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Abstract

Unveiling of a gene function remains a major bottleneck in improving our under-
standing of living systems, by understanding the processes and mechanisms that
are going on in the cell. Beyond classic sequence analysis, an important source of
information about the function of a gene is when, where, and how strongly it is be-
ing expressed. While the DNA analysis gives us information about all the genetic
information that is in a cell, it is the RNA quantitative analysis which allows us to
know which information is being processed and which not.

Thus, in the post-genomic era the genome-scale expression profiling has become a
key tool of functional genomics. The introduction of expression profiling by Next
Generation Sequencing has brought a new wave of findings in this matter, as it al-
lows the expression profiling of the whole transcriptome in contrast to other, well-
established methods which can focus only on handful of selected targets.

As expression profiling is a fast-moving field, both in terms of the technology and
data analysis development, the understanding how the data is generated and how
the data analysis process works is crucial in order to correctly interpret the results.
The recent study by US FDA led SEQC-III/MAQC consortium has shown that there
is no technological gold standard in expression profiling. Moreover, this study as
well as follow up work has also shown that there is also noticeable discordance be-
tween results of RNA-Seq data analysis approaches.

This project aimed to look deeper into this challenge and focus on tools for differ-
ential gene expression calling. The benchmarking data set provided by MAQC-
II/SEQC consortium was utilized to compare a set of approaches for differential
expression gene (DEG) calling as well as for Gene Ontology enrichment analysis.
The areas of discordance for both levels (DEG calling end GO terms enrichment) as
well the propagation of discordance from one level to another were analyzed.

Keywords — RNA-seq; Differential expression; Gene Ontology enrichment analysis
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Resumen

Desvelar la funcién de los genes sigue siendo clave para nuestro entendimieno de
los seres vivos, entendiendo de esta manera los procesos y mecanismos que estin
teniendo lugar en la célula. Mas alld de un andlisis de secuencia clasico, una fuente
importante de informacién sobre la funcién de un gen es cudnto, dénde y cudndo
éste estd siendo expresado. Mientras que el andlisis de ADN nos muestra toda la
informacién genética que se encuentra en la célula, es el andlisis cuantitativo de
ARN lo que nos permite conocer que informacién esté siendo procesada y cual no.

Por tanto, en la era post-gendmica los perfiles de expresién a escala genémica se han
convertido en una herramienta clave de la genémica funcional. La introduccién de
los pertiles de expresion por Next Generation Sequencing ha traido consigo una nueva
ola de descubrimientos en esta materia, al permitir analizar el perfil de expresion de
todo el transcriptoma, al contrario que otros métodos bien establecidos que podian
centrarse tan solo en unos pocos objetivos.

Como el anélisis de perfiles de expresién es un campo en constante avance, en térmi-
nos de tecnologia, asi como en términos de andlisis de datos, poder entender como se
generan los datos y como funciona el anélisis de datos es crucial para poder interpre-
tar los resultados correctamente. Un estudio reciente de la US FDA conducido por el
consorcio SEQC-III/MAQC ha mostrado que no hay una tecnologia de referencia en
el andlisis de perfiles de expresién. Es mds, este estudio, junto a trabajos posteriores,
ha mostrado que hay una discordancia notable entre los deferentes enfoques hacia
el andlisis de datos de RNA-seq.

El objetivo de este TFG es indagar con méas profundidad en este desafio y centrarse
en herramientas de andlisis de expresion diferencial. Aprovecharé los datos de ref-
erencia proporcionados por el consorcio MAQC-III/SEQC y compararé una serie de
enfoques para el andlisis de expresion diferencial, asi como el anélisis de enriquec-
imiento en términos Gene Ontology. Identificaré las dreas de discordancia en am-
bos niveles (expresion diferencial y analisis de términos GO). También investigaré
la propagacion de la discordancia de un nivel al otro. Un objetivo adicional sera
identificar las fuentes de discordancia para ayudar a la mejora de futuros analisis.

Palabras clave — RNA-seq; Expresion Diferencial; analisis enriquecimiento Gene
Ontology
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Introduction

1.1 Background

Since the discovery of nucleic acids as the molecules that carry genetic information,
understanding how this information can be stored and used has been one of the
main areas of study in the molecular biology field. Unveiling of a gene function
remains a major bottleneck in improving our understanding of living systems, by
understanding the processes and mechanisms that are occurring in the cell. Classic
sequence analyses are centered in discovering what information is inside the cell,
revealing all the information that can be potentially used by the cell machinery, fo-
cusing on DNA profiling. Beyond classic sequence analysis, an important source
of information about the function of a gene is when, where, and how strongly it
is expressed. Here is where the Ribonucleic Acid (RNA) gains importance, as it is
known as an essential molecule present in every single living cell. Analyzing the
identity and amount of each RNA molecule in a certain tissue or cell under specific
conditions is the aim of the transcriptomics (Hrdlickova et al., 2016) (FIGURE 1.1).
Although in genomics the DNA analysis gives us information about all the genetic
information that is in a cell, it is the RNA quantitative analysis which allows us to
know which information is being processed and which not.
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FIGURE 1.1: Schema of omics technologies. DNA (genomics) is first transcribed
to mRNA (transcriptomics) and translated into protein (proteomics) which can cat-
alyze reactions that act on and give rise to metabolites (metabolomics), glycopro-
teins and carbohydrates (glycomics), and lipids (lipidomics) (Wu et al., 2011).
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1.2 RNA expression profiling

Many qualitative and quantitative methods for RNA expression profiling analysis
have been developed over time. Many of them are no longer in use, however, it is
important to know how they performed due to the availability of a vast amount of
data coming from these technologies.

In the following subsections I will provide a brief overview of past and current tech-
nologies.

1.2.1 Method focused on selected targets

This methods do not take into account the whole transcriptome, they focus on some
genes of interest whose expression is quantified very precisely, to the detriment of
higher throughput.

The most widely used method is known as quantitative reverse transcription PCR
(RT-gPCR) and it has been established as a refernce method for specific gene expres-
sion analysis during the past years. This method starts with the isolation of RNA
from the cells; followed by cDNA reverse-transcription; then, the cDNA is used
as the template for the qPCR reaction which utilizes sequence-specific primers; the
production of amplification products can be monitored during each cycle of the PCR
reaction, thanks to fluorescent reporter molecules; as a final step, the initial concen-
tration of the selected transcript is calculated based on the exponential phase of the
reaction (Wagner, 2013).

This technology has became a mainstream research tool for numerous reasons. There
is no need of a post-PCR processing because it is a homogeneous assay. It allows di-
rect comparison between transcripts that differ widely in their abundance due to its
huge dynamic range (>1x107). The assay takes advantage of the inherent quantita-
tive potential of the PCR, making it a quantitative as well as a qualitative analysis
(Ginzinger, 2002).

1.2.2 Gene expression profiling by microarrays

DNA microarrays can simultaneously measure the expression level of thousands of
targets (genes and/or transcript) within a particular sample. The key physiochemi-
cal process involved in microarrays is DNA hybridization. In these arrays, specific
DNA sequences, derived from transcripts are either deposited or synthesized in a
2-D array on a surface in such a way that the DNA is attached to the surface. Lately,
fluorescently labeled mRNA sequences which appear in an examined sample hy-
bridize with complementary probes. The amount of target is detected by measuring
fluorescent signal intensity.

Most microarrays for RNA applications are centered in the measurement of the ex-
pression level of individual genes, however it is well known that the transcriptome
of higher organisms is way more complex. “Alternative splicing, the process by which
individual exons of pre-mRNAs are spliced to produce different isoforms of mRNA tran-
scripts from the same gene” (Xu et al., 2011). This is the major source of protein isoform
diversity, which is strongly related with their function and, subsequently, with the
biological implication of such mRNA isoforms.
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Recently, a new, more sophisticated type of array has been developed. "This array
uses a high-density tiling approach for the measurement of gene and exon expression and
genome-wide identification of alternative splicing as well as analysis for coding SNP de-
tection and noncoding transcripts”, in addition, the exon—exon junction probes of this
array were shown to improve the detection of alternative splicing events (Xu et al.,
2011).

However, it has also some drawbacks. This technology enables interrogation of tran-
scripts genome-wide, however, it requires a priori sequence information for design-
ing the probes. This, limited the development of microarray technology and its ap-
plication in some studies. In addition, cross-hybridization and background signals
might lead to low specificity or low sensitivity for some genes (Hrdlickova et al.,
2016).

1.2.3 RNA-seq: gene expression profiling by (Next Generation) Sequenc-
ing

The first method of interrogation of RNA sequences at large scale was based on the
partial sequencing of complementary DNA (cDNA) it was also known as expressed
sequence tag (EST) method, developed in the early 1990s (Adams et al., 1992). Later,
also in the 1990s the Serial Analysis of Gene Expression (SAGE) cut down the cost
of expression analysis, thanks to sequencing only a short tag region per cDNA (Vel-
culescu et al., 1995).

Both of these methods are based on Sanger’s "chain terminator" technique, also
known as Sanger sequencing technology. It was developed by Frederik Sanger and it
entailed “the major breakthrough that forever altered the progress of DNA sequencing tech-
nology” (Heather and Chain, 2016). This technique makes use of dideoxynucleotides
(ddNTPs), which are structural analogues of the deoxynucleotides (dNTPs), the
monomers of the DNA strands. The ddNTPs have an unique change in their struc-
ture, which is lacking of the 3"hydroxyl group that is required for extension of DNA
strands, because they cannot longer form a bond with the 5’phosphate of the next
dNTP (Chidgeavadze et al., 1984).

The technique requires four different extension reactions, all of them contain the four
dNTPs (dATP, dGTP, dCTP and dTTP) and the polymerase. Single type of ddNTP
(ddATP, ddGTP, ddCTP, or ddTTP) is added to each tube in a 100-fold lower concen-
tration than the dNTPs. Afterwards, the results of the extension reactions are run on
four lanes of a polyacrylamide gel, where DNA strands of each possible length can
be observed, allowing to infer the DNA sequence.

"The accuracy, robustness and ease of use led to the dideoxy chain-termination method — or
simply, Sanger sequencing — to become the most common technology used to sequence DNA
for years”(Heather and Chain, 2016). Some improvements were made to the tech-
nique, including the replacement of previous radiolabelling with fluorometric based
detection, allowing to perform the sequencing in one reaction instead of four. This
technique is still the most precise one (99.999%) and perform considerably long reads
400-900 bp, however its low throughput has relegated it to very few applications.

It was with the massive parallel sequencing, around 2002, when the sequencing tech-
nology bursted out. New technologies were developed, known as Next Generation
Sequencing (NGS). Some of this brand new techniques were: 454, solexa/Illumina,
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SOLiD and IonTorrent. More recently, some other technologies appeared in the mar-
ket, such as PacBio and OxfordNanopore (ONT), they are known as Third Gener-
ation Sequencing, due to their capability of single molecule real-time sequencing
(SMRT).

Next Generation Sequencing technologies — brief review

e 454 pyrosequencing (Life Sciences/Roche): it was firstly owned by Life Sci-
ences since 2000 and was acquired by Roche in 2007 and, lastly, was shut
down by Roche in 2013. Its development was the milestone that started the
NGS era (Heather and Chain, 2016). In this method, template-bound beads
are distributed into a PicoTiterPlate along with beads that contain an enzyme
cocktail. When a dNTP is incorporated into a strand, an enzymatic cascade
occurs, resulting in a bioluminescence signal. A charge-couple device cam-
era detects each single burst of light and can assign it to the incorporation of
one or more identical dNTPs at a particular bead. The relatively high average
read length (up to 700 bp) and the accuracy 99.9%, made this technology very
useful in some applications, however, the problems when reading polybases
bigger than 6 repeated nucleotides, the high cost and the low throughput rel-
egated this technology to a second plain (Goodwin et al., 2016). Despite the
fact that this technology is not longer available, it is still important due to the
considerable amount of data sets produced by it that can still be used.

¢ Solexa/Illumina: in 2005 Solexa completed sequencing of the Bacteriophage
phiX-174 genome, the same that Sanger sequenced for the first time, however,
this new technology achieved a considerably higher amount of data, reaching
3 million bases in a single run. In 2007 it was acquired by Illumina, and nowa-
days it is the most widely used sequencing technology. Briefly, the process
starts with a preparation of DNA library by fragmentation of the DNA, fol-
lowed by the adapter ligation. Adapter-ligated fragments are then amplified
in the PCR reaction. The library is loaded into the flowcell, where the frag-
ments are captured by oligos complementary to the library adapters. During
each cycle, a mixture of all four individually labelled and 3’-blocked deoxynu-
cleotides (ANTPs) are added. Then the strand grows by single nucleotide and
then unbound dNTPs are removed and the surface is imaged to identify which
dNTP was incorporated to each cluster. Then, the nucleotide is unblocked,
the fluorophore is removed and a new cycle can begin (Heather and Chain,
2016). The maturity as a technology, a high level of cross-platform compati-
bility and its wide range of platforms has made Illumina the dominator of the
short-read sequencing industry. “The suite of instruments available ranges from
the low-throughput MiniSeq to the ultra-high-throughput HiSeq X, which is capable
of sequencing around 1,800 human genomes to 30x coverage per year” (Goodwin
et al., 2016). Further diversification is derived from the many options avail-
able for runtime, read structure and read length (up to 300 bp). Currently
the availability of platforms offered by Illumina are (from smaller to bigger
throughput) iSeq, MiniSeq, MiSeq, NextSeq, HiSeq and NovaSeq, with out-
puts varying form 1.2 Gb to 6000 Gb. Although it has an overall accuracy rate
of >99.5%, the platform does display some under-representation in AT-rich and
GC-rich regions, as well as a tendency towards substitution errors (Goodwin
etal., 2016).
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¢ SOLiD: the sequencing by oligonucleotide ligation and detection was firstly
launched by Applied Biosystems (which became Life Technologies following
a merger with Invitrogen). As the name suggests, it is different to the previous
techniques regarding the main reaction that take part in the sequencing pro-
cess, here is the ligation (sequencing by ligation), which uses a DNA ligase to
elongate the new DNA strand adding dinucleotides, instead the polymerase
used in the sequenced by synthesis methods (Heather and Chain, 2016). It uti-
lizes two-base-encoded probes, in which each fluorometric signal represents
a dinucleotide. Thus, the direct output is not associated with the incorpo-
ration of a known nucleotide. There are 16 different combinations of dinu-
cleotides, and it is not possible to label them with this many various types
of fluorophores, therefore four different fluorophores are used, each of them
representing a subset of four different dinucleotides. Consequently, each lig-
ation signal represents one of several possible dinucleotides, leading to the
term colour-space (rather than base-space ), which must be decoded during
data analysis. The SOLiD sequencing procedure is composed of a series of
probe—anchor binding, ligation, imaging and cleavage cycles to elongate the
complementary strand. Over the course of the cycles, single-nucleotide offsets
are introduced to ensure every base in the template strand is sequenced. The
Sequencing By Ligation (SBL) technique used by SOLiD affords this technol-
ogy a very high accuracy (99.99%), as each base is probed multiple times. Al-
though accurate, this platform also shows evidence of a trade-off between sen-
sitivity and specificity, such that true variants are missed while few false vari-
ants are called. Its maximum read length and its long runtimes (several days)
have relegated this technology to a small niche within the industry (Goodwin
etal., 2016).

* Jon Torrent: Launched by Torrent Systems Inc. in 2010 it is known as the first
"post-light-sequencing’ sequencer, as it uses neither fluorescence nor lumines-
cence (Rothberg et al., 2011). Similar to 454, beads containing specific colonies
of DNA templates (generated by emulsion PCR) are distributed over a picow-
ell plate (Heather and Chain, 2016). Rather than using an enzymatic cascade
to generate a signal, the Ion Torrent platform detects the H+ ions that are re-
leased as each dNTP is incorporated. The resulting change in pH is detected by
an integrated complementary metal-oxide-semiconductor and an ion-sensitive
tield-effect transistor. One of the drawbacks of this technology is that ho-
mopolymer regions are problematic, as in 454, the incorporation of multiple
nucleotides at the same time produces a signal imperfectly proportional to the
number of bases incorporated, leading to errors when measuring homopoly-
mers larger than 6-8 bp (Goodwin et al., 2016).. Insertion and deletion (indel)
errors dominate, although the overall error rate is on par with other NGS plat-
forms in non-homopolymer regions (Loman et al., 2012).

* PacBio: it was started by Pacific Biosciences in 2010 and it is based on the single
molecule real time sequencing (SMRT). This technology uses a specialized flow
cell that contains several thousands of transparent individual picolitre wells.
In contrast to the previous technologies the polymerase is fixed to the bottom
of the well and it is the DNA molecule which progresses through the enzyme.
The fact of having the polymerase fixed allows to visualize continuously the lo-
cation of incorporation of the new nucleotide using a laser and camera system
that records the color and duration of emitted light as the labeled nucleotide
momentarily pauses during incorporation. As the dNTP is incorporated the
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fluorophore is cleaved from the nucleotide and it diffuses away from the sen-
sor. The SMRT platform utilizes circularized DNA templates, allowing to read
the same template multiple times in the same sensor, improving considerably
the quality of the sequencing by forming a consensus sequence. This is only
possible for DNA templates shorter than 3kb (Eid et al., 2009). It can gener-
ate reads up to 50 kb long and 10-15 kb on average using a long-insert library.
However, it has also some limitations. The single-pass error rate for long reads
is as high as 15% with indel errors dominating (Carneiro et al., 2012). The use
of circular DNA and deeper coverages can mitigate the error, increasing the
accuracy up to 99.999% for insert sequences derived from at least 10 subreads.
The limited throughput, the elevated costs of PacBio RS II (around $1000 per
Gb) and the need for high coverage, make impossible for small laboratories
to afford this technology (Goodwin et al., 2016). A new system known as Se-
quel, which has more modest features and, thus, a more affordable pricing, is
becoming popular in some smaller laboratories.

¢ Oxford Nanopore: in 2014 the first nanopore sequencer — the MinION from
Oxford Nanopore Technologies (ONT) — became available. All the previous
sequencing platforms monitor one way or another the incorporation of nu-
cleotides to a template DNA strand. In contrast, nanopore sequencers directly
detect the DNA composition of a native ssDNA molecule, while it is guided
through a nanopore protein membrane, where a voltage is continuously ap-
plied. The current undergoes different changes depending on the nucleotides
that pass through it, and this information can be processed to determine the
sequence of the DNA molecule that passes through the pore (Goodwin et al.,
2016). Theoretically it has no limitation in the read length, although in practice
there are some constraints with ultra-long fragments (Goodwin et al., 2015).
"As a consequence of the unique nature of the ONT technology, in which there are
more than 1,000 distinct signals, ONT MinlON has a large error rate — up to 30%
— and is dominated by indel errors” (Goodwin et al., 2016). Homopolymers are
also a pending issue for ONT MinION. Modified bases have slightly different
output when read, making the platform more prone to mistakes. Fortunately,
recent improvements in the chemistry and the base calling algorithms (mostly
thanks to crowd sourcing science) are improving accuracy.

Novel approaches brought new challenges, producing huge amounts of data and
making development of new data analysis approaches necessary .

1.2.4 Comparison between RNA-microarrays and RNA-seq

Currently, both of the above described high-throughput approaches, high-density
microarrays and RNA-seq, are widely used in order to perform gene expression
profiling. It has been thoroughly discussed which one of them has better overall
performance in terms of specificity, sensibility and reproducibility.

Many different statements have been said. First approaches concluded that "RNA-
seq was more sensitive than microarrays, with genes detected only by RNA-seq being in the
lowest range of expression levels”(Sultan et al., 2008) or "RNA-seq provided more accurate
estimation of absolute transcript levels”(Fu et al., 2009), giving more credibility to RNA-
seq, although, always maintaining that both platforms provided very similar data
with high correlation.
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However, more recent and, often, better designed studies have shown that both ap-
proaches have their own pros and cons. These studies concluded that “"RNA-seq was
more sensitive in detecting genes with low expression levels” (Su et al., 2011), however, it
shows a higher technical variability, requires more material to be performed and the
data analysis takes more time (Xu et al., 2011). While, “a higher percentage of differen-
tially expressed genes was identified by microarrays” (Mooney et al., 2013), nonetheless,
they have a lower coverage of the transcriptome due to their limited gene models,
and are less prone to detect new transcript variants. Despite the differences, all of
the research concluded that the expression profiles generated using both methods
were highly correlated in terms of relative expression. Taking all this into account,
it is suggested to combine both of the approaches to get a comprehensive base from
which conclusions can be drawn (Su et al., 2014).

1.3 Approaches in analyzing RNA-Seq data

There are multiple ways to analyze the millions of reads produced by an RNA-seq
experiment. It is a powerful technology with many applications, ranging from gene
and splice variant discovery to differential expression analysis, detection of fusion
genes, variants, and RNA editing. This makes impossible to have an unique work-
flow scheme that can cover all of them (Korpelainen, 2015). I will explain the major
steps, specially focusing on the differential expression analysis approach.

With the purpose of addressing this analysis, multiple bioinformatic tools have been
developed, many of them are available as a standalone software written in different
languages (Java, Perl, C++, Python, etc.). Most of them work in a Linux environment
and require some knowledge about the Unix terminal. There are also some graphical
wrappers which allow the user to work in a much more intuitive and user-friendly
interface (e.g., Galaxy or Chipster). However, this increase in comprehensibility,
drives a detriment in control over the data analysis, flexibility to change parameters,
use all available options, and import and export data to different tools that may be
standard or not. It is important to note that this is a very fast developing field with
tens or even hundreds of tools being developed every year (Korpelainen, 2015). The
major steps can be observed in the FIGURE 1.2.
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Raw reads (FASTQ)

!

[ Quality control of reads J
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FIGURE 1.2: Differential expression analysis workflow consists of several, interre-
lated steps. The typical output file formats are indicated in parentheses.

1.3.1 Rlanguage overview

Ris a programming language and environment specially focused on statistical com-
puting and graphics. It is similar to the S language and environment (R can be
considered as a different implementation of S), which was developed at Bell Labora-
tories (formerly AT&T, now Lucent Technologies) by John Chambers and colleagues.
It is free software, which allows it to be used widely, and, thus, promoting the de-
velopment of new free source packages, enriching the amount of tools available (r-
project.org, 2018).

Many of the bioinformatic tools used in RNA-seq analysis have R wrappers and are
included in the Bioconductor project, which means that whole analysis pipeline can
be done using R. Bioconductor is an open source, open development software project
to provide tools for the analysis and comprehension of high-throughput genomic
data (bioconductor.org, 2018a).
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The widespread access to a broad range of powerful statistical and graphical meth-
ods for the analysis of genomic data and the great amount of high-quality documen-
tation make R and Bioconductor a perfect choice to perform this work.

1.3.2 Quality Control and Preprocessing

Raw reads from the sequencer (FASTQ file format) often have low-quality bases and
artifacts that need to be removed in order not to interfere in the downstream analy-
sis. Quality problems include untrimmed adapters, library construction sequences,
poly-A tails, sequence-specific bias, 3’/5” positional bias, polymerase chain reaction
(PCR) artifacts and sequence contamination. These problems interfere and bias the
posterior analyses such as mapping to reference, expression estimation and assem-
bly. However, a proper preprocessing including filtering and/or trimming can cor-
rect them. There are also approaches to identify and partially remove the hidden
confounding factors (Labaj and Kreil, 2016)(Su et al., 2014).

The confidence in the base call is indicated by the base quality. This quality is ex-
pressed in Phred scale, where “log 10 is taken of the probability that the base is wrong,
and multiplied by -10” (Korpelainen, 2015). For instance, if there is 1 in 1000 chance
the base to be wrong, the Phred value is ¢ = —10log,,0.001 = 30. These values
normally range between 0 and 40. In order to save space, ASCII characters are used
instead of numbers in the FASTQ files. The quality of the bases tend to decrease in
the later cycles of sequencing (Korpelainen, 2015).

There are two non-exclusive approaches to cope with low-quality bases. They can be
either filtered, removing the entire read, or trimmed, removing just the low-quality
ends of reads. There is no an agreement on which should be the optimal quality
threshold for trimming in the context of RNA-seq. Both de novo assembly and the
alignment of reads to a reference can be ameliorated by trimming low-quality bases,
however, it entails a reduction in the coverage because trimmed reads are shorter
and there are less of them. Deciding what quality threshold to choose is an equilib-
rium between the two.

There are numerous tools that can be used for reading quality control and prepro-
cessing. Tools for checking read quality include FastQC and PRINSEQ, which allow
to examine various quality metrics and are able to provide reports with informative
visualizations. The PRINSEQ package also offers filtering and trimming functional-
ity. Other preprocessing tools include Trimmomatic, Cutadapt, and FastX, just to
name a few (Korpelainen, 2015).

1.3.3 Mapping

The next step in the analysis pipeline is the alignment of the sequences against the
reference genome or transcriptome to search out where the read originated from.
This is known as ‘'mapping” and it gives us information about the genomic location,
thus, allowing us to discover novel genes and transcripts. When there is not a ref-
erence genome or only known transcripts are to be quantified, reads are mapped
to a transcriptome. This limits the discovery of new transcript variants. However,
using the genome instead of the transcriptome bring several challenges: there are
millions of short reads, genomes are huge and they contain nonunique sequences
such as repeats and pseudogenes. Moreover, aligning algorithms need to deal with
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mismatches and indels caused by sequencing errors and genomic variation. In ad-
dition, the introns present in the genes of many organisms make necessary to map
RNA-seq reads to the genome in a noncontiguously way. Coping with spliced reads
and determining exon—intron boundaries correctly is difficult, due to the limited se-
quence signals at splice sites and the length of the introns, that reach thousands of
bases long (Korpelainen, 2015).

Number of alignment tools are available, offering different approaches to handle
these challenges. Aligners use different heuristic approaches and indexing schemes
to accelerate the process. Some of them take into account base quality when a mis-
match occur, as well as, expected distance and relative orientation of paire-end reads.
Confidence in the mapping location is expressed as mapping quality (Q = 10/0g10P,
where P is the probability that the read originated elsewhere) and it depends mostly
on the uniqueness of the mapping. Multi-mapped reads can be distributed propor-
tionally to the coverage between the equally matching positions by some aligners.
When dealing with spliced reads, aligners perform an initial alignment to discover
exon junctions and, then they complete the alignment. Aligners can use genomic
annotation, when available, for placing spliced reads (Korpelainen, 2015).

When choosing an aligner for RNA-seq the more important consideration is whether
spliced alignment is needed or not. The absence of introns or if microRNAs were se-
quenced, allows to use aligners originally developed for DNA, such as Bowtie or
BWA. They can also be used when mapping to a transcriptome instead of a genome.
Nevertheless, if introns are present in the genome, a spliced aligner such as TopHat?2,
STAR, Subread or HISAT is necessary. Different aligners are used for different pur-
poses. DNA aligners are used for purposes such as whole genome sequencing or
whole exome sequencing. RNA aligners are used when spliced reads need to be
mapped against the genome. However, DNA aligners can be used for RNA-Seq
when aligning to the transcriptome.

TopHat2 (Kim et al., 2013) stands out for its speed and memory efficiency. It uses
Bowtie2 as its alignment engine and it is optimized for reads equal or longer than
75 bp. The TopHat2 approach includes a multi-step alignment process which first
aligns reads to the transcriptome and, if genomic annotation is available it aligns
the non-aligned reads to the genome. This improves alignment accuracy, avoids
absorbing reads to pseudogenes, and speeds up the overall alignment process. If
the read ends do not align TopHat2 does not trim them. Therefore, it leads to a
low tolerance for mismatches, so reads with low-quality bases might not align well.
Finally, TopHat2 can be used to detect genomic translocations, as it can align reads
across fusion breakpoints. Although still widely used and considered as a state-of-
the-art approach, it has been discountinued in early 2016 and replaced by HISAT2.

STAR (Dobin et al., 2013) (Spliced Transcripts Alignment to a Reference) is another
spliced alignment program which runs very fast. The drawback is that it needs
considerably more memory than TopHat. Speed is not the only one of its advantages.
It is able to perform an unbiased search for splice junctions because it does not need
any prior information on their locations, sequence signals, or intron length. STAR can
also align a read that contains various splice junctions, indels and mismatches, and
low-quality ends can be managed. Finally, it can map long reads and even full-length
mRNA, which is required as read lengths are increasing. It also provides so called
"2-pass mode’ with increased sensitivity for novel exon-exon junctions discovery.
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Subread (Liao et al., 2013) strategy chooses the mapped genomic location for the
read directly from the seeds. It utilizes a big amount of short reads (subreads) com-
ing from each read and allows all the seeds to vote on the optimal location. Then,
more conventional algorithms are used to align the complete read that is more likely
to be the optimal. This is a rapid strategy because the overall genomic location has
been chosen before the detailed alignment is done. It is sensitive because individ-
ual subreads are not constrained to map close by other subreads and no individual
subread is required to map exactly. The final location must be supported by many
different subreads, which increases the accuracy. The strategy extends easily to find
exon junctions, by locating reads that contain sets of subreads mapping to different
exons of the same gene. It scales up efficiently for longer reads.

HISAT/HISAT2 (Kim et al., 2015) (hierarchical indexing for spliced alignment of tran-
scripts) is a newer and high efficient system. "HISAT uses an indexing scheme based
on the Burrows-Wheeler transform and the Ferragina-Manzini (FM) index, employing two
types of indexes for alignment: a whole-genome FM index to anchor each alignment and nu-
merous local FM indexes for very rapid extensions of these alignments” (Kim et al., 2015).
HISAT was designed as a successor to TopHat2 and has compatible outputs, but runs
approximately 1-2 orders of magnitude faster (Pertea et al., 2016).

1.3.4 Expression estimation/profiling

Once the reads are mapped to the genome, genomic annotation can be inferred from
their location. This makes possible to quantify the gene expression by counting reads
per genes, transcripts and exons. Intuitively, the calculation of the mapped reads
gives us a straight way to estimate transcript abundance, however, in practice, sev-
eral factors need to be taken into account. Due to alternative splicing, Eucaryotic
genes may produce diverse transcript isoforms. Because of common or overlapping
exons in those transcripts longer reads are better for their quantitation and assem-
bly. Moreover, the coverage along the transcripts is not uniform as a result of data
generation and processing biases. In order to address these challenges a simplified
approach is used, where expression is often estimated only at the gene or exon level.
Still, gene level counts are not the optimal option for differential expression anal-
ysis. For the complex genes with multiple alternative transcripts the simple reads
covering the gene locus approach is heavily biased.

As long as an annotated reference genome is available, mapped reads can be counted
based on their genomic features depending on the location information. Ab initio
assemblers can produce annotation files that allow to quantify new genes and tran-
scripts. Instead, and particularly when there is no reference genome available, the
transcriptome can be used to map and count the reads. If there is no reference tran-
scriptome either, you can assemble one using a de novo assembler.

Many different tools can be used for counting, such as, HTSeq , BEDTools , and
Qualimap. Also some Bioconductor packages such as Rsubread (R wrapper for
Subread) and GenomicRanges offer counting functionality. The input for these tools
is genomic read alignments in SAM/BAM format and genome annotation in
GFF/GTF or BED format. What makes them different is the way each one of them
deal with multimapping reads (reads which map to several genomic locations due
to homology or sequence repeats): HTSeq ignores all these multireads, Qualimap
divides the counts equally between the different locations, and Cufflinks has an
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option to divide each multimapping read probabilistically based on the abundance
of the genes it maps to.

A more sophisticated and robust method for transcript quantification is also avail-
able. It uses a general linear model for transcript quantification that “leverages reads
spanning multiple splice junctions to ameliorate identifiability” (Huang et al., 2013).
Knowing that, RNA-seq reads sampled from the transcriptome have unknown
position-specific and sequence-specific biases, this method simultaneously learns
bias parameters during transcript quantification in order to ameliorate accuracy.
Also it takes into account that a candidate set of isoforms is provided for transcript
quantification, while not in all types of tissue, or condition all of them are prone
to be expressed. "Resolving the linear system with LASSO (least absolute shrinkage and
selection operator), this approach can infer an accurate set of dominantly expressed tran-
scripts while existing methods tend to assign positive expression to every candidate isoform”
(Huang et al., 2013).

1.3.5 Alignment-free expression profiling

There is also an alternative approach that allows to bypass the mapping step. There
are some tools able to estimate the gene counts directly from the reads. They are
known as ultra fast RNA-seq quantitation methods. Such strategies are way faster,
they can perform the same analysis in significantly less time.

kallisto(Bray et al., 2016) is a program for quantifying abundances of transcripts
from RNA-Seq data, or more generally of target sequences using high-throughput
sequencing reads. It needs a reference transcriptome to use it as its target. It uses
pseudoalignment for rapidly determining the compatibility of reads with these tar-
gets, without the need for alignment. Pseudoalignment of reads preserves the key
information needed for quantification, this makes their developers to state that
"kallisto is therefore not only fast, but also as accurate as existing quantification tools”.

Salmon(Patro et al., 2017) is a tool for ultra fast transcript quantification from RNA-
seq data. As all of these tools, it requires a set of target transcripts (either from a ref-
erence or de-novo assembly) to quantify. The quasi-mapping-based mode of Salmon
runs in two phases; indexing and quantification. The indexing step is independent
of the reads, and only need to be run once for a particular set of reference transcripts.
The quantification step is specific to the set of RNA-seq reads and is thus run more
frequently. Salmon combines a new dual-phase parallel inference algorithm and
feature-rich bias models with an ultra fast read mapping procedure making it one of
the preferred options in terms of alighment-free expression profiling.

1.3.6 Differential expression calling

Differential expression (DE) analysis consist of the comparison of different groups
of samples in order to identify the genes, transcripts or exons that are expressed
in significantly different quantities. These groups of samples have different condi-
tions, such as biological variations (drug-treated vs. controls), diseased vs. healthy
individuals, different tissues, different stages of development, etc.

RNA-seq data are in the form of discrete counts generated from a sampling process,
oppositely, microarray measurements are continuous (amount of fluorescent signal).
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One aspect of this is that, “because RNA-seq is a sampling procedure, there is a certain
amount of “real estate” (the total number of all reads from the sequencing instrument) that
the actual transcripts in the sequencing library have to share” (Korpelainen, 2015). So,
highly expressed and long transcripts constitute a great amount of the sequencing
library, thus, in a shallow sequencing experiment genes with low abundance may
not appear in the final data even though they were in the sample (Labaj and Kreil,
2016). An attractive feature of RNA-seq, though, is the possibility to re-sequence
the same library to potentially recover more low expressed transcripts. Another
approach is sort of combining power of microarrays and NGS in targeted RNA-Seq,
where selected targets are enriched in the library prior sequencing.

Currently there is not a consensus about which method for RNA-seq DE analysis is
the best. It is a field in constant development. There are active discussions about
the best ways to normalize, and the approach to address the analysis, either at the
gene or at the isoform level. Even the measurement unit to use for reporting gene
expression levels is a theme of debate (Labaj and Kreil, 2016).

Normalization methods and removing confounding factors

Sequencing depth and transcript length are the most intuitive factors that affect the
number of reads generated per transcript. Nevertheless, some less obvious fac-
tors such as transcriptome composition, Guanine-Cytosine (GC) bias, and sequence-
specific bias (caused by random hexamers) also influence the amount of reads. When
the aim is to compare read counts between different samples, all the factors need to
be taken into consideration. To do so, different normalization methods can be ap-
plied and the choice depends on the posterior application.

Quantization tools normally outputs abundances in either raw counts or in FPKM
(Fragments Per Kilobase per Million mapped reads). Another normalization is tran-
scripts per million (TPM). TPM measures the proportion of transcripts in the pool of
RNA, it takes into account the length, calculating first the counts per base and poste-
riorly dividing the number by the sum of all rates. The final step is scale by one mil-
lion because the proportion is often too small. “"FPKM takes the same rate we discussed
in the TPM and instead of dividing it by the sum of rates, divides it by the total number of
reads sequenced and multiplies by a big number (10°)” (haroldpimentel.wordpress.com,
2018). FPKMs and TPM are mainly used for abundance reporting purposes, while
raw counts and other approaches are used in differential expression analysis.

In this particular work, the main goal is to compare different DE calling tools, thus
raw gene counts are going to be used and FPKM normalization is not used directly.
In cases like this other normalization methods need to be applied, some of which
can use internally some of this scaling factors, such as FPKM, TPM or counts per
million (CPM). The most popular tools provide different normalization options and
in this particular work four of them are going to be compared:

¢ Upper Quartile (uppQ), which firstly removes all the counts that are equal to
0, afterwards it calculates the scaling factors from the 75Th percentile of the
counts for each library.

¢ Trimmed Mean of M-values (TMM), is based on the hypothesis that most genes
are not differentially expressed, it trims the upper and lower percentage of the
data and does not use them to calculate the scaling factors.
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* Relative Log Expression (RLE), median library is calculated from the geometric
mean of all columns and the median ratio of each sample to the median library
is taken as the scale factor.

e Scaling factors can be set to 1 if ‘None” method is applied.

Unlike TPM and FPKM, methods like TMM and RLE are batch normalization meth-
ods, that is, they are not designed for use on a single sample, but on a group of
samples. While TPM and FPKM are local to the sample and not affected by other
samples, the correction factors from TMM and RLE normalization should be recal-
culated each time the a sample is included to or removed from the data. Another
difference is that RLE and TMM does not take into account the length of the tran-
script. When a DE analysis is performed this does not matter, due to the fact that the
comparisons are being made between the same transcripts across conditions and dif-
ferent transcript abundances are not compared to each other, so he transcript length
is always the same.

DE calling R-Bioconductor packages

Many distinct tools can be used to perform DE analysis. If the goal is to focus on ex-
ons DEXSeq is the most used tool. When isoforms are compared BitSeq, Cuffdiff
or ebSeq are normally used. While if there is a gene-focused approach DESeq2(Love
etal., 2014), edgeR(Robinson et al., 2010) and limma(Smyth, 2004) are the three main
tools currently and all of them can be found in Bioconductor (Korpelainen, 2015).
The PDF reference manuals and tutorials or “vignettes” for DESeq2, limma, and
edgeR contain a lot of useful information. These three packages are the ones that
are going to be compared in this work.

1.3.7 Functional enrichment analysis

Once the DE analysis is completed, a list of the differentially expressed genes is
obtained. The list per se does not provide much information. Additional informa-
tion, in form of annotation, about these genes is needed. This annotation refers to
the process of identifying and locating the genes and other functional elements of
an organism’s genome and attaching some notes of their functions to them. Nor-
mally these annotations that are linked to a gene are: the genomic location (chromo-
some, cytoband, base pairs), the exonic and intronic structure, the transcripts, and
some functional information. This functional concepts are usually in form of con-
trolled vocabulary, such as Gene Ontology (GO), or the metabolic pathways that the
translated proteins function in (e.g., KEGG, the Kyoto Encyclopedia of Genes and
Genomes; Reactome, a database of reactions, pathways, and biological processes)
(Korpelainen, 2015).

Having this annotation information of our particular list of genes, the functional
enrichment analysis can be performed. It basically consists in observe if any of the
notions present in our DE genes is statistically significantly enriched in respect to
the others. Many different algorithms and tests can be applied to determine it. Some
of them will be explained later.
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Gene Ontology

An ontology formally represents knowledge as a set of concepts within a domain,
and the relationships among those concepts. It can be used to reason about the
entities within that domain and may be used to describe the domain. They allow or-
ganization of data within a database, linking between databases and searches across
databases. The Gene Ontology (GO) is a way to capture biological knowledge for
individual gene products in a written and computable form which consist of a set of
concepts and their relationships to each other arranged as a hierarchy. GO is actually
made up of three different ontologies:

¢ Cellular Component: it covers the part of a cell or its extracellular environment
in which a gene product is located. A gene product may be located in one or
more parts of a cell.

* Molecular Function: this ontology describes the actions of a gene product at
the molecular level, such as catalysis or binding. A given gene product may
exhibit one or more molecular functions.

e Biological Process: it involves those processes specifically pertinent to the func-
tioning of integrated living units: cells, tissues, organs, and organisms. A pro-
cess is a collection of molecular events with a defined beginning and end.

GO enrichment analysis

Different tools are available to perform the GO enrichment analysis. Some examples
are AmiGO, Babelomics, TopGO and RuleGO. The one that is used in this work is TopGO
and some of the different algorithms that can be chosen are compared. These are:

e classic: each GO term is tested independently, not taking the GO hierarchy into
account.

* elim: this method processes the GO terms by traversing the GO hierarchy from
bottom to top, ie. it first assesses the most specific (bottom-most) GO terms,
and proceeds later to more general (higher) GO terms. When it assesses a
higher (more general) GO term, it discards any genes that are annotated with
significantly enriched descendant GO terms (considered significant using a
pre-defined P-value threshold). This method does tend to miss some true pos-
itives at higher (more general) levels of the GO hierarchy.

e parent-child: when assessing a GO term, it takes into account the annotation of
terms to the current term’s parents, and so reduces false positives due to the
inheritance problem.

1.4 Reproducibility in expression profiling analysis — Sequenc-
ing Quality Control (SEQC/MAQC-III) consortium

The variety of options available in order to perform transcriptomic analysis is huge
nowadays, both in terms of technology and data processing new options are emerg-
ing each year. This overwhelming assortment claims for some benchmarking in or-
der to make choosing the correct technology and analysis pipeline more adequate to
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the application they are applied for.

With this objective in mind, the US Food and Drug Administration (FDA) has co-
ordinated the Sequencing Quality Control project (SEQC/MAQC-III), a large-scale
community effort to assess the performance of RNA-seq across laboratories and
to test different sequencing platforms and data analysis pipelines (Su et al., 2014).
Specifically, three RNA-seq platforms (Illumina HiSeq, Life Technologies SOLiD,
and Roche 454) were tested at multiple sites for reproducibility, accuracy, and infor-
mation content. The project also extensively compared RNA-seq to microarray tech-
nology and evaluated the transferability of predictive models and signature genes
between microarray and RNA-Seq data. The impact of various bioinformatics ap-
proaches on the downstream biological interpretations of RNA-seq results was also
comprehensively examined and the utility of RNA-seq in clinical application and
safety evaluation was assessed. The project was completed by the end of 2014.

The results of the study showed that there is no technological gold standard in
expression profiling. Moreover, this study as well as follow up work has also shown
that there is also noticeable discordance between results of RNA-Seq data analysis
approaches.

One of the result of consortium work was a very rich benchmarking data set (DataSet
of accesion number GSE47774). This DataSet is used to perform the analysis neces-
sary for this work.
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Objective: Deeper look into DE
calling

The SEQC-III/MAQC consortium concluded that there is no technological gold stan-
dard in RNA-seq nor in expression profiling in general and that the different ap-
proaches chosen to analyze the data impact the final result (Su et al., 2014). The
goal of this Bachelor Thesis is to look deeper into this second statement and focus
on three tools for differential gene expression calling. These are DESeq2, edgeR and
limma. Two different parallel objectives are raised:

¢ Address the comparison among the different normalization methods available
in the edgeR and 1imma packages.

* Perform the comparative analysis of the three packages running with their de-
fault parameters.

Both of the approaches can be divided into three major milestones:
* Compare the genes detected as differentially expressed.

* Identify the areas of discordance at the functional enrichment level, comparing
the Gene Ontology terms enriched in each case.

* Investigate the propagation of discordance from one level to another.
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Materials and Methods

3.1 Design

3.1.1 Comparison of normalization methods

As explained in the introduction, 1imma and edgeR allow the user to choose between
four different normalization methods, which are Upper Quartile (uppQ), Trimmed
Mean of M-values (TMM), Relative Log Expression (RLE) and "None’.

The four different methods were applied to calculate the scaling factors. Afterwards,
the analysis of the differential expression was performed following the same proce-
dure in all the four cases. This assures that the differences obtained are certainly due
to the difference introduced by the normalization method that has been used in each
case.

Posteriorly, a comparative at the GO terms enrichment level was performed, allow-
ing to infer if the results are more similar at the annotation level. In this step three
different algorithms (elim, parent-child and classic) were applied to compare the nor-
malization methods among them. Then, the Biological Process ontology was utilized
to perform the functional enrichment analysis.

3.1.2 Comparison of DE calling packages

The approach is very similar to the normalization methods. In this case, instead
of comparing normalization methods, the DE calling packages 1imma, edgeR and
DEseq2 were compared.

All of them were ran with their default settings. They were also compared at the
gene and functional enrichment level in a parallel way to the above.

3.2 Data source (DataSet of accesion number GSE47774)

This is a DataSet that was published on Aug 08, 2014, and it was obtained by the
SEQC project described above. The aim was to exterminate Illumina HiSeq (HiSeq
2000), Life Technologies SOLiD (AB 5500 Genetic Analyzer) and Roche 454 (GS FLX
Titanium) platforms at multiple laboratory sites using reference RNA samples with
built-in controls, assessing RNA sequencing (RNA-seq) performance for sequence
discovery and differential expression profiling and compare it to microarray and
quantitative PCR (qPCR) data using complementary metrics (NCBI, 2018).

There were four different reference RNA samples. Samples A (pooled human cell
lines of different tissues - Universal Human RNA Reference - UHRR) and B (pooled
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human cell lines of different brain structures - Human Brain RN A Reference - HBRR)
from the MAQC consortium, adding spike-ins of synthetic RNA (ERCC). Samples
C and D were then constructed by combining A and B in known mixing ratios, 3:1
and 1:3, respectively. They were distributed to several independent sites for library
preparation and sequencing (NCBI, 2018).

This produced a large DataSet containing loads of counts of different genes, per-
formed by different platforms. Read alignment and summarization were performed
using programs included in Subread package. In this work, I only focused in the
ones obtained using Illumina HiSeq 2000, concretely the counts of the samples B
and D.

3.3 Bioinformatic analysis

For each of the cases already explained in the subsection 3.1.1, comprising all the
normalization methods and packages, a similar analysis pipeline were performed.
In the FIGURE 3.1 the overall workflow can be observed.

Differential expression analysis —> Functional enrichment analysis

Counts from the DataSet GSE47774
l [ Significant genes selection (p-value < 0.05) ]

[ Selection of samples B and D ]

Fisher test Biological Process ontology

Sum of the counts of different
lines in each sample
| GO term enrichment

unique column of counts from each sample |

topGOresult object

[ Design matrix: B vs D ] [ Normalization ] l
l [ Data exploration ]

4’[ Differential expression analysis ]
[

p-values of the DE genes
4
[ FDR correction (BH method) ]

Adjusted p-values
|

L |

FIGURE 3.1: The bioinformatic workflow included several steps. It was divided in
two different analyses: the DE analysis and the functional enrichment analysis.

All the analyses started by filtering the data coming from the DataSet that was men-
tioned in the section 3.2. The samples were divided in four different replicates, each
of which was at the same time divided in seven different lines (making seven differ-
ent columns for each replicate). The samples B and D were selected and the counts
of all the lines each replicate were summed up, to get an unique column of counts
from each sample.

The next step was to create a design matrix in which the comparison, that was going
to be made, was established. In this case it was a very simple design, in which
sample B was compared with the sample D.

Then, the normalization method was applied in order to calculate the scaling factors.
The scaling factors are numbers, calculated by the normalization method, by which
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each of the samples have to be multiplied in order to normalize the counts among
samples. This normalization corrects diverse biases as explained in the subsection
1.3.6.

Once the replicates have been normalized and the design matrix was prepared, the
proper analysis starts. Each package has its own methods to determine whether a
gene is DE between the two conditions. The package calculates the probability of
each gene to be DE and it calculates a statistic known as p-value, which is, formally,
"the probability for a given statistical model that, when the null hypothesis is true, the statis-
tical summary (such as the sample mean difference between two compared groups) would be
the same as or of greater magnitude than the actual observed results” (Hubbard and Arm-
strong, 2006). In this case, this means that the p-value is the probability of a gene of
being called as DE by chance, so, the lower is the p-value, the more confidence we
can have in this gene being truly DE.

Next, the adjusted p-value was calculated. A bias appears when the p-value is cal-
culated for multiple test, as it is the case. Multiple testing leads to a type I error,
which means the occurrence of false positives. To correct this, the false discovery
rate (FDR) method is applied. There are different ways to implement the FDR, in
this case the Benjamini-Hochberg (BH) method is applied in all the cases and this
gives an adjusted p-value, which in further sections of this work will be referred to,
simply, as p-value.

The final output of the tools is a table, where each gene is in a row and several pa-
rameters related to the gene are in the correspondent columns. Among them, the
adjusted value (from now on p-value); the average counts, mean of counts among
samples; the fold-change, the ratio between the expression of B and D; and the log-
arithm of the fold-change, which helps to visualize the change between conditions.
Only the genes with a p-value less than 0.05 are considered to be statistically signif-
icant DE.

Subsequent steps comprise the functional enrichment analysis. It starts defining a
function that decide which genes are going to be taken into account as DE during
the analysis. The condition was them to have a p-value less than 0.05. Then the
TopGO package was used to perform the analysis. It was set to use the Biological
Process ontology (see subsection 1.3.7), and was run three times, one per algorithm,
as explained in the section 3.1. The objective of the analysis is to calculate if a GO
term is overrepresented in the set of genes that are DE respect to the total of genes,
to do so the fisher test was selected. Fisher test, formally, “is one of a class of exact
tests, so called because the significance of the deviation from a null hypothesis (e.g., P-value)
can be calculated exactly, rather than relying on an approximation that becomes exact in the
limit as the sample size grows to infinity, as with many statistical tests” (Fisher, 1922).

The output is a topGOresult object from which we can access all the information
relative to the analysis. We can extract the significant GO terms, the ones which have
a p-value less than 0.05, from the output. Another features, such as the number of
genes annotated in a particular term or the depth in the hierarchy of the GO ontology
can also be obtained.

The bioinformatic analysis per se concluded here, but further exploratory analysis of
the results needed to be performed in order to drawn some conclusions from them.
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3.3.1 Exploratory analysis

Since the main objective of this work is to compare the different cases, most of the ex-
ploratory analysis is centered in using different graphic representations that contrast
them.

One of the most useful tools, that sums up the results is the Venn diagram. Its in-
terpretation is quite straightforward, each case is represented by an oval and in the
intersections between the ovals we can see the number of genes/GO terms that are
found as significant in each of the cases.

The other most important representation is the scatter plot, which uses Cartesian co-
ordinates to display values for two variables. In this case, the two variables that are
represented are the p-values calculated in two different conditions. To these scatter
plots some features can be added, such as a dot density area, where the background
of the plot appears the more colored when the more amount of dots are in the area.
Another addition can be the change of the color an shape of the dots depending on
other features of the data apart from the p-value.

3.4 Platform

3.4.1 Hardware

All the analyses were performed on an ASUS R510VX-DM010D with a 2.6 GHz In-
tel® Core™ i7-6700HQ CPU, 8GB 2133 MHz DDR4 memory and a NVIDIA GeForce
GTX 950M/PCle/SSE2 graphics card.

3.4.2 Software

Regarding the software, all the work was performed in an Ubuntu 16.04 LTS OS.
The version of R utilized was 3.4.3 (2017-11-30) and all the scripts and graphs were
generated using Rstudio, version 1.1.383.
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Results and discussion

4.1 Comparison of normalization methods

The four different normalization methods: Upper Quartile (uppQ), Trimmed Mean
of M-values (TMM), Relative Log Expression (RLE) and ‘None” were applied to cal-
culate the scaling factors. Then, the DE analysis was performed using limma and
edgeR. Afterwards, the three algorithms: elim, parent-child and classic were used to
calculate the significance of the GO terms associated with the DE genes.

4.1.1 Comparison of the DE genes

Depending on the normalization method utilized, different genes were found as DE.
The level of agreement is shown in the Venn diagram shown in the FIGURE 4.1.

Note that for this data set, the extremely high number of DE genes are expected,
due to the fact that samples are very different. In typical biological experiment the
significantly lower number of DE genes is expected.

limma normalization methods edgeR normalization methods
uppQ none uppQ none
™M 483 726 RLE  TMM 508 778 RLE
15 3 12 11 Ls 9
0 0 0 0 0 0 0 0
13256 13518
4 10 1 2
469 912 468 890
0 0

FIGURE 4.1: Venn diagram representing the different DE genes found by limma or
edgeR depending on the normalization method used. The overlapping areas rep-
resent the number of genes that are found as DE when utilizing the normalization
methods that overlay that area.

The first thing that drives the attention, is that both of the Venn diagrams are very
similar. This was expected due to the fact that both packages, 1imma and edgeR, are
performing the DE analysis using the same data. This may suggest that, probably,
similar conclusions can be drawn regardless of which package is used to analyze the
data. Later, a whole section will be dedicated to the comparison among tools.
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We can observe in the FIGURE 4.1 that all the four methods agree in calling more than
13000 genes as DE, making a high percentage of agreement. The rest of categories,
such as genes only found as DE by one method or the genes found as DE pair-wisely
are way lower than this.

Itis also remarkable that when RLE and TMM normalization methods are compared,
their agreement is huge. More than 14500 genes are found as DE in both of the cases
(Limma and edgeR approaches) and less than 50 genes are found uniquely by one
method or the other. This similarity was expected, both of the methods make the
assumption that most of the genes do not change between conditions. It could seem
at first sight that this assumption have been violated, since more than 14500 out of
a total of 22427 genes have been found posteriorly as DE. However, the agreement
level between these two methods suggest that they still work even with this high
percentage of DE genes. Both methods make the same assumption but, they work
differently, if it had been violated the results would have been much more disparate.

Both the upperquartile and "None’ methods are the most dissimilar compared to the
others. This makes perfect sense, since, upperquartile makes different assumptions
to calculate the scaling factors and "None’ directly does not apply any normalization
to the samples.

4.1.2 Comparison of GO terms significance

When performing a DE analysis, the objective is to extract information about what
is really different between conditions, biologically speaking. In order to do so, it is
necessary to know which biological process are the DE genes related with. Here is
where the GO terms are used, relating each gene with its biological implication.

The Venn diagram shows how the normalization method affect the results of the
different algorithms. Also, in this subsection, the p-values that were estimated in
each approach, are compared utilizing different plots. These p-values show how
probably a term is significantly overrepresented in the pull of DE genes.

edgeR GO elim edgeR GO parent-child edgeR GO classic
uppQ none uppQ none uppQ none
TMM 287 358 RLE TMM 119 166 RLE TMM 186 252 RLE
2 98 7 1 19 3 1 43 7
13 4 7 16 4 2 1 9 3 0 3 14
607 510 1629
4 4 4 2 0 0
198 - 369 98 - 154 190 342
257 85 160

FIGURE 4.2: Venn diagram representing the number of significant GO terms found
when using each one of the four normalization methods. Three different diagrams,
corresponding with different GO term analysis algorithms, are represented. The
package utilized to calculate the DE genes in the previous step was edgeR.

The same diagrams were made using the data from limma (they can be found in
the supplementary data). Both 1imma and edgeR approaches showed very similar
results, so the same conclusions can be obtained for the two cases.
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The first thing that has to be remarked in the FIGURE 4.2 is that we observe a con-
siderably bigger number of GO terms found as significant when using the classic
algorithm. This makes sense, since classic looks globally while elim and parent-
child takes into account also local relations between terms in order to focus on more
specific ones.

Regarding the level of agreement among normalization methods, we observed, that
in the case of classic, the percentage of GO terms found as significant, is higher than
in the other two methods. It is also remarkable that the elim algorithm makes more
influence than the normalization method used. This is again what was expected, the
classic method works in a more general way, classifying term as significant easier.
In the case of elim, the more specific terms have a bigger influence than the general
ones, making small differences in the gene list more significant in the final results.

Comparing the different normalization methods within each case, a similar distri-
bution can be observed. In all of the three cases the RLE and TMM methods are
the most similar between them, due to the fact that both make similar assumptions.
Upperquartile and "None” methods show bigger differences for the same reason that
was explained at the end of the subsection 4.1.1.

Dependence on the normalization method

All these observations can be supported by a scatter plot with the p-values of two
different methods on each one of the axes. This, gives an overview about the agree-
ment in the estimation of the statistical significance between two methods. If a den-
sity layer is added, it helps to understand where the methods agree more and where
the differences are bigger.

Package: limma; algorithm: Parent-child Package: limma; algorithm: elim Package: limma; algorithm: Classic

2 1.00
- il
. .

S P
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p-value RLE
p-value None

p-value uppQ

025 p-vaILj;TMM 078 100 0 2 p-ValuEemupr o5 1.00 000 025 p—ValljénTMM 075

FIGURE 4.3: Dot density scatter plot with the p-values of the GO terms calculated
after using different normalization methods. The darker is the blue, the more dots
are in the area. These plots were made using the results from limma whit the dif-
ferent algorithms.

The plots shown in the FIGURE 4.3 are a sample of all the plots prepared, that com-
prehend all the possible six combinations of pairs of normalization method for each
of the three algorithms for both of the packages, making a total of thirty-six plots.
Plots from which three representative have been selected and showed here. All the
rest of the plots show a very similar distribution, being the pair of normalization
methods compared the variable that makes the difference.

The FIGURE 4.3 corroborates conclusions drawn at the basis of figure FIGURE 4.2,
that different methods have different level of agreement. TMM and RLE methods
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make similar assumptions, leading to similar results in the posterior functional en-
richment analysis. While upperquartile and 'None” methods are more different be-
tween them as well as compared to the other methods. It is remarkable that the
agreement is higher when the p-values are extreme, both in the higher end (closer to
1) and in the lower end (closer to 0). That could indicate that high amount or lack
of information leads to proper analysis irrespectively from the performed method,
while cases with lower amount of information are more sensitive for processing ap-
proach.

Dependence on the GO analysis algorithm

As explained in the point 1.3.7, different algorithms can be applied to calculate the
statistical significance of each GO term. The final p-value of each term is different
and it depends on what algorithm is applied.

Some plots have been made, comparing the p-values obtained using the three differ-
ent algorithms in all the four cases (using the four different normalization methods).
Here some of them are shown.

Package: edgeR; normalization: RLE Package: edgeR; normalization: RLE Package: edgeR; normalization: RLE
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FIGURE 4.4: Dot density scatter plot with the p-values of the GO terms calculated
using different methods. The darker is the blue, the more dots are in the area. These
plots were made using the results from edgeR whit the RLE normalization.

The FIGURE 4.4 illustrates the influence of the chosen algorithm on the final result.
Only elim and classic algorithms keep some correlation, which will be analyzed pos-
teriorly. Comparing elim and classic with Parent-child only a low correlation is ob-
served. The level of agreement is higher for both extremes, when p-value is either
close to 1 or to 0.

The plots from figures 4.4 and 4.5 were made for all the normalization methods and
both for edgeR and 1imma, there were no significant differences among them, so they
lead to the same conclusions. The rest of the plots can be found in the supplementary
data.

The first remark that can be done observing the plots from the FIGURE 4.5 is that the
choice of the algorithm is not trivial. Terms that have rather high p-values with one
algorithm can be called as significant by another one.

Observing the left plot, which compares p-values obtained by classic and Parent-
child methods we can affirm several things. The classic algorithm found more GO
terms as significant, this is consistent with what was observed in the FIGURE 4.2.
Parent-child algorithm’s main objective is to detect and remove overrepresentation,
that is why we observe less terms as significant. The big white dots we observe
in the lower left corner suggest that most general terms are found as significant by
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FIGURE 4.5: On the left panel, p-values scatter plot for the parent-child (x axis) and
classic (y axis) methods. On the right panel, p-values scatter plot for the elim (x
axis) and Parent-child (y axis) methods. Only significant terms in one or the other
method have been represented. The size of the dot is proportional to the number of
annotated genes for the respective GO term and its coloring represents the depth in
the GO hierarchy, with the dark red points being more specific terms than the light
yellow ones.

both methods, however when the hierarchy goes deeper we start to see discrepancies
between the methods, which was expected as Parent-child removes the overrepre-
sented terms.

Regarding the plot on the right, which compares the p-values obtained applying
Parent-child and elim algorithms, some observations can be done. The first thing
that drives the attention is that elim method find as significant deeper terms (rep-
resented in dark red) that have less annotated terms (smaller circles), which is an
exact opposite of what parent- child algorithm reported-it finds less deep and more
represented terms. This makes sense if we take into account how these two algo-
rithms work. Elim’s objective is to eliminate the terms that are not significant by
themselves (those terms that are significant only because they have children terms
which are significant). This means that, if a child term is significant it is removed
from the analysis of its parents, enriching the analysis in specific terms in detriment
of the general ones. In the case of Parent-child the algorithm tend to eliminate the
overrepresentation of terms in a less conservative way, keeping more general terms,
and it gives more weight to the number of genes annotated to one term, making
more general terms easier to appear as significant.

A special comparison is the classic vs elim, there is an expected trend in which most
of the p-values calculated by the two methods will be the same. This trend can be
observed in the FIGURE 1 of the TopGO viggnete (bioconductor.org, 2018b). Even
with the data used in this work, which has a huge amount of DE genes, and, thus a
huge amount of significant GO terms this trend can be observed.
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FIGURE 4.6: p-values scatter plot for the classic (x axis) and elim (y axis) methods.
The size of the dot is proportional to the number of annotated genes for the respec-
tive GO term and its coloring represents the depth in the GO hierarchy, with the
dark red points being more specific terms than the light yellow ones.

As it was expected, a general trend can be observed in the FIGURE 4.6, comprising
especially the specific terms. At the same time we can confirm that there is no term
which p-value is bigger for classic than for elim. The disagreement can be observed
for both the terms that are deep and high in the hierarchy, however it draws at-
tention that most of the discrepancies are related to the more general terms, which
often contain more genes associated with them. This was expected as elim basically
removes the general terms that do not have enough significance by themselves.

4.2 Packages comparison

An approach similar to the one realized with the normalization methods has been
done to compare the three different DE calling packages 1imma, edgeR and DESeq?2.
Firstly, the DE genes have been compared. In a posterior analysis the significance of
the GO terms associated with these genes is compared among packages utilizing the
three algorithms described in the subsection 1.3.7.

4.21 Comparison of the DE genes

Depending on the package utilized to perform the DE analysis, different results
are expected. Each one of them has its own assumptions, applies its normaliza-
tion method and utilizes a different approach to calculate the level of significance
(p-value) of each gene being DE.

To give an overview about which method is more ore less sensitive to the fold change
between conditions and to the average counts of a gene an MA plot can be used. In
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this plot the x axes represents the average expression of a gene while the y axes
represents the logarithmic fold change between conditions.

Differentially expresed genes: Coloured by package
4

Package

None
* DESeq2
* EdgeR

limma
¢ DESeq2&EdgeR
¢ DESeqg2&limma
* EdgeR&limma
e All

log Fold Change

01 10 1000 10000
mean of normalized counts

FIGURE 4.7: MA plot representing the logarithmic fold-change in the y axes and
the mean of normalized counts in the x axes. The coloring of the different points of
the scatter-plot depend on the package that detects them as DE.

The FIGURE 4.7 illustrates the common behavior that the packages have, showing
how the two main factors affect all of them in general. The fold-change is one of
them and the bigger it is, the more prone are the packages to detect the gene as DE.
This makes sense because it is an indicator of the gene expression change between
conditions. The other one is the mean of normalized counts, which indicates how
strong is the average expression of the gene in all the samples. Regarding this last
factor, the higher it is, the less big the fold-change is needed to be in order to detect
a gene as DE.

Also in the FIGURE 4.7 we can analyze the differences among methods. Most of the
discrepancies are located in the border line that separates the genes found as DE by
all the methods (dark gray) from the ones that are not detected as DE by any of them
(light gray). This is what would be expected, since all the packages are used for
the same purposes results must be similar, however, the fact that different packages
are being analyzed and they use different algorithms makes to expect some little
differences. The main difference among methods is that the Limma (yellow) and the
edgeR (cyan) packages are less sensitive to the mean of counts than DESeq2. This can
be inferred from the cyan, yellow and green (combination of limma and edgeR) dots
that can be observed when the average counts are less than 10.
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FIGURE 4.8: Venn diagram representing the different DE genes found depending
on the package used.

While the FIGURE 4.7 allowed to differentiate where the discrepancies among meth-
ods where, the Venn diagram of the FIGURE 4.8 permits to quantify this disagree-
ment. The first thing that drives the attention is that the general agreement is con-
siderably great, it is even bigger than when normalization methods were compared
(FIGURE 4.1). Another feature worth to highlight is that DESeq2 is more conservative
(as it was observed in the FIGURE 4.7), finding less genes as DE than both 1imma and
edgeR; it also shows a higher agreement with edgeR than with limma.

4.2.2 Comparison of GO terms significance

The agreement at the gene level was high. This leads to conclusion that agreement
at the functional enrichment level is expected. To check if this is the case, some Venn
diagrams and scatter plots have been made.

GO elim GO Parentchild GO Classic
DESeq2 edgeR  DESeq2 edgeR  DESeq2 edgeR
94 38 62
267 130 110 48 145 69
947 732 2063
163 204 50 59 103 111
158 44 101
limma limma limma

FIGURE 4.9: Venn diagram representing the number of significant GO terms found
when using each one of the three different packages. Three different diagrams,
corresponding with different GO term analysis algorithms, are represented.

What is visible on the FIGURE 4.9 is that 1imma and edgeR show a higher level of
agreement with one another than they do with DESeq2. This was expected, be-
cause the same happened at the DE gene level. The level of agreement in general
is lower than it was when different normalization methods were compared (FIGURE
4.2). This is caused by the fact that there are more disagreements among methods
detecting DE genes than among normalization methods.
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Regarding the comparison among algorithms, a similar behavior with the one visible
on the FIGURE 4.2 is observed. Classic algorithm finds as significant more GO terms
than elim and parent-child do. The differences are also bigger when the elim algo-
rithm is applied than when parent-child is used; the classic algorithm also shows
here the lowest level of discrepancy. The reasoning of why this is happening is par-
allel to the one in the subsection 4.1.2.
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FIGURE 4.10: Dot density scatter plot with the p-values of the GO terms calculated
using different packages. The darker is the blue, the more dots are in the area.

The scatter plot of the FIGURE 4.10 helps to understand where the different cases
agree more. The same plots were made utilizing different combinations of packages
and algorithms (they can be found in the supplementary data). The three represen-
tative cases show a strong correlation between methods. The strongest correlation is
visible between edgeR and 1imma, as it was expected. The most dense areas are both
corners of the diagonal, which means that most of the terms have either very low or
very high p-values and, since these genes are in the diagonal, a correlation in these
cases can be observed.

Algorithm: elim Algorithm: elim

p-value DESeq2
p-value edgeR

0.25 0.50 0.75 1.00 0 0.50 0.75

p-value edgeR p-value limma
Algorithm: Classic Algorithm: Classic
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FIGURE 4.11: p-values scatter plot for GO terms calculated using the data from
different packages. The size and the colour of the dots represent the hierarchy and
the number of annotated genes (see FIGURE 4.5).
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The correlation among packages is not perfect and some discrepancies appeared. To
observe where in the hierarchy this discordance appears a plot similar to figures 4.5
and 4.6 can be plotted.

In the FIGURE 4.11 two comparisons have been made. DESeq2 with edgeR and edgeR
with limma. Both of the comparisons were made for elim and classic algorithms. As
it was expected, the classic algorithm shows more correlation between packages also
the correlation is stronger between limma and edgeR, which agrees with the results
of previous exploratory analyses.

It should be noted that the difference between elim and classic algorithm is quite
important. In the case of the classic, in both comparisons we can observe a rather
good correlation, however, in the case of elim, numerous terms have very different
p-values depending on the package used to call the DE genes. This is more remark-
able in the case of the comparison between limma and edgeR; they only differ in few
genes and yet, these one or two extra genes in one term can result in huge differ-
ences. Small differences in the gene list used as an input for the GO term enrichment
analysis can make the difference in the related GO terms if elim method is applied.
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Conclusions

To summarize and finish up this exertion, a few observations regarding the whole
of the project are condensed in this section.

The differences at the gene level are lower than at the functional enrichment
level. This might come from unusual samples which were compared as these
were artificial samples. In the case of the typical biological samples, we expect
to have some "main driving biological" signal. Thus, in a typical case, the
agreement on functional level would be expected to be higher than on the gene
level.

The influence of the normalization method is not very high if we take into
account the most used RLE and TMM.

The influence of the algorithm used in the GO terms enrichment is consider-
able, being classic much more general; parent-child does not assume that if a
gene is assigned to a term it is also assigned to all parents of this term; and
elim removes the children in any parents analysis

The influence of the package chosen is crucial, mostly for genes with low av-
erage counts. This bias is not so important if we take into account that most
of the approaches include a filtering of the low expressed genes. The packages
also differ in the differential expression calling when fold-change is low and
average counts is high. This is also avoided in common analyses by removing
genes with low fold-change from the analysis.

To summarize, it is important to understand how the bioinformatic tools work
in order to better choose the ones that fit your objectives the best. Depend-
ing on what you want to focus in, you have to be very selective with your
approach.
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FIGURE A.1: Venn diagram representing the number of significant GO terms found
when using each one of the four normalization methods. Three different diagrams,
corresponding with different GO term analysis algorithms, are represented. The
package utilized to calculate the DE genes in the previous step was limma.
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FIGURE A.2: Dot density scatter plot with the p-values of the GO terms calculated
after using different normalization methods. The darker is the blue, the more dots
are in the area. Faded black dots represent the terms’ p-values. These plots were
made using the results from limma whit the different algorithms.
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FIGURE A.3: Dot density scatter plot with the p-values of the GO terms calculated
after using different normalization methods. The darker is the blue, the more dots
are in the area. Faded black dots represent the terms’ p-values. These plots were
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FIGURE A .4: Dot density scatter plot with the p-values of the GO terms calculated
using different methods. The darker is the blue, the more dots are in the area.
Faded black dots represent the terms’ p-values. These plots were made using the
results from limma whit the the different normalization methods.
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FIGURE A.5: Dot density scatter plot with the p-values of the GO terms calculated
using different methods. The darker is the blue, the more dots are in the area.
Faded black dots represent the terms’ p-values. These plots were made using the

Package: limma; normalization: TMM

050
025
000 -
0.00 025 050 075 100
p-value elim
Package: limma; normalization: RLE
100
075
050
025
0.00
0.00 025 050 075 100
p-value elim
Package: limma; normalization: upperQuartile
100
075
050
025
0.00
0.00 025 050 075 100
p-value elim

Package: limma; normalization: None

050
p-value elim

075

p-value Classic

p-value Classic

p-value Classic

p-value Classic

Package: limma; normalization: TMM

050
025
000
000 025 050 075 100
p-value elim
Package: limma; normalization: RLE
100
075
050
025
0.00
000 025 050 075 100
p-value elim
Package: limma; normalization: upperQuartile
100
075
050
025
0.00
000 025 050 075 100
p-value elim
Package: limma; normalization: None
100
075
050
025
0.00

050
p-value elim

075

p-value Classic

p-value Classic

p-value Classic

p-value Classic

Package: limma; normalization: TMM

050

025

0.00 025 0.50 075
p-value Parent-Child

Package: limma; normalization: RLE

050

025

0.00 025 075 100

0.50
p-value Parent-Child

Package: limma; normalization: upperQuartile

p-value Parent-Child

Package: limma; normalization: None

050

025

025

p-value Parent-Child

results from edgeR whit the the different normalization methods.



Appendix A. Complementary figures

42

Package: edgeR; normalization: TMM
1.00- ’

0.75=

Aot g P

0.50 =

p-value Parent-Child

0.25-

-t LR o e . .
0.00- g.”“’»"“\'?:‘ SO R o T S

' ' '
0.00 0.50 0.75 1.00

p-value elim

'
0.25

Package: edgeR; normalization: RLE

1.00- ’

g
&
o
ors- 8

- 9

2

o

7

g

£ 050-

o

©

=

3

7

= 025- 3

0

; - . . . -
000- B ¥ e iy wls WO

' ' '
0.25 0.50 0.75 1.00

p-value elim

o
.
]

Package: edgeR; normalization: upperQuartile

1.00- :

p-value Parent-Child
o
@
3
'

0.25=

#;:r‘n % o t':“"?‘" ’
'

' ' '
0.25 0.50 0.75 1.00

p-value elim

Package: edgeR; normalization: None

1.00- z'

S8 P

075-

]

z

o

7

5

2 os0-

a

©

3

$

= 0.25- g

000- & Saiih BTN Sgwet
\ \ \ \ \
0.00 025 050 0.75 1.00
p-value elim

p-value Classic

p-value Classic

p-value Classic

p-value Classic

Package: edgeR; normalization: TMM

0.05 - 9

]
oo4-
’ 2 i
K o
0.03- ! oo i .
o o
.
o .
0.02 - ., —
. .0 ° ¢ o
e ¢ .
AP e
001- F%e o < : . =
Pl A S . 3
‘1'5 oo o "
etk b wd o ee o =
0.00- o2 enkeg e &5 4 Yoo wm
' ' ' ' '
0.00 0.25 0.50 0.75 1.00
p-value elim
Package: edgeR; normalization: RLE
0.05 - g
¥
H L J
0.04 - ; —
! 0 .
003- ge°<°
, H
Ko
- §® A . *
0.02 . 7t . e

p-value elim

Package: edgeR; normalization: upperQuartile

'
0.50
p-value elim

Package: edgeR; normalization: None

0.05 -

0.04 -

0.03 -

0.02 -

0.01 -

p-value elim

p-value Classic

p-value Classic

p-value Classic

p-value Classic

Package: edgeR; normalization: TMM

1.00- 3
075-
.
050- °",
¢
ks
0.25= "
i

o
e
R T RT
0.00- CHESREERNTGRIN G
0.00 0.25 0.50 0.75

p-value Parent-Child

1.00

Package: edgeR; normalization: RLE

1.00- ¢

075-
.

050- <,

0.25- ::-"
i

0.00- u,iw,-‘im"&ﬂ&w o’
. . . ! .
0.00 0.25 0.50 0.75

p-value Parent-Child

1.00

Package: edgeR; normalization: upperQuartile

1.00- 3
0.75- =
‘s
ES
050- .
£
025=- T
i
W
2
L LA, 20~ &
o00- CETESERSPREHRING A S
' ' ' ' '
0.00 0.25 0.50 0.75 1.00

p-value Parent-Child

Package: edgeR; normalization: None

1.00= =
0.75= T
0.50 = :’ >
0.25= :....

i

o

P g0 o mas,
0.00- Wmﬁ'h( e

]

' ' ' '
0.00 0.25 0.50 0.75 1.00

p-value Parent-Child

FIGURE A.6: p-value scatter plot algorithm vs algorithm, only significant terms in
one or the other method have been represented. The size of the dot is proportional
to the number of annotated genes for the respective GO term and its coloring rep-
resents the depth in the GO hierarchy, with the dark red points being more specific
terms than the light yellow ones. These plots were made using the results from
limma whit the the different normalization methods.
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FIGURE A.7: p-value scatter plot algorithm vs algorithm, only significant terms in
one or the other method have been represented. The size of the dot is proportional
to the number of annotated genes for the respective GO term and its coloring rep-
resents the depth in the GO hierarchy, with the dark red points being more specific
terms than the light yellow ones. These plots were made using the results from
edgeR whit the the different normalization methods.
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FIGURE A.8: p-value scatter plot algorithm vs algorithm, all the terms in one or
the other method have been represented. The size of the dot is proportional to the
number of annotated genes for the respective GO term and its coloring represents
the depth in the GO hierarchy, with the dark red points being more specific terms
than the light yellow ones. These plots were made using the results from limma
whit the the different normalization methods.
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FIGURE A.9: p-value scatter plot algorithm vs algorithm, all the terms in one or
the other method have been represented. The size of the dot is proportional to the
number of annotated genes for the respective GO term and its coloring represents
the depth in the GO hierarchy, with the dark red points being more specific terms
than the light yellow ones. These plots were made using the results from edgeR
whit the the different normalization methods.
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FIGURE A.10: Dot density scatter plot with the p-values of the GO terms calculated
using different packages. The darker is the blue, the more dots are in the area.
Faded black dots represent the terms’ p-values.
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FIGURE A.11: p-values scatter plot for GO terms calculated using the data from
different packages. The size and the colour of the dots represent the hierarchy and
the number of annotated genes (see figure 4.5).
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