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Abstract In this paper, the geometry of single-walled car-electrical properties [7]. For instance, CNTs show a siagul
bon nanotubes without any external loading is analyzed viaoupling between mechanical strain and electrical conduc-
an energy procedure. The nanotube is assumed to be itivity [21,22], becoming ideal candidates for making nano-
scribed into a perfect cylinder of unknown diameter, whichsensors and nano electro-mechanical systems (NEMS), with
is estimated by minimizing the total interatomic potenitial  promising applications in robotics and biomechanics.

volved into a basic cell with several carbon atoms and their Regarding Materials Science and Engineering, nanotube
corresponding bonds. In this step, two interatomic po#sIti ejnforced composites and polymers have shown a wide field
havg been adopted in ordertq compare their mflue_nce on thg potential applications, specially where a high strength
obtained results. Our calculations show that the Wldelyduseto_weight ratio is needed (e.g. aircraft industry). The mai
conformal mapping is not the most suitable option to reprogirctural properties are their extreme longitudinafsti§s

duce the geometry of single-walled nanotubes in absence féj (Young’s modulus~ 1 TPa) and tensile strength [3]
external loading. Likewise, a more accurate method to es’u(ay ~ 50 GPa).

mate the initial diameter of the nanotube is developeddyiel
ing higher differences with smaller nanotubes in compariso
with other published works .

The present analysis can be useful in the framework o
Molecular Mechanics or continuum models as an alternativg
way to introduce initial stresses (due to the curvature ef th

The present work is focused on single-walled carbon
nanotubes (SWCNTSs), which may be conceptualized as the
lfesult of rolling up a graphene sheet into a cylinder. Intthea
raphene sheet, Carbon atoms are arranged in a covalent-
onded honeycomb lattice.

cylinder) in the mechanical analysis, against other inedlv Prior to the practical application of nanotubes in man-
methods. ufacturing composites (as well as other structural applica
] tions), a high understanding of their mechanical behavior
Keywords Carbon nanotubesMolecular mechanics is needed. However, to date, there is no experimental work
Energy minimization Prestressed state about individual SWCNTs because their extremely small

size makes difficult to handle these nanomolecules. There-
) fore, theoretical work is required in order to analyze the me
1 Introduction chanical response of SWCNTSs.

Carbon nanotubes (CNTs) have been a remarkable centre of '€ €xisting analytical or numerical methods applied to
attention into the scientific and research community over ththe mechanical behavior of nanotubes, can be roughly clas-

past two decades, due to their outstanding mechanical arifi€d in two main categories: atomistic scale and continuum
scale methods. The atomistic methods, for instance Molecu-
R. Merli (corresponding author)C. Lazaro- S. Monlebn lar Dynamics (MD), ab initio or tight-binding, can success-
?ePta”amEmO dle '\T/'FC""_”'Cg de los '\é'ef“os 90”““305 y TW'EIS' fully reproduce physical phenomena as buckling [12,29] and
ructuras. £scuela lecnica superior de ingenieros e@aECanales . . .

y Puertos. Universitat Politecnica de Valencia. Camieovdra s/n, e_stlmate elastic par_amgte_rs of CNTs [2_1]’ but they have the
46022 Valencia, Spain disadvantage of being limited at a relatively low number of
Tel:+34 96 387 76 77, Fax: +34 96 387 96 79 atoms (about 19according to [27]) because of their high

E-mail: ramergis@doctor.upv.es computational cost.
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Otherwise, continuum methods are capable of analyzetubes smaller in diameteR( 10A), where the preenergy
longer systems, but the equivalence with the atomistid leves determining compared with the VDW interaction, SWC-
is not clear. In fact, the wall thickness adopted to reproNTs kept their cylindrical geometry. Likewise. 8. 20, 23]
duce the nanotube mechanical response through an equivave shown that the preenergy is proportional to the curva-
alent beam or shell model ranges from 0.066 nm [29] to  ture of the wall ¥R? (where R is the tube radius).
the usual value of 0.34 nm [14], which corresponds to the  Since the honeycomb lattice of Carbon atoms in the nan-
inter-planar distance in graphite. Even some authors deegtube has a complex behavior, it is inaccurate to state that
CNTs as solid cylinders [27]. In addition, continuum meth-the initial equilibrium configuration of SWCNTS is a per-
ods can not reflect the atomistic detail which may have afect cylinder. In fact, some authors [4, 13] have proved by
important influence on the final response of CNTs. means of nonlocal continuum models, that SWCNTs sub-

As a compromise between both groups of models, Molegected to tensile stresses or electromechanically actuate
ular Structural Mechanics (MSM) models are reasonable ipresent end effects which separates the nanotube geometry
terms of computational expense whereas atomistic scale feom the cylindrical shape. Within atomistic simulatiotie
correctly displayed. Some previous wor«s [1C, 11, 30] conapproach to the equilibrium geometry is often introduced
sidered CNTs as a frame system with carbon atoms locatdd, 9, 12!, 24. 29] by decomposing the loading process into
at nodes and rigid bars (provided with axial, flexural andmultiple stages and minimizing the total energy into each
torsional stiffnesses) representing covalent bondseB#fit  stage by means of some numerical algorithm (e.g. dynamic
layers in multi-walled carbon nanotubes (MWCNTS) wererelaxation). Nevertheless, taking into account MSM models
connected by several truss rods between neighboring atormese rather deterministic regarding the geometry. in [18] th
Alternatively, [19] modeled the graphene sheet as a 2D trugsreenergy is introduced as a system of initial strains which
model with additional rods through the unit hexagonal cell. produces a ‘prestressed state’ previous to the action of ex-

Included in the MSM models, the ‘stick-spiral’ model ternal loads. As the structural system is statically undete
introduced by [5] reproduces covalent bonds by axial sgringmined, there are many possible sets of initial strains and
and the three-body interaction by three spiral springs ostresses in equilibrium without external loads. To overeom
each node. Since that work, several studies [17. 18, 26, 28is hurdle, the usually proposed conformal mapping (see
tackled the determination of mechanical parameters of SW®-g. [5, 7. 14, 28]) was adopted in such a way that Carbon
NTs through the ‘stick-spiral’ model, but taking advantageatoms are kept on the cylindrical surface involving the nan-
of the axisymmetry of ZigZag and Armchair nanotubes andtube, while covalent bonds are located along secants among
limiting their analysis to a small unit cell involving only a two covalent-bonded atoms. In this sense, the estimation of
few atoms. Although [6] generalized the work in [5] to Chi- initial stresses is closely related to the choice of the ifisec
ral SWCNTSs, the study is also restricted to representativenapping adopted to reproduce the geometry of SWCNTSs.
cell which reproduces the geometry of Chiral nanotubes by = The main reason to use the conformal mapping from the
means of theihelicoidal symmetry. planar graphene sheet to a cylinder is the simplicity of its

From a more general point of view, [14] investigated theanalytical formulation. Therefore, some accuracy is migsi
longitudinal behavior of SWCNTs (even with Chiral nan- in order to approach the problem in a straightforward man-
otubes) by implementing the ‘stick-spiral’ model in the com ner. Nonetheless, in this paper a better approach to thia init
mercial code ANSY®, but including the whole geometry geometry of the nanotube is studied by means of an energy
of the nanotube in their simulations. In this line, [15] de-minimization procedure. It is expected that initial Stessi
veloped a general formulation for the same model able téhis improved geometry will be lower in comparison with
reproduce any loading and supporting distribution, ogdnt those obtained from the conformal mapping. In particular,
to obtain the mechanical parameters of SWCNTs. Furtheiif stresses are small enough, the formulation of the ‘stick-
more, in [16] the same authors extended the formulation tspiral’ model in [15] may be simplified by neglecting the
calculate buckling strains under several loading schemes. terms corresponding to the preenergy leading to a simpler

A specially important issue, mainly in atomistic models humerical implementation. In addition, a more accurate ob-
is thepreenergy, defined as the excess of strain energy fronfention of the initial geometry of SWCNTs hopefully pro-
an infinite planar graphene sheet to the nanotube [9,29]. A¥ides more reliable results of stresses, strains and mgekli
sociated with this variation of strain energy, a system of in patterns once external loads are applied.
ternal stresses and strains in the nanotube will appeaF, lea  In this work, the nanotube is assumed to be inscribed
ing to a stabilization effect into its cross-sectional adea into a perfect cylinder. Thus, our modeling of the geometry
fact, | 25] studied the influence of the radius on the transverdoes not incorporate the aforementioned end effects, since
sal deformation due to the Van der Waals (VDW) interactionthey are considered to be locally concentrated in small re-
in a set of SWCNTs and concluded that the flattening of thgions around both ends in long nanotubes. The obtention
cross-section increased with the radius. However, for namef the initial geometry may be tackled in two steps. First,
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the diameter of the cylinder should be obtained, which is3. The total energy of the system is defined by the inter-
worked out in the present paper. Secondly, a new analyti- atomic potential under small strains assumption. There-
cal mapping is required to determine the location of Carbon fore, terms related to electrostatic, VDW, torsion and in-
atoms on the cylinder, which will be treated in further re-  version interactions are neglected.
search. 4. Since the longitudinal stiffness of covalent bonds is sig

In this paper, the main objective is calculating the di-  nificantly higher than angular stiffness between two neigh-
ameter for the unstressed geometry (assuming it is a perfect boring covalentbonds, the lengthening of covalentbonds
cylinder) of ZigZag, Armchair and Chiral SWCNTSs by us- from the planar graphene sheet to the nanotube has been
ing a energy approach, and comparing results between AM- neglected. Therefore, in the equilibrium state all bonds
BEF! and Morse interatomic potentials (a detailed descrip- areap = 0.142 nm in length | 7].

tion is given in [15]). A method has been developed for this The basic procedure to calculate initial diameters will

purpose, in which analytical expressions have been derive.éje to minimize the total energy of the system, taking into

and numer_lcally implemented. T_h_e_ present work IMPrOVeS ccount two different interatomic potentials. Regardiag a
the theoretical approach to the initial geometry of the nan-

sumptior 3, the AMBER potential (see e.qa. [5], Eg. 8) can
otube provided by the widely used conformal mapping. be eEpressed as: P ( 0. 1, Ea. 8)

As has been mentioned before, if the conformal mapping
is strictly employed, a set of initial forces between atomsg, _ 1 N2 1 2
(and initial moments among neighboring bonds) should bqu =2 Ut Vo= IZ Zhr(an)+ 2 A6 (@)
considered due to this mapping modifies the interatomic dis-
tances (and angles between bonds) with respect to their cofhere : .
responding values in the planar graphene sheet. Such effect Fi Iengthemng of the bond i : .
has been evaluated in [15]. This study may be regarded as A6, change in angle_ betwgen two ne|ghbor|ng
a first step oriented to establish an alternative to the tirec covalent bonds involving the apglej
estimation of initial strains and stresses, which hopgfull ki.kg force constgn?s to the Iongnudlnal and
may simplify the numerical formulation of the ‘stick-spira angular variations respectively

model. Following [10,17,1%,265,20], the next values are adopted:
The comparison of the obtained diameters with those nN AN - nm
provided by the conformal mapping allows to study the ac- k= 652m, kg =0.876 = 2

curacy of the latter against the size of the nanotube.

The paper is organized as follows: in section 2, the mairf @King into account assumption 4, Eq. (1) can be simplified
assumptions and a brief description of the interatomic po@S-
tentials are provided. From section 3 to section 5, the main 1
equations and results of the energy approach are developgc: Z 2
for ZigZzag, Armchair and Chiral nanotubes, respectively. .
Finally, concluding remarks are addressed in section 6. As Hence, the force constakt is not involved in our cal-
additional content, in appendix A the validation of the ap-culations. However, its value is included iri (5) to complete
proximate mapping adopted in Chiral nanotubes is includediefinition (1.

In appendix B estimation of error between AMBER and  Onthe other hand, the Morse potential can be written as:
Morse potentials into the energy approach is justified.

ko(A6))2. (3)

U= Def[1—e P21}

1

2 Initial assumptions and interatomic potentials + Z 2
]

ko(46;)%[1+ks(A6))%], (4)

In order to find the diameter of unstressed nanotubes, thghere the parameters involved have been taken from table 1

following assumptions have been made: in [3], namely:
1. The initial geometry of the nanotube is such that the De =0.2895nN - nm, B =3843nm,
atoms are contained into a perfect infinite cylinder of ke —0.8998nN - nm ks=0.754rad%,  (5)
diameterd,.
2. There is no external load acting on the nanotube. and regarding assumption 4, Ea. (4) can be simplified as:
! Assisted Model Building with Energy Refinement, force field (J — ,zDeJr z}kg (A 9j)2[1+k3(A9j)4]. (6)
well-known in biomolecular simulation. | ] 2
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As the angular distortioA 6; can be expressed as a function
of the nanotube diametel; Eqgs (3) and (6) adopt the form
U =U(d). Therefore, the diametek corresponding to the
initial equilibrium geometry should verify the total engrg
minimum condition:

In the following sections, Eq. (7) is developed and solved
for each chirality.

do

atoms A

3 Initial diameter for ZigZag nanotubes

Nanotube axis

Zig-zag nanotubes (denoted herein as ZZ(m,0)) are com-
posed bym cells in the transversal direction and possess ax-
ial symmetry. An infinite SWCNT of this type can be gener-
ated by repeating in the axial direction the elemental syste
depicted in figure 1. Thus, the energy minimization (7) can
be carried out over such system without loss of generality.
Since all bond lengths agg in the equilibrium position

bonds ¢

|— bonds b

(no lengthening), we can write: v/ C—
@ atoms A
| =agcosa, (8a)
I T
JR— Rs|n(_) , 8b bonds a
2 2m (8b)
where:

| projection of the bond length on the cross section of
the nanotube ‘
o angle included from each oblique bond and the
transversal plane
Removing from eq. (8), the next relation is reached:

Fig. 1 Representative cell for Zig-zag nanotubes
)
obtaining the anglé, from their dot product:
For the sake of simplicity, we adopt as independent pa-
rameter in the minimization process. cosh, = sirfa (1+ cos%) - cos7—n:. (12)

From figure 1, can be observed that there are only two

different sets of bond angles into our elemental system. Thei"ce in the planar graphene sheet all angles between bonds
first of them, included between bonds a-c and b-c, has &€ €qual (&, from equations (10) and (12), the angular
distortions from the plane configuration can be expressed

value of:

T as:
91—a+§. (10) Aelzor—g, (13a)
The second anglé; is the one formed by two consecutive 277
bonds a-b. The next diagrams (including three neighboring 62 = arccossir? a(1+Cm) — Cr] — 3 (13b)
atoms) depicted in figure 2 show this angle. where:

As can be seen, the coordinate system adopted in fig- -
ure 2(b) includes the bond A-B in itg/z}-plane. Thus, the Cp= cos(—) ) (14)
following auxiliary vectors may be introduced: m

vi—AB= {0,~apcosa, apsina}’, (11a) 3.1 Energy minimization with AMBER potential

B '@ B L /T m . T
V2=Ab = {—aocosa sin (E«,) »80COS COS(E,) ,aosma} 'Applying the AMBER potential functiori (3) to our elemen-

(11b)  tary system (see figure: 1), which includes dngles of type
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5
m a(rad) do(hm) Di(hm) &%)
Z27(4,0) 4 04406 0.3356 0.3132 6.6746
ZZ(5,0) 5 04685 0.4100 0.3914 4.5366
Z27(6,0) 6 04848 0.4854  0.4697 3.2344
Z7(10,0) 10 0.5094 0.7925 0.7829 1.2114
Z7(15,00 15 0.5173 1.1808 1.1743 0.5505
Z7(20,0)0 20 0.5200 15706 1.5658 0.3056

Table 1 Initial diameters ZigZag, AMBERD; is the diameter associ-
ated to the conformal mappindp is the obtained diameter from the
minimization procedure ané(%) represents the relative error taking
do as the reference solution

/m

(a) Cross section effect of the preenergy is found. Following [8, 20, 23], a

curve of the forme = k/R? can be fitted by imposing it
passes through the first poilt<£ 0.1879 is obtained). Plot-
ting the obtained relative error and the fitted curve against
the diameter in figure 3, almost full agreement is found.

éi o ZZ AMBER
6r \ - = -Fj R
(b) Perspective | Fitted curvey
5 ;
Fig. 2 Diagrams to obtairt, a o\‘
g \
g %
6, and 2nangles of typed,, the next expression is reached: \
2r A
U = mkg(AB2)2 + 2mkg (A 6y)?. (15)
1 RN
Forcing the minimum condition (7) into (15) Tt -
oA VY] %.2 O‘.4 O‘.6 O‘.8 l l‘.2 l‘.4 1.6
mkg (ZA 920—;’2 +4A elT.l) =0, (16) d, (nm)

introducing (13) in (15) and operating, leads to:

— {arccosﬁ‘z;in2 a(1+Cmn) —Cm| — %ﬂ} :
. (1+Cm)sina cosa N (
\/1- [si (14 Co) — Curl?

The latter expression is a nonlinear equatiorogfwhich
was solved numerically by the Newton method. Onces
obtained and substituting in (9), the values of diamelter
outlined in table 1 are obtained fag = 0.142 nm. Likewise,
the diameter®; calculated with the conformal mappirig [7]

he relati ki he ref luti : .
gndt e relative errpr .ta 'r.“‘ib ast e. reference solution are The expression (6) of Morse potential reduced to the ele-
included to get an insight into the difference.

As has been shown in table 1, our obtained diamekgrs mentary system in figure 1 can be written:
are slightly higher than those obtained from the conformal
mapping. This difference is probably related to the stadili U = —4mDe+ Mke(A8,)2 [1 + ke(A6,)4] +
tion effect of the preenergy, which tend to expand transver- ¢ o(46) [ o 292) ] 4
sally the nanotube. The smaller the diameter is, the higher +2mko(A61)* [1+ks(A61)%] .

Fig. 3 Relative error against diameter (ZigZag, AMBER)

From figure 3, it may be remarked that a set of initial
- forces and moments should be explicitly included (mainly
a— E) =0. (17) in MSM models) for smaller diameters when the conformal

mapping is adopted, specially for diameters below 0.8 nm
(€ > 1%).

3.2 Energy minimization with Morse potential

(18)
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Forcing the minimum condition (7) into (18), the next equa-
tion is reached:

(1+Cm)sina cosa
\/1- [si (14 Co) — Cu?
+46; [1+3k(A6)* =0, (19)

— A6, [1+3ks(A6,)"]

whereA6;, A6, are functions ofx through (13). Thus, (1.9)

is an implicit equation ofr. Solving it numerically by the
Newton method fogy = 0.142 nm and substituting in (9),
the initial diameter without external loading is renderEide
obtained values ady (not reproduced herein) were the same
as those in table 1, because the absolute error in the mini-
mum condition (7) between AMBER and Morse potentials
is lower than the accuracy-(L0~%) adopted fordy (see ap-
pendix E, table 6). Hence, it can be concluded that the ini-
tial diameter of ZigZag nanotubes is not influenced by the
choice of interatomic potential.

atoms B

Nanotube axis

bonds a

4 Initial diameters for Armchair nanotubes 0

The elemental system (includingrzells in the transversal

atoms A

} @) — ¢ atoms A

atoms B
direction) which generates an Armchair nanotube (named "
herein as AC(m,m)) by repetition in the axial direction, is bonds b bonds ¢
represented in figure: 4. In this section, the initial equilim ’
geometry of an Armchair SWCNT is studied by minimizing
the total potential energy of such a system.

From figure 4 and the diagram in figure &(a), the next
relations may be established:
| =apsina, (20a)
2
8 _ sing, 1- B _ cosg, (20b) _ _ _
do 2 do 2 Fig. 4 Representative cells for Armchair nanotubes
2
I— = sinﬂ, 1- (l—) = cosﬂ. (20c) o ] )
do 2 do 2 Substituting (20) into (23) and operating
In order to relate the nanotube diametigrto the angle
a (see fig. 5(k)), we can write: do = g \/]_Jr sirfa + 2sinaCom, (24)
m
sin <§ + %) :sing cosg +sin% cosg = sinzi, (21)
m where:
6 ¢ 6 o ¢ .0 T
— + < ) =cos=cos~ —sin—sin— = cos—. (22
cos(2+2) 00320052 sm23|n2 COSZm (22) . -
Sm= S|n§n, Com= cosfn. (25)

Squaring (21) and substituting (22), next expression is
reached:

20 o0 6 Lo .0 ¢
smzzcoszg+co§§sm2§+zsmz§sm2§+

.0 ¢ s L, T
+23|n§sm§cos§nfsm2§n. (23)

Similarly to the case of ZZ nanotubes, the anglis adopted

as independent parameter in the minimization process for
Armchair SWCNTSs. Therefore, relations of the angular dis-
tortionsA6;, A6, as functions ofa are needed. For this
purpose, figure 5(1) is useful to define the next auxiliary vec
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7/2m

(b) Perspective

Fig. 5 Diagrams to obtai;, 6,

tors:
Wi = @ = {aOa Oa O}T ) (263)
Wy = BA = {—apsinaCon, a0 SiNaSm,a0cosat’,  (26b)

N\ - - T
w3 = BA' = {—apsinaCam, apSinad Sm, —apcosa } ' .
(26¢)

The dot productsv] w, andw}ws allow to calculate, re-
spectively

cosf; = —CypSina, (27a)
cosb, = —cos . (27b)

From [271), it follows6, = m— 2a. Thereby, the required
angular distortions for AC nanotubes are written:

A6; = arcco$—Cymsina] — %ﬂ , (28a)
Aezz’_;_za. (28b)

4.1 Energy minimization with AMBER potential

to as 2 and B angles noted as 2. Thus, the expression (3)
for AMBER potential is converted into:

U = 2mkg(A6,)? + 4mkg (A 6;)? = 2mkg (A B2 + 2A63).
(29)
Applying the minimum conditiori (7) to (29) and introducing

the angular distortions (:28), the next implicit equatioroof
is achieved:

(arccos{rCstina] - 2—7T> Cchosq -
3 1— (Comsina)?

_ (’—31 2a) —0. (30)

The equation (30) is solved by using the Newton method
and the optimized diametelp computed by means cf (24)
for ag = 0.142 nm. An outline of the obtained values in com-
parison with the corresponding to the conformal mapiing

is included in table 2. As can be expected, our valuedyof
for AC nanotubes are slightly higher than those calculated
from the conformal mapping.

m a(rad) do(nm) D (nm) &(%)
AC(3,3) 3 05470 0.4185 0.4068  2.7957
AC(4,4) 4 0.5375 0.5514 0.5424  1.6322
AC(5,5) 5 05327 0.6853 0.6780  1.0652
AC(10,10) 10 0.5260 1.3597 1.3560 0.2721
AC(15,15) 15 0.5246 2.0365 2.0340 0.1228
AC(20,20) 20 0.5242 2.7139 2.7120  0.0700

Table 2 Initial diameters Armchair, AMBERD; is the diameter asso-
ciated to the conformal mappindy is the obtained diameter from the

minimization procedure anel(%) represents the relative error taking
do as the reference solution

Takingdy as the reference solution, relative errors in the
last column of tablz 2 have been obtained. As has been done
for ZigZag nanotubes, a curve proportional tRE can be
fitted |8,20,23] to the relative errors for Armchair nancgsb
renderinge = 0.2091/R2. Both curves are quite similar, as
can be shown in figure 6.

4.2 Energy minimization with Morse potential

The expression (6) of Morse potential reduced to the ele-
mental system of figure 4 takes a form:

U = —12mDe + 2mkg(A6,)? [1+ks(A62)*] +
As can be deduced from figure 4, the elemental system rep- ¢ o(46;) [ «(46;) }

resenting an Armchair nanotube includesangles referred

+4mke(A61)% [1+ks(A61)*] . (31)
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® o ACAMBER
25 1 - - —Fitted curve | |
1
Il ZigZag line
2+ \
1
\ Bond in
< é\) deformed grid
< 1.5 \ o)
\
\
o
1 \
AY
AY
AY
0.5 M
Sl
Tm =0 - L _ . . . .
% o5 0 ‘ 5 5 & 3 Fig. 7 Bond directions for the elemental system in CH nanotubes

2n vertices | 2m vertices

Fig. 6 Relative error against diameter (Armchair, AMBER)

Applying the minimum conditior (7) to (31) and using (28),
we achieve:

£26; [1+ k(A 6y)"] ——22mEOST

V1 (Comsina)?
—A6,[1+3k(A6)%] =0, (32)

whereA6,, A6, are related tax through (28). Therefore,

o is the unique unknown in equation (32), which has been
solved numerically foeg = 0.142 nm. Substituting the ob-
tained value ofx in (24), the diametedy is obtained. As in
the case for Zig-zag nanotubes, the valuedgokith Morse
potential are the same as those in table 2 due to the same

cause (see appendi B, table 7). Therefore, it is shown that. Thedeformation pattern corresponds to a stretching of
Morse potential does not introduce any difference in the ob- the grid in the circumferential direction OA of the nan-

Chiral vector

Fig. 8 Bond labels for the elemental system in CH nanotubes

tention of the initial diameter for Armchair SWCNTSs. otube.
2. Bonds labeled as c (orthogonal to the ZigZag line) keep
5 Initial diameter for Chiral nanotubes their direction in thedefornnﬂon.process. ;
3. Angle 3 has been chosen as independent parameter in
In this section, the obtention of the initial diametiy for 4 E:”e Ene;gykmm"?r:z?t';m' th in thaef i
Chiral nanotubes (referred to as CH(n,m)) is tackled from ™ onas Zefp Z;Ir eggAc n ; Ermalon process
a different point of view. It is worth noting that CH nan- (as assumed for ZZ an hanotubes).

otubes do not present the property of axisymmetry (contrar);" The energy m|n|m|za_t|0r_1 IS developed over the elemen-
to ZZ and AC nanotubes) and the procedure becomes no- tal strip represented m_flggr_e 8 which can g_enere_lte the
ticeably more complicated. On the basis of this observation vyhole geometry by periodicity in the longitudinal direc-
the unstressed geometry of Chiral SWCNTSs from the planar tion of the SWCNT.

graphene sheet is conceptualized in two main steps: Eirs“)ﬁegarding assumptions 1, 2 and 4, we represent in ficure 9
a fictitiousdeformation pattern equivalent to an incrementin i« geformation of an hexagonal unit cell produced b); an

diameter is imposed on the planar graphene sheet. Seconqw,posed displacementin the OA direction.

an aproxmate mapping 1S appl_led to thieformed gr|d.to In order to relate anglg to n, the next compatibility

configure the geometry of a Chiral nanotube, on which th%quations in P are established:

minimization prodecure will be applied.
The parameters used in the calculations for CH nan-

otubes are defined in figures 7 and 8. apCosP + apcosn = 2ao£ + 3, (33a)
The main assumptions related to tfefor mation proce- ] ) 2

dure of the hexagonal grid are: apsinB — agsinn = — 4. (33Db)
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ZZ l'ine, Nanotube
initial geometry axis

| Secant
direction

Fig. 9 Deformation pattern of an hexagonal unit cell Longitudinal
direction

Dividing egs.(33) byag and writing &, dy in terms of the

displacement: Fig. 10 Vectorial diagram of bonds CH, perspective

ucosf

cosB +cosn = v3+ o (34a)
H y
sinB —sinn = — usalgel (34b)

Removing the parametearfrom (34)

c
Sin(0 + B) +sin(6 — ) = v/3sind, (35) R aly
Pa \(PL‘ x
which yields /«pb
R &
n =6 —arcsin \/§sin9—sin(9+ﬁ)}. (36)
B

Furthermore, angles comprised between neighboring bonds
should be related to the angf (assumption 3). For this
purpose, the diagrams depicted in figure 10 and 11 are used. _ _
Aimed to convert the planar distorted grid into the nanotubé'd- 11 Geometry diagram of bonds CH, cross section
geometry, an approximate mapping that keeps the relative
orientations of bonds with respect to the axial and se¢ant
direction of the cylinder has been assumed. ) . .
. o . We introduce now the following auxiliary vectors between
Projecting the bonds in figure 10 onto the cross section
(figure 11.), the next relations should be verified: atoms

da =apcog6+ ), (37a)

dp = agcogn — 6), (37b)

d. = agsind. (37¢) -

Z1= PA = {—dasin(%) ,dacos(%) ,aosin(9+B)} )
Moreover, applying the theorem of sine over each triangle (39a)
in figure 11. e { e o o _ T
2=PB=1¢— bsm(—),—dbcos<—),aosm(r]—6)} ,
i 2 2
di = dosin(i') . i=ab.c (38) (39b)

b3
b3

-
. — 231%:{7(1(;5"’]( C),dccos< C),—aosiné)} ,
It results from the projection of the bond AB (or BP) on thessro
section of the cylinder that involves the nanotube (39¢)

N
N
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whose dot products let us find out the required angles: ~ Taking cosines in (44) and rearranging terms

cos& cosﬁ +cogn+ m) % = sm% sm%, (45)

relation that can be expressed in terms of the Chebyshev
polynomials of the first kind as:

Th (cos%) Tm (cos%) + Them (cos%) =

2
ao . :
o (3) wsn-0rs3m0+ om0, ook Tlcos8) e b
(40) nm 2 2

It should be noted that equation (46) connects the angles
) ¢i, which can be expressed as functions of the lengths
c0SBac = <@> sin260052(6 +B)+ through (38). Thesd;, in turn, can be releted to the orienta-
0 tionsB andn by means of (37). Substituting then (36), there

2
COSByp = (?;) cog(6+ B)cof(n—0)—

2
—cog8+B)cogn — 9)\/1 (?;) cog(60+ B)-

2 2 are only two paramete$ anddp left to be determined. Fi-
+sin6cog0+B)/1— (—) Sir? 6- nally, the minimum condition corresponding to each poten-
do ) . " . )
tial provides the additional equation required to solve the
problem.

2
-\/1— <@> coF(0+B)—cosfsin(6+B), (41)
do

5.1 Energy minimization with AMBER potential

2
COSBhe = <?> sir? Gcosz(r] —-0)— Let ny be the total number of nodes (atoms) contained in the
0 elemental strip represented in figure 8, it is easy to show tha
) 2 the number of angleB,y, B4¢, By Of each kind included in
—sinfcogn — 6) ( 0) sin 6 the strip is the same and equalrip= 2n+ 2m. Therefore,

the expressior (3) of the AMBER potential reduced to the

2 H<
. \/1 (@) cog(n — ) —cosBsin(n — 8). (42) elementary system is:

d
° ——kg(Aeab+A9 +4A62). (47)
Regarding the relation (36), expressions (40) to (42) can be 2
written as functions of8. Therefore, the angular variations Applying equation (7) to (47) with respect to the param-
from the graphene sheet (involved in the interatomic poteneter 8 and introducing (43), the corresponding minimum
tial) adopt the form: condition can be expressed in terms of the unkno@/asd
do. The aforementioned equation along with eq. (46) form

2

ABqap = arccodap(B) — 3 (43a)  anonlinear system, which can be solved trough the iterative
21 procedure in fig. 12.

A Bac = arccodac(f) - 3 (43b) For the sake of completeness, the next remarks are con-
211 venient:

A b = arccodhe(B) — - (439) 1 Forthe first step, the diametd} = D; defined from the

conformal mapping anf® = 11/6 corresponding to the
planar (undistorted) graphene sheet are adopted as initial
assumption.

2. The solution of each step is adopted as initial value for
the Newton-like methods in the following iteration.

n  segments of lengith, 3. _The maximum error adopted to accept the convergence

m  segments of length,, is € = 107 and for the Newton methods= 1075

m  segments of lengttk. The obtained results for different values of the integers
Thus, for the whole circumference can be established: (N,m) compared to those diametd@sfrom the conformal
mapping, along with the relative error takidgas exact so-
Nga+ (N+ m)Pp + mde = 21, lution, are outlined in table 3.
$a | Pc b As done in the previous cases, a curve proportional to
Nn—+m—_-=m—(n+m)—. 44 _ ) ’ i
+ (n+m)> (44) 1/R? can be fitted to the relative errors, rendering 0.1290/R?.

In addition, the expression of the diametlrwritten as a
function of the angle8 is needed. From fig. 8, if we project
the bonds included in the elemental strip over the OA direc-
tion, it yields for a CH(n,m):

n segments of lengtth,,

2 2 2
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Tmtial assumption

Numerical solution of dé,'
Newton-like method

Fig. 13 Relative error against diameter (Chiral, AMBER)

5.2 Energy minimization with Morse potential

Reducing the expression (6) for the Morse potential to the
elemental strip represented in figure 8, it can be written:

— o
do = 3 ' o CHAMBER
\ - - - Fitted curve
[ | 250N
: Mimmun : Y
| condition | N
| | 2r AN
| | ;\3 \ .
| 3 N | =
| Numerical solution of B# | w L5l :,\\
| Newton-like method I : o
| | 3
! I ! o
| | 1 o‘ ~
| Compute ¥ (36) | o
: and d; (37) : ~ o
| l ES | 05 i H H i
| &0 Sl 0.4 0.5 0.6 07 08 0.9
: Implicit equation of rﬁ'g % - : dy (nm)
| substituting (38) nto (46) oEF |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I |
| |
| |

Fig. 12 Iterative procedure to solvi

3n nyk
U = ~ S Det —5 (46 (L + ke(A Oup) )+
ul nyk nvk
Pyt 5 (88 [1-+ Ke(ABac) ] + =5 (Ao [ L+Ks( A Boc) ).

(48)

Applying equation (7) to (48) with respect fband substi-
tuting (43), the parametefs anddy remain to be solved in
the minimum condition for Morse potential. Analogously to
the AMBER case, the nonlinear system formed by such min-

n m pB(ad) do(m) D (nm) (%) . - -
CH@2) 4 2 0.4864 04267 04143  2.9060 imum condition and eq. (46) can be solved through a similar
CH(,3) 5 3 0.5037 0.5568 0.5480 1.5805 iterative procedure to that in figure 12. Also for CH nan-
CH(63) 6 3 05061 0.6299 0.6214 13494 gy pes, the obtained values df from Morse potential are
CH(6,4) 6 4 05116 06892 0.6825 0.9721 . .
CH(7.4) 7 4 05125 07616 07550 0.8666 the same as those from AMBER in table 3 (see appendix B
CH(B,4) 8 4 05136 0.8350 0.8285 0.7784 for further details). Therefore, the relative error repraed

in figure 13 and the conclusions for AMBER potential can

Table 3 Initial diameters Chiral, AMBERD; is the diameter associ- be extended to this case.
ated to the conformal mappindp is the obtained diameter from the
minimization procedure ané(%) represents the relative error taking

do as the reference solution

6 Concluding remarks

In this paper, the geometry of single-walled carbon nan-
otubes in absence of any external load is studied via an en-

For Chiral nanotubes, both curves are in reasonable agreergy approach. The initial geometry of nanotubes is assumed
ment (figure 13), although some deviations are observedo be inscribed into a perfect cylinder of unknown diame-
This effect may be due to the lack of axisymmetry of CHter, which is determined by minimizing the interatomic po-
nanotubes, which causes that the assumption of cylindricéntial. Two interatomic potential functions (AMBER and
geometry in absence of external loading is not as accuratdorse) have been adopted for contrasting their influence in
as in ZigZag and Armchair cases. Moreover, the simplifiedhe final results. Our work is focused on developing a pro-
mapping adopted in this section which keeps the relativeedure able to estimate the more reasonable diameter, which
orientations) introduces some error, mainly in nanotulies ccan be decomposed in the following steps: firstly, the diam-

small diameter.

eter of the nanotube is expressed as a function of several
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parameters describing the location of atoms into the cylin- librium length of covalent bonds (accepted in the planar
drical grid; secondly, these main parameters are reduced to graphene sheet).
one chosen as linearly independent; thirdly, the totalggner 6. Although the fitting functions (they are of the form=
contained in a representative system of the SWCNT is writ-  k/R?) for the relative error are not identical for each chi-
ten as a function of the independent parameter; finally, the rality, they yield values ok with the same order of mag-
minimum condition of the total energy (eq. (7)) leads to the  nitude. Therefore, the chirality does not have a remark-
desired diameter. able influence on the initial diameters.

Since the initial diameter is closely related to fiveen- 7. The comparison of obtained values in section A is useful

ergy and taking into account that strictly using the confor-  for validating the assumptions made in the approximate
mal mapping requires the introduction of a system of ex- Mapping adopted for Chiral nanotubes. By taking the
plicitinternal forces (e.g. in MSM models as thtiek-spiral, Chiral formulation to the ZigZag and Armchair cases,
see [15]), the present method can be regarded as an alterna- it is shown that (within the present minimization proce-
tive way to include the effect of these initial forces withou  dure) there is no significant influence of the particular
evaluating them. mapping over the final results. The detailed study of the
most physically reasonable mapping function has been

Finally, the main conclusions of this study are summa-
deferred for further research.

rized next:

walled nanotubes (with no external loading) are highetqormulation

than those associated to the usually adopted conformal

mapping (see e.g. [5, 7. 14. 28)). This effect is more im-n order to validate the assumptions adopted in the formula-
portant in nanotubes with smaller diameters. tion for Chiral nanotubes, we compare the expressions and
2. The obtained results show that the differences in narpptained results for Chiral SWCNTSs (section 5) with those

otube diameter between the conformal mapping and thofg zigzag (section 3) and Armchair (section 4) nanotubes.
obtained from our minimization process are dependent

on the diameter itself. The higher the nanotube diameter
is, the lower difference is found. This conclusion is inA.-1  Comparison Chiral-ZigZag
agreement with other mechanically-justified size effects
reported in the literature, as the increase in the Youn&z(”vo) nanotubes are defined by an orientation of the Chi-
modulus to an asymptotic value [8. 13-15], or the analf@l vector6 = 0 and for the second integer= 0 in the base
ogous decrease of the preenergy with increasing diam& the hexagonal grid. 16 vanishes in (35), it renders:
ters [82(]23] o - - Sinr] :SinB,

3. The current minimization procedure yields a more rea-
sonable approach to initial diameters of SWCNTs tharll = B. (49)
other estimative calculations. This issue can be validated |ntroducing (49) in equations (40) to (42) and operating:
with theories of higher accuracy as tight-binding molec-
ular dynamics. For instance, in table 1 of [2] the diame-

2
ter for a ZZ(15,0) is reported to be 1.2 nm, closer to ourcosg,, =2 <@> cod B — cog B +sirt B, (50a)
value of 1.1802 nm (see tablz 1) than the value of 1.1743 do

nm from the conformal mapping. Likewise, in table 1 cosBac = —sing, (50b)
of [8] a diameter of 0.791 nm is reported for a ZZ(10,0), cosfy,c = — sinn. (50c)
closer to our value of 0.7925 nm than the value of 0.7829

nm from the conformal mapping. As expected, it resultBsc = By = 61 in a coherent way with

4. The relative error from the conformal mapping to ourfigure 1. Besides, regarding definitions@f 8 andn, itis
calculations is proportional to/R?, as has been shown ©bvious thatr = 8 = n. Therefore, from (9), it follows:
in the paper for each chirality. This difference is relatedag o
to the stabilization effect of the preenergy, which tendsd, cosp = sm(%) : (51)
to transversally expand the nanotube. The smaller thg - . .
. ; : ) ubstituting (51) into (50a) and operating:
diameter is, the higher effect of the preenergy is found, g1 (502) P g
in agreement with [8. 2. 23]. c0SByp = Sir? 8 (1+C057_T) _cos™. (52)
5. The adoption of AMBER or Morse potentials is almost n n
inconsequential in the initial diameters, due to both func-The latter expression is completely equivalent to (12)ydahe
tions having similar rigidities in the closeness of the equifore 6,5, = 6.
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Aimed to relate the diameter {8, we stated, = d,, and Longitudinal

dc = 0in (3€), namely direction of \‘
nanotube
¢a = ¢, ¢c =0, (53) 77 line

along withm= 0, reduce (44) to:

pa T
a_ - 54
2 2n (54)
Taking sines in (54) and using (51):
cPa /TN @
sin— =sin({— ) = —co 55
3 = Sn(zn) = g 0P (55)
achieving
b= %O:L;, (56) Fig. 14 Parameters definition, Chiral and Armchair formulations
SIN( 5=
2n

formally identical to (9). An Armchair nanotube is defined by= m, verifying
Consequently, it has been shown that the general formyhe next angular relations:

lation for Chiral nanotubes reduced to the case ZigZag is

equivalent to that developed in secticn 3. Furthermoregsomn = 6, (57a)
values from each formulation and the relative error betwee 0_ T 57b
them (taking the direct formulation for ZZ nanotubes as To= PR (57b)

reference) are outlined in table 4. , ) ,
which substituted in (25) lead to:

ZZ AMBER CHAMBER cosa = v/3sind. (58)
n do (nm) do (nm) &4 (%)
ZZ(4,0) 4 0.3356 0.3345 0.3504 1 Cop
72(5.0) 5 0.4100 0.4095 0.1332 In fact, (37) converts into:
ZZ(6,0) 6 0.4854 0.4851 0.0610 ]
77(10,0) 10 0.7925 0.7924 0.0072 da = apsina, (59a)
Zz(15,00 15 1.1807 1.1807 0.0017 A — 59p
Z2Z(20,0) 20 1.5706 1.5706 0.0000 b Z.E)’cosa (59b)
dc. = . (59c¢)
Table 4 Comparison of obtained diameters Chiral-ZigZag, AMBER. \/§
£(%) is the relative error taking the direct formulation for ZZma ) _ )
otubes as a reference It is easy to show that figure 11 transformed into the

cross section of an AC nanotube, would vedfy= d;. Nev-
ertheless, from the Chiral formulation this condition ig no
Taking into account that Morse potential does not in-verified in general, unless = 77/6 in (59). This value con-
troduce any difference in the obtained diameters, the cottradicts the target and the results of our formulation.
responding results has not been included here. Consequently, both formulations are notidentical regard-
The relative error can be attributed to: the accuracy of théng the final orientation of bonds into tldestorted and mapped
iterative procedure (and in the Newton methods), the simpligrid on the cylinder. In particular, the AC formulation keep
fication of the mapping and the assumption of initial cylin-the orientation of bonds b (transversal direction) and QH fo
drical geometry for Chiral nanotubes. However, from tablemulation keeps the orientation of bonds ¢ orthogonal to the
4 a good agreement between the two approaches has beén line. If the deformation approached for CH nanotubes is
shown. converted to the AC case, two consecutive bonds b (perpen-
dicular to the nanotube axis) are shifted a certain valuegalo
the axial direction of the nanotube.
A.2 Comparison Chiral-Armchair Despite of that, projecting bonds a and b (thick line in

figure 14) on the transversal direction of the nanotube up to
In order to facilitate the comparison, the parameters définecomplete the circumference, we can write:

on the hexagonal grid for both formulations (Chiral and Arm-
chair) are represented together in figure 14. 2n¢, + 2ngy, = 2, (60)
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equivalent to the relation obtained by imposimg= m As has been proved in this section, different mappings
and¢, = ¢¢ (axisymmetry) in (44). and distortions of the hexagonal grid can produce nearly

Dividing (60) by 4 and taking trigonometric functions: the same diameters in absence of external loading. There-
fore, both specifideformation pattern and mapping can be

m
sm(¢a %) =sin ¢2a ¢2b +sin ¢2b ¢2 = S|n2—, assumed without loss of generality. The study of the physi-
(61) cally more reasonable mapping has been deferred for further
h.
¢a o fa P $p_. Pa m researc
cos( 5 ) =C0s7 Cos— sin— > sin 5 = C0S5_.
(62)
Appendix B  Error estimation between potentials into
Squaring (61) and substituting (62) leads to: the minimum condition
sir? E cog X2 ¢b +cod E sin? 22 ¢b + 2sirf E sir? ﬂJr Aimed to clarify the independency of our formulation on the
¢ ¢ adopted interatomic potential, an error estimation is wdrk
+25m7a sm7b cos— S|n2—. (63) out on the basis of Taylor expansion for both potentials.
Thus, the Taylor expansion of order two for AMBER po-
Introducing now (59a) and (59b) in (38), we reach: tential Ua) is the own eq. (3) and the analogous expansion
i b2 aosing o2 for Morse potential can be written from ea . (6) as:
2 do Un=U +Zlk (A6)2+ZE (66)
m=Umpo 5Ke(A0] i,2)
sm% = (?;. (64b) " 2 J ] "

where

Using '64) in (63) along with (25) and operating, it can be Umo = — 3 De Constant term,
|

obtained:
Emj2 = 3koks(A6;)® Remainder of the Taylor
do = %\/lJrsinza +2sinaCan, (65) expansion.

n

Applying the minimum conditior (7) to AMBER poten-

identical to (24). Therefore, in spite of the aforemen-iig| with respect to a generic independent paramétand
tioned differences regarding the orientation of bondsothe  introducing a functionay(Ua, €), it yields:

tained diameter must be the same from both procedures. For
checking this issue, several diameters with AMBER poten

tial by using each formulation and the relative error takmg Z QJ =0 (67)
the direct formulation of AC nanotubes as a reference, are
included in table 5. As shown, the minimum condition does not dependkgn
Likewise, applying conditiori (7) to (66) for Morse potemtia
AC AMBER CH AMBER and defining a new functiongi(Um, ¢ ), we reach:
n=m do (nm) do (nm) & (%) 0(A9 0(A9 )
AC(3,3) 3 0.4185 0.4154 0.7407 i i) _
AC(4,4) 4 0.5514 0.5489 0.4534 Pn = ZAGJ + Z?’ks A;)° I 0. (68)
AC(5,5) 5 0.6853 0.6833 0.2918
AC(10,10) 10 1.3597 1.3586 0.0809 . : -
AC(1515) 15 50365 50358 0.0344 Subtracting (67) from (€8), the absolute error in the mini-

mum condition between both potentials can be defined by:

Table 5 Comparison of obtained diameters Chiral-Armchair, AM-
BER. (%) is the relative error taking the direct formulation for AC

0(A6;
nanotubes as a reference Ep= [ — @] = 3Kks ( J)

3

For Zig-zag nanotubes, the anglésee fig. 1) was taken

Since Morse potential produces nearly the same valuess independent parameter, namg&hkt a. Hence, evaluating
of diameters, only results for AMBER potential has beenA8; and its partial derivatives from egs. (13), the next values
included here. of the absolute errag, are obtained:

The relative error can be associated to the accuracy of For Armchair nanotubes, the angiedefined in fig. 4
the numerical process and the adopted mapping for Chiralas chosen as independent parameter. Therefore, computing
nanotubes, similarly to the comparison Chiral-ZigZag.dAls A8; and its partial derivatives from eqs. (28), the absolute
in this case, a good agreement has been shown from tabledrore, renders:

(69)

> (46))°
J
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m a(rad) &y (NN-nm/rad)
ZZ(4,0) 4 0.4406 65-104
ZZ7(5,0) 5 0.4685 288-10°°
Z77(6,0) 6 0.4848 $79-10°°
Z7(10,0) 10 0.5094 148-10°8
Z7(15,00 15 0.5173 255.10°1°
Z7(20,0) 20 0.5200 718-10°1?

Table 6 Absolute error in the minimum condition for ZZ nanotubes

m a(rad) &y (NN-nm/rad)
AC(3,3) 3 05470 B55.10°
AC(4,4) 4  0.5375 £63-107
AC(5,5) 5 05327 %73.10°8
AC(10,10) 10 0.5260  .848.10°1
AC(15,15) 15 0.5246  892.10 12
AC(20,20) 20 0.5242  B04.10°%

Table 7 Absolute error in the minimum condition for AC nanotubes

n m p(ad) &, (nNN-nm/rad)
CH@4,2) 4 2 04864 ®6510°
CH5,3) 5 3 0.5037 ®39-10°7
CH®6,3) 6 3 0.5061 B80-10°8
CH®6,4) 6 4 0.5116 B50-10°7
CH(7.4) 7 4 05125 422108
CH@B4) 8 4 0.5136 152.10°8

Table 8 Absolute error in the minimum condition for CH nanotubes

Finally, the anglg3 defined in fig. 7 was adopted as inde- 18.

7.

9.

10.

11.

12.

13.

14.

15.

16.

17.

pendent parameter for Chiral nanotubes and emploving (431)9

in (69), the next values af, were calculated:

As shown in tables 6 to 8, almost the whole values of

the absolute error verifg, < 10~ nN-nm/rad (except for

20.

ZZ(4,0)), which was the accuracy adopted in the obtained

diameters in this paper. Therefore, the obtained diamete
with AMBER and Morse potentials were almost identical

for each chirality, regarding four significant digits.
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