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Abstract 

Deep Learning is currently used for numerous Artificial Intelligence applications, 

especially in the computer vision field for image classification and recognition tasks. 

Thanks to the increasing popularity, several tools have been created to take advantage of 

the potential benefits of this new technology. Although there is already a wide range of 

available benchmarks which offer evaluations of hardware architectures and Deep Learn-

ing software tools, these projects do not usually deal with specific performance aspects 

and they do not consider a complete set of popular models and datasets at the same time. 

Moreover, valuable metrics, such as GPU memory and power usage, are not typically 

measured and efficiently compared for a deeper analysis. 

This report aims to provide a complete and overall discussion about the recent pro-

gress of Deep Learning techniques, by evaluating various hardware platforms and by 

highlighting the key trends of the main Deep Learning frameworks. It will also review 

the most popular development tools that allow users to get started in this field and it will 

underline important benchmarking metrics and designs that should be used for the eval-

uation of the increasing number of Deep Learning projects. Furthermore, the data ob-

tained by the comparison and the testing results will be shown in this work in order to 

assess the performance of the Deep Learning environments examined. 

The reader will also deepen the following points in the next pages: a general Deep 

Learning study to acquire the main state-of-the-art concepts of the subject; an attentive 

examination of benchmarking methods and standards for the evaluation of intelligent en-

vironments; the personal approach and the related project realised to carry out experi-

ments and tests; interesting considerations extracted and discussed by the obtained results.  

Keywords: Deep Learning, Artificial Intelligence, Neural networks, Image Classifica-

tion, GPU, Performance, Benchmark, Caffe, TensorFlow, PyTorch, CNTK, MXNet
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CHAPTER 1 

Introduction 

1.1   Motivation 

Nowadays our world is surrounded by technology and all the devices we use in our 

daily life have started to act intelligently. Everywhere there is a big talk about artificial 

intelligence since many applications have been developed and surprise us every single 

day with new features and capabilities. Several domains, from medicine to automotive 

and going through gaming (just to remark few examples), are affected by this phenome-

non and it is logical to think that soon everything around us will be different but easier 

thanks to these improvements. 

In the last few years, brand-new artificial intelligence methods and techniques have 

been developed and some of them have become very popular and well known for the huge 

advancements made in image and speech recognition, for their simplicity and general 

usability among beginners in programming and even for their unlimited and boundless 

possibilities. The mentioned reasons are a stimulus to study accurately and to understand 

in depth this field of interest, by analysing the means, both hardware and software, that 

allow this sort of revolution and foreseeing the possible future scenarios. 

This motivation led me to discover the entire Artificial Intelligence methods and 

mostly one of its subareas, Deep Learning, which is considered one of the most fascinat-

ing topic in the entire Computer Science. It is no coincidence that Deep Learning related 

jobs are believed to be the most “attractive” among the companies and even universities 

carry out many researches in the field. So, gaining skills in this area can improve my 

professional possibilities in a very strong way, both in academia and industry. In addition, 

this opportunity of working with Deep Learning methods is meant to acquire a knowledge 

which was neither been taught in the previous studies nor personally known before this 

work. Certainly, the themes discussed require to be adequately proficient in Operating 

Systems (especially Linux) and have a basic knowledge of programming languages tech-

niques (especially Python) and the courses studied in the last two years have been helpful 

without any doubt. Moreover, critical analysis was fundamental to examine the problem 

of benchmarking and review the pre-existent benchmarks. 
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1.2   Objectives 

This work aims to provide valuable and useful data for comparing the performance 

of Deep Learning frameworks by using different hardware platforms. At the same time, 

a study of the technology and the interesting implications of the comparison will be car-

ried on in order to master the main aspects of the domain and, thus, elaborate a personal 

project for this evaluation. The main contribution is to make available innovative testing 

results as a reference for other users to select the framework to adopt and the hardware 

configuration to build according to their preferences and circumstances. Furthermore, the 

projected performance model offers a starting point for further optimizations in system 

design and configuration for future researches. 

However, there are already numerous available projects on the web which offer an 

assessment of hardware architectures and software frameworks related to Deep Learning. 

These existent works do not fully satisfy some requirements in terms of performance 

evaluation and they could seem to lack completeness and extensiveness on certain points 

of view since they do not take into consideration some metrics and parameters as much 

as they should. 

1.3   Structure of the report 

The proposed objectives will be pursued with an intended set of steps which follow 

the exact methodology used to carry out the whole work. 

In Chapter 2, an introduction to Artificial Intelligence, Machine Learning and above 

all Deep Learning (the main topic of this work) will be carried out, with special attention 

to the problem of image recognition. The chapter will review the state of the art of the 

technology as well as the most important concepts of this area by providing the relevant 

context, background and glossary to understand the entire discussion which will be de-

veloped in the later chapters. 

At that point, in Chapter 3, an analysis of the problem of benchmarking Deep Learn-

ing frameworks and hardware architectures will be provided: uppermost, a general over-

view will try to clarify all the possible variables, metrics and limitations of this activity 

in order to clearly understand the situation; afterwards, the pre-existing projects and so-

lutions will be identified and studied in depth by pointing out advantages and disad-

vantages; eventually, a brief proposal of work will be provided with reference to the pre-

vious explained points. 

After profiling the topic, in Chapter 4 the entire design and development of the 

personal benchmarking project will be fully and carefully described by illustrating the 

architecture and the technology, the software and the libraries, the models and the param-

eters and even the most relevant choices made in order to set the right values for a correct 
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evaluation. At the end of this section, the project structure and code implementation for 

the benchmark work will be also defined. 

Later, in Chapter 5, the data and the results will be shown through tables and graphs 

in a sequential and logical way; also, a brief discussion for each figure will be put along 

to help the reader to “extract” the most important ideas and facts from the numbers. The 

chapter will end with an overview of the experiments with final considerations and a short 

final section dedicated to validation and testing of the correctness of data. 

Finally, in Chapter 6, the conclusions of this work will be presented along with hints 

about how to extend it with future work. 
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CHAPTER 2 

State of the art of Deep Learning 

In this chapter, the principles and the basics of Deep Learning will be presented 

along with a brief introduction to the reference knowledge field, which includes the con-

cepts of Machine Learning and Artificial Intelligence. 

2.1   Artificial Intelligence 

It has been always a goal to allow computers to model our world in order to show 

a certain form of intelligence and to perform various human tasks. Artificial Intelligence, 

a branch of Computer Science, aims to create intelligent machines as humans are. Ac-

cording to John McCarthy, the computer scientist who coined the term in the 1950s, 

Artificial Intelligence is «the science and engineering of making intelligent machines, 

especially intelligent computer programs» [15] that have the ability to achieve goals like 

humans do. Artificial intelligence studies how the human brain works and how people 

learn and take decisions when they face a problem: then these paradigms are applied to 

the development of intelligent systems. 

The traditional problems of Artificial Intelligence include reasoning, knowledge 

representation, planning, learning, natural language processing, perception and it is a mat-

ter of fact that increasingly complex algorithms currently influence our lives and our civ-

ilization more than ever before. Artificial intelligence applications are everywhere and its 

possibilities are growing more and more thanks to recent improvements in computer tech-

nology: now some algorithms already surpass human abilities. 

For instance, in the twenty-first century, Artificial Intelligence techniques had a 

renaissance following concurrent advances in computational power and large amounts of 

data; now, Artificial Intelligence methods are crucial for technology industry and for com-

puter science as well. One of the most pervasive, attractive and potentially disruptive field 

of Artificial Intelligence which is growing more and more in the last few years is Machine 

Learning [26] 

2.2   Machine Learning 

Machine Learning, a subfield of Artificial Intelligence, was defined in 1959 by Ar-

thur Samuel as a «field of study that gives computers the ability to learn without being 

explicitly programmed» [23]: a program, once created, will be able to learn how to do 
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some intelligent task “on its own”, differently from the classic way of programming. This 

contrasts with all those programs whose behaviour is defined point by point, explicitly 

and statically defined. An approach based on efficient Machine Learning algorithms 

opens new possibilities and advantages as well. In fact, instead of creating a distinct and 

specific program to solve each individual problem in a domain, the single Machine Learn-

ing algorithm simply needs to learn, through a process called “training”, to handle each 

new task. 

A lot of researchers also think that this is the best way to make progress towards 

human level Artificial Intelligence and the increasing interest in this area has become 

more and more relevant. 

There are several techniques to design and specify parameters for Machine Learn-

ing algorithms, known technically as learning or training. 

The main learning techniques are: 

• unsupervised learning, that is based on the ability to find patterns in a stream of 

input; no labels or targets are given to the learning algorithm, leaving it on its own 

to find structure in its input dataset; 

• supervised learning, that includes both classification and numerical regression 

algorithms:  

o classification is used to determine which category something belongs in, 

after seeing numerous examples of things from several categories;  

o regression is the attempt to produce a function that describes the relation-

ship between inputs and outputs and predicts how the outputs should 

change as the inputs change; 

• semi-supervised learning, that is a mixture of the two above: the computer is 

given only an incomplete training set with several target outputs missing; 

• reinforcement learning, that is based on rewards and punishments: the agent is 

rewarded for good responses and punished for bad ones; the agent uses this se-

quence of rewards and punishments to form a strategy for operating in its problem 

space. 

Training is a compute intensive and supervised task: it deals with millions of pa-

rameters because it is about mathematical optimization of a cost function. It requires thou-

sands of steps to achieve a correct value for the parameters, where the forward pass (mak-

ing the computations starting from the data to the solution) and the backward pass (cal-

culating the derivative of the cost function regarding each parameter) must be executed. 

Moreover, during the initial steps, the number of free parameters (or weights) are not 

known and must be found, which means that several training jobs must be carried out 

finding the best model [29]. 
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2.3   Deep Learning 

2.3.1.   Basic concepts 

Among the different Machine Learning methods, there is an area that is often re-

ferred to as “brain-inspired computation”: creating a program which reproduces some 

aspects from the way the brain works.  

From a well-famous article,  

Deep Learning enables computational models, composed of multiple 

processing layers connected by each other, to learn representations of 

data with multiple levels of abstraction. These methods have dramati-

cally improved the state of the art in speech recognition, visual object 

recognition, object detection and also other domains and fields such as 

drug discovery and genomics. [2]  

Since the brain is currently the best “machine” we know for learning and solving 

problems, it seems logical to look at it for a Machine Learning approach. This contrasts 

with the attempt to create a brain, but rather the program aims to emulate how we under-

stand the brain to operate. Such systems, called Artificial Neural Networks, "learn" how 

to do tasks by examples, generally without task-specific programming. 

Figure 2.3.1.a - The relationship between Artificial Intelligence, Machine Learning, and Deep 

Learning [14] 
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Figure 2.3.1.a shows a simple scheme to illustrate the relations among Artificial 

Intelligence, Machine Learning and Deep Learning. 

In a sense, Artificial Neural Networks “learn by example” as do their biological 

counterparts. Artificial Neural Networks (ANNs) are computer programs designed to 

simulate the way in which the human brain works. An artificial neuron is composed of a 

set of weighted inputs, a transformation and an activation function. The connections of 

the biological neuron are modelled as weights and all inputs are modified by a weight and 

summed. The activation function would be the axon of a biological neuron, while the 

weighted inputs would be electrical impulses which move through the brain to transmit 

the signal to subsequent layers of neurons. The connections of the biological neuron are 

modelled as weights. In Figure 2.3.1.b, the structure of an Artificial neuron is shown. 

Figure 2.3.1.b – Artificial neuron structure and composition [25]

An ANN is formed from hundreds of single units, artificial neurons or processing 

elements (PE), connected with coefficients (weights), which constitute the neural struc-

ture and are organised in layers. The power of neural computations comes from connect-

ing neurons in a network. Each PE has weighted inputs, transfer function and one output. 

The behaviour of a neural network is determined by the transfer functions of its neurons, 

by the learning rule, and by the architecture itself. The weights are the adjustable param-

eters and, in that sense, a neural network is a parameterized system. The weighted sum of 

the inputs constitutes the activation of the neuron. The activation signal is passed through 

transfer function to produce a single output of the neuron. The transfer function introduces 

non-linearity to the network [1]. 
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Figure 2.3.1.c – Input, hidden and output layer in Artificial Neural Networks [9] 

In this domain of interest, there are networks, known as Deep Neural Networks 

(DNNs), that have more than three layers (including input and output), that means more 

than one hidden layer (a layer between the input and output layer), as shown in Figure 

2.3.1.c. This is the so called Deep Learning. Today, the typical numbers of network lay-

ers used in Deep Learning range from five to more than a thousand layers.  

When training a network, data is given to the first layer of the network and neurons 

assign a weighting to the input (that is, how correct or incorrect it is) according to the task 

to perform. The learning activity, which is crucial to perform tasks, involves determining 

the value of the weights in the network. Once trained, the program can perform its task 

by computing the output of the network using the weights determined during the training 

process. 

The gap between the ideal correct scores and the scores computed by 

the DNN based on its current weights is referred to as the loss (L). Thus, 

the goal of training DNNs is to find a set of weights to minimize the 

average loss over a large training set [3]. 

During the process of training, usually the weights need to be updated using the 

gradient descent: a multiple of the gradient of the loss relative to each weight (the partial 

derivative of the loss with respect to the weight) is used to update the weight. Backprop-

agation is the process to efficiently compute the partial derivatives of the gradient. It 

operates by passing values backwards through the network in order to compute how the 

loss is affected by each weight. 

Deep learning discovers intricate structures in large data sets by using the back-

propagation algorithm to indicate how a machine should change its internal parameters 

that are used to compute the representation in each layer from the representation in the 

previous layer [2]. 
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The training process is affected by several parameters, the most significant ones 

are: 

• the training phase is composed of several passes throughout the entire dataset 

and this is done more and more times in order to find the right weights; 

• an epoch is one forward pass and one backward pass of all the training examples, 

i.e. one entire processing of all the images of the dataset. Usually several epochs 

are needed to obtain a high accuracy; 

• a batch size is the number of training examples in one forward/backward pass. To 

note that the higher the batch size, the more the required memory space; 

• the number of iterations is equal to the number of passes and each pass uses a 

specific number of examples according to the batch size. 

A popular variant of DNNs are Convolutional Neural Networks (CNN), a class 

of deep, feed-forward artificial neural networks, so called because includes convolutional 

layers, that calculate weights by using only some input activations. They have a huge 

impact in several applications for processing images, video, speech and other audio. 

Most modern CNNs use variations of the same 3 types of layers:  

• convolutional layers take an image and perform several spatial transforms (con-

volutions), resulting in several transformed images of same size as the original, or 

slightly smaller depending on which convolution method is being used; 

• pooling layers reduce data size, resulting in fewer computations in subsequent 

layers and introduce some location invariance; 

• fully connected layers are traditional neural network layers where all nodes are 

connected with weights to all nodes in the next layer.  

The applications domains where Deep Learning is today successful are:  

• State of-the-art in speech and language recognition

• Gaming 

• Robotics 

• Visual object recognition 

• Object detection 

• Many other domains such as drug discovery and genomics  

2.3.2.   Brief History 

The first traces of Deep Learning can be found in the Rosenblatt’s perceptron

(1957), a probabilistic model which aimed to simulate the learning mechanisms of the 

brain (in fact, it was called a “brain model”). The main idea was to recognize many objects 
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without storing information about these objects. The first version of this model was a 

learning system of 3 layers: the original deep learning idea was to have multiple associa-

tion layers to describe more complex objects. This idea was rejected because it was con-

sidered too complex. In recent years, with much faster computers and more training data, 

Deep Learning has become again a reality and the first big advancement was the LeNet 

model. 

Perhaps the most well-known example is LeNet 5 by LeCun in the late 

90’s, often referred to as MNIST1 because of the dataset they were us-

ing. LeNet 5 is a deep Convolutional Neural Network (CNN) with 7 

layers (2 convolutional, 2 pooling, and 3 fully connected) and 60,000 

trainable parameters. It resulted in a commercial implementation for 

reading handwritten bank checks [13]. 

The next big advancement in deep CNNs came in the 2010 and this was due to three 

factors:  

• the first factor is the amount of available information to train the networks: learn-

ing requires a large amount of training data and the big companies have a huge 

amount of data to train their algorithms; 

• the second factor is the increasing computing performance available: computer 

architecture advances have continued to provide increased computing capability, 

which is required for both inference and training, and learning can be performed 

in a reasonable amount of time: this is especially true for GPUs2 that, thanks to 

their much greater power, are able to perform far better than CPUs in these kinds 

of tasks. The increasing computational techniques have also inspired the develop-

ment of several frameworks that make it even easier for researchers and practi-

tioners to explore and use DNNs; 

• the third factor is the evolution of the algorithmic techniques that have improved 

application accuracy significantly, giving the possibility to apply DNN to differ-

ent domains with good results.  

An excellent example of the successes in Deep Learning can be illustrated with the 

ImageNet Challenge. This challenge is a contest that involves several different areas. 

One of the areas is an image classification task where algorithms must accurately identify 

                                                 

1 MNIST stands for Modified National Institute of Standards and Technology and is the de 

facto “hello world” dataset of computer vision. 

2 A Graphics Processing Unit (GPU) is a specialized electronic circuit designed to rapidly 

manipulate and alter memory to accelerate the creation of images in a frame buffer intended for 

output to a display device [28] 
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objects in a test set of images, that it has not previously seen. The training set consists of 

1.2 million images, each of which is labelled with one of 1000 object categories. 

It needs to be mentioned AlexNet by Krizhevsky, a CNN for image recognition 

that won the yearly ILSVRC (Imagenet Large Scale Visual Recognition Challenge) in 

2012. AlexNet consists of 11 layers (5 convolutional, 3 pooling and 3 fully connected) 

and 60 million trainable parameters. In order to train that many parameters, two GPUs 

were used for 5-6 days. The network was trained on ImageNet. This was a sort of revo-

lution for computer vision, making a shift from traditional image classification methods 

to various and modern deep CNN architectures, which started to be used exclusively for 

training neural networks. In fact, it is not a case that these kinds of CNN have won 

ILSVRC every year since [12] 

In addition to convolutional, pooling and fully connected layers, many competitors 

in ILSVRC add new types of layers to achieve various advantages. For example, AlexNet 

implements a dropout layer which randomly excludes parameters from being used during 

training. In conjunction with the trend to Deep Learning approaches for the ImageNet 

Challenge, there has been a corresponding increase in the number of entrants which 

started to use GPUs for training. From 2012 when only 4 entrants used GPUs to 2014 

when almost all the entrants (110) were using them. This reflects the almost complete 

switch from traditional computer vision approaches to Deep Learning-based approaches 

for the competition.  

In 2015, the ImageNet winning entry, ResNet, exceeded human-level accuracy and, 

since then, the error rate has dropped below 3% and more attention is now being placed 

on more challenging components of the competition, such as object detection and locali-

zation. These successes are clearly a contributing factor to the wide range of applications 

to which DNNs are being applied. 

2.3.3.   Main types of Deep Neural Networks 

There is a wide variety of shapes and sizes for DNNs: this depends on the applica-

tion they are applied to. The popular shapes and sizes are also evolving rapidly to improve 

accuracy and efficiency. In all cases, the input to a DNN is a set of values representing 

the information to be analysed by the network. For instance, these values can be the pixels 

of an image. The networks that process the input come in two major forms: feed-forward 

and recurrent.  

In Feed-Forward Neural Networks (FFNN) all the computation is performed as 

a sequence of operations on the outputs of a previous layer and the direction is always the 

same as shown in Figure 2.3.3.a. The final set of operations generates the output of the 

network, for example a probability that an image contains a particular object, the proba-

bility that an audio sequence contains a particular word, a bounding box in an image 

around an object or the proposed action that should be taken. In such DNNs, the network 
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has no memory and the output for an input is always the same irrespective of the sequence 

of inputs previously given to the network.  

Figure 2.3.3.a – In a Feed Forward Network information always moves one direction [24] 

In contrast, Recurrent Neural Networks (RNNs), of which Long Short-Term 

Memory networks (LSTMs) are a popular variant, have internal memory to allow long-

term dependencies to affect the output. In these networks, some intermediate operations 

generate values that are stored internally in the network and used as inputs to other oper-

ations in conjunction with the processing of a later input as shown in Figure 2.3.3.b. 

Figure 2.3.3.b – In a recurrent network, information comes back to previous layers [20] 
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DNNs can be composed only of fully-connected layers (FC layers). In a FC layer, 

all outputs are connected to all inputs. This requires a significant amount of storage and 

computation but they offer learns features from all the combinations of the features of the 

previous layer.  

In many applications, some connections between the activations can be removed by 

setting the weights to zero without affecting accuracy. This results in a sparsely-con-

nected layer. 

2.3.4.   Popular Neural Networks 

Lots of DNN models have been developed over the past few years. Each of these 

models has different specifications, such as a different architecture (number, type, shape 

and connections of layers), and several variations. In this section we provide an overview 

of some popular DNNs, which have been used for benchmarking and analyse perfor-

mance in this case of study. 

LeNet was introduced in 1989 and it was one of the first CNNs. It was designed for 

the task of handwritten digit classification.  

The most known version, LeNet-5, contains two CONV layers and two 

FC layers. Each CONV layer uses filters of size 5×5 (1 channel per 

filter) with 6 filters in the first layer and 16 filters in the second layer. 

[…] In total, LeNet requires 60k weights and 341k multiply-and-accu-

mulates (MACs) per image. LeNet led to CNNs’ first commercial suc-

cess, as it was deployed in ATMs to recognize digits for check deposits

[3]. 

AlexNet, which has been already introduced before, is described in detail in the 

well-known paper ImageNet Classification with Deep Convolutional Networks [12] 

which is considered one of the most important Deep Learning publications. The network 

won the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge). 
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Figure 2.3.4 – AlexNet architecture [10] 

As shown in Figure 2.3.4, 

It consists of five CONV layers and three FC layers. Within each CONV 

layer, there are 96 to 384 filters and the filter size ranges from 3×3 to 

11×11, with 3 to 256 channels each. In the first layer, the 3 channels of 

the filter correspond to the red, green and blue components of the input 

image. A ReLU (rectified linear unit)3 is used in each layer. Max pool-

ing of 3×3 is applied to the outputs of layers 1, 2 and 5. To reduce 

computation, a stride of 4 is used at the first layer of the network. […] 

One important factor that differentiates AlexNet from LeNet is that the 

number of weights is much larger and the shapes vary from layer to 

layer. To reduce the amount of weights and computation in the second 

CONV layer, the 96 output channels of the first layer are split into two 

groups of 48 input channels for the second layer, such that the filters in 

the second layer only have 48 channels. Similarly, the weights in fourth 

and fifth layer are also split into two groups. In total, AlexNet requires 

61M weights and 724M MACs to process one 227×227 input image

[13]. 

VGG is a Convolutional Neural Network from the University of Oxford. It was first 

introduced in the paper Very Deep Convolutional Networks for Large-Scale Image 

Recognition [22].  

                                                 

3 In the context of Artificial Neural Networks, the rectifier is an activation function defined 

as the positive part of its argument. 
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VGG-16 has 16 layers consisting of 13 CONV layers and 3 FC layers. 

In order to balance out the cost of going deeper, larger filters (e.g., 

5×5) are built from multiple smaller filters (e.g., 3×3), which have 

fewer weights, to achieve the same receptive fields. As a result, all 

CONV layers have the same filter size of 3×3. In total, VGG-16 requires 

138M weights and 15.5G MACs to process one 224×224 input image. 

VGG has two different models: VGG-16 (described here) and VGG-19

[3]. 

GoogLeNet was the winner of ILSVRC 2014 and was one of the first CNN that 

differentiated from the general approach of simply use convolutional and pooling layers 

on top of each other.  

It introduced an inception module which is composed of parallel con-

nections, whereas previously there was only a single serial connection. 

Different sized filters (i.e., 1×1, 3×3, 5×5), along with 3×3 max-pool-

ing, are used for each parallel connection and their outputs are concat-

enated for the module output. Using multiple filter sizes has the effect 

of processing the input at multiple scales. For improved training speed, 

GoogLeNet is designed such that the weights and the activations, which 

are stored for backpropagation during training, could all fit into the 

GPU memory. In order to reduce the number of weights, 1×1 filters are 

applied as a ‘bottleneck’ to reduce the number of channels for each 

filter. The 22 layers consist of three CONV layers, followed by 9 incep-

tions layers (each of which are two CONV layers deep), and one FC 

layer [3]. 

This model has improvements in terms of memory and power usage respect to older 

networks. There are several versions of GoogLeNet (also known as Inception): v1, v3 and 

v4.  

Inception-v3 decomposes the convolutions by using smaller 1-D filters 

to reduce the number of MACs and weights in order to go deeper to 42 

layers. […] Inception-v4 uses residual connections for a 0.4% reduc-

tion in error [3].  

ResNet was projected by Microsoft engineers and has 152 layers, so an incredibly 

depth architecture. ResNet won ILSVRC 2015 and set new records in several image clas-

sifications tasks. 

Residual net introduces a ‘shortcut’ module which contains an identity 

connection such that the weight layers (i.e., CONV layers) can be 

skipped. […] It was the first entry DNN in ImageNet Challenge that 
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exceeded human-level accuracy […]. ResNet-50 consists of one CONV 

layer, followed by 16 shortcut layers (each of which are three CONV 

layers deep), and one FC layer; it requires 25.5M weights and 3.9G 

MACs per image. There are various versions of ResNet with multiple 

depths (e.g., without bottleneck: 18, 34; with bottleneck: 50, 101, 152). 

The ResNet with 152 layers was the winner of the ImageNet Challenge 

requiring 11.3G MACs and 60M weights [3].  

As it can be easily guessed, the trend of all these popular DNNs was to increase the 

depth of the network in order to provide higher accuracy. Furthermore, most of the com-

putation has been placed on CONV layers rather than FC layers. In addition, the number 

of weights in the FC layers is reduced. Thus, the focus of hardware implementations 

should be on addressing the efficiency of the CONV layers, which in many domains are 

increasingly important. 

2.3.5.   Deep Learning frameworks 

In the last few years, with the increasing popularity and attention for Deep Learning, 

several Deep Learning frameworks have been developed from various sources. These 

open source libraries contain software libraries for DNNs.  

Caffe is an open source framework and was developed in 2014 by the Berkeley 

Vision and Learning Center (BVLC); it supports C, C++, Python and MATLAB. There 

are several variants of the project, the most famous are NVIDIA Caffe (optimized for 

GPU training) and Intel Caffe (optimized for CPU training). 

Caffe2 is the designated successor of Caffe and is developed by the Artificial In-

telligence Department of Facebook. It is based on the old Caffe project but more focused 

on some features for new intelligent applications, above all mobile ones. 

TensorFlow was released by Google in 2015. It supports many up-to-date networks 

such as CNNs with different settings and was mainly designed for flexibility and porta-

bility. It supports C++ and Python.  

Torch is another popular framework and was created by Facebook and the New 

York University and supports Lua as the main programming language. Recently, a Py-

thon-version of Torch called PyTorch was developed and quickly acquired lots of users 

for the familiarity with a very common language like Python is.  

CNTK is a unified computational network toolkit developed by Microsoft Re-

search.  

Apache MXNet is an open-source framework and has become very well-known in 

the last few years. It supports several languages. 
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There are also higher-level libraries that can run on top of the mentioned frame-

works to provide a more universal experience and faster development. Keras, written in 

Python and supporting TensorFlow, CNTK and Theano, is an example of this category.  

The existence of such frameworks is not only a convenient aid for DNN 

researchers and application designers, but they are also invaluable for 

engineering high performance or more efficient DNN computation en-

gines. In particular, because the frameworks make heavy use of a set 

primitive operations, such processing of a CONV layer, they can incor-

porate use of optimized software or hardware accelerators. This accel-

eration is transparent to the user of the framework. Thus, for example, 

most frameworks can use Nvidia’s cuDNN library for rapid execution 

on Nvidia GPUs [3]. 

2.3.6.   The importance of GPU training and CUDA 

To process the data from scratch, neural networks need to do a lot of work and deal 

with a great amount of information. There are basically two ways to do so: �with a CPU 

(Central Processing Unit) or a GPU (Graphical Processing Unit). 

Figure 2.3.6 – High-level Comparison between CPU and GPU [21] 

CPU is designed to do fast computation on a quite small amount of data due to their 

configuration as shown in Figure 2.3.6; for instance, multiplying some numbers on a CPU 

is fast but when a considerable amount of data is given (like multiplying very large ma-

trices), CPU is not efficient in these types of tasks. And Deep Learning mostly deals with 
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operations like matrix multiplication which are very computationally expensive. Indeed, 

support of multiple GPUs has become a standard in recent Deep Learning tools. 

Basically, a GPGPU is a parallel programming setup involving GPUs 

and CPUs which can process and analyse data in a similar way to im-

age or other graphic form. GPGPUs were created for better and more 

general graphic processing, but were later found to fit scientific com-

puting well. This is because most of the graphic processing involves 

applying operations on large matrices. The use of GPGPUs for scien-

tific computing started some time back in 2001 with implementation of 

Matrix multiplication. One of the first common algorithm to be imple-

mented on GPU in faster manner was LU factorization in 2005. But, at 

this time researchers had to code every algorithm on a GPU and had 

to understand low level graphic processing [21]. 

In 2006, Nvidia created a high-level language to write programs from graphic pro-

cessors, CUDA. This was probably one of the most noteworthy changes in the way users 

interacted with GPUs. 

NVIDIA CUDA is a parallel computing platform and application programming in-

terface (API) model created by NVIDIA. It allows to use a CUDA-enabled GPU for gen-

eral purpose processing. With CUDA, developers are able to dramatically speed up com-

puting applications by using the power of GPUs [17]. 

Thanks to this, researchers and scientists can significantly speed up deep learning 

training, otherwise the activity could take several hours or even days. Users can use GPU-

accelerated platforms to have high-performance for the most computationally-intensive 

deep neural networks. 

There was also a huge development of software libraries (e.g. cuDNN), both in 

academies (e.g. Berkeley, NYU) and industries (e.g. Nvidia): the most relevant and worth 

to mention are NCCL and cuDNN. 

The NVIDIA Collective Communications Library (NCCL) «implements multi-

GPU and multi-node collective communication primitives that are performance opti-

mized for NVIDIA GPUs» [18].

The NVIDIA CUDA Deep Neural Network library (cuDNN) «is a GPU-accel-

erated library of primitives for deep neural networks. cuDNN provides highly tuned im-

plementations for standard routines such as forward and backward convolution, pooling, 

normalization, and activation layers» [19]. 

In summary, all the frameworks mentioned in the previous section are very fast in 

training complex DNNs, thanks also to their strong CUDA backends since nowadays 

every model is trained by using Graphical Processing Units (GPUs).  
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2.3.7.   Popular Datasets for image classification 

The comparison of different DNN models must take into account the difficulty of 

the task. For instance, the task of classifying handwritten digits from the MNIST dataset 

is much simpler than classifying an object in ImageNet. For instance, LeNet is designed 

for digit classification, while AlexNet, VGG16, GoogLeNet and ResNet are designed for 

the 1000-class image classification. Public datasets are important for comparing the ac-

curacy of different approaches. The most common task is image classification. Others, 

for example, are localization or detection.  

MNIST is a widely used dataset for handwritten digit classification. It was intro-

duced in 1998 and it consists of 10 classes, 60,000 training images and 10,000 test im-

ages4 (28×28-pixel grayscale images of handwritten digits). «LeNet-5 was able to achieve 

an accuracy of 99.05% when MNIST was first introduced, nowadays the accuracy has 

increased to 99.79% using other techniques» [3]. 

CIFAR is a dataset which was released in 2009. It consists of 10 mutually exclusive 

classes, 50,000 training images and 10,000 test images (32×32-pixel coloured images of 

various objects). «A two-layer convolutional deep network was able to achieve 64.84% 

accuracy on CIFAR-10 when it was first introduced and since then the accuracy has in-

creased to 96.53%» [3] 

ImageNet is a large-scale image dataset that was introduced in 2010; the dataset 

became stable in 2012. There are 1.3M training images, 100.000 testing images and 

50.000 validation images (256×256 pixel in colour with 1000 classes). There is a hierar-

chy for the ImageNet categories and the classes were selected so that there is no overlap.  

In summary, MNIST (more) and CIFAR10 (less) are fairly easy datasets, while 

ImageNet is challenging for the number of classes. Therefore, it is important to consider 

the dataset every time it must be evaluated the performance of a network. 

2.4   Goal of this work 

After providing the reader with this necessary amount of information about Deep 

Learning state of the art, we briefly illustrate the aim and the structure of this work before 

going on: the analysis will focus on 3 metrics: 

• average speed for training; 

• average GPU power usage; 

                                                 

4 Training images are a set of images used for training the network. Test images are used 

instead for testing the performance and the accuracy of the network. 
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• average GPU memory usage; 

and will be centered in the evaluation of the following hardware/software configurations: 

• 5 networks: LeNet, AlexNet, ResNet50, GoogLeNet, VGG16; 

• 3 datasets: MNIST, CIFAR10, ImageNet; 

• 5 frameworks: Caffe, TensorFlow, PyTorch, MXNet, CNTK; 

• 6 hardware configurations: CPU with 12 cores, CPU with 20 cores, 1 K20m 

GPU, 2 K20m GPUs, 1 P100 GPU, 2 P100 GPUs. 
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CHAPTER 3 

Analysis of Deep Learning  

benchmarking methods 

After reviewing the main Deep Learning concepts, this section is a theoretical in-

troduction to Deep Learning benchmarks and it deals with the different approaches for 

evaluating an intelligent environment.  

3.1   The problem of benchmarking  

Several Deep Learning frameworks are now used by a wide range of people, from 

researchers to regular users, because their features and capabilities easily adapt to differ-

ent scenarios, allowing efficient and fast training of deep networks especially through 

GPUs. Developers have constantly improved these frameworks by adding more and more 

features and performance improvements to attract more people. Recently, the efficacy of 

several Deep Learning frameworks has been evaluated in quite a lot of aspects. In partic-

ular:  

• Extensibility: their capability to incorporate different types of Deep Learning ar-

chitectures (convolutional, fully-connected and recurrent networks), different 

training procedures (unsupervised, layer-wise pre-training and supervised learn-

ing), and different convolutional algorithms (e.g. FFT-based algorithm); 

• Hardware utilization: their efficacy to incorporate hardware resources in either 

(multi-threaded) CPU or (multi or single) GPU settings;  

• Performance: their speed from both training and deployment perspectives. 

Lots of researches have been carried on efficient processing of DNNs. Certainly, 

several key metrics should be considered to compare the various strengths and weak-

nesses of different designs, techniques and frameworks. These metrics should cover im-

portant attributes such as accuracy/robustness, power/energy consumption, through-

put/latency and cost. Reporting all these metrics is important in order to provide a com-

plete picture of the trade-offs made by an option. 

For example, the difficulty of the dataset and/or task should be considered when 

measuring the accuracy. For instance, as it was discussed in the previous chapter, the 

MNIST dataset for digit recognition is significantly easier than the ImageNet dataset. As 

a result, a DNN that performs well on MNIST may not necessarily perform well on 
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ImageNet. Therefore, it is important that the same dataset and task is used when compar-

ing the accuracy of different DNN models. To demonstrate primarily hardware innova-

tions, it would be desirable to report results for widely used DNN models (e.g., AlexNet, 

GoogLeNet) whose accuracy and robustness have been well studied and tested.  

The power and energy consumption of the hardware design should be reported for 

various DNN models. In fact, energy and power are important in processing DNNs in 

order to evaluate the impact in terms of resources. Having a limited amount of power and 

memory usage can be important in embedded devices with limited battery capacity (e.g., 

smartphones, smart sensors and wearables), or in cloud in data centres with stringent 

power ceilings due to cooling costs. So, in the evaluation of power, energy and memory 

consumption it is important to account for all aspects of the system.  

High throughput is necessary to deliver real-time performance for interactive ap-

plications such as navigation and robotics. For data analytics, high throughput means that 

more data can be analysed in a given amount of time. As the amount of visual data is 

growing exponentially, high-throughput in big data analytics becomes important. Low

latency is necessary for real-time interactive applications. Latency measures the time be-

tween the arrival of a fragment of data in a system and when the result is generated. It is 

measured in terms of seconds, while throughput is measured in operations/second. 

Achieving low latency and high throughput at the same time can be a challenge but real-

time applications (such as high-speed navigation where it would reduce the time available 

for course correction) need to be efficient in these tasks. The latency and throughput 

should be reported in terms of the batch size and the actual run time for various DNN 

models, which accounts for mapping and memory bandwidth effects. 

Hardware cost is in large part due to the amount of storage, the number of CPU 

cores and all the GPU specifications (memory, power and speed). In terms of cost, dif-

ferent platforms will have different implementation-specific metrics. To mention that 

there is a correlation between the number of cores and the throughput. In addition, while 

many cores can be built on a system, the number of cores that can be used at a given time 

should be reported. 

The scalability of training is also critical for a Deep Learning framework since a 

single GPU does limit the performance during training process. 

All these metrics should be taken in consideration alongside with the main proper-

ties of a given DNN model study:  

• the accuracy of the model in terms of the datasets; 

• the network architecture of the model, including number of layers, filter sizes, 

number of filters and number of channels; 

• the number of weights, that can impact the storage requirements;  
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As stated in the paper Efficient processing of deep neural networks a tutorial and 

survey [3], it is important that all these metrics and specifications are analysed in order to 

evaluate all the design trade-offs. For instance, without the accuracy given for a specific 

dataset and task, it can be run a simple DNN with low power, high throughput, and low 

cost but the processor is not used as much as it should; the test setup should also be re-

ported, including whether the results are measured from simulation and the type of data 

that were used for the tests. 

3.2   Pre-existent Deep Learning benchmarks 

There are already some available benchmarking projects which have the goal to 

evaluate and analyse Deep Learning frameworks and/or models’ performance. It is fair to 

point out that most of these benchmark tools only focus on a specific set of metrics, which 

are considered the most relevant and significant for the study by the authors in that spe-

cific context. In fact, a benchmark tool interested in evaluating the performance of differ-

ent models will take into account some parameters such as accuracy and loss; on the other 

hand, projects created to run same models on different architectures and frameworks will 

probably give more importance to the speed of training and the speedup and the scalability 

with various combinations of architectures.  

In the following lines the most influential and popular benchmark tools are reported 

and some of them have also been source of inspiration for this work. 

DLBENCH (Benchmarking State-of-the-Art Deep Learning Software Tools) is a 

benchmark project developed by the Hong Kong Baptist University and is created to ex-

ecute several experiments with different neural networks (fully connected, convolutional 

and recurrent). It supports directly Caffe, TensorFlow, CNTK, Torch and MXNet and is 

mainly focused on processing time and convergence rate, which are two main factors that 

concern users when training a Deep Learning model. Their source code to do benchmarks 

is easy but very useful: to run a set of experiments it must be passed a config file as 

argument of a command. This file, which must respect a rigorous syntax, can be filled 

with the models to benchmark, each one with its own specifications (batch size, epochs, 

learning rate, number of GPUs or CPU threads and other parameters), and the tools to use 

for all the models added. There is also a utility to collect GPU information during the 

training. To evaluate the running performance, they measure the time duration of an iter-

ation that processes a small batch of input data. In practice, after a certain round of itera-

tions or the convergence of learning, the training progress will be terminated. Therefore, 

they benchmark these tools by using a range of mini-batch sizes for different types of 

network. The data provided in the project website are reported for different batch sizes 

and several hardware configurations [5].  

DAWNBench is a benchmark suite for end-to-end Deep Learning training and in-

ference. As stated in the official site: «Computation time and cost are critical resources in 
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building deep models, yet many existing benchmarks focus solely on model accuracy. 

DAWNBench provides a reference set of common Deep Learning workloads for quanti-

fying training and inference time […] across different optimization strategies, model ar-

chitectures, software frameworks, clouds, and hardware» [6]. All these metrics are eval-

uated on image classification tasks on ImageNet and Cifar10 datasets. This is actually the 

first benchmark to compare end-to-end training and inference across multiple Deep 

Learning frameworks and tasks. There are leader boards with submitted benchmarks re-

sults for each category and this can lead to a continuous and developing improvement 

from all the users who want to participate. 

DeepBench is another benchmark on different hardware platforms. It uses some 

neural network libraries (like cuDNN or MKL) to benchmark the performance of basic 

operations on different hardware. As the authors say, their goal is quite different from 

other benchmarks: «The performance characteristics of models built for different appli-

cations are very different from each other. Therefore» the main goal is «benchmarking 

the underlying operations involved in a deep learning model. Benchmarking these oper-

ations will help raise awareness amongst hardware vendors and software developers 

about the bottlenecks in deep learning training and inference» [16]. 

HPE Deep Learning Benchmarking Suite is an automated benchmarking tool, 

which makes it easy to run performance tests with most popular Deep Learning frame-

works. It enables consistent and reproducible benchmark experiments on various hard-

ware/software combinations. This suite makes use of Docker containers as a primary 

mechanism to run benchmarks.  

It includes a collection of command line tools for running consistent 

and reproducible benchmark experiments on various hardware/soft-

ware combinations. In particular, DLBS implements internally various 

deep models with the same implementations for all supported frame-

works. Deep models that are supported include various VGGs, ResNets, 

AlexNet and GoogleNet models. Benchmarks target single node multi 

GPU configurations, with support of real (ImageNet dataset) and syn-

thetic data, single and half precision, inference and training phases

[26].  

The set of frameworks that are now supported includes mainly the most known 

tools, like Caffe, NVIDIA Caffe, Intel Caffe, Caffe2, TensorFlow, MXNet, PyTorch. 

However, only ImageNet dataset is included in the suite. 

Convnet-benchmarks is a GitHub project which deals with the benchmarking of 

all public open-source implementations of convolutional networks. This simple research 

was made by one of the creators of Torch/PyTorch, who picked some popular ImageNet 

models (AlexNet, GoogleNet, Overfeat) and clocked the time for a full forward and back-

ward pass. Although it is not a complete suite, it is very well known by the community 
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and it is one of the main points of reference of several users of Deep Learning frameworks 

[4] 

CNN-benchmarks is a project of benchmarks for popular convolutional neural net-

work models on CPU and different GPUs, with and without cuDNN. All benchmarks 

were run in Torch by using famous models with a minibatch size of 16 in order to do a 

direct comparison among different GPUs. In fact, the main goal of this tool is to stress 

some important points about the performance of models, architectures and the GPU’s 

importance in the process of training [11]. 

Apart from these works, other significant benchmark results (without transparent 

implementation) can be found on the major Deep Learning websites. For example, Ten-

sorFlow benchmarks report the performance of the main convolutional neural networks 

on several architectures with the most known models in detail, analysing synthetic and 

real data, reporting graphs and numbers in terms of speed (images per second) and 

speedup with the increase of the number of GPUs used. Moreover, the NVIDIA website 

shows some few interesting results for almost all the most important frameworks. Even 

though there is no possibility to evaluate and validate the performance reported and shown 

in these webpages, these results have been significantly used as a point of reference, given 

the importance of the source.  

3.3   Critique and limits of existent projects 

All the suites and projects try to evaluate the performance of Deep Learning frame-

works and models from different points of view, analysing in depth all the scenarios and 

getting results by making comparisons with several factors. However, it is worth to men-

tion the presence of different and various approaches, often due to certain requirements 

or objectives.  

Most of the Deep Learning benchmarks with the goal to compare networks to do a 

specific task inevitably focus on accuracy, which is the most considered parameter if the 

intention is to deploy in a real application a new model trained on a personal dataset: in 

this case, what really matters is the reliability and the precision in solving a problem in 

the best way possible. It is clear, though, that this approach requires high experience and 

capability in Deep Learning, especially with the framework used: it is necessary to modify 

several parameters and create a brand-new network that fits the problem, task that can be 

very challenging for a beginner. 

Alternatively, other performance evaluation projects deal with the speed in pro-

cessing images for more than one architecture but usually using the same framework for 

the experiments. This is particularly useful to test new GPUs in a pre-set-up environment 

in order to characterize them in the market and to study the scalability. Benchmarking 

this way is quite common. Nevertheless, using a unique tool limits the implementation 

unless it is required for some reasons. Several Deep Learning tools are present and free 
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to use on the web. There is not a clear specialization for each of them and the community 

is still divided on using different tools for the most common task, like image recognition.  

Certainly, these benchmark methods are not the only ones: it is possible to face the 

problem in multiple ways and there is not a solution better than the others but it only 

depends on the research needs.  

3.4   The approach proposed in this work 

As shown in the previous section, there is no popular benchmark that specifically 

studies the behaviour among different models, architectures, datasets and frameworks at 

the same time. From this point of view, scalability is not considered as much as it should. 

In fact, it could be very interesting to see if a tool manages to work better with more cores, 

how it performs by increasing the number of GPUs or also why there are significant gaps 

with some models. Furthermore, power and memory usage is often neglected because it 

is always assumed to have enough resources to deploy neural networks: indeed, not all 

the users can access powerful machines and nowadays the use of Deep Learning is spread-

ing on mobile platforms and in this case the consumption of memory is a bottleneck, i.e. 

it must be limited in order to fit the hardware requirements.  

Performing a comparison among Deep Learning frameworks and hardware archi-

tectures in a holistic way is an innovative approach to this field because there are neither 

previous academic works in this institution nor well-known public projects with this goal. 

There is no doubt that a benchmark focused on all these features adds valuable and sig-

nificant information for the research community. As we will show in the next chapter, 

this work aims to carry out such a holistic study. 
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CHAPTER 4 

Project design and development 

After describing all the background context of Deep Learning and introducing the 

problem of benchmarking Deep Learning environments, this chapter explains how the 

entire environment was set up in order to run benchmarks on several configurations. 

4.1   Hardware specifications 

The environment where the performance test has been executed is a cluster com-

posed of 36 nodes, whose configuration is shown in Figure 4.1.a. Only a small set of these 

nodes have been used for the experiments: the choice of the ones used has been carried 

by the significance and the goal to stress as much as possible the scalability from one 

architecture to another. In fact, the networks will run by using CPU and an increasing 

number of GPUs for a total of six hardware scenarios.  

CPU performance is important nowadays since it is still used for training deep neu-

ral networks in some applications. However, in this specific work it will be used to show 

how GPUs are much more convenient and suitable to this kind of tasks for the reasons 

explained in Chapter 2. The operating system is a CentOS Linux, version 7.3, for all the 

nodes and the CPUs used are Intel E5-2620, 12 cores and 2 threads per core, a E5-2630, 

20 cores and also 2 threads per core.  

Scalability plays a fundamental role in the entire deep learning field, that is why 

two quite dissimilar GPU models, both in terms of price and power, have been picked for 

the benchmark: a basic NVIDIA Tesla K20m and a more performant NVIDIA Tesla 

P100. It will be shown the behaviour with one and two GPUs for both K20m and P100. 

The main hardware specifications, with detail of the configurations used and the archi-

tectures for the tests can be found in Figure 4.1.b. 
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Figure 4.1.a - Cluster configuration in the test environment 

Figure 4.1.b – CPU and GPU specifications 
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4.2   Selection of Deep Learning frameworks 

The core part of this work is to offer an evaluation of the most used deep learning 

tools, compare them, show differences in implementation and, most of all, in perfor-

mance. The work has been progressively expanded to a wide range of frameworks and, 

for each one, all the features have been studied in depth, using examples and more com-

plex cases to that end. The goal was to acquire the necessary mastery of each tool in order 

to evaluate the advantages and disadvantages of the whole system. After evaluating sev-

eral deep learning tools, only a subset of them has been selected for the tests for several 

factors and the most important considerations for the choice are provided below: 

• As stated before, it was necessary to offer eminent software among the community 

by looking at statistics and polls. The decision of not including TensorFlow, the 

most used of all, could not have been understood. Old deep learning frameworks 

like Theano, even though still useful for some computational tasks, have been 

excluded for the decreasing popularity and use by programmers who redirected 

their attention to more recent libraries. 

• An essential requirement was the availability of official models for the chosen 

datasets. Not every tool offers organized samples for the ImageNet and/or for 

Cifar10 datasets (MNIST is almost always present) and in this context “orga-

nized” means complete and manageable. For instance, samples that do not provide 

the opportunity to test scalability were not taken into account, as well as those 

which did not provide ways to set the crucial parameters for the experiments (even 

though some modifications have been adopted in some models). Moreover, unof-

ficial examples have been rejected unless the source was absolutely reliable (and 

this happened only in one case). This decision aimed to preserve the accuracy of 

data and to avoid misunderstanding with the comparisons. That is the reason why 

Caffe2, the new main deep learning tool from Facebook, was not considered in 

this work, though in a future work it could be used since more models will be 

available soon. Instead, the old and not-more-maintained Caffe was picked be-

cause it is still very used by the majority of new users who decide to face deep 

learning and computer vision problems. 

• A less important discriminant was the programming language. Since Python is 

a very common language for almost all the deep learning programmers thanks to 

its modularity and features, deep learning tools which implement a Python inter-

face have been considered and analysed. The central point is the concept of like-

lihood: the more the tools are similar to each other the more the comparison can 

be accurate. Torch is a main deep learning asset now but its Python counterpart, 

PyTorch, is much more studied and exploited for the simple difference that it is 

written in Python. 
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• Another not significant but interesting pattern followed was diversity. Diverse 

tools from different sources can guarantee the coverage of all the approaches and 

notable methods used in the state of the art. All the leader companies in technology 

are focusing on deep learning, which is one of the most attractive topic of com-

puter science and, likely, the future of Artificial Intelligence. It is not a case that 

Amazon, Google, Facebook and Microsoft invented or adopted their “own” 

frameworks following this trend as shown in Figure 4.2.  

Figure 4.2 - Technology leader companies and the most popular Deep Learning frameworks in 

2017 [8] 

Facebook, through different research groups, has “under its control” PyTorch and 

Caffe2 (until 2017 even Caffe; now Caffe inventors work for Facebook and they created 

a new second version of this tool). Google came up with TensorFlow, an absolute inno-

vation in terms of modularity, expandability and portability, while Microsoft came on 

stage with CNTK (now called Cognitive Tools). Amazon did not decide to just stare at 

their opponents and “adopted” MXNet, choosing this framework for some applications 

related to Amazon Web Services. From this brief discussion it is clear that a heterogene-

ous set of deep learning tools provide a complete excursion throughout the software that 

surround us and we use almost every day not only for programming tasks. 
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To repeat the concept, the above points are not the unique considerations taken but 

they have been determinant for the choice of the analysis. It should be also mentioned 

that there are several “variants” of the official frameworks: a relevant example is the 

NVIDIA fork of the Caffe GitHub project, which is still maintained and more popular for 

better performance with GPUs than the official Caffe. In this case, it has been decided to 

stick with the standard code of these tools for simplicity but a future development of this 

work could take into considerations these aspects. 

Thus, Caffe, TensorFlow, PyTorch, MXNet and CNTK have been chosen for the 

benchmark tests in order to give a wide scope for the future spread of the results obtained. 

4.3   Preparation of Deep Learning frameworks 

The installation of every tool is very straight-forward by following the instructions 

in the official websites but if the environment is a cluster and root permissions are not 

granted, everything is more complex; not only because it is not possible to run some com-

mands to freely install packages but it is essential to pay attention on things that we usu-

ally ignore, like the location where dependencies are installed, make libraries visible and 

so on. 

Therefore, it has been decided to use a well-known package manager: Anaconda. 

Anaconda is an open source package and environment management system. It basically 

allows to find and install packages and setup a separate environment to run with a differ-

ent Python version [7]. In this way, installing new packages has not been a problem any-

more. Just to clarify: this is not the best solution because package managers have to be 

used with caution and they often will give programmers trouble. Nevertheless, every 

framework (with the exception of Caffe which has to be installed from source) supports 

an installation through pre-compiled binaries from Anaconda and this was optimal for the 

case.  

Another trivial point: installing from source is always better than installing from 

pre-compiled binaries but this is also much more annoying and time-wasting; addition-

ally, it often requires root permissions. So, to keep things simpler, installation from bina-

ries has been chosen for TensorFlow, PyTorch, MXNet and CNTK. For each tool, an 

Anaconda environment was created and all the necessary packages for that tool were in-

stalled in that precise environment: this solution makes the dependencies separated with 

low coupling. For using a tool, the command “source activate [environment name]” is 

required to activate the environment where the framework has been installed. In Figure 

4.3 the used versions of each framework are shown. 
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Figure 4.3 – Used versions of each Deep Learning frameworks 

For running the frameworks with GPU support, it was necessary to install NVIDIA 

CUDA and also NCCL and cuDNN for high-performance GPU acceleration. 

For the evaluation, CUDA 9 was used along with NCCL 2.1 and cuDNN 7.1.1: the 

decision of the specific versions is due to compatibility issues with all the frameworks 

(especially for TensorFlow, which required CUDA 9 at least).

4.4   Selection of neural networks and datasets 

Selecting the right neural networks for a performance evaluation could seem a sim-

ple task because of the high number of possibilities available on the web. However, this 

has been object of a very deep investigation for its correlation with the selection of the 

datasets.  

The selection of datasets and models should consider all the parameters described 

in chapter 2 (like batch size and number of epochs) because they are going to affect the 

tests and the time required for doing every experiment. 

Following the purpose to use standard models for benchmarking, it was clear that 

ImageNet winners or the most popular networks which were submitted for the competi-

tion were the best options, considering the fact that also other benchmarks picked up these 

ones. The chosen networks were: AlexNet, GoogLeNet, ResNet50 and VGG16. 

Initially, the intention was to train these models with the CIFAR10 dataset in order 

to make a simple but efficient deep learning benchmark. Furthermore, large datasets com-

posed of more than a million of images (like ImageNet) have limitations in learning time, 

so training is longer than in smaller datasets and this could take much more time, above 

all for CPU training and a full training of several epochs. The issue encountered with 

models for CIFAR10 was the following: a certain official model of a famous network can 

be available on a framework but not in another; this is frequent for datasets which are 

different from ImageNet. For instance, the official TensorFlow models for ImageNet 

were AlexNet and ResNet. At that time, when a part of the work in this report was already 
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done, it was decided to keep the tests for CIFAR10 because they are still useful for eval-

uation, even though there are some missing configurations. 

This led to download also the ImageNet dataset for object recognition (ILSVRC12 

dataset) to train the networks and obtain full data for each model and tool. Moreover, the 

small MNIST dataset of handwritten images was added with the well-famous LeNet, 

which is very easy to train.  

4.5   Preparation of neural networks and datasets 

The first thing to do is the preparation of the datasets. This requires downloading 

the data from the official sites: CIFAR10 and MNIST dataset have size respectively of 

163 MB and 11 MB approximately; instead, the ImageNet dataset (precisely, ILSVRC12 

dataset) is much bigger and needs more space in disk in order to get both the training and 

validation images. In this case, the total size of all the tar files required is approximately 

145 GB. In addition to these packages, the annotations of object bounding boxes are 

needed for the classification, especially for MXNet training scripts.   

After getting all the images, the actual format of a dataset is a framework specific 

and data must be converted in order to make everything work in the correct way (this will 

take much other space in disk).  

Caffe and PyTorch use standard Caffe's LMDB datasets (lmdb). MXNET uses data 

in standard RecordIO format (recordio). TensorFlow backend (tf_cnn_benchmark) uses 

TFRecord files (tfrecord). CNTK needs to create a train and a test folder that store re-

spectively train and test images in PNG format and mapping files (train_map.txt and 

test_map.txt) for the CNTK ImageReader as well as the mean file. To note that only few 

conversion scripts were already included in the training files but all the other conversions 

have been done manually by creating ad-hoc scripts.

As data is ready to be used for training, it remains to prepare the models’ imple-

mentation, which is the hardest part to complete. The original idea was to have all models 

in one format (Caffe's prototxt) and then convert those models into other formats since 

there are different ways to convert models from one framework to another. For instance, 

Caffe to TensorFlow converter exists, as well as a PyTorch one. It turned out that this was 

not the best option: apart from the lack of official converters for MXNet and CNTK (only 

files provided by the community), this approach seems to be affected by performance 

issues.  

Thus, it was decided to go with framework specific implementations. Among the 

different and various options inside the same official repository for each tool, the follow-

ing choices were used: 

• TensorFlow: tf_cnn_benchmarks from tensorflow/benchmarks repository con-

tains implementations of several popular convolutional models with four datasets 
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(ImageNet, CIFAR10, MNIST and Flowers), and is designed to be as fast as pos-

sible: in fact, many high-performance strategies have been utilized. This was pre-

ferred respect to clean and easy-to-read implementations for giving priority to the 

training speed parameter of the benchmarks; 

• Caffe: models for ImageNet are defined as training prototxt files in the “models” 

folder of the NVIDIA/caffe repository. The LeNet model is in the “examples” 

folder. These folders contain multiple subfolders - one subfolder for one model.  

Although the standard Caffe installation was used for the benchmarking, network 

definitions were taken from the maintained NVIDIA fork because of up-to-date 

files and GPU performance improvements. Some variations were added to adapt 

the models to the BVLC version. For the CIFAR10 models’ implementations, it 

was picked an unofficial project which was suggested by several users (Classifi-

cation_Nets); 

• MXNet: the image-classification folder contains several models and scripts for 

running training with all the datasets in different modalities; 

• PyTorch: the “examples” folder was used which contains scripts for using da-

tasets, the models are included in the torchvision package; 

• CNTK: in the main repository, the CNTK/Examples/Image/Classification path 

has several network definitions for the famous datasets. 

Almost all these projects lacked several features which are essential for our bench-

mark, such as CPU or multi-GPU training support, missing training and network param-

eters and other important values. This is the reason why great attention was reserved in 

this part of the work in order to make the benchmarks work in the right way, without 

problems or missing features: this refining and polishing phase required to write several 

crucial lines of code in every single network file and a basic knowledge of each deep 

learning framework was essential, otherwise the modification of these tool specific con-

figuration files can lead to frequent mistakes and errors. 

The main modifications made to some of the benchmark projects used are about 

providing: 

• organization and structure to the great amount of files required for the entire 

project; 

• support of CPU and/or multi-GPU training through some framework-spe-

cific commands and libraries; 

• support of fundamental parameters (such as the number of epochs, epoch’s 

size, batch size etc…) for making the benchmarks uniform and customizable 

for all the configurations; 
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• adaptability to the system used by installing missing packages and APIs re-

quired for the learning process; 

• high-performance settings for making the whole training preparation and 

training itself as fast as possible. 

After this long preparation stage, it is necessary to choose the parameters to run 

the training with. A full training session composed of several epochs for each combination 

of architecture, model and framework could be very expensive in terms of resources and 

time. Since the goal is to acquire data about training speed and power and memory usage, 

it was decided to train the networks only for some few iterations. This hypothesis is ac-

ceptable because accuracy is not being considered according to the reasons explained in 

the previous chapter.  

Regarding the parameters of each network (in primis, batch size and learning rate), 

the idea was to stick with the standard values. However, there have been problems due to 

GPU memory limit of the K20m. To solve the issue, models trained with the ImageNet 

dataset have a lower batch size than the one suggested in the official implementations. 

So, it must be considered that a low batch size could not stress the scalability in some 

cases because this value is divided by the number of GPUs used for training and the lower 

the batch size, the lower the power of parallel training.  

The exact values are reported in detail in Figure 4.5. 

Figure 4.5 – Training parameters applied for each Dataset and Neural Network 
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Another important parameter which can limit the training process is the number of 

threads used for input data loading. This is a sort of bottleneck and, if it is not specified 

as a parameter in the training command, the performance could not be as good as ex-

pected. For this reason, it is important to set always the number of data threads equal to 

the number of cores of the CPU (in this case, 12 or 20). 

Obviously, all these models’ parameters have been the same for each tool but their 

actual realization could differ for other hidden variables or have slightly variations from 

one framework to another. As a side note: the project could support training with different 

data types (precision) like float32 (single precision) and float16 (half precision) but since 

data types slightly varies from one framework to another, it has been decided to stick with 

the standard single precision (for instance, Caffe does not support half precision). 

4.6   Project structure 

In this section the “project interface” created from scratch will be discussed along 

with the organization of the whole work: the goal of the interface is to acquire perfor-

mance evaluations from all the models prepared and modified, as explained in the previ-

ous section, with the chosen metrics in the easiest way.  

The structure was inspired by other famous projects and will try to examine the 

most significant data following the already mentioned example projects and the consid-

erations described before. The personal files were created to benchmark in the best way 

the modified models’ configurations files and provide a useful and structured interface to 

use the tool simply and efficiently.  

First, GPU usage will be registered in order to understand which models, GPUs 

and frameworks perform better in terms of memory and power usage: this is particularly 

valuable because it is a requirement and a feature very demanded from most part of users 

who want to know the behaviour of a certain hardware and software conformation.  

Second, training speed will be measured to examine the effective performance 

during the process of learning: this is the typical way to benchmark the performance of a 

neural network and it was decided to follow the trend for providing a common unit in 

comparison with other benchmarks. 

The structure of the project is very linear and takes inspiration from the DLBENCH 

benchmarking project with several modifications to make everything simpler as shown in 

Figure 4.6.a and every component will be explained in detail in the following paragraphs. 
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Figure 4.6.a – The main project directory structure 

A Python script main.py is used for setting-up the training command to run accord-

ing to the arguments provided. The other script get_gpu_usage.py is a set of utilities that 

are needed to acquire memory and power usage.  

There is a folder for each framework (Figure 4.6.b) which contains subfolders or-

ganized by dataset (Figure 4.6.c) and model (Figure 4.6.d): all the code to train every 

network is inside them.  

Figure 4.6.b – The datasets’ subfolder structure for each framework 

Figure 4.6.c – The models’ subfolder structure for both CIFAR10 and ImageNet datasets 

Figure 4.6.d – The models’ subfolder structure for MNIST dataset 

It is present also a folder called logs where two files are saved for each run:  

• The first is used to memorize all the significant information about the training 

(time, memory and power usage); 
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• the second is necessary to register GPU information, as it will be explained later.  

The Python file main.py is very simple and plain as it accepts 5 arguments which 

are: 

• num_gpus: number of GPUs to use for training, -1 to use CPU (every core will 

be used in this case); 

• gpu: name of the GPU, necessary to acquire GPU information about memory and 

power usage; 

• model: it can be chosen among LeNet, AlexNet, GoogLeNet, ResNet50 and 

VGG16; 

• dataset: it can be chosen among MNIST, CIFAR10 and ImageNet; 

• tool: it can be chosen among Caffe, TensorFlow, PyTorch, MXNet and CNTK. 

From the arguments given, it is created the right command to run the training. Be-

fore launching the command for the tool selected, a background thread is created, whose 

life is strictly connected to the execution of the training: in fact, the thread calls a function 

in get_gpu_usage.py which prints in a file (we can call it as power-log file) every second 

the output of the command “nvidia-smi” until the training process is still alive.  

The NVIDIA System Management Interface (nvidia-smi) is a command line utility 

intended to aid in the management and monitoring of NVIDIA GPU devices. It can basi-

cally query the GPU device state and information, providing also information about run-

ning processes on GPUs.  

When the training is completed, another function of get_gpu_usage.py is called to 

extract GPU usage from the power-log file created: it simply parses the output of nvidia-

smi printed every second in the file in order to do the GPU average power and memory 

according to the GPU name. Finally, the time spent by the command, the GPU average 

power and memory will be printed. This information will also be saved in a log file and 

both the power-log and the log file will be moved to the “logs” directory. 

It is worth to say that measuring the training speed through the time spent by the 

command is not a good option at all because it is not absolutely accurate. That is why it 

was decided to look directly at the output of the command used to launch training: every 

framework reports training information in different ways (number of batch size per sec-

ond, seconds for a batch size, iterations per second and so on) and from them it is possible 

to get indirectly the precise images per second measure. 

Each tool subfolder contains all the official models for each one of the three datasets 

and most part of the work (around 75/80 % of the total project) has been done to organize, 

adjust and create all the conditions to run the benchmarks as explained earlier. 
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CHAPTER 5 

Evaluation and comparison of  

benchmark results 

In this chapter, the results of the experiments will be shown and discussed deeply. 

The following pages will focus on the most significant outcomes, trying to obtain useful 

ideas and considerations.  

5.1   The benchmark overview  

Before starting with the evaluation, some recapitulation about the benchmarking 

process will be given. As it was said in the previous chapter, we have 5 networks (LeNet, 

AlexNet, ResNet50, GoogLeNet, VGG16) and 3 datasets (MNIST, CIFAR10, 

ImageNet): the first model will run exclusively on MNIST, the other four will run on both 

ImageNet and CIFAR10. So, we have a total of 9 different test cases.  

The frameworks are 5 (Caffe, TensorFlow, PyTorch, MXNet, CNTK) and the 

hardware configurations used with each framework are 6 (CPU with 12 cores, CPU 

with 20 cores, 1 K20m, 2 K20m, 1 P100, 2 P100) but they are actually 5 by considering 

that the CPU with 12 cores will be used for training only with MNIST and CIFAR10 and 

the CPU with 20 cores only with ImageNet. This decision was taken in order to accelerate 

the running benchmark, since training a network on ImageNet takes much more time than 

on the other datasets. Figure 5.1 shows all the available configurations used. 

Figure 5.1 – Available configurations used in the project 
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The results can be considered quite valid since all the data have been averaged 

over 3 runs.  

By a quick calculus, it can be derived that the benchmark runs have been 270 in 

order to get the three parameters:  

• average speed for training (images per second),  

• average GPU power usage (in Watt)  

• average GPU memory usage (in Mebibyte).  

The time required to carry out accurately all the experiments is approximately two 

weeks, considering a medium commitment and no unexpected issues to solve. 

The chosen batch sizes could appear to be relatively small. But, as it was explained 

in the previous chapter, they were decreased after realizing the insufficient K20m memory 

for several tasks. Unfortunately, this has a contraindication: the lower the batch size, the 

lower the scalability. Consequently, some configurations seem to not respect the expected 

values: for example, a model run on 1 GPU could have a better performance than the 

same model on 2 GPUs. Luckily, the problem does not affect many configurations but it 

is worth to mention it. 

In the next sections, each of the nine network configurations will be briefly analysed 

and discussed on all the metrics. Then, overall comparisons and considerations will be 

made among all experiments and the results will be tested and evaluated with other bench-

marks. A table with all the results is available in Appendix A. 

5.2   Data analysis for MNIST 

LeNet is a very small and simple network to train on MNIST dataset. However, the 

goal to privilege the accordance with other experiments and with the whole work itself 

made us choose to train the network for only one epoch. Because of the small dimension 

of the network, it is not properly correct to analyse performance in terms of training speed: 

in fact, the scalability could not be appreciated as much as it should in a more complex 

and deeper model. 

The results for training speed are shown in Figure 5.2.a. By comparing the frame-

works, there is a notable difference between the set composed by Caffe and MXNet and 

the other composed by TensorFlow, PyTorch and CNTK. The former, which evidently 

outperforms the latter, presents very high values for GPU training, with a 20x – 30x 

speedup respect to CPU training, even though this speedup is much less evident when 2 

GPUs are used. Moreover, MXNet seems to have a particular implementation that does 

not give significant values when 2 P100 are used for the reasons explained above. On the 

other hand, the second group (TensorFlow, PyTorch and CNTK) does not scale bad with 

the help of GPUs but the levels are lower than the levels of Caffe and MXNet, even 

though PyTorch and CNTK show the best results among the five tools for CPU. 



Evaluation and comparison of benchmark results 43 

Figure 5.2.a – Benchmarks for training speed for Dataset MINST and Network LeNet 

About memory usage, we can see from Figure 5.2.b how TensorFlow is clearly the 

most expensive from this point of view and strangely the performances don’t follow the 

same trend. The other frameworks are almost equivalent with some few exceptions:  

• PyTorch and CNTK have a near-to-zero level of average memory usage when it 

comes to CPU;  

• PyTorch again offers very similar values for 1 and 2 GPUs both for P100 and 

K20m;  

• 2 K20m present more memory consumption than 1 P100 on MXNet; 

• CNTK shows optimum results. 

Figure 5.2.b – Benchmarks for GPU memory usage for Network LeNet and Dataset MINST 

Numbers are different in terms of power usage, where there is a general equivalence 

as shown in Figure 5.2.c. P100 consumes very low power and this is evident for all the 

frameworks. Surprisingly, 1 P100 is more expensive than 2 P100 on Caffe and this is also 

true for the K20m in every tool. It is remarkable that there are high values with CPU 
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training for TensorFlow and CNTK. In this metric, PyTorch slightly stands out for low 

levels in each configuration. 

Figure 5.2.c – Benchmarks for GPU power usage for Dataset MINST and Network LeNet 

5.3   Data analysis for CIFAR10  

CIFAR10’s models are not the same networks as the ImageNet ones but the same 

concepts and features have been applied in order to fit a smaller dataset. The same dis-

cussion for LeNet is still valid since the models are not so deep and complex for truly 

understanding the scalability but is still useful for the purpose of benchmarking. 

5.3.1.   AlexNet  

CNTK is not present in the metrics due to the lack of availability of an official 

model.  

Average speeds are shown in Figure 5.3.1.a. TensorFlow and Pytorch share almost 

the same data: the second one is a little more performant, but they do not present enough 

scalability as well as MXNet apart from the P100 data which are better than the others 

two. On the contrary, Caffe shows the best performance and scalability in all the config-

urations (1.5x from 1 P100 to 2 P100, more than 200x from CPU to 1 P100). 
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Figure 5.3.1.a – Benchmarks for training speed for Dataset CIFAR10 and Network AlexNet 

Even in the memory metric (see Figure 5.3.1.b), Caffe is the best, confirming the 

good implementation of the model over all. To note that for this tool 2 P100 statistically 

consume less than 1. Just a bit better PyTorch, followed by MXNet. At the same time, 

TensorFlow confirms itself as the most memory expensive without good results in speed 

for one epoch. 

Although the framework of Google does not particularly excel in the last two met-

rics for CIFAR10’s AlexNet, it does well for GPU power usage but the level for CPU is 

too much high. Very similar PyTorch and MXNet. The results for Caffe in this case are 

excessive as it exceeds the average for 1 and 2 K20m. 

Figure 5.3.1.b – Benchmarks for GPU memory usage for Dataset CIFAR10 and Network 

AlexNet 
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Figure 5.3.1.c – Benchmarks for GPU power usage for Dataset CIFAR10 and Network 

AlexNet 

5.3.2.   Resnet50 

This model is the only one for CIFAR10 which has an official implementation for 

every tool analysed, though the implementations are dissimilar and this could have 

brought little inaccuracy in the results. 

Average speeds (see Figure 5.3.2.a) are reported and the results are totally different 

from the previous tests. Even if there are no excessive high or low values, it is surprising 

that Caffe loses many points in terms of speed but the scalability is still acceptable. From 

the scalability point of view, the same can be said for PyTorch but the 2 P100 speed is 

lower than the 1 P100 one for the recurrent implementation issues. MXNet does not scale 

efficiently, however it gives similar good performance like TensorFlow that scales very 

well. CNTK overwhelms every framework with 2 P100 and offers more than average 

speed in most of the configurations.   

Memory usage (see Figure 5.3.2.b) is still a problem for TensoFlow which is the 

worse. PyTorch, CNTK and MXNet have very similar data each other, while Caffe is a 

bit higher than the others three. 

Power usage results (see Figure 5.3.2.c) are instead quite the same for each tool and 

there are no further comments to add apart from the fact that CNTK unusually manages 

to achieve optimum numbers with K20m configurations but not sufficient records with 

CPU and 2 P100. 
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Figure 5.3.2.a – Benchmarks for training speed for Dataset CIFAR10 and Network ResNet50 

Figure 5.3.2.b – Benchmarks for GPU memory usage for Dataset CIFAR10 and Network Res-

Net50 

Figure 5.3.2.c – Benchmarks for GPU power usage for Dataset CIFAR10 and Network Res-

Net50 
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5.3.3.   GoogLeNet 

TensorFlow and PyTorch are not present in the metrics due to the lack of availabil-

ity of an official model. 

Figure 5.3.3.a shows as MXNet achieves the best results in each hardware config-

uration but the 24.7 speedup from CPU to 1 K20m is the unique positive number about 

scalability: the difference between 1 and 2 GPUS are not so relevant. Instead, Caffe and 

CNTK above all can scale remarkably. As it can be easily noticed, Caffe presents the 

known implementation limits for 2 P100. 

Figure 5.3.3.a – Benchmarks for training speed for Dataset CIFAR10 and Network GoogLeNet 

The memory metric (Figure 5.3.3.b) resembles the speed results already shown: 

MXNet has the best results, Caffe has an average and linear usage, CNTK has very high 

results especially for K20m. 

Also for power (Figure 5.3.3.c) there is not much more to say: MXNet and Caffe 

are equal on almost all the data, CNTK shows evidently the worst numbers of the group. 

Figure 5.3.3.b – Benchmarks for GPU memory usage for Dataset CIFAR10 and Network 

GoogLeNet 
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Figure 5.3.3.c – Benchmarks for GPU power usage for Dataset CIFAR10 and Network Goog-

LeNet 

5.3.4.   VGG16 

TensorFlow and CNTK are not present in the metrics due to the lack of availability 

of an official model. 

In the case of this network, the results are very similar for all the three frameworks. 

In general, we have the same and not so evident scalability (Figure 5.3.4.a) for each GPU, 

with MXNet and PyTorch doing slightly better than Caffe. 

Caffe and MXNet have now the same profile regarding memory usage (Figure 

5.3.4.b): memory follows the increasing number of GPUs with an almost linear trend. 

PyTorch presents low levels for each configuration but for the 2 P100 spends more 

memory than the others. 

It is the same for power consumption (Figure 5.3.4.c): PyTorch remains the least 

expensive; Caffe and MXNet are very similar but the second one has higher values for 

P100 configurations.  

Figure 5.3.4.a – Benchmarks for training speed for Dataset CIFAR10 and Network VGG16 
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Figure 5.3.4.b – Benchmarks for GPU memory usage for Dataset CIFAR10 and Network 

VGG16 

Figure 5.3.4.c – Benchmarks for GPU power usage for Dataset CIFAR10 and Network VGG16 

5.4 Data analysis for ImageNet 

Here we have the most interesting results since the models are enough relevant and 

all the benchmarks typically use these networks for evaluation metrics. Furthermore, the 

network implementation for each framework is much more reliable and significant in 

terms of performance. In this case, the opportunity to compare data with other benchmark 

projects is a real possibility and it will give a considerable feedback for the work done. 

5.4.1.   AlexNet 

The training speed reported in Figure 5.4.1.a demonstrates variable trends for all 

the configurations and each framework behaves in a different way. Caffe has a discrete 

scalability for K20m and a better one for P100 with low-average data. CNTK manages to 

obtain very similar data but with less scalability on 2 P100 and a better one on K20m. 
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TensorFlow follows the same values of Caffe with lower ones on 2 P100 and higher ones 

on K20m. PyTorch has excellent results with only 1 GPU but the performance does not 

equally increase with 2 GPUs and MXNet does the same with a higher throughput for 2 

K20m and a lower one for 1 K20m. 

The values for memory usage are more similar and standard (Figure 4.4.1.b) with 

Caffe and PyTorch that have the lowest values, MXNet and CNTK are slightly higher. 

TensorFlow confirms to have a significant GPU memory expensiveness by using a great 

amount of memory every time. 

Figure 5.4.1.a – Benchmarks for training speed for Dataset ImageNet and Network AlexNet 

Figure 5.4.1.b – Benchmarks for GPU memory usage for Dataset ImageNet and Network 

AlexNet 

Compared to the power consumption (Figure 5.4.1.c), Caffe, TensorFlow and 

CNTK share an equal and expected profile. In contrast, PyTorch can obtain good results 

also in this metric with low levels especially for 2 GPUs (both K20m and P100). Instead, 
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MXNet values are very much the same for each hardware configuration which is a nov-

elty.  

Figure 5.4.1.c – Benchmarks for GPU power usage for Dataset ImageNet and Network 

AlexNet 

5.4.2.   ResNet50 

As shown in Figure 5.4.2.a, in this case the trend of speed is dissimilar from 

AlexNet and we have more average data. The only few things to remark are: 

• the optimum result of TensorFlow on 2 P100; 

• the good scalability of CNTK and TensorFlow; 

• the worst throughput for 1 P100 of CNTK, much lower than the average 

• the mediocre data obtained by Caffe; 

• the recurrent implementation issue of Caffe and PyTorch regarding the 2 P100 

configuration. 

Figure 5.4.2.a – Benchmarks for training speed for Dataset ImageNet and Network ResNet50 
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As usual, TensorFlow models’ implementations reveal themselves to be very 

memory-consuming (Figure 5.4.2.b). PyTorch, MXNet and Caffe have the same columns 

but in a different scale as shown in the figures below: the first one is better than the others, 

the third one is worse. CNTK achieves almost the same result of Caffe but with more 

consumption proportionally for P100. 

Again, PyTorch is a little bit better than the remaining frameworks in the power 

metric (Figure 5.4.2.c). Generally, all the tools have the usual trend, only CNTK that 

presents a particularly high value for the P100 and a lower one for the 2 K20m. 

Figure 5.4.2.b – Benchmarks for GPU memory usage for Dataset ImageNet and Network Res-

Net50 

Figure 5.4.2.c – Benchmarks for GPU power usage for Dataset ImageNet and Network Res-

Net50 
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5.4.3.   GoogLeNet  

PyTorch is not present in the metrics due to the lack of availability of an official 

model. 

Even with GoogLeNet for ImageNet, TensorFlow provides the best performance in 

terms of throughput scalability (Figure 5.4.3.a). Caffe and MXNet give approximately 

equals results, while CNTK has the lowest values. 

TensorFlow is still the primary memory consumer (Figure 5.4.3.b). MXNet pre-

sents the best values, along with CNTK. Caffe is just a bit more expensive than these two 

but much lower than TensorFlow. 

Almost nothing to add for power usage (Figure 5.4.3.c): CNTK is a little better than 

the rest; in addition, the values for 1 P100 and 2 P100 are particularly similar in all the 

frameworks taken in considerations.  

Figure 5.4.3.a – Benchmarks for training speed for Dataset ImageNet and Network GoogLeNet 

Figure 5.4.3.b – Benchmarks for GPU memory usage for Dataset ImageNet and Network 

GoogLeNet 
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Figure 5.4.3.c – Benchmarks for GPU power usage for Dataset ImageNet and Network Goog-

LeNet 

5.4.4.   VGG16 

In our final model we can notice that the data shape is analogous in the five frame-

works. The figure with the average speed (Figure 5.4.4.a) shows that in every tool the 

scalability is not remarkable but still appreciable even though Caffe and MXNet imple-

mentations does not scale adequately with the P100. TensorFlow manages to achieve the 

highest values, followed by PyTorch, MXNet, CNTK and Caffe. 

Figure 5.4.4.a – Benchmarks for training speed for Dataset ImageNet and Network VGG16 

The highest values are still for TensorFlow regarding the memory usage (Figure 

5.4.4.b). The other frameworks share approximately the same numbers: 

PyTorch has more equal values among the all architectures, instead MXNet has 

nearly higher values than the average. 
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Even the power usage (Figure 5.4.4.c) follows a similar profile in each framework. 

The main aspects to mention are the lowest levels of CNTK. 

Figure 5.4.4.b – Benchmarks for GPU memory usage for Dataset ImageNet and Network 

VGG16 

Figure 5.4.4.c – Benchmarks for GPU power usage for Dataset ImageNet and Network VGG16 

5.5   Overall considerations  

The results offer a wide variety of considerations from numerous points of view. 

The purpose of this discussion is not to merely find the best network or a winner among 

the frameworks used because it would not be appropriate. The main intention is to offer 

data to be interpreted and analysed for research goals and obtain more specific and inter-

esting considerations about hardware architectures, deep learning software and neural 

networks. 

Some preliminary conclusions which were practically expected for the study: 

• using a GPU gives better performances than using a CPU;  
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• by increasing the number of GPUs, we have an improvement but the speedup is 

not as much as moving from CPU to GPU in most cases. This parameter is actually 

going to increase with a longer training session and a higher batch size; 

• the P100 evidently outperforms the K20m in both speed and resources consump-

tion; 

• the more the GPUs are, the more the memory consumption and, almost always, 

the power usage are; 

• scalability varies from one configuration to another. 

As it was evident from the graphs above, performance is extremely variable among 

networks, datasets and GPUs. By comparing and making a logical evaluation, it is possi-

ble to discover recurrent trends and behaviour among the great amount of collected data. 

For example, one of the clearest aspects was the huge expensiveness of TensorFlow 

in terms of GPU memory usage. In fact, the Deep Learning framework from Google was 

almost always far more expensive than the other competitors. There is actually a real 

explanation behind this anomaly: the official models of TensorFlow which were picked 

up for this benchmarking are optimized for high performance, as stated in the previous 

chapter, and this is the reason why they consumed lots of GPU memory. Nevertheless, 

TensorFlow does not overwhelm the other frameworks for training speed (even though it 

is still one of the best) and this is something to take into account because the massive 

expensiveness of resources is not justified by the performance in speed. 

Another notable fact is the significantly lack of speed of Caffe, which in several 

configurations does not perform as much as the remaining tools. This statistic can be 

clarified by remembering that Caffe is an old tool and not maintained anymore. Certainly, 

the newest versions of the competitors are up-to-date with the latest improvements in 

performance. However, the NVIDIA Caffe variant could keep up with the latest versions 

of the other frameworks and it is our intention to develop this work by adding perfor-

mance benchmarks also for this modified version. 

By comparing the power usage, we can see that there are no significant differences 

in the configurations analysed. In fact, the amount consumed of power does not change 

in a very substantial way for the same network apart from some exceptions (like in the 

case of AlexNet trained with ImageNet). On the other hand, each network has its own 

requirements and specifications and the amount of power reflects that own structure. The 

same discussion could be made for memory usage because, without considering the atyp-

ical values of TensorFlow, all the other tools present a similar profile and trend for the 

same network. 

Talking about scalability, the discussion is much more complex because the trend 

is not so evident and more variable. Clearly, TensorFlow and CNTK have shown a better 

predisposition to scale with more GPUs in quite a few networks, especially on ImageNet. 
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But Caffe, even though with low numbers, also demonstrated that it can improve its per-

formance better than others in some occasions. 

A note must be done for MXNet which was average in the performance benchmarks 

but gave us the opportunity to test the models in the easiest way, with few code to modify 

and a documentation which was absolutely rich and clear. This aspect is not pertinent 

with the data, but in this evaluation context, where all the frameworks have advantages 

and disadvantages and it is difficult to see a leader, some minor points must be considered. 

Therefore, if the reader is looking for a very easy and complete benchmark, with expla-

nations and a great number of parameters to personalize the training session, MXNet 

should have a try.  

Our benchmark took into the analysis the most popular models in the image recog-

nition task, which are already well studied and compared. For this reason, we are not 

going to talk deeply about their comparison for obvious reasons. However, our data can 

confirm that a deeper and more elaborate network will consume more resources and take 

more time to be trained. For instance, VGG16 and ResNet50 have shown to be worst in 

power, memory and speed results than AlexNet and GoogLeNet and these numbers were 

certainly expected given their complexity. 

It is obvious that hundreds of additional considerations could be made for all the 

factors but we decided to make things simple and understandable by everyone, focusing 

only on the main points which were more interesting and relevant. A future goal will be 

to expand the data and the evaluations on a deeper level of abstractions in order to fully 

please the most exigent community. 

5.6   Result validation 

Usually it is common to compare the results of a project for assessing the correct-

ness of the data obtained. However, this work is not a replication of another benchmark 

system: the development and the general structure are absolutely new and personal, 

maybe also not perfect but the progress of the work was based only on a personal study 

of the technology and on individual decisions, though it took inspiration from the projects 

described in chapter 2. 

In order to offer some examples, it can be useful to consider all the efforts spent on 

the analysis, the design and the planning of the problem: the single parameters, the spe-

cific architecture configurations, the models picked and the modifications made are 

unique. 

For this reason, comparing in a very accurate and precise way the results obtained 

with other benchmarks that used other parameters and configurations does not have any 

sense. It would be only deceiving and confusing. For instance, a benchmark that uses 

synthetic data with a different batch size, number of epochs and iterations will be never 

comparable with our data even if the dataset, the network and the GPU are the same. 
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Anyway, other famous benchmarks must be interpreted in relation with our work 

not specifically but in a more abstract way. The results have been confronted with the 

benchmarks taken from the DLBENCH project page, the TensorFlow official perfor-

mance guide and the NVIDIA Data Center page and the scalability in each of them re-

sembles the trend of our data and graphs for CPU and GPU training. 

Nevertheless, we can also attest the likelihood of our results and observe if there 

are any peculiarities and singularities that do not fit the situation and the context. Cer-

tainly, having had a 2 P100 training that runs slower than a CPU training evidently shows 

a present issue and explanations must be found to correct or to explain this problem. 

But this is not the case for these data: almost all the values respect an expected and 

standard behaviour and logic. Unusual numbers have been remarked during the previous 

sections and they were caused by the low batch size and the model implementation (re-

member that a low batch size was chosen for the GPU memory limit of the K20m). Apart 

from these exceptions, the rest of our results seems to be in accordance with our common 

sense and this certify the quality of the work done. 
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CHAPTER 6 

Conclusion 

There is no doubt that this work has developed topics and themes which are relevant 

to understand the new opportunities and the future developments of Deep Learning. The 

precise analysis and methodology allowed to elaborate a simple but useful benchmarking 

project that aims to satisfy some requirements and, after the deployment and the verifica-

tion, we can say that the final results can absolutely attest the value of the efforts made. 

The followed path has been helpful for achieving the desired outcomes: the general 

study of Deep Learning was intended to acquire the necessary knowledge for experiment-

ing and doing research in this field; then, a scrupulous and attentive analysis of bench-

marking approaches and concepts was carried out in order to focus the problem and face 

it in the best way possible with personal and original methods; after that, the project was 

realised according to the previous study and every choice was taken for refining every 

detail; after all this preparation, the experiments were carried out and the obtained data 

were evaluated with interesting discussions.  

The work has fulfilled all the initially proposed objectives. First of all, the technol-

ogy and the primary Deep Learning notions have been fully explained. Most of all, the 

created model for the evaluation of Deep Learning environments was able not only to 

provide useful and completed results for a wide range of hardware and software configu-

rations but it also efficiently analysed and compared them from the points of interests 

which were considered more valuable in the specific context. Moreover, the outcomes 

could be used to assess the performance of a system and optimise it with the improve-

ments shown. 

Although we can be gratified with the final product, there is still work to do to 

perfect and to expand the whole project. The problems encountered during the progress 

have made us take some decisions that can affect the effectiveness of the evaluation. For 

example, some models’ implementations do not reflect the maximum efficiency needed 

to have the best performance, as well as several frameworks’ parameters.  

Therefore, there are some enhancements that can be generally applied to enrich the 

entire system but that is not all. On one hand, the intention is to test the benchmark on 

multiple hardware: this means to examine the models with more and different GPUs in 

order to provide a more interesting overview of the scalability. On the other hand, we feel 

the need to analyse other frameworks like Caffe2 and the NVIDIA Caffe project which 

are very popular among the Deep Learning users and are believed to be very efficient and 
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promising for the data they could offer. Moreover, different metrics could be measured 

and a more complete vision of the tests could be made in this way. 

Finally, the most ambitious goal is distributed training: recently, almost every 

framework has offered the possibility to train the network by using multiple nodes of a 

cluster. This is actually the best way to train quickly a network and reach a huge and 

amazing performance. Since there are very few projects that deal with this task, the pro-

posed extension could be much more innovative and helpful for a wider range of users 

and could bring an additional contribution to the area of Deep Learning benchmarking. 
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APPENDIX A 

Table of results 

Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average Training Speed (images per second) MNIST LeNet Caffe 572 19.807 42.588 22.734 46.110 

Average Training Speed (images per second) MNIST LeNet TensorFlow 818 4.539 9.846 4.723 11.034

Average Training Speed (images per second) MNIST LeNet PyTorch 1.448 4.320 9.524 6.105 10.345 

Average Training Speed (images per second) MNIST LeNet MXNet 1.000 18.372 46.691 22.191 34.137

Average Training Speed (images per second) MNIST LeNet CNTK 1.573 8.191 10.510 9.234 14.609 

Average Training Speed (images per second) CIFAR10 AlexNet Caffe 88 4.437 17.903 7.668 28.179 

Average Training Speed (images per second) CIFAR10 AlexNet TensorFlow 405 3.875 9.029 6.137 9.158 

Average Training Speed (images per second) CIFAR10 AlexNet PyTorch 84 3.556 7.729 5.120 8.533 

Average Training Speed (images per second) CIFAR10 AlexNet MXNet 55 3.119 12.154 2.643 7.708 

Average Training Speed (images per second) CIFAR10 AlexNet CNTK 0 0 0 0 0 

Average Training Speed (images per second) CIFAR10 ResNet50 Caffe 88 192 734 478 1.558 

Average Training Speed (images per second) CIFAR10 ResNet50 TensorFlow 23 579 2.375 1.118 4.381 

Average Training Speed (images per second) CIFAR10 ResNet50 PyTorch 17 438 1.684 977 1.231 
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Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average Training Speed (images per second) CIFAR10 ResNet50 MXNet 35 982 3.237 1.573 3.724 

Average Training Speed (images per second) CIFAR10 ResNet50 CNTK 108 1.115 2.385 1.407 5.582 

Average Training Speed (images per second) CIFAR10 GoogLeNet Caffe 23 774 3.623 1.496 751 

Average Training Speed (images per second) CIFAR10 GoogLeNet TensorFlow 0 0 0 0 0 

Average Training Speed (images per second) CIFAR10 GoogLeNet PyTorch 0 0 0 0 0 

Average Training Speed (images per second) CIFAR10 GoogLeNet MXNet 49 1.211 3.891 1.744 4.067 

Average Training Speed (images per second) CIFAR10 GoogLeNet CNTK 18 294 1.147 961 2.960 

Average Training Speed (images per second) CIFAR10 VGG16 Caffe 8 281 2.491 818 3.069 

Average Training Speed (images per second) CIFAR10 VGG16 TensorFlow 0 0 0 0 0 

Average Training Speed (images per second) CIFAR10 VGG16 PyTorch 11 731 2.723 1.255 2.667 

Average Training Speed (images per second) CIFAR10 VGG16 MXNet 10 703 3.038 1.039 3.582 

Average Training Speed (images per second) CIFAR10 VGG16 CNTK 0 0 0 0 0 

Average Training Speed (images per second) ImageNet AlexNet Caffe 4 236 624 405 1.614 

Average Training Speed (images per second) ImageNet AlexNet TensorFlow 9 479 542 812 1.137 

Average Training Speed (images per second) ImageNet AlexNet PyTorch 18 522 2.169 715 2.560 

Average Training Speed (images per second) ImageNet AlexNet MXNet 3 297 1.488 1.461 1.944 

Average Training Speed (images per second) ImageNet AlexNet CNTK 26 174 623 502 1.298 

Average Training Speed (images per second) ImageNet ResNet50 Caffe 2 24 93 37 80 



Table of results 69 

Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average Training Speed (images per second) ImageNet ResNet50 TensorFlow 2 30 124 60 218 

Average Training Speed (images per second) ImageNet ResNet50 PyTorch 3 30 125 37 94 

Average Training Speed (images per second) ImageNet ResNet50 MXNet 3 33 127 52 151 

Average Training Speed (images per second) ImageNet ResNet50 CNTK 6 27 73 72 163 

Average Training Speed (images per second) ImageNet GoogLeNet Caffe 4 56 215 80 276 

Average Training Speed (images per second) ImageNet GoogLeNet TensorFlow 5 59 248 116 369 

Average Training Speed (images per second) ImageNet GoogLeNet PyTorch 0 0 0 0 0 

Average Training Speed (images per second) ImageNet GoogLeNet MXNet 6 72 249 107 258 

Average Training Speed (images per second) ImageNet GoogLeNet CNTK 6 33 75 68 123 

Average Training Speed (images per second) ImageNet VGG16 Caffe 1 12 70 18 62 

Average Training Speed (images per second) ImageNet VGG16 TensorFlow 1 19 96 33 119 

Average Training Speed (images per second) ImageNet VGG16 PyTorch 1 19 92 22 107 

Average Training Speed (images per second) ImageNet VGG16 MXNet 1 14 87 19 69 

Average Training Speed (images per second) ImageNet VGG16 CNTK 3 16 59 30 78 

Average GPU Memory Usage (MiB) MNIST LeNet Caffe 0 140 291 190 405 

Average GPU Memory Usage (MiB) MNIST LeNet TensorFlow 0 2.462 2.828 4.481 12.831 

Average GPU Memory Usage (MiB) MNIST LeNet PyTorch 0 167 340 175 354 

Average GPU Memory Usage (MiB) MNIST LeNet MXNet 0 134 180 188 395 
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Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average GPU Memory Usage (MiB) MNIST LeNet CNTK 0 75 193 101 257 

Average GPU Memory Usage (MiB) CIFAR10 AlexNet Caffe 0 157 318 228 301 

Average GPU Memory Usage (MiB) CIFAR10 AlexNet TensorFlow 0 3.370 4.293 3.208 10.158 

Average GPU Memory Usage (MiB) CIFAR10 AlexNet PyTorch 0 157 345 346 602 

Average GPU Memory Usage (MiB) CIFAR10 AlexNet MXNet 0 324 502 583 824 

Average GPU Memory Usage (MiB) CIFAR10 AlexNet CNTK 0 0 0 0 0 

Average GPU Memory Usage (MiB) CIFAR10 ResNet50 Caffe 0 1.334 1.484 1.569 1.754 

Average GPU Memory Usage (MiB) CIFAR10 ResNet50 TensorFlow 0 4.132 5.639 3.807 10.882 

Average GPU Memory Usage (MiB) CIFAR10 ResNet50 PyTorch 0 840 999 741 1.110 

Average GPU Memory Usage (MiB) CIFAR10 ResNet50 MXNet 0 411 575 507 742 

Average GPU Memory Usage (MiB) CIFAR10 ResNet50 CNTK 0 241 453 495 822 

Average GPU Memory Usage (MiB) CIFAR10 GoogLeNet Caffe 0 489 684 872 1.223 

Average GPU Memory Usage (MiB) CIFAR10 GoogLeNet TensorFlow 0 0 0 0 0 

Average GPU Memory Usage (MiB) CIFAR10 GoogLeNet PyTorch 0 0 0 0 0 

Average GPU Memory Usage (MiB) CIFAR10 GoogLeNet MXNet 0 238 400 385 851 

Average GPU Memory Usage (MiB) CIFAR10 GoogLeNet CNTK 0 983 1.197 1.135 1.582 

Average GPU Memory Usage (MiB) CIFAR10 VGG16 Caffe 0 497 641 797 1.061 

Average GPU Memory Usage (MiB) CIFAR10 VGG16 TensorFlow 0 0 0 0 0 



Table of results 71 

Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average GPU Memory Usage (MiB) CIFAR10 VGG16 PyTorch 0 452 571 582 1.401 

Average GPU Memory Usage (MiB) CIFAR10 VGG16 MXNet 0 653 841 1.075 1.296 

Average GPU Memory Usage (MiB) CIFAR10 VGG16 CNTK 0 0 0 0 0 

Average GPU Memory Usage (MiB) ImageNet AlexNet Caffe 0 1.288 1.472 1.726 1.942 

Average GPU Memory Usage (MiB) ImageNet AlexNet TensorFlow 0 4.203 14.230 4.430 15.201 

Average GPU Memory Usage (MiB) ImageNet AlexNet PyTorch 0 1.036 1.081 902 1.949 

Average GPU Memory Usage (MiB) ImageNet AlexNet MXNet 0 1.561 1.680 2.628 2.629 

Average GPU Memory Usage (MiB) ImageNet AlexNet CNTK 0 1.798 2.030 2.342 2.986 

Average GPU Memory Usage (MiB) ImageNet ResNet50 Caffe 0 1.774 2.122 2.174 2.532 

Average GPU Memory Usage (MiB) ImageNet ResNet50 TensorFlow 0 4.331 13.507 4.320 13.617 

Average GPU Memory Usage (MiB) ImageNet ResNet50 PyTorch 0 357 716 844 1.076 

Average GPU Memory Usage (MiB) ImageNet ResNet50 MXNet 0 823 1.045 1.134 1.498 

Average GPU Memory Usage (MiB) ImageNet ResNet50 CNTK 0 1.719 3.447 2.056 4.128 

Average GPU Memory Usage (MiB) ImageNet GoogLeNet Caffe 0 755 945 1.135 1.340 

Average GPU Memory Usage (MiB) ImageNet GoogLeNet TensorFlow 0 4.296 12.752 4.339 13.485 

Average GPU Memory Usage (MiB) ImageNet GoogLeNet PyTorch 0 0 0 0 0 

Average GPU Memory Usage (MiB) ImageNet GoogLeNet MXNet 0 383 493 509 940 

Average GPU Memory Usage (MiB) ImageNet GoogLeNet CNTK 0 406 604 562 984 
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Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average GPU Memory Usage (MiB) ImageNet VGG16 Caffe 0 1.406 1.585 2.238 2.531 

Average GPU Memory Usage (MiB) ImageNet VGG16 TensorFlow 0 4.413 14.354 4.430 14.823 

Average GPU Memory Usage (MiB) ImageNet VGG16 PyTorch 0 1.749 1.771 1.626 1.797 

Average GPU Memory Usage (MiB) ImageNet VGG16 MXNet 0 2.318 2.155 3.484 3.649 

Average GPU Memory Usage (MiB) ImageNet VGG16 CNTK 0 1.660 1.629 2.365 2.722 

Average GPU Power Usage (W) MNIST LeNet Caffe 33 71 46 64 36 

Average GPU Power Usage (W) MNIST LeNet TensorFlow 32 72 35 71 42 

Average GPU Power Usage (W) MNIST LeNet PyTorch 31 51 30 48 32 

Average GPU Power Usage (W) MNIST LeNet MXNet 32 68 32 65 35 

Average GPU Power Usage (W) MNIST LeNet CNTK 32 58 35 65 43 

Average GPU Power Usage (W) CIFAR10 AlexNet Caffe 32 81 67 96 41 

Average GPU Power Usage (W) CIFAR10 AlexNet TensorFlow 32 64 33 62 34 

Average GPU Power Usage (W) CIFAR10 AlexNet PyTorch 31 55 35 65 43 

Average GPU Power Usage (W) CIFAR10 AlexNet MXNet 32 70 65 78 56 

Average GPU Power Usage (W) CIFAR10 AlexNet CNTK 0 0 0 0 0 

Average GPU Power Usage (W) CIFAR10 ResNet50 Caffe 32 52 51 95 70 

Average GPU Power Usage (W) CIFAR10 ResNet50 TensorFlow 31 75 49 87 52 

Average GPU Power Usage (W) CIFAR10 ResNet50 PyTorch 31 78 61 88 45 



Table of results 73 

Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average GPU Power Usage (W) CIFAR10 ResNet50 MXNet 32 69 67 101 65 

Average GPU Power Usage (W) CIFAR10 ResNet50 CNTK 33 55 42 79 81 

Average GPU Power Usage (W) CIFAR10 GoogLeNet Caffe 32 59 43 77 50 

Average GPU Power Usage (W) CIFAR10 GoogLeNet TensorFlow 0 0 0 0 0 

Average GPU Power Usage (W) CIFAR10 GoogLeNet PyTorch 0 0 0 0 0 

Average GPU Power Usage (W) CIFAR10 GoogLeNet MXNet 32 53 45 73 50 

Average GPU Power Usage (W) CIFAR10 GoogLeNet CNTK 32 73 83 114 105 

Average GPU Power Usage (W) CIFAR10 VGG16 Caffe 32 69 72 115 83 

Average GPU Power Usage (W) CIFAR10 VGG16 TensorFlow 0 0 0 0 0 

Average GPU Power Usage (W) CIFAR10 VGG16 PyTorch 34 72 60 83 82 

Average GPU Power Usage (W) CIFAR10 VGG16 MXNet 32 73 87 110 99 

Average GPU Power Usage (W) CIFAR10 VGG16 CNTK 0 0 0 0 0 

Average GPU Power Usage (W) ImageNet AlexNet Caffe 28 76 59 124 99 

Average GPU Power Usage (W) ImageNet AlexNet TensorFlow 28 76 45 112 63 

Average GPU Power Usage (W) ImageNet AlexNet PyTorch 28 52 30 46 34 

Average GPU Power Usage (W) ImageNet AlexNet MXNet 28 79 92 86 89 

Average GPU Power Usage (W) ImageNet AlexNet CNTK 29 63 59 89 61 

Average GPU Power Usage (W) ImageNet ResNet50 Caffe 28 69 70 107 67 
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Metric Dataset Network 
Frame-

work 

E5-2630 

(12/20 cores)

1 GPU 

K20m 

1 GPU 

P100 

2 GPU 

K20m 

2 GPU 

P100 

Average GPU Power Usage (W) ImageNet ResNet50 TensorFlow 28 77 59 106 79 

Average GPU Power Usage (W) ImageNet ResNet50 PyTorch 28 58 56 85 62 

Average GPU Power Usage (W) ImageNet ResNet50 MXNet 28 71 74 107 87 

Average GPU Power Usage (W) ImageNet ResNet50 CNTK 29 78 119 46 60 

Average GPU Power Usage (W) ImageNet GoogLeNet Caffe 28 63 55 88 57 

Average GPU Power Usage (W) ImageNet GoogLeNet TensorFlow 29 70 48 89 59 

Average GPU Power Usage (W) ImageNet GoogLeNet PyTorch 0 0 0 0 0 

Average GPU Power Usage (W) ImageNet GoogLeNet MXNet 28 61 55 89 56 

Average GPU Power Usage (W) ImageNet GoogLeNet CNTK 29 58 48 77 47 

Average GPU Power Usage (W) ImageNet VGG16 Caffe 28 66 65 101 72 

Average GPU Power Usage (W) ImageNet VGG16 TensorFlow 29 86 84 115 102 

Average GPU Power Usage (W) ImageNet VGG16 PyTorch 28 78 85 93 91 

Average GPU Power Usage (W) ImageNet VGG16 MXNet 28 75 87 100 80 

Average GPU Power Usage (W) ImageNet VGG16 CNTK 29 63 64 91 58 


