circuit may be

received before the slack expires (if no contention is encountered by the ACK message).

In that case, the message is injected using the circuit as early as the confirmation arrives

and the slack does not expire. Notice that the circuit will be programmed in the network

for the transmission time plus the slack constant.

The latency on a circuit setup process is determined by the distance to destination and

the slack constant:

Setuplatency = MAX(cachelatency, d ∗ 2 + Slackcir)

Where cachelatency is the cache access latency, d is the distance in hops in PROSA

(number of PCs crossed) and Slackcir is a small delay due to the contention in the

PROSA network. Notice that this formula can get Setuplatency smaller than cachelatency.

As an example, if d equals 0 when source and destination are in the same PC and Slack

is smaller than cachelatency, in this case, the Setuplatency is set equal to cachelatency.

When a successful circuit is configured, PROSAslack guarantees the circuit transmis-

sion time (Setuplatency plus CSlatency) is lower than the message transmission time

(cachelatency plus PSlatency).

7.4.2.3 Distance Driven Setup Circuit

As a further enhancement, PROSAdd allows selective configuration of the circuits based

on the distance to destination. Thus, when a circuit is requested to be configured,

PROSAdd analyzes the Setuplatency which is mainly determined by the number of PC

hops. A MaxHops parameter can be configured in PROSAdd. If the distance is larger

than MaxHops, then the circuit is cancelled and the data is forwarded through the

network using PS. Later we analyze the behavior of PROSAdd with different thresholds.
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7.4.2.4 PROSAdd Messages Priorities

As a final enhancement, PROSApriorities enables the use of different priorities between

ReqCir, ACK and NACK messages within the PC network. In the standard PROSA,

NACK messages get higher priority than ACK messages, and ACK messages get higher

priority than ReqCir messages (NACK > ACK > ReqCir). This priority scheme

guarantees all NACK messages get delivered to end points. However, many circuits

cannot be set due to a conflict with NACK or ACK messages. Remind that ReqCir

messages convert to NACK messages if they conflict with a NACK or ACK message.

Now, in PROSApriorities, the endpoints will inject the message through the network in

PS mode when the Setuplatency expires. Also, PCs will remove circuits automatically.

Thus, there is no need to guarantee all NACK messages are delivered to the end points.

Indeed, NACK messages could be simply removed from the network. The only benefit

they produce is that a message can be injected earlier into the network once it receives

the NACK message (before the Setuplatency expires).

Thus, in PROSApriorities we can use two different priority schemes. In the first one, ACK

messages get now highest priority, so to speed up injection of messages through circuits,

then ReqCir messages get higher priority than NACKs, which have the lowest priority

(ACK > ReqCir > NACKS). The second one is more radical as NACK messages will

simply be removed from the system. They will not be generated by PCs. In this scheme,

ACK messages get higher priority than ReqCir messages (ACK > ReqCir).

Notice that removing the NACK support we ease the design of the PC. Figure 7.13 shows

the new PC structure. In particular, the comparator column and the NACK queue

structure and associated logic have been removed. Also, the TYPE field is reduced to

only two types (one bit encoding). Also the logic at RCs is greatly simplified as partial

circuit elimination is not longer needed when NACKs do not exist. This means the area

and power overheads of PROSA will be reduced (will be presented later).

7.5 PROSA Evaluation

For the performance analysis we use gNoCsim [66], an event-driven cycle-accurate sim-

ulator that models any network topology and router architecture. We model a 2-stage

pipelined router with VCs and flit-level crossbar switching, as used in Garnet [67]. Table

7.1 shows the simulation parameters for the router and the cache hierarchy. L1 is private

to the core and L2 is shared but distributed among all tiles.

In a first analysis, we evaluate three mechanisms: the baseline router (BASELINE), the

Dejavu (DEJAVU) solution [14] and PROSA (no optimizations involved). In PROSA

data sent through circuits take one cycle (using SMART). We analyze applications from
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Figure 7.13: PROSA Controller without NACKs.

Parameter Network L1 L2 per tile MC

Topology 8x8 mesh

# VCs/fly link 4/1 cycle

Message sizes 8/72 bytes

Flit/Queue size 64 bits/9 flits

sets/way/line size (B) 32/4/64 128/16/64

cache/tag latency 2/1 4/2

# MCs 2

Memory controller delays (open/activate/read rows) 16/16/16

Table 7.1: Parameters and values used for routers and caches.

SPLASH [68] and PARSEC [69]. Table 7.2 shows the applications with their observed

loads. Deja Vu pre-allocates the circuit between nodes in order to hide the setup latency

by dividing the NoC in two planes: control and data plane. The control plane is in

charge of configuring the circuits. This plane has higher voltage and frequency, so being

faster. In this NoC, the request packet pre-allocates the path in backward direction as it

approaches destination. The destination node can forward the response to the requestor

whenever data is ready with no circuit setup. This approach can produce conflicts. Deja

Vu configures the circuits in the order they are reserved.
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Application Benchmark Abbr. Runtime L1 miss L2 miss

BARNES SPLASH BAR High Low Med

BLACKSCHOLES PARSEC BLA High High High

BODYTRACK PARSEC BOD Med Low Low

CANNEAL PARSEC CAN High High High

CHOLESKY SPLASH CHO Med Low High

FERRET PARSEC FER Low Low High

FFT SPLASH FFT High Low Med

FMM SPLASH FMM Med Med High

LU SPLASH CHO Low Low Low

OCEAN SPLASH OCE Low Med High

OCEANNC SPLASH OCNC Low High Low

RADIX SPLASH RAD Med High High

RAYTRACE SPLASH RAY Med Med Med

STREAMCLUSTER PARSEC STR High Low High

WATERNSQ SPLASH WNSQ Med Med High

WATERSPACIAL SPLASH WSPA Med Med High

Table 7.2: Applications tested with observed runtime and L1/L2 miss.
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Figure 7.14: Performance results for different architectures (BASELINE, DEJAVU,
PROSA in column order).

7.5.1 Results

Figure 7.14a shows application runtime. PROSA reduces, on average, BASELINE ap-

plication runtime by 33.11%, reaching lower gains in applications with a low number

of L2 misses (BODYTRACK), or with short application runtimes (LU) where the re-

duction in runtime is 5.45% and 4.0%, respectively. However, with balanced applica-

tions (OCEANNC), or applications with a high number of MC requests (FFT, CAN-

NEAL, FMM, BLACKSCHOLES) PROSA reaches an improvement up to 50%. Deja
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Figure 7.15: Memory latency results for different architectures. Normalized to base-
line case.

Vu achieves negligible benefits in performance, as seen in [14].

Figure 7.14b shows latency results. DEJAVU outperforms BASELINE by 10% on av-

erage. PROSA, in applications with a low number of MC requests and small datasets

(e.g. BODYTRACK), achieves a 7% improvement on end-to-end latency. However,

PROSA outperforms BASELINE up to 39% on applications with a high number of L2

misses (e.g. CANNEAL). On average, PROSA outperforms BASELINE end-to-end la-

tency by 31.14%. For network latency, blue solid color, on average, PROSA outperforms

BASELINE by 34.16%. Notice PROSA outperforms significantly DEJAVU.

For L1 miss latency normalized to BASELINE (Figure 7.15), as it occurs with runtime,

DEJAVU slightly improves BASELINE and PROSA achieves better performance. On

average, our proposal outperform BASELINE by 23%.

REC.ACK REC. NACK

MIN (OCNC) 85.98% (LU) 4.28%

AVG 90,62% 9,38%

MAX (LU) 95.72% (OCNC)14.02%

Table 7.3: Number of ACK and NACK messages generated in PROSA in PC module.

CONF. INPUT CONF. RA

NACK ACK FB TMP ARB

MIN (LU) 0.01% (BOD) 0.63% 0% (WSPA) 1.92% (WSPA) 0.31%

AVG 0,04% 3,94% 0,00% 4,61% 0,79%

MAX (WSPA) 0.18% (WSPA) 9.27% 0% (OCNC) 9.04% (OCNC) 1.70%

Table 7.4: Number of conflicts generated in PC module.

Table 7.3 shows statistics about PROSA circuits. The first column shows the received

ACKs (the number of circuits established successfully). In all cases this is higher than

85.58% and the average is 90.62%. The second column shows the received NACKs and

is the sum of the next five columns of Table 7.4, which list the different types of conflicts

in the PC. The first and second column show the number of NACKs generated at the

input of the PC as a normal request and an ACK/NACK conflicted at the same time.

The last columns show conflicts generated at the ResArb arbiters due to (1) the register

table being full (FB), (2) the required period of time of one request overlaps with one



Chapter 7. PROSA: Protocol-Driven Network on Chip Architecture 172

 0.9

 0.95

 1

 1.05

 1.1

BAR CHO FFT LU OCE AVG

N
o
rm

a
li

z
e
d
 R

u
n
ti

m
e

PROSA PROSA2C

Figure 7.16: Results for PROSA with delay circuits equal to 2.

established circuit (TMP), and (3) two requests collide in the same ResArb module

(ARB) due to the static arbiter. As we can see, most conflicts are generated because of

temporal conflicts in generating circuits or because of concurrent requests conflict with

an ACK in the same resource. However, the current table size at ResArb modules (2

entries) seems to be properly sized (even could be reduced thus saving more area) as the

number of conflicts due to the table being full are negligible.

One critical aspect of PROSA is the technological ability to transmit via circuit one

flit from one network corner to the opposite. To analyze the impact of a more relaxed

circuit design, 2-cycle circuits have been tested (PROSA2C). Figure 7.16 shows, for some

applications, the runtime application results assuming two 2-cycle circuits (for every

source-destination pair). As can be seen, PROSA2C reaches similar results as PROSA,

on average worsening performance by 1.2%. As both configurations reach similar results,

one cycle delay will be assumed for the rest of the paper.

7.5.2 PROSA Implementation

We have implemented all the PROSA infrastructure for a 4× 4 CMP system. Each PC

module has been implemented in Verilog and tested. We use a canonical router design

with 64-bit flits, four 9-flit depth VCs, and with seven ports to attach 2D-mesh ports and

L1, L2, and MC (including the MLCU). We use Design Vision tool from Synopsys with

45nm Nangate open cell library [70]. Power results are obtained from Orion-3 power

library [71].

Table 7.5 shows the area overheads of PROSA for different configurations. In all of

them, and for the sake of comparison, we also account for the components to build a

cluster of four routers. In the case of PROSA we consider all the components (including

the PC and the four PRs) and the logic and resources used for NACK messages.

As we can see, the PROSA router takes only 1.8% more area than the baseline router.

The PROSA controller (PC) takes less area than a baseline router (22% of baseline router

area). However, this component is new and needs to be considered as an additional

overhead. To make this comparison fair, the table shows area of cluster regions. In this
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Configuration area (µm2) overhead

Baseline router 243784 -

PROSA Router (PR) 248200 1.8%

PROSA Controller (PC) 76547 -

Baseline cluster 975136 -

PROSA cluster 1069347 9.66%

Flattened Butterfly cluster 1380109 41%

2xBaseline cluster 1658560 70%

Table 7.5: Area overheads for different router and NoC organizations.
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Figure 7.17: Power consumption results. First column represents BASELINE and
second PROSA.

case, the PROSA cluster takes 9.66% more area. The NIC’s overhead can be considered

as negligible.

PROSA overheads can be seen as high. However, we should consider the performance

gains that PROSA circuits enable. In order, however, to better assess the overheads,

the table shows two additional configurations worth being analyzed. The first one,

flattenedbutterfly, is the overhead for a flattened butterfly topology which has more

connectivity along each dimension and direction. In this case, because of the larger

number of input ports, the area overhead is increased by 41%. The second one is for the

case where the baseline cluster is enhanced with double flit size. This can lead to faster

transfer times between the nodes. However, as we can see, overhead skyrockets to 70%

additional area. This is mainly due to the larger buffer requirements.

Figure 7.17 shows the power consumption results for the entire network, PROSA and

PS network. Although the leakage power increases by 42% the total power consumption

is reduced by 3%. This reduction is due to switching and internal power, which are

reduced by 10%. As described in [14] Deja Vu achieves a 30% power reduction, which

is similar to our results (but without the latency improvements). Notice that the 30%

execution time reduction will translate in major power savings as shown in [72]1.

1In [72] authors show that in modern computing systems, DVFS gives much more limited power
savings with relatively high performance overhead as compared to running workloads at high speed and
then transitioning into low power state.
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(b) Flit Latency

Figure 7.18: Performance results for different architectures (PROSA, PROSAall−nn,
PROSAall−nm in column order).

Notice that in some applications (BAR, FMM, LU, WSPA) overall power consumption

is slightly higher with PROSA. In these applications, internal and switching power con-

sumption is roughly the same with PROSA and BASELINE (due to the higher number

of delayed circuits that could not be used). This fact, combined with PROSA incurring

in higher leakage (due to its additional network), makes the overall power consumption

to be slightly higher . Notice, however, PROSA targets energy savings by reducing

application runtime.

7.5.3 Enhanced PROSA

In this section we analyze the performance achieved by PROSA with the different added

functionalities presented before. First, we analyze PROSAall when circuits are config-

ured for all messages. In this version, no slack is provided nor distance threshold. Dif-

ferent priorities between PROSA messages will be explored. Then, we focus on PROSA

version with distance thresholds and slack for circuit setup process. This method is

called PROSAall−dd−slack−xy where x and y will identify threshold and slack values.

7.5.3.1 Circuits for all Messages and Different Priorities

Figure 7.18 shows the comparison between baseline PROSA and PROSAall with two

different versions. The first one (PROSAall−nn) with no NACKs on the PROSA cir-

cuit network, and the second one (PROSAall−nm) with NACKs with lowest priority

(ACK > ReqCir > NACK). Figure 7.18a shows the normalized execution time for

different applications. Notice the Y axis which does not start from zero value (for the
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Figure 7.19: Memory latency results for different architectures. Normalized to base-
line case.

sake of clearly showing differences). As we can see, differences in execution time are

very small. However, when comparing flit latency (Figure 7.18b) differences are much

more noticeable. Both PROSA configurations (PROSAall−nn and PROSAall−nm) reduce

baseline PROSA flit latency by 35%. In flit latency PROSAall benefits range from 67%

(in applications where PROSA achieves a small improvement in terms of flit latency (see

Fig. 7.14), e.g. BODYTRACK) to 18% or 32 % (in applications in which PROSA gets

higher improvement in that metric (see Fig. 7.14), e.g. RAD or CANNEAL and FFT

respectively.

It has to be noted that although flit latency is significantly improved, the execution time

of applications barely changes. This effect is due to the extra delay paid by PROSAall−nm

and PROSAall−nn at the protocol level. Indeed, by tunneling all messages through

circuits some protocol messages are delivered out of order, triggering race conditions

in the coherence protocol. Those races have been fixed by adding additional protocol

states or by recycling some protocol requests in order to enforce the strict ordering of

messages. Indeed, Figure 7.19 shows the average L1 miss latency results. As we can

observe, the different PROSA versions achieve almost identical miss latency values.

More interesting is the fact that both new versions achieve almost the same flit latency

values. Indeed, lowering the priority of NACK messages has the same effect as of re-

moving them completely. This result suggests that NACK messages can be removed

as they will hardly affect performance. Indeed, some area and power savings will be

achieved by removing NACK support. Table 7.6 shows the overhead implementation of

the PC without NACKs. As can be seen PC and cluster area is reduced by 16% and 2%

respectively. Thus, PROSAall−nn reaches similar performance results as PROSAall−nm

but reducing the area.

Configuration area (µm2) overhead

PROSA Router (PR) 248200

PROSA Controller (PC) 76547

PROSAall,nn Controller (PC) 64918 -16%

PROSA cluster 1069347

PROSAall,nn cluster 1057718 -2%

Table 7.6: Area overheads for PROSA controller without NACK .
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We concluded PROSAall−nn and PROSAall−nm being almost identical in performance

was in average terms. However, for every application results are slightly different and

significant in BAR. The trend is that not using NACKs increases performance. In BAR,

the pollution created by NACK messages leads to critical circuits to get delayed and thus

miss shorter message latencies. This is, on average, cancelled due to the large amount

of traffic each application injects. However, delaying a process punctually will lead to a

higher execution time because of barriers and synchronization events between processes.

This is the root cause of higher runtime but similar average latencies.

CONF. INPUT CONF. RA

REC.ACK REC. NACK NACK ACK FB TMP ARB

MIN (OCNC) 62.81% (LU) 14.36% 0 (STR) 5.25% (BOD)0.02% (LU) 5.75% (LU) 3.15%

AVG 73.25% 26.75% 0 7.84% 0.18% 12.30% 6.71%

MAX (LU) 86.64% (OCNC) 37.21% 0 (BOD) 17.15% (FMM) 0.55% (OCNC) 15.96% (OCNC) 9.41%

Table 7.7: Number of ACK and NACK messages generated in PROSAall−nm and
number of conflicts generated in PROSA Controller.

Table 7.7 shows statistics about PROSA circuits for PROSAall−nm. Notice that the

current circuit setup success rate (73.25% on average for all applications) is much smaller

than the one achieved with baseline PROSA. This is due to the higher traffic of the

PROSAall network to establish circuits. Now, for every message a circuit setup process

is launched. However, what is noticeable is that NACK messages do not introduce

any conflict at the input of the PC device. Full bank conflicts at ResArb modules is

also low (0.18% on average). The more prominent conflicts now are those related to

the temporal conflict with already programmed circuits (12.30% on average) and due

to arbiter conflicts (two concurrent requests, 6.71% on average). Notice that in this

configuration each ResArb module implements a circuit table with four entries. These

results are similar to the ones achieved by PROSAall−nn. Because of the more efficient

implementation, from now, we use PROSAall−nn for all the following experiments.

7.5.3.2 Bounded Circuits and Slack

Now we focus on the full deployment of PROSA, which includes the distance threshold

and the slack for circuit setup process (PROSAall−dd−slack−xy). We analyze two slack

(x) values (1 cycle and 2 cycles) and two distance (y) thresholds (3 and 4 hops in PC, 6

and 8 routers, respectively). Thus, PROSAall−dd−slack−13 represents PROSA with 3 PC

hops distance threshold and 1 cycle for slack. All these versions do not include NACKs

(similar to PROSAall−nn).

Figure 7.20a shows the application runtime for the four new configurations and for the

previous PROSAall−nn version. On average, all these four configurations slightly im-

prove PROSAall−nn. Among all, PROSAall−dd−slack−13 is the best configuration, which

outperform applications execution time up to 6% in some applications (CANNEAL,

CHO, RADIX). On average performance improves by 3%.
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(b) Flit Latency

Figure 7.20: Performance results for different architectures (PROSA and PROSA DD
in column order).
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Figure 7.21: Memory latency results for different architectures. Normalized to base-
line case

Figure 7.20b compares flit latencies for these configurations. PROSAall−nn always gets

the lowest flit latency for all applications. As can be seen, PROSAall−dd−slack−xy gets

worse latency results with low threshold value. However, this does not affect L1 miss

latency . Figure 7.21 shows the miss latency results which follows the same trend

observed for the execution time of applications. Applications with higher miss latencies

(LU) have higher execution runtimes. As it occurred with PROSAall−nn, improvements

in the network (faster messages) is not reflected in execution time of applications due

to the extra delay incurred in the protocol.

3 HOPs 4 HOPS 5 HOPS unbounded

ACK NACK ACK NACK ACK NACK ACK NACK

BARNES 77.52 22.48 72.78 27.22 70.51 29.49 68.25 31.75

CHO 80.31 19.69 76.90 23.10 75.09 24.91 73.03 26.97

FFT 83.38 16.62 80.10 19.90 77.61 22.39 75.41 24.59

OCEAN 84.44 15.56 80.19 19.81 77.29 22.71 75.24 24.76

LU 91.20 8.80 88.65 11.42 86.24 13.76 84.27 15. 73

Table 7.8: Percentage of ACKs/NACKs for PROSAall−dd with different distances.
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Figure 7.22: Power consumption results. First column represents BASELINE, sedond
PROSA and third PROSAall.

Table 7.8 shows PROSA statistics for different applications when varying the maximum

distance of circuits inside the PC network. As we observe, the number of NACKs

increases as the allowed distance of circuits increases. This is mainly motivated by the

traffic increase in the PC network. As seen in the table more NACKs are generated,

delaying injection of associated messages. Therefore, maximum distances of 3/4 PC hops

looks like the right approach to minimize NACKs while still guaranteeing long circuits.

Finally, Figure 7.22 shows the power results for PROSAall−dd−slack−xy. On average, the

new PROSA version reduces the power consumption by 7% and 4% to BASELINE and

baseline PROSA, respectively. Network traffic in the PC network in PROSAall−dd−slack−xy

is 5 times larger than the observed in PROSA. However, the new PROSA reduces power

consumption in the standard network is reduced by 35% on average.

7.6 Discussion

From the previous results we can observe different aspects worth being highlighted. The

first one is the clear benefit of building an infrastructure to setup circuits for coherence

protocol-oriented systems. By taking advantage of large memory access latencies the

network can be configured with communication circuits configured and kept only for

the transmission duration of the message. PROSA is able to achieve remarkable results

in execution time and flit latencies. PROSA can set a circuit in less than 16 cycles

in the worst case for an 8 × 8 mesh network. Although this can be enough for stan-

dard memories, for faster ones or larger networks maximum circuit distance has to be

bounded.

The second conclusion is the fact that tunneling all the messages (short and long)

through circuits does not necessarily lead to benefits in application performance. Ex-

ecution time is barely the same and, most important, the coherence protocol must be

adapted to support new race conditions triggered by messages arriving out of order.

What is more interesting to note is the fact that negative acknowledgments of circuits

can be discarded and it is worth relying on an automatic and silent circuit tear down
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process. Further savings in power and area implementation are achieved. Indeed, per-

formance is not significantly affected.

A third conclusion we obtain is related with the circuit setup delay and its effects on per-

formance. Indeed, by bounding the reachability of circuits performance of applications

can be improved with a further 6%. This is easily achieved by adding a simple compara-

tor on each NIC. Longer circuits tend to have a larger circuit setup time, which indeed

is larger than the cache access time, incurring on a extra delay to send the message

through a circuit.

Finally, the use of a slack for circuits should be introduced with care. A large slack

may lead to worse results as it induces more temporal conflicts in the network. Indeed,

contention in the circuit setup network is low and, thus, with only one cycle of slack

most of the circuits are successfully configured and used, leading to good performance.

One critical aspect of PROSA is its scalability. First, the current design allows only

one ReqCir request to access the RT. This may create a bottleneck. However, the

low/medium load traffic seen on the PC network does not compromise its performance.

Anyway, if scalability problems appear, it would be solved by implementing a two-port

RT module. On the other hand, for PROSAall, small-sized messages with distant desti-

nations could prevent long-sized messages with nearer destinations, potentially affecting

performance. However, some of those small-sized messages are in the critical path of

memory access by the processor, thus, having a high impact on performance. This fact

makes the distinction between short and long messages less significant.

As a final conclusion, the best PROSA configuration would be the one with no NACK

support, one cycle slack, and with a threshold of distance three for the 8× 8 network.

7.7 Related Work

Circuit-switching [64] has been used in a number of previous works in NoC architectures

in order to reduce on-chip communication latency. Once a circuit is set, data does not

travel through the routing and arbitration stages on each router. However, setup time

usually causes low resources utilization and performance degradation. On the other

hand, packet switching improves resource utilization and network performance, splitting

the entire message in smaller blocks and forwarding them along the network.

Some works try to get benefit from both mechanisms by implementing a hybrid circuit-

packet switching strategy. Kumar [9] proposes Express Virtual Channels (EVC) allowing

packets to bypass intermediate routers along their path. EVCs only allow to connect

nodes along the same dimension, so circuits cannot turn from one dimension to another.

PROSA, on the other hand, allows to connect nodes regardless their location, thus

offering more flexibility.
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Jerger [10] proposes circuit switched coherence, setting permanent circuits between pairs

of frequent data sharers instead of tearing them down. It allows to quickly send data

between the same nodes. However, if another circuit requires the resource, the data is

switched to packet switching until it reaches destination. Yin [11] proposes a hybrid

circuit-packet switched network in which the packet is forwarded along the packet net-

work while the circuits can be set in parallel, using TDM. Yim’s proposal also expends

time in the setup latency. Mazloumi [12] proposes another hybrid packet-circuit switched

router. This mechanism setups the circuit along the network while the request message

is being forwarded between the requestor and the destination. When the request reaches

the destination and the data is ready, the mechanism sends a probe message activating

the reserved circuit, after that the data is sent. Chen [13] proposes an implementation

of a hybrid circuit-packet switching. All these mechanisms require a setup period. How-

ever, PROSA hides the setup circuit latency based on the coherence protocol and when

the circuit usage finishes, resources are freed allowing the packet switching to forward

packets without having to tear down any circuit, data is sent without delay.

Abousamra [14] proposes Deja Vu (briefly described in Section 7.5). In Deja Vu, the

selected order schema can produce underutilization of network resources. In [15] authors

alleviate the problem by using a different order. However, it still requires the high

frequency and voltage control plane. PROSA, as Deja Vu, preallocates the circuit in

order to hide the setup circuit delay, However, as per our evaluation, PROSA achieves

better performance results. Van Lear [16] proposes a coherence-based message predictor

for optical interconnection networks. In the proposal a global predictor establishes

the circuits between nodes. All the traffic in the network has to cross the predictor,

thus potentialy causing a bottleneck in the network. This proposal is also for optical

interconnects where a full optical crossbar is assumed. This makes scalability a major

issue. Shacham [17] proposes an hybrid optical-electrical network. In this proposal the

electrical network is used to establish the optical circuit. This mechanism is not based

on coherence protocols and uses photonic networks. Krishna in [7] presents SMART,

a multihop network with single-cycle data-path all the way from source to destination.

Setup circuit is required one cycle before the data is sent and partial circuits can be

established. An extra network is required to send SMART-hop Setup Request, SSR.

This mechanism is not based on coherence cache as PROSA and our mechanism relies

on SMART circuits. Peh [18] presents flit-reservation flow control. In this proposal the

circuit is setup hop by hop. However PROSA uses clusters to setup circuits, improving

the time required to establish the circuit. PROSA does not require to buffer messages,

contrary to flit-reservation. Our proposal anticipates the circuit setup process.

Liu et al. [19] propose an effective setup circuit procedure, in which the setup proce-

dure is guaranteed to terminate in 3D+6 cycles, where D is the distance. Xue et al.

[20] propose a general mathematical framework for reconfigurable networks in order to

optimize the network by configuring subnetworks to transmit data. Hollis et al. [21]
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propose a reconfigurable NoC using the Skip-link. This proposal configures the Skip-link

to allow packets to bypass the channel, avoiding to cross the router. PROSA implements

a cluster approach instead. Moreover, those proposals do not get any benefit from the

coherence protocol delay.

A cluster approach has been proposed previously by some authors. Xue et al. [22]

propose a cluster approach to send multicast messages, encoding these messages and

decoding them at destination. They support dropping parts of the message. Qian

et al. [23] propose a cluster approach by connecting clusters through Express Virtual

Channels (EVC) and a Hub router. They use an adaptive routing algorithm to choose

between regular network, the EVC or the Hub router. Both approaches implement a

packet switching approach and do not use the coherence protocol information to improve

network performance.

Pimpalkhute et al. [80] propose a packet classification scheme for CMPs. The NoC

routers maintain the Used Back Row table. This table is used to forward incoming

request to main memory. If the incoming request has the same bank and row destination,

the request is forwarded and bypasses all the stored requests. In our proposal MLCU

follows the same behavior as Used Bank Row table. However, MLCU is used only for

latency estimation.

As a summary, PROSA allows to establish circuits between any pair of nodes hiding

the setup latency. PROSA uses the coherence protocol information to establish these

circuits. In addition, PROSA programs circuits for their exact period of time they will

be needed, thus not conflicting with other circuits using the same resources (in other

time periods). Indeed, PROSA circuits can be steered by coherence protocols or even

for other higher-level applications where traffic bursts can be predicted and requested

ahead of time. The previous works do not rely on coherence protocols or they rely on

more expensive architectures and technologies.

7.8 Conclusions

In this paper we introduce PROSA, a circuit-switched enabled NoC architecture which

allows the coherence protocol to steer circuit connections for future predictable and spec-

ulative connections between memory controllers (MC), L2 cache banks and L1 caches.

The baseline PROSA system establishes circuits for the required time period between L2

and L1 caches and between MC and L2 banks. On a misspredict the circuit is silently

removed. PROSA builds a separate infrastructure to manage circuits, thus the NoC

network is not affected by the additional circuit setup traffic.

Network latency is reduced up to 35% by correctly predicting and using circuits with

PROSA, outperforming baseline designs by reducing application runtime by 33% and
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improving DEJAVU with similar power results. PROSA takes an area overhead of 9.66%

compared to baseline but it saves more than 3% in power consumption.

Also, further enhancements of PROSA are presented: 1) the coherence protocol allows

to send all messages via circuits, 2) modifications at arbiters to set priorities, 3) a new

threshold mechanism to limit distance of circuits, and 4) removal of NACK messages with

implicit teardown circuits logic implemented. Compared with baseline PROSA, the new

method results in a reduction of network latency up to 35% by correctly predicting and

using circuits. The new PROSA optimizations further reduce baseline PROSA overhead

by 2% and reduce power consumption by 4%, mainly by removing NACKs. Compared

to baseline, enhanced PROSA outperforms results up to 50% for better network latency,

35% better runtime application and 7% power consumption reduction at the cost of using

7.6% more area. Overhead of PROSA is reasonable given the benefits in performance.

As a future work, we plan to extend our proposal with partial circuits.



Chapter 8

A Low-Latency Reconfigurable

Time-Division Multiplexed

Network-on-chip for

High-Assurance Systems

:

• Authors: Miguel Gorgues (Universitat Politècnica de València), José Flich (Uni-
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8.1 Abstract

High-assurance systems are typically organized as a set of domains that should be kept

separate. The strong isolation requirement is motivated by the need to avoid secu-

rity threats, to facilitate the verification and certification process, to effectively contain

faults, and to enable composability and performance predictability. The on-chip inter-

connection network (NoC) is key to delivering strong domain isolation, since many of its

internal resources are shared between packets from different domains. In this paper, we

tackle the challenge of eliminating any form of interference in the NoC in the strict sense:

injection of packets from one domain cannot affect the timing of packet delivery from

other domains. This way, even timing channel protection is provided. The distinctive

feature of our approach is that it is based on the observation of the channel dependency

graph, thereby achieving the best isolation-performance trade-off with respect to state-

of-the-art solutions. Another major step forward is that our NoC implementation is

inherently reconfigurable, that is, a variable number of domains can be supported with-

out the need to change the switch architecture, because of a token-based propagation

mechanism of domain identifiers.

8.2 Introduction

Nowadays, Chip Multiprocessors (CMPs) have become pervasive across a computing

continuum spanning from embedded systems to high-performance computing. However,

when applied to mission-critical applications, CMPs need to be adapted in order to

deliver security and reliability guarantees.

Indeed, in high-assurance systems it is a common practice to break the system into a

set of domains, which are to be kept separate and should have no effect (i.e., interfer-

ence) on one another. In CMPs, however, such controlled domain partitioning is not

straightforward since the on-chip interconnection network (NoC) is a shared resource by

all domains. Even assuming to spatially isolate domains inside physical compute and

memory partitions, memory controller (MC) reachability becomes an issue, due to the

need to cross intermediate partitions. As a result, the NoC resources are necessarily

shared between communication flows from different domains, and the proper course of

action should be taken to avoid domain interference.

Several degrees of non-interference can be enforced on the NoC. A first approach to

loosening interdependencies among communication flows consists of delivering quality

of service (QoS) guarantees. In fact, most QoS techniques aim at limiting flow rates,

while restoring nominal rates in the absence of contention. While QoS-augmented NoCs

can typically protect from denial-of-service (DoS) and bandwidth depletion attacks be-

tween domains, they cannot easily avoid an information leak associated with latency
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and throughput variations of communication flows as a function of network state. In

fact, they can be used as timing channels by an attacker either to infer confidential

information from a protected high-security program (side channel attacks) or to have

a malicious program deliberately leak information covertly when direct communication

channels are protected (covert channel attacks) [54].

When the protection against such timing channel attacks is required, even cycle-level

variations of communication performance should be prevented, a scenario that we here-

after denote as strong isolation of domains. Interestingly, implementing strongly isolated

domains makes it also easier to contain the propagation of faults, and does not require

to account for all possible system-level interactions for the sake of certification.

In order to deliver strong isolation to networked domains, the NoC must be designed

to guarantee the non-interference property in its strictest sense: injection of packets

from one domain cannot affect the timing of packet delivery from other domains. One

straightforward solution to this problem is to statically schedule domains on the net-

work over time with some form of time-division multiplexing (TDM) [55]. However,

this approach typically comes with relevant performance overheads. On the one hand,

strict non-interference requires that resource allocation decisions are independent from

application demands. On the other hand, performance of packets in time-multiplexed

NoCs is highly sensitive to the scheduling methodology of time slots.

Also, while existing solutions support a generic global schedule, its reconfiguration at

runtime is not at all obvious. In some cases, this would imply to solve a slot allocation

problem in software or through hardware acceleration, and large programming tables at

network interfaces [55] as well. In other cases, invasive hardware modifications would be

required to optimally support different system configurations (e.g., number of domains)

[61]. Therefore, these solutions are well suited for design time customizations only.

The main goal of our proposal is to deliver the strong isolation property for a runtime-

configurable number of domains, while significantly reducing the latency incurred by

temporal partitioning across the entire configuration space. Recently, there has been a

surge of activity to tackle this very same challenge. SurfNoC [60] schedules the network

into strictly non-interfering waves that flow across the interconnect. However, SurfNoC

requires input speedup, which leads to significant area overhead. PhaseNoC [61] ap-

plies TDM scheduling at virtual channel (VC) level at the granularity of individual

router pipeline stages. The phases are coordinated into optimally scheduled interlocked

propagating waves, which ensure that in-flight packets of all domains experience the

minimum possible latency. However, PhaseNoC is not able to deliver high-performance

strong isolation across all possible system configurations in an efficient way.

The solution proposed by this paper provides a flexible architecture from the ground

up, and extends performance and implementation efficiency to the whole configuration
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space. It builds on the concept of Token-based TDM. The approach is based on the

observation of the Channel Dependency Graph (CDG) defined by the topology and the

routing algorithm. From it, we derive the generic requirements to have all input ports

of all routers serving packets from the same domain at each time slot. This would allow

contention between packets from the same domain, while at the same time delivering

secure-grade isolation between domains. The approach is generalized to an arbitrary

number of domains by selectively and deterministically placing propagation stops at

specific points in the NoC, which preserves the strong isolation property and delivers

more latency-efficient NoC communications than state-of-the-art of solutions. Finally,

we provide support for runtime modifications of the system configuration through a

flexible architecture that does not require substantial changes to support the new con-

figuration, but rather modifies the scheduling commands distributed to the network

switches through a token-based notification mechanism.

With respect to state-of-the-art, our work pursues two innovative directions:

a) We understand the approaches to strong isolation and the performance pitfalls of

previous solutions by means of a unified abstraction, which we identify with the CDG

of the on-chip interconnection network. Then, we derive from its observation a latency-

optimized and generic solution to the allocation problem of time slots to domains in the

network.

b) We extend the level of flexibility of NoC architectures for strong isolation in high-

assurance systems beyond design-time customizations. Our architecture runs unmodi-

fied with high performance regardless the static (switch and link latency) and dynamic

(number of running domains) NoC settings.

The rest of the paper is organized as follows. In Section 8.3, we describe related work.

In section 8.4, we provide a motivation of our work and introduce the target scenario. In

Section 8.5, we describe the target architecture. Our proposal is then described in detail

in section 8.6. In Section 8.7, we provide the experimental results, while conclusions are

drawn in Section 8.8.

8.3 Related Work

Prior approaches to TDM-based scheduling in NoCs lose relevance when they are viewed

from the viewpoint of the concurrently conflicting requirements of latency optimization,

area efficiency and architectural flexibility. Numerous designs perform TDM scheduling

at the time-slot level [55][56][57]. When using such architectures, the scheduling is

typically performed offline (and assumes perfect a priori knowledge of the applications

expected to be running on the system), and then statically applied to the entire NoC

[58] [7]. However, in this type of approach the latency overhead can be quite substantial.
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AEthereal [55] employs pipelined TDM (at the time-slot level) and circuit-switching to

guarantee performance services. Traffic is separated into two main classes: 1) guaranteed

service (GS) and 2) best effort (BE). Excess bandwidth not used by GS flows is given

to BE flows. Packets on a single connection are always ordered, but ordering cannot

be enforced between connections. This approach incurs a substantial programming

overhead of time slots at network interfaces.

The SuperGT NoC [59] is an evolution of AEthereal providing three QoS classes. Aelite[56]

simplifies the router architecture by providing only GS, and AElite moves one step fur-

ther by including multicast traffic and fast virtual-circuit setup. Argo [57] allows sched-

ules to evolve at the granularity of a single cycle, even when the routers have more than

one pipeline stage. The resulting hardware cost is quite low, but the latency overhead

can be substantial. In [54], static network partitioning in space and time is employed

to provide multi-way isolation among the supported domains. This multi-way isolation

property comes at a high performance cost, which is alleviated by the introduced re-

versed priority with static limits (RPSL) mechanism. It uses priority-based arbitration

and static limits to guarantee one-way isolation between high-security and low-security

flows.

A recently introduced architecture, called SurfNoC [60], employs optimized TDM schedul-

ing, also applied at the VC level, to minimize the latency overhead. However, the re-

quired hardware is expensive. Achieving low-cost implementations with SurfNoC would

increase the latency overhead of static scheduling. The current state-of-the-art in TDM-

based scheduling is PhaseNoC [61]. It improves the VC-level scheduling proposed by

SurfNoC by pre-configuring the network in order to receive packets from the same do-

main at all the input ports at every cycle, and performing the arbitration in the next

cycle of this incoming domain. Following this approach, PhaseNoC meets the first re-

quirement, by minimizing the latency overhead. However, it lacks of flexibility, because

PhaseNoC needs to modify the network (adding stages at the router) to support a higher

number of domains. PhaseNoC proposes to divide the network into x+y+ and x−y− to

support a higher number of domains. However, following this approach, it can not guar-

antee the non-interference property any more, for which it would need input speedup

similarly to SurfNoC.

8.4 The Strong Isolation Requirement in High-Assurance

Systems

Current CMPs are designed following a tile-based approach, where a compute tile, typ-

ically including distributed L2 memory, is replicated inside the chip and connected by

a network-on-chip (NoC) at the top-level of the hierarchy [81, 82]. In high-assurance
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systems, support for resource partitioning into isolated domains is an emerging require-

ment. For instance, Integrated Modular Avionics (IMA) architectures are currently

mainstream avionic systems, constituting a logically-centralized and shared computing

platform hosting a variety of avionics functions on a single computing platform (multi-

function integration). IMA requires the use of software partitioning [83], which consists

of achieving fault containment in software, independently of the underlying hardware

platform. However, with the advent of parallel computing architectures, the partitioning

concept should be enforced in hardware as well. The avionics safety standards dictate

the enforcement of partitioning in space and time. Spatial partitioning ensures that

an application in one partition is unable to change private data or use private devices

of another one. Temporal partitioning guarantees that the timing characteristics of an

application, such as worst-case execution time, are not affected by the execution of an

application in another partition. While these concepts have been fundamentally driven

by fault-tolerance and performance predictability considerations, protection from cyber

attacks is getting increasing attention in the design of avionic systems [84]. Today, such

systems should be safeguarded not only against basic DoS attacks, but also from other

vulnerabilities such as timing channels [85]. Similar considerations hold for the auto-

motive domain, where densely populated networks of electronic control units are being

replaced by distributed central compute platforms, driven by cost, weight, complexity

and security considerations. The picture becomes even more critical when considering

the possible co-integration of safety-critical functions (e.g., the breaking system) with

infotainment and even third-party applications. Also in this domain, numerous works

are surveying cars’ intercommunication technologies and possible threats [86, 87], and

demonstrating different kinds of attacks [88].

Last but not least, computing platforms for space applications are following the same

trend, extending the concern from failure cascading avoidance to the interference threats

between system components in multicore architectures [89, 90].

Overall, the key challenge of applying time and space partitioning to CMP platforms

lies in the on-chip interconnection network, where an additional layer of possible inter-

action arises for the system as a whole. Routers and links are shared among domains,

and are thus subject to contention and congestion. This renders network performance

unpredictable, prevents fault containment and exposes unprecedented security threats.

CMPs must isolate flows between different domains, preventing a packet being blocked

by packets from other domains. This problem can be partially solved by using a different

Virtual Channel (VC) for each required domain. This way, an attacker can only fill the

VC buffers assigned to its domain.

However, separating the flows in VCs is not enough to guarantee the strictest notion

of non-interference, that is, the latency of packets belonging to a domain should not

depend on the traffic from others domains. This means that a packet cannot get delayed
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Figure 8.1: Reference solution: VC partitioning coupled with time-division multi-
plexing.

because of conflicts with packets from other domains, therefore no timing channel is

exposed in the NoC. This is the explicit target of this work.

8.4.1 Time Division Multiplexing

The reference solution to avoid any kind of domain interference consists of partitioning

the virtual channels and time-multiplexing the physical channels and crossbars between

different domains such that channels are only allowed to propagate packets from different

domains on different cycles. This TDM partitioning scheme ensures that latency and

throughput of each domain are completely independent of the other domain’s load.

However, this baseline scheme is heavily sub-optimal and non-scalable, since packets

will have to wait as many cycles as the number of concurrent domains minus one at each

hop. The incurred penalty grows significantly with the physical distance of the receiver

end node.

To cope with this problem, we share the same intuition with previous work (SurfNoC,

PhaseNoC), that is, we keep these time-varying partitions while changing the phase of

their oscillations to cut down on network latency. However, our approach is based on

the observation of the CDG, and is compared with state-of-the-art in the experimental

results.

8.5 Target Architecture

Figure 8.2 shows the target CMP architecture, which is based on a tile-based approach.

Each tile is composed by a core, a private L1 and a distributed L2 cache bank, in addition

to a NoC router. All the elements are directly connected to the router. Routers from

different tiles are connected by using a 2D mesh topology. Cores access main memory

by sending a request to the memory controllers (MC). Without lack of generality, we

assume one MC is attached to each network corner, hence 4 MCs are shared between
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Figure 8.2: Target CMP architecture with a partitioning pattern into isolated do-
mains.

all compute and memory tiles. Our work is complementary to previous work addressing

isolation of off-chip memory accesses, resulting in augmented MC architectures [54].

The proposed architecture implements single-cycle routers, where link traversal and

input buffer storage are performed in one cycle, whereas VC allocation (VA), switch

allocation (SA) and crossbar switching (X) are performed in another cycle. Our design

philosophy for strong isolation is not limited to this architecture, and can be extended

to any NoC.

The target architecture is partitioned into disjoint domains, mapped to a subset of

contiguous tiles. Figure 8.2 shows an example of a partitioning pattern as well. As

a result, two kinds of communication requirements arise: between tiles of the same

partition/domain, and between such tiles and the memory controllers. We target cost-

effective implementations, therefore we do NOT replicate the NoC to serve both kinds

of communications, which are thus consolidated onto the same NoC.

The NoC has a VC (or a set of VCs) reserved for packets of each domain. Packet routing

is performed via logic-based distributed routing (LBDR), which avoids the access delay

and area overhead of look-up tables [91]. LBDR consists of combinational logic at each

input port, which processes the coordinates of the packet destination and determines the

target output port at each switch. The logic accounts for forbidden turns by the rout-

ing algorithm and for topology boundaries, which are coded in a configuration register

programmed with the so-called LBDR bits. We assume a unique, global minimal-path

routing algorithm programmed through these bits, and we do not restrict the shapes

of the partitions that can be inferred on top of the NoC. The routing algorithm is

deadlock-free, hence the CDG is acyclic.
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8.5.1 Partition-Aware TDM

Previous work has never considered the spatial locality of partitions, or has only consid-

ered single-tile partitions. The awareness of the partitioning pattern suggests a straight-

forward extension of TDM, which we also consider as a baseline reference solution.

If we assume that intra-partition traffic will never collide, then we can think of enabling

such intra-partition traffic in parallel. In this article, we consider a TDM schedule where

all domains can transmit local traffic during the same time slot, while a distinct time

slot is available for each domain to send or receive packets to/from memory controllers.

In practice, while strong isolation of global traffic (to/from MCs) is delivered by the

TDM mechanism, local traffic can be easily kept non-interfering by exploiting the spa-

tial locality of these communications. There are two possible solutions. First, we may

restrict to regular partition shapes such as squares or rectangles. No two packets from

neighboring partitions would collide on the same route, since there would be no inter-

section between such routes with minimal path routing. Second, we may allow arbitrary

partition shape while limiting packet routes within the boundaries of the partition the

sender-receiver pair belongs to. This can be achieved by enforcing the connectivity bits

(a subset of the LBDR bits denoting topology connectivity) to zero, so that the LBDR

logic never routes a packet outside the partition. This would however give rise to a

concern: with a given routing algorithm, some partition shapes would not be fully con-

nected, hence should be avoided. Without lack of generality, we validate several TDM

approaches on regular partition shapes, so that partition-aware TDM can be part of the

evaluation framework.

8.6 CDG-driven Strong Isolation

8.6.1 Router-Level Strong Isolation

Token-Based TDM enforces non-interference between traffic logically belonging to dif-

ferent partitions. The latter includes flows between sender-receiver pairs within the

same partition, and flows from/to tiles of a partition to/from any MC. Even cycle-level

variations are prevented in order to avoid timing channel attacks.

To achieve such property, the network relies on a token propagation scheme. Tokens

contain scheduling orders to local router-level domain schedulers. For this purpose,

tokens carry a domain identifier (DI), which identifies the domain whose packets can

be forwarded from a specific router input upon arrival of the token. In order to deliver

strong isolation between domains, we need to synchronize the timing of token propagation

throughout the network in such a way that every router gets homogeneous DIs at each
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(a) Requirement for router-
level strong isolation.

(b) Scenario where domain
interference may cause la-

tency variations.

Figure 8.3: Scenarios for router-level slot allocation to domains Di.

input port on every cycle (see Fig.8.3). This means that the router will arbitrate and

forward messages belonging to the same domain/partition, and messages from different

domains will never compete.

The idea of this paper is to create and propagate as many kinds of tokens as the number

of running domains, each one with its own Domain Identifier (DI). All different kinds of

tokens are triggered back-to-back in sequence from a source node in the network, and

propagated through it in the order of the CDG. The proposal triggers one new kind

of token at each cycle, and repeats the domain sequence every D cycles, where D is

the number of domains. As tokens are received in sequence at switch input ports, they

command the local scheduler to serve packets with a specific identifier from those ports.

8.6.2 Synchronized Token Propagation

Since tokens traverse router ports and links in the order of the CDG, synchronized same-

ID token arrival at all router input ports depends on the CDG and nominal router and

link latencies.

Assuming an horizontal Segment-based Routing algorithm [73] and single-cycle routers

and links, tokens would be triggered from the bottom right corner, and would be propa-

gated throughout the network as illustrated in Figure 8.4. With this routing algorithm,

there are two token propagation phases, a scroll-up one (left) and a scroll-down one

(right), which occur one after the other. Their combined effect is the traversal of all

router ports and NoC links. Numbers in the figure indicate token propagation latencies

since initial injection. The diagonal arrows represent routing restrictions, that is, direc-

tions that packets can NOT take as dictated by the routing algorithm at hand. They

are set in order to prevent cyclic dependencies, that is, deadlock from occurring.
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Figure 8.4: Network-level token propagation, with latency annotated, in the order of
the CDG with horizontal segment-based routing and single-cycle routers and links.

Figure 8.5: Arrival times (in clock cycles) of same-ID tokens at router input ports.

If we focus on a single router and a single token crossing the network as specified in

the CDG, the token will reach different input ports of the same router at different

timestamps t1-t2-t3 and t4, as seen in Figure 8.5.

Let us define relative latencies as the time periods elapsed between any two consecutive

timestamps. Router-level operation with strong domain isolation requires that the result

of the modulo operation between any of these relative latencies and the number of domains

is always 0:

∀(y, x) ∈ A→ (ATy −ATx) mod D = 0, where ATy > ATx

where A is the set of router input ports, D is the number of running domains, and ATi is

the arrival time of same-ID tokens at input port i. In fact, as the proposed architecture

injects the same domain identifier token into the network every D cycles, this ensures

that a token with the same identifier will reach a specified port every D cycles.

Therefore, if the previous condition is met, at regime all the router input ports will receive

tokens with the same domain identifier exactly at the same time, and can thus work in

strong isolation mode. The number of domains D that enables this operating condition

is the Maximum Common Divisor (MCD) of all relative latencies between consecutive

pairs of arrival times (in increasing order).
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Figure 8.6: Perfect scheduling at network level for minimum latency.

Figure 8.7: Token propagation flow at regime in a specific time slot. Numbers denote
the token ID served on a specific NoC resource at that clock cycle.

Following the example in Figure 8.5, relative latencies from initial token arrival to its

presence on all input ports amount to 4, 32, and 8 cycles. Hence, the router delivers

strong isolation with 4 domains..

To extend this property to the whole network, we first calculate the maximum number of

domains for every router as the MCD illustrated above (if any). If such an MCD can be

computed for each router, then the topology, coupled with the target routing algorithm,

supports strong isolation of domains. In this case, the MCD of all router-level computed

domains is the ideal number of domains which delivers strong isolation for the network

as a whole. In the 2D mesh example in Fig.8.4, strong isolation is achieved with 4

domains.

Notice that the ideal number of domains for strong isolation can be directly determined

by the smallest relative latency inside the network. In our case, the smallest relative

latency of the NoC in Fig.8.4 is exactly the one reported in Fig.8.5 (which is 4 cycles),

and corresponds to the latency of the smallest cyclic path spanned by a token in the

network to reach two different ports of the same router. Clearly, this cyclic latency

depends on router and link latency, and is equal to: (R − 2) ∗ (P + L) where R is the

number of switches in the smallest cycle, P is the router latency and L is the link latency.

A relevant side effect of this theory is that the composition of strongly-isolated router-

level operations at network level through the dependencies of the CDG gives rise to a
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(a) Building segments out of the short-
est token cycle.

(b) Selective stall placement to sup-
port 5 domains with strong isolation.

Only scroll-up phase shown.

Figure 8.8: Extending the number of domains under strong isolation.

Perfect Schedule, which consists of the onset of unstopped propagating waves of same-

ID tokens throughout the network (see Fig.8.6). This guarantees minimum-latency

operation of the NoC.

Figure 8.7 shows token propagation flow over the network at regime, which is established

once the first token comes back to the injecting router. Each router works in strong

isolation mode, and globally a perfect schedule takes place.

This methodology generalizes the constraints for perfect scheduling identified in [61]

from local scheduling loops, which we instead base on the observation of the CDG.

This generalization is at the core of the new approach proposed in this paper, featuring

enhanced flexibility as hereafter illustrated.

8.6.3 Supporting a Higher Number of Domains

In order to handle a larger number of domains than the ideal one, PhaseNoC requires

deep modifications of the router architecture, thus proving unsuitable for runtime recon-

figurability. In particular, the pipeline depth of all routers needs to be increased, which

would preserve strong isolation and perfect scheduling. As we will see in the experimen-

tal results, for some configurations this leads to suboptimal performance. Alternatively,

the NoC can be split into communicating subnetworks, similar to SurfNoC. In this case,

the strong isolation property is lost (i.e., domains can affect timing of packet propaga-

tion in other domains), unless area-expensive input speedup is implemented to avoid VC

contention at crossbar inputs.

Our CDG-inspired approach is less invasive and flexible, and aims at preserving strong

isolation in router-level operation while giving up the perfect schedule globally.
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As we have seen previously, in a regular 2D mesh network all relative latencies are

multiples of the latency of the shortest cycle SCL (i.e., of SCL = (R − 2) ∗ (P + L)).

Therefore, we can split the critical path of the tokens throughout the CDG into segments

of length SCL cycles (see Figure 8.8a). With the ideal number SCL of domains, all inputs

to these segments will be in the same domain at a given time slot.

In order to support a higher number of domains D, our intuition is that only SCL

domains should be in flight at any given point in time. The remaining D−SCL domains

should be stalled. This would enable to preserve the strong isolation property, while

breaking the perfect scheduling assumption. As we will show in the experimental results,

preserving perfect scheduling at all costs may not be the best performing solution.

In order to implement this concept, we need to place domain propagation stalls selec-

tively within segments. The constraint to be met for correct operation is to place these

stalls at the same positions within segments (e.g., either in the first router, or in the

second one). Figure 8.8b shows an example of stall placement to support 5 domains. As

can be observed, the stalls allow the network to receive the same domain identifier at

all the input ports at every router.

Depending the target number of domains D and the ideal number of domains SCL, the

number of stalls in each segment can be calculated as follows:

if D ¿ SCL then

Stalls = D − SCL;

else

Stall = 0;

end if

8.6.4 Supporting a Lower Number of Domains

If at any given point in time, a lower number of domains than the ideal one needs to be

enforced, then strong isolation and perfect scheduling can be preserved provided the target

number of domains is an integer divider of the ideal number. The reason is because this

way the latency of the shortest cycle spanned by tokens to bridge two consecutive ports

of the same router is a multiple of the repetition period of domain identifiers. Therefore,

previous conclusions are still valid. As an example, with ideally 12 domains in a perfect

schedule with strong isolation guarantees, the same property can be delivered with 2, 3,

4 and 6 domains.

With a different number of domains (e.g., 5 or 7), the same stall-based methodology

explained before can be applied here, which preserves strong isolation but not perfect

scheduling. In particular, the procedure that follows should be used to re-align domain

identifiers token at segment inputs with d < SCL domains:
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(a) (b) (c)

Figure 8.9: Token propagation mechanism.

1- compute an integer n such that n× d > SCL;

2- compute the number of stalls per segment as stalls = n× d− SCL;

3- enforce this number of stalls at the same position within each segment.

8.6.5 Handling the Transient to Regime

Before getting to regime, tokens start propagating in the network by following the CDG.

However, not all input ports have received a token at a given point in time.

Figure 8.9 shows an example of initial token propagation through a router. For the sake

of simplification, the figure only shows output port north, and input ports east, west and

south. Arrows denote routing restrictions between the east and the north ports. Then,

based on this CDG, only packets from the south and west input ports can be forwarded

to the north output port. Figure 8.9a shows that a token has been received from south.

However, this token cannot be forwarded downstream, since not all the input ports with

routing dependencies with the north output port have received such a token. Therefore,

the south token is dropped. When the token reaches the west input port as well (Figure

8.9b), it will appear again also in the south input port (see Section 8.6.2), then a new

token can be forwarded to the north output port.

8.6.6 Router Architecture

Figure 8.10 shows a simplified version of the Token-based TDM router architecture.

Only one input port is shown in order facilitate understanding, assuming one VC per

domain. Single-cycle routers and links are considered.

Tokens are in charge to set the domain processed within the router. The incoming token

(TOKEN IN) is used as a selector in the first demultiplexer stage to define in which

domain buffer the incoming data flit will be stored. The TOKEN IN is stored in a
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Figure 8.10: Proposed router architecture: the concept.

register for the sake of retiming, so that in the next clock cycle it can select the active

domain within the router. Following this approach, only one domain can access to the

VA/SA/X per cycle, then no conflicts between different domains can occur.

The token advances until the token logic, which is active only during the initial config-

uration transient, till the regime is reached. Until then, the logic checks whether tokens

are available at all input ports with routing dependencies with the target output port.

If not, tokens are dropped. At regime, all such tokens will be available, and an output

token (TOKEN OUT ) will be fired.

This initialization procedure is slightly more complex in case the network is initialized

with a higher number of domains than the ideal one for perfect scheduling. In this case,

the first domain identifier token carries the required number of domains. At the same

time, the STOP signal is set to one. The token logic then computes the number of stalls

to be enforced. Negation of the STOP signal enables to enforce stalls selectively once

every two routers. After this, domain identifiers are injected in sequence at every cycle

as usual. As an incoming domain identifier token arrives at the input port, it has to

wait in a token buffer (of size Dmax − SCL) until it reaches the first position in the

queue.

The proposed architecture can be inherently reprogrammed to support any number of

running domains, since the adaptation is not in the architecture itself, but in the schedul-

ing commands sent through the tokens. In the most complex case, the token logic has

to compute, for the initialization procedure, the number of stops for tokens in tran-

sit. While in this paper we are experimentally characterizing the offered architectural

flexibility, the precise reconfiguration protocol to exploit it at runtime (i.e., to safely

transition from one network configuration to another) is left for future work.

Finally, in a traditional router with M-ports, D domains and v VCs per domain, there

exist M x D x v input and outputs VCs. Then, virtual channel allocation maps M x D

x v inputs to M x D x v outputs VCs. However, our proposal only allows one domain

to access the VA arbiters at a time, then only M x v VCs perform VA at every cycle.
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Figure 8.11: Different number of domains considered on a 16-tile 4x4 network.

Similarly, the M x D x v to M x D x v switch allocator in traditional routers is reduced

in our implementation to a M x v to M x v allocator.

8.7 Experimental Results

For the experiments, we use the VirtualSocLite virtual platform [74], targeting the full-

system simulation of massively parallel heterogeneous SoCs. It is coded in SystemC

and models operation of a 2D mesh topology of any size with RTL-equivalent accuracy.

The platform has been extended to model the proposed NoC architecture, and synthetic

traffic generators have been instantiated and linked to the NoC.

For all the results, we inject a mix of read/write transactions from the tiles to the dis-

tributed L2 banks of a partition (intra-domain traffic). Inter-domain traffic is obtained

by injecting additional a mix of read/write transactions from domain tiles to memory

controller nodes (MC traffic). Two topologies sizes are simulated: 4 × 4 and 8 × 8

2D-mesh topologies. In both cases, there is one core per tile.

Different configurations of domains are used. In all cases, domains are of the same size

and geometry. Figure 8.11 shows the domains for the 16-tile network.

In the 8x8 2D mesh, in case of 2 domains, the network is divided into 2 domains of 32

tiles each. For 3 and 4 domains, the domain size is 16 tiles. For 5 domains, the network

is split into domains of 12 tiles; if the networks requires between 6 and 8 domains, these

domains are composed by 8 tiles. In case more than 8 domains are required, the domain

size is set to 4 tiles.

We evaluate four mechanisms across a different number of running domains, so test the

flexibility claim:
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• TDM. A baseline TDM network where at each time slot the whole network is used

for a specific domain. All domains are served in consecutive order. At each time

slot, both intra- and inter-domain traffic for the associated partition is served.

• Partition-aware TDM, described in Section 8.5.1, where the TDM scheme is made

aware of spatial partitioning. In practice, a dedicated time slot is concurrently

used for intra-partition traffic of all domains. Partition-specific local traffic is kept

segregated by the regularity of partition shapes. Then, every partition has one

additional reserved slot to transmit or receive its own MC traffic. This scheme will

be briefly referred to as TDM-esp in the results.

• PhaseNoC, which delivers strong isolation and minimum communication latency

under specific configuration options (no. of domains). For each tested configura-

tion, we tune the PhaseNoC router with the proper number of pipeline stages for

perfect schedule and strong isolation (although this would be problematic to apply

at runtime). However, in some cases PhaseNoC ends up in a suboptimal configu-

ration. For instance, PhaseNoC with two pipeline stages per router can support 6

fully-isolated domains in perfect schedule, but if the required number of domains

is 5, one domain would go unused. In contrast, if we revert back to 1 stage per

router, strong isolation cannot be provided with 5 domains. For a fair comparison,

we allocate such an unused time slot to the active domains in a round robin fash-

ion. With PhaseNoC, both intra-domain traffic and MC traffic are served when

a domain is active. PhaseNoC would also enable the partitioning of the network

into subdomains to handle the critical cases. However, we verified that in this case

the strong isolation property is lost, unless input speedup is implemented. We do

not consider this case here, since it would amplify the implementation complexity

gap between PhaseNoC and our approach.

• Token-based TDM. This is our approach, which serves both inter- and intra-

domain traffic when a domain is active.

8.7.1 Zero-Load Latency

Figure 8.12a shows the zero-load latency results for local intra-domain traffic. The x-

axis represents the number of domains and the y-axis the zero-load latency. As can be

observed, both PhaseNoC and Token-based TDM improve upon the baseline TDM vari-

ants. However, our proposal improves upon PhaseNoC in scenarios where PhaseNoC’s

pipeline has to be oversized for strong isolation (5 and 7 domains). The improvement on

the network latency is 13% and 9% for 5 and 7 domains, respectively. In these scenar-

ios, we claim ”generalized perfect scheduling” through selective placement of stalls. In

scenarios where PhaseNoC achieves perfect scheduling by increasing the switch pipeline

depth (with 4, 6 and 8 domains), our proposal provides the same perfect scheduling
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Figure 8.12: Zero-load traffic for the 4x4 2D-mesh.
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Figure 8.13: Zero-load traffic for the 8x8 2D-mesh.

as PhaseNoC. Thus, our approach provides increased flexibility without wasting per-

formance. In order to properly read the plot, it should be noted that the higher the

number of domains the smaller the partition size (Figure 8.11). However, latency tends

to increase because there is a higher waiting time to pay in the network interfaces to

wait for the suitable injection time slot.

Figure 8.12b plots the zero-load latency results for MC traffic. The performance reached

with this type of traffic is similar to the local traffic one. Again, we appreciate the ca-

pability of Token-based TDM to keep up with PhaseNoC whenever the latter delivers

perfect scheduling, while improving the network latency to access the MCs by about

20% for 5 domains and by 12% for a 7-domain configuration. Thus, our approach proves

capable of generalizing the high performance efficiency of PhaseNoC to the whole con-

figuration space, while exposing inherent reprogramm ability of the number of domains

without pipeline modifications. We instead just change the scheduling commands we

give to the switches. Another architectural difference explains the above results: while

our approach tends to introduce a configurable number of stops for domain identifier

tokens in specific points of the NoC in order to preserve the non-interference property,

PhaseNoC tends to spread the latency overhead everywhere in order to achieve the same

goal.

Figure 8.13a shows the zero-load latency results for local intra-domain traffic in a 64-

tile scenario. As in the 16-tile network, Token-based TDM improves upon PhaseNoC

in scenarios where the pipeline is oversized. Even the reallocation of the unused slot
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Figure 8.14: Uniform traffic for 4 Domains

is not able to compensate for this inefficiency. The improvement of Token-based TDM

oscillates between 20% (5 domains) and 9% (15 domains). For MC traffic (Figure 8.13b),

Token-Based TDM reaches the best performance improving up to 30% the PhaseNoC

network latency. For a number of domains higher than 8, the cases where PhaseNoC gets

perfect scheduling are not shown because in those cases Token-based TDM performs the

same, as we have shown previously. Notice that, the higher the number of domains the

smaller the benefit achieved by Token-based TDM. This is due to the fact that as the

number of domains gets larger, the bandwidth underutilization by PhaseNoC decreases.

8.7.2 Network Performance

Figure 8.14a shows the network saturation curve for local traffic under uniform random

traffic. The characterized scenario consists of four domains. If our approach is correct,

we expect both PhaseNoC and our approach to deliver perfect scheduling. As shown in

the Figure, the Token-based TDM exactly matches the performance of PhaseNoC, thus

validating the claim. Figure 8.14b shows the performance for MC traffic with 4 MCs,

in the same characterized scenario. These plots further validate the same conclusion,

hence validating the efficiency of our approach in matching the best case for PhaseNoC,

while delivering extended flexibility.

Next we analyze the network saturation curves in those cases where our proposal can set

a ”generalized” perfect scheduling while PhaseNoC can not. The unused slot domain is

assigned in round robin fashion to the active domains. For this study we analyze four

scenarios: one where the whole traffic is local, another with only MC traffic, and two

scenarios with mixed traffic, one with fifty percent of each type of traffic and another

one with 75% of local traffic and 25% of MC traffic.

Figure 8.15a shows the results for local traffic for the 5-domain scenario. As can be seen,

PhaseNoC and Token-based TDM improve the network performance of TDM. In addi-

tion, Token-based TDM reduces the network latency against PhaseNoC by 10% along

the complete network saturation curve, reaching the saturation point at similar injection
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Figure 8.15: Uniform traffic for 5 Domains.

rates. Figure 8.15a plots the results for MC traffic. Similar as the previous case, Token-

based TDM outperforms PhaseNoC by up to 20% before reaching the saturation point.

Moreover, our approach increases the network capacity. When a mixed-flows scenario

is presented, Token-based TDM continues to reach the best performance. Figures 8.15c

and 8.15d show the results for local and MC traffic for a scenario with 75% of local traffic

and 25% of MC traffic, respectively. Similarly to previous cases, Token-based TDM is

able to reduce the PhaseNoC latency by roughly 10% and 20% for local and MC traffic,

respectively. Moreover, in this scenario the customized TDM scheme (TDM-esp) has

higher network latency compared with baseline TDM. However, for MC traffic TDM-esp

is able to match the accepted traffic before reaching the saturation point. This behavior

occurs because for a given domain with mixed flows, TDM-esp provides higher band-

width than baseline TDM, because each domain has two time slots, one for intra-domain

traffic and one for inter-domain traffic (for access to the MC).

Focusing on a 7-domain scenario, Figure 8.16 plots the latency results. Similarly to the

5-domain scenario, Token-based TDM reduces network latency by 8% in intra-partition

traffic scenario and 15% in MC traffic scenario. Figures 8.16c and 8.16d plot the results

for the mixed-flows scenario, where the traffic is divided in equal parts between both

types of traffic. Token-based TDM gets the minimum network latency, improving over

PhaseNoC by 7% on local traffic and 12% on MC traffic. However, similarly to what

happens in the mixed-flows scenario for 5 domains, TDM-esp is able to accept a higher

injection rate of traffic.

Due to lack of space, the results of the network saturation curves for 64 nodes are not

shown. However, the performed analysis shows that the results obtained for the network
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Figure 8.16: Uniform traffic for 7 Domains.

of 16 nodes can be directly extrapolated to the network of 64 nodes.

8.8 Conclusions

In this paper we propose Token-based TDM, a novel approach to sustain domain iso-

lation in high-assurance systems running on top of CMP computing platforms. Special

emphasis has been devoted to providing protection against subtle security threats such

as timing channels. This requires the enforcement of strong isolation in its strictest

sense, that is, injection of packets in one domain cannot affect the timing of packet

delivery of other domains.

Our approach leverages the unique understanding of the problem enabled by the channel

dependency graph abstraction of an on-chip interconnection network. This has enabled

to understand previous work in the context of the new unified design framework, to

generalize its validity and to bring performance and implementation efficiency to the

next step.

Overall, Token-based TDM is proven to match the performance best cases of PhaseNoC

(the most competitive approach presented so far in literature), while generalizing the

performance efficiency to the remaining configurations. Performance speedups range

from 10% for intra-domain traffic up to 30% for MC traffic.

At the same time, our approach enables a flexible NoC architecture, that potentially goes

beyond the design-time tunability of PhaseNoC. In fact, our philosophy is not to update
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the switch architecture to the execution scenario, but rather to change the scheduling

commands sent to the switches via a token-based notification mechanism. This provides

an unprecedented level of flexibility at an overly small implementation complexity.

Token-based TDM turns out to be a more latency-efficient solution than any incremental

attempt to customize the baseline TDM scheme for spatial partitioning. Such custom-

tailored TDM is only able to extend saturation bandwidth with balanced local and

MC traffic. It should be seen only as a first step toward full (and more expensive)

NoC replication, where a TDM NoC is used for MC traffic, and local traffic can be

propagated concurrently within partitions at each time slot through a dedicated local

NoC with segregation capability of routing paths.

In future work, we will address the runtime reconfiguration protocol enabling to take

advantage of the provided architectural flexibility.





Chapter 9

Conclusions

9.1 Thesis Conclusions

Networks-on-chip are emerging as the key solution in the multicore/manycore era to

provide connectivity between tens, hundreds or even thousands of nodes, due to its ef-

fectivity and scalability. However, as higher the number of cores is, the connectivity gets

higher importance inside the chip. The use of parallel charges increases communications

within the chip. Therefore, the effectiveness of the transmission of the packets along the

NoC.

In this thesis we have proposed some techniques to improve the network latency, making

communication more effective in the NoC. All the contributions have been developed

and implemented on a cycle-accurate simulator. TBFC+SUR, ECP, and PROSA are

developed and implemented on GNoCsim simulator. Memory access patterns from real

applications are obtained from SPLASH and PARSEC. These patterns are used as an

input to provide GNoCsim with real traffic applications. The memory coherence proto-

col has been modified to support PROSA improvements adding some transients states.

Moreover, these contributions are also implemented on Verilog to study the real imple-

mentation overhead. The last contribution of this thesis, Token-based TDM, has been

developed on an international internship in Ferrara. This contribution is implemented

on VirtualNoCsim. Building on this work, there we show some conclusions extracted

from the current work.

The first proposal, termed TBFC and SUR, contributes to the field by designing a new

flow control mechanism and complementary routing algorithm. The aim is to attain

a perfect balance of buffer resources usage within the NoC, thus achieving optimal

performance. The combination of TBFC and SUR allows us to reduce the number of

VCs required to implement fully adaptive routing algorithms. The improvement in the

VC utilization allows our proposal to improve previous proposals, allowing a higher

207
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injection rate in the network before to reach the saturation point. The results show

a similar performance when our proposal is implemented with the minimum resources

(VCs) to work. However, when the the number or resources is matched, our proposal

outperforms the Fully Adaptive routing algorithm up to 20 % on network throughput.

The second proposal of this thesis is the EPC filter. It can help to manage and prevent

spreading congestion within the network when adaptive routing is used. This proposal

has demonstrated that by filtering and limiting the available output ports to the packets

with the same destination than another has recently sent, the network latency for non-

congested destinations is not affected by the congestion. Then, a switch with EPC

improves the non-congested traffic reducing network latency at least four times and

outperforming FA at least by 28% on throughput under a congested scenario.

As is well known, in a CMP scenario packet switching is commonly implemented, this

switching architecture reaches a good utilization and network performance. However, a

good network performance can be obtained with circuit switching if the setup latency

can be relaxed or avoided. In this thesis we introduce PROSA, a circuit-switched en-

abled NoC architecture which allows the coherence protocol to steer circuit connections

for future predictable MC transactions between the MC and L2 cache, and speculative

connections between, L2 cache banks and L1 caches. Connection establishment is per-

formed as single-packet based and established for the required time period for L2 to

L1 an MC to L2. On a miss predict the circuit is silently removed. PROSA builds a

separate infrastructure to manage circuits, thus the main NoC network is not affected

by the additional control traffic. PROSA relies on SMART technologies in order to im-

prove more the network latency. SMART is a multihop technology, it allows the flit to

perform multiples hops in a single cycle. Using this technology and getting benefit from

the protocol coherence information to setup the circuits before they are needed, PROSA

improves on average the network latency by 34%, and this improvement is transformed

into a high execution runtime reduction, on average PROSA reduces execution runtime

by 33%.

Also, further enhancements of PROSA are presented: 1) the coherence protocol allows

to send all messages via circuits, 2) modifications at arbiters to set priorities, 3) a new

threshold mechanism to limit the distance of circuits, and 4) removal of NACK mes-

sages with implicit teardown circuits logic implemented. These enhancements allow to

PROSA to reduce network latency compared with baseline PROSA by 35%, but this

improvement is not reflected on the execution runtime. Moreover, with these enhance-

ments the required area and power consumption are reduced by 2% and 5% compared

with the standard PROSA.

The last proposal is Token-based TDM, a novel approach to sustain domain isolation

in high-assurance systems. Special emphasis has been devoted to providing protection

against subtle security threats such as timing channels. This requires the enforcement of
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strong isolation in its strictest sense, that is, injection of packets in one domain cannot

affect the timing of packet delivery of other domains. Our approach leverages the unique

understanding of the problem enabled by the channel dependency graph abstraction of

an on-chip interconnection network. Overall, Token-based TDM is proven to match the

performance best cases of PhaseNoC (the most competitive approach presented so far in

literature), while generalizing the performance efficiency to the remaining configurations.

Performance speedups range from 10% for intra-domain traffic up to 30% for MC traffic.

At the same time, our approach enables a flexible NoC architecture, that potentially goes

beyond the design-time tunability of PhaseNoC. In fact, our philosophy is not to update

the switch architecture to the execution scenario, but rather to change the scheduling

commands sent to the switches via a token-based notification mechanism. This provides

an unprecedented level of flexibility at an overly small implementation complexity.
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