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THE FRECHET SPACES ces(p+),1 <p < 00
ANGELA A. ALBANESE, JOSE BONET, WERNER J. RICKER

ABSTRACT. The Banach spaces ces(p),1 < p < oo, were intensively
studied by G. Bennett and others. The largest solid Banach lattice in CN
which contains ¢, and which the Cesaro operator C : CY — CN maps
into ¢, is ces(p). For each 1 < p < o0, the (positive) operator C also maps
the Fréchet space 4 = ﬂq>p {4 into itself. It is shown that the largest
solid Fréchet lattice in CN which contains ¢, and which C' maps into £,
is precisely ces(p+) 1= [, ces(q). Although the spaces £, are well
understood, it seems that the spaces ces(p+) have not been considered
at all. A detailed study of the Fréchet spaces ces(p+),1 < p < oo, is
undertaken. They are very different to the Fréchet spaces £, which
generate them in the above sense. We prove that each ces(p+) is a
power series space of finite type and order one, and that all the spaces
ces(p+),1 < p < oo, are isomorphic.

1. INTRODUCTION

Given an element z = (,,), = (21, 22,...) of CN let |z| := (|x,|), and
write x > 0 if x = |z|. By < y we mean that (y — x) > 0. The se-
quence space CN is a (locally convex) Fréchet space with respect to the
coordinatewise convergence. For each 1 < p < oo define

1 n
ces(p) = {2 € C"+ ||alleesy = (= D lwxally <00}, (L1)
k=1

where || - ||, denotes the standard norm in ¢,. An intensive study of the
Banach spaces ces(p),1 < p < oo, was undertaken in [6],[13]; see also
the references therein. They are reflexive, p-concave Banach lattices (for
the order induced by the positive cone of the Fréchet lattice CV) and the
canonical vectors ey := (On)n, for k € N, form an unconditional basis, [6],
[8]. For every pair 1 < p,q < oo the space ces(p) is not isomorphic to ¢,
[6, Proposition 15.13], and is also not isomorphic to ces(q) if p # ¢, [4,
Proposition 3.3].
The Cesaro operator C : CN — CN, defined by

) = (:Ul,xl;xQ,...,xl+x2—:l"'+x",.

L), xeCh, (1.2)
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2 A. A. Albanese, J. Bonet and W. J. Ricker

satisfies |C(x)| < C(|z|) for z € CN and is a topological isomorphism of
CM onto itself. It is clear from (1.1) that ||z]cesy = [|C(Jz|)|l, for = €
ces(p). Hardy’s inequality, [15, Theorem 326|, ensures that ¢, C ces(p)
with || ||ces) < P/ ||z]|, for « € £, where 213 + ]% = 1. Moreover, £, C ces(p)
is a proper containment, |8, Remark 2.2|. It is routine to verify that C maps
ces(p) continuously into ¢,. The following remarkable fact (due to Bennett,

[6, Theorem 20.31]) reveals a special feature of ces(p).

Proposition 1.1. Let 1 < p < oo and x € CY. Then
x € ces(p) if and only if C(|z|) € ces(p). (1.3)

The spaces ces(p) also arise in a different way. Fix 1 < p < oo. Since
the Cesaro operator C, : ¢, — ¢, (i.e., C restricted to ¢,) is a positive
operator between Banach lattices, it is natural to seek continuous, ¢,-valued
extensions of C, to Banach lattices X C CN which are larger than ¢, and
solid (i.e.,y € CY and |y| < |z| with # € X implies that y € X). The largest
of all those solid Banach lattices in C which contain ¢, and for which such
a continuous, {,-valued extension of C, is possible is precisely ces(p), |8,
p.62]. Of course, this “largest extension” C : ces(p) — £, is the restriction
of C from CN to ces(p).

For each 1 < p < oo define the vector space €, = ﬂq>p y; it is a Fréchet
space (and lattice for the order induced by the positive cone of CV) with
respect to the increasing sequence of lattice norms

r— |||, T €Ly, keEN, (1.4)

for any sequence p < pri1 < px with pi | p. Moreover, each £, C CN (with
a continuous inclusion) is a reflexive, quasinormable, non-Montel, countably
normed Fréchet space which is solid in CY and contains no isomorphic
copy of any infinite dimensional Banach space, 9], [18] . Clearly, for each
1 < p < oo the Banach space ¢, C ¢, continuously and with a proper
inclusion. Since C, is continuous for each 1 < p < oo (with operator norm
p’ where 1%—1—1% =1, [15, Theorem 326]), it follows that C : £, — £, is also
continuous, [3, Section 2|. The natural question is: To what extent do the
properties and interrelations between the Banach spaces £, and ces(p), 1 <
p < 00, alluded to above reflect themselves in the connections between the
corresponding Fréchet spaces £, and ces(p+) := ()., ces(q) which they
generate? Although the Fréchet spaces ¢,1,1 < p < 0o, are well understood
(see eg. 1], [9], |10], [18], [19] and the references therein), it seems that the
Fréchet spaces ces(p+),1 < p < oo, which are equipped with the lattice
norms
T ||| cespy)s @ € ces(pt), keN,

for any sequence p < prpi1 < pg satisfying limy o pr = p (i.e., ces(p+) =
proj, ces(px) ), have not been considered at all. The aim of this note is to
make a detailed study of these spaces and to expose some of their striking
features. Let us describe some sample results.
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First, just like for C, : ¢, — ¢,, for 1 < p < oo, the Cesaro operator
Cor 1 lpy — Ly, for 1 < p < 00, is also a positive operator, albeit now be-
tween Fréchet lattices. It turns out that the largest of all those solid Fréchet
lattices in CY which contain ¢,, and C maps into £, (necessarily contin-
uously) is precisely ces(p+); see Proposition 2.5. Although each Fréchet
space £, for 1 < p < oo, fails to have the property (1.3) of Proposition
1.1 (with ¢,4 in place of ces(p)), the space ces(p+) that it generates in the
above sense does have this remarkable property; see Propositions 2.2 and
2.4. A further contrast to £, is that each ces(p+),1 < p < o0, is a Fréchet-
Schwartz space (but, not nuclear) and the canonical vectors {ej : k € N}
form an unconditional basis (cf. Proposition 3.5). In particular, ces(p+)
cannot be isomorphic to any of the non-Montel spaces /,1,1 < ¢ < oo.
Since, for p # ¢, the spaces £, and £, are also not isomorphic (cf. Propo-
sition 3.3), it is rather surprising that ces(p+) and ces(¢+) are isomorphic
Fréchet spaces for all pairs 1 < p,q < oco. These results are obtained as
a consequence of the main result of this paper showing, remarkably, that
ces(p+) coincides with the power series space of order one and finite type
Ay (o) with a := (log(k))ren; see Theorem 3.1. Accordingly, all these
spaces are diagonally isomorphic. We mention two further consequences.
The Fréchet spaces £, for 1 < p < oo, all fail to be (FBa)-spaces, [19],
whereas every Fréchet space ces(p+) is an (FBa)-space, since it is a Kothe
echelon space of order one; see Proposition 4.1. It is known that ¢, has
the property that every (,;-valued vector measure has relatively compact
range if and only if 1 < p < 2. This property also holds for ces(p+), but for
every 1 < p < oo.

2. OPTIMAL SOLID LATTICE PROPERTIES OF ces(p+)

We begin by noting, for each 1 < p < oo, that ces(p+) is reflexive, [17,
Proposition 25.15], since each Banach space ces(q), ¢ > p, is reflexive, |6,
p.61].

Lemma 2.1. For each 1 < p < oo, the space ces(p+) is a solid Fréchet
lattice subspace of CN and €,, C ces(p+) with a continuous and proper
inclusion.

Proof. Clearly ces(p+) is a solid Fréchet lattice subspace of CN. Since £, C
ces(q) with a continuous inclusion for each ¢ > p > 1, it follows that
(4 C ces(p+) continuously.

Fix 1 < p < oo. By [8, Remark 2.2(ii)] there exists = € ces(p)\l. Since
ces(p) C ces(p+) and £, C l, it follows that x € ces(p+)\lp+-

For p = 1 we know that ¢, C ces(1+). If this containment was an
equality , then the open mapping theorem for Fréchet spaces, [17, Theorem
24.30], implies that the identity map from ¢;; onto ces(1+) is an isomor-
phism. This is impossible as ¢ is non-Montel whereas ces(1+) is Montel
(see Proposition 3.5(ii) below). So, 1. & ces(1+). O
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The following observation is a direct consequence of the striking property
of ces(q), 1 < p < oo, exhibited in Proposition 1.1 and the definition of

ces(pt) =, ces(q)-
Proposition 2.2. Let 1 < p < oo and v € C¥. Then
x € ces(p+) if and only if C(|x|) € ces(p+). (2.1)
We will require the following fact.

Lemma 2.3. For each 1 < p < 0o, the Cesaro operator C : ces(p+) — {py
1S continuous.

Proof. Fix 1 < p < oo. If x € ces(p+), then |z| € ces(q) for all ¢ > p and
so C(|z|) € £, for all ¢ > p. This is because C : ces(q) — ¢, is continuous
as

1€l = @)y < [IC1zDIg = #lleesa), = € ces(a).

Hence, C(|z|) € ¢,+. This shows that C maps ces(p+) into £,., necessarily
continuously by the closed graph theorem for Fréchet spaces, [17, Theorem
24.31]. O

The next result, in combination with Proposition 2.2, shows that ces(p+),1 <
p < 00, exhibits a very desirable property which ¢,; fails to possess.

Proposition 2.4. For each 1 < p < oo, the Fréchet space €, fails to have
the property (2.1) in Proposition 2.2 (with £, in place of ces(p+)).

Proof. Fix 1 < p < oo. Assume that £, does have the property (2.1) in
Proposition 2.2. By Lemma 2.1 there exists x € ces(p+)\{,p+. Hence, also
|z| € ces(p+)\lp+. Then Lemma 2.3 implies that C(|z|) € ¢,+ and hence,
by the assumption on /£, also |z| € {,.; contradiction. So, ¢, fails the
property. 0

The following result should be compared with its Banach lattice counter-
part, [8, p.62|.

Proposition 2.5. The space ces(p+), 1 < p < oo, is the largest solid
Fréchet lattice X in CN which contains (,, such that C(X) C €.

Proof. Let [C,(,,]s denote the largest solid Fréchet lattice X in CY which
contains ¢, such that C(X) C ¢,,. Since C(ces(p+)) C £+ (cf. Lemma
2.3), it follows that ces(p+) itself is a solid Fréchet lattice which contains
lp4 such that C(ces(p+)) C £p4. Accordingly, ces(p+) C [C, £yt ]s.

Let X be any solid Fréchet lattice in CY which contains £, such that
C(X) C{yt. Given x € X also |z| € X and hence, C(|z|) € £, C ces(p+).
Proposition 2.2 implies that x € ces(p+). Accordingly, X C ces(p+). This
implies that [C, (,4]s C ces(p+). O

Since £, C ces(p+) continuously (cf. Lemma 2.1), in addition to C :
l,y — Lp4 one may also consider the positive Cesaro operator C : ces(p+) —
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ces(p+). Even though the target space ces(p+) is now genuinely larger than
Uyt (cf. Lemma 2.1), no further solid extension occurs!

Proposition 2.6. The space ces(p+), 1 < p < o0, is also the largest solid
Fréchet lattice X in CN which contains ces(p+) such that C(X) C ces(p+).

Proof. Denote by [C, ces(p+)], the largest solid Fréchet lattice X in CN
which contains ces(p+) such that C(X) C ces(p+). Clearly ces(p+) C
[C, ces(p+)]s because C(ces(p+)) C £+ C ces(p+); see Lemma 2.3.

Let X be any solid Fréchet lattice in CN which contains ces(p+) such
that C(X) C ces(p+). Given z € X also |z| € X. Hence, C(|z|) €
ces(p+). By Proposition 2.2, x € ces(p+). So, X C ces(p+). This im-
plies [C, ces(p+)]s C ces(p+). O

For the Banach lattice counterpart of Proposition 2.6 see |8, Theorem
2.5].

3. ces(p+) AS A POWER SERIES SPACE OF FINITE TYPE AND ORDER 1

A power series Fréchet space of finite type r € R and order 1 is defined,
for any given strictly increasing sequence a = (aj)r C (0,00) satisfying
limy, o0 a, = 00, by

Ar(a) = {z e CV: [laf, =) |axle™™ < oo, Vt<r};
k=1
see [17, Ch.29], also for the definition of the norms generating the Fréchet
topology of A, («).

Our main result is rather remarkable and surprising. We require the

following inequality

A B
kl/I;f < [lexllcesr) < kl_/pp/v keN, (3.1)

valid for strictly positive constants A,, B, and with Il) + z% =1, [6, Lemma
4.7], where ey := (0x ), for each k € N.

Theorem 3.1. The Fréchet space ces(p+), 1 < p < oo, is isomorphic to
the power series space A_q/y(av), %—i—ﬁ =1, of finite type —1/p’ and order
1, where a = (log k).

Proof. Fix 1 < p < oo. Observe that

A1y ((log k)x) = {z € CV: [[a|ly = ) |ayl" for all £ < —1/p'}.

j=1

Let 1 < ¢ < co. For = € ces(q) we have

[e.o]

m 1 n
||z — ijeches(q) <( Z (ﬁ Z |$k|)q)1/q —0, as m — oo.
j=1

n=m+1 k=1
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Therefore () are a basis of ces(q) for 1 < g < oo, [8, Proposition 2.1,
hence, also of ces(p+) for each 1 < p < oo. Consequently, via (3.1) we
have, with é + é =1, that

(o] o0

-~

2l leesta) < D 1251 - [leslleesta) < By > lagli ™7
j=1 j=1

By [6, Lemma 4.7|, for each 5 > 0 we have

o0

11 1 .

n=j

=

Let p < ¢ < co. Given p < s < ¢ it is clear that y := (n” ), € y. So

we can apply (3.2) with 5 = i and Holder’s inequality to get
0o . 0o oo 1
DS DD DL
j=1 j=1 n=j

o0 1 n L
=3 X a7 < lllollellescs
n=1 j=1

This proves the result.
O

Corollary 3.2. Each of the Fréchet spaces ces(p+), for 1 < p < oo, is
isomorphic to the power series space Ao(a) of finite type 0 and order 1,
where a = (log k).

Proof. This follows directly from the fact that all finite type power series
spaces A,(«a), with « fixed, are diagonally isomorphic; see [17], page 358,
lines 1-5. 0

In view of Corollary 3.2 the following observation is relevant.

Proposition 3.3. For every distinct pair 1 < p,q < oo the Fréchet spaces
Uyt and L,y are not isomorphic.

Proof. We may assume that p < ¢. Suppose that there exists an isomor-
phism 7" : ¢, — {,;. Since the natural inclusion ¢, C ¢, is continu-
ous, the restricted operator T'|,, : {; — {54 is continuous. Consequently,
since the inclusion ¢,; C /, is continuous for each r > p, it follows that
T\, : lg — L, is continuous for each r € (p,q). By Pitt’s theorem, [20],
T :ly — {, is compact (we denote T'|,, simply by 7" again as no confu-
sion can occur). Choose now any r € (p,q). Since {e;}32, is a bounded
set in £, and T : {; — {, is compact, the image {7'(e;)}32, is a relatively
compact subset of /.. Consequently, as £, = ﬂp<r<q by = Projycpey br, it
follows that {7'(e;)}52, is also a relatively compact subset of /,,. Hence,
there exists y € £, and a subsequence {T'(e;x))}72, of {T'(e;)}32, such
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that T'(ejx)) — v in £p4 for & — oo. By continuity of the inverse oper-
ator T71 : £,y — Ly it follows that ejy — T '(y) in {44. Choose any
s > ¢, in which case {;; C {, continuously, then also e;u) — T *(y) in
the Banach space (,. This is impossible as |lejx) — ;0 [le, = 21/* > 1 for all
k # . Hence, no such isomorphism 7" of ¢, onto £, can exist. 0

Remark 3.4. For each pair 1 < p < ¢ < o0 it is clear that
ces(p+) C ces(q+). (3.3)

Even though ces(p+) and ces(q+) are isomorphic as Fréchet spaces (cf.
Corollary 3.2), the containment (3.3) is proper. Indeed, if it were an equality,
then for any fixed r € (p, ¢) it would follow from the (continuous) inclusions
ces(p+) C ces(r) C ces(q) C ces(g+) that ces(r) = ces(q). Consequently,
the Banach spaces ces(r) and ces(q) would be isomorphic (with r < q)
which is not the case, [4, Proposition 3.3].

We now collect some further consequences of Theorem 3.1.

Proposition 3.5. For each 1 < p < oo the following assertions hold.

(i) The Fréchet space ces(p+) is a Kithe echelon space of order 1 and
the canonical vectors (e;)jen form an unconditional basis of ces(p+).
(ii) ces(p+) is a Fréchet-Schwartz space but, it is not nuclear.
(iii) ces(p+) is not isomorphic to £,y for each 1 < ¢ < 0.

Proof. (i) The space ces(p+) is a Kothe echelon space of order 1 (by Theo-
rem 3.1). The canonical vectors are an unconditional basis for every Kothe
echelon space of order 1. Even stronger, they form an absolute basis, [16,
pp.314-315].

(ii) Every power series space is Schwartz by |17, Proposition 27.10|. The
non-nuclearity of ces(p+) = A_y (), o = (logk)y is a direct consequence
of Corollary 3.2 and [17, Proposition 29.6 (2)].

(iii) The space ¢, is not Montel for each 1 < ¢ < oo, [18], and hence, it
cannot be isomorphic to ces(p+), [17, Lemma 24.19]. O

Definition 3.6. Let X be a Fréchet space whose topology is generated by
a fundamental sequence (|| - ||,)nen of seminorms. The space X has the

property (2)if: VI €N, c€ (0,1) Ik >I,Vh>EkIC >0 :
lylle ™ < Cliyllallylle, ¥y e X7,
where ||y}, := sup{|(z,y)|: ||=||x < 1} is the dual norm || - ||}, of || - [|x in X".

It is a consequence of [17, Lemma 29.16] that the condition in Definition
3.6 coincides with property (9).

Every space (,., for 1 < p < oo, satisfies property (Q), [18, proof of
Proposition 2.4|. Since all power series spaces of finite type have property
(Q), [17, Proposition 29.12], we deduce the following result.

Proposition 3.7. For each 1 < p < oo the Fréchet space ces(p+) has

property (€2).
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4. FURTHER PROPERTIES OF ces(p+)

According to Taskinen, [23], a Fréchet space X is called an (FBa)-space
if, for every Banach space Y, every bounded subset of the complete projec-
tive tensor product X®Y is contained in the closed convex hull co(C' ® D)
of bounded sets C' C X and D C Y. In 1986 Taskinen constructed Fréchet
spaces which are not (FBa)-spaces, thereby solving the “problem of topolo-
gies of Grothendieck”, [22]. Peris proved that the Fréchet spaces €., for
1 < p < o0, are not (FBa) spaces, thus providing a natural and concrete
class of spaces of this type, [19].

Proposition 4.1. Each Fréchet space ces(p+), for 1 < p < oo, is an
(FBa)-space.

Proof. Each space ces(p+),1 < p < oo, is isomorphic to a Kothe echelon
space of order 1 (cf. Proposition 3.5 (i)). Hence, it is necessarily an (FBa)-
space, [14, p.70], [22, Section 3]. O

Now we consider some features of ces(p+) of a somewhat different nature.
First, ces(p+) is the complexification of the corresponding real Riesz space
cesg(p+) = {x € ces(p+) : © = (x,), € RV}, in the sense of [26, pp.187—
201]. Since cesg(p+) is solid in RY it follows that cesg(p+) is Dedekind
complete (i.e., every subset of cesg(p+) which is bounded from above in
the order has a least upper bound) and hence, (per definition) also its
complexification ces(p+) is Dedekind complete. Moreover, being reflexive,
each of the (separable) Fréchet lattices ces(p+),1 < p < oo, has a Lebesgue
topology, |2, Theorems 10.3 and 10.9], that is, if £(® | 0is a decreasing net
in the order of ces(p+), then lim, 2 = 0 in the topology of ces(p+).

For every 1 < p < oo, the Fréchet space ¢, has the property that every
(,+-valued vector measure (always assumed to be countably additive and
defined on a o-algebra) has relatively compact range if and only if p € [1, 2),
|7, Proposition 2.8]. Once again the optimal solid extension ces(p+) of £,
exhibits better behaviour in this regard.

Proposition 4.2. Let p € [1,00). Then every ces(p+)-valued vector mea-
sure necessarily has relatively compact range.

Proof. The range of every ces(p+)-valued vector measure is a relatively
weakly compact set, [24], and hence, is also relatively compact as ces(p+)
is a Fréchet-Montel space (by Proposition 3.5(ii)). O

Since ces(p+),1 < p < 00, is not nuclear (cf. Proposition 3.5(ii)), there
exist ces(p+)-valued vector measures which fail to have finite variation, [11,
Corollary and Theorem 2.

A Fréchet space X is said to have the Rybakov property, [12], if for every
X-valued vector measure v there exists 2’ € X’ such that v < |[(v,2')| (i.e.,
v(F) = 0 for every measurable set F' C E whenever |(v,2)|(E) = 0). Here
(v, 2’} is the complex measure F —— (v(F),x’) and |[(v, 2’)| denotes its total
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variation measure. A Fréchet space X has Rybakov’s property if and only
if it admits a continuous norm; see [12, Theorem 2.2| for real spaces and
[21, Proposition 2.2| for complex spaces. Since both ¢, and ces(p+) admit
a continuous norm, we have the following fact.

Proposition 4.3. For each 1 < p < oo the Fréchet spaces £, and ces(p+)
have the Rybakov property.

A classical result of Bade, |5, Theorem 3.1|, states: Given a o -complete
Boolean of projections M in a Banach space X, for each (o € X there exists
2’ € X' (called a Bade functional for xy with respect to M) satisfying

(i) (P(x),2’) >0 for all P € M, and

(i) if (P(zg),2') =0 for some P € M, then P(xy) = 0.
A Fréchet space X is said to have the Bade property, [21], if every o-complete
Boolean algebra of projections M in X satisfies (i), (ii) above (for every

xo € X). This is the case if and only if X admits a continuous norm, |21,
Corollary 2.1|, which yields the following result.

Proposition 4.4. For each 1 < p < oo the Fréchet spaces £, and ces(p+)
have the Bade property.

Our final result presents a description of the dual of ces(p+).
Recall that the Kdthe dual X* (or the associate space) of a Banach
sequence space (X, || - [|x), with ¢ € X C CY is defined by

X = {xG(CN: Z|xkyk|<oo, ‘v’yeX},

k=1

endowed with the norm

el = sup {Z el lyllx < 1} 7

k=1

[17, Ch.27]. Here ¢ is the subspace of C consisting of those vectors having
finite support. Every v € X* defines an element of the dual Banach space
X" of (X,[|.||x) viau — > 07 upv, for u € X, and [[v]|xx = [|v]|x.
For 1 < ¢ < oo and i + % = 1, the space d(¢') is defined as
d(q") = {x e CN: Zsup(|xk\q/) < oo} :

1 k>n

which is a Banach space when endowed with the norm

s 1/¢'
1]]aqq) = (Z igp(lfrqu')> , xed(d).

n=1 "=



10 A. A. Albanese, J. Bonet and W. J. Ricker

Observe that

z € d(q') if and only if Z := (sup |xx|)nen € £y (4.1)
k>n
and that
el = 131,

see |6, p.3 & p.9]. We will require the following result of Bennett |6, p.61
& Corollary 12.17].

Lemma 4.5. Let 1 < ¢ < oo and %—I—% = 1. The map ®,: (ces(q)) — d(¢)
defined by ©,(f) := ((ej, f))jen, for f € (ces(q))’, is a linear isomorphism
of the dual Banach space (ces(q))" onto the Banach space d(p') and

1
7 1Pl law) < M llcestan < (g = DY@y (Hllay,  f € (ces(q))

Moreover, (ces(q))* = d(q") and (d(¢'))* = ces(q), with equivalent norms.

Fix 1 < p < oo and any sequence p < pp+1 < p, for n € N satisfying
lim, oo p = p. Then p), < pl,,, < p' for n € N. Since ||z|la) = [|Z]|e
for all € d(r) and any 1 < r < oo, it follows that d(p},) C d(p),)
with a continuous inclusion for each n € N. We endow the vector space
d(p'—) := Upend(p),), which is an increasing union, with the inductive limit
topology, i.e., d(p'—) = ind,, d(p!,), [17, Ch.24].

Proposition 4.6. Let 1 < p < oo. The map A : (ces(p+)) — d(p'—)
given by A(f) == ((ej, f))jen, for f € (ces(p+))’, defines a linear bijection
which is a topological isomorphism of the strong dual space (ces(p+))j onto
d(p'=) = ind , d(p;,).

Proof. First observe that ¢ is dense in the Fréchet space ces(p+) as it is
dense in each Banach space ces(q) for ¢ > p.
Fix u € (ces(p+))’. Select n € N and a constant K > 0 such that

|(x,u>| < K||m||068(pn)a r € ces(p+).

So, there exists a unique @ € (ces(p,))’ whose restriction to ces(p+) C
ces(py) coincides with u. By Lemma 4.5 the element ({e;, u))jen = ({€;, %)) en
belongs to d(p,) C d(p'—).

The previous argument implies that A is well defined. It is clearly linear.
Moreover, A is injective by the density of ¢ = span{e;: j € N} in ces(p+).
To show that A is also surjective let y = (y;);jen € d(p'—). Then there exists
m € N such that y € d(p,). Via Lemma 4.5 we can find f € (ces(pm))’
with y = ((e;, f))jen. Then the restriction v of f to ces(p+) belongs to
(ces(p+)) and A(v) = y.

Define the injection J,,: (ces(p,)) — (ces(p+))’, for n € N, by setting
Jn(f) to be the restriction of f € (ces(p,))’ to ces(p+). By the earlier
part of the proof (ces(p+)) = UnenJn((ces(p,))’) and so we may consider
in (ces(p+))" the inductive limit topology ind ,(ces(p,))’. Since ces(p+) is
reflexive, its strong dual (ces(p+))j coincides with ind ,,(ces(pn))".
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By Lemma 4.5, for each n € N the restriction A, of A to (ces(py))’ is
continuous from (ces(py))" onto d(p),). This implies that A : (ces(p+)); —
ind ,, d(p),) is a continuous bijection. By the closed graph theorem for (LB)-
spaces, [17, Theorem 24.31 & Remark 24.36|, A is also a topological iso-
morphism. 0
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