Document downloaded from:

http://hdl.handle.net/10251/107410

This paper must be cited as:

Albanese, A.; Bonet Solves, JA.; Ricker, WJ. (2018). The Fréchet space ces(p+), 1 < p < infty. Journal of Mathematical Analysis and Applications. 458(2):1314-1323. doi:10.1016/j.jmaa.2017.10.024

The final publication is available at http://doi.org/10.1016/j.jmaa.2017.10.024

Copyright Elsevier

Additional Information

THE FRÉCHET SPACES ces(p+), 1

ANGELA A. ALBANESE, JOSÉ BONET, WERNER J. RICKER

ABSTRACT. The Banach spaces ces(p), 1 , were intensivelystudied by G. Bennett and others. The*largest* $solid Banach lattice in <math>\mathbb{C}^{\mathbb{N}}$ which contains ℓ_p and which the Cesàro operator $\mathsf{C} : \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ maps into ℓ_p is ces(p). For each $1 \leq p < \infty$, the (positive) operator C also maps the Fréchet space $\ell_{p+} = \bigcap_{q > p} \ell_q$ into itself. It is shown that the *largest* solid Fréchet lattice in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_{p+} and which C maps into ℓ_{p+} is precisely $ces(p+) := \bigcap_{q > p} ces(q)$. Although the spaces ℓ_{p+} are well understood, it seems that the spaces ces(p+) have not been considered at all. A detailed study of the Fréchet spaces $ces(p+), 1 \leq p < \infty$, is undertaken. They are very different to the Fréchet spaces ℓ_{p+} which generate them in the above sense. We prove that each ces(p+) is a power series space of finite type and order one, and that all the spaces $ces(p+), 1 \leq p < \infty$, are isomorphic.

1. INTRODUCTION

Given an element $x = (x_n)_n = (x_1, x_2, ...)$ of $\mathbb{C}^{\mathbb{N}}$ let $|x| := (|x_n|)_n$ and write $x \ge 0$ if x = |x|. By $x \le y$ we mean that $(y - x) \ge 0$. The sequence space $\mathbb{C}^{\mathbb{N}}$ is a (locally convex) Fréchet space with respect to the coordinatewise convergence. For each 1 define

$$ces(p) := \{ x \in \mathbb{C}^{\mathbb{N}} : \|x\|_{ces(p)} := \|(\frac{1}{n} \sum_{k=1}^{n} |x_k|)_n\|_p < \infty \}, \qquad (1.1)$$

where $\|\cdot\|_p$ denotes the standard norm in ℓ_p . An intensive study of the Banach spaces ces(p), 1 , was undertaken in [6],[13]; see alsothe references therein. They are reflexive,*p*-concave Banach lattices (for $the order induced by the positive cone of the Fréchet lattice <math>\mathbb{C}^{\mathbb{N}}$) and the canonical vectors $e_k := (\delta_{nk})_n$, for $k \in \mathbb{N}$, form an unconditional basis, [6], [8]. For every pair $1 < p, q < \infty$ the space ces(p) is *not* isomorphic to ℓ_q , [6, Proposition 15.13], and is also *not* isomorphic to ces(q) if $p \neq q$, [4, Proposition 3.3].

The Cesàro operator $\mathsf{C}:\mathbb{C}^{\mathbb{N}}\longrightarrow\mathbb{C}^{\mathbb{N}}$, defined by

$$\mathsf{C}(x) := (x_1, \frac{x_1 + x_2}{2}, \dots, \frac{x_1 + x_2 + \dots + x_n}{n}, \dots), \quad x \in \mathbb{C}^{\mathbb{N}},$$
(1.2)

Key words and phrases. Fréchet spaces, sequence spaces, power series spaces, Schwartz spaces, Fréchet lattices.

Mathematics Subject Classification 2010: Primary 464A45, 46A04; Secondary 46A11, 46A40, 46A63, 47B37.

satisfies $|\mathsf{C}(x)| \leq \mathsf{C}(|x|)$ for $x \in \mathbb{C}^{\mathbb{N}}$ and is a topological isomorphism of $\mathbb{C}^{\mathbb{N}}$ onto itself. It is clear from (1.1) that $||x||_{ces(p)} = ||\mathsf{C}(|x|)||_p$ for $x \in ces(p)$. Hardy's inequality, [15, Theorem 326], ensures that $\ell_p \subseteq ces(p)$ with $||x||_{ces(p)} \leq p' ||x||_p$ for $x \in \ell_p$, where $\frac{1}{p} + \frac{1}{p'} = 1$. Moreover, $\ell_p \subseteq ces(p)$ is a *proper* containment, [8, Remark 2.2]. It is routine to verify that C maps ces(p) continuously into ℓ_p . The following remarkable fact (due to Bennett, [6, Theorem 20.31]) reveals a special feature of ces(p).

Proposition 1.1. Let $1 and <math>x \in \mathbb{C}^{\mathbb{N}}$. Then

$$x \in ces(p)$$
 if and only if $C(|x|) \in ces(p)$. (1.3)

The spaces ces(p) also arise in a different way. Fix 1 . Since $the Cesàro operator <math>C_p : \ell_p \longrightarrow \ell_p$ (i.e., C restricted to ℓ_p) is a *positive* operator between Banach lattices, it is natural to seek continuous, ℓ_p -valued extensions of C_p to Banach lattices $X \subseteq \mathbb{C}^{\mathbb{N}}$ which are larger than ℓ_p and *solid* (i.e., $y \in \mathbb{C}^{\mathbb{N}}$ and $|y| \leq |x|$ with $x \in X$ implies that $y \in X$). The *largest* of all those solid Banach lattices in $\mathbb{C}^{\mathbb{N}}$ which contain ℓ_p and for which such a continuous, ℓ_p -valued extension of C_p is possible is precisely ces(p), [8, p.62]. Of course, this "largest extension" $C : ces(p) \longrightarrow \ell_p$ is the restriction of C from $\mathbb{C}^{\mathbb{N}}$ to ces(p).

For each $1 \leq p < \infty$ define the vector space $\ell_{p+} := \bigcap_{q>p} \ell_q$; it is a Fréchet space (and lattice for the order induced by the positive cone of $\mathbb{C}^{\mathbb{N}}$) with respect to the increasing sequence of *lattice norms*

$$x \mapsto \|x\|_{p_k}, \quad x \in \ell_{p+}, \quad k \in \mathbb{N},$$

$$(1.4)$$

for any sequence $p < p_{k+1} < p_k$ with $p_k \downarrow p$. Moreover, each $\ell_{p+} \subseteq \mathbb{C}^{\mathbb{N}}$ (with a continuous inclusion) is a reflexive, quasinormable, non-Montel, countably normed Fréchet space which is solid in $\mathbb{C}^{\mathbb{N}}$ and contains no isomorphic copy of any infinite dimensional Banach space, [9], [18]. Clearly, for each $1 the Banach space <math>\ell_p \subseteq \ell_{p+}$ continuously and with a proper inclusion. Since C_p is continuous for each 1 (with operator norm <math>p' where $\frac{1}{p} + \frac{1}{p'} = 1$, [15, Theorem 326]), it follows that $C : \ell_{p+} \longrightarrow \ell_{p+}$ is also continuous, [3, Section 2]. The natural question is: To what extent do the properties and interrelations between the Banach spaces ℓ_p and $ces(p), 1 , alluded to above reflect themselves in the connections between the corresponding Fréchet spaces <math>\ell_{p+}$ and $ces(p+) := \bigcap_{q>p} ces(q)$ which they generate? Although the Fréchet spaces $\ell_{p+1}, 1 \leq p < \infty$, are well understood (see eg. [1], [9], [10], [18], [19] and the references therein), it seems that the Fréchet spaces $ces(p+), 1 \leq p < \infty$, which are equipped with the *lattice norms*

$$x \mapsto \|x\|_{ces(p_k)}, \quad x \in ces(p+), \quad k \in \mathbb{N},$$

for any sequence $p < p_{k+1} < p_k$ satisfying $\lim_{k\to\infty} p_k = p$ (i.e., $ces(p+) = proj_k ces(p_k)$), have not been considered at all. The aim of this note is to make a detailed study of these spaces and to expose some of their striking features. Let us describe some sample results.

First, just like for $C_p: \ell_p \longrightarrow \ell_p$, for 1 , the Cesàro operator $C_{p+}: \ell_{p+} \longrightarrow \ell_{p+}$, for $1 \leq p < \infty$, is also a *positive* operator, albeit now between Fréchet lattices. It turns out that the *largest* of all those solid Fréchet lattices in $\mathbb{C}^{\mathbb{N}}$ which contain ℓ_{p+} and C maps into ℓ_{p+} (necessarily continuously) is precisely ces(p+); see Proposition 2.5. Although each Fréchet space ℓ_{p+} , for $1 \leq p < \infty$, fails to have the property (1.3) of Proposition 1.1 (with ℓ_{p+} in place of ces(p)), the space ces(p+) that it generates in the above sense *does* have this remarkable property; see Propositions 2.2 and 2.4. A further contrast to ℓ_{p+} is that each $ces(p+), 1 \leq p < \infty$, is a Fréchet-Schwartz space (but, not nuclear) and the canonical vectors $\{e_k : k \in \mathbb{N}\}$ form an unconditional basis (cf. Proposition 3.5). In particular, ces(p+)cannot be isomorphic to any of the non-Montel spaces ℓ_{q+} , $1 \leq q < \infty$. Since, for $p \neq q$, the spaces ℓ_{p+} and ℓ_{q+} are also not isomorphic (cf. Proposition 3.3), it is rather surprising that ces(p+) and ces(q+) are isomorphic Fréchet spaces for all pairs $1 \leq p, q < \infty$. These results are obtained as a consequence of the main result of this paper showing, remarkably, that ces(p+) coincides with the power series space of order one and finite type $\Lambda_{-1/p'}(\alpha)$ with $\alpha := (\log(k))_{k \in \mathbb{N}}$; see Theorem 3.1. Accordingly, all these spaces are diagonally isomorphic. We mention two further consequences. The Fréchet spaces ℓ_{p+} , for $1 \leq p < \infty$, all fail to be (FBa)-spaces, [19], whereas every Fréchet space ces(p+) is an (FBa)-space, since it is a Köthe echelon space of order one; see Proposition 4.1. It is known that ℓ_{p+} has the property that every ℓ_{p+} -valued vector measure has relatively compact range if and only if $1 \le p < 2$. This property also holds for ces(p+), but for every $1 \leq p < \infty$.

2. Optimal solid lattice properties of ces(p+)

We begin by noting, for each $1 \le p < \infty$, that ces(p+) is reflexive, [17, Proposition 25.15], since each Banach space ces(q), q > p, is reflexive, [6, p.61].

Lemma 2.1. For each $1 \leq p < \infty$, the space ces(p+) is a solid Fréchet lattice subspace of $\mathbb{C}^{\mathbb{N}}$ and $\ell_{p+} \subseteq ces(p+)$ with a continuous and proper inclusion.

Proof. Clearly ces(p+) is a solid Fréchet lattice subspace of $\mathbb{C}^{\mathbb{N}}$. Since $\ell_q \subseteq ces(q)$ with a continuous inclusion for each q > p > 1, it follows that $\ell_{p+} \subseteq ces(p+)$ continuously.

Fix $1 . By [8, Remark 2.2(ii)] there exists <math>x \in ces(p) \setminus \ell_{\infty}$. Since $ces(p) \subseteq ces(p+)$ and $\ell_{p+} \subseteq \ell_{\infty}$, it follows that $x \in ces(p+) \setminus \ell_{p+}$.

For p = 1 we know that $\ell_{1+} \subseteq ces(1+)$. If this containment was an equality, then the open mapping theorem for Fréchet spaces, [17, Theorem 24.30], implies that the identity map from ℓ_{1+} onto ces(1+) is an isomorphism. This is impossible as ℓ_{1+} is non-Montel whereas ces(1+) is Montel (see Proposition 3.5(ii) below). So, $\ell_{1+} \subsetneq ces(1+)$.

The following observation is a direct consequence of the striking property of ces(q), $1 , exhibited in Proposition 1.1 and the definition of <math>ces(p+) = \bigcap_{q>p} ces(q)$.

Proposition 2.2. Let $1 \leq p < \infty$ and $x \in \mathbb{C}^{\mathbb{N}}$. Then

 $x \in ces(p+)$ if and only if $C(|x|) \in ces(p+)$. (2.1)

We will require the following fact.

Lemma 2.3. For each $1 \le p < \infty$, the Cesàro operator $C : ces(p+) \longrightarrow \ell_{p+}$ is continuous.

Proof. Fix $1 \le p < \infty$. If $x \in ces(p+)$, then $|x| \in ces(q)$ for all q > p and so $\mathsf{C}(|x|) \in \ell_q$ for all q > p. This is because $\mathsf{C} : ces(q) \longrightarrow \ell_q$ is continuous as

 $\|\mathsf{C}(x)\|_q = \|\,|\mathsf{C}(x)|\,\|_q \le \|\mathsf{C}(|x|)\|_q = \|x\|_{ces(q)}, \quad x \in ces(q).$

Hence, $C(|x|) \in \ell_{p+}$. This shows that C maps ces(p+) into ℓ_{p+} , necessarily continuously by the closed graph theorem for Fréchet spaces, [17, Theorem 24.31].

The next result, in combination with Proposition 2.2, shows that $ces(p+), 1 \le p < \infty$, exhibits a very desirable property which ℓ_{p+} fails to possess.

Proposition 2.4. For each $1 \le p < \infty$, the Fréchet space ℓ_{p+} fails to have the property (2.1) in Proposition 2.2 (with ℓ_{p+} in place of ces(p+)).

Proof. Fix $1 \leq p < \infty$. Assume that ℓ_{p+} does have the property (2.1) in Proposition 2.2. By Lemma 2.1 there exists $x \in ces(p+) \setminus \ell_{p+}$. Hence, also $|x| \in ces(p+) \setminus \ell_{p+}$. Then Lemma 2.3 implies that $C(|x|) \in \ell_{p+}$ and hence, by the assumption on ℓ_{p+} , also $|x| \in \ell_{p+}$; contradiction. So, ℓ_{p+} fails the property.

The following result should be compared with its Banach lattice counterpart, [8, p.62].

Proposition 2.5. The space ces(p+), $1 \leq p < \infty$, is the largest solid Fréchet lattice X in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_{p+} such that $\mathsf{C}(X) \subseteq \ell_{p+}$.

Proof. Let $[\mathsf{C}, \ell_{p+}]_s$ denote the largest solid Fréchet lattice X in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_{p+} such that $\mathsf{C}(X) \subseteq \ell_{p+}$. Since $\mathsf{C}(ces(p+)) \subseteq \ell_{p+}$ (cf. Lemma 2.3), it follows that ces(p+) itself is a solid Fréchet lattice which contains ℓ_{p+} such that $\mathsf{C}(ces(p+)) \subseteq \ell_{p+}$. Accordingly, $ces(p+) \subseteq [\mathsf{C}, \ell_{p+}]_s$.

Let X be any solid Fréchet lattice in $\mathbb{C}^{\mathbb{N}}$ which contains ℓ_{p+} such that $C(X) \subseteq \ell_{p+}$. Given $x \in X$ also $|x| \in X$ and hence, $C(|x|) \in \ell_{p+} \subseteq ces(p+)$. Proposition 2.2 implies that $x \in ces(p+)$. Accordingly, $X \subseteq ces(p+)$. This implies that $[C, \ell_{p+}]_s \subseteq ces(p+)$.

Since $\ell_{p+} \subseteq ces(p+)$ continuously (cf. Lemma 2.1), in addition to C : $\ell_{p+} \longrightarrow \ell_{p+}$ one may also consider the positive Cesàro operator C : $ces(p+) \longrightarrow$ ces(p+). Even though the target space ces(p+) is now genuinely larger than ℓ_{p+} (cf. Lemma 2.1), no further solid extension occurs!

Proposition 2.6. The space ces(p+), $1 \le p < \infty$, is also the largest solid Fréchet lattice X in $\mathbb{C}^{\mathbb{N}}$ which contains ces(p+) such that $\mathsf{C}(X) \subseteq ces(p+)$.

Proof. Denote by $[\mathsf{C}, ces(p+)]_s$ the largest solid Fréchet lattice X in $\mathbb{C}^{\mathbb{N}}$ which contains ces(p+) such that $\mathsf{C}(X) \subseteq ces(p+)$. Clearly $ces(p+) \subseteq [\mathsf{C}, ces(p+)]_s$ because $\mathsf{C}(ces(p+)) \subseteq \ell_{p+} \subseteq ces(p+)$; see Lemma 2.3.

Let X be any solid Fréchet lattice in $\mathbb{C}^{\mathbb{N}}$ which contains ces(p+) such that $C(X) \subseteq ces(p+)$. Given $x \in X$ also $|x| \in X$. Hence, $C(|x|) \in ces(p+)$. By Proposition 2.2, $x \in ces(p+)$. So, $X \subseteq ces(p+)$. This implies $[\mathsf{C}, ces(p+)]_s \subseteq ces(p+)$.

For the Banach lattice counterpart of Proposition 2.6 see [8, Theorem 2.5].

3. ces(p+) as a power series space of finite type and order 1

A power series Fréchet space of finite type $r \in \mathbb{R}$ and order 1 is defined, for any given strictly increasing sequence $\alpha = (\alpha_k)_k \subseteq (0, \infty)$ satisfying $\lim_{k\to\infty} \alpha_k = \infty$, by

$$\Lambda_r(\alpha) := \{ x \in \mathbb{C}^{\mathbb{N}} : |||x|||_t := \sum_{k=1}^{\infty} |x_k| e^{t\alpha_k} < \infty, \quad \forall t < r \};$$

see [17, Ch.29], also for the definition of the norms generating the Fréchet topology of $\Lambda_r(\alpha)$.

Our main result is rather remarkable and surprising. We require the following inequality

$$\frac{A_p}{k^{1/p'}} \le \|e_k\|_{ces(p)} \le \frac{B_p}{k^{1/p'}}, \quad k \in \mathbb{N},$$
(3.1)

valid for strictly positive constants A_p, B_p and with $\frac{1}{p} + \frac{1}{p'} = 1$, [6, Lemma 4.7], where $e_k := (\delta_{k,n})_n$ for each $k \in \mathbb{N}$.

Theorem 3.1. The Fréchet space ces(p+), $1 \le p < \infty$, is isomorphic to the power series space $\Lambda_{-1/p'}(\alpha)$, $\frac{1}{p} + \frac{1}{p'} = 1$, of finite type -1/p' and order 1, where $\alpha = (\log k)_k$.

Proof. Fix $1 \leq p < \infty$. Observe that

$$\Lambda_{-1/p'}((\log k)_k) = \{ x \in \mathbb{C}^{\mathbb{N}} : ||x||_t = \sum_{j=1}^{\infty} |x_j| j^t \text{ for all } t < -1/p' \}.$$

Let $1 < q < \infty$. For $x \in ces(q)$ we have

$$||x - \sum_{j=1}^{m} x_j e_j||_{ces(q)} \le \left(\sum_{n=m+1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|\right)^q\right)^{1/q} \to 0, \text{ as } m \to \infty.$$

Therefore $(e_k)_k$ are a basis of ces(q) for $1 < q < \infty$, [8, Proposition 2.1], hence, also of ces(p+) for each $1 \leq p < \infty$. Consequently, via (3.1) we have, with $\frac{1}{q} + \frac{1}{q'} = 1$, that

$$||x||_{ces(q)} \le \sum_{j=1}^{\infty} |x_j| \cdot ||e_j||_{ces(q)} \le B_q \sum_{j=1}^{\infty} |x_j| j^{-\frac{1}{q'}}.$$

By [6, Lemma 4.7], for each $\beta > 0$ we have

$$\frac{1}{\beta}\frac{1}{j^{\beta}} \le \sum_{n=j}^{\infty} \frac{1}{n^{1+\beta}}, \quad j \in \mathbb{N}.$$
(3.2)

Let $p < q < \infty$. Given p < s < q it is clear that $y := (n^{-\frac{1}{q'}})_n \in \ell_{s'}$. So we can apply (3.2) with $\beta = \frac{1}{q'}$ and Hölder's inequality to get

$$q' \sum_{j=1}^{\infty} |x_j| j^{-\frac{1}{q'}} \le \sum_{j=1}^{\infty} |x_j| \sum_{n=j}^{\infty} \frac{1}{n} n^{-\frac{1}{q'}} =$$
$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{j=1}^{n} |x_j|\right) n^{-\frac{1}{q'}} \le ||y||_{s'} ||x||_{ces(s)}.$$

This proves the result.

Corollary 3.2. Each of the Fréchet spaces ces(p+), for $1 \leq p < \infty$, is isomorphic to the power series space $\Lambda_0(\alpha)$ of finite type 0 and order 1, where $\alpha = (\log k)_k$.

Proof. This follows directly from the fact that all finite type power series spaces $\Lambda_r(\alpha)$, with α fixed, are diagonally isomorphic; see [17], page 358, lines 1-5.

In view of Corollary 3.2 the following observation is relevant.

Proposition 3.3. For every distinct pair $1 \le p, q < \infty$ the Fréchet spaces ℓ_{p+} and ℓ_{q+} are not isomorphic.

Proof. We may assume that p < q. Suppose that there exists an isomorphism $T : \ell_{q+} \longrightarrow \ell_{p+}$. Since the natural inclusion $\ell_q \subseteq \ell_{q+}$ is continuous, the restricted operator $T|_{\ell_q} : \ell_q \longrightarrow \ell_{p+}$ is continuous. Consequently, since the inclusion $\ell_{p+} \subseteq \ell_r$ is continuous for each r > p, it follows that $T|_{\ell_q} : \ell_q \longrightarrow \ell_r$ is continuous for each $r \in (p,q)$. By Pitt's theorem, [20], $T : \ell_q \longrightarrow \ell_r$ is compact (we denote $T|_{\ell_q}$ simply by T again as no confusion can occur). Choose now any $r \in (p,q)$. Since $\{e_j\}_{j=1}^{\infty}$ is a bounded set in ℓ_q and $T : \ell_q \longrightarrow \ell_r$ is compact, the image $\{T(e_j)\}_{j=1}^{\infty}$ is a relatively compact subset of ℓ_r . Consequently, as $\ell_{p+} = \bigcap_{p < r < q} \ell_r = \operatorname{proj}_{p < r < q} \ell_r$, it follows that $\{T(e_j)\}_{j=1}^{\infty}$ is also a relatively compact subset of ℓ_{p+} . Hence, there exists $y \in \ell_{p+}$ and a subsequence $\{T(e_{j(k)})\}_{k=1}^{\infty}$ of $\{T(e_j)\}_{j=1}^{\infty}$ such

that $T(e_{j(k)}) \longrightarrow y$ in ℓ_{p+} for $k \longrightarrow \infty$. By continuity of the inverse operator $T^{-1}: \ell_{p+} \longrightarrow \ell_{q+}$ it follows that $e_{j(k)} \longrightarrow T^{-1}(y)$ in ℓ_{q+} . Choose any s > q, in which case $\ell_{q+} \subseteq \ell_s$ continuously, then also $e_{j(k)} \longrightarrow T^{-1}(y)$ in the Banach space ℓ_s . This is impossible as $||e_{j(k)} - e_{j(l)}||_{\ell_s} = 2^{1/s} \ge 1$ for all $k \ne l$. Hence, no such isomorphism T of ℓ_{q+} onto ℓ_{p+} can exist. \Box

Remark 3.4. For each pair $1 \le p < q < \infty$ it is clear that

$$ces(p+) \subseteq ces(q+).$$
 (3.3)

Even though ces(p+) and ces(q+) are isomorphic as Fréchet spaces (cf. Corollary 3.2), the containment (3.3) is *proper*. Indeed, if it were an equality, then for any fixed $r \in (p,q)$ it would follow from the (continuous) inclusions $ces(p+) \subseteq ces(r) \subseteq ces(q) \subseteq ces(q+)$ that ces(r) = ces(q). Consequently, the Banach spaces ces(r) and ces(q) would be isomorphic (with r < q) which is not the case, [4, Proposition 3.3].

We now collect some further consequences of Theorem 3.1.

Proposition 3.5. For each $1 \le p < \infty$ the following assertions hold.

- (i) The Fréchet space ces(p+) is a Köthe echelon space of order 1 and the canonical vectors (e_j)_{j∈N} form an unconditional basis of ces(p+).
- (ii) ces(p+) is a Fréchet-Schwartz space but, it is not nuclear.
- (iii) ces(p+) is not isomorphic to ℓ_{q+} for each $1 \leq q < \infty$.

Proof. (i) The space ces(p+) is a Köthe echelon space of order 1 (by Theorem 3.1). The canonical vectors are an unconditional basis for every Köthe echelon space of order 1. Even stronger, they form an absolute basis, [16, pp.314–315].

(ii) Every power series space is Schwartz by [17, Proposition 27.10]. The non-nuclearity of $ces(p+) = \Lambda_{-1/p'}(\alpha)$, $\alpha = (\log k)_k$ is a direct consequence of Corollary 3.2 and [17, Proposition 29.6 (2)].

(iii) The space ℓ_{q+} is not Montel for each $1 \leq q < \infty$, [18], and hence, it cannot be isomorphic to ces(p+), [17, Lemma 24.19].

Definition 3.6. Let X be a Fréchet space whose topology is generated by a fundamental sequence $(\|\cdot\|_n)_{n\in\mathbb{N}}$ of seminorms. The space X has the property $(\overline{\Omega})$ if: $\forall l \in \mathbb{N}, c \in (0, 1) \exists k > l, \forall h > k, \exists C > 0$:

$$\|y\|_{k}^{\prime 1+c} \le C \|y\|_{h}^{\prime} \|y\|_{l}^{\prime c}, \quad \forall \ y \in X^{\prime},$$

where $||y||_k := \sup\{|\langle x, y \rangle| : ||x||_k \le 1\}$ is the dual norm $||\cdot||_k$ of $||\cdot||_k$ in X'.

It is a consequence of [17, Lemma 29.16] that the condition in Definition 3.6 coincides with property $(\overline{\Omega})$.

Every space ℓ_{p+} , for $1 \leq p < \infty$, satisfies property $(\overline{\Omega})$, [18, proof of Proposition 2.4]. Since all power series spaces of finite type have property $(\overline{\Omega})$, [17, Proposition 29.12], we deduce the following result.

Proposition 3.7. For each $1 \leq p < \infty$ the Fréchet space ces(p+) has property $(\overline{\Omega})$.

A. A. Albanese, J. Bonet and W. J. Ricker

4. Further properties of ces(p+)

According to Taskinen, [23], a Fréchet space X is called an (FBa)-space if, for every Banach space Y, every bounded subset of the complete projective tensor product $X \otimes Y$ is contained in the closed convex hull $\overline{\operatorname{co}(C \otimes D)}$ of bounded sets $C \subseteq X$ and $D \subseteq Y$. In 1986 Taskinen constructed Fréchet spaces which are not (FBa)-spaces, thereby solving the "problem of topologies of Grothendieck", [22]. Peris proved that the Fréchet spaces ℓ_{p+} , for $1 \leq p < \infty$, are not (FBa) spaces, thus providing a natural and concrete class of spaces of this type, [19].

Proposition 4.1. Each Fréchet space ces(p+), for $1 \leq p < \infty$, is an (FBa)-space.

Proof. Each space $ces(p+), 1 \leq p < \infty$, is isomorphic to a Köthe echelon space of order 1 (cf. Proposition 3.5 (i)). Hence, it is necessarily an (FBa)-space, [14, p.70], [22, Section 3].

Now we consider some features of ces(p+) of a somewhat different nature. First, ces(p+) is the complexification of the corresponding real Riesz space $ces_{\mathbb{R}}(p+) := \{x \in ces(p+) : x = (x_n)_n \in \mathbb{R}^N\}$, in the sense of [26, pp.187–201]. Since $ces_{\mathbb{R}}(p+)$ is solid in \mathbb{R}^N it follows that $ces_{\mathbb{R}}(p+)$ is *Dedekind* complete (i.e., every subset of $ces_{\mathbb{R}}(p+)$ which is bounded from above in the order has a least upper bound) and hence, (per definition) also its complexification ces(p+) is Dedekind complete. Moreover, being reflexive, each of the (separable) Fréchet lattices $ces(p+), 1 \leq p < \infty$, has a *Lebesgue* topology, [2, Theorems 10.3 and 10.9], that is, if $x^{(\alpha)} \downarrow 0$ is a decreasing net in the order of ces(p+), then $\lim_{\alpha} x^{(\alpha)} = 0$ in the topology of ces(p+).

For every $1 \leq p < \infty$, the Fréchet space ℓ_{p+} has the property that every ℓ_{p+} -valued vector measure (always assumed to be countably additive and defined on a σ -algebra) has relatively compact range if and only if $p \in [1, 2)$, [7, Proposition 2.8]. Once again the optimal solid extension ces(p+) of ℓ_{p+} exhibits better behaviour in this regard.

Proposition 4.2. Let $p \in [1, \infty)$. Then every ces(p+)-valued vector measure necessarily has relatively compact range.

Proof. The range of every ces(p+)-valued vector measure is a relatively weakly compact set, [24], and hence, is also relatively compact as ces(p+) is a Fréchet-Montel space (by Proposition 3.5(ii)).

Since $ces(p+), 1 \leq p < \infty$, is not nuclear (cf. Proposition 3.5(ii)), there exist ces(p+)-valued vector measures which *fail* to have finite variation, [11, Corollary and Theorem 2].

A Fréchet space X is said to have the Rybakov property, [12], if for every X-valued vector measure ν there exists $x' \in X'$ such that $\nu \ll |\langle \nu, x' \rangle|$ (i.e., $\nu(F) = 0$ for every measurable set $F \subseteq E$ whenever $|\langle \nu, x' \rangle|(E) = 0$). Here $\langle \nu, x' \rangle$ is the complex measure $E \longmapsto \langle \nu(E), x' \rangle$ and $|\langle \nu, x' \rangle|$ denotes its total

variation measure. A Fréchet space X has Rybakov's property if and only if it admits a continuous norm; see [12, Theorem 2.2] for real spaces and [21, Proposition 2.2] for complex spaces. Since both ℓ_{p+} and ces(p+) admit a continuous norm, we have the following fact.

Proposition 4.3. For each $1 \le p < \infty$ the Fréchet spaces ℓ_{p+} and ces(p+) have the Rybakov property.

A classical result of Bade, [5, Theorem 3.1], states: Given a σ -complete Boolean of projections \mathcal{M} in a Banach space X, for each $x_0 \in X$ there exists $x' \in X'$ (called a Bade functional for x_0 with respect to \mathcal{M}) satisfying

- (i) $\langle P(x_0), x' \rangle \ge 0$ for all $P \in \mathcal{M}$, and
- (ii) if $\langle P(x_0), x' \rangle = 0$ for some $P \in \mathcal{M}$, then $P(x_0) = 0$.

A Fréchet space X is said to have the *Bade property*, [21], if every σ -complete Boolean algebra of projections \mathcal{M} in X satisfies (i), (ii) above (for every $x_0 \in X$). This is the case if and only if X admits a continuous norm, [21, Corollary 2.1], which yields the following result.

Proposition 4.4. For each $1 \le p < \infty$ the Fréchet spaces ℓ_{p+} and ces(p+) have the Bade property.

Our final result presents a description of the dual of ces(p+).

Recall that the Köthe dual X^{\times} (or the associate space) of a Banach sequence space $(X, \|\cdot\|_X)$, with $\varphi \subseteq X \subseteq \mathbb{C}^{\mathbb{N}}$, is defined by

$$X^{\times} := \left\{ x \in \mathbb{C}^{\mathbb{N}} \colon \sum_{k=1}^{\infty} |x_k y_k| < \infty, \ \forall y \in X \right\},\$$

endowed with the norm

$$||x||_{X^{\times}} := \sup\left\{\sum_{k=1}^{\infty} |x_k y_k| : ||y||_X \le 1\right\},$$

[17, Ch.27]. Here φ is the subspace of $\mathbb{C}^{\mathbb{N}}$ consisting of those vectors having finite support. Every $v \in X^{\times}$ defines an element of the dual Banach space X' of $(X, ||.||_X)$ via $u \to \sum_{n=1}^{\infty} u_n v_n$ for $u \in X$, and $||v||_{X^{\times}} = ||v||_{X'}$. For $1 < q < \infty$ and $\frac{1}{q} + \frac{1}{q'} = 1$, the space d(q') is defined as

$$d(q') := \left\{ x \in \mathbb{C}^{\mathbb{N}} \colon \sum_{n=1}^{\infty} \sup_{k \ge n} (|x_k|^{q'}) < \infty \right\},\$$

which is a Banach space when endowed with the norm

$$||x||_{d(q')} := \left(\sum_{n=1}^{\infty} \sup_{k \ge n} (|x_k|^{q'})\right)^{1/q'}, \quad x \in d(q').$$

Observe that

$$x \in d(q')$$
 if and only if $\widehat{x} := (\sup_{k \ge n} |x_k|)_{n \in \mathbb{N}} \in \ell_{q'}$ (4.1)

and that

$$||x||_{d(q')} = ||\widehat{x}||_{\ell_{q'}};$$

see [6, p.3 & p.9]. We will require the following result of Bennett [6, p.61 & Corollary 12.17].

Lemma 4.5. Let $1 < q < \infty$ and $\frac{1}{q} + \frac{1}{q'} = 1$. The map Φ_q : $(ces(q))' \to d(q')$ defined by $\Phi_q(f) := (\langle e_j, f \rangle)_{j \in \mathbb{N}}$, for $f \in (ces(q))'$, is a linear isomorphism of the dual Banach space (ces(q))' onto the Banach space d(p') and

$$\frac{1}{q'} \|\Phi_q(f)\|_{d(q')} \le \|f\|_{(ces(q))'} \le (q-1)^{1/q} \|\Phi_q(f)\|_{d(q')}, \quad f \in (ces(q))'.$$

Moreover, $(ces(q))^{\times} = d(q')$ and $(d(q'))^{\times} = ces(q)$, with equivalent norms.

Fix $1 \leq p < \infty$ and any sequence $p < p_{n+1} < p_n$ for $n \in \mathbb{N}$ satisfying $\lim_{n\to\infty} p_n = p$. Then $p'_n < p'_{n+1} < p'$ for $n \in \mathbb{N}$. Since $||x||_{d(r)} = ||\hat{x}||_{\ell_r}$ for all $x \in d(r)$ and any $1 < r < \infty$, it follows that $d(p'_n) \subseteq d(p'_{n+1})$ with a continuous inclusion for each $n \in \mathbb{N}$. We endow the vector space $d(p'-) := \bigcup_{n \in \mathbb{N}} d(p'_n)$, which is an increasing union, with the inductive limit topology, i.e., $d(p'-) := \operatorname{ind}_n d(p'_n)$, [17, Ch.24].

Proposition 4.6. Let $1 \leq p < \infty$. The map $\Lambda : (ces(p+))' \to d(p'-)$ given by $\Lambda(f) := (\langle e_j, f \rangle)_{j \in \mathbb{N}}$, for $f \in (ces(p+))'$, defines a linear bijection which is a topological isomorphism of the strong dual space $(ces(p+))'_{\beta}$ onto $d(p'-) = \operatorname{ind}_n d(p'_n)$.

Proof. First observe that φ is dense in the Fréchet space ces(p+) as it is dense in each Banach space ces(q) for q > p.

Fix $u \in (ces(p+))'$. Select $n \in \mathbb{N}$ and a constant K > 0 such that

 $|\langle x, u \rangle| \le K ||x||_{ces(p_n)}, \quad x \in ces(p+).$

So, there exists a unique $\tilde{u} \in (ces(p_n))'$ whose restriction to $ces(p+) \subseteq ces(p_n)$ coincides with u. By Lemma 4.5 the element $(\langle e_j, u \rangle)_{j \in \mathbb{N}} = (\langle e_j, \tilde{u} \rangle)_{j \in \mathbb{N}}$ belongs to $d(p'_n) \subseteq d(p'-)$.

The previous argument implies that Λ is well defined. It is clearly linear. Moreover, Λ is injective by the density of $\varphi = \operatorname{span}\{e_j : j \in \mathbb{N}\}$ in $\operatorname{ces}(p+)$. To show that Λ is also surjective let $y = (y_j)_{j \in \mathbb{N}} \in d(p'-)$. Then there exists $m \in \mathbb{N}$ such that $y \in d(p'_m)$. Via Lemma 4.5 we can find $f \in (\operatorname{ces}(p_m))'$ with $y = (\langle e_j, f \rangle)_{j \in \mathbb{N}}$. Then the restriction v of f to $\operatorname{ces}(p+)$ belongs to $(\operatorname{ces}(p+))'$ and $\Lambda(v) = y$.

Define the injection $J_n: (ces(p_n))' \to (ces(p+))'$, for $n \in \mathbb{N}$, by setting $J_n(f)$ to be the restriction of $f \in (ces(p_n))'$ to ces(p+). By the earlier part of the proof $(ces(p+))' = \bigcup_{n \in \mathbb{N}} J_n((ces(p_n))')$ and so we may consider in (ces(p+))' the inductive limit topology ind $_n(ces(p_n))'$. Since ces(p+) is reflexive, its strong dual $(ces(p+))'_{\beta}$ coincides with ind $_n(ces(p_n))'$.

10

By Lemma 4.5, for each $n \in \mathbb{N}$ the restriction Λ_{p_n} of Λ to $(ces(p_n))'$ is continuous from $(ces(p_n))'$ onto $d(p'_n)$. This implies that $\Lambda : (ces(p+))'_{\beta} \rightarrow$ ind $_n d(p'_n)$ is a continuous bijection. By the closed graph theorem for (LB)spaces, [17, Theorem 24.31 & Remark 24.36], Λ is also a topological isomorphism. \Box

Acknowledgements. The authors thank the referee for a considerable simplification of some proofs in Section 3.

The research of the first two authors was partially supported by the project MTM2016-76647-P (Spain). The second author thanks the Mathematics Department of the Katholische Universität Eichstätt-Ingolstadt (Germany) for its support and hospitality during his research visit in the period September 2016 - July 2017.

References

- T. Abdeljawad, M. Yurdakul, The property of smallness up to a complemented Banach subspace, Publ. Math. Debrecen 64 (2004), no. 3-4, 415-425.
- [2] C.D. Aliprantis, O. Burkinshaw, *Locally Solid Riesz Spaces*, Academic Press, New York San Francisco, 1978.
- [3] A.A. Albanese, J. Bonet, W.J. Ricker, The Cesàro operator in the Fréchet spaces ℓ^{p+} and L^{p−}, Glasgow Math. J. 59 (2017), 273–287.
- [4] A.A. Albanese, J. Bonet, W.J. Ricker, Multiplier and averaging operators in the Banach spaces ces(p), 1 , Preprint 2017.
- [5] W.G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345-360.
- [6] G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 120 (1996), no 576, viii + 130 pp.
- J. Bonet, W.J. Ricker, The canonical spectral measure in Köthe echelon spaces, Integral Equations Operator Theory, 53 (2005), 477-496.
- [8] G.P. Curbera, W.J. Ricker, Solid extensions of the Cesàro operator on ℓ^p and c_0 , Integral Equations Operator Theory **80** (2014), 61–77.
- [9] J.-C. Díaz, An example of a Fréchet space, not Montel, without infinite-dimensional normable subspaces, Proc. Amer. Math. Soc. 96 (1986), 721.
- [10] M.M. Dragilev, P.A. Chalov, On Fréchet spaces with an unconditional basis (Russian. Russian summary), Mat. Zametki 80 (2006), no. 1, 29–32; translation in Math. Notes 80 (2006), no. 1-2, 27–30.
- [11] M. Duchoň, Vector measures and nuclearity, Math. Slovaca, 38 (1988), 79-83.
- [12] A. Fernández, F. Naranjo, Rybakov's theorem for vector measures in Fréchet spaces, Indag. Math. (N.S.), 8 (1997), 33-42.
- [13] K.-G. Grosse-Erdmann, The Blocking Technique, Weighted Mean Operators and Hardy's Inequality, Lecture Notes in Mathematics, 1679, Springer Verlag, Berlin Heidelberg, 1998.
- [14] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- [15] G.H. Hardy, J.E. Littlewood, G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, reprinted, 1964.
- [16] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981.

- [17] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford, 1997.
- [18] G. Metafune, V.B. Moscatelli, On the space $\ell^{p+} = \bigcap_{q>p} \ell^q$, Math. Nachr. 147 (1990), 7–12.
- [19] A. Peris, Quasinormable spaces and the problem of topologies of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. 19 (1994), 167–203.
- [20] H.R. Pitt, A note on bilinear forms, J. London Math. Soc. 11 (1936), 171-174.
- [21] W.J. Ricker, Existence of Bade functionals for complete Boolean algebras of projections in Fréchet spaces, Proc. Amer. Math. Soc. 125 (1997), 2401–2407.
- [22] J. Taskinen, Counterexamples to "Problème des topologies" of Grothendieck, Ann. Acad. Sci. Fenn. Ser. A I Math. Diss. 63 (1986).
- [23] J. Taskinen, (FBa) and (FBB)-spaces, Math. Z. 198 (1988), 339–365.
- [24] I. Tweddle, Weak compactness in locally convex spaces, Glasgow Math. J. 9 (1968), 123-127.
- [25] D. Vogt, Some results on continuous linear maps between Fréchet spaces, Functional Analysis: Survey and Recent Results (eds. K.D. Bierstedt and B. Fuchssteiner), North-Holland Math. Stud. 90 (1984), 349–381.
- [26] A.C. Zaanen, Riesz Spaces II, North Holland, Amsterdam, 1983.

ANGELA A. ALBANESE, DIPARTIMENTO DI MATEMATICA E FISICA "E. DE GIORGI", UNIVERSITÀ DEL SALENTO- C.P.193, I-73100 LECCE, ITALY *E-mail address*: angela.albanese@unisalento.it

JOSÉ BONET, INSTITUTO UNIVERSITARIO DE MATEMÁTICA PURA Y APLICADA IUMPA, UNIVERSITAT POLITÈCNICA DE VALÈNCIA, E-46071 VALENCIA, SPAIN *E-mail address*: jbonet@mat.upv.es

WERNER J. RICKER, MATH.-GEOGR. FAKULTÄT, KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT, D-85072 EICHSTÄTT, GERMANY

E-mail address: werner.ricker@ku-eichstaett.de