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Nilpotent matrices and the minus partial order∗

M.I. Gareis† M. Lattanzi‡ N. Thome§

Abstract

In this paper, {1}-inverses of a nilpotent matrix as well as matrices above a given

nilpotent matrix under the minus partial order are characterized.
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1 Introduction and background

Partial orders and preorders on matrices were studied by several authors. They involve

different generalized inverses in their definitions. Some results about matrices, generalized

inverses and partial orders on matrices can be found, for instance, in [2, 3, 10, 12, 13].

In [10] the Drazin preorder was defined by means of the Drazin inverse, which does

not take into account the nilpotent part of the matrices. For this reason, it is not anti-

symmetric and then Drazin preorder is not a partial order. By considering the nilpotent
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part of a matrix, a binary relation on square matrices was defined in [10, Definition 4.4.17]

in order to extend the Drazin pre-order to a partial order. This relation compares the

core part of both matrices under the sharp partial order and the nilpotent part under the

minus order. The sharp partial order, defined for index one matrices, has been widely

studied [10]. However, to our acknowledge, the minus partial order for nilpotent matrices

has not been investigated and it will be partially considered in this paper. In [8, 9] similar

relations to Drazin preorder were studied for rectangular matrices, and then extended to

operators on Banach spaces in [4, 11].

Let Cm×n be the space of complex m×n matrices and C
n be the complex vector space

of n × 1 vectors. The symbols A∗, At, A−1, R(A), and N (A) stand for the conjugate

transpose, the transpose, the inverse (m = n), the range and the null spaces of a matrix

A ∈ C
m×n, respectively. As usual, In and On denote the n×n identity and zero matrices,

respectively. The subscripts will be omitted when no confusion is caused. The index of

a matrix A ∈ C
n×n, denoted by ind(A), is the smallest nonnegative integer k such that

R(Ak) = R(Ak+1). A matrix A ∈ C
n×n is nilpotent if Ar = O for some positive integer

r, and the smallest such r is called the nilpotence index of A and coincides with ind(A).

Let A ∈ C
m×n. A matrix A− ∈ C

n×m is a {1}-inverse of A if AA−A = A. A matrix

X ∈ C
n×m is the Moore-Penrose inverse of A if it satisfies AXA = A, XAX = X,

(AX)∗ = AX, and (XA) = (XA)∗. The Moore-Penrose inverse of a matrix A always

exists, is unique and it is denoted by A†.

On the other hand, the minus partial order, denoted by ≤−, was introduced by Hartwig

in [5] and it was analyzed by several authors, among others [1, 6, 7]. For two given matrices

A,B ∈ C
m×n, it is said that A ≤− B if and only if rank(B − A) = rank(B) − rank(A).

Another equivalent definition for the minus partial order is the following: A ≤− B if and

only if there exists a {1}-inverse A− of A such that A−A = A−B and AA− = BA−.

For every nonzero nilpotent matrix N ∈ C
n×n of index k, there exist a block-diagonal

matrix J ∈ C
n×n, called the Jordan canonical form of N , and a nonsingular matrix

P ∈ C
n×n such that

N = PJP−1 with J = diag(J1, J2, . . . , Js) (1)

where s = dim(N (N)) and the matrix Jj is a square matrix of size nj×nj whose entries are

equal to 1 along the superdiagonal and zero elsewhere, called nilpotent Jordan block, for
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each j ∈ {1, 2, ..., s}. Note that if nj = 1 then Jj = [0]. When this type of blocks appears,

they are located in the lower right corner. If there is more than one, it is considered that

Js is the zero matrix of suitable size. If B is a nilpotent Jordan block then B† = Bt,

hence J† = J t [2]. The following results are used later.

Theorem 1.1 [2] Let A ∈ C
m×n, B ∈ C

p×q, and C ∈ C
m×q. The following conditions

are equivalent:

(a) The matrix equation AXB = C has a solution.

(b) AA†C = C and CB†B = C.

In this case, the set of all the solutions of AXB = C is given by X = A†CB† + Y −

A†AY BB†, for arbitrary Y ∈ C
n×p.

Theorem 1.2 [10] Let A,B ∈ C
m×n. Then A ≤− B if and only if

B = A+ (Im − AA−)W (In − A−A),

for some matrix W ∈ C
m×n and for some {1}-inverse A− of A.

2 {1}-inverses of nilpotent matrices

In this section, {1}-inverses of a nilpotent matrix are characterized by using its Jordan

canonical form. Notice that for the nilpotent matrix N = O, every matrix N− satisfies

ON−O = O, so only nonzero nilpotent matrices will be considered.

Theorem 2.1 Let N ∈ C
n×n be a nonzero nilpotent matrix written in its Jordan canon-

ical form N = PJP−1 as in (1). A matrix N− ∈ C
n×n is {1}-inverse of N if and only if

N− = PXP−1, where the partition of X = [Xij ]1≤i,j≤s has been carried out according to

the size of the blocks of J and

Xij =

[

(u(ij))t α(ij)

R v(ij)

]

where u(ij) ∈ C
nj−1, v(ij) ∈ C

ni−1, and α(ij) ∈ C, R ∈ C
(ni−1)×(nj−1) is either the identity

matrix (for i = j) or the zero matrix (for i 6= j), for all 1 ≤ i, j ≤ s.
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Proof. Let N ∈ C
n×n be a nonzero nilpotent matrix such that N = PJP−1 where

P ∈ C
n×n is nonsingular, J = P−1NP = diag(J1, J2, . . . , Js), s = dim(N (N)), and Jj

is a nilpotent Jordan block of size nj × nj, for each j ∈ {1, 2, . . . , s}. It is clear that

N− ∈ C
n×n is a {1}-inverse of N if and only if X = P−1N−P is a {1}-inverse of J .

Let X = [Xij ]1≤i,j≤s be a partition of X according to the blocks of J ; i.e., each block

Xij has order ni × nj. By making the products, it then follows JXJ = [JiXijJj]1≤i,j≤s

thus, X is a {1}-inverse of J if and only if

JiXiiJi = Ji, i ∈ {1, . . . , s} (2a)

JiXijJj = O, i, j ∈ {1, . . . , s}, i 6= j. (2b)

In order to solve matrix equations (2a), Theorem 1.1 is applied by setting A = B =

C = Ji, for i ∈ {1, . . . , s}, (J†
i = J t

i ). Hence, the general solution of (2a) is given by

Xii = J t
iJiJ

t
i + Zi − J t

iJiZiJiJ
t
i , (3)

where Zi ∈ C
ni×ni is arbitrary. It is easy to see that

J t
iJi = Ini

− e1e
t
1 and JiJ

t
i = Ini

− eni
etni

(4)

where e1 and eni
are the column canonical vectors of Cni . By replacing in (3) the expres-

sions for J t
iJi and JiJ

t
i obtained in (4), by making some computations, and using some

properties of Moore-Penrose inverse, it is obtained

Xii = J t
i + Zieni

etni
+ e1e

t
1Zi − e1e

t
1Zieni

etni
. (5)

Let us denote the entries of matrices Zi by z
(i)
h k. Then

Zieni
etni

=















0 0 · · · z
(i)
1ni

0 0 · · · z
(i)
2ni

...
...

. . .
...

0 0 · · · z
(i)
ni ni















and e1e
t
1Zi =















z
(i)
1 1 z

(i)
1 2 · · · z

(i)
1ni

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0















.
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Hence, by replacing in expression (5) we obtain

Xii =

























z
(i)
1 1 z

(i)
1 2 z

(i)
1 3 . . . z

(i)
1ni−1

z
(i)
1ni

1 0 0 . . . 0 z
(i)
2ni

0 1 0 . . . 0 z
(i)
3ni

...
...

...
. . .

...
...

0 0 0 . . . 0 z
(i)
ni−1 ni

0 0 0 . . . 1 z
(i)
ni ni

























. (6)

In order to solve matrix equations (2b), Theorem 1.1 is applied by setting A = Ji,

B = Jj, and C = O for i, j ∈ {1, . . . , s} (J†
k = J t

k, for k ∈ {i, j}). The general solution of

(2b) is

Xij = Wij − J t
iJiWijJjJ

t
j , (7)

for arbitrary Wij ∈ C
ni×nj . By replacing (4) in (7) it is obtained

Xij = Wijenj
etnj

+ e1e
t
1Wij − e1e

t
1Wijenj

etnj
. (8)

Let Wij = [w
(ij)
h k ]1≤h≤ni,1≤k≤nj

. By making the multiplications in (8), it results

Xij =















w
(ij)
1 1 w

(ij)
1 2 . . . w

(ij)
1nj

0 0 . . . w
(ij)
2nj

...
...

. . .
...

0 0 . . . w
(ij)
ni nj















. (9)

Both situations (6) and (9) can be written simultaneously as follows:

Xij =

[

(u(ij))t α(ij)

R v(ij)

]

,

where u(ij) ∈ C
nj−1, v(ij) ∈ C

ni−1, α(ij) ∈ C, and R ∈ C
(ni−1)×(nj−1), for 1 ≤ i, j ≤ s, such

that

(u(ij))t =
[

β
(ij)
11 β

(ij)
12 · · · β

(ij)
1nj−1

]

with β
(ij)
1k =

{

z
(i)
1k if i = j

w
(ij)
1k if i 6= j

for 1 ≤ k ≤ nj−1,

(v(ij))t =
[

γ
(ij)
2nj

γ
(ij)
3nj

· · · γ
(ij)
ninj

]

with γ
(ij)
hnj

=

{

z
(i)
hni

if i = j

w
(ij)
hnj

if i 6= j
, for 2 ≤ h ≤ ni,
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α(ij) =

{

z
(i)
1ni

if i = j

w
(ij)
1nj

if i 6= j
and R =

{

I(ni−1)×(ni−1) if i = j

O(ni−1)×(nj−1) if i 6= j
.

This completes the proof. �

3 Nilpotent matrices and the minus partial order

In this section, a characterization for matrices above a given nilpotent matrix under the

minus partial order is obtained. It is based on the form of {1}-inverses of a nilpotent

matrix as obtained in Theorem 2.1. Notice that if N = O then every matrix Y with the

same size as N satisfies N ≤− Y .

Theorem 3.1 Let N ∈ C
n×n be a nonzero nilpotent matrix written in its Jordan canon-

ical form as in (1). The following conditions are equivalent:

(a) There exists a matrix Y ∈ C
n×n such that N ≤− Y ,

(b) Y = N + PV P−1WPUP−1, for some W ∈ C
n×n, and V, U ∈ C

n×n partitioned

according to the size of the blocks of J, V = [Vij ]1≤i,j≤s, U = [Uij ]1≤i,j≤s,

Vij =

[

O v(ij)

0t δij

]

ni×nj

, Uij =

[

δij (u(ij))t

0 O

]

ni×nj

, δij =

{

1 if i = j

0 if i 6= j
,

v(ij) ∈ C
ni−1, and u(ij) ∈ C

nj−1 , for all i, j ∈ {1, 2, . . . , s}.

Proof. (a) =⇒ (b) Let N 6= O be a nilpotent matrix written as in (1) such that N ≤− Y

for some matrix Y . Then, by Theorem 1.2,

Y = N + (I −NN−)W (I −N−N), (10)

for some matrix W and for some {1}-inverse N− of N . By Theorem 2.1, a {1}-inverse of

N can be written as N− = PXP−1, where X is partitioned according to the size of the

blocks of J such that each block of X has the form

Xij =

[

(u(ij))t α(ij)

R v(ij)

]

,
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where u(ij) ∈ C
nj−1, v(ij) ∈ C

ni−1 and α(ij) ∈ C, and R ∈ C
(ni−1)×(nj−1) is either the

identity matrix (for i = j) or the zero matrix (for i 6= j), for all i, j ∈ {1, 2, . . . , s}.

Post-multiplying (10) by the nonsingular matrix P , pre-multiplying it by P−1, and

taking into account that NN− = PJXP−1 and N−N = PXJP−1, then equality (10) can

be written equivalently as

P−1Y P = J + (I − JX)P−1WP (I −XJ). (11)

It is easy to see that [JX]ij = JiXij and [XJ ]ij = XijJj. Let us write Ji =

[

O Ini−1

0 Ot

]

according to the blocks of Xij , where 0 ∈ C, I ∈ C
(ni−1)×(ni−1) and O ∈ C

ni−1. Then

JiXij =

[

R v(ij)

Ot 0

]

and XijJj =

[

0 (u(ij))t

O R

]

,

with O ∈ C
nj−1, 0 ∈ C, u(ij) ∈ C

nj−1, v(ij) ∈ C
ni−1, R = Ini−1 if i = j, and R =

O(ni−1)×(nj−1) if i 6= j. Some computations give

[I−JX]ij =

[

O −v(ij)

Ot δij

]

and [I−XJ ]ij =

[

δij −(u(ij))t

O O

]

, where δij =

{

1 if i = j

0 if i 6= j
.

Set Vij = [I − JX]ij , Uij = [I − XJ ]ij , V = [Vij ]1≤i j≤s, and U = [Uij ]1≤i j≤s. Hence,

from (11), it is clear that Y = N + PV P−1WPUP−1, for some matrix W .

(b) =⇒ (a) It is an easy computation. �
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