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Abstract We give a simple proof of a general theorem of Kotake-Narasimhan
for elliptic operators in the setting of ultradifferentiable functions in the sense
of Braun, Meise and Taylor. We follow the ideas of Komatsu. Based on an
example of Metivier, we also show that the ellipticity is a necessary condition
for the theorem to be true.
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1 Introduction and main result

The problem of iterates began when Komatsu [13] in 1960 characterized ana-
lytic functions f in terms of the behaviour of successive iterates P (D)jf of the
function f for a linear partial differential elliptic operator P (D) with constant
coefficients. He proved that a C∞ function f is real analytic in Ω if and only
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if for every compact set K ⊂⊂ Ω there is a constant C > 0 such that

‖P (D)ju‖L2(K) ≤ Cj+1(j!)m, ∀j ∈ N0 := N ∪ {0},

where m is the order of the operator and ‖ · ‖L2(K) is the L2 norm on K. This
result was generalized to the case of elliptic linear partial differential operators
P (x,D) with real analytic coefficients in Ω by Kotake and Narasimhan [16],
and is known as “the Theorem of Kotake-Narasimhan”. Komatsu [15] gave a
simpler proof. Similar results have been previously considered by Nelson [24].
Later these results were extended to Gevrey functions by Newberger and
Zielezny [25] in the case of operators with constant coefficients. Lions and Ma-
genes [22] considered the case of Denjoy-Carleman classes of Roumieu type for
elliptic linear partial differential operators P (x,D) with variable coefficients in
the same Roumieu class, and Oldrich [26] treated the case of Denjoy-Carleman
classes of Beurling type with some loss of regularity with respect to the coef-
ficients. Métivier [23] proved that the result of Lions and Magenes for Gevrey
classes is true only for elliptic operators in the case of real analytic coefficients.
Spaces of Gevrey type given by the iterates of a differential operator are called
generalized Gevrey classes and were used by Langenbruch [18–21] for different
purposes.

More recently, Juan-Huguet [11] extended the results of Komatsu [13],
Newberger and Zielezny [25] and Métivier [23] to the setting of non-quasianalytic
classes in the sense of Braun, Meise and Taylor [8] for operators with constant
coefficients. In [11], Juan-Huguet introduced the generalized spaces of ultra-
differentiable functions EP∗ (Ω) on an open subset Ω of Rn for a fixed linear
partial differential operator P with constant coefficients, and proved that these
spaces are complete if and only if P is hypoelliptic. Moreover, Juan-Huguet
showed that, in this case, the spaces are nuclear. Later, the same author in
[12] established a Paley-Wiener theorem for the classes EP∗ (Ω), again under
the hypothesis of the hypoellipticity of P .

We used in [3] and [2] the results of Juan Huguet to define and character-
ize a wave front set for the generalized spaces of ultradifferentiable functions
EP∗ (Ω) when P is hypoelliptic. In particular, for P elliptic we obtain a mi-
crolocal version of the theorem of Kotake and Narasimhan. In order to remove
the assumption on the hypoellipticity of the operator, we considered in [1] a
different setting of ultradifferentiable functions, following the ideas of [5].

Here, we give a simple proof of the theorem of Kotake-Narasimhan [16,
Theorem 1] in the setting of ultradifferentiable functions as introduced by
Braun, Meise and Taylor [8] for quasianalytic or non-quasianalytic weight
functions. We will consider subadditive weight functions, or more generally,
weight functions which satisfy condition (α0), that we define later (see for ex-
ample Petzsche and Vogt [27, p. 19] or Fernández and Galbis [9, p. 401]). We
follow the lines of Komatsu [15].

Let us recall from [8] the definitions of weight functions ω and of the spaces
of ultradifferentiable functions of Beurling and Roumieu type:

Definition 11 A non-quasianalytic weight function is a continuous increas-
ing function ω : [0,+∞[→ [0,+∞[ with the following properties:
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(α) ∃ L > 0 s.t. ω(2t) ≤ L(ω(t) + 1) ∀t ≥ 0;

(β)
∫ +∞
1

ω(t)
t2 dt < +∞,

(γ) log(t) = o(ω(t)) as t→ +∞;
(δ) ϕω : t 7→ ω(et) is convex.

We say that ω is quasianalytic if, instead of (β) it satisfies:

(β′)

∫ +∞

1

ω(t)

t2
dt = +∞.

We will consider also the following property:

(α0) ∃C > 0, ∃ t0 > 0, ∀λ ≥ 1, ∀ t ≥ t0 : ω(λt) ≤ λCω(t).

The property (α0) above is used in [27, p. 19] and [9, p. 401], for instance.
Moreover, a weight function ω satisfies (α0) if and only if it is equivalent to a
subadditive (or concave) weight function. In the following, we will assume that
our weight functions satisfy (α0), and there is no loss of generality to consider
only subadditive weights. This condition should be compared with [22, (1.4),
p. 3] or [26, (2), p. 1], which is a similar condition for Denjoy-Carleman classes.

Normally, we will denote ϕω simply by ϕ.
For a weight function ω we define ω : Cn → [0,+∞[ by ω(z) := ω(|z|) and

again we denote this function by ω.
The Young conjugate ϕ∗ : [0,+∞[→ [0,+∞[ is defined by

ϕ∗(s) := sup
t≥0
{st− ϕ(t)}.

There is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗ has
only non-negative values, it is convex, ϕ∗(t)/t is increasing and tends to ∞ as
t→∞, and ϕ∗∗ = ϕ.

Example 12 The following functions are, after a change in some interval
[0,M ], examples of weight functions:
(i) ω(t) = td for 0 < d < 1.
(ii) ω(t) = (log(1 + t))

s
, s > 1.

(iii) ω(t) = t(log(e+ t))−β , β > 1.
(iv) ω(t) = exp(β(log(1 + t))α), 0 < α < 1.

In what follows, Ω denotes an arbitrary subset of Rn and K ⊂⊂ Ω means that
K is a compact subset in Ω.

Definition 13 Let ω be a weight function. For a compact subset K in Rn
which coincides with the closure of its interior and λ > 0, we define the semi-
norm

pK,λ(f) := sup
α∈Nn0

sup
x∈K

∣∣∣f (α)(x)
∣∣∣ exp

(
−λϕ∗

(
|α|
λ

))
,

where N0 := N ∪ {0}, and set

Eλω(K) := {f ∈ C∞(K) : pK,λ(f) <∞},
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which is a Banach space endowed with the pK,λ(·)-topology.
For an open subset Ω in Rn, the class of ω-ultradifferentiable functions of

Beurling type is defined by

E(ω)(Ω) := {f ∈ C∞(Ω) : pK,λ(f) <∞, for every K ⊂⊂ Ω and everyλ > 0}.

The topology of this space is

E(ω)(Ω) = proj
←−

K⊂⊂Ω

proj
←−
λ>0

Eλω(K),

and one can show that E(ω)(Ω) is a Fréchet space.
For an open subset Ω in Rn, the class of ω-ultradifferentiable functions of

Roumieu type is defined by:

E{ω}(Ω) := {f ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that pK,λ(f) <∞}.

Its topology is the following

E{ω}(Ω) = proj
←−

K⊂⊂Ω

ind
−→
m∈N
E

1
m
ω (K).

This is a complete PLS-space, that is, a complete space which is a projective
limit of LB-spaces. Moreover, E{ω}(Ω) is also a nuclear and reflexive locally
convex space. In particular, E{ω}(Ω) is an ultrabornological (hence barrelled
and bornological) space.

The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ultradifferentiable func-
tions of Beurling type (resp. Roumieu type) in Ω.

In the case that ω(t) := td (0 < d < 1), the corresponding Roumieu class is
the Gevrey class with exponent 1/d. In the limit case d = 1, the corresponding
Roumieu class E{ω}(Ω) is the space of real analytic functions on Ω whereas
the Beurling class E(ω)(Rn) gives the entire functions. Observe that Gevrey
weights satisfy (α0).

Given a polynomial P ∈ C[z1, . . . , zn] of degree m, P (z) =
∑
|α|≤m

aαz
α, the

partial differential operator P (D) is defined as P (D) =
∑
|α|≤m aαD

α, where

D = 1
i ∂. Following [11], we consider smooth functions in an open set Ω such

that there exists C > 0 verifying for each j ∈ N0 := N ∪ {0},

‖P j(D)f‖L2(K) ≤ C exp

(
λϕ∗(

jm

λ
)

)
,

where K is a compact subset in Ω, ‖ · ‖L2(K) denotes the L2-norm on K and
P j(D) is the j-th iterate of the partial differential operator P (D) of order m,
i.e.,

P j(D) = P (D) ◦ · · · ◦ P (D)︸ ︷︷ ︸
j

.

If j = 0, then we set P 0(D)f = f.
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The spaces of ultradifferentiable functions with respect to the successive
iterates of P are defined as follows.

Let ω be a weight function. Given a polynomial P , an open set Ω of Rn, a
compact subset K ⊂⊂ Ω and λ > 0, we define the seminorm

‖f‖K,λ := sup
j∈N0

‖P j(D)f‖2,K exp

(
−λϕ∗(jm

λ
)

)
(1.1)

and set

EλP,ω(K) = {f ∈ C∞(K) : ‖f‖K,λ < +∞}.

It is a normed space endowed with the ‖ · ‖K,λ-norm.
The space of ultradifferentiable functions of Beurling type with respect to

the iterates of P is:

EP(ω)(Ω) = {f ∈ C∞(Ω) : ‖f‖K,λ < +∞ for each K ⊂⊂ Ω and λ > 0},

endowed with the topology given by

EP(ω)(Ω) := proj
←−

K⊂⊂Ω

proj
←−
λ>0

EλP,ω(K).

If {Kn}n∈N is a compact exhaustion of Ω we have

EP(ω)(Ω) = proj
←−
n∈N

proj
←−
k∈N

EkP,ω(Kn) = proj
←−
n∈N

EnP,ω(Kn).

This is a metrizable locally convex topology defined by the fundamental
system of seminorms {‖ · ‖Kn,n}n∈N.

The space of ultradifferentiable functions of Roumieu type with respect to
the iterates of P is defined by:

EP{ω}(Ω) = {f ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that ‖f‖K,λ < +∞}.

Its topology is defined by

EP{ω}(Ω) := proj
←−

K⊂⊂Ω

ind
−→
λ>0

EλP,ω(K).

In the following, ∗ will denote either {ω} or (ω). The inclusion map E∗(Ω) ↪→
EP∗ (Ω) is continuous (see [11, Theorem 4.1]). The space EP∗ (Ω) is complete if
and only if P is hypoelliptic (see [11, Theorem 3.3]). Moreover, under a mild
condition on ω introduced by Bonet, Meise and Melikhov [7, 16 Corollary (3)],
EP∗ (Ω) coincides with the class of ultradifferentiable functions E∗(Ω) if and
only if P is elliptic (see [11, Theorem 4.12]).

Now, let P (x,D) =
∑
|α|≤m aα(x)Dα be a linear partial differential op-

erator of order m with smooth coefficients in an open subset Ω ⊆ Rn, i.e.
aα ∈ C∞(Ω) for all multi-index α ∈ Nn0 with |α| ≤ m. We consider the q-th
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iterates P q = P ◦ · · · ◦P of P := P (x,D) and define the corresponding spaces
of iterates as above:

EP(ω)(Ω) := {u ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∀k ∈ N ∃ck > 0 s.t.

‖P qu‖L2(K) ≤ ckekϕ
∗(qm/k) ∀q ∈ N0}

for the Beurling case, and

EP{ω}(Ω) := {u ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃k ∈ N, c > 0 s.t.

‖P qu‖L2(K) ≤ ce
1
kϕ
∗(qmk) ∀q ∈ N0}

for the Roumieu case.

We generalize some results of Juan-Huguet [11] for operators with variable
coefficients in the following way. First, we state our main result in the Roumieu
case:

Theorem 14 Let ω be a subadditive weight function, Ω ⊆ Rn a domain, i.e.
open and connected, and P (x,D) a linear partial differential operator of order
m with coefficients in E{ω}(Ω). Then:

(i) E{ω}(Ω) ⊆ EP{ω}(Ω);

(ii) if P (x,D) is elliptic, then E{ω}(Ω) = EP{ω}(Ω).

In the Beurling case we lose some regularity; compare to Oldrich [26, Teo-
rema 1]:

Theorem 15 Let ω be a subadditive weight function, Ω ⊆ Rn a domain and
P (x,D) a linear partial differential operator of order m with coefficients in
E(ω)(Ω). Then:

(i) E(ω)(Ω) ⊆ EP(ω)(Ω);

(ii) if P (x,D) is elliptic, then EP(ω)(Ω) ⊆ E(σ)(Ω) for every subadditive weight

function σ(t) = o(ω(t)) as t→ +∞.

Theorem 14 is the generalization to the class of ultradifferentiable functions
E{ω}(Ω) of the theorem of Kotake-Narasimhan for an elliptic linear partial
differential operator P (x,D) with coefficients in the same class E{ω}(Ω). We
observe that the ellipticity of P is not needed for the inclusion E{ω}(Ω) ⊆
EP{ω}(Ω). However, we show in Example 31 that the ellipticity is necessary for

the equality E{ω}(Ω) = EP{ω}(Ω) for a large family of weights ω. We use the

example of Metivier [23, p. 831] to show that for suitable weight functions,
which are not of Gevrey type in general, indeed weights which are between
two given concrete Gevrey weights, statement (ii) in Theorems 14 and 15 fails
if P is not elliptic. Finally, we remark that there is no restriction to assume
that the weight ω is quasianalytic, i.e. satisfies condition (β′) and not (β), in
Theorems 14 and 15. However, in Example 31 the weights are taken to be
non-quasianalytic.
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2 Preliminary results

In order to prove Theorems 14 and 15 we collect in this section some prelimi-
nary results. First of all, we shall prove some properties of the Young conjugate
function ϕ∗ defined in Section 1:

Proposition 21 Let ω be a subadditive weight function and define, for j ∈ N0,
λ > 0,

aj,λ :=
eλϕ

∗(j/λ)

j!
.

Then the following properties are satisfied:

1. aj,λ · ah,λ ≤ aj+h,λ ∀j, h ∈ N0, λ > 0;
2. aj,λ ≤ aj+1,λ ∀j ∈ N0, λ > 0;
3. λ 7→ aj,λ is decreasing for all j ∈ N0;
4. aj+h,λ ≤ aj,λ/2 · ah,λ/2 ∀j, h ∈ N0, λ > 0;
5. for every ρ, λ > 0 there exists λ′, Dρ,λ > 0 such that

ρjeλϕ
∗(j/λ) ≤ Dρ,λe

λ′ϕ∗(j/λ′) ∀j ∈ N0,

with Dρ,λ := exp{λ[log ρ + 1]}, where [log ρ + 1] is the integer part of
log ρ+ 1;

6. for every j, h, r ∈ N0 with 0 ≤ h ≤ j, and for all λ > 0:

j!

h!
aj−h,λ ≤

eλϕ
∗( j+rλ )

eλϕ
∗(h+rλ )

;

7. for every j, h, r ∈ N0, λ > 0:

eλϕ
∗( jλ )eλϕ

∗( r+hλ ) ≤ e
λ
2 ϕ
∗( j+hλ/2 )e

λ
2 ϕ
∗( r
λ/2 ).

8. for every λ > 0 and q, r ∈ N0 with q ≥ r we have that

eλϕ
∗( q+1

λ )

eλϕ
∗( qλ )

≥ eλϕ
∗( r+1

λ )

eλϕ
∗( rλ )

.

Proof (1) has been proved in Lemma 3.2.3 of [12].
(2) follows from (1) since a1,λ = eλϕ

∗(1/λ) ≥ 1.
(3) follows from the fact that ϕ∗(s)/s is increasing (cf. [8]).
(4) follows from the convexity of ϕ∗:

aj+h,λ =
eλϕ

∗( j+hλ )

(j + h)!
≤ j!h!

(j + h)!

e
λ
2 ϕ
∗( 2j

λ )

j!

e
λ
2 ϕ
∗( 2h

λ )

h!

=
1(
j+h
h

)aj,λ2 ah,λ2 ≤ aj,λ2 ah,λ2 .
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(5) follows from the next property of [12, Prop. 0.1.5(2)(a)]: for each y ≥ 0,
n ∈ N, and λ > 0,

λLnϕ∗
( y

λLn

)
+ ny ≤ λϕ∗

( y
λ

)
+ λ

n∑
h=1

Lh, (2.1)

where L > 0 is such that ω(et) ≤ L(1 + ω(t)) for all t ≥ 0 (in our case ω in
increasing and subadditive, so that we can take L = 3).

Indeed, from (2.1) with y = jLn and dividing by Ln:

λϕ∗
(
j

λ

)
+ nj ≤ λ

Ln
ϕ∗
(

j

λ/Ln

)
+ λ

n∑
h=1

Lh−n

and therefore

ρjeλϕ
∗( jλ ) ≤ e

λ
Ln ϕ

∗( j
λ/Ln )+λn−nj+j log ρ.

Choosing nρ := [log ρ+ 1] ∈ N so that −nρ + log ρ ≤ 0, for λ′ = λ/Lnρ we
thus have that

ρjeλϕ
∗( jλ ) ≤ eλnρeλ

′ϕ∗( j
λ′ ) (2.2)

so that (5) is proved.
In order to prove (6), let us first remark that

j!

h!
aj−h,λ ≤

(j + r)!

(h+ r)!
aj−h,λ (2.3)

since h ≤ j.
From (2.3) we have that

j!

h!
aj−h,λ ≤

(j + r)!

eλϕ
∗( j+rλ )

· e
λϕ∗(h+rλ )

(h+ r)!
· e

λϕ∗( j+rλ )

eλϕ
∗(h+rλ )

aj−h,λ

=
ah+r,λ aj−h,λ

aj+r,λ
· e

λϕ∗( j+rλ )

eλϕ
∗(h+rλ )

≤ eλϕ
∗( j+rλ )

eλϕ
∗(h+rλ )

by the already proved point (1). Therefore (6) holds true.
Property (7) follows from the convexity of ϕ∗. Indeed, from (1)

eλϕ
∗( jλ )eλϕ

∗( r+hλ ) = aj,λ ar+h,λ j!(r + h)!

≤ aj+r+h,λ j!(r + h)! = eλϕ
∗(2 j+r+h2λ ) j!(r + h)!

(j + r + h)!

≤ e
λ
2 ϕ
∗( j+hλ/2 )+λ

2 ϕ
∗( r
λ/2 ) 1(

j+r+h
j

)
≤ e

λ
2 ϕ
∗( j+hλ/2 )e

λ
2 ϕ
∗( r
λ/2 ).
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Let us finally prove (8). We first remark that, by the convexity of ϕ∗,

2ϕ∗
(
r + 1

λ

)
= 2ϕ∗

(
r

2λ
+
r + 2

2λ

)
≤ ϕ∗

( r
λ

)
+ ϕ∗

(
r + 2

λ

)
i.e.

ϕ∗
(
r + 1

λ

)
− ϕ∗

( r
λ

)
≤ ϕ∗

(
r + 2

λ

)
− ϕ∗

(
r + 1

λ

)
.

Arguing recursively we get

ϕ∗
(
r + 1

λ

)
− ϕ∗

( r
λ

)
≤ ϕ∗

(
q + 1

λ

)
− ϕ∗

( q
λ

)
(2.4)

for every q ∈ N with q ≥ r.
Clearly (2.4) implies (8) and the proof is complete.

For the proof of Theorem 14 we shall follow the ideas of [15], so we define,
for a domain Ω ⊆ Rn, q ∈ N0, δ > 0 and f ∈ C∞(G), with G a relatively
compact subdomain of Ω,

‖∇qf‖δ =
∑
|α|=q

‖Dαf‖L2(Gδ),

where

Gδ := {x ∈ G : dist(x, ∂G) > δ}

and ‖ · ‖L2(Gδ) = 0 if Gδ = ∅.
If P = P (x,D) is an elliptic linear partial differential operator of order m

with C∞ coefficients, then the following a priori estimates, for δ, σ > 0 and
0 ≤ r ≤ m, have been proved in [14]:

‖∇mf‖δ+σ ≤ C(‖Pf‖σ + δ−m‖f‖σ) (2.5)

‖∇m−rf‖δ+σ ≤ Cεr(‖∇mf‖σ + (δ−m + ε−m)‖f‖σ), (2.6)

for arbitrary ε > 0, where the constant C > 0 depends only on the operator
P and the set G.

Then we define the semi-norm Npm(u) by

Npm(u) := sup
0<δ≤1

δpm‖∇pmu‖δ.

The following inequality holds:

Proposition 22 Let Ω ⊆ Rn be a domain and P (x,D) an elliptic linear
partial differential operator of order m with coefficients in E{ω}(Ω). For u ∈
C∞(Ω), there exist k ∈ N and a positive constant C0 such that

Npm(u) ≤ C0

{
N (p−1)m(Pu) +

p−1∑
q=0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗(qmk)

Nqm(u)

}
. (2.7)

for every p ∈ N.
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Proof By definition of the semi-norm N (p+1)m(u) and by (2.5) we have

N (p+1)m(u) = sup
(p+2)δ≤1

((p+ 2)δ)(p+1)m‖∇(p+1)mu‖(p+2)δ

≤ sup
(p+2)δ≤1

(
p+ 2

p

)(p+1)m

(pδ)(p+1)mC(‖P∇pmu‖(p+1)δ

+δ−m‖∇pmu‖(p+1)δ)

≤ 9mC sup
(p+2)δ≤1

{(pδ)(p+1)m‖P∇pmu‖(p+1)δ

+pm(pδ)pm‖∇pmu‖(p+1)δ}, (2.8)

since
(
p+2
p

)p+1

≤ 9.

We set P [r] :=
∑
|α|=r supG |Dα

xP |. Since ‖·‖(p+1)δ ≤ ‖·‖pδ and pm(pm)! ≤
((p+ 1)m)!, from (2.8) and Leibniz’ formula we get:

N (p+1)m(u) ≤ 9mC sup
(p+2)δ≤1

{
(pδ)(p+1)m ×

×

[
‖∇pmPu‖(p+1)δ +

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ

]
+pm(pδ)pm‖∇pmu‖pδ

}
≤ 9mC sup

(p+2)δ≤1

{(
p

p+ 1

)pm
[(p+ 1)δ]pm ×

×
(

p

p+ 2

)m
[(p+ 2)δ]m‖∇pmPu‖(p+1)δ

+(pδ)(p+1)m

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ

+
((p+ 1)m)!

(pm)!
Npm(u)

}
≤ 9mC

{
Npm(Pu) +

sup
(p+2)δ≤1

(pδ)(p+1)m

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ

+
((p+ 1)m)!

(pm)!
Npm(u)

}
. (2.9)
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Taking into account that the coefficients of P (x,D) are in E{ω}(Ω), we can
write the following estimates, for (p+ 2)δ ≤ 1 and for some k ∈ N and c > 0:

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ ≤ c

pm∑
r=1

(
pm

r

)
e

1
kϕ
∗(rk)

m∑
s=0

‖∇pm+s−ru‖(p+1)δ

≤ c

pm∑
r=1

(pm)!

(pm− r)!
ar, 1k

m∑
s=0

‖∇pm+s−ru‖(p+1)δ. (2.10)

By the change of indexes r = (p− q)m+ t we obtain that (cf. also [15])

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ ≤ c(m+ 1)

p∑
q=1

m∑
t=1

(pm)!

(qm− t)!
a(p−q)m+t, 1k

×

×‖∇(q+1)m−tu‖(p+1)δ

+cm

m∑
t=1

(pm)!apm, 1k ‖∇
m−tu‖(p+1)δ

= c(m+ 1)

m∑
t=1

(pm)!

(pm− t)!
at, 1k ×

×‖∇(p+1)m−tu‖(p+1)δ

+c(m+ 1)

p−1∑
q=1

m∑
t=1

(pm)!

(qm− t)!
a(p−q)m+t, 1k

×

×‖∇(q+1)m−tu‖(p+1)δ

+cm

m∑
t=1

(pm)!apm, 1k ‖∇
m−tu‖(p+1)δ. (2.11)

From (2.11), by properties (2) and (4) of Proposition 21 we get:

pm∑
r=1

(
pm

r

)
‖P [r]∇pm−ru‖(p+1)δ ≤ S1 + S2 + S3 (2.12)

with

S1 := c(m+ 1)

m∑
t=1

(pm)!

(pm− t)!
am, 1k ‖∇

(p+1)m−tu‖(p+1)δ

S2 := cam, 1
2k

(m+ 1)

p−1∑
q=1

m∑
t=1

(pm)!

(qm− t)!
a(p−q)m, 1

2k
‖∇(q+1)m−tu‖(p+1)δ

S3 := cm

m∑
t=1

(pm)!apm, 1k ‖∇
m−tu‖(p+1)δ.

By property (3) of Proposition 21 and by (2.6), setting

C2 := 9mcC(m+ 1)am, 1
2k
,
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we have the estimate

9mC(pδ)(p+1)mS1 ≤ C2

m∑
t=1

(pm)!

(pm− t)!
(pδ)(p+1)m‖∇(p+1)m−tu‖(p+1)δ

≤ C2C

m∑
t=1

(pm)t(pδ)(p+1)mεt(‖∇(p+1)mu‖pδ

+(δ−m + ε−m)‖∇pmu‖pδ)

= C2C

m∑
t=1

(pm)tεt
{

(pδ)(p+1)m‖∇(p+1)mu‖pδ

+(pm + (pδ)mε−m)(pδ)pm‖∇pmu‖pδ
}
,

since (pm)! ≤ (pm− t)!(pm)t.

Therefore, for ε = (pm)−1(2mCC2)−1/t and (p+ 2)δ ≤ 1:

9mC(pδ)(p+1)mS1 ≤
m∑
t=1

1

2m

{
N (p+1)m(u)

+
(
pm +

( p

p+ 2

)m
[(p+ 2)δ]m ×

×(pm)m(2mCC2)m/t
)
Npm(u)

}
≤

m∑
t=1

1

2m

{
N (p+1)m(u)

+
(
pm + (pm)m(2mCC2)m/t

)
Npm(u)

}
≤ 1

2
N (p+1)m(u) + C3p

mNpm(u)

≤ 1

2
N (p+1)m(u) + C3

((p+ 1)m)!

(pm)!
Npm(u) (2.13)

for some C3 > 0, because of pm(pm)! ≤ ((p+ 1)m)!.

In order to estimate S2, let us first prove the following estimate, for 1 ≤
q ≤ p− 1, (p+ 1)δ=(q + 1)δ′ and (p+ 2)δ ≤ 1:

(pδ)(p+1)m ≤ (2e)m(qδ′)(q+1)m. (2.14)
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Indeed,

(pδ)(p+1)m =
p(p+1)mδ(p+1)m

q(q+1)m
(
p+1
q+1

)(q+1)m

δ(q+1)m

· (qδ′)(q+1)m

=

(
p

p+ 1

q + 1

q

)(q+1)m

(pδ)(p−q)m(qδ′)(q+1)m

≤
(

1 +
1

q

)qm(
1 +

1

q

)m(
p

p+ 2

)(p−q)m

×

×[(p+ 2)δ](p−q)m(qδ′)(q+1)m

≤ em2m(qδ′)(q+1)m.

Therefore (2.14) is proved and, for 1 ≤ q ≤ p − 1, (p + 1)δ = (q + 1)δ′ and
(p+ 2)δ ≤ 1:

9mC(pδ)(p+1)mS2

≤ C2

p−1∑
q=1

m∑
t=1

(pm)!

(qm− t)!
a(p−q)m, 1

2k
(pδ)(p+1)m‖∇(q+1)m−tu‖(p+1)δ

≤ (2e)m
p−1∑
q=1

(pm)!

(qm)!
a(p−q)m, 1

2k
C2

m∑
t=1

(qm)!

(qm− t)!
(qδ′)(q+1)m‖∇(q+1)m−tu‖(q+1)δ′ .

By (2.13) with q and δ′ instead of p and δ respectively, and because of
properties (6) and (2) of Proposition 21 we finally get the following estimate
for S2:

9mC(pδ)(p+1)mS2

≤ D
p−1∑
q=1

(pm)!

(qm)!
a(p−q)m, 1

2k

{1

2
N (q+1)m(u) + C ′3

((q + 1)m)!

(qm)!
Nqm(u)

}

≤ D′
p−1∑
q=1

(
e

1
2kϕ

∗(2(p+1)mk)

e
1
2kϕ

∗(2(q+1)mk)
N (q+1)m +

e
1
2kϕ

∗(2(p+1)mk)

e
1
2kϕ

∗(2qmk)
Nqm(u)

)

≤ 2D′
p−1∑
q=1

e
1
2kϕ

∗(2(p+1)mk)

e
1
2kϕ

∗(2qmk)
Nqm(u) +D′

e
1
2kϕ

∗(2(p+1)mk)

e
1
2kϕ

∗(2pmk)
Npm(u) (2.15)

for some C ′3, D,D
′ > 0.
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Let us now estimate S3. By (2.6) with ε = 1 and because of properties (5),
(6) (with h = 0) and (2) of Proposition 21, for (p+ 2)δ ≤ 1:

9mC(pδ)(p+1)mS3

≤ C2

m∑
t=1

(pm)!apm, 1k (pδ)(p+1)m‖∇m−tu‖(p+1)δ

≤ CC2

m∑
t=1

(pm)!(pδ)pmapm, 1k

(
(pδ)m‖∇mu‖pδ + pm(1 + δm)‖u‖pδ

)
≤ CC2

m∑
t=1

(pm)!apm, 1k

(
Nm(u) + 2pmN0(u)

)
≤ CC2m(pm)!apm, 1kN

m(u) + 2CC2m((p+ 1)m)!apm, 1kN
0(u)

≤ CC2m
e

1
kϕ
∗((p+1)mk)

e
1
kϕ
∗(mk)

Nm(u) + 2CC2m((p+ 1)m)!a(p+1)m, 1k
N0(u)

≤ D̃e 1
kϕ
∗((p+1)mk)

(
Nm(u) +N0(u)

)
, (2.16)

for some D̃ > 0.
Substituting (2.13), (2.15) and (2.16) in (2.12) and then in (2.9) and ap-

plying (2) of Proposition 21, we finally get:

N (p+1)m(u) ≤ C5N
pm(Pu) +

1

2
N (p+1)m(u) + C5

p∑
q=0

e
1
k′ ϕ
∗((p+1)mk′)

e
1
k′ ϕ
∗(qmk′)

Nqm(u),

for some k′ ∈ N and C5 > 0, concluding the proof.

We shall also need, in the following, the next result:

Proposition 23 Let P (x,D) be an elliptic linear partial differential operator
of order m with coefficients in E{ω}(Ω). For u ∈ C∞(Ω), there are k ∈ N and
a positive constant C1 > 0 such that

Npm(u) ≤ Cp1
p∑
q=0

(
p

q

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗(qmk)

N0(P qu) (2.17)

for every p ∈ N0.

Proof Let us proceed by induction on p.
For p = 0 it’s trivial. Let us assume (2.17) to be true for 0, 1, . . . , p− 1 and

let us prove it for p.
Applying (2.7) for q ∈ {1, . . . , p− 1} instead of p, we have that

Nm(u) ≤ C0

{
N0(Pu) + e

1
kϕ
∗(mk)N0(u)

}
...

N (p−1)m(u) ≤ C0

{
N (p−2)m(Pu) +

p−2∑
q=0

e
1
kϕ
∗((p−1)mk)

e
1
kϕ
∗(qmk)

Nqm(u)

}
.
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Substituting in (2.7) and taking into account (2) of Proposition 21:

Npm(u)

≤ C0

{
N (p−1)m(Pu) +

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((p−1)mk)

N (p−1)m(u) + . . .+ e
1
kϕ
∗(pmk)N0(u)

}
≤ C0

{
N (p−1)m(Pu) +

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((p−1)mk)

C0

[
N (p−2)m(Pu)

+
e

1
kϕ
∗((p−1)mk)

e
1
kϕ
∗((p−2)mk)

N (p−2)m(u) +

. . .+ e
1
kϕ
∗((p−1)mk)N0(u)

]
+ . . .+ e

1
kϕ
∗(pmk)N0(u)

}
≤ C0N

(p−1)m(Pu) + C2
0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((p−1)mk)

N (p−2)m(Pu)

+C2
0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((p−2)mk)

N (p−2)m(u) + . . .+ C0(C0 + 1)e
1
kϕ
∗(pmk)N0(u)

...

≤
p−1∑
q=0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((q+1)mk)

Cp−q0 Nqm(Pu) + (C0 + 1)pe
1
kϕ
∗(pmk)N0(u)

≤
p−1∑
q=0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((q+1)mk)

Cp−q1 Nqm(Pu) + Cp1e
1
kϕ
∗(pmk)N0(u)

with C1 := C0 + 1.
Therefore, by the induction assumption and because of property (8) of

Proposition 21,

Npm(u) ≤
p−1∑
q=0

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((q+1)mk)

Cp−q1 Cq1

q∑
r=0

(
q

r

)
e

1
kϕ
∗(qmk)

e
1
kϕ
∗(rmk)

N0(P rPu)

+Cp1e
1
kϕ
∗(pmk)N0(u)

≤ Cp1

p−1∑
r=0

p−1∑
q=r

e
1
kϕ
∗(pmk)

e
1
kϕ
∗((r+1)mk)

(
q

r

)
N0(P r+1u)

+Cp1e
1
kϕ
∗(pmk)N0(u). (2.18)

Let us now remark that
∑p−1
q=r

(
q
r

)
=
(
p
r+1

)
and hence substituting in (2.18),

we finally have:

Npm(u) ≤ Cp1

p−1∑
r=0

(
p

r + 1

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗((r+1)mk)

N0(P r+1u) + Cp1e
1
kϕ
∗(pmk)N0(u)

= Cp1

p∑
r′=0

(
p

r′

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗(r′mk)

N0(P r
′
u),
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so that (2.17) is valid with C1 = 1 + C0.

3 Proof of Theorems 14 and 15

We can now proceed with the

Proof (Proof of Theorem 14)
Let us first prove that if P (x,D) is elliptic then EP{ω}(Ω) ⊆ E{ω}(Ω).

Let u ∈ C∞(Ω) satisfy (1) for every K ⊂⊂ Ω. In particular it satisfies
(1) for every relatively compact subdomain G ⊂ Ω. From Proposition 23, for
every fixed δ > 0 and for all p ∈ N0

‖∇pmu‖δ ≤ δ−pmNpm(u) ≤ δ−pmCp1
p∑
q=0

(
p

q

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗(qmk)

N0(P qu)

≤ δ−pmCp1

p∑
q=0

(
p

q

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗(qmk)

‖P qu‖L2(G)

≤ δ−pmCp1

p∑
q=0

(
p

q

)
e

1
kϕ
∗(pmk)

e
1
kϕ
∗(qmk)

ce
1
kϕ
∗(qmk)

≤ c(δ−1C
1/m
1 21/m)pme

1
kϕ
∗(pmk)

≤ cDδ e
1
k′ ϕ
∗(pmk′) = C̃e

1
k′ ϕ
∗(pmk′) (3.1)

for some k′ ∈ N, Dδ , C̃ > 0, because of (5) of Proposition 21.
By (2.6) (with σ = δ, ε = 1, f = ∇pmu), and by (3.1), for all 1 ≤ t ≤ m−1,

t′ = m− t, q = pm+ t we have, by the convexity of ϕ∗:

‖∇qu‖2δ = ‖∇pm+tu‖2δ = ‖∇m−t
′
∇pmu‖2δ

≤ C
(
‖∇(p+1)mu‖δ + (δ−m + 1)‖∇pmu‖δ

)
≤ CC̃

[
e

1
k′ ϕ
∗((p+1)mk′) + (δ−m + 1)e

1
k′ ϕ
∗(pmk′)

]
≤ CC̃(2 + δ−m)e

1
k′ ϕ
∗(((p+1)m+t)k′)

≤ CC̃(2 + δ−m)e
1

2k′ ϕ
∗(2(pm+t)k′)e

1
2k′ ϕ

∗(2mk′)

= Cδe
1
k′′ ϕ

∗(qk′′) (3.2)

for Cδ = CC̃(2 + δ−m)e
1

2k′ ϕ
∗(2mk′) and k′′ = 2k′.

From (3.1) and (3.2), and by Sobolev inequality (cf. [17, Lemma 2.5]), we
thus have that u ∈ E{ω}(G2δ) for every fixed δ > 0 and hence u ∈ E{ω}(Ω).

Let us now show (i). Let u ∈ E{ω}(Ω) and prove by induction on p that
there exists k ∈ N such that for every q ∈ N0 there is Cq > 0 such that for
every K ⊂⊂ Ω

‖∇qP pu‖L2(K) ≤ Cqe
1
kϕ
∗((q+pm)k) ∀p, q ∈ N0. (3.3)
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Indeed, for p = 0 (3.3) is valid because u ∈ E{ω}(Ω). Let us assume (3.3)
to be true for p, and all q ∈ N0, and prove it for p+ 1:

‖∇qP p+1u‖L2(K) = ‖∇q[P (P pu)]‖L2(K) =

q∑
r=0

(
q

r

)
‖P [r]∇q−rP pu‖L2(K)

≤
q∑
r=0

(
q

r

)
ce

1
kϕ
∗(rk)

m∑
s=0

‖∇q+s−r(P pu)‖L2(K)

= c

q∑
r=0

q!

(q − r)!
ar, 1k ‖∇

q+m−r(P pu)‖L2(K)

+c

q∑
r=0

q!

r!(q − r)!
e

1
kϕ
∗(rk)

m−1∑
s=0

‖∇q+s−r(P pu)‖L2(K) (3.4)

for some c > 0 since P (x,D) has coefficients in E{ω}(Ω).

By property (2) of Proposition 21 we have that, for 0 ≤ r ≤ q,

q!

(q − r)!
ar, 1k ≤

q!

(q − r)!
aq, 1k ≤ q!aq, 1k

and hence, substituting in (3.4) and separating the derivatives ∇σ(P pu) for
σ ≥ m and 0 ≤ σ ≤ m− 1:

‖∇qP p+1u‖L2(K) ≤ c

q∑
r=0

q!

(q − r)!
ar, 1k ‖∇

q+m−r(P pu)‖L2(K)

+mc

q∑
r=0

q!

(q − r)!
ar, 1k ‖∇

q+m−r(P pu)‖L2(K)

+mcq!aq, 1k

m−1∑
σ=0

‖∇σP pu‖L2(K)

= (m+ 1)c

q∑
r=0

q!

(q − r)!
ar, 1k ‖∇

q+m−r(P pu)‖L2(K)

+mcq!aq, 1k

m−1∑
σ=0

‖∇σ(P pu)‖L2(K).
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By the inductive assumption (3.3) and by property (1) of Proposition 21
we have therefore that

‖∇qP p+1u‖L2(K) ≤ (m+ 1)c

q∑
r=0

q!

(q − r)!
ar, 1kCqe

1
kϕ
∗((q+m−r+pm)k)

+mcq!aq, 1k

m−1∑
σ=0

Cqe
1
kϕ
∗((σ+pm)k)

= (m+ 1)cCq

[
q∑
r=0

q!

(q − r)!
(q + (p+ 1)m− r)!ar, 1k aq+(p+1)m−r, 1k

+

m−1∑
σ=0

q!(σ + pm)!aq, 1k aσ+pm,
1
k

]

≤ (m+ 1)cCq

[
q∑
r=0

q!

(q − r)!
(q + (p+ 1)m− r)!aq+(p+1)m, 1k

+

m−1∑
σ=0

q!(σ + pm)!aq+σ+pm, 1k

]

= (m+ 1)cCq

[
q∑
r=0

q!

(q − r)!
(q + (p+ 1)m− r)!

(q + (p+ 1)m)!

+

m−1∑
σ=0

q!(σ + pm)!

(q + (p+ 1)m)!

]
e

1
kϕ
∗((q+(p+1)m)k)

≤ cCq(m+ 1)(m+ q)e
1
kϕ
∗((q+(p+1)m)k),

since

q!

(q − r)!
(q + (p+ 1)m− r)!

(q + (p+ 1)m)!
=

(
q
r

)(
q+(p+1)m

r

) ≤ 1,

and

q!(σ + pm)!

(q + (p+ 1)m)!
≤ 1(

q+(p+1)m
q

) ≤ 1.

Therefore (3.3) is proved by induction and, in particular, (1) holds true for
q = 0. The proof of Theorem 14 is therefore complete.

Proof (Proof of Theorem 15) The proof of (i) is similar to the Roumieu case,
Theorem 14(i), for Cq,k and ck instead of Cq and c.

However, since the constant C1 of (2.17) depends on k, we cannot deduce
formula (3.1) from (5) of Proposition 21. To prove (ii) we first remark that
E{ω}(Ω) ⊆ E(σ)(Ω) for σ(t) = o(ω(t)) as t → ∞ by [8, Prop. 4.7]. Therefore
by Theorem 14(ii) we have

EP(ω)(Ω) ⊆ EP{ω}(Ω) ⊆ E{ω}(Ω) ⊆ E(σ)(Ω)

which concludes the proof in the Beurling case.
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We conclude proving that ellipticity is necessary in Theorems 14(ii) and
15(ii):

Example 31 Let P (x,D) be a linear partial differential operator with real
analytic coefficients of order m not elliptic in (x0, ξ0) ∈ Ω ×Rn, for a domain
Ω ⊆ Rn and ‖ξ0‖ = 1, i.e.

Pm(x0, ξ0) = 0,

where Pm is the principal part of P .

We are going to prove that there exist a function u and a subadditive weight
ω, which is not a Gevrey weight in general and is between two given Gevrey
weights, and such that u ∈ EP{ω}(Ω)\E{ω}(Ω), and that u ∈ EP(ω)(Ω)\E(σ)(Ω),

for some subadditive weight function σ = o(ω). Consequently, the ellipticity
of P is needed for statement (ii) of Theorems 14 and 15.

To construct ω and the function u we follow [23]: for any fixed s > 1 we
choose σ ∈ (1, s) and ε > 0 such that

0 < ε <
m(s− σ)

2ms− σ
<

1

2
.

Then we take δ > 0 so that B(x0, 2δ) ⊂⊂ Ω and ϕ ∈ E(t1/σ)(Rn) with suppϕ ⊂
B(0, 2δ). For η = m−ε

ms we finally define, as in [23],

u(x) :=

∫ +∞

1

ϕ
(
ρε(x− x0)

)
e−ρ

η

eiρ〈x−x0,ξ0〉dρ .

It was proved in [23] that

(Dα
ξ0u)(x0) =

1

η
Γ

(
α+ 1

η

)
+ o(1), (3.5)

where Γ is the gamma function, so that u /∈ E{t1/s′}(U) in any neighborhood

U of x0 for any s′ < 1/η (nor, in particular, for s′ = s), but u ∈ E{tη}(Rn).
Moreover, it was proved in [23] that u ∈ EP{t1/s}(Ω).

Let us now consider any subadditive weight function ω(t) such that ω(t) =
o(t1/s) and t1/s

′
= o(ω(t)) for s′ > s > 1. For instance, ω(t) = t1/s/ log t. In

general, such a weight exists by [8, Proposition 1.9].

We have that E(ω)(Ω) ⊆ E{ω}(Ω) ⊆ E{t1/s′}(Ω) and E{t1/s}(Ω) ⊆ E(ω)(Ω) ⊆
E{ω}(Ω) by [8, Prop. 4.7]. Analogously EP{t1/s}(Ω) ⊆ EP(ω)(Ω) ⊆ EP{ω}(Ω), so

that u ∈ EP{ω}(Ω) \ E{ω}(Ω) and ellipticity is necessary in Theorem 14 (ii).

Moreover, if σ(t) := t1/s
′
we clearly have u ∈ EP(ω)(Ω)\E(σ)(Ω). Since σ(t) =

o(ω(t)) as t→∞, this proves that ellipticity is necessary in Theorem 15 (ii).
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