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Resumen

Multitud de problemas en ciencia e ingenierı́a se plantean como ecuaciones en

derivadas parciales (EDPs). Si la frontera del recinto donde esas ecuaciones han

de satisfacerse se desconoce a priori, se habla de ”Problemas de frontera libre”,

propios de sistemas estacionarios no dependientes del tiempo, o bien de ”Proble-

mas de frontera móvil”, asociados a problemas de evolución temporal, donde la

frontera cambia con el tiempo. La solución a dichos problemas viene dada por la

expresión de la(s) variable(s) dependiente(s) de la(s) EDP(s) junto con la función

que determina la posición de la frontera. Dado que este tipo de problemas carece

en la mayorı́a de los casos de solución analı́tica conocida, se hace preciso recurrir

a métodos numéricos que permitan obtener una solución lo suficientemente apro-

ximada a la exacta, y que además mantenga propiedades cualitativas de la solución

del modelo continuo de EDP(s).

En este trabajo se ha abordado el estudio numérico de algunos problemas de

frontera móvil provenientes de diversas disciplinas. La metodologı́a aplicada cons-

ta de dos pasos sucesivos: en primer lugar, se aplica la llamada transformación

de Landau o ”Front-fixing transformation” al modelo en EDP(s) con el fin de

mantener inmóvil la frontera del dominio; posteriormente, una vez planteado el

nuevo problema en un recinto fijo, se procede a su discretización a través de un

esquema en diferencias finitas. De ahı́ se obtienen esquemas numéricos que se

implementan por medio de la herramienta informática MATLAB. Mediante un ex-

haustivo análisis numérico, se estudian propiedades del esquema y de la solución

numérica (positividad, estabilidad, consistencia, monotonı́a, etc.).

En el primer capı́tulo de este trabajo se revisa el estado del arte del campo objeto

de estudio, se justifica la necesidad de disponer de métodos numéricos adaptados
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a este tipo de problemas y se describe brevemente la metodologı́a empleada en

nuestro enfoque. Además, se exponen problemas particulares que se desarrollan en

los capı́tulos siguientes.

El Capı́tulo 2 se dedica a un problema perteneciente a la Biologı́a Matemática

y que consiste en determinar la evolución en el tiempo de la distribución de la

población de una especie invasora que se propaga en un hábitat y cuyo frente de

propagación es desconocido. Este modelo consiste en una ecuación de difusión-

reacción unida a una condición tipo Stefan, que relaciona las funciones solución

y frontera móvil a determinar. Los resultados del análisis numérico confirman la

existencia de una dicotomı́a propagación-extinción en la evolución a largo plazo

de la densidad de población de la especie invasora, que depende de la relación

entre los valores de los parámetros introducidos en el modelo. En particular, se

ha podido precisar, por medio de experimentos numéricos, el valor del coeficiente

de la condición de Stefan que separa el comportamiento de propagación del de

extinción.

Los Capı́tulos 3 y 4 se centran en un problema de Quı́mica del Hormigón con

interés en Ingenierı́a Civil: el proceso de carbonatación del hormigón, fenómeno

evolutivo que lleva consigo la degradación progresiva de la estructura afectada y

finalmente su ruina, si no se toman medidas preventivas. En el Capı́tulo 3 se con-

sidera un sistema de dos EDPs de tipo parabólico con dos incógnitas (concentra-

ciones de dióxido de carbono disueltas en fases gaseosa y acuosa). Para su reso-

lución, hay que considerar además, las condiciones iniciales, las de contorno y las

de tipo Stefan (o de transmisión) en la frontera, que relacionan las concentraciones

incógnitas y sus derivadas con la función frontera móvil o frente de avance de la

zona carbonatada. Los resultados del análisis numérico se ajustan a los obtenidos

en un estudio teórico previo. Se han llevado a cabo experimentos numéricos y se

ha obtenido en términos cuantitativos la dinámica de las funciones solución y de

la frontera, comprobando la tendencia a largo plazo de la ley de evolución de la

frontera móvil hacia una función del tipo ”raı́z cuadrada del tiempo” por medio de

un análisis de regresión. En el Capı́tulo 4 se considera un modelo más general y

realista que el anterior, en el que intervienen seis especies quı́micas cuyas concen-

traciones hay que hallar, y que se encuentran tanto en la zona carbonatada como en

la no carbonatada.
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En el Capı́tulo 5 se aborda un problema de transmisión de calor que aparece en
diversos procesos industriales; en este caso, en el enfriamiento durante la colada
de metal fundido, donde la fase sólida avanza y la lı́quida se va extinguiendo. La
frontera móvil (frente de solidificación) separa ambas fases, siendo su posición en
cada instante la variable a determinar, junto con las temperaturas en cada una de las
dos fases. Después de la adecuada transformación y discretización, se implementa
un esquema en diferencias finitas, subdividiendo el proceso en tres estadios tem-
porales, a fin de tratar las singularidades asociadas a posiciones del frente móvil
durante las etapas de inicialización y finalización.
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Resum

Multitud de problemes en ciència i enginyeria es plantegen com a equacions

en derivades parcials (EDPs). Si la frontera del recinte on eixes equacions han de

satisfer-se es desconeix a priori, es parla de ”Problemas de frontera lliure”, propis

de sistemes estacionaris no dependents del temps, o bé de ”Problemas de frontera

mòbil”, associats a problemes d’evolució temporal, on la frontera canvia amb el

temps. La solució a dits problemes ve donada per l’expressió de la(les) varia-

ble(s) dependent(s) de la(les) EDP(s) junt amb la funció que determina la posició

de la frontera. Atés que este tipus de problemes manca en la majoria dels casos de

solució analı́tica coneguda, es fa precı́s recórrer a mètodes numèrics que permeten

obtindre una solució prou aproximada a l’exacta, i que a més mantinga propietats

qualitatives de la solució del model continu d’EDP(s).

En aquest treball s’ha abordat l’estudi numèric d’alguns problemes de frontera

mòbil provinents de diverses disciplines. La metodologia aplicada consta de dos

passos successius: en primer lloc, s’aplica l’anomenada transformació de Landau

o ”Front-fixing transformation” al model en EDP(s) a fi de mantindre immòbil la

frontera del domini; posteriorment, una vegada plantejat el nou problema en un

recinte fix, es procedix a la seva discretització a través d’un esquema en diferències

finites. D’acı́ s’obtenen esquemes numèrics que s’implementen per mitjà de la

ferramenta informàtica MATLAB. Per mitjà d’una exhaustiva anàlisi numèrica,

s’estudien propietats de l’esquema i de la solució numèrica (positivitat, estabilitat,

consistència, monotonia, etc.).

En el primer capı́tol d’aquest treball es revisa l’estat de l’art del camp objecte

d’estudi, es justifica la necessitat de disposar de mètodes numèrics adaptats a aquest

tipus de problemes i es descriu breument la metodologia emprada en el nostre
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enfocament. A més, s’exposen problemes particulars que es desenrotllen en els

capı́tols següents.

El Capı́tol 2 es dedica a un problema pertanyent a la Biologia Matemàtica i

que consistix a determinar l’evolució en el temps de la distribució de la població

d’una espècie invasora que es propaga en un hàbitat i el front de propagació el

qual és desconegut. Este model consistix en una equació de difusió-reacció unida

a una condició tipus Stefan, que relaciona les funcions solució i frontera mòbil a

determinar. Els resultats de l’anàlisi numèrica confirmen l’existència d’una dicoto-

mia propagació-extinció en l’evolució a llarg termini de la densitat de població

de l’espècie invasora, que depén de la relació entre els valors dels paràmetres in-

troduı̈ts en el model. En particular, s’ha pogut precisar, per mitjà d’experiments

numèrics, el valor del coeficient de la condició de Stefan que separa el comporta-

ment de propagació del d’extinció.

Els Capı́tols 3 i 4 se centren en un problema de Quı́mica del Formigó amb

interés en Enginyeria Civil: el procés de carbonatació del formigó, fenomen evo-

lutiu que comporta la degradació progressiva de l’estructura afectada i finalment

la seua ruı̈na, si no es prenen mesures preventives. En el Capı́tol 3 es considera

un sistema de dos EDPs de tipus parabòlic amb dos incògnites (concentracions de

diòxid de carboni dissoltes en fases gasosa i aquosa). Per a la seua resolució, cal

considerar a més, les condicions inicials, les de contorn i les de tipus Stefan (o de

transmissió) en la frontera, que relacionen les concentracions incògnites i les seues

derivades amb la funció frontera mòbil o front d’avanç de la zona carbonatada.

Els resultats de l’anàlisi numèrica s’ajusten als obtinguts en un estudi teòric previ.

S’han dut a terme experiments numèrics i s’ha obtingut en termes quantitatius la

dinàmica de les funcions solució i de la frontera, comprovant la tendència a llarg

termini de la llei d’evolució de la frontera mòbil cap a una funció del tipus ”arrel

quadrada del temps” per mitjà d’una anàlisi de regressió. En el Capı́tol 4 es consi-

dera un model més general i realista que l’anterior, en el que intervenen sis espècies

quı́miques les concentracions de les quals cal trobar, i que es troben tant en la zona

carbonatada com en la no carbonatada.

En el Capı́tol 5 s’aborda un problema de transmissió de calor que apareix en

diversos processos industrials; en aquest cas, en el refredament durant la bugada de

metall fos, on la fase sòlida avança i la lı́quida es va extingint. La frontera mòbil

viii



(front de solidificació) separa ambdues fases, sent la seua posició en cada instant
la variable a determinar, junt amb les temperatures en cada una de les dos fases.
Després de l’adequada transformació i discretització, s’implementa un esquema
en diferències finites, subdividint el procés en tres estadis temporals, per tal de
tractar les singularitats associades a posicions del front mòbil durant les etapes
d’inicialització i finalització.
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Abstract

Many problems in science and engineering are formulated as partial differential

equations (PDEs). If the boundary of the domain where these equations are to be

solved is not known a priori, we face ”Free-boundary problems”, which are char-

acteristic of non-time dependent stationary systems; besides, we have ”Moving-

boundary problems” in temporal evolution processes, where the border changes

over time. The solution to these problems is given by the expression of the depend-

ent variable(s) of PDE(s), together with the function that determines the position

of the boundary. Since the analytical solution of this type of problems is lacked

in most cases, it is necessary to resort to numerical methods that allow an accurate

enough solution to be obtained, and which also maintain the qualitative properties

of the solution(s) of the continuous model.

This work approaches the numerical study of some moving-boundary problems

that arise in different disciplines. The applied methodology consists of two success-

ive steps: firstly, the so-called Landau transformation, or ”Front-fixing transforma-

tion”, which is used in the PDE(s) model to maintain the boundary of the domain

immobile; later, once the new problem is presented in a fixed region, we proceed

to its discretization with a finite difference scheme. Different numerical schemes

are obtained and implemented through the MATLAB computational tool. Prop-

erties of the scheme and the numerical solution (positivity, stability, consistency,

monotonicity, etc.) are studied by an exhaustive numerical analysis.

The first chapter of this work reports the state of the art of the field under study,

justifies the need to adapt numerical methods to this type of problem, and briefly

describes the methodology used in our approach. Particular problems are presented

and dealt with in the following chapters.
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Chapter 2 presents a problem in Mathematical Biology that consists in determ-

ining over time the evolution of the distribution of an invasive species population

that spreads in a habitat, whose propagation front is unknown. This problem is

modelled by a diffusion-reaction equation linked to a Stefan-type condition, which

relates the solution and boundary functions to be determined. The results of the

numerical analysis confirm the existence of a spreading-vanishing dichotomy in

the long-term evolution of the population density of the invasive species, which

depends on the relation between the values of the parameters introduced into the

model. In particular, it is possible to determine by means of numerical experiments

the value of the coefficient of the Stefan condition that separates the propagation

behaviour from extinction.

Chapters 3 and 4 focus on a problem of Concrete Chemistry with an interest

in Civil Engineering: the carbonation of concrete, an evolutionary phenomenon

that leads to the progressive degradation of the affected structure and its eventual

ruin if preventive measures are not taken. Chapter 3 considers a system of two

parabolic type PDEs with two unknowns (concentrations of dissolved carbon di-

oxide in gaseous and aqueous phases). For its resolution, the initial and boundary

conditions have to be considered together with the Stefan (or transmission) condi-

tions on the carbonation front, which relate the unknown concentrations and their

derivatives with the moving boundary or advancing front of the carbonated zone.

The numerical analysis results agree with those obtained in a previous theoretical

study. Numerical experiments are run and the dynamics of the concentrations solu-

tion and the moving boundary are qualitatively by performing a regression analysis

to verify the long-term behaviour of the law of evolution of the moving boundary

as a ”square root of time”. Chapter 4 considers a more general and realistic model

than the previous one, which includes six chemical species, defined in both the

carbonated and non-carbonated zones, whose concentrations have to be found.

Chapter 5 addresses a heat transfer problem that appears in various industrial

processes; in this case, the solidification of metals in casting processes, where the

solid phase advances and liquid reduces until it is depleted. The moving bound-

ary (the solidification front) separates both phases. Its position in each instant is

the variable to be determined together with the temperature profiles in both phases.
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After suitable transformation, discretization is carried out to obtain a finite differ-
ence scheme to be implemented. The process was subdivided into three temporal
stages to deal with the singularities associated with the moving boundary position
in the initialisation and depletion stages.
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M.-A. Piqueras, R. Company, L. Jódar, Stable and monotone numerical solution
of two-phase freezing Stefan problems, submitted to Journal of Computational and

Applied Mathematics, 2017.

xvi



Presentations in Conferences
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CHAPTER

1
Introduction

1.1 Background, motivation and methodology
Many phenomena and processes in science, engineering and industry are governed
by partial differential equations (PDEs) that are posed on a domain whose bound-
ary is not known a priori and has to be found as part of the solution. According to
[26], such problems can be split into two groups: free- and moving-boundary prob-
lems. The first group arises in stationary or steady-state problems, where variables
remain unchanged with time and the boundary is immobile. In contrast, moving-
boundary problems are associated with evolution problems that model a system
which changes with time, whose unknown boundaries depend on both space and
time.

Frequently, problems in the second group are referred to as Stefan problems
given the Stefan condition that links the boundary with the unknown solution of the
PDE or system of PDEs. However, using the term free-boundary has become com-
monplace in the scientific community regardless of the problem’s time dependency.
Throughout this work the expression free-boundary may apply to both categories
of problems.

In recent years, many phenomena of practical interest from different discip-
lines have been modelled as free-boundary problems. In these problems, the free

1



1. INTRODUCTION

boundary describes different quantities, such as the spreading front over which the

population of a certain invasive biological species advances through a habitat, the

front line of human migrations for social, economical, political or environmental

reasons, the border of the geographical area where a technological innovation has

been disseminated, the limit, measured in ”cyber-distances” into which a relevant

news in social networks extends, the advance of healing in corneal epithelial tissue

after a wound occurs, the propagation front of natural phenomena, such as tsuna-

mis, forest fires and avalanches of snow, the extent of a polluted atmospheric region

or a contaminated hydrological system, the optimal exercise boundary of American

option prices, the speculative part in price rises in financial bubbles, the propaga-

tion of braking on road stretches with congested round traffic, depth from the outer

face to that which penetrates the chemical phenomena of carbonation in concrete

infrastructures and buildings, the separating surface between plasma and vacuum

zones inside some types of experimental magnetic confinement fusion reactors and

the interface between two fluids in a porous medium. In addition, optimal stopping

problems that arise in the decision theory are closely connected to free-boundary

problems.

In such problems, the location of the moving boundary must be determined

together with the solution of the PDE or system of PDEs. The analytical solu-

tion of such problems is seldom available. As a paradigmatic case of a Stefan

problem with a known exact solution, one noteworthy case is modelling the phase

change that occurs during a substance freezing process which extends over a one-

dimensional semi-infinite region, whose initial constant temperature is above the

melting point (initial condition), on the edge of which the freezing temperature is

imposed (boundary condition). This problem was originally formulated in 1831

by G. Lamé and E. Clapeyron, see [48] and [26], Chapter 3. During a series of

lectures in the early 1860s at Königsberg, C.G. Neumann found and presented the

exact solution in terms of error and complementary error functions ([66]). How-

ever, it was not until 1889 when it was presented by J. Stefan in a study on polar

ice thickness, [74]. Some other one-dimensional problems, for which the solu-

tion in a closed form can be found, have unbounded domains, quite simple initial

and boundary conditions, and the parameters of the mathematical model, such as

2
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thermal conductivity, must be accepted as constants. Ordinarily, these solutions are

functions of the variable x/
√
t, the so-called similarity solutions (see [12]).

This work is about the construction, analysis and computing of numerical meth-

ods to solve reaction-diffusion moving-boundary problems. The solution technique

involves two main sequential steps:

1. The well-known Landau transformation (see [26, 49]) is applied to the ori-

ginal problem. By immobilizing the moving boundary, this transform allows

a new equivalent problem to be obtained in which the resulting PDE or PDE

system is generally less simple than it is in the original formulation. Not-

withstanding, the transformed problem is tractable because it is posed in a

fixed domain.

2. The resulting PDE problem is treated numerically by the finite difference

method. Thus an explicit or implicit numerical scheme is obtained as a basis

for computations, which are made by implementing Matlab codes. The im-

portance attached to the reliability of these schemes must be emphasized

as properties such as stability and consistency which are guaranteed, in all

cases, by an exhaustive numerical analysis.

At present, finite differences, finite elements and boundary elements are the

principal methods used to numerically solve both steady-state and transient free-

or moving-boundary PDE problems. This thesis focuses on the finite difference

technique. This approach can be implemented in two main ways: using the fixed

domain method or the variable domain method. The latter can be divided into

two subgroups: the front-tracking and the front-fixing method. The fixed domain

method considers of the entire domain, which includes all the regions together. The

problem is reformulated in such a way that the Stefan condition implicitly applies to

the whole fixed domain. The position of the moving boundary appears a posteriori

as one feature of the solution. This method is easy to implement because tracking

the movement of the moving boundary is not necessary (see [39]).

In the second group, the front-tracking method consists of evaluating the po-

sition of the moving boundary in each time step. The boundary generally lies

between two grid points at any given time. The grid itself has to be deformed

3
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so that the moving boundary is always on a grid line. In the front-fixing approach,
the moving boundary is immobilized by using a transformation in the spatial vari-
able; for instance, the so-called Landau transformation. The price paid to use this
technique is that the new equations usually present more terms than the original
ones being transformed.
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1.2 Three real cases of interest
Moving-boundary problems play a crucial role in modelling many natural phe-

nomena in science and a wide variety of processes involved in engineering and

industry. Furthermore, many other current problems that have been studied with no

adequate treatment are expected to be modelled in the future as free- or moving-

boundary problems. As we stated before, this approach allows the exact solution

to be obtained in only a few particular simple cases. Hence it is necessary to re-

sort to numerical and computational methods to obtain a sufficiently approximate

solution.

In this section, we present three particular problems from the fields of ecology,

construction industry (civil engineering and building construction) and metallurgy,

and each field is dealt with in a separate chapter in this work. By applying our

approach to perform their numerical analysis, we can obtain accurate enough nu-

merical solutions and their qualitative properties, which are compared with the the-

oretical results provided by the authors who have worked with continuous models.

What these cases share, besides the fact that they are modelled by moving-

boundary problems, is that they are evolution problems in which the governing

PDEs are of reaction-diffusion type, in which the initial and boundary conditions

are prescribed together with some Stefan-like constraints. In all cases, the moving

boundary represents some physical quantity of practical interest. Following our

methodology, in the first step we use the well-known Landau transformation (see

[26, 49]) to convert the continuous PDE problem into a fixed spatial domain one, in

which the position of the moving boundary is included as an additional unknown

variable. Subsequently, the discretization of the transformed problem is implemen-

ted and a finite difference scheme is obtained. Apart from the computation of the

solution and the position of the free boundary, a numerical analysis is run to study

the properties of the finite difference scheme and the approximate solution, such as

stability and consistency. The positivity of the solution is also studied in all cases,

because they represent quantities, such as population densities, mass concentrations

and temperatures, which need to be positive.
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1.2.1 Population dynamics of an invasive species
The first example of implementing our approach consists of a moving-boundary
problem that arises in those problems that model biological invasions. The one-
dimensional spatial-temporal spreading of an invasive species in a habitat is mod-
elled by a moving-boundary diffusion logistic partial differential problem, in which
the moving-boundary represents the a priori unknown expanding front of the spe-
cies.

The pioneering work in this field was initiated in 1937 independently by Fisher
(see [34]) and Kolmogorov-Petrovsky-Piskunov (KPP) (see [43]) in which the PDE
problem had to be solved over an infinite domain with no boundary constraints.
Recently, Du and Lin [30] approached the spreading population problem by con-
sidering it a free-boundary problem under a Stefan condition, which linked the
population density gradient at the spreading front and the speed of the moving
boundary. The diffusive PDE problem for the population density of the invasive
species U(t, x) depends on time t and the spatial variable x and is written as fol-
lows:

∂U

∂t
−D∂

2U

∂x2
= U(a− bU), t > 0, 0 < x < H(t), (1.1)

satisfying the Stefan condition

H ′(t) = −µ∂U
∂x

(t,H(t)), t > 0, (1.2)

with the corresponding initial and boundary conditions. The latter, formulated as a
homogeneous Neumann boundary condition at x = 0, indicates that the left bound-
ary is fixed given the presence, for instance, of a natural obstacle to spreading, with
the population confined to its right side.

Here H(t) is the unknown moving boundary, where the population is distrib-
uted within the interval [0, H(t)], D is the dispersal rate and parameters a and b re-
spectively refer to the intrinsic growth rate and the competition between individuals
of the invasive species. Unlike previous models, in which only spreading behaviour
is permissible, the authors of [30] showed that dichotomic behaviour exists for long
times: the population vanishes or spreads to the entire infinite habitat with a density
value that approaches the habitat carrying capacity a/b. Behaviour depends on the
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initial front position and population density, and also on the parameter µ value that

appears in the Stefan condition. There is a threshold parameter µ∗, whose value is

unknown in advance, which determines the vanishing or spreading alternative.

1.2.2 Damage by carbonation of reinforced concrete structures

Concrete carbonation problems arise in the civil engineering and building construc-

tion fields as this chemical process involves a major cause of damage of reinforced

concrete structures. This is a gradual phenomenon, according to which the pH

level, initially high with a value around 13-14, progressively lowers. This drop in

pH leads to the corrosion of the embedded steel reinforcement. With time, spalling

and cracks appear in the concrete structure since the products of corrosion occupy

a bigger volume than the original steel reinforcement, and the internal pressure

increases. As a result, the structure’s functionality and durability are seriously

affected. This process is enhanced in urban and industrial areas, or generally in

structures exposed to environments with high carbon dioxide concentrations. A

good understanding of the carbonation process evolution is crucial to predict the

life service of concrete structures and to save large amounts of money and energy.

Carbon dioxide in the gaseous phase is transported through unsaturated con-

crete pores by diffusion and dissolves (according to Henry’s law) in the aqueous

phase, where it is further transported towards the place where the carbonation re-

action takes place. The other reactant, calcium hydroxide, is initially in the solid

matrix of cement. By means of a dissolution process, it arrives at the aqueous phase

of pores and reacts with the carbon dioxide present in the aqueous phase. Reaction

products are water together with calcium carbonate. Gradually the process penet-

rates more deeply into concrete, and a carbonation front appears which separates

the carbonated zone from the uncarbonated one.

Modelling the concrete carbonation process can be simplified to a single reac-

tion of atmospheric carbon dioxide with the calcium hydroxide found in the pore

solution to form water and calcium carbonate. We also assume that the values of

both the material (composition of cement and concrete, porosity and pore sizes) and

environmental conditions (carbon dioxide concentration, relative humidity, temper-

ature) remain unchanged in all the process stages.

7
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The reaction mechanism is as follows: atmospheric carbon dioxide diffuses
through the unsaturated concrete matrix and dissolves into the pore water, while
calcium hydroxide is available in the pore solution. Calcium carbonate precipitates
to the solid cement matrix. To model these processes, in this thesis we consider two
different models that describe the involved chemistry and transport. In both mod-
els, a set of nonlinear parabolic reaction-diffusion equations describe the chemical
reactions and transport phenomena which come into play. Taking into account the
complexity of the real phenomenon and the presence of a large number of para-
meters, with these simplified models we can capture the basics of the carbonation
mechanism and accurately predict the carbon dioxide penetration depth.

1.2.2.1 Two-species carbonation model

The first of the models we dealt with has been presented in [2, 3], where the authors
study a one-dimensional moving-boundary problem by modelling the carbonation
process. The unknowns are carbon dioxide mass concentrations in the air and water
phases of pores, respectively denoted by U(t, x) and V (t, x), depending on vari-
ables time t and space x. As usual, the position of the carbonation front S(t) also
has to be determined. The temporal variable ranges from t = 0 to the time horizon
T > 0, while the space variable is measured from the exposed boundary x = 0 to
the unknown carbonation front x = S(t).

The model is described by the coupled system of two parabolic reaction-diffusion
PDEs:

∂U

∂t
− ∂

∂x

(
κ1
∂U

∂x

)
= f(U, V ), 0 < t < T, 0 < x < S(t), (1.3)

∂V

∂t
− ∂

∂x

(
κ2
∂V

∂x

)
= −f(U, V ), 0 < t < T, 0 < x < S(t). (1.4)

Here κ1 and κ2 are diffusion constants and reaction terms ±f(U, V ) involve
Henry’s laws. The left boundary conditions are prescribed for both concentrations
at the exposed boundary, i.e. at x = 0. The initial conditions are given by con-
centrations and position of the carbonation front for t = 0. The propagation front
comes from the Stefan-like conditions, which establish the dependence among the
chemical species’ concentrations, their gradients and the speed at which the car-
bonated region moves through the concrete element.
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The cited authors rigorously state the asymptotic behaviour, as previously evid-

enced empirically, of the carbonation front: for long times, a
√
t-law exists for the

penetration depth, that is S(t) ≈ C
√
t, for some constant C > 0.

1.2.2.2 Six-species carbonation model

Another recent different and more sophisticated model for concrete carbonation is

exposed in [60], in which not only the carbonated zone Ω1(t) is considered, but

also the uncarbonated zone Ω2(t) beyond the carbonation front and more chemical

species involved in the chemical process are also taken into account. The concrete

element is assumed to be a sample with a thickness that equals L. Space variable

x is measured from exposed boundary x = 0 to sealed boundary x = L, and the

unknown carbonation front or moving boundary is denoted by x = S(t), which

satisfies 0 < S(t) < L. The chemical species present in Ω1(t) are carbon dioxide

in both gaseous and in aqueous, calcium carbonate and water content, while the

substances considered in Ω2(t) are carbon dioxide and water.

The continuous model applied in [59, 60] is described by a system of five PDEs,

along with one ordinary differential equation, and involves the unknown mass con-

centrations as reaction-diffusion equations. The reaction or production terms for

each equation correspond to Henry’s law for carbon dioxide in the gaseous and li-

quid phases, the dissolution rates of calcium hydroxide and the production rates of

calcium carbonate and water at the carbonation front, and are zero for the equations

about water content.

The initial location of the front is S(0) = S0 > 0 and the initial concentrations

of the different chemical species in their respective domains constitute the initial

conditions. The boundary conditions at exposed boundary x = 0 and sealed bound-

ary x = L are respectively determined by the mass concentrations in the exterior

environment and on the surface of the concrete element, which is protected against

the effect of carbon dioxide. At free boundary x = S(t), 0 < t < T is a set of

Rankine-Hugoniot transmission conditions that are imposed, and another equation

about the dynamics of the carbonation front is regarded.
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1.2.3 Phase change processes

Solid-liquid phase changes appear frequently in nature. Knowledge on them has

become crucial in both pure sciences such as astrophysics, geophysics and meteor-

ology, and different engineering and technology branches; e.g., chemical engineer-

ing (latent heat storage systems, sea water desalination), civil engineering (ground

freezing for construction, concrete hardening, permafrost), electrical engineering

(melting of safety fuses), aeronautical and aerospace engineering (freezing of fuel

in air and spacecraft or ablation of bodies in atmospheric re-entry), metallurgical

engineering (solidification of metals during continuous casting processes), nuclear

engineering (in both fission and experimental fusion reactors), etc. In industry,

many products and materials (metals, ceramics, polymers, electronic components,

processed foods) undergo a solid-liquid phase change process some time in their

lifetime, hence the importance of controlling these phenomena.

The phase change process is modelled as a particular case of the heat conduc-

tion problem, known in the literature as the Stefan problem, which involves melting

(or solidification) of a material. In a one-dimensional two-phase Stefan problem,

at time t = 0 the solid (liquid) occupies finite 0 ≤ x ≤ a or semi-infinite region

x ≥ 0. Since the mathematical structure of the melting and solidification problem

is analogous, and the treatment of both problems is the same, we henceforth will fo-

cus on the latter. At the initial time, the temperature of the material is uniform, Th,

which is higher than the phase-change temperature, and is written as Tf . The ma-

terial is cooled at point x = 0 by imposing constant temperature Tc, which is lower

than the phase-change temperature Tf . With time, the phase interface advances

and the domain consists of a solid and a liquid region separated by a sharp moving

interface S(t), which coincides with the phase change temperature isotherm.

In the finite domain case, the solidification of an initially liquid substance is

governed by two equations, denoted by subscript s for the solid phase and l for the

liquid phase, both of the type ([57]):

ρci
∂Ti
∂t

= κi
∂2Ti
∂x2

, 0 < x < S(t), t > 0, i ∈ {s, l}. (1.5)

For the solid phase, Ts = Ts(x, t) indicates temperature, κs denotes thermal

conductivity and cs refers to the specific heat capacity. The same notation is used
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for the liquid phase by exchanging subscript s for l. The material’s mass density is
assumed to have the same value ρ in both the solid and liquid states.

Boundary, initial and Stefan conditions are added to the above equations: bound-
ary conditions, which are obtained from imposing a value for the cooling temper-
ature at one of the edges of the element (Dirichlet condition) and a perfect thermal
insulation in the other boundary (Neumann condition), together with the isothermal
relations at the moving boundary. The initial conditions are given by the initial
temperatures profile of the element. Finally, the Stefan condition expresses the
heat balance at the interface between the solid and liquid phases, and exhibits the
solidification front dynamics. It takes this form:

ρCm
dS

dt
= κs

∂Ts
∂x
− κl

∂Tl
∂x

, x = S(t), t > 0, (1.6)

where value Cm represents the latent heat of fusion.
In this model, we consider that physical parameters, i.e. density, specific heat

capacity, thermal conductivity and latent heat are constant throughout the process
and their values remaining unaltered in each phase. As mentioned in reference
[26], the problems problems in which a difference in density is assumed between
both phases incorporate an additional advection transport term in the heat transfer
equations.
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1.3 Numerical treatment of moving boundary prob-
lems
Finite difference is one of the oldest and most straightforward methods to solve

differential equations. With the appearance of computers and the software imple-

mentation of finite difference algorithms in the 1950s, the method received a de-

cisive boost, and it was possible to address and numerically solve a wide variety of

science and engineering problems in a relatively short calculation time. In the last

few decades, interest of the finite difference method has increased, together with

other alternative numerical techniques (finite element, finite volume, etc.). How-

ever, the finite difference approach has the advantage of relative simplicity, ease

of implementing and economy of resources from a computational point of view

(especially when working with explicit schemes), apart from the major theoretical

advances that this branch of numerical analysis has made in recent years.

This section reports the basics of the finite difference method which, in conjunc-

tion with front-fixing transformation, is resorted to in this work. It also presents

general concepts like truncation error, consistency and stability. As pointed out

above, our approach to treat moving-boundary problems comprises two successive

steps. Firstly, the front-fixing Landau transform is applied to the original prob-

lem, which leads to a new problem posed in a spatial fixed domain. Secondly, this

problem is discretized by replacing the continuous domain with the independent

variables of PDE(s) by a set of points in a grid in which the dependent variables are

approximated.

1.3.1 Finite difference method

As previously mentioned, most PDEs problems have no analytical solution; i.e.

a function that solves the equation or the system of equations, plus a general set

of initial and/or boundary conditions. In this work, we focus on a class of such

problems; evolution problems that are formulated as second-order PDEs of para-

bolic type with moving boundaries. Hence the solution to the problem must fulfil

both the initial and boundary conditions, as well as the constraint imposed at the

moving boundary, which usually comes in the form of one Stefan-like condition or
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more. Thus for practical purposes, finding an approximate solution by numerical

procedures is mandatory.

The finite difference method consists in estimating the solution of an ordinary

or partial differential equation by substituting the derivatives for differential quo-

tients. In the finite difference approach, by discretizing the continuous domain of

the independent variables, we obtain a finite set of nodes in which the partial de-

rivatives are replaced with and approximated by appropriate difference quotients.

In this way, we can set up a difference algebraic equation at each mesh point and

obtain a system of algebraic equations. These can be solved quite easily depending

on the type of PDE problem, one at a time (explicit schemes) or simultaneously

(implicit schemes). Most of the schemes constructed in our presentation are expli-

cit, but resorting to an implicit scheme in some of the problems that we address is

a suitable option.

The error between the numerical and the exact solution is evaluated by taking

into account the deviation that incurs when replacing the differential operator with

a difference operator. This error is known as the discretization error or truncation

error, and indicates that a truncated series or Taylor polynomial is used in the ap-

proximation. This term is not known and its value is of order O(hn+1), see [72].

From this point onwards, we consider smooth enough two arguments functions

because, in the evolution problems that we treat, the unknowns are functions of

two arguments U(x, t), where x and t respectively stand for spatial and temporal

variables.

Without loss of generality, let’s consider a general two-dimensional domain

{(x, t); 0 ≤ x ≤ L, 0 ≤ t ≤ T} in which an evolution PDE problem is stated,

where L and T respectively hold for the amplitude of the spatial region and the

time horizon. Discretization is performed by partitioning the two domains with the

introduction of a step size or discretization parameter (h for space, k for time) that

separates the points where the discrete problem is posed by taking into account the

following relationships: h = ∆x = L/M ; k = ∆t = T/N , and xj = jh, tn = nk.

As it will be mentioned later when introducing the concept of consistency of

a numerical scheme, for our purposes it is essential that as the separation between

nodes or the step size becomes smaller, the numerical approximation to the exact

solution becomes more accurate. Step sizes do not necessarily have to be constant
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throughout the interval, but in this work we consider that they are fixed for each

independent variable. As a result, we obtain a discrete domain composed of two

finite sets of indexed mesh points, {xj, 0 ≤ j ≤ M} and {tn, 0 ≤ n ≤ N}, where

M and N are positive integers in which numerical solution unj should approximate

exact solution U(jh, nk).

In principle, finite difference approximations can be formulated in an infinite

number of forms depending on the stencil we choose for the point of interest; i.e.,

the number of neighbouring nodes taken into account, that determine the order of

the approximation, and the geometric arrangement considered to build the differ-

ence quotient.

With the above-described mesh, we recall (see [72]) that the first-order spa-

tial backward (left-sided) difference approximation of a function of two arguments

U(x, t) at the mesh point (xj, t
n) takes the form:

∂U(xj, t
n)

∂x
=
unj − unj−1

h
+ O(h). (1.7)

Similarly, it is easy to obtain some other most frequently used first-derivative
approximations, and their corresponding order:

-First-order spatial forward (right-sided)

∂U(xj, t
n)

∂x
=
unj+1 − unj

h
+ O(h). (1.8)

-Second-order spatial central

∂U(xj, t
n)

∂x
=
unj+1 − unj−1

2h
+ O(h2). (1.9)

-Second-order spatial backward (left-sided)

∂U(xj, t
n)

∂x
=

3unj − 4unj−1 + unj−2

h
+ O(h2). (1.10)

-Second-order spatial forward (right-sided)

∂U(xj, t
n)

∂x
=
−3unj + 4unj+1 − unj+2

h
+ O(h2). (1.11)
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-Fourth-order spatial central

∂U(xj, t
n)

∂x
=
−unj+2 + 8unj+1 − 8unj−1 + unj−2

12h
+ O(h4). (1.12)

The commonest second-derivative approximations ones are given by:

-First-order spatial backward (left-sided)

∂U2(xj, t
n)

∂x2
=
unj − 2unj−1 + unj−2

h2
+ O(h). (1.13)

-First-order spatial forward (right-sided)

∂U2(xj, t
n)

∂x2
=
unj − 2unj+1 + unj+2

h2
+ O(h). (1.14)

-Second-order spatial central

∂U2(xj, t
n)

∂x2
=
unj+1 − 2unj + unj−1

h2
+ O(h2). (1.15)

-Fourth-order spatial central

∂U2(xj, t
n)

∂x2
=
−unj+2 + 16unj+1 − 30unj + 16unj−1 − unj−2

12h2
+ O(h4). (1.16)

Once the mesh is constructed, we work with discrete variables by replacing the
derivatives of the PDE problem (including those which appear in the initial, bound-
ary and Stefan conditions, if any) with suitable finite difference approximations. At
this point, we rearrange the discrete equations to obtain a numerical scheme that
can be solved by its implementation as a finite difference algorithm in a computer.

Depending on how the temporal derivative is approximated, three basic schemes
can be considered:

-Explicit scheme, in which approximation consists of a forward difference quo-
tient of the type:

∂U(xj, t
n)

∂t
≈
un+1
j − unj
k

, (1.17)

evaluated at the mesh point (jh, nk). One of the major advantages of explicit fi-
nite difference methods lies in their relative simplicity and short computation time.
However, the main drawback is that explicit schemes are stable only under some
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conditions that link the size of the discretization steps, and the truncation error is

first-order in time; i.e. O(k).

-Implicit scheme, in which the derivative is approximated by a backward dif-

ference quotient; i.e., a similar expression to (1.17), but calculated at the mesh point

(jh, (n+1)k). The implicit scheme is unconditionally stable regardless of the time

step size, and is first order accurate in time; i.e., O(k).

-Crank-Nicolson scheme. This scheme considers the average approximation

of the above two. The Crank-Nicolson scheme is unconditionally stable and second-

order accurate in time; i.e., O(k2).

1.3.2 Preliminary concepts of numerical analysis

The following concepts are important for the analysis of the finite difference schemes

related to evolution PDE problems. The reliability and computational efficiency of

a finite difference method depends on whether the scheme is consistent, stable and

convergent, or not.

Truncation error. Truncation errors arise when exact mathematical expres-

sions are represented by approximations. In our case, the truncation error of the

derivatives is the difference between their exact value and their finite-difference

estimations by truncated Taylor series. With notation O(h), we mean that the abso-

lute truncation error value is bounded by product Kh for h small enough, where K

is a positive real constant and h is the discretization step size. Generally, we state

that f(x) is of order g(x), i.e. f(x) = O[g(x)], where f(x) and g(x) are real or

complex functions if a positive constant K exists that is independent of x, so that

|f(x)| ≤ K|g(x)| for all x.

Roundoff error. Roundoff errors arise when using digital computers because

of their limited capacity and precision to represent numbers, and also because they

cannot often work with exact quantities. Some numerical operations (e.g., subtract-

ing nearly equal digits) are highly sensitive to roundoff errors. The total numerical
error is the sum of the truncation and the roundoff error.

Consistency. Consistency is a term linked to truncation error as it deals with

how much the finite difference equations approximate the PDE in a particular prob-

lem. A finite difference scheme is stated to be consistent with a PDE if the trun-
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cation error vanishes as the step size tends to zero; i. e., as the mesh is refined.
In this case, the discrete operator that defines the finite difference tends to be the
equivalent to the analytical operator when discretization step sizes approach zero.

Stability. In addition to consistency, scheme stability is a necessary property.
The roundoff errors incurred in calculations may lead to a disruption in the whole
computation process. Roughly speaking, we can state that a numerical scheme is
stable if roundoff errors are not amplified in calculations. Stability ensures that
the error remains bounded as numerical computation progresses. As stability is
related to the numerical solution’s boundedness, it is necessary to specify a norm.
We denote the so-called supremum norm of a vector x = (x1, x2, ..., xn)T in Rn as
‖x‖∞ = max(|x1|, |x2|, ..., |xn|).

Using the notation for the solution vector at time level n,wn = [wn0 , w
n
1 , . . . , w

n
M ]T ,

we state that numerical solution {wn, 0 ≤ n ≤ N} is ‖ · ‖∞-stable if a positive
constant C exists and is independent of n, k and h so that:

‖wn‖∞ ≤ C, 0 ≤ n ≤ N. (1.18)

Convergence. Convergence means that the solution of a PDE problem and its
associated finite difference equation come closer as the mesh is refined. In other
words, the numerical solution converges towards the exact solution of the PDE for
step sizes that approach zero. From Lax’s equivalence theorem, it is known that
a consistent scheme for well-posed linear evolution problems is convergent if it is
stable.
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CHAPTER

2
Population dynamics of an

invasive species

As argued in Chapter 1, a moving boundary problem is characterized by the

fact that the boundary of the domain is not known in advance but it has to be de-

termined as a part of the solution. These problems are often called Stefan problems

due to the Stefan condition that links the behaviour of the boundary with the un-

known solution, see [26, 66]. The term free-boundary problem is commonly used

when the boundary is independent of the time and typically related to elliptic prob-

lems. Moving boundary problems have their origins in physical and engineering

problems [26, 31], and more recently in biological and physiological sciences [19],

decision and control theory and ecology [30].

Prior to [30] the modelling of biological invasions has been widely studied in

[4, 5, 10, 34, 43, 50, 71, 83, 84] under the crucial restriction that in the previ-

ous papers the spatial domain is not constrained by the population behavior, that

is the essence of the Stefan condition. The first diffusive logistic model related

to biological invasions was initiated in 1937, of course without boundary restric-

tions, independently by Fisher [34] and Kolmogorov-Petrovsky-Piskunov (KPP)

[43]. Very recent papers have treated numerically these nonlinear models focusing
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2. POPULATION DYNAMICS OF AN INVASIVE SPECIES

on the stability and the preservation of the qualitative properties of the theoretical

solution [11, 52, 63].

To our knowledge the seminal paper [30] by Du and Lin is the first contribution

in the field of spreading of populations where a Stefan condition is used and man-

aging a moving boundary problem of parabolic type. Further developments of this

problem have been treated in [28, 29, 82]. The diffusive logistic model of [30] for

the density of population of the invasive species U(t, x) depending on time t and

spatial variable x states as follows:

∂U

∂t
−D∂

2U

∂x2
= U(a− bU), t > 0, 0 < x < H(t), (2.1)

together with the boundary conditions

∂U

∂x
(t, 0) = 0, U(t,H(t)) = 0, t > 0, (2.2)

the Stefan condition

H ′(t) = −µ∂U
∂x

(t,H(t)), t > 0, (2.3)

and the initial conditions

H(0) = H0, U(0, x) = U0(x), 0 ≤ x ≤ H0. (2.4)

The initial function U0(x) satisfies the following properties:

U0(x) ∈ C2([0, H0]), U ′0(0) = U0(H0) = 0, U0(x) > 0, 0 ≤ x < H0. (2.5)

Here H(t) is the unknown moving boundary such that the population is distrib-

uted in the interval [0, H(t)],D > 0 is the dispersal rate and the positive parameters

a and b are the intrinsic growth rate and the intraspecific competition, respectively.

The parameter µ > 0 involved in the Stefan condition (2.3) is the proportionality

constant between the population gradient at the front and the speed of the moving

boundary. Unlike to the previous models, where only spreading behaviour was ad-

missible, the authors of [30] show by the very first time a dichotomic alternative

behavior, vanishing or spreading approach to the habitat carrying capacity a/b, de-

pending on the initial front and population density and the value of the parameter

20



2.1 Transformation and discretization of the continuous problem

µ appearing in Stefan condition. According to [30], there is a threshold µ∗ whose

value is not known in advance, splitting the vanishing-spreading behavior.

This chapter aims to be a continuation and numerical completion of [30] with

the conviction that the best model may be wasted with a careless numerical treat-

ment. Apart from the computation of the population density solution of problem

(2.1)-(2.4) and the numerical analysis detailed below, this chapter has the poten-

tial advantage that allows us the computation of the expanding front of the species

population as well as the approximation, by means of numerical experiments in-

cluded in Section 2.4, of the crucial parameter µ∗, whose existence is guaranteed

in [30] but whose value is not known in terms of data problem. A brief numerical

treatment of the problem may be found in Section 3.6 of [15].

Chapter 2 is organized as follows. In Section 2.1, and following the trajectory of

the authors in the study of finance problems (see [21, 22]), we use the well-known

Landau transformation (see [26, 49]), in order to convert the problem (2.1)-(2.4)

into a fixed spatial domain one, where the moving boundary is included as another

variable to solve apart from the population density. We also include in Section 2.1

the discretization of the transformed problem achieving an explicit finite difference

scheme allowing the computation not only of the population but also of the expand-

ing front. Section 2.2 deals with the study of the consistency of the scheme with the

transformed problem. Dealing with population problems it is important to guaran-

tee the positivity of the numerical solution; this qualitative property together with

the stability of the numerical solution and the positivity and monotone behaviour

of the numerical expanding front are studied in Section 2.3. Section 2.4 illustrates

with numerical examples the dichotomic behaviour of the numerical solution of the

problem. The chapter ends with some relevant conclusions in Section 2.5.

2.1 Transformation and discretization of the continu-
ous problem
Let us begin this section by transforming the moving front problem (2.1)-(2.4) into

a problem with a fixed domain [0, 1]. Let us consider the Landau transformation,

21



2. POPULATION DYNAMICS OF AN INVASIVE SPECIES

[26, 49],

z(t, x) =
x

H(t)
, W (t, z) = U(t, x). (2.6)

Under substitution (2.6) problem (2.1)-(2.4) takes the form:

G(t)
∂W

∂t
−G′(t)z

2

∂W

∂z
−D∂

2W

∂z2
= G(t)W (a− bW ), t > 0, 0 < z < 1, (2.7)

where:

G(t) = H2(t), t ≥ 0. (2.8)

Boundary conditions (2.2) and Stefan condition (2.3) take the form:

∂W

∂z
(t, 0) = 0, W (t, 1) = 0, t > 0, (2.9)

and

G′(t) = −2µ
∂W

∂z
(t, 1), t > 0, (2.10)

respectively, while the initial conditions (2.4) become:

G(0) = H2
0 , W (0, z) = W0(z) = U0(zH0), 0 ≤ z ≤ 1. (2.11)

Conditions (2.5) for the initial function U0(x) are translated to W0(z) as fol-
lows:

W0(z) ∈ C2([0, 1]), W ′
0(0) = W0(1) = 0, W0(z) > 0, 0 ≤ z < 1. (2.12)

After the transformation, the new problem lies in solving the nonlinear para-
bolic partial differential equation (2.7) in the unbounded fixed domain (0,∞) ×
(0, 1) for the variables (t, z). Regarding the temporal interval, for numerical ana-
lysis reasons, it is considered here to be bounded, ranging from the initial time to
a bounded time horizon, T . Let us consider the step size discretization k = ∆t =

T/N , h = ∆z = 1/M , and the mesh points (tn, zj), with tn = kn, 0 ≤ n ≤ N ,
zj = jh, 0 ≤ j ≤ M and N , M positive integers. As agreed in Section 1.3, let us
denote the approximate value of W (tn, zj) at the mesh point (tn, zj),

wnj ≈ W (tn, zj), (2.13)

and let gn be the approximation of G(tn).
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2.1 Transformation and discretization of the continuous problem

On the assumption that functionsW (t, z) andG(t) satisfy the requirementW ∈
C1,2(Ω), where Ω = {(t, z) ∈ R2 : t ∈ [0, T ], z ∈ [0, 1]}, and G ∈ C1[0, T ], let us
consider the forward approximation of the time derivatives,

wn+1
j − wnj

k
≈ ∂W

∂t
(tn, zj),

gn+1 − gn

k
≈ G′(tn), (2.14)

and the central approximation of the spatial derivatives,

wnj+1 − wnj−1

2h
≈ ∂W

∂z
(tn, zj),

wnj−1 − 2wnj + wnj+1

h2
≈ ∂2W

∂z2
(tn, zj). (2.15)

From (2.14) and (2.15) the equation (2.7) is approximated by:

gn
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1

2h

(
gn+1 − gn

k

)
−D

wnj−1 − 2wnj + wnj+1

h2

= gnwnj (a− bwnj ), 0 ≤ n ≤ N − 1, 0 ≤ j ≤M − 1, (2.16)

that can be written as:

wn+1
j =

[
Dk

h2gn
− zj

4h

(
gn+1

gn
− 1

)]
wnj−1 +

[
1 + k(a− bwnj )− 2Dk

h2gn

]
wnj

+

[
Dk

h2gn
+
zj
4h

(
gn+1

gn
− 1

)]
wnj+1, 0 ≤ n ≤ N − 1, 0 ≤ j ≤M − 1. (2.17)

As it is usual in numerics we assume that equation (2.7) can be also approximated
at zj = 0. Equation (2.17) written for j = 0 involves the fictitious value wn−1

at the point (tn,−h). This value wn−1 is eliminated from the discretization of the
boundary and initial conditions (2.9) and (2.11),

wn1 − wn−1

2h
= 0, wnM = 0, 0 ≤ n ≤ N. (2.18)

Transformed Stefan condition (2.10) is discretized using first order forward ap-
proximation forG′(t) and three points backward spatial approximation of ∂W

∂z
(t, 1):

gn+1 − gn

k
= −µ

h
(3wnM − 4wnM−1 + wnM−2), 0 ≤ n ≤ N − 1, (2.19)

to preserve accuracy of order O(k) + O(h2). From (2.18) equation (2.19) can be
rewritten as:

gn+1 = gn +
kµ

h
(4wnM−1 − wnM−2), 0 ≤ n ≤ N − 1. (2.20)
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2. POPULATION DYNAMICS OF AN INVASIVE SPECIES

Finally, replacing (2.20) in the explicit scheme (2.17), we have:

wn+1
j = anjw

n
j−1 + bnjw

n
j + cnjw

n
j+1, 0 ≤ n ≤ N − 1, 0 ≤ j ≤M − 1, (2.21)

where the coefficients are given by:

anj =
k

h2

(
D

gn
−
zjµ(4wnM−1 − wnM−2)

4gn

)
,

bnj = 1 + k(a− bwnj )− k

h2

2D

gn
,

cnj =
k

h2

(
D

gn
+
zjµ(4wnM−1 − wnM−2)

4gn

)
,

n ≥ 0, 0 ≤ j ≤M − 1. (2.22)

2.2 Consistency
Consistency of a numerical scheme with a PDE problem means that the theoretical
solution of the problem approximates well the numerical scheme when the step
size discretizations tend to zero. So, a numerical scheme can be consistent with
an equation and not with another one, see [72], Chapter 2. Thus, it is important to
address the consistency of a numerical scheme with a problem.

Let us consider the problem (2.7)-(2.11), denoted in vector form as L(W,G) =

(L1(W,G),L2(W,G),L3(W,G)) where equations (2.7),(2.9), (2.10) are written in
the form:

L1(W,G) =
∂W

∂t
−G

′(t)

G(t)

z

2

∂W

∂z
− D

G(t)

∂2W

∂z2
−W (a−bW ) = 0, t > 0, 0 < z < 1,

(2.23)

L2(W,G) =
∂W

∂z
(t, 0) = 0, t > 0, (2.24)

L3(W,G) = G′(t) + 2µ
∂W

∂z
(t, 1) = 0, t > 0, (2.25)

and the finite difference scheme (2.16), (2.18), (2.20), written together asL(w, g) =

(L1(w, g), L2(w, g), L3(w, g)) where:

L1(w, g) =
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1

2h

(
gn+1 − gn

gnk

)
− wnj (a− bwnj )

− D

gn
wnj−1 − 2wnj + wnj+1

h2
= 0, 0 ≤ n ≤ N − 1, 0 ≤ j ≤M − 1, (2.26)
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2.2 Consistency

L2(w, g) =
wn1 − wn−1

2h
= 0, 0 ≤ n ≤ N, (2.27)

L3(w, g) =
gn+1 − gn

k
− µ

h
(4wnM−1 − wnM−2) = 0, 0 ≤ n ≤ N − 1. (2.28)

In accordance with [72], scheme L(w, g) is said to be consistent with problem
L(W,G) if local truncation error T nj (W,G) = (T (1)nj , T (2)nj , T (3)nj ),

T (1)nj (W,G) = L1(W n
j , G

n)− L1(W n
j , G

n), (2.29)

T (2)nj (W,G) = L2(W j
n, G

n)− L2(W n
j , G

n), (2.30)

T (3)nj (W,G) = L3(W n
j , G

n)− L3(W n
j , G

n), (2.31)

tend to zero as k → 0, h → 0, where W n
j = W (tn, zj) and Gn = G(tn) are the

values of the exact solution of problem (2.7)-(2.11) of both the PDE and the free
boundary respectively at the point (tn, zj) . Now let us consider the local truncation
error T (1)nj assuming that the exact solution W (t, z) satisfies W ∈ C2,4(Ω). We
also assume that G(t) is two times continuously differentiable. By using Taylor’s
expansion about (tn, zj) one gets:

T (1)nj (W,G) = En
j (1)k − zj

2Gn
G′(tn)En

j (3)h2 − zj
2Gn

En(2)En
j (3)kh2

− zj
2Gn

∂W

∂z
(tn, zj)E

n(2)k − D

Gn
En
j (4)h2,

(2.32)

where:
En
j (1) =

1

2

∂2W

∂t2
(τ, zj), tn < τ < tn+1. (2.33)

En(2) =
1

2

d2G

dt2
(δ), tn < δ < tn+1. (2.34)

En
j (3) =

1

6

∂3W

∂z3
(tn, ξ1), zj−1 < ξ1 < zj+1. (2.35)

En
j (4) =

1

12

∂4W

∂z4
(tn, ξ2), zj−1 < ξ2 < zj+1. (2.36)

Hence, the local truncation error satisfies:

T (1)nj (W,G) = O(k) + O(h2). (2.37)

From (2.24), (2.27) and (2.30) one gets that T (2)nj (W,G) = O(h2) while from
(2.25), (2.28) and (2.31) it follows that T (3)nj (W,G) = O(k) + O(h2). Summariz-
ing the following result has been established:
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2. POPULATION DYNAMICS OF AN INVASIVE SPECIES

Theorem 1. With previous notation, the schemeL(w, g) is consistent with the prob-
lem L(W,G) and the local truncation error behaves as:

T nj (W,G) = O(k) + O(h2). (2.38)

2.3 Positivity and Stability

2.3.1 Positivity

Dealing with population models it is necessary to guarantee that the numerical

solution is nonnegative. In this section we show that the numerical solution of the

scheme (2.21)-(2.22) is nonnegative for small enough values of the step size dis-

cretization. We also prove that the numerical solution preserves qualitative proper-

ties of the exact unique classical solution of the problem obtained by Du and Lin

in [30].

We prove the nonnegativity of the solution wnj of (2.21)-(2.22) as well as the posit-

ivity and monotonicity of the free boundary gn using the induction principle on the

index n. For n = 0, from the initial conditions (2.12) w0
j > 0, 0 ≤ j ≤ M − 1

and particularly w0
M−1 > 0. From (2.12) we also have that the left hand side de-

rivative W ′
0(1−) at z = 1 and hence the corresponding difference approximation

(3w0
M − 4w0

M−1 + w0
M−2)/(2h) = (w0

M−2 − 4w0
M−1)/(2h) < 0 for small enough

values of h. As g0 > 0, from (2.19) one gets:

g1 > g0 > 0. (2.39)

Let us suppose that wlj > 0 and gl > gl−1 > ... > g0 > 0, 1 ≤ l ≤ n. We will

prove that wn+1
j > 0 and gn+1 > gn. By using Taylor’s expansion on the left about

zM = 1 one gets:

wnM−2 = 2wnM−1 + O(h2), 0 ≤ n ≤ N. (2.40)

Note that from (2.20), (2.40) and using that wnM = 0 and wnM−1 = O(h), one gets:

gn+1 = gn +
kµ

h
(4wnM−1 − wnM−2) = gn +

kµ

h
(2wnM−1 + O(h2)) = gn + O(k),

(2.41)
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2.3 Positivity and Stability

as it is expected from the differentiability of function g(t) (cf. [30]).
Coming back to the positivity issues, let us consider the equation (2.21) for j =

M − 1. From (2.22) and (2.40) one gets:

wn+1
M−1 =

(
1 + k(a− bwnM−1)− k

h2

zM−1

gn
µwnM−1

)
wnM−1 + O(h2). (2.42)

As gn > g0 from the hypothesis and zM−1 < 1, from (2.42) we can write:

wn+1
M−1 >

(
1 + k(a− bwnM−1)− k

h2

1

g0
µwnM−1

)
wnM−1 = ϕnM−1w

n
M−1, (2.43)

for small enough values of h. As we are interested in showing that ϕnM−1 > 0, let
us start bounding wnM−1. From the expression of (2.42), for small enough values of
h we have that wl+1

M−1 < wlM−1(1 + ka), 0 ≤ l ≤ n− 1. Recursively one gets:

wl+1
M−1 < w0

M−1(1 + ka)l ≤ eaTw0
M−1, 0 ≤ l ≤ n ≤ N − 1; kN = T, (2.44)

for a time reference T > 0.
From (2.44) and the definition of ϕnM−1 given in (2.43) it is easy to show that
wn+1
M−1 > 0 under the condition:

k <
h2

µC
g0

+ h2(bC − a)
, (2.45)

where
C = eaTw0

M−1. (2.46)

Once the positivity of wnM−1 is established, it is necessary to show that wnj > 0

for 0 ≤ j ≤ M − 2. From (2.21) and the induction hypothesis, this occurs when
coefficients of the scheme are nonnegative. Note that from (2.22) and (2.40) every
coefficient cnj > 0 for small enough values of h. From (2.22), and taking into
account that 0 ≤ zj < 1, coefficient anj > 0 if µwnM−1 < 2D, and thus from (2.46)
one concludes that anj > 0 holds true under the condition:

wnM−1 <
2De−aT

µ
. (2.47)

Let B(n) be defined by B(n) = max{wnj ; , 0 ≤ j ≤M}. Using that gn > g0 > 0

by induction hypothesis bnj > 0 if

k <
h2

2D
g0

+ h2(bB(n)− a)
. (2.48)
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In order to get an explicit expression of B(n) independent of the discretization,

note that from positivity of coefficients anj , b
n
j , c

n
j and (2.21):

wn+1
j ≤ (1 + k(a− bwnj ))B(n) ≤ (1 + ka)B(n) ≤ (1 + ka)2B(n− 1)

≤ ... ≤ (1 + ka)nB(0) < eaTB(0),
(2.49)

where B(0) = max{W (0, z)}, 0 ≤ z ≤ 1. In order to prove the monotonicity of

the free boundary gn, from (2.40) and (2.20) one gets that gn+1 > gn.

Summarizing, the following results have been established:

Theorem 2. With previous notation, let k0 be:

k0 = min

{
k1 =

h2

µC
g0

+ h2(bC − a)
, k2 =

h2

2D
g0

+ h2(beaTB(0)− a)

}
. (2.50)

Under condition k < k0 for small enough values of h the solution {wnj , gn} of
scheme (2.18), (2.20) and (2.21) verifies that gn is positive monotone increasing
and:

0 ≤ wnj ≤ B(0)eaT ; 0 ≤ j ≤M, 0 ≤ n ≤ N, Nk = T. (2.51)

2.3.2 Stability

The concept of stability is somewhat plural in the literature. For the sake of clarity

in the presentation, we specify the concept of stability we use below (see page

92 of [23, 44]), applicable by virtue of the smoothness of the solution. We recall

the definition of the supremum norm of a vector x = (x1, x2, ..., xn)T in Rn as

‖x‖∞ = max(|x1|, |x2|, ..., |xn|).

Definition 1. Following the definition outlined in (1.18), the numerical scheme
(2.19)-(2.21) is said to be ‖ · ‖∞-stable in the domain [0, T ] × [0, 1], if for every
partition with k = ∆t, h = ∆z, Nk = T and Mh = 1 it holds true that:

‖wn‖∞ ≤ K‖w0‖∞, 0 ≤ n ≤ N, (2.52)

where wn = [wn0 , wn1 , ..., w
n
M ]T is the vector solution of the scheme and K is

independent of h, k, and n.
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From (2.51), using thatB(n) = ‖wn‖∞ and from Theorem 2 one gets ‖wn‖∞ ≤
K‖w0‖∞ with K = eaT . Thus the following result has been established:

Theorem 3. With previous notation, under the condition k < k0 where k0 is given
by (2.50) and small enough values of h the numerical scheme (2.19)-(2.21) is con-
ditionally ‖ · ‖∞-stable in the domain [0, T ]× [0, 1].

In the following examples, we show that the stability and positivity condition

of Theorems 2 and 5 can not be disregarded and that in fact this is a tight condi-

tion. In Example 1 the condition is satisfied, however in Example 2 the stability

and positivity condition is broken and results become unstable.

Example 1. Consider the logistic diffusion model (2.1)-(2.4) with parameters

(D,µ, a, b,H0) = (5, 5, 5, 1, 2) and U0 = cos(πx/4). For h = 0.05 one gets k1 =

0.0076 and k2 = 0.001. Taking k = 0.00091 stability is guaranteed as can be seen

in Figure 2.1.
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0.65
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Figure 2.1: Numerical solution of Example 1 for z = 0.5 under stability condition

Numerical solution of Example 1 for z = 0.5 under stability condition.

Example 2. With the same parameters and value of h = 0.05 as in Example

1, with k = 0.001179, the stability condition is broken because k > k2 and Figure

2.2 shows unstable results.
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Figure 2.2: Numerical solution of Example 2 for z = 0.5 when the stability condition
is broken.

2.4 Numerical dichotomy: spreading versus vanish-
ing

Theoretical results in [30] establish that for H0 ≥ L, where L = π
2

√
D
a

, spreading

of the species is guaranteed. Even if H0 < L, spreading occurs under condition

µ > µ∗ where µ∗ is an unknown threshold depending on U0, see Theorem 3.9

of [30]. In the spreading case the population density tends to the habitat carrying

capacity limit a/b as time tends to infinity, see Lemma 3.2 of [30]. For H0 < L

and µ ≤ µ∗ vanishing happens, satisfying that L is an upper bound of H(t), i.e.,

H(t) ≤ L, t > 0. The following example is devoted to spreading case show-

ing that the numerical solution of problem (2.7)-(2.11) computed by the proposed

scheme (2.21)-(2.22) converges to a/b confirming that the numerical spreading oc-

curs.

Example 3. Concerning the logistic diffusion model (2.1)-(2.4) with paramet-

ers values (D,µ, a, b,H0) = (1, 1, 2, 1, 4) and U0 = cos(πx/8), Figure 2.3 shows

the spreading behaviour under condition H0 = 4.00 > L = 1.11. Note that as time

increases the numerical solution approaches to the habitat carrying capacity a/b.

30
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Figure 2.3: Numerical solution of Example 3 for several values of time in a spreading
case.

The next example illustrates the vanishing behaviour of the numerical solution
according to the theoretical results of [30].

Example 4. In this example we take (D,µ, a, b,H0) = (0.1, 0.2, 0.04, 0.04, 1), with
U0 = cos(πx/2). There is vanishing behaviour with H0 = 1.00 < L = 2.48 and
µ = 0.20. Figure 2.4 shows that numerical population density tends to zero and
the free boundary is always upper bounded by L. Besides, Table 2.1 exhibits CPU
time for several values of the time horizon T considered in the simulation.
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t = 10
t = 8
t = 6
t = 4
t = 2
t = 0

Spreading barrier
       L = 2.48

Figure 2.4: Numerical solution of Example 4 for several values of time in a vanishing
case.

31



2. POPULATION DYNAMICS OF AN INVASIVE SPECIES

T (years) CPU
(seconds)

2 0.186687
4 0.490169
6 1.097099
8 6.850214
10 31.021795

Table 2.1: Associated CPU time for several values of T (Example 4).

One of the advantages of the proposed front-fixing numerical approach is to

forecast the magnitude of the parameter µ∗ whose existence is guaranteed in the

theory but whose value is not known. In addition, the numerical solution of the free

boundary H(tn) is obtained explicitly by expression (2.20), noting that H(tn) =

√
gn.

Next examples show the evolution of the free boundary (Example 5) and the speed

of spreading behaviour (Example 6), taking into account that the forecasted value

of the parameter µ∗ is the threshold where the solution transits from vanishing to

spreading.

Example 5. Choosing the values (D,µ, a, b,H0) = (1, µ, 1, 1, 1) and U0 =

cos(πx/2), the evolution of the expanding front H(t) for different values of µ is

shown in Figure 2.5. The parameter µ∗ which separates spreading from vanishing

behaviour is estimated. In the vanishing cases, it can be seen that the “spreading

barrier” is an upper bound for the expanding front as the theoretical results predict.
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µ = 0.47 ≈ µ*
µ = 0.30
Spreading barrier L = 1.57

Figure 2.5: Expanding front H(t) of Example 5 for several values of µ.

Example 6. With the same values of the previous example, the speed of the
front dH/dt is illustrated in Figure 2.6. In the long term, for the spreading cases,
the front speed tends to a nonzero constant value in accordance with [30], section
4, while in the vanishing case it tends to zero.
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µ = 2.00

µ = 1.00

µ = 0.47 ≈ µ*

µ = 0.30

Figure 2.6: Expanding front speed dH/dt of Example 6 for several values of µ.

2.5 Conclusions
In this chapter, a front-fixing approach is introduced in such a way that the expand-
ing front becomes a new unknown variable of the transformed problem. It has the
advantage of achieving a fixed numerical domain and the availability of comput-
ing explicitly the expanding front as well as the approximation of the parameter µ∗,
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whose existence is guaranteed in [30] but its value is not known. We provide a care-
ful numerical analysis of theoretical results given in [30]. Results and techniques
are potentially applicable to problems in higher dimensions proposed in [28], or to
the presence of two fronts in one dimension [30].
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CHAPTER

3
2 species model for damage

by carbonation of reinforced
concrete structures

The carbonation of concrete is a natural phenomenon that affects the perform-
ance, serviceability and safety of concrete structures, such as bridges, sewage pipes
and seawalls. The diffusion of the environmental carbon dioxide in the dry parts
and its reaction in the unsaturated concrete pores, cause a drop in pH of the alkaline
components near the steel bars, and the oxide film around the steel surface declines
its ability to protect bars from corrosion. Gradually, the process penetrates deeper
into de concrete shaping a carbonation front that separates the carbonated zone
from the uncarbonated one. Thus, the carbonation process leads to the corrosion of
the embedded reinforcing bars, reducing the service life of concrete structures. A
good understanding of the evolution of the carbonation process is crucial to predict
the life service of concrete structures and save important amounts of money and
energy.

The bulk of these changes leads to damaging and destabilization of the concrete
itself or of the reinforcement embedded in the concrete. It is well known that in all
carbonation scenarios, gaseous carbon dioxide is assumed to be supplied from an
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inexhaustible exterior source to the concrete sample, [2, 41]. Carbon dioxide enter-
ing the non-saturated concrete sample through the air parts of the pores dissolves
into the pore water and forms carbonic acid. This phenomenon, called concrete car-
bonation, may reduce the durability of reinforced concrete structures, causing the
corrosion of the steel bars. The concrete carbonation level is measured through-
out the CO2 mass concentration in air and water phases in the concrete pores, that
needs to be calculated.

Empirical evidences of the behaviour of the carbonation front propagation have
shown a dependence on time following the so-called

√
t-law, [13, 14, 37, 42, 61, 67,

70, 80]. In the framework of moving-boundary problems, to our knowledge, Tuutti
[79] in 1982, was the first appealing to the square root of t-law in the problem of
concrete carbonation. Such conclusions were based on the Neumann solution of
the two-phase Stefan problem, see Section 13.2.2 of [26].

In recent papers [2, 3], the authors studied a one-dimensional free-boundary
problem modeling the carbonation process. The unknown CO2 mass concentra-
tions in air and water phases of pores are denoted by U(t, x) and V (t, x) respect-
ively, depending on variables time t and space x. The space variable x is measured
from the exposed boundary x = 0 to the unknown carbonation front x = S(t). In
the system (3.2)-(3.9) it is assumed that κ1 and κ2 are positive diffusion constants
(κ1 � κ2) and the functions f(U, V ) and ψ(r) are defined as

f(U, V ) = β(γV − U), β > 0, γ > 0. (3.1)

The continuous model is described by

∂U

∂t
− ∂

∂x

(
κ1
∂U

∂x

)
= f(U, V ), 0 < t < T, 0 < x < S(t), (3.2)

∂V

∂t
− ∂

∂x

(
κ2
∂V

∂x

)
= −f(U, V ), 0 < t < T, 0 < x < S(t), (3.3)

together with the left boundary conditions

U(t, 0) = G(t), V (t, 0) = H(t), 0 ≤ t ≤ T. (3.4)

The propagation front behaviour comes out from the Stefan-like conditions,
involving function ψ(r) linked to the chemical reactions:

S ′(t) = ψ(U(t, S(t))), 0 < t < T, (3.5)
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− κ1
∂U

∂x
(t, S(t)) = ψ(U(t, S(t))) + S ′(t)U(t, S(t)), 0 < t < T, (3.6)

− κ2
∂V

∂x
(t, S(t)) = S ′(t)V (t, S(t)), 0 < t < T. (3.7)

Function ψ(r) is given by

ψ(r) = α|r|p, r ∈ R, α > 0, p ≥ 1, (3.8)

where p is the so-called the order of the chemical reaction.

The bounded initial conditions functions are described by

S(0) = S0, U(0, x) = U0(x), V (0, x) = V0(x), 0 < x < S0, (3.9)

where the initial concentrations satisfy the requirementU0 ∈ C[0, S0], V0 ∈ C[0, S0].

Aiki and Muntean [2, 3] show qualitative properties of the solutions U(t, x)

and V (t, x) of (3.2)-(3.9) as positivity and boundedness for fairly well posed initial
conditions. Furthermore, they also justify rigorously that the carbonation front
S(t) satisfies a long time behaviour of the type C1

√
t ≤ S(t) ≤ C2

√
t, when the

exposed boundary conditions are constant, G(t) = G∗, H(t) = H∗, and linked
by the condition G∗ = γH∗. Numerical simulations of the solution of carbonation
problems using the finite element method have been performed in [58, 60].

As the exact solution of the model (3.2)-(3.9) is not available and the best model
may be wasted with a bad numerical analysis, in this chapter we provide condi-
tionally stable positive numerical solutions, apart from preserving the qualitative
properties of the theoretical solution.

In Section 3.1 of this chapter, after a front-fixing transformation approach, the
original problem is transformed into another one where the moving boundary be-
comes a new unknown of the problem, allowing the possibility to compute the
expanding front. We propose a coupled finite difference scheme whose unknowns
are both CO2 concentrations, in air and water phases of pores, as well as the square
power values of the expanding front. In Section 3.2, stability and positivity of
the numerical solution is treated. The monotone increase in time behaviour of the
expanding front is shown numerically. We also prove for a fixed time the CO2

concentrations are spatially decreasing from the exposed front to the carbonation
front. Section 3.3 deals with a numerical conformation of the

√
t-law assumption.
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Numerical experiments illustrating the shown properties are included in the cor-
responding sections. Consistency of the proposed numerical scheme with the PDE
problem is addressed in Section 3.4.

3.1 Front-fixing transformation and discretization
Let us begin this section by transforming the moving boundary problem (3.2)-(3.9)
into another one with fixed boundary conditions. The Landau transformation, [26,
49], suggests the substitution

L(t) = S2(t), z(t, x) =
x√
L(t)

, 0 ≤ t ≤ T, 0 < x <
√
L(t). (3.10)

Using substitution (3.10), the problem (3.2)-(3.9) becomes

L(t)
∂W

∂t
− L′(t)z

2

∂W

∂z
− κ1

∂2W

∂z2
= L(t)β(γY −W ), 0 < t < T, 0 < z < 1,

(3.11)

L(t)
∂Y

∂t
− L′(t)z

2

∂Y

∂z
− κ2

∂2Y

∂z2
= −L(t)β(γY −W ), 0 < t < T, 0 < z < 1,

(3.12)
where

W (t, z) = U(t, x), Y (t, z) = V (t, x). (3.13)

In addition, the new boundary conditions take the form

W (t, 0) = G(t), Y (t, 0) = H(t), 0 ≤ t ≤ T. (3.14)

The Stefan-like conditions (3.5)-(3.7) are transformed into

L′(t) = 2
√
L(t)α[W (t, 1)]p, 0 < t < T, (3.15)

− 2κ1
∂W

∂z
(t, 1) = L′(t)(1 +W (t, 1)), 0 < t < T, (3.16)

− 2κ2
∂Y

∂z
(t, 1) = L′(t)Y (t, 1), 0 < t < T, (3.17)

while the initial conditions (3.9) become

L(0) = L0; W (0, z) = W0(z) = U0(zS0); Y (0, z) = Y0(z) = V0(zS0), 0 < z < 1.

(3.18)
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Note that the transformed problem (3.11)-(3.18) is an initial-fixed boundary

problem for a system of two nonlinear parabolic partial differential equations in the

bounded fixed domain (0, T )×(0, 1). At this point, we proceed to treat numerically

the system (3.11)-(3.18) making use of finite difference approximations, which is

permissible in accordance with the classical nature of the solution. This result can

be derived from a lifting regularity argument presented in [59].

In accordance with the notation presented in Section 1.3, let N and M be pos-

itive integers and let us consider the step sizes discretizations k = ∆t = T/N ,

h = ∆z = 1/M and the mesh points (tn, zj), with tn = nk, zj = jh, 0 ≤ n ≤ N ,

0 ≤ j ≤ M . Numerical approximations of the involved variables are denoted

by: wnj ≈ W (tn, zj), ynj ≈ Y (tn, zj), ln ≈ L(tn), while we denote Gn = G(tn),

Hn = H(tn).

Assuming that the solution {W (t, z), Y (t, z), L(t)} satisfies W,Y ∈ C1,2(Ω),

where Ω = {(t, z) ∈ R2 : t ∈ [0, T ], z ∈ [0, 1]}, and L ∈ C1[0, T ], partial deriv-

atives at the interior points are approximated using forward in time and centered in

space finite difference expressions:

wn+1
j − wnj

k
≈ ∂W

∂t
(tn, zj),

yn+1
j − ynj

k
≈ ∂Y

∂t
(tn, zj),

ln+1 − ln

k
≈ L′(tn),

(3.19)
wnj+1 − wnj−1

2h
≈ ∂W

∂z
(tn, zj),

wnj−1 − 2wnj + wnj+1

h2
≈ ∂2W

∂z2
(tn, zj), (3.20)

ynj+1 − ynj−1

2h
≈ ∂Y

∂z
(tn, zj),

ynj−1 − 2ynj + ynj+1

h2
≈ ∂2Y

∂z2
(tn, zj). (3.21)

To preserve the second order accuracy at the right boundary z = 1, we take left

side approximations with three points:

3wnM − 4wnM−1 + wnM−2

2h
≈ ∂W

∂z
(tn, 1),

3ynM − 4ynM−1 + ynM−2

2h
≈ ∂Y

∂z
(tn, 1).

(3.22)

Using the approximations (3.19)-(3.21), equations (3.11)-(3.12) become dis-

cretized at the interior mesh points in the following way
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ln
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1

2h

(
ln+1 − ln

k

)
− κ1

wnj−1 − 2wnj + wnj+1

h2

= lnβ(γynj − wnj ), 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1, (3.23)

ln
yn+1
j − ynj

k
− zj

2

ynj+1 − ynj−1

2h

(
ln+1 − ln

k

)
− κ2

ynj−1 − 2ynj + ynj+1

h2

= −lnβ(γynj − wnj ), 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1. (3.24)

Initial conditions given in (3.18) take the discrete form

l0 = S2(0) = S2
0 , w0

j = U0(zjS0), y0
j = V0(zjS0), 1 ≤ j ≤M − 1. (3.25)

Note that the starting values w0
M and y0

M are not given and need to be obtained.
Left boundary conditions are discretized as

wn0 = Gn, yn0 = Hn, 0 ≤ n ≤ N. (3.26)

The discretization of the Stefan-like conditions (3.15)-(3.17) takes the form

ln+1 − ln

k
= 2α(ln)

1
2 (wnM)p, 0 ≤ n ≤ N − 1, (3.27)

− κ1

3wnM − 4wnM−1 + wnM−2

h
=
ln+1 − ln

k
(1 + wnM), 0 ≤ n ≤ N − 1, (3.28)

− κ2

3ynM − 4ynM−1 + ynM−2

h
=
ln+1 − ln

k
ynM , 0 ≤ n ≤ N − 1. (3.29)

For the sake of clarity, we explain here how to transit from the time level n
to n + 1. Firstly, solving (3.27)-(3.29) for n = 0 one gets the starting unknown
values w0

M and y0
M , as well as l1. Then, from the values for the time level n,

{wnj , ynj , ln; 0 ≤ j ≤M − 1}, one needs to obtain the remaining values {wnM , ynM}
and {wn+1

j , yn+1
j , ln+1; 1 ≤ j ≤ M − 1}. Note that the nonlinear system (3.27)-

(3.28) is coupled in the unknowns wnM and ln+1. From (3.27) one gets

ln+1 = ln + 2kα(ln)
1
2 (wnM)p, 0 ≤ n ≤ N − 1. (3.30)

By substituting (3.30) in (3.28) the following nonlinear equation inwnM for each
step n must be solved

Fn(wnM) = 0, 0 ≤ n ≤ N, (3.31)
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where Fn : [0,∞[→ R, is given by

Fn(ξ) = 2α(ln)
1
2 ξp+1 + 2α(ln)

1
2 ξp +

3κ1

h
ξ − κ1

h
(4wnM−1 − wnM−2). (3.32)

We solve equation (3.31)-(3.32) using Newton iteration method. Once wnM is
calculated solving (3.31)-(3.32), the unknown ln+1 is given by (3.30) and ynM is
computed using (3.29). In this process, positivity of the involved quantities wnM , ln

and ynM has to be proved. This positiveness requirement is fulfilled in Section 3.
Finally, equations (3.23)-(3.24) allow to obtain explicitly the solutions at the

interior points at time level n+ 1 as follows

wn+1
j = an1,jw

n
j−1 +bn1,jw

n
j +cn1,jw

n
j+1 +kβγynj , 0 ≤ n ≤ N−1, 1 ≤ j ≤M−1,

(3.33)
yn+1
j = an2,jy

n
j−1 + bn2,jy

n
j + cn2,jy

n
j+1 + kβwnj , 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1,

(3.34)
where

ani,j =
κik

h2ln
− zj

4h
∆n, cni,j =

κik

h2ln
+
zj
4h

∆n, i = 1, 2,

bn1,j = 1− kβ − 2κ1k

h2ln
, bn2,j = 1− kβγ − 2κ2k

h2ln
, (3.35)

and
∆n =

ln+1

ln
− 1. (3.36)

We summarize the construction of the numerical solution in the procedure ex-
posed in Algorithm 1.

3.2 Positivity, stability and monotonicity of the numer-
ical solution
Dealing with concentrations, the positivity of the computed values is not an al-
ternative but a necessity that needs to be guaranteed. We use an inductive method
where, under the assumption that values {wnj , ynj , ln; 1 ≤ j ≤M −1} are positive,
we show the positivity of the elements of {wn+1

j , yn+1
j , ln+1; 1 ≤ j ≤ M − 1}, as

well as the positivity of the remaining values on the right boundary of the discrete
domain, {wnM , ynM}.
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Algorithm 1: Calculation procedure for (wnj , y
n
j , l

n)

Data: Initial conditions given in (3.25); Boundary conditions given in
(3.26).

Result: Solution (wnj , y
n
j , l

n) of the problem (3.23)-(3.29).
1 n=0;
2 while n ≤ N do
3 Compute wnM solving (3.31)-(3.32) by Newton-Raphson method:

Data: (wnM)0, Initial estimate of wnM ; e, Tolerance.
Result: wnM .

4 i=0;
5 (wnM)1 = (wnM)0 − Fn((wnM)0)/F ′n((wnM)0);

6 while
∣∣∣ (wn

M )i+1−(wn
M )i

(wn
M )i+1

∣∣∣ ≥ e do

7 i=i+1;
8 (wnM)i+1 = (wnM)i − Fn((wnM)i)/F ′n((wnM)i);

9 end
10 Compute ln+1 by (3.30);
11 Compute ynM using (3.29);
12 while n ≤ N − 1 do
13 for j = 1, . . . ,M − 1 do
14 Obtain wn+1

j by (3.33);
15 Obtain yn+1

j by (3.34);

16 end
17 end
18 n=n+1;

19 end
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Let us start showing the positivity of the solution wnM of equation (3.31)-(3.32)
paying attention to the last term of equation (3.32). Note that from Taylor’s theorem
one has

wnM−2 = wnM−1 − h
∂W

∂z
(tn, ξ); (M − 2)h < ξ < (M − 1)h. (3.37)

Let En be defined by

En = max

∣∣∣∣∂W∂z (tn, z)

∣∣∣∣ , 0 ≤ z ≤ 1, (3.38)

from (3.37) and (3.38)
|wnM−2 − wnM−1| < Enh. (3.39)

Hence, taking h < 3wM−1/En, one gets

4wnM−1 − wnM−2 = 3wnM−1 + (wnM−1 − wnM−2) > 3wnM−2 − Enh > 0. (3.40)

Let us denote δn = (4wnM−1 − wnM−2)/3 > 0 and note that Fn(ξ) defined by
(3.32) is a continuous strictly increasing function satisfyingFn(0) = (−3κ1/h)δn <

0 and Fn(δn) > 0, for each n ≥ 0. Thus, there exists a unique point ξn∗ such that
0 < ξn∗ < δn and Fn(ξn∗ ) = 0 . This unique solution of (3.31)-(3.32) is the required
value wnM = ξn∗ > 0.

From (3.30) and induction principle, it follows that

0 < ln < ln+1, 0 ≤ n ≤ N − 1. (3.41)

From (3.29), one gets

ynM = k

[
κ2(4ynM−1 − ynM−2)

3kκ2 + h(ln+1 − ln)

]
, 0 ≤ n ≤ N − 1. (3.42)

Positivity of (4ynM−1 − ynM−2) for small enough values of h, is obtained in ana-
logous way to the proof of the same result for (4wnM−1 −wnM−2). Using (3.41) and
(3.42) we have that ynM > 0.

Regarding to the positivity of the remaining wn+1
j and yn+1

j , 1 ≤ j ≤ M − 1,
let us study the nonnegativity of the coefficients (3.35) of the scheme (3.33)-(3.34).
From (3.35) and (3.41) one gets that cni,j > 0, i = 1, 2, and

bn1,j ≥ 1− kβ − 2κ1k

h2l0
, bn2,j ≥ 1− kβγ − 2κ2k

h2l0
. (3.43)
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Then, coefficients bni,j , i = 1, 2, are positive under the condition

k < k0 = min{k1, k2}, (3.44)

where
k1 =

h2l0
2κ1 + h2βl0

, k2 =
h2l0

2κ2 + h2βγl0
. (3.45)

Now we address the nonnegativity of the coefficients an1,j , whose sign depends
on the difference ln+1− ln and, from the discretization of the Stefan-like condition
(3.28), this difference involves wM and (4wM−1 − wM−2).

In order to simplify these relationships, let us consider the right-hand side ap-
proximation of the spatial partial derivative of W (t, z) at (tn, 1)

−3wnM + 4wnM+1 − wnM+2

2h
=
∂W

∂z
(tn, 1) + O(h2), (3.46)

where the artificial values wnM+1 and wnM+2 vanish because they are outside of the
real carbonated region.

In agreement with (3.22), left-hand side backward approximation of the spatial
partial derivative of W (t, z) at (tn, 1) satisfies

3wnM − 4wnM−1 + wnM−2

2h
=
∂W

∂z
(tn, 1) + O(h2). (3.47)

From (3.46)-(3.47), one gets

6wnM = 4wnM−1 − wnM−2 + O(h3). (3.48)

Using (3.28) and (3.48), it follows that

ln+1 − ln =
kκ1

h

3wnM
1 + wnM

+ O(kh2), (3.49)

and from (3.35) and (3.49), using that 0 < zj ≤ 1,

an1,j ≥
κ1k

h2ln

(
4 + wnM

4(1 + wnM)
+ O(h3)

)
. (3.50)

Hence, for small enough values of k and h, coefficients an1,j are positive. Finally,
from the expression (3.35) for an2,j , managing the values of ynM and (4ynM−1−ynM−2)

in analogous way to the previous study with wnj , one gets

6ynM = 4ynM−1 − ynM−2 + O(h3), (3.51)
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ln+1 − ln =
3kκ2

h
+ O(kh2), (3.52)

and
an2,j ≥

κ2k

h2ln

(
1

4
+ O(h3)

)
. (3.53)

Summarizing, the following result has been established:

Theorem 4. With previous notation, for small enough values of the step sizes h and
k linked by the condition (3.44)-(3.45), the following conclusions hold true:

i) Concentration solutions of the scheme (3.33)-(3.34) wnj and ynj are positive for
1 ≤ j ≤M − 1, 1 ≤ n ≤ N .

ii) Concentrations at the right boundary wnM and ynM are positive.

iii) The moving carbonation front is positive and increasing, 0 < l0 < l1

< . . . < lN .

The positivity guaranteed by Theorem 4 is not unconditional and the following
example shows that this condition can not be removed.

Example 1. In accordance with [60], consider the carbonation model (3.2)-
(3.9) with parameters listed in the Table 3.1 and time horizon T = 15 years. For
h = 0.05, one gets k1 = 0.0062 and k2 = 0.0625. Taking k = 0.0075, the positivity
condition is broken. Figure 3.1 shows that positivity does not hold. Units in x-axe
are taken in cm and y-axe in 10−6 g cm−3.
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Figure 3.1: Numerical solution of Example 1 for t = 0.375 years, when positivity
condition is broken.
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Magnitude Value
Initial concentrations (10−6 × g cm−3)

U0(x), 0 < x < S0 0.80− 1.50x

V0(x), 0 < x < S0 200000− 398000x

Exposed boundary concentrations (10−6 × g cm−3)

G(t) 0.80
H(t) 200000
Diffusion constants (108 × cm2 year−1)

κ1 0.05
κ2 0.005
Model parameters
α 1.00
β (year−1) 0.001
γ 5× 10−6

p 2.00
Initial position of carbonation front (cm)
S0 0.50

Table 3.1: Data for numerical examples.

Apart from the positivity of the numerical solution, a crucial requirement is
the stability of such numerical solution. For the sake of clarity in the presentation
and because of the existence in the literature of several definitions of stability, the
notion (1.18) presented in Chapter 1 is applied here. As the stability is related to the
boundedness of the numerical solution, we will use the so-called supremum norm
of a vector x = (x1, x2, ..., xn)T in Rn, defined as ‖x‖∞ = max(|x1|, |x2|, ..., |xn|).

Definition 2. With previous notation, let us denote the vectors of CO2 concentra-
tions wn = [wn0 , w

n
1 , . . . , w

n
M ]T and yn = [yn0 , y

n
1 , . . . , y

n
M ]T . In accordance with

(1.18), we say that the numerical solution {wn, yn, 0 ≤ n ≤ N} is ‖ · ‖∞-stable
if there exist positive constants C1 and C2 independent of n, k and h, such that

‖wn‖∞ ≤ C1, ‖yn‖∞ ≤ C2, 0 ≤ n ≤ N. (3.54)

Now we show that under the positivity conditions of Theorem 4, the numerical
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solution {wnj , ynj } is ‖·‖∞-stable. LetG(t) andH(t) be the left boundary conditions
given by (3.4) and let U0(x) and V0(x) be the initial conditions given by (3.9). Let
G̃ and H̃ be positive upper bounds such that

G(t) ≤ G̃, H(t) ≤ H̃, 0 ≤ t ≤ T,

U0(zjS0) = w0
j ≤ G̃, V0(zjS0) = y0

j ≤ H̃, 1 ≤ j ≤M − 1,

G̃ = γH̃.

 (3.55)

From (3.48) and (3.51) evaluated at n = 0 it follows

w0
M <

2

3
w0
M−1 ≤ G̃, y0

M <
2

3
y0
M−1 ≤ H̃. (3.56)

Once we have the bound at the time level n = 0, we prove using the induction
principle the boundedness of the numerical solution for all the time levels. Let us
assume the induction hypothesis

wnj ≤ G̃, ynj ≤ H̃, 1 ≤ j ≤M, G̃ = γH̃. (3.57)

From (3.33)-(3.34) and (3.35) under the conditions of Theorem 4 one gets, for
1 ≤ j ≤M − 1,

wn+1
j ≤ (an1,j + bn1,j + cn1,j)G̃+ kβγH̃ = (1− kβ)G̃+ kβγG̃ = G̃, (3.58)

yn+1
j ≤ (an2,j + bn2,j + cn2,j)H̃ + kβG̃ = (1− kβγ)H̃ + kβG̃ = H̃. (3.59)

Furthermore, using (3.48) and (3.51), together with (3.58)-(3.59) for j = M−1,
it follows that wn+1

M ≤ G̃ and yn+1
M ≤ H̃ .

Summarizing the following conditional stability result has been established:

Theorem 5. With previous notation, for small enough values of h and k satisfying
the positivity step size condition (3.44)-(3.45), the numerical solution of scheme
(3.33)-(3.34) is ‖ · ‖∞-stable.

As it has been shown in Example 1, where the positivity does not occur when
the positivity condition (3.44)-(3.45) was broken, in the following example we
show that when the positivity condition is satisfied, then we have both positivity
and ‖ · ‖∞-stability.

Example 2. With the notation and the parameters of Example 1, and step sizes
h = 0.05 and k = 0.005, the stability of the solutions U(t, x) and V (t, x) is
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guaranteed as it is shown in Figure 3.2. Units in x-axe are taken in cm and y-axe in
10−6 g cm−3.
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Figure 3.2: Numerical solution of U(t, x) and V (t, x) in Example 2 for t = 13 years,
under stability condition.

An important property of the numerical solution is its monotone decreasing
behaviour with respect to the space from the exposed boundary to the carbonation
front at each time level under the positivity step size conditions. For the sake of
clarity in the presentation and the concept of monotone schemes has been used
earlier in the literature [35], we introduce the following definition:

Definition 3. With previous notation, we say that the numerical scheme (3.33)-
(3.34) is spatial monotone preserving, if assuming that the numerical solution is
spatial monotone decreasing at time level n, 0 ≤ n ≤ N − 1, i. e.,:

wnj+1 ≤ wnj , ynj+1 ≤ ynj , 0 ≤ j ≤M − 1, (3.60)

then, one satisfies

wn+1
j+1 ≤ wn+1

j , yn+1
j+1 ≤ yn+1

j , 0 ≤ j ≤M − 1. (3.61)

Now we state that, under the positivity constraints (3.44)-(3.45) on the coeffi-
cients (3.35) together with an additional condition for concentrations at the exposed
boundary, the numerical scheme is spatial monotone preserving. This condition
imposes that G(t) and H(t) are time monotone non decreasing functions satisfying

G(t) = γH(t), 0 ≤ t ≤ T. (3.62)

From equation (3.33), the positivity of coefficients an1,j , b
n
1,j , c

n
1,j and the induc-

tion hypothesis of Definition 3, it follows that wnj−1 ≥ wnj , wnj ≥ wnj+1,
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3.2 Positivity, stability and monotonicity of the numerical solution

wn+1
j ≥ an1,jw

n
j + bn1,jw

n
j + cn1,jw

n
j + kβγynj

=

(
1− kβ − κ1k

h2ln
− j

4
∆n

)
wnj + cn1,jw

n
j + kβγynj , 1 ≤ j ≤M − 1, (3.63)

and

wn+1
j+1 ≤ an1,j+1w

n
j+1 + bn1,jw

n
j+1 + cn1,j+1w

n
j+1 + kβγynj+1

=

(
1−kβ− κ1k

h2ln
+
j + 1

4
∆n

)
wnj+1 +an1,j+1w

n
j+1 +kβγynj+1, 1 ≤ j ≤M−2.

(3.64)

From (3.63) and (3.64) and the hypothesis condition of Definition 3 it follows
that

wn+1
j+1−wn+1

j ≤
(
bn1,j+

1

4
∆n

)
(wnj+1−wnj )+kβγ(ynj+1−ynj ) ≤ 0, 1 ≤ j ≤M−2.

(3.65)
Furthermore wn+1

M < wn+1
M−1 due to (3.56). Using equation (3.33) for j = 1,

the hypothesis of Definition 3 and assuming that G(t) and H(t) are monotone non
decreasing functions satisfying (3.62), it follows

wn+1
1 ≤ (an1,1 + bn1,1 + cn1,1)wn0 + kβγyn0

≤ (1− kβ)Gn + kβγHn = Gn ≤ Gn+1 = wn+1
0 . (3.66)

The monotonicity of {yn+1
j } can be shown in an analogous way as for {wn+1

j }.
The following result has been established.

Theorem 6. With previous notation, under the positivity conditions (3.44-(3.45),
assuming that the concentrations at the exposed boundary are monotone non de-
creasing functions such that G(t) = γH(t), then the numerical scheme (3.33)-
(3.34) is spatial monotone preserving.

Next Example 3 illustrates the decreasing monotonicity behaviour of both con-
centrations U(t, x) and V (t, x) in the space variable when the time is fixed.

Example 3. With data of Table 3.1 and taking step sizes h = 0.05 and k =

0.005 satisfying the monotonicity requirements of Theorem 6, Figures 3.3 and 3.4
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show the monotone behaviour of the functions U(ti, x) and V (ti, x) corresponding
to the mass concentrations of CO2 in air and water, respectively. Here ti, 1 ≤ i ≤
5, represent four equidistant fixed values of time. Note also that the carbonation
zone is increasing with time, according to the spreading of the propagation front
S(t), see Theorem 4-iii).
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Figure 3.3: Numerical solution U(t, x) of Example 3 for several equidistant times ti.
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Figure 3.4: Numerical solution V (t, x) of Example 3 for several equidistant times ti.

3.3 Numerical evidence of the
√
t-law of propagation

In this Section we confirm numerically, under appropriated positivity conditions,
that the proposed numerical solution behaves as the theoretical solution suggested.
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3.4 Consistency

In fact, in the next example, according to data from [60], we match the numerical
solution of the carbonation front as a function of the type C

√
t.

Example 4. With the same parameters and step size values of Example 2, Table
3.2 shows long time values of the carbonation front S(t) on of time, with a time
horizon of T = 35 years. These points (ti, S(ti)) have been fitted to a curve with
two parameters of the type S(t) = atb. The best fit (in the least square sense)
is matched by a = 0.2715 and b = 0.4568, and the coefficient of determination
R2 = 0.9999. This numerical experiment illustrates the agreement with the beha-
viour of the theoretical solution.

ti (years) 33.00 33.50 34.00 34.50 35.00
S(ti) (cm) 1.3407 1.3499 1.3591 1.3682 1.3772

Table 3.2: Carbonation depth for several times.

3.4 Consistency
As it has been recalled in Sections 1.3 and 2.2, consistency of a numerical scheme
with a PDE problem signifies that the theoretical solution approximates well the
numerical scheme as the grid spacings go to zero. Accordingly, a numerical scheme
can be consistent with an equation and not with another one, see [72], Chapter 2,
and [76], Chapter 1.

Problem (3.11)-(3.17) can be written in vector form as L(W,Y, L)

= (L1(W,Y, L),L2(W,Y, L),L3(W,L),L4(W,L),L5(Y, L)) = 0, where

L1(W,Y, L) = L(t)
∂W

∂t
− L′(t)z

2

∂W

∂z
− κ1

∂2W

∂z2

− L(t)β(γY −W ) = 0, t > 0, 0 < z < 1, (3.67)

L2(W,Y, L) = L(t)
∂Y

∂t
− L′(t)z

2

∂Y

∂z
− κ2

∂2Y

∂z2

+ L(t)β(γY −W ) = 0, t > 0, 0 < z < 1, (3.68)

L3(W,L) = L′(t)− 2
(
L(t)

) 1
2α[W (t, 1)]p = 0, t > 0, (3.69)
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L4(W,L) = L′(t)
(
1 +W (t, 1)

)
+ 2κ1

∂W

∂z
(t, 1) = 0, t > 0, (3.70)

L5(Y, L) = L′(t)Y (t, 1) + 2κ2
∂Y

∂z
(t, 1) = 0, t > 0, (3.71)

and the finite difference scheme (3.23)-(3.29), also can be written in a compact way

as `(w, y, l) = (`1(w, y, l), `2(w, y, l), `3(w, l), `4(w, l), `5(y, l)), where:

`1(w, y, l) = ln
wn+1
j − wnj

k
− zj

2

wnj+1 − wnj−1

2h

(
ln+1 − ln

k

)
−

κ1

wnj−1 − 2wnj + wnj+1

h2
− lnβ(γynj − wnj ) = 0, 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1,

(3.72)

`2(w, y, l) = ln
yn+1
j − ynj

k
− zj

2

ynj+1 − ynj−1

2h

(
ln+1 − ln

k

)
−

κ2

ynj−1 − 2ynj + ynj+1

h2
+ lnβ(γynj − wnj ) = 0, 0 ≤ n ≤ N − 1, 1 ≤ j ≤M − 1,

(3.73)

`3(w, l) =
ln+1 − ln

k
− 2α(ln)

1
2 (wnM)p = 0, 0 ≤ n ≤ N − 1, (3.74)

`4(w, l) = κ1

3wnM − 4wnM−1 + wnM−2

h
+
ln+1 − ln

k
(1+wnM) = 0, 0 ≤ n ≤ N−1,

(3.75)

`5(y, l) = κ2

3ynM − 4ynM−1 + ynM−2

h
+
ln+1 − ln

k
ynM = 0, 0 ≤ n ≤ N−1. (3.76)

In accordance with [72], scheme `(w, y, l) is said to be consistent with problem

L(W,Y, L) if the local truncation error T nj (W,Y, L) = (T (1)nj , T (2)nj , T (3)nj , T (4)nj ,

T (5)nj ),

T (1)nj (W,Y, L) = `1(W n
j , Y

n
j , L

n)− L1(W n
j , Y

n
j , L

n), (3.77)

T (2)nj (W,Y, L) = `2(W j
n, Y

n
j , L

n)− L2(W n
j , Y

n
j , L

n), (3.78)

T (3)nj (W,L) = `3(W n
j , L

n)− L3(W n
j , L

n), (3.79)

T (4)nj (W,L) = `4(W n
j , L

n)− L4(W n
j , L

n), (3.80)

T (5)nj (Y, L) = `5(Y n
j , L

n)− L5(Y n
j , L

n), (3.81)
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tends to zero as k → 0, h → 0, where W n
j = W (tn, zj), Y n

j = Y (tn, zj) and
Ln = L(tn) are the values of the exact solution of problem (3.11)-(3.17) of both
the PDE and the free boundary respectively at the point (tn, zj). We assume that
the exact solution {W (t, z), Y (t, z), L(t)} satisfies the property W,Y ∈ C2,4(Ω),
and L ∈ C2[0, T ].

Let us first consider the components T (1)nj and T (2)nj of the local truncation
error. By using Taylor’s expansion about (tn, zj) one gets:

T (1)nj (W,Y, L) = LnEn
j (2)k − zj

2

∂W

∂z
(tn, zj)kE

n(1)

− zj
2
L′(tn)En

j (3)− zj
2
En(1)En

j (3)kh2 − κ1E
n
j (4)h2, (3.82)

T (2)nj (W,Y, L) = LnEn
j (5)k − zj

2

∂Y

∂z
(tn, zj)kE

n(1)

− zj
2
L′(tn)En

j (6)− zj
2
En(1)En

j (6)kh2 − κ2E
n
j (7)h2, (3.83)

where:

En(1) =
1

2

d2L

dt2
(τ 1), En

j (2) =
1

2

∂2W

∂t2
(τ 2, zj), En

j (5) =
1

2

∂2Y

∂t2
(τ 3, zj),

tn < τ i < tn+1, i = 1, 2, 3, (3.84)

En
j (3) =

1

6

∂3W

∂z3
(tn, ξ1), En

j (4) =
1

12

∂4W

∂z4
(tn, ξ2), En

j (6) =
1

6

∂3Y

∂z3
(tn, ξ3),

En
j (7) =

1

12

∂4Y

∂z4
(tn, ξ4), zj−1 < ξi < zj+1, i = 1, 2, 3, 4, (3.85)

En
j (8) =

1

3

∂3W

∂z3
(tn, ξ5), En

j (9) =
1

3

∂3Y

∂z3
(tn, ξ6), zM−2 < ξi < zM , i = 5, 6.

(3.86)

Hence, T (1)nj (W,Y, L) and T (2)nj (W,Y, L) satisfy

T (1)nj (W,Y, L) = O(k) + O(h2), (3.87)

T (2)nj (W,Y, L) = O(k) + O(h2). (3.88)

The remaining components of the truncation error are

T (3)nj (W,L) = kEn(1), (3.89)
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T (4)nj (W,L) = kEn(1)(1 +W (tn, zM))− 2h2κ1E
n
j (8), (3.90)

T (5)nj (Y, L) = kEn(1)Y (tn, zM)− 2h2κ2E
n
j (9). (3.91)

Thus, it holds
T (3)nj (W,L) = O(k), (3.92)

T (4)nj (W,L) = O(k) + O(h2), (3.93)

T (5)nj (Y, L) = O(k) + O(h2). (3.94)

Summarizing, the following result has been established:

Theorem 7. With previous notation, the scheme `(w, y, l) is consistent with the
problem L(W,Y, L) and the local truncation error behaves as:

T nj (W,Y, L) = O(k) + O(h2). (3.95)

Remark 1. Note that the coefficients of (3.35), carbonation front ln+1 and the CO2

concentration in water ynM at the propagation front, are distorted by the computa-
tion of the CO2 concentration in air wnM at the propagation front, using Newton-
Raphson method to solve equation (3.31)-(3.32). This means that above we studied
the consistency of the scheme resulting of replacing in (3.23)-(3.29) the theoret-
ical value wnM by the numerical one w̃nM obtained by the Newton-Raphson method.
Standard analysis based on the mean value theorem shows that the error of order
p motivated by equation (3.30) is linearly transmitted to the other variables adding
a local error of order O(|wnM − w̃nM |p) to the expression (3.95).

Remark 2. The real initial deterioration state of the concrete in the carbonation
process is measured in terms of the value L(0) = S2(0) = S2

0 . This value has
influence in the step size conditions (3.44)-(3.45) in order to guarantee positivity,
stability and monotonicity, that cannot be removed as Example 1 shows. However,
this fact does not mean a limitation in our study and its applications, when S(0) is
small enough, because starting from any initial position of the carbonation front,
using the substitution

τ =
κ1t

L(0)
, λ(τ) =

L(t)

L(0)
, (3.96)

the problem becomes independent of this situation, as well as of the quality of
diffusion given by the coefficient κ1.
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CHAPTER

4
6 species model for damage

by carbonation of reinforced
concrete structures

As explained in the previous chapter, the effect of concrete carbonation in build-

ings and civil works is a relevant issue in civil engineering construction and archi-

tecture due to the deterioration of building materials and its potential incidence in

the citizens safety. This matter is also related to environment, public health and

ecology because the carbonation effect is in part due to the influence of traffic and

industries. This problem may be regarded as a particular case inside of the wide

area of materials corrosion. Apart from the concrete carbonation, other damaging

processes are those related to the effects of sulfuric acid attack, [33], or chloride

penetration in concrete structures, [64, 85].

The annual carbon dioxide concentration growth rate has increased from 1.4

parts per million (ppm) per year during the period 1960-2005 to 1.9 ppm per year

during the period 1995-2005. Following the current tendency, studies estimate that

atmospheric CO2 concentration could increase from 379 ppm in 2005 over 1000

ppm by the year 2100, resulting in an increase of corrosion risk, see [8, 73].
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The presence of carbon dioxide under normal atmospheric conditions and also

emitted as industrial output, enters the gaseous phase of the pores. Carbon dioxide

is transported by diffusion and dissolved in the aqueous phase, where it is further

transported towards the place where carbonation reaction takes place. The other

reactant, calcium hydroxide, is initially in the solid matrix of cement. By means of

a dissolution process, it arrives in the aqueous phase of the pores and reacts with

CO2 present in the aquaeus phase. The reaction products are water together with

calcium carbonate. Several experimental studies have addressed the problem of

concrete carbonation, studying the behaviour of the position of the interface that

separates the carbonated and non carbonated part, for large times, [14, 41, 42, 61,

79, 80].

The concrete carbonation depth, as discussed in Chapter 3, needs to be estim-

ated and there is need of models capable to predict the depth of CO2 penetration in

concrete structures accurately, see [58]. In [58, 59, 60], the authors propose a mov-

ing interface model to forecast the position of the carbonation front and the profiles

of the active concentrations, showing qualitative properties of the mass concentra-

tion solutions, such as positivity and upper boundedness. Numerical simulations of

the solution of the model using the finite element method are performed in [58, 60].

The model involves the unknown moving boundary and the concentrations of in-

volved species by means of the solution of a coupled nonlinear system of parabolic

reaction-diffusion equations. As the best model may be wasted with a disregarded

computation, its numerical analysis is necessary.

Other recent different model of concrete carbonation phenomenon is exposed

in [45], where an initial boundary value problem is used to study carbon dioxide

transport in a bounded domain of R3.

The concrete element is supposed to be a sample with thickness equal to L.

The space variable x is measured from the exposed boundary x = 0 to the sealed

boundary x = L, and the unknown carbonation front or moving boundary is de-

noted by x = S(t), satisfying 0 < S(t) < L. The whole domain [0, L] is divided

in two subdomains, the so-called carbonated zone Ω1(t) = [0, S(t)[ and uncarbon-

ated zone Ω2(t) =]S(t), L]. The chemical species present in Ω1(t) are CO2(aq),

CO2(g), CaCO3(aq) and H2O, and the species in Ω2(t) are Ca(OH)2(aq) and H2O.
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Here, (aq) and (g) refer to species in aqueous and gaseous environments, respect-
ively. CaCO3(aq) is created in the carbonation front according to the reaction

CO2(aq) + Ca(OH)2(aq) −−→ CaCO3(aq) + H2O, (4.1)

and at any time t is uniformly distributed in Ω1(t) = [0, S(t)[, [60].
The mass concentrations of the species are represented by the following vari-

ables, where time takes values in the interval 0 ≤ t ≤ T ,

Ū1(x, t) = [CO2(aq)], Ū2(x, t) = [CO2(g)], Ū5(x, t) = [H2O], 0 ≤ x ≤ S(t),

Ū3(x, t) = [Ca(OH)2(aq)], Ū6(x, t) = [H2O], S(t) ≤ x ≤ L,

Ū4(t) = [CaCO3(aq)], (4.2)

where T > 0 is the time horizon.
Throughout this chapter, we will use the notation Ūi = Ūi(x, t), 1 ≤ i ≤ 6,

i 6= 4, and Ū4 = Ū4(t) for the unknown concentrations. Note that the unknown Ū4

depends only of the time because it refers to the concentration of CaCO3(aq) at the
unknown carbonation front S(t).

The porosity of the concrete sample is given by the parameter φ, while air and
water fractions of the pores are denoted by φω and φa, respectively. According to
[27], it is assumed that the exchange of CO2 between the gas and liquid phases is
modeled by linear Henry laws of the type

f1,Henry = −P1(φφωŪ1 −Q1φφaŪ2), f2,Henry = P2(φφωŪ1 −Q2φφaŪ2), (4.3)

where P1, P2 are mass transfer parameters through the interface air-water and Q1,
Q2 are the positive Henry-like constants.

The dissolution rate for Ca(OH)2(aq) is given by

fDiss = −S3,diss(Ū3 − U3,eq), (4.4)

where S3,diss is a mass transfer coefficient and U3,eq = U3,eq(t) is an equilibrium
concentration, see [53, 59, 60].

The production rates of CaCO3(aq) and H2O at the carbonation front are modeled
by the function

fReacΓ =
[
κφφω(Ū1)p(Ū3)q

]
Γ(t)

, (4.5)
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where
Γ(t) = (S(t), t), (4.6)

and the notation [f ](x,t) = f(x, t) has been used. Parameter κ > 0 is the reaction
constant and p ≥ 1, q ≥ 1, denote the partial reaction orders. In addition, the
precipitation rate of CaCO3(aq) is not considered in the model, that is

fPrec = 0. (4.7)

Let Di i,∈ {1, 2, 3} represent diffusion coefficients for each species Ūi, and let
φD5, φD6 stand for transport coefficients of water content in the carbonated and
uncarbonated zone, respectively. It is assumed that each Di, 1 ≤ i ≤ 6, i 6= 4, is a
positive constant ([59]).

The continuous model proposed in [59, 60] is described by a coupled system
of five partial differential equations (PDE) and one ordinary differential equation
(ODE) (balance equations); together with the initial, boundary and transmission
conditions and the velocity law of the moving front. The five PDEs and the ODE
involving the unknown concentrations are presented as follows:

Carbon dioxide mass concentration in water phase, Ū1 = [CO2(aq)]:

∂

∂t
(φφωŪ1)− ∂

∂x

(
D1φφω

∂Ū1

∂x

)
= f1,Henry, 0 ≤ x < S(t), 0 < t < T. (4.8)

Carbon dioxide mass concentration in air phase, Ū2 = [CO2(g)]:

∂

∂t
(φφaŪ2)− ∂

∂x

(
D2φφa

∂Ū2

∂x

)
= f2,Henry, 0 ≤ x < S(t), 0 < t < T. (4.9)

Calcium hydroxide present in the cement, Ū3 = [Ca(OH)2(aq)]:

∂

∂t
(φφωŪ3)− ∂

∂x

(
D3φφω

∂Ū3

∂x

)
= fDiss, S(t) < x ≤ L, 0 < t < T. (4.10)

The calcium carbonate creation in the carbonation front Ū4 = [CaCO3(aq)] is
given by [

d

dt
(φφωŪ4)

]
Γ(t)

= fPrec + fReacΓ, 0 < t < T. (4.11)
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Water content in the carbonated zone, Ū5 = [H2O],

∂

∂t
(φŪ5)− ∂

∂x

(
D5φ

∂Ū5

∂x

)
= 0, 0 ≤ x < S(t), 0 < t < T. (4.12)

The last balance equation for water content in the uncarbonated zone, Ū6 =

[H2O], is given by

∂

∂t
(φŪ6)− ∂

∂x

(
D6φ

∂Ū6

∂x

)
= 0, S(t) < x ≤ L, 0 < t < T. (4.13)

Initial position of the front is S(0) = S0 > 0 and initial concentrations in their
respective domains take the form

Ūi(x, 0) = Ūi0(x), 0 < x < S0, i ∈ {1, 2, 5}, (4.14)

Ū4(0) = Ū40, (4.15)

Ūi(x, 0) = Ūi0(x), S0 < x < L, i ∈ {3, 6}. (4.16)

With respect to the boundary conditions at the exposed boundary x = 0 and the
sealed boundary x = L, one gets

φφωŪ1(0, t) = Λ1(t), φφaŪ2(0, t) = Λ2(t), φŪ5(0, t) = Λ5(t), 0 < t < T,
(4.17)

∂Ū3

∂x
(L, t) = 0,

∂Ū6

∂x
(L, t) = 0, 0 < t < T. (4.18)

The transmission conditions at the free boundary x = S(t), 0 < t < T , are
given by

(−δ1i + δ3i)

[
∂

∂x
(DiφφωŪi)

]
Γ(t)

= −ηΓ(Ū1, Ū3) + S ′(t)[φφωŪi]Γ(t), i ∈ {1, 3},

(4.19)
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−

[
∂

∂x
(D2φφaŪ2)

]
Γ(t)

= S ′(t)[φφaŪ2]Γ(t), (4.20)

(−δ5i + δ6i)

[
∂

∂x
(DiφŪi)

]
Γ(t)

= δ5i
1

φω
ηΓ(Ū1, Ū3) + S ′(t)[φŪi]Γ(t), i ∈ {5, 6}.

(4.21)

Finally, the velocity law for propagation of the carbonation front takes the form

S ′(t) = [ακ(Ū1)p(Ū3)q−1]Γ(t), (4.22)

where α > 1 ([60], pp. 544), and the function ηΓ is defined for a couple of functions
V1(x, t) and V3(x, t) as

ηΓ(V1, V3) = κφφω(V1(S(t), t))p(V3(S(t), t))q, 0 < t < T, (4.23)

so that ηΓ(Ūi, Ūi) = fReacΓ, see (4.5).
As the active concentrations are small, the constant porosity assumption is valid

(see [9, 51, 78]), thus in this work the parameters porosity φ > 0 as well as water
and air fractions φω > 0 and φa > 0 are constants.

Let us consider the suitable transformation of variables:

Ûi(x, t) = φφωŪi(x, t), i ∈ {1, 3}, (4.24)

Û2(x, t) = φφaŪ2(x, t), Û4(t) = φφωŪ4(t), (4.25)

Ûi(x, t) = φŪi(x, t), i ∈ {5, 6}. (4.26)

Under the new variables Ûi(x, t), i ∈ {1, 2, 3, 5, 6}, Û4(t) and using Kro-
necker’s symbol δij , problem (4.8)-(4.22) can be written in a compact form

(δ1i + δ2i + δ5i)
∂Ûi
∂t
−Di

∂2Ûi
∂x2

= (1− δ5i)(−1)iPi(Û1 −QiÛ2),

0 ≤ x < S(t), 0 < t < T, i ∈ {1, 2, 5}, (4.27)

∂Ûi
∂t
−Di

∂2Ûi
∂x2

= δ3i(−S3,diss(Û3−U3,eq)), S(t) < x ≤ L, 0 < t < T, i ∈ {3, 6},
(4.28)
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dÛ4

dt
= κ(φφω)1−p−q[(Û1)p(Û3)q]Γ(t), 0 < t < T. (4.29)

The transformed initial conditions become S(0) = S0 > 0 and

Û1(x, 0) = Û10(x) = φφωŪ10(x), Û2(x, 0) = Û20(x) = φφaŪ20(x),

Û5(x, 0) = Û50(x) = φŪ50(x), 0 < x < S0, (4.30)

Û4(0) = Û40 = φφωŪ40, (4.31)

Û3(x, 0) = Û30(x) = φφωŪ30(x), Û6(x, 0) = Û60(x) = φŪ60(x), S0 < x < L,

(4.32)

and the transformed boundary conditions are

Ûi(0, t) = Λi(t), 0 < t < T, i ∈ {1, 2, 5}, (4.33)

∂Ûi
∂x

(L, t) = 0, 0 < t < T, i ∈ {3, 6}. (4.34)

Finally, the transformed interface conditions for x = S(t), 0 < t < T , become

−

[
Di
∂Ûi
∂x

]
Γ(t)

= (δ5i − δ1i)(φφω)−p−qηΓ(Û1, Û3) + S ′(t)[Ûi]Γ(t), i ∈ {1, 2, 5},

(4.35)

[
Di
∂Ûi
∂x

]
Γ(t)

= −(δ3i)(φφω)−p−qηΓ(Û1, Û3) + S ′(t)[Ûi]Γ(t), i ∈ {3, 6}, (4.36)

and the velocity law is

S ′(t) = ακ(φφω)1−p−q[(Û1)p(Û3)q−1]Γ(t). (4.37)

In this chapter, a finite difference method to solve the moving boundary prob-
lem (4.8)-(4.22) is proposed, obtaining sufficient step sizes conditions to guaran-
tee positivity and stability of the numerical solution. The chapter is organized as
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follows. In Section 4.1, after a front-fixing transformation, the original problem

is transformed into another one in a fixed domain, where the moving boundary

becomes a new unknown of the problem. In Section 4.2, we propose a coupled

finite difference scheme whose unknowns are [CO2(aq)], [CO2(g)], [CaCO3(aq)]

and [H2O] in the carbonated zone, [Ca(OH)2(aq)] and [H2O] in the uncarbonated

zone, together with the square power values of the expanding front. In Section 4.3,

positivity, boundedness and stability of the numerical solution is treated. Spatial

monotonicity properties of the solution is addressed in Section 4.4. Experiments

illustrating the qualitative properties of the numerical solution are included in the

corresponding sections. The main conclusions are presented in Section 4.5.

4.1 Front-fixing transformation
For the sake of simplicity, and taking advance of the fact that (S2(t))′ = 2S(t)S ′(t),

in the following we will consider as unknown the square of the free boundary R(t)

instead of the free boundary itself S(t) in order to obtain a more simplified PDE

system, i. e.

R(t) = S2(t). (4.38)

In order to transform the PDE problem with moving domain into a fixed domain

one, let us consider the following change of spatial variable inspired by the well

known Landau transformation, ([26, 49]):

z(x, t) =


(
x/
√
R(t)

)
− 1, 0 ≤ x <

√
R(t), 0 ≤ t ≤ T,

0, x =
√
R(t), 0 ≤ t ≤ T,(

x−
√
R(t)

)/(
L−

√
R(t)

)
,
√
R(t) < x ≤ L, 0 ≤ t ≤ T.

(4.39)

The new unknown variables of the problem are

Ui(z, t) = Ûi(x, t), i ∈ {1, 2, 5}, −1 ≤ z ≤ 0,

U4(t) = Û4(t),

Ui(z, t) = Ûi(x, t), i ∈ {3, 6}, 0 ≤ z ≤ 1. (4.40)
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4.1 Front-fixing transformation

In a similar way as in (4.6), let us denote

γ(t) = (0, t). (4.41)

Then, the new PDE system posed in the fixed domain |z| ≤ 1 is

(δ1i + δ2i + δ5i)

(
R(t)

∂Ui
∂t
−R′(t)z + 1

2

∂Ui
∂z

)
−Di

∂2Ui
∂z2

= (1− δ5i)(−1)iPi(U1 −QiU2)R(t), −1 ≤ z < 0, 0 < t < T, i ∈ {1, 2, 5},
(4.42)

(
R(t) + L2 − 2L

√
R(t)

)∂Ui
∂t

+

(
R′(t)

2

(
L√
R(t)

− 1

))
(z − 1)

∂Ui
∂z

−Di
∂2Ui
∂z2

= −δ3i

(
R(t) + L2 − 2L

√
R(t)

)
S3,Diss(U3 − U3,eq),

0 < z ≤ 1, 0 < t < T, i ∈ {3, 6}, (4.43)

dU4(t)

dt
= κ(φφω)1−p−q[(U1)p(U3)q]γ(t), 0 < t < T, (4.44)

together with the initial conditions

U1(z, 0) = U10(z) = φφωŪ10((z + 1)S0), U2(z, 0) = U20(z) = φφaŪ20((z + 1)S0),

U5(z, 0) = U50(z) = φŪ50((z + 1)S0), −1 < z < 0, (4.45)

U4(0) = U40 = φφωŪ40, (4.46)

U3(z, 0) = U30(z) = φφωŪ30(z(L− S0) + S0),

U6(z, 0) = U60(z) = φŪ60(z(L− S0) + S0), 0 < z < 1, (4.47)

the boundary conditions

Ui(−1, t) = Λi(t), 0 < t < T, i ∈ {1, 2, 5}, (4.48)

∂Ui
∂z

(1, t) = 0, 0 < t < T, i ∈ {3, 6}, (4.49)

63



4. 6 SPECIES MODEL FOR DAMAGE BY CARBONATION OF
REINFORCED CONCRETE STRUCTURES

and the interface conditions at z = 0, 0 < t < T ,

−

[
Di
∂Ui
∂z

]
γ(t)

= (δ5i − δ1i)(φφω)−p−qηγ(U1, U3)
√
R(t)

+
1

2
R′(t)[Ui]γ(t), i ∈ {1, 2, 5}, (4.50)

[
Di
∂Ui
∂z

]
γ(t)

= −(δ3i)(φφω)−p−qηγ(U1, U3)

(
L−

√
R(t)

)

+

(
R′(t)

2

(
L√
R(t)

− 1

))
[Ui]γ(t), i ∈ {3, 6}, (4.51)

R′(t) = 2ακ(φφω)1−p−q
√
R(t)[(U1)p(U3)q−1]γ(t), (4.52)

where the function ηγ is defined for a couple of functions V1(z, t) and V3(z, t)

analogously to (4.23)

ηγ(V1, V3) = κφφω(V1(0, t))p(V3(0, t))q, 0 < t < T. (4.53)

From (4.51) for i = 3 and (4.52), one gets[
D3

∂U3

∂z

]
γ(t)

= (α− 1)κ(φφω)1−p−q[(U1)p(U3)q]γ(t)

(
L−

√
R(t)

)
. (4.54)

Equation (4.54) shows that [∂U3/∂z]γ(t) is positive. This fact will be used in
Section 3 dealing with the numerical solution.

4.2 Discretization and numerical scheme construction
In this section we construct a finite difference scheme for solving numerically the
coupled system (4.42)-(4.52). LetM andN be positive integers, so that the domain
[−1, 1]×[0, T ] is partitioned in (2M+1)×(N+1) mesh points denoted by (zj, t

n),
where zj = jh, −M ≤ j ≤ M and tn = nk, 0 ≤ n ≤ N . Here the step sizes
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discretizations h and k verify hM = 1 and kN = T , respectively. Numerical
approximations of the involved variables, using expressions established in Section
1.3, are denoted by uni,j ≈ Ui(zj, t

n), i ∈ {1, 2, 3, 5, 6}, un4 ≈ U4(tn), rn ≈ R(tn),
while we denote λni = Λi(t

n), i ∈ {1, 2, 5}.
On the assumption of the following properties

Ui ∈ C2,1([−1, 0]× [0, T ]), i ∈ {1, 2, 5}; Ui ∈ C2,1([0, 1]× [0, T ]), i ∈ {3, 6},

U4 ∈ C1[0, T ], R ∈ C1[0, T ], (4.55)

partial derivatives at the interior points are approximated using forward in time and
centered in space finite difference expressions:

un+1
i,j − uni,j

k
≈ ∂Ui

∂t
(zj, t

n), ,
uni,j+1 − uni,j−1

2h
≈ ∂Ui

∂z
(zj, t

n),

uni,j+1 − 2uni,j + uni,j−1

h2
≈ ∂2Ui

∂z2
(zj, t

n), i ∈ {1, 2, 3, 5, 6}, (4.56)

un+1
4 − un4
k

≈ dU4

dt
(tn),

rn+1 − rn

k
≈ R′(tn). (4.57)

With respect to the discretization of the first derivatives of the transformed
transmission conditions at the carbonation front z = 0, we use one side second
order finite difference approximations. We take left hand side approximations with
three points for the discretization at the carbonated zone:

3uni,0 − 4uni,−1 + uni,−2

2h
≈ ∂Ui

∂z
(0, tn), i ∈ {1, 2, 5}, (4.58)

and the right side approximations for the discretization at the uncarbonated zone

−3uni,0 + 4uni,1 − uni,2
2h

≈ ∂Ui
∂z

(0, tn), i ∈ {3, 6}. (4.59)

Using the approximations (4.56)-(4.59), equations (4.42)-(4.44) become dis-
cretized at the interior mesh points in the following way(

δ1i + δ2i + δ5i

)
rn
un+1
i,j − uni,j

k
− 1 + zj

2

(
rn+1 − rn

k

)
uni,j+1 − uni,j−1

2h

−Di

uni,j+1 − 2uni,j + uni,j−1

h2
= (1− δ5i)(−1)irnPi(u

n
1,j −Qiu

n
2,j),

−M + 1 ≤ j ≤ −1, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5},

(4.60)
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(
rn + L2 − 2L

√
rn
)un+1

i,j − uni,j
k

+
zj − 1

2

(
rn+1 − rn

k

)(
L√
rn
− 1

)
uni,j+1 − uni,j−1

2h

−Di

uni,j+1 − 2uni,j + uni,j−1

h2
= −δ3i

(
rn + L2 − 2L

√
rn
)
S3,diss(u

n
3,j − un3,eq),

1 ≤ j ≤M, 0 ≤ n ≤ N − 1, i ∈ {3, 6}.
(4.61)

In equation (4.61), for j = M , it appears the concentrations uni,M+1, i ∈ {3, 6},
corresponding to the mesh point zM+1 = (M + 1)h out of the numerical domain.
To find the value of uni,M+1, the finite difference approximations of the boundary
conditions at the sealed surface are used as follows, see (4.49),

uni,M+1 − uni,M−1

2h
= 0, 0 ≤ n ≤ N, i ∈ {3, 6}, (4.62)

obtaining uni,M+1 = uni,M−1.
The discretization of the ODE (4.44) takes the form

un+1
4 − un4
k

= κ(φφω)1−p−q(un1,0)p(un3,0)q, 0 ≤ n ≤ N − 1. (4.63)

Initial concentrations given in (4.45)-(4.47) take the discrete form

u0
1,j = U10(zj) = φφωŪ10(zjS0), u0

2,j = U20(zj) = φφaŪ20(zjS0),

u0
5,j = U50(zj) = φŪ50(zjS0), −M + 1 ≤ j ≤ −1, (4.64)

u0
4 = U40 = φφωŪ40, (4.65)

u0
3,j = U30(zj) = φφωŪ30(zjS0), u0

6,j = U60(zj) = φŪ60(zjS0), 1 ≤ j ≤M.

(4.66)
Boundary conditions at the exposed surface take the values

uni,−M = λni , 0 ≤ n ≤ N, i ∈ {1, 2, 5}. (4.67)

The discretization of the Stefan-like conditions (4.50)-(4.52) takes the form

−Di

3uni,0 − 4uni,−1 + uni,−2

2h
= (δ5i − δ1i)κ(φφω)1−p−q√rn(un1,0)p(un3,0)q

+
1

2

rn+1 − rn

k
uni,0, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5}, (4.68)
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−Di

3uni,0 − 4uni,1 + uni,2
2h

= −δ3iκ(φφω)1−p−q
(
L−
√
rn
)

(un1,0)p(un3,0)q

+
1

2

rn+1 − rn

k

(
L√
rn
− 1

)
uni,0, 0 ≤ n ≤ N − 1, i ∈ {3, 6}, (4.69)

and the discretization of the propagation velocity of the carbonation front

rn+1 − rn

k
= 2ακ(φφω)1−p−q√rn(un1,0)p(un3,0)q−1, 0 ≤ n ≤ N − 1. (4.70)

Equations (4.60) and (4.61) provide the numerical solution at the interior points.
The values at the natural boundaries (exposed z = −1 and sealed z = 1) are given
by (4.67) and (4.62), respectively.

With respect to the unknown concentrations at the interface boundary z = 0 at
each temporal step n, uni,0, i ∈ {1, 2, 3, 5, 6}, the driving equations take the form
(4.68), (4.69) and (4.70), building a nonlinear system involving also the discret-
ized transformed interface boundary rn+1. Note that, from (4.68) and (4.69), the
unknown uni,0, 1 ≤ i ≤ 6, i 6= 4 depend on three unknown rn+1, un1,0 and un3,0,
i. e. uni,0 = ξi(r

n+1, un1,0, u
n
3,0). Also, from (4.70), rn+1 depends on un1,0 and un3,0.

Thus, rn+1 = ψ(un1,0, u
n
3,0). Hence, let us consider the subsystem of three equations

(4.68) fixing i = 1, (4.69) fixing i = 3 and (4.70), whose unknows are un1,0, un3,0
and rn+1. After straightforward manipulations of these equations, one gets firstly
un3,0 from

h
1
p

√
rn

((
L−
√
rn
)

(α− 1)

) 1
p
D3

2
(−3un3,0 + 4un3,1 − un3,2)(un3,0)

p+q
p

+ h
1
p

((
L−
√
rn
)

(α− 1)

) p+1
p
D1

2
(4un1,−1 − un1,−2)(un3,0)

p+q
p

−
(
L−
√
rn
)

(α− 1)κ−
1
p (φφω)

p+q−1
p

3D1

2

(
D3

2
(−3un3,0 + 4un3,1 − un3,2)

) 1
p

un3,0

−
√
rnακ−

1
p (φφω)

p+q−1
p

(
D3

2
(−3un3,0 + 4un3,1 − un3,2)

) p+1
p

= 0, 0 ≤ n ≤ N − 1.

(4.71)

Note that expression (4.71) is well defined when un3,0 is positive and the basis
of the powers arising in (4.71) are also positive. Since α > 1 and the carbonation
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front
√
rn is on the left of the sealed boundary z = 1, one gets that coefficient(

L−
√
rn
)

(α− 1) is positive. Otherwise, from (4.59) for i = 3, and positivity of
the partial derivative [∂U3/∂z]γ(t) in (4.54), it holds that (−3un3,0 + 4un3,1 − un3,2) is
positive for small enough values of h.

The discussion of existence and uniqueness of solution of (4.71) will be treated
at the end of this section.

Once the value un3,0 is found, un1,0 is calculated using (4.68) for i = 1 and (4.70)
by

un1,0 =

{
D3

−3un3,0 + 4un3,1 − un3,2
2h

(
κ(φφω)1−p−q(un3,0)q

(
L−
√
rn
)

(α− 1)

)−1} 1
p

,

0 ≤ n ≤ N − 1, (4.72)

and for the discretized free boundary value rn+1 one gets

rn+1 = rn + 2kακ(φφω)1−p−q√rn(un1,0)p(un3,0)q−1, 0 ≤ n ≤ N − 1. (4.73)

Note that carbonation front rn is time increasing while un3,0 be positive, because
in such situation un1,0 will be also positive.

Then, values un1,0, un3,0 and rn+1 are obtained, the solution of system (4.68)-
(4.69) provides the values of the remaining unknowns uni,0, i = 2, 5, 6. From (4.68),
for i = 2

un2,0 =
D2

2h
(4un2,−1 − un2,−2)

(
1

2

rn+1 − rn

k
+

3D2

2h

)−1

, 0 ≤ n ≤ N − 1. (4.74)

From (4.68), for i = 5

un5,0 =

(
D5

2h
(4un5,−1 − un5,−2)− κ(φφω)1−p−q√rn(un1,0)p(un3,0)q

)
(

1

2

rn+1 − rn

k
+

3D5

2h

)−1

, 0 ≤ n ≤ N − 1. (4.75)

And finally, from (4.69), for i = 6

un6,0 =
D6

2h
(4un6,1 − un6,2)

(
1

2

rn+1 − rn

k

(
L√
rn
− 1

)
+

3D6

2h

)−1

, 0 ≤ n ≤ N − 1.

(4.76)

68



4.2 Discretization and numerical scheme construction

From equations (4.60)-(4.61) the solutions at the interior points at time level

n+ 1 are given by:

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ1ikP1Q1u

n
2,j + δ2ikP2u

n
1,j,

−M + 1 ≤ j ≤ −1, 0 ≤ n ≤ N − 1, i ∈ {1, 2, 5},
(4.77)

un+1
i,j = ani,ju

n
i,j−1 + bni,ju

n
i,j + cni,ju

n
i,j+1 + δ3ikS3,dissu

n
3,eq,

1 ≤ j ≤M, 0 ≤ n ≤ N − 1, i ∈ {3, 6},
(4.78)

where

ani,j =

{
Dik
h2rn
− 1+zj

4h
∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3
+

zj−1

4h
rn

∆n
1 ∆n

2

∆n
3
, i ∈ {3, 6},

(4.79)

bni,j =

{
1− 2Dik

h2rn
− δ1ikP1 − δ2ikP2Q2, i ∈ {1, 2, 5},

1− 2Dik
h2∆n

3
− δ3ikS3,diss, i ∈ {3, 6},

(4.80)

cni,j =

{
Dik
h2rn

+
1+zj

4h
∆n

1 , i ∈ {1, 2, 5},
Dik
h2∆n

3
+

1−zj
4h
rn

∆n
1 ∆n

2

∆n
3
, i ∈ {3, 6},

(4.81)

and

∆n
1 =

rn+1

rn
− 1, ∆n

2 =
L√
rn
− 1, ∆n

3 =
(
L−
√
rn
)2

, 0 ≤ n ≤ N − 1. (4.82)

Finally, from (4.63), the concentration of CaCO3(aq) in the carbonation front at

the step n+ 1 is given by

un+1
4 = un4 + kκ(φφω)1−p−q(un1,0)p(un3,0)q, 0 ≤ n ≤ N − 1. (4.83)

We conclude this Section with the solvability for un3,0 of the nonlinear equation

(4.71). Note that this equation (4.71) can be rewritten in the compact form

Fn(ξ) = An(Bn − 3ξ)ξ
p+q
p + Cnξ

p+q
p −Dn(Bn − 3ξ)

1
p ξ − En(Bn − 3ξ)

p+1
p = 0.

(4.84)
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Here, coefficients of equation (4.84) are given by

K1,n =
(
L−
√
rn
)

(α− 1), K2,n = 4un3,1 − un3,2, K3,n = 4un1,−1 − un1,−2,

An = h
1
p

√
rn(K1,n)

1
p
D3

2
, Bn = K2,n, Cn = h

1
p (K1,n)

p+1
p K3,n

D1

2
,

Dn = K1,nκ
− 1

p (φφω)
p+q−1

p
3D1

2

(
D3

2

) 1
p

, En = α
√
rnκ−

1
p (φφω)

p+q−1
p

(
D3

2

) p+1
p

.

(4.85)

From the positivity of the involved coefficients of the expression of En given

in (4.85), it is clear that En > 0. Since α > 1 and the carbonation front
√
rn is

on the left of the sealed boundary x = L, one gets that coefficient K1,n is positive.

Hence, coefficients An and Dn are also positive. Positivity of coefficients K2,n

and K3,n can be proved in a similar way; for the sake of brevity we will state just

that K2,n > 0 for small enough values of h. In fact, from the continuous spatial

differenciability of the theoretical exact solution U3(z, t) ([59], Theorem 3.6) and

the mean value theorem, one gets

un3,2 = un3,1 + h
∂U3

∂z
(ξ, tn); h < ξ < 2h. (4.86)

Let en be defined by

en = max

∣∣∣∣∂U3

∂z
(z, tn)

∣∣∣∣ , 0 ≤ z ≤ 1, (4.87)

from (4.86) and (4.87)

|un3,2 − un3,1| < enh. (4.88)

Hence, taking h < 3u3,1/en, one gets

K2,n = 4un3,1 − un3,2 = 3un3,1 + (un3,1 − un3,2) > 3un3,2 − enh > 0. (4.89)

The positivity of K3,n for small enough values of h can be stated in an analog-

ous way.

Hence, the remaining coefficients Bn and Cn become also positive for small

enough values of h. The function Fn(ξ) given by (4.84) is well defined, continuous
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and differentiable as a function of ξ in the interval 0 ≤ ξ ≤ Bn/3 and its sign
changes in both extremes:

Fn(0) = −En(Bn)
p+1
p < 0, Fn(Bn/3) = Cn(Bn/3)

p+q
p > 0. (4.90)

Thus, the equation (4.84) admits a solution and now we will prove that the solu-
tion is unique under appropriate conditions. Taking derivatives in the expression of
Fn(ξ) and using that 0 ≤ ξ ≤ Bn/3 one gets

F ′n(ξ) = −3An

(
2p+ q

p

)
ξ

p+q
p + (AnBn + Cn)

(
p+ q

p

)
ξ

q
p

+

(
3En

(
p+ 1

p

)
−Dn

)
(Bn − 3ξ)

1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p
p

≥ −3An

(
2p+ q

p

)
Bn

3
ξ

q
p + (AnBn + Cn)

(
p+ q

p

)
ξ

q
p

+

(
3En

(
p+ 1

p

)
−Dn

)
(Bn − 3ξ)

1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p
p

=

(
− AnBn

(
2p+ q

p

)
+ (AnBn + Cn)

(
p+ q

p

))
ξ

q
p

+

(
3En

(
p+ 1

p

)
−Dn

)
(Bn − 3ξ)

1
p +

3Dn

p
ξ(Bn − 3ξ)

1−p
p . (4.91)

Note that if

(AnBn + Cn)

(
p+ q

p

)
≥ AnBn

(
2p+ q

p

)
, 3En

(
p+ 1

p

)
≥ Dn, (4.92)

then the nonnegativity of the derivative F ′n(ξ) is guaranteed.
Taking into account (4.85), note that conditions (4.92) hold true when

ρ1 ≤
√
rn

L
≤ ρ2,n, (4.93)

where

ρ1 = 1− α

(α− 1)

D3

D1

(
p+ 1

p

)
, ρ2,n = 1− 1

(α− 1)

D3

D1

(
p

p+ q

)
K2,n

K3,n

. (4.94)

Note that this means that un3,0 is uniquely determined and positive while the
carbonation front

√
rn satisfies condition (4.93), i. e., when the carbonation front

lies in the set [ρ1L, ρ2,nL] ∩ [0, L].
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As we wrote above, see (4.73), the positivity of un3,0 guarantees that the carbon-
ation front is time increasing, as it is expected.

We can summarize the construction of the numerical solution in the procedure
exposed in Algorithm 2.

4.3 Numerical analysis: stability and positivity
Dealing with concentrations, the numerical solution of the scheme (4.77)-(4.83)
together with the values at the boundaries have to be positive. Apart from the
positivity, it is convenient to study the stability of the numerical solution. Thus,
the numerical solution of our scheme will preserve the qualitative properties of the
theoretical solution proved in [59], Theorem 3.3.

In this section, we assume the hypothesis of the continuous model about the
bounds of initial and boundary concentrations of CO2(aq) and CO2(g) relationships,

Q1G̃2 ≤ G̃1, G̃1 ≤ Q2G̃2, (4.95)

where G̃1 is the upper bound of carbon dioxide mass concentration in water phase,
and G̃2 is the upper bound of carbon dioxide mass concentration in air phase, for
both at the exposed boundary in any time and in the carbonated zone at the ini-
tial time, together with the condition on the equilibrium concentration of calcium
hydroxide,

un3,eq ≤ G̃3, (4.96)

see [59], Section 3, pp. 240. Here Q1 and Q2 are introduced in expression (4.3).
In addition, we will assume the existence of an upper bound G̃5 for the water

content for both at the exposed boundary in any time and in the carbonated region
at the initial time. Regarding the uncarbonated zone, we will suppose that mass
concentration of Ca(OH)2(aq) and water content are upper-bounded by G̃3 and G̃6,
respectively, at the initial time, see [59], Section 3, pp. 239-240.

Let Ui0(zj), 1 ≤ i ≤ 6, i 6= 4, be the initial conditions given by (4.64)-(4.66)
and let λni , i ∈ {1, 2, 5}, be the exposed boundary conditions given by (4.67). Then,
according to the above hypotheses, one can write

λni ≤ G̃i, i ∈ {1, 2, 5}, 0 ≤ n ≤ N, (4.97)
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Algorithm 2: Calculation procedure for uni,j , i ∈ {1, 2, 3, 5, 6}, un4 and rn

Data: Initial conditions (4.64)-(4.66); Boundary conditions (4.67)-(4.62).
Result: Solution (uni,j, u

n
4 , r

n), i ∈ {1, 2, 3, 5, 6} of the problem
(4.60)-(4.70).

1 n=0;
2 while n ≤ N do
3 Compute un3,0 solving (4.84) by Newton-Raphson method:

Data: (un3,0)0, Initial estimate of un3,0; e, Tolerance.
Result: un3,0.

4 i=0;
5 (un3,0)1 = (un3,0)0 − Fn((un3,0)0)/F ′n((un3,0)0);

6 while
∣∣∣ (un3,0)i+1−(un3,0)i

(un3,0)i+1

∣∣∣ ≥ e do

7 i=i+1;
8 (un3,0)i+1 = (un3,0)i − Fn((un3,0)i)/F ′n((un3,0)i);

9 end
10 Compute un1,0 using (4.72);
11 Compute rn+1 by (4.73);
12 Compute un2,0 using (4.74);
13 Compute un5,0 using (4.75);
14 Compute un6,0 using (4.76);
15 Compute uni,M+1, i ∈ {3, 6} using (4.62);
16 while n ≤ N − 1 do
17 for j = −M + 1, . . . ,−1 do
18 Obtain un+1

i,j , i ∈ {1, 2, 5} by (4.77);
19 end
20 for j = 1, . . . ,M do
21 Obtain un+1

i,j , i ∈ {3, 6} by (4.78);
22 end
23 Obtain un+1

4 by (4.83);

24 end
25 n=n+1;

26 end
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and

u0
i,j = Ui0(zj) ≤ G̃i, −M + 1 ≤ j ≤ −1, , i ∈ {1, 2, 5},

u0
i,j = Ui0(zj) ≤ G̃i, 1 ≤ j ≤M, i ∈ {3, 6}. (4.98)

We will find sufficient conditions on the discretization step sizes h and k under
which the numerical solution {uni,j} and {un4} of the scheme (4.77)-(4.83) is pos-
itive and bounded. The results are obtained using the induction principle on the
temporal index n, uniformly on the spatial index j.

Firstly, let us derive some numerical results based on the approximation of the
spatial partial derivatives of the concentrations at the carbonation front. The right-
hand side approximation of the spatial partial derivative of the concentrations of
chemical species in the carbonated zone Ui(z, t) at (0, tn) can be written in the
form

−3uni,0 + 4uni,1 − uni,2
2h

=
∂Ui
∂z

(0, tn) + O(h2), i ∈ {1, 2, 5}, (4.99)

where the artificial values uni,1 and uni,2 vanish for 0 ≤ n ≤ N and i ∈ {1, 2, 5},
because they are outside of the real carbonated region.

Otherwise, the left-hand side backward approximation of the spatial partial de-
rivative behaves, according to (4.58),

3uni,0 − 4uni,−1 + uni,−2

2h
=
∂Ui
∂z

(0, tn) + O(h2), i ∈ {1, 2, 5}. (4.100)

From (4.99)-(4.100), one gets

6uni,0 = 4uni,−1 − uni,−2 + O(h3), i ∈ {1, 2, 5}. (4.101)

On the other hand, let us consider the left-hand side approximation of the spatial
partial derivative of Ui(z, t) at (0, tn)

3uni,0 − 4uni,−1 + uni,−2

2h
=
∂Ui
∂z

(0, tn) + O(h2), i ∈ {3, 6}, (4.102)

where the artificial values uni,−1 and uni,−2 vanish.
The right-hand side backward approximation of the spatial partial derivative is,

according to (4.59)

−3uni,0 + 4uni,1 − uni,2
2h

=
∂Ui
∂z

(0, tn) + O(h2), i ∈ {3, 6}, (4.103)
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and from (4.102)-(4.103), it follows that

6uni,0 = 4uni,1 − uni,2 + O(h3), i ∈ {3, 6}. (4.104)

Equations (4.101)-(4.104) will be used in the study of the boundedness of {uni,0}
for both indexes 0 and n.

For n = 0, initial concentrations u0
i,j , 1 ≤ i ≤ 6, i 6= 4, −M ≤ j ≤ M , j 6= 0,

and u0
4 ≥ 0 are given and non negative. From the results of Section 3, one gets

the positivity of u0
i,0, 1 ≤ i ≤ 6, i 6= 4. Using (4.73) for n = 0, the transformed

carbonation front verifies r1 > r0 > 0. Let G̃i be the positive bounds, such that

0 ≤ u0
i,j ≤ G̃i, 1 ≤ i ≤ 6, i 6= 4. (4.105)

Using (4.101), (4.104) and (4.105), one gets

u0
i,0 ≤

2

3
u0
i,−1 ≤ G̃i, i ∈ {1, 2, 5},

u0
i,0 ≤

2

3
u0
i,1 ≤ G̃i, i ∈ {3, 6}. (4.106)

Let us assume the induction hypothesis, i. e., concentrations uni,j satisfy

0 ≤ uni,j ≤ G̃i, −M ≤ j ≤M, 1 ≤ i ≤ 6, i 6= 4. (4.107)

The behaviour of concentration un4 is different and will be treated later and sep-

arately. Note that from (4.77)-(4.78), the numerical solution un+1
i,j at the points

−M + 1 ≤ j ≤M is guaranteed to be non negative if coefficients ani,j , b
n
i,j and cni,j

are non negative.

The coefficients cni,j in equations (4.77)-(4.78) and (4.81) are unconditionally

positive. The nonnegativity of the coefficients ani,j , i ∈ {1, 2, 5}, in equations

(4.77)-(4.78) and (4.79) will be proved using the value of the difference rn+1 − rn

that appears in the transmission conditions (4.68). Using the induction principle,

positivity of un3,0 and un1,0 and equations (4.72)-(4.73), one gets that rn+1 > rn >

r0 > 0.

Using (4.68) and (4.101) for i = 1, one gets

rn+1 − rn = 3D1
k

h
+ 2kκ(φφω)1−p−q√rn(un1,0)p−1(un3,0)q + O(kh2), (4.108)
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and from (4.77) and (4.82), taking into account that −1 < zj < 0, one gets

an1,j >
k

h2

(
D1

4rn
− h

2
κ(φφω)1−p−q (un1,0)p−1(un3,0)q

√
rn

+ O(h3)

)
. (4.109)

Note that the time horizon T is chosen so that the carbonation front does not

reach the sealed boundary, L −
√
rn > 0, T = Nk, 0 ≤ n ≤ N . At any time

0 ≤ tn ≤ T , 0 ≤ n ≤ N , the carbonation front takes the value
√
rn between the

initial and the final position. This value
√
rn does not reach the sealed boundary.

Thus, there exists a positive number β such that
√
r0/L < β < 1, verifying

0 <
√
r0 <

√
rn <

√
rN ≤ βL < L. (4.110)

Hence, using the induction hypothesis (4.107) for i = 1, i = 3 and j = 0, and

expression (4.110), coefficients an1,j in equation (4.109) are positive for −M + 1 ≤
j ≤ −1, with the condition on the spatial step size

h1 <
D1

2βLκ(φφω)1−p−q(G̃1)p−1(G̃3)q
. (4.111)

For i = 2, using (4.68) and (4.101), it follows that

rn+1 − rn = 3D2
k

h
+ O(kh2), (4.112)

and from (4.77) and (4.82), using that −1 < zj < 0,

an2,j >
k

h2

(
D2

4rn
+ O(h3)

)
, (4.113)

and coefficients an2,j are positive for −M + 1 ≤ j ≤ −1.

And finally, for i = 5, using (4.68) and (4.101), it follows that

rn+1 − rn = 3D5
k

h
− 2kκ(φφω)1−p−q√rn

(un1,0)p(un3,0)q

un5,0
+ O(kh2), (4.114)

and from (4.77) and (4.82), using that −1 < zj < 0,

an5,j >
k

h2

(
D5

4rn
+
h

2
κ(φφω)1−p−q (un1,0)p(un3,0)q

√
rnun5,0

+ O(h3)

)
. (4.115)
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Hence, coefficients an5,j are positive for −M + 1 ≤ j ≤ −1.
Now, regarding the concentrations of the chemical species in the uncarbonated

zone, the positivity of the coefficients ani,j , i ∈ {3, 6}, in equations (4.77)-(4.78) and
(4.79) will be probed in analogous way using the value of the difference rn+1 − rn

that appears in the transmission conditions (4.69).
For i = 3, using (4.69) and (4.104), it follows that

rn+1 − rn = 3D3
k

h

√
rn

L−
√
rn

+ 2kκ(φφω)1−p−q√rn(un1,0)p(un3,0)q−1 + O(kh2),

(4.116)
and from (4.78) and (4.82), using that 0 < zj ≤ 1,

an3,j >
k

h2

(
D3

4
(
L−
√
rn
)2 −

h

2
κ(φφω)1−p−q (un1,0)p(un3,0)q−1(

L−
√
rn
) + O(h3)

)
. (4.117)

Note that the last expression (4.117), in an analogous way to the equation
(4.109), presents a negative term, and positivity of (4.117), for 1 ≤ j ≤ M , is
guaranteed using the same arguments regarding the boundedness of un1,0 and un3,0,
that was proved above for each time level n, with the following condition on the
spatial step size

h3 <
D3

2
(
L−
√
r0
)
κ(φφω)1−p−q(G̃1)p(G̃3)q−1

. (4.118)

Finally, for i = 6, taking into account (4.69) and (4.104), it follows that

rn+1 − rn = 3D6
k

h

√
rn

L−
√
rn

+ O(kh2), (4.119)

and from (4.78) and (4.82), using that 0 < zj ≤ 1,

an6,j >
k

h2

(
D6

4
(
L−
√
rn
)2 + O(h3)

)
, (4.120)

and coefficients an6,j are positive for 1 ≤ j ≤M .
In conclusion, from (4.111) and (4.118), coefficients ani,j , 1 ≤ i ≤ 6, i 6= 4, are

positive under the condition on the spatial step size

h < h0 = min{h1, h3}. (4.121)
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Since 0 < r0 < rn, the nonnegativity of the coefficients bni,j , i ∈ {1, 2, 5}, see
(4.80), of the explicit scheme (4.77) is guaranteed, independently of the value of n,
under the following respective conditions between the step sizes h and k

k1 ≤
h2r0

2D1 + h2r0P1

, k2 ≤
h2r0

2D2 + h2r0P2Q2

, k5 ≤
h2r0

2D5

, i ∈ {1, 2, 5}.

(4.122)

The coefficients related to the uncarbonated zone bni,j , i ∈ {3, 6}, see (4.80), of
the explicit scheme (4.78) are non negative, independently of the value of n, under
the following conditions between h and k

k3 ≤
h2L2(1− β)2

2D3 + h2L2(1− β)2S3,diss
, k6 ≤

h2L2(1− β)2

2D6

, i ∈ {3, 6}. (4.123)

Then, coefficients bni,j , 1 ≤ i ≤ 6, i 6= 4, are positive under the condition

k < k0 = min{ki}, 1 ≤ i ≤ 6, i 6= 4. (4.124)

Consequently, from previous comments and induction argument, the numerical
solution at time level n+ 1 is non negative, un+1

i,j ≥ 0, i 6= 4,−M ≤ j ≤M , under
conditions (4.121) and (4.124). Now, let us study the boundedness of the numerical
solution.

Using (4.101) and (4.104), it holds

uni,0 <
2

3
uni,−1 ≤ G̃i, i ∈ {1, 2, 5},

uni,0 <
2

3
uni,1 ≤ G̃i, i ∈ {3, 6}. (4.125)

Hence, from (4.77)-(4.78) and (4.79)-(4.81), together with assumptions (4.95)
and (4.96), one gets

un+1
1,j ≤ (an1,j + bn1,j + cn1,j)G̃1 + kP1Q1G̃2 = (1− kP1)G̃1 + kP1Q1G̃2

≤ G̃1, −M + 1 ≤ j ≤ −1, (4.126)

un+1
2,j ≤ (an2,j + bn2,j + cn2,j)G̃2 + kP2G̃1 = (1− kP2Q2)G̃2 + kP2G̃1

≤ G̃2, −M + 1 ≤ j ≤ −1, (4.127)
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un+1
3,j ≤ (an3,j + bn3,j + cn3,j)G̃1 + kS3,dissu

n
3,eq

= (1− kS3,diss)G̃3 + kS3,dissu
n
3,eq ≤ G̃3, 1 ≤ j ≤M, (4.128)

un+1
5,j ≤ (an5,j + bn5,j + cn5,j)G̃5 = G̃5, −M + 1 ≤ j ≤ −1, (4.129)

un+1
6,j ≤ (an6,j + bn6,j + cn6,j)G̃6 = G̃6, 1 ≤ j ≤M. (4.130)

From the induction proof for un1,0 and un3,0, and their bounds, we have

0 < un1,0 <
2

3
G̃1, 0 < un3,0 <

2

3
G̃3. (4.131)

From (4.83) and (4.131), taking into account the initial value u0
4 = U40,

un4 > un−1
4 ; un4 ≤ U40+κT (φφω)1−p−q

(
2

3
G̃1

)p(
2

3
G̃3

)q
, 1 ≤ n ≤ N. (4.132)

Using a mathematical induction argument and summarizing, under hypotheses

(4.95)-(4.98), the following theorem shows that the numerical solution of prob-

lem (4.8)-(4.22), obtained from the scheme (4.77)-(4.78) and (4.83), preserves the

qualitative properties satisfied by the theoretical solution obtained in Section 3 of

[59]:

Theorem 8. With previous notation, under hypotheses (4.95)-(4.98), for small
enough values of the step size h, verifying (4.111), (4.118) and (4.121), together
with the step sizes conditions (4.122)-(4.124), the following conclusions hold true
at the mesh points of the numerical domain:

i) Approximate concentrations uni,j , i ∈ {1, 2, 5} of the scheme (4.77) in the car-
bonated zone are positive and uniformly bounded,

0 ≤ uni,j ≤ G̃i, −M ≤ j ≤ −1, 0 ≤ n ≤ N. (4.133)

ii) Approximate concentrations uni,j , i ∈ {3, 6} of the scheme (4.78) in the uncar-
bonated region and uniformly bounded are positive,

0 ≤ uni,j ≤ G̃i, 1 ≤ j ≤M, 0 ≤ n ≤ N. (4.134)
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iii) The solution un4 of the scheme (4.83) for the calcium carbonate concentration
is positive, increasing and bounded,

un4 ≤ U40 + κT (φφω)1−p−q
(

2

3
G̃1

)p(
2

3
G̃3

)q
, 0 ≤ n ≤ N. (4.135)

iv) Approximate concentrations uni,0, 1 ≤ i ≤ 6, i 6= 4 at the carbonation front
are positive and uniformly bounded for 0 ≤ n ≤ N .

v) The carbonation front is positive and increasing, 0 < r0 < r1 < . . . < rN .

As a consequence of the boundedness of the mass concentrations, the stability
of the numerical solution is also proved. Let us denote the supremum norm of a
vector x = (x1, x2, ..., xn)T in Rn as ‖x‖∞ = max(|x1|, |x2|, ..., |xn|).

According to the notion of stability (1.18) presented in Chapter 1, we will adopt
the following definition:

Definition 4. With previous notation, let us denote the vectors of concentrations
uni = [uni,−M , u

n
i,−M+1, . . . , u

n
i,0]T , i ∈ {1, 2, 5}, and uni = [uni,0, u

n
i,1, . . . , u

n
i,M ]T ,

i ∈ {3, 6}. We say that the numerical solution {uni,j, 1 ≤ i ≤ 6, i 6= 4, un4 , 0 ≤
n ≤ N} is ‖ · ‖∞-stable if there exist positive constants Ci, 1 ≤ i ≤ 6, independent
of n, k and h, such that

‖uni ‖∞ ≤ Ci, 1 ≤ i ≤ 6, 0 ≤ n ≤ N. (4.136)

Thus, scheme (4.77)-(4.83) is ‖ · ‖∞-stable under assumptions (4.95)-(4.98),
with the step sizes conditions (4.111), (4.118) and (4.121), together with (4.122)-
(4.124), by taking

Ci = G̃i, 1 ≤ i ≤ 6, i 6= 4, (4.137)

and
C4 = U40 + κT (φφω)1−p−q

(
2

3
G̃1

)p(
2

3
G̃3

)q
. (4.138)

Note that the results of Theorem 8 are conditioned to the step sizes restrictions
stated there. The following example illustrates that these conditions can not be
removed.

Example 1. Consider the carbonation model (4.8)-(4.22) with parameters listed
in the Table 4.1, see [60], with partial reaction orders p = 1.0, q = 1.0 and time
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horizon T = 1 year, we obtain h0 = 0.0041 and k0 = 0.0089. Taking step sizes

with values h = 0.05 and k = 0.0106, the positivity condition is broken. Figure

4.1 shows that positivity does not hold. Units in x-axis are taken in cm and y-axis

in g cm−3.
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Figure 4.1: Numerical solution Ū1(x, t) of Example 1 for t = 0.95 years, when
positivity condition is broken.

Next example illustrates the positivity and ‖ ·‖∞-stability of the solutions when

conditions (4.111), (4.118) and (4.121), together with (4.122)-(4.124) are satisfied.

Example 2. With notation and model parameters listed in the Table 4.1, with

p = 1.5, q = 1.0 and time horizon T = 10 years, we get h0 = 0.0917 and

k0 = 0.0089. Choosing step sizes h = 0.05 and k = 0.005, the positivity and

stability of the solutions are guaranteed by Theorem 8, as Figure 4.2 shows. Units

in x-axis are taken in cm and y-axis in g cm−3. Furthermore, taking these step

size values, the inequality (4.93) is satisfied, since L = 12 cm, ρ1 = −1.3120 and

the numerical carbonation front
√
rn together with ρ2,n take the values shown in

Figure 4.3. Thus, nonlinear equation (4.71) for un3,0 is solvable and Algorithm 2

can be initiated. Units in x-axis are taken in years and y-axis in cm. Table 4.2

shows CPU time taken in calculations for h = 0.05 and several values of k, using

MATLAB R2017b on processor Intel(R) Core(TM) i3-3110M CPU 2.40GHz.
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Figure 4.2: Numerical concentrations Ūi(x, t), i ∈ {1, 2, 5}, and Ūi(x, t), i ∈ {3, 6},
in Example 2 for t = 9 years, under stability condition.
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Figure 4.3: Position of the numerical carbonation front
√
rn, and values of ρ2,n, in

Example 2, as a function of time.

k 0.008 0.006 0.004 0.002√
rN (cm) 5.1200 5.1200 5.1201 5.1201

CPU time (s) 1.081 1.676 2.683 6.899

Table 4.2: Dependence of process time on the temporal step size.

4.4 Monotonicity of the numerical solution
In this section, we present monotone properties of the numerical solution of the
scheme (4.77)-(4.78), according to the following definition, see [35]:

Definition 5. Let F (wnj ) = 0 be a numerical scheme, where index n refers to
the time and j to the space, j ∈ J, n ∈ N. We say that the numerical scheme
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4.4 Monotonicity of the numerical solution

F (wnj ) = 0 is spatial monotone time preserving if, assuming that wn is a spatial
monotone sequence at time level n, then so is wn+1 for all time index n.

We will state that the scheme (4.77)-(4.78) preserves the monotone decreasing
spatial behaviour of the numerical concentrations uni , i ∈ {1, 2, 5}, in the carbon-
ated zone, while the concentrations uni , i ∈ {3, 6}, in the uncarbonated zone are
monotone increasing in space, for all time level n. We will prove this property
using the induction principle on the temporal index n.

Firstly, we state that, under the positivity constraints (4.111), (4.118) and (4.121),
together with (4.122)-(4.124), and assuming

uni,j+1 ≤ uni,j, −M + 1 ≤ j ≤ −2, i ∈ {1, 2, 5}, (4.139)

then, the numerical solution at time level n+ 1 satisfies

un+1
i,j+1 ≤ un+1

i,j , −M + 1 ≤ j ≤ −2, i ∈ {1, 2, 5}. (4.140)

Let us start by considering i = 1. From (4.77) and (4.139) one gets

un+1
1,j ≥ an1,ju

n
1,j + bn1,ju

n
1,j + cn1,ju

n
1,j+1 + kP1Q1u

n
2,j

=

(
1− D1k

h2rn
−

(
1 + zj

4h

)
∆n

1 − kP1

)
un1,j +

(
D1k

h2rn
+

(
1 + zj

4h

)
∆n

1

)
un1,j+1

+ kP1Q1u
n
2,j, −M + 1 ≤ j ≤ −2, (4.141)

and

un+1
1,j+1 ≤ an1,j+1u

n
1,j + bn1,j+1u

n
1,j+1 + cn1,j+1u

n
1,j+1 + kP1Q1u

n
2,j+1

=

(
D1k

h2rn
−

(
1 + zj+1

4h

)
∆n

1

)
un1,j +

(
1− D1k

h2rn
+

(
1 + zj+1

4h

)
∆n

1 − kP1

)
un1,j+1

+ kP1Q1u
n
2,j+1, −M + 1 ≤ j ≤ −2. (4.142)

Using the positivity of coefficient bn1,j and ∆n
1 shown in Theorem 2, from (4.80)

for i = 1, (4.139) and (4.141)-(4.142), it follows that

un+1
1,j+1 − un+1

1,j ≤

(
bn1,j +

1

4
∆n

1

)
(un1,j+1 − un1,j)

+ kP1Q1(un2,j+1 − un2,j) ≤ 0, −M + 1 ≤ j ≤ −2, (4.143)
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and then

un+1
1,j+1 ≤ un+1

1,j . (4.144)

For the sake of brevity and because of the analogy of the cases i = 2 and i = 5,

we omit the proofs of the decreasing monotone behaviour of wn2, and wn5,.

Regarding the concentrations in the uncarbonated zone uni,j , i ∈ {3, 6}, we will

prove that spatial increasing monotonicity requires some additional restrictions on

the step sizes discretizations. Thus, under these additional restrictions, and the

positivity conditions (4.111), (4.118) and (4.121), together with (4.122)-(4.124), if

we assume

uni,j+1 ≥ uni,j, 1 ≤ j ≤M − 1, i ∈ {3, 6}, (4.145)

then, the numerical solution at time level n+ 1 satisfies

un+1
i,j+1 ≥ un+1

i,j , 1 ≤ j ≤M − 1, i ∈ {3, 6}. (4.146)

Let us start by considering the case i = 3. From (4.78) and (4.145), one gets

un+1
3,j ≤ an3,ju

n
3,j + bn3,ju

n
3,j + cn3,ju

n
3,j+1 + kS3,dissu

n
3,eq

=

(
1− D3k

h2∆n
3

+

(
zj − 1

4h

)
rn

∆n
1 ∆n

2

∆n
3

− kS3,diss

)
un3,j

+

(
D3k

h2∆n
3

+

(
1− zj

4h

)
rn

∆n
1 ∆n

2

∆n
3

)
un3,j+1 + kS3,dissu

n
3,eq, 1 ≤ j ≤M − 1,

(4.147)

and

un+1
3,j+1 ≥ an3,j+1u

n
3,j + bn3,j+1u

n
3,j+1 + cn3,j+1u

n
3,j+1 + kS3,dissu

n
3,eq

=

(
D3k

h2∆n
3

+

(
zj+1 − 1

4h

)
rn

∆n
1 ∆n

2

∆n
3

)
un3,j + kS3,dissu

n
3,eq

+

(
1− D3k

h2∆n
3

+

(
1− zj+1

4h

)
rn

∆n
1 ∆n

2

∆n
3

− kS3,diss

)
un3,j+1, 1 ≤ j ≤M − 1.

(4.148)
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Using the positivity of bn3,j and ∆n
1 shown in Theorem 2, from (4.80) for i = 3,

(4.139) and (4.141)-(4.142), it follows that

un+1
3,j+1 − un+1

3,j ≥

(
bn3,j −

rn

4

∆n
1 ∆n

2

∆n
3

)
(un3,j+1 − un3,j) ≥ 0, 1 ≤ j ≤M − 1.

(4.149)

Note that the left hand side of expression (4.149) is positive if the bracket coef-
ficient is also positive. From (4.73), (4.82) and (4.110), one gets

rn

4

∆n
1 ∆n

2

∆n
3

=
rn+1 − rn

4
√
rn(L−

√
rn)
≤ kακ(φφω)1−p−qG̃p

1G̃
q−1
3

2L(1− β)
. (4.150)

Thus, from (4.80) for i = 3, (4.149) and (4.150), the difference un+1
3,j+1 − un+1

3,j

is non negative under the following requirement linking spatial and temporal step
sizes:

k ≤ k∗3 =
2h2L2(1− β)2

4D3 + 2h2L2(1− β)2S3,diss + h2L(1− β)ακ(φφω)1−p−qG̃p
1G̃

q−1
3

.

(4.151)
Finally, for the case i = 6, using similar arguments, it is easy to show that un6,

presents a spatial increasing monotone behaviour under the additional condition on
the relation between spatial and temporal step sizes:

k ≤ k∗6 =
2h2L2(1− β)2

4D6 + h2L(1− β)ακ(φφω)1−p−qG̃p
1G̃

q−1
3

. (4.152)

Summarizing, the following result can be established:

Theorem 9. With previous notation, under hypotheses (4.95)-(4.98), assuming the
positivity conditions (4.121) and (4.124), and the temporal step size conditions
(4.151) and (4.152), the numerical scheme (4.77)-(4.83) is spatial monotone pre-
serving in the sense of 5.

Consequently, starting with u0
i, usually spatial monotone decreasing sequences,

i ∈ {1, 2, 5}, the numerical solution remains monotone decreasing for all 1 ≤
n ≤ N . On the other hand, starting with u0

i, usual spatially monotone increasing
sequences, i ∈ {3, 6}, the numerical solution remains monotone increasing for all
n. Next Example 3 illustrates these facts.
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Example 3. With data of Table 4.1, taking reaction orders p = 1.5, q = 1

and time horizon T = 10 years, with previous notation, we obtain h0 = 0.0917,

k0 = 0.0089, k∗3 = 0.0059 and k∗6 = 0.0056. Choosing step sizes h = 0.05 and

k = 0.005 satisfying the monotonicity requirements of Theorem 9, Figures 4.4

and 4.5 show the monotone behaviour of the numerical solutions of Ū1(x, t) and

Ū3(x, t) for several equidistant fixed values of time.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

x 10
−3

Length of the carbonated zone

C
on

ce
nt

ra
tio

n

 

 

 t = 2 years
 t = 4 years 
 t = 6 years
 t = 8 years

Figure 4.4: Numerical solution Ū1(x, t) of Example 3, for several equidistant times.
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Figure 4.5: Numerical solution Ū3(x, t) of Example 3, for several equidistant times.

4.5 Conclusions
From the applications point of view, a theoretical model needs to be checked nu-

merically. In this chapter, we construct reliable numerical solutions of the concrete

carbonation model proposed in [59] and [60]. In fact, we show that the proposed

numerical solutions are positive and preserve qualitative properties of the theoret-

ical solution such as concentrations boundedness. One the advantages of our ap-

proach is that concentrations monotonicity properties suggested in the experiments,

although not proved theoretically in [59], are confirmed throughout the behaviour

of the numerical solution and illustrated with numerical examples. The numerical

analysis includes sufficient conditions on the step sizes discretization, explicitly

given in terms of the data in order to satisfy the above properties.

Considering possible future lines of research, it might be convenient to look

upon some open questions about the continuos model and its numerical implement-

ation, mainly that regarding the problem of study the carbonation process in sample

geometries of 2 or 3 dimensions. Apart from simple cases with any symmetry, ra-

dial for instance, that can be treated with the one-dimensional model through a

variable change, some attempts have been made to address this challenging issue.
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A first result indicates that 1D models applied to the two-dimensional case would
underestimate the speed of the deterioration (and overestimate the service life), par-
ticularly in singular zones of the element such as convex corners (cf. [69]). The
numerical treatment of these problems has been approached via finite elements, but
it would be worthwile to apply the finite differente technique used in this thesis to
assess its suitability.
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Magnitude Value

Initial concentrations (g cm−3)

Ū10(x), 0 < x < S0 0.0020

Ū20(x), 0 < x < S0 0.0016

Ū30(x), S0 < x < L 0.0120

Ū40 0.0000

Ū50(x), 0 < x < S0 0.0050

Ū60(x), S0 < x < L 0.0050

Exposed boundary concentrations (g cm−3)

Λ1(t) 0.0020
Λ2(t) 0.0016
Λ5(t) 0.0050
Equilibrium concentration of Ca(OH)2 (g cm−3)

U3,eq 0.0050
Diffusion constants (cm2 day−1)

D1 0.62
D2 3.50
D3 0.86
D5 1.00
D6 1.00
Model parameters
α 12500
κ (year−1) 750
φ 0.10
φω 0.50
φa 0.50
P1 = P2 (day−1) 0.025
Q1 = Q2 1.250
S3,diss (day−1) 0.0075
Sample length and bounds of the carbonation depth
L (cm) 12.00
S0 (cm) 5.00
β 0.70

Table 4.1: Data for numerical examples.
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CHAPTER

5
Phase change processes

As mentioned in Chapter 1, free- or moving-boundary problems are used to
model many phenomena arising in science and technology, with a wide range of
applications in different disciplines like biophysics, chemistry, astronomy, materi-
als science and ecology [1, 24, 25, 26, 38, 56]. A subset of these kind of models
are the so-called Stefan problems linked, for instance, to heat transfer problems
with phase changes from the liquid to the solid. Exact analytical solution of these
problems is only available in some particular cases stated in a semi-infinite domain,
for instance the well known Lamé-Clapeyron-Stefan problem, see [26], Chapter 3.
Analytic solutions for two-phase Stefan problems using similarity solutions have
been proposed in [12], including source terms in the problem formulation. Apart
from the analytical methods, a wide class of semianalytical methods have been
proposed to solve more general problems, [16, 18, 40, 65], method of perturbation,
[17, 75].

Attending to the treatment of the moving boundary there are two main types
of methods, [68]. The front-tracking method is based on the continuous updating
of the moving boundary, see Chapter 4 of [26]; inside this method, it is important
to mention the variable space grid method [46], the variable time step method [6]
and the heat balance integral method [36]. Another approach is to use a fixed do-
main formulation or front-fixing based on a transformation of the original problem,
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for instance the boundary immobilization method, [49], Chapter 5 of [26], [57],

isotherm migration method, [20, 47], and enthalpy method, [16, 32, 81]. Both ap-

proaches the front-tracking and the front-fixing have been performed using finite

difference or finite elements schemes.

The last problem treated in this thesis is related to a specific case of phase

change process. The main peculiarity of this problem with respect to those studied

in previous chapters lies in the appearance of an additional difficulty, which has

to do with the stages of the process when the interface between phases is located

at any of the two edges of the material sample. Thus, it follows that two different

challenges have to be addressed when the front-fixing transformation is used for

two-phase problems due to the appearance of singularity in the transformed partial

differential equations (PDEs): Firstly, the correct initialization when the first phase

initially has zero thickness, and on the other hand, the treatment of the depletion

of the second phase close to the extinction time. The authors of [68] consider the

one-phase problem by using front-fixing approaches together with explicit finite

difference schemes, overcome the initialization difficulty taking the analytic solu-

tion of the semi-infinite problem in this starting stage for the temperature as well as

for the evolution of the moving boundary from the starting zero thickness. The cor-

rect initialization and depletion of the two-phase Stefan problem has been recently

addressed by [57] by using the Keller box implicit difference scheme, see [54].

The numerical modelling proposed in this chapter does not need the analytic

solution of the underlying semi-infinite problem but only the hypothesis of the
√
t-law behaviour of the moving boundary in the initialization of the problem. The

treatment of the depletion is also addressed throughout a split of the process in three

stages: the first one related to the initialization, the second one embracing almost

the entire process of solidification and the third stage dealing with the depletion of

the liquid phase until extinction. Apart from the numerical analysis, this numerical

modelling approach has the potential application of dealing with more complicated

problems where the analytic solution of the corresponding semi-infinite problem is

not available.

Consider the two-phase model describing the freezing of a liquid in one spatial

dimension, [57], occupying initially the region 0 ≤ x ≤ a. At the initial time, the
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temperature of the material is uniform, Th, higher than the phase-change temperat-

ure, written as Tf . The material is cooled at the point x = 0 by imposing a constant

temperature Tc, lower than the phase-change temperature, Tf .

The continuous model with phase formation and depletion is formulated as,

ρcs
∂Ts
∂t

= κs
∂2Ts
∂x2

, 0 < x < S(t), t > 0, (5.1)

ρcl
∂Tl
∂t

= κl
∂2Tl
∂x2

, S(t) < x < a, t > 0. (5.2)

The boundary conditions are expressed as

Ts(0, t) = Tc, t > 0, (5.3)

Ts(S(t), t) = Tl(S(t), t) = Tf , t > 0, (5.4)

and
∂Tl
∂x

(a, t) = 0, t > 0. (5.5)

The initial conditions are given by

Tl(x, 0) = Th, 0 ≤ x ≤ a, S(0) = 0. (5.6)

Finally, the so-called Stefan condition, expressing the heat balance on the inter-

face, takes the form

ρCm
dS

dt
= κs

∂Ts
∂x
− κl

∂Tl
∂x

, x = S(t), t > 0. (5.7)

Here, Ts denotes the solid phase temperature, κs is the thermal conductivity of

the solid, cs is the specific heat capacity of the solid phase. Analogously, using

the same notation for the liquid phase, Tl denotes the liquid phase temperature, κl
the thermal conductivity of the liquid and cl the specific heat capacity of the liquid

phase. Regarding the mass density of the material, it is assumed to have the same

value ρ, both in solid and liquid state. The value Cm represents the latent heat of

fusion. S(t) indicates the location of the solidification front.

Note that as we are considering the freezing problem in accordance with the

initial condition (5.6) and the boundary conditions (5.3)-(5.5), the change of phase
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is not reversible, and the right hand side of condition (5.7) has a constant positive
sign. Thus,

ρCm
dS

dt
> 0, t > 0. (5.8)

To transform our problem into a dimensionless one, the following nondimen-
sional variables in space and time are used:

y =
x

a
, t̃ =

κlt

ρcla2
, S̃(t̃) =

S(t)

a
. (5.9)

Consider an arbitrarily small value S0, 0 < S0 < a, a relative quantity R0 =

S0/a and let us introduce the new temporal variable and the transformed solidific-
ation front, respectively

τ = t̃/R2
0, σ(τ) = R(τ)/R0, R(τ) = S̃(t̃). (5.10)

Also, the unknowns for the temperatures in the solid and liquid phases, respect-
ively, are expressed as

Ûs =
Ts − Tf
Tf − Tc

, Ûl =
Tl − Tf
Th − Tf

. (5.11)

After these changes, and simplifying the notation by using the parameters

κ =
κlcs
κscl

, K =
κs(Tf − Tc)
κl(Th − Tf )

, β =
Cm

cl(Th − Tf )
, (5.12)

the problem (5.1)-(5.7) becomes

∂Ûs
∂τ

=
R2

0

κ

∂2Ûs
∂y2

, 0 < y < R0σ(τ), τ > 0, (5.13)

∂Ûl
∂τ

= R2
0

∂2Ûl
∂y2

, R0σ(τ) < y < 1, τ > 0, (5.14)

subject to the boundary conditions

Ûs(0, τ) = −1, τ > 0, (5.15)

Ûs(R0σ(τ), τ) = Ûl(R0σ(τ), τ) = 0, τ > 0, (5.16)

and
∂Ûl
∂y

(1, τ) = 0, τ > 0, (5.17)
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and the new initial conditions

Ûl(y, 0) = 1, 0 ≤ y ≤ 1, σ(0) = 0. (5.18)

Finally, the Stefan condition is written as

dσ

dτ
=
KR0

β

∂Ûs
∂y
− R0

β

∂Ûl
∂y

, y = R0σ(τ), τ > 0. (5.19)

The main Section 5.1 begins with the front-fixing transformation of the moving

boundary problem. Then, the numerical modelling is developed by splitting the

solidification process in three stages: initialization, progress stage and depletion.

In both stages, discretization, numerical analysis, including the study of qualitative

properties of the numerical solution, the stability and simulation are performed.

Illustrative numerical experiments are also included.

5.1 Front-fixing transformation and numerical mod-
elling
The correct inicialization of the solidification front requires that S(0) = 0, i.e.

σ(0) = 0, see [55], where

σ(τ) = R(τ)/R0. (5.20)

Let us consider the front-fixing transformation ([26, 49])

z(y, τ) =


y − σ(τ)R0

σ(τ)R0

, 0 ≤ y ≤ σ(τ)R0, τ ≥ 0,

y − σ(τ)R0

1− σ(τ)R0

, σ(τ)R0 ≤ y ≤ 1, τ ≥ 0.

(5.21)

As a result of trasform (5.21), the moving-boundary problem (5.13)-(5.19) turns

into another one that is posed in a fixed immobilized domain, −1 ≤ z ≤ 1, τ ≥ 0,

that causes difficulties in the initialization and in the depletion. The difficulty about

t = 0 can be overcome without considering the analytic solution of the correspond-

ing semi-infinite two-phase Lamé-Clapeyron-Stefan problem, [26, 77], but only

assuming that the solidification front in the nondimensional problem follows the
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5. PHASE CHANGE PROCESSES

behaviour C
√
τ in a small neighbourhood close to τ = 0, where C is obtained

throughout numerical modelling specified later. Another important issue is the nu-

merical treatment of the problem close to the extinction time τe, [57, 77], without

using the solution of the semi-infinite problem. In fact, in agreement with the com-

ment by the authors of [57], p. 270, we neglect the liquid phase starting from a time

τ1 < τe. The selection of this critical time τ1 is performed in order to guarantee the

numerical stability of the solution.

Thus, the numerical modelling of the problem is developed in three stages. The

first stage corresponds to the correct initialization of the solidification process, that

is performed using an implicit scheme for both purposes, the estimation of C as

well as obtaining the temperature of the solid and the liquid phases until a time τ0

such that the solidification front has reached the relative value R0.

Then, the second stage corresponds to the evolution of the two-phase problem

until we reach time τ1. Note that in this second stage we need to compute both

the temperature of solid and liquid phases, as well as the solidification front. This

computation is performed using an explicit method that, apart from being quick

and no requiring initialization guess, as it occurs with the implicit methods, it will

be particularly convenient to study numerical properties of the numerical solution.

Finally, in the last stage we neglect the liquid phase and we study the behaviour

of the solidification front and the temperature of the solid region until the extinction

time, continuing with the explicit scheme.

Let us choose an arbitrarily small value S0 > 0 and denote t0 > 0 the time such

that S(t0) = S0, following the
√
t-law. Taking τ0 the corresponding transformed

time throughout (5.10) one gets,

σ(τ0) = σ0 =
R(τ0)

R0

=
aS̃(t̃0)

S0

= 1. (5.22)

Therefore, we assume that the solidification front follows a behaviour σ(τ) =

C
√
τ in a short first stage 0 ≤ τ ≤ τ0, dependent on the initial prefixed value S0.

From (5.9)-(5.20), one gets

σ(τ) = C
√
τ , 0 ≤ τ ≤ τ0 =

t̃0
R2

0

=
1

C2
, (5.23)
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5.1 Front-fixing transformation and numerical modelling

and the value C is obtained numerically as it will be explained later. Note that,

during this stage, 0 ≤ σ(τ) ≤ 1. Hereinafter the tilde in t̃ is dropped.

Hence, from the above variable change (5.20), transformation (5.21) and the

relationships

Ûs(y, τ) = Us(z, τ), Ûl(y, τ) = Ul(z, τ), (5.24)

problem (5.13)-(5.19) takes the form

∂Us
∂τ

=
σ′(τ)(1 + z)

σ(τ)

∂Us
∂z

+
1

κσ2(τ)

∂2Us
∂z2

, −1 < z < 0, τ > 0, (5.25)

∂Ul
∂τ

=
σ′(τ)R0(1− z)

1− σ(τ)R0

∂Ul
∂z

+
R2

0

(1− σ(τ)R0)2

∂2Ul
∂z2

, 0 < z < 1, τ > 0, (5.26)

satisfying the boundary conditions

Us(−1, τ) = −1, τ > 0, (5.27)

Us(0, τ) = Ul(0, τ) = 0, τ > 0, (5.28)

and
∂Ul
∂z

(1, τ) = 0, τ > 0, (5.29)

together with the initial conditions

Us(z, 0) = −1, −1 ≤ z ≤ 0, Ul(z, 0) = 1, 0 ≤ z ≤ 1, σ(0) = 0, (5.30)

and the Stefan condition at the solidification front

dσ

dτ
=

K

βσ(τ)

∂Us
∂z
− R0

β(1− σ(τ)R0)

∂Ul
∂z

, z = 0, τ > 0. (5.31)

5.1.1 First stage numerical modelling

In the first stage, 0 ≤ τ ≤ τ0, using the
√
τ -law (5.23) for the dynamics of the

solidification front, problem (5.25)-(5.31) becomes

∂Us
∂τ

=
1 + z

2τ

∂Us
∂z

+
1

κC2τ

∂2Us
∂z2

, −1 < z < 0, 0 < τ < τ0, (5.32)
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∂Ul
∂τ

=
CR0(1− z)

2
√
τ(1− CR0

√
τ)

∂Ul
∂z

+
R2

0

(1− CR0

√
τ)2

∂2Ul
∂z2

, 0 < z < 1, 0 < τ < τ0,

(5.33)
together with boundary and initial conditions (5.27)-(5.29) and (5.30), respectively,
and the Stefan condition with

√
τ -law

C

2
√
τ

=
K

βC
√
τ

∂Us
∂z

+
R0

β(1− CR0

√
τ)

∂Ul
∂z

, z = 0, 0 < τ < τ0, (5.34)

that is going to be used to estimate numerically the value of C.
In order to circumvent the singularity of equations (5.32)-(5.33) at τ = 0, we

use a fully implicit scheme, backward in time and centred in space. The numerical
domain is partitioned by the grid

Ω = {(zj, τn), −M ≤ j ≤M, 0 ≤ n ≤ n0}, (5.35)

with h = ∆z = 1/M ; ∆τ = τ0/n0, and zj = jh, τn = n∆τ , where M and n0

are positive integers. By using the notation presented in Section 1.3, numerical ap-
proximations of the unknowns are written as: uns,j ≈ Us(zj, τ

n), unl,j ≈ Ul(zj, τ
n),

σn ≈ σ(τn).
To preserve the second order accuracy at the solidification front z = 0, we take

left and right side approximations with three points, for the solid and liquid phase,
respectively:

3uns,0 − 4uns,−1 + uns,−2

2h
≈ ∂Us

∂z
(0, τn),

−3unl,0 + 4unl,1 − unl,2
2h

≈ ∂Ul
∂z

(0, τn).

(5.36)
Boundary conditions (5.27)-(5.29) are discretized as

uns,−M = −1, uns,0 = unl,0 = 0,
unl,M−1 − unl,M+1

2h
= 0, 0 ≤ n ≤ n0, (5.37)

where zM+1 = (M + 1)h is an artificial mesh point and the value unl,M+1 is elimin-
ated under the standard assumption that the equation (5.33) is also satisfied at the
boundary zM = 1, [72] .

From the above comments, one gets a tridiagonal algebraic system
An+1Un+1

s = Un
s ,

0 ≤ n ≤ n0 − 1,

Bn+1Un+1
l = Un

l ,

(5.38)
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5.1 Front-fixing transformation and numerical modelling

where Un
s = [uns,−M , u

n
s,−M+1, . . . , u

n
s,0]T , Un

l = [unl,0, u
n
l,1, . . . , u

n
l,M ]T , and

An = An(C) =
(
Ani,j
)
−M≤i,j≤0

, Bn = Bn(C) =
(
Bn
i,j

)
0≤i,j≤M , (5.39)

are tridiagonal matrices of size (M + 1)× (M + 1), whose nonzero entries are

An−M,−M = An0,0 = 1,

Anj,j−1 = −(an − cnj ); Anj,j = 1 + 2an; Anj,j+1 = −(an + cnj ),

−M + 1 ≤ j ≤ −1,

(5.40)

Bn
0,0 = 1; BM,M−1 = −2bn, BM,M = 1 + 2bn,

Bn
j,j−1 = −(bn − dnj ); Bn

j,j = 1 + 2bn; Bn
j,j+1 = −(bn + dnj ),

1 ≤ j ≤M − 1.

(5.41)

Coefficients appearing in (5.40)-(5.41), depending on the step sizes h and ∆τ ,
have the form:

an =
1

κC2nh2
, cnj =

zj + 1

4nh
,

bn =
R2

0∆τ

h2(1− CR0

√
n∆τ)2

, dnj =
CR0

√
∆τ(1− zj)

4
√
nh(1− CR0

√
n∆τ)

.
(5.42)

An+1 and Bn+1 of (5.38) have all the row sums positive from (5.40)-(5.41).
Note that if

C1 : an+1 − cn+1
j ≥ 0, C2 : bn+1 − dn+1

j ≥ 0, 0 ≤ n ≤ n0 − 1, (5.43)

respectively, matrices An+1 and Bn+1 are Z-matrices, i.e., they have all entries
nonpositive out of the main diagonal. Then, under conditions C1 and C2, matrices
An+1 andBn+1 are nonsingular M-matrices and their inverses (An+1)−1 and (Bn+1)−1

are nonnegative, [62] and [7], Chapter 6. This property guarantees that the sign of
the vector solution of system (5.38) is preserved.

From (5.42) it is easy to check that conditions (5.43) are verified for all j and n
if step sizes satisfy the condition

h ≤ min{h1, h2}, h1 =
4

κC2
, h2 =

4R0

√
∆τ

C
. (5.44)

Apart from the sign stability, the implicit scheme (5.38) guarantees the ‖ · ‖∞-
stability of the solution, in the sense that ‖Un

s ‖∞ and ‖Un
l ‖∞ remain bounded for
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all n. In fact, matrices An+1 and Bn+1 have the property that all their row sums are
equal to one. It is easy to check that then, their positive inverses also satisfy the
same property and ‖(An)−1‖∞ = ‖(Bn)−1‖∞ = 1. In fact,

‖Un+1
s ‖∞ = ‖(An+1)−1Un

s ‖∞ ≤ ‖(An+1)−1‖∞‖Un
s ‖∞. (5.45)

Then,
‖Un

s ‖∞ ≤ ‖U0
s ‖∞ = 1, 0 ≤ n ≤ n0, (5.46)

and analogously,
‖Un

l ‖∞ ≤ ‖U0
l ‖∞ = 1, 0 ≤ n ≤ n0. (5.47)

Furthermore, from (5.46)-(5.47) and taking into account that Un
s ≤ 0, Un

l ≥ 0,
one gets

− 1 ≤ uns,j ≤ 0, −M ≤ j ≤ 0; 0 ≤ unl,j ≤ 1, 0 ≤ j ≤M, (5.48)

for all time steps 0 ≤ n ≤ n0.
This means that the numerical solution preserves the property that the temper-

ature in the solid phase is greater than the boundary value, and for the liquid phase,
the temperature is below the initial temperature at the right boundary.

In order to estimate the value of the constantC related to the
√
τ -law, i.e σ(τ) =

C
√
τ , we take the first time step of the system (5.38) together with the linking

discretization of Stefan condition (5.34), building a system of 2M + 3 nonlinear
algebraic equations,

A1U1
s = U0

s ,

B1U1
l = U0

l ,

C

2
=

K

βC
∆u1

s,0 +
R0

√
∆τ

β(1− CR0

√
∆τ)

∆u1
l,0,

(5.49)

where

∆u1
s,0 =

3u1
s,0 − 4u1

s,−1 + u1
s,−2

2h
, ∆u1

l,0 =
−3u1

l,0 + 4u1
l,1 − u1

l,2

2h
, (5.50)

on the 2M + 3 unknowns{
{u1

s,j, −M ≤ j ≤ 0}, {u1
l,j, 0 ≤ j ≤M}, C

}
. (5.51)
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5.1 Front-fixing transformation and numerical modelling

Solving the system (5.49)-(5.50) with the MATLAB optimization algorithm

Fsolve, one gets the temperature at the mesh points in the first time level n = 1 as

well as the value of C. It is clear that the value of C depends on the parameters h,

∆τ for a fixed chosen solidified fraction R0 of the material at the end of the first

stage. In the next table, we show that for different choices of the step sizes dis-

cretizations verifying the stability condition (5.43), one gets values of the constant

C close to the theoretical value of the semi-infinite two-phase Lamé-Clapeyron-

Stefan problem, see [26], equation (3.11), p. 102.

h 0.0050 0.0040 0.0030 0.0020 0.0010
∆τ 0.0480 0.0325 0.0200 0.0100 0.0026
C 0.7762 0.7728 0.7684 0.7616 0.7596

Table 5.1: Dependence of C on the step sizes when the parameters of the model are
κ = K = β = 1.

Next example illustrates the temperature profile in both phases solid and liquid,

obtained by the numerical scheme (5.38) at the end of the fist stage.

Example 1 Numerical solution of system (5.38) for the last time step n0 of

this first stage such that τ0 = n0∆τ , is shown in Figure 5.1. The parameters are

κ = K = β = 1; ∆τ = 0.01, h = 0.002, R0 = 0.03 and the value C, previously

obtained, is C = 0.7616. Note that R0 = 0.03 means that 3% of the material has

solidified. From (5.23), τ0 = 1.72404.
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Figure 5.1: Numerical solutions Ûs(y, τ), Ûl(y, τ) at the end of the first stage.

5.1.2 Second stage numerical modelling

Once the initialization difficulties have been overcome, we address the second

stage, where an explicit scheme is used for the numerical solution of equations

(5.25)-(5.26) with the Stefan condition (5.31). For this stage, let us take a time step

k and the discretized temporal variable τn = τ0 + (n− n0)k, n0 ≤ n ≤ n1, where

n1 is the final time level to be determined by the stability requirements. Note that

here, the discretized initial conditions coincide with the final ones of the first stage,

while the boundary conditions remain unaltered, (5.37). For the spatial step h and

the time step k, the explicit scheme for the interior points takes the form

un+1
m,j = anm,ju

n
m,j−1+bnm,ju

n
m,j+c

n
m,ju

n
m,j+1, m = s, l, n0 ≤ n ≤ n1−1, (5.52)
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5.1 Front-fixing transformation and numerical modelling

where

ans,j = αn − (1 + zj)β
n, bns,j = 1− 2αn, cns,j = αn + (1 + zj)β

n,

αn =
k

h2κ(σn)2
, βn =

σn+1 − σn

2hσn
;

anl,j = γn − (1− zj)δn, bnl,j = 1− 2γn; cnl,j = γn + (1− zj)δn,

γn =
k

h2(ρ0 − σn)2
, δn =

σn+1 − σn

2h(ρ0 − σn)
;

(5.53)

and
ρ0 =

1

R0

. (5.54)

In the above notation, m = s or m = l, where s holds for the material in the
solid phase and l for the liquid phase. Note that for the solid phase −M + 1 ≤
j ≤ −1, while for the liquid phase 1 ≤ j ≤ M , involving the value unl,M+1 at the
fictitious mesh point zM+1. Finally, the discretization of the Stefan-like condition
(5.31) for obtaining the evolution of the solidification front takes the form

σn+1 − σn

k
=

K

βσn
∆uns,0 −

1

β(ρ0 − σn)
∆unl,0, n0 ≤ n ≤ n1 − 1, (5.55)

where

∆uns,0 =
3uns,0 − 4uns,−1 + uns,−2

2h
, ∆unl,0 =

−3unl,0 + 4unl,1 − unl,2
2h

, (5.56)

are the second order approximations of the involved one-sided partial derivatives
in (5.31).

Now we study sufficient conditions for the positivity of coefficients in (5.52),
because this fact guarantees the preservation of the sign of the solutions (negative
for the solid phase and positive for the liquid one). From (5.52)-(5.53), the increas-
ing behaviour of the solidification front and (5.22), the coefficient bns,j becomes
positive if

k <
κh2

2
. (5.57)

Using (5.53), Stefan condition (5.55) and the fact that both expressions h∆unl,0
and h∆unl,0 are O(h), it holds

βn

αn
=
κhσn(σn+1 − σn)

2k
=
κh

2β

(
K∆uns,0 −

σn

ρ0 − σn
∆unl,0

)
= O(h). (5.58)
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Thus, βn < αn for small enough values of h, and from 0 < 1 + zj < 1, one
gets the positivity of ans,j , while cns,j > 0 unconditionally. In an analogous way,
the positivity of coefficients anl,j and cnl,j in the liquid phase scheme can be proved.
Positivity of bnl,j holds under the step sizes condition

k <
h2(ρ0 − σn)2

2
, n0 ≤ n ≤ n1. (5.59)

Note that (5.57) guarantees the inequality (5.59) when κ < (ρ0−σn)2. This means
that the solidification front must satisfy σn < ρ0 −

√
κ and hence the integer n1

defining the final time level of the second stage is

n1 = max
{
n : σn < ρ0 −

√
κ, ;n ≥ n0

}
. (5.60)

Note that the final of the second stage depends on the problem data and the
initialization of the solid phase, i.e. of R0.

Once the positivity of coefficients in (5.52) for m = s, l has been shown under
condition (5.57) for all time levels n0 ≤ n ≤ n1, where n1 is given by (5.60), the
stability of the temperatures sign comes from (5.53), obtaining the identity

anm,j + bnm,j + cnm,j = 1, m = s, l. (5.61)

In fact, from (5.52)-(5.53), (5.61) and the positivity of coefficients anm,j , b
n
m,j , c

n
m,j ,

assuming −1 ≤ uns,j ≤ 0 and 0 ≤ unl,j ≤ 1, one gets not only the sign preserving
but the boundedness property{

−1 ≤ un+1
s,j ≤ 0, −M + 1 ≤ j ≤ −1,

0 ≤ un+1
l,j ≤ 1, 1 ≤ j ≤M.

(5.62)

The physics of the problem suggests that the temperatures in both phases in-
crease with the spatial index j for each fixed time level n, n0 ≤ n ≤ n1. We show
that the numerical solution preserves at this stage the monotonicity property under
the stability and positivity conditions (5.57), (5.60) and small enough values of h.

From equations (5.52)-(5.53), positivity of coefficients ans,j , b
n
s,j , c

n
s,j , and as-

suming that monotonicity property holds true up to time level n, it follows that,

un+1
s,j+1 > (αn−(1+zj+1)βn)uns,j+(1−αn+(1+zj+1)βn)uns,j+1, −M ≤ j ≤ −1,

(5.63)
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and

un+1
s,j < (1−αn− (1 + zj)β

n)uns,j + (αn + (1 + zj)β
n)uns,j+1, −M + 1 ≤ j ≤ −1.

(5.64)

From (5.63) and (5.64) it follows that

un+1
s,j+1−un+1

s,j > (uns,j+1−uns,j)(1−2αn+hβn) > 0, −M +1 ≤ j ≤ −1. (5.65)

In analogous way, under previous conditions and small enough values of h, one

gets

un+1
l,j+1 > un+1

l,j , 0 ≤ j ≤M − 1. (5.66)

Summarizing, the following results have been established in this second stage:

Theorem 10. With previous notation, if the step sizes h and k satisfy the condition
(5.57) and for small enough values of h, numerical scheme (5.52)-(5.53) and (5.55)
preserves the sign, boundedness and the spatial monotonicity of both solid and
liquid temperatures in the second stage, starting from the end of the first stage at
time level n0 and ending at time level n1 given by the stability requirement (5.60).

Next example shows temperature profiles in both phases solid and liquid, at the

end of the second stage.

Example 2 Figure 5.2 depicts numerical temperature distributions with respect

to the variable z at the end of the second stage, i.e. τ1 = 940.481, both for the solid

and the liquid phase. Model parameters take here the values κ = K = β = 1, step

sizes h = 0.05, k = 0.001 and R0 = 0.03. Note that in this instant, the position of

the solidification front is given by the expression σ(τ1) = ρ0 −
√
κ = 32.3333, i.e.

the 97% of the material is solidified.
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Figure 5.2: Numerical solutions Us(z, τ), Ul(z, τ) at the end of the second stage.

5.1.3 Third stage numerical modelling
As it has been shown at the end of the second stage, the depletion of the liquid
phase almost occurs and the temperature remains practically unaltered and close to
zero. This fact completes numerically the idea suggested by the authors of [57], p.
270, about the time t∗ when the liquid phase can be neglected.

Finally, for the third stage of the problem, within the time range n1 ≤ n ≤ n2,
where n2 corresponds to the time step such that σn2 = ρ0, i.e. τn2 = τe when the
solid phase covers all the domain. As in Section 2.2, the final conditions of the
second stage are taken as initial conditions for the third one, while the boundary
conditions continue unaltered, (5.37). In this third period, the formulation of the
problem is changed by another, characterized only by the equation regarding the
solid phase, (5.25), and the Stefan condition, that takes the form

dσ

dτ
=

K

βσ(τ)

∂Us
∂z

, z = 0, τ1 < τ < τ2. (5.67)

The solution at the interior points at time level n + 1, is given by the explicit
scheme (5.52) for m = s, while the liquid phase is neglected. The properties of
the numerical solution established in Theorem 10 remain preserved for the unique
solid phase under that unique condition (5.57).
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The discretization of the Stefan-like condition (5.67) takes the form
σn+1 − σn

k
=

K

βσn
∆uns,0, n1 ≤ n ≤ n2 − 1. (5.68)

In the following example, we illustrate the evolution of temperature profiles
during all the stages, showing the properties of spatial monotonicity and stability,
as well as the dynamics of the solidification front from the beginning until the
extinction time.

Example 3 Figure 5.3 shows the results for the step sizes discretization h =

0.002 and ∆τ = 0.01 in the first stage, verifying conditions (5.43), and h = 0.05

and k = 0.001, under the hypothesis of Theorem 10. The solidified fraction at
the end of the first stage is taken R0 = 0.03 and the parameters of the model are
κ = K = β = 1. Note that each curve corresponds to a different time; the first four
upper curves correspond to increasing time values in the second stage, while the
last one represents the temperature of the solid phase at the extinction time, i.e. the
end of the third stage. The increasing behaviour of the temperatures is captured by
the numerical solution and for the liquid phase the temperature is uniformly close
to zero in the second stage.

0 0.2 0.4 0.6 0.8 1

y

-1

-0.5

0

0.5

1

Te
m

pe
ra

tu
re

s Û
s, 

Ûl

0.01 te

0.25 te

0.50 te

0.75 te

te

Figure 5.3: Numerical solutions Ûs(y, τ), Ûl(y, τ) for different fractions of the ex-
tinction time te. Dash-dot lines represent the solid phase and continuous lines the
liquid phase.
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Figure 5.4 shows the evolution of the solidification front. It agrees with the

results of [57] using the Keller box scheme.
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Figure 5.4: Numerical solidification front S̃(t̃) as a function of time.

Although the first and third stages are qualitative relevant due to the issues of

initialization and depletion, it is important to point out that both from the spatial

and temporal points of view both stages have a reduced quantitative significance

versus the second stage. This facts are illustrated in Figure 5.5, where R0 = 0.03,

te = 0.881195 and τe = 979.106 for the data in this example.
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5.1 Front-fixing transformation and numerical modelling

Figure 5.5: Above: Spatial stages distribution. Below: Time stages distribution.

Next example illustrates the fact that both the extinction time and temperatures
in the solid phase for complete depletion does not change significantly for changes
in a small enough R0.

Example 4 Let us take three chosen values of the fraction R0. For the model
parameters κ = K = β = 1 and taking h = 0.002, ∆τ = 0.01 in the first stage,
h = 0.05, k = 0.001 in the second and third stage, Table 5.2 shows the times t0
when finishes the first stage, t1 at the end of the second stage and te, as well as the
root mean squared error (RMSE) of the distribution of the temperature of the solid
at te with respect to the lower value of R0 = 0.01.

R0 t0 t1 te % 2nd stage RMSE CPU time
(seconds)

0.05 0.004750 0.820648 0.876230 93.11 0.0228 79.79
0.03 0.001557 0.846433 0.881195 95.88 0.0127 205.09
0.01 0.000103 0.873104 0.885353 98.60 —— 2067.11

Table 5.2: Dependence of t0, t1, te and RMSE of temperatures on the fraction R0,
when the parameters of the model are κ = K = β = 1.
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CHAPTER

6
Conclusions

In this thesis, the numerical solution of parabolic-type moving-boundary prob-
lems coming from various fields of science and technology has been obtained.
Since most of these problems lack analytical solution, the fact of having approxim-
ate solutions is of great interest from a point of view both theoretical and practical.
The proposed approach lies in discretizing the continuous problem using finite dif-
ference approximations, after immobilizing the boundaries of the continuous prob-
lem by applying a suitable transformation. This procedure has been shown to be
profitable in dealing with these evolution problems, throughout explicit or implicit
schemes that have been implemented in the MATLAB tool, resulting in codes of
short computation time.

In all cases, reliable numerical solutions have been obtained, retaining the qual-
itative properties of the continuous ones. Some essential features as positivity,
stability, consistency and monotoncity have been studied by a comprehensive nu-
merical analysis. Furthermore, each numerical scheme have been accompanied by
illustrative and enlightening numerical experiments.

In Chapter 2, in which a problem about spreading of invasive biological species
has been addressed, the numerical analysis confirms the existence of a spreading-
vanishing dichotomy in the long run, and it has been possible to determine, using
of numerical experiments, the value of the coefficient in the Stefan condition that
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6. CONCLUSIONS

separates the propagation behaviour from the extinction one. Chapters 3 and 4 treat
concrete carbonation problems. In Chapter 3 the numerical simulations exhibit the
dynamics of the carbonation front and confirm the long-term behaviour as a ”square
root of time”. Chapter 4 comprises the numerical treatment of a more complex
and realistic carbonation model, revealing some qualitative characteristics of the
solution that are in agreement with the theoretical results. Chapter 5, that focuses
on a heat transfer problem arising in industrial solidification processes, presented
an additional challenge and the problem was subdivided into three temporal stages
to treat the singularities associated with the solidification front position in both the
initialisation and depletion stages. Outputs of numerical experiments are consistent
with theoretical and numerical results by other authors.

The principal conclusion to be drawn from our approach is that the finite dif-
ference approach can be applied successfully to provide numerical solutions of
moving-boundary problems. We have been able to obtain valuable insights on the
dynamics and solution of each problem. It complements the previous theoretical
works, providing numerical approximations for different values of data and model
parameters. Against what may be generally accepted about the inadequacy of the
explicit method for treating PDE evolution problems which present any type of
singularity, it has been extensively used here, revealing that the problem is also
tractable by that approach after some appropriate manipulations. Hence, the ad-
vantages of the explicit in comparison with implicit methods, i.e. its ease of imple-
mentation and less need for computational resources, can be exploited to efficiently
treat moving-boundary problems.
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phase unidimensional Lamé-Clapeyron-Stefan problem with source terms in

both phases. Journal of Mathematical Analysis and Applications 329, 1

(2007), 145 – 162. 3, 91

[13] BROWN, J.-H. Carbonation. the effect of exposure and concrete quality: field

survey results from some 400 structures. In Proc. 5th Int. Conf. Durability of

Building Materials and Components. Span Press, London, 1991, pp. 262–271.

36

[14] BUNTE, D. Zum Karbonatisierungsbedingten Verlust der Dauerhaftigkeit

von Außenbauteilen aus Stahlbeton. PhD thesis, Technischen Universität

Braunschweig, 1994. 36, 56

[15] BUNTING, G., DU, Y., AND KRAKOWSKI, K. Spreading speed revisited:

Analysis of a free boundary model. Netw. Heterog. Media 7 (2012), 583–

603. 21

[16] CALDWELL, J., AND CHAN, C.-C. Spherical solidification by the enthalpy

method and the heat balance integral method. Applied Mathematical Model-

ling 24, 1 (2000), 45 – 53. 91, 92

114



BIBLIOGRAPHY

[17] CALDWELL, J., AND KWAN, Y. On the perturbation method for the Stefan

problem with time-dependent boundary conditions. International Journal of

Heat and Mass Transfer 46, 8 (2003), 1497 – 1501. 91

[18] CHANTASIRIWAN, S., JOHANSSON, B., AND LESNIC, D. The method of

fundamental solutions for free surface Stefan problems. Engineering Analysis

with Boundary Elements 33, 4 (2009), 529–538. 91

[19] CHEN, X., AND FRIEDMAN, A. A free boundary problem arising in a model

of wound healing. SIAM J. Math. Anal. 32 (2000), 778–800. 19

[20] CHURCHILL, S., AND GUPTA, J. Approximations for conduction with freez-

ing or melting. International Journal of Heat and Mass Transfer 20, 11

(1977), 1251 – 1253. 92

[21] COMPANY, R., EGOROVA, V., AND JÓDAR, L. Solving American option pri-
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