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1 Departamento de Ingenierı́a Gráfica, Universitat Politècnica de València, Camino de Vera s/n, Valencia,

Spain, 2 Departamento de Neurologı́a, Hospital Universitari i Politècnic La Fe, Valencia, Spain,

3 Departamento Psicobiologı́a, Facultad de Psicologı́a, Universitat de València, Blasco Ibáñez 21, Valencia,
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Abstract

The aim of this study is to characterize in resting-state conditions the cerebral blood flow

velocity (CBFV) signals of fibromyalgia patients. The anterior and middle cerebral arteries of

both hemispheres from 15 women with fibromyalgia and 15 healthy women were monitored

using Transcranial Doppler (TCD) during a 5-minute eyes-closed resting period. Several

signal processing methods based on time, information theory, frequency and time-fre-

quency analyses were used in order to extract different features to characterize the CBFV

signals in the different vessels. Main results indicated that, in comparison with control

subjects, fibromyalgia patients showed a higher complexity of the envelope CBFV and a dif-

ferent distribution of the power spectral density. In addition, it has been observed that com-

plexity and spectral features show correlations with clinical pain parameters and emotional

factors. The characterization features were used in a lineal model to discriminate between

fibromyalgia patients and healthy controls, providing a high accuracy. These findings indi-

cate that CBFV signals, specifically their complexity and spectral characteristics, contain

information that may be relevant for the assessment of fibromyalgia patients in resting-state

conditions.

Introduction

Fibromyalgia syndrome (FMS) is a chronic disease [1] characterized by widespread musculo-

skeletal pain, an abnormal pain response from normally non-painful stimuli (allodynia) and

an excessive sensitivity to painful stimuli (hyperalgesia) in many tender points. Symptoms

derived from FMS include permanent fatigue, insomnia or non-refreshing sleep, stiffness, cog-

nitive and emotional difficulties as depressive symptoms or anxiety response. Although etiol-

ogy and pathophysiology of FMS is unknown, the central nervous sensitization and the pain-

inhibiting mechanisms seem to be affected leading to augmented nociceptive processing [2,3].
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There are several brain areas that are activated in response to painful stimuli, including the

primary and secondary somatosensory cortices, the insula, the anterior cingulate and the thala-

mus, as well as prefrontal and parietal regions, which compose the neuromatrix of nociception

[4–6]. In the case of chronic pain patients, a more pronounced activation of this neuromatrix

is observed [7,8]. Furthermore, resting-state networks of chronic pain patients are altered in

comparison with normal population [9–12].

One of the techniques that has been recently proposed to evaluate the dynamics of brain

activation associated to painful stimuli is Transcranial Doppler (TCD) monitoring [13–15]. It

is a non-invasive ultrasound diagnosis technique that analyzes the hemodynamical variations

in the brain by measuring cerebral blood flow velocities (CBFV) in main cerebral vessels

[16,17]. Although the spatial resolution of TCD monitoring is limited to the areas supplied by

the vessels under study, its high temporal resolution makes the technique suitable to comple-

ment other techniques such as fMRI to evaluate brain function.

The aforementioned TCD studies have found that there are measurable variations in CBFV

of anterior cerebral arteries (ACA) and middle cerebral arteries (MCA) in response to different

kinds of painful stimuli, being these changes more pronounced in FMS patients than in gen-

eral population [13–15]. Furthermore, there have also been complementary studies to assess

the relationship of FMS with cognitive and attentional deficits using TCD [18,19]. However,

up to our knowledge, the resting-state features of the CBFV of FMS patients have not been

evaluated yet using TCD.

Studies with TCD in the psychophysiological field have commonly based their analysis on

the evaluation of the temporal evolution of the mean CBFV (calculated from the so-called

envelope velocity) [16,17,20], although there are specific studies that have proposed alternative

analyses based on other factors, such as the frequency contents of the envelope signal [21].

Besides, there are recent studies that have evaluated the resting-state CBFV signal from the

MCA [22] and the ACA [23,24] in general population, using not only the envelope velocity but

also the raw TCD signal. The raw signal is the ultrasound signal that is received by the TCD

monitoring system without any processing. It contains information from all the blood cells

moving at different velocities [25]. On the other hand, the envelope signal is an already pro-

cessed signal that represents the instantaneous CBFV of the fastest blood cells, which generate

the highest Doppler shift.

The studies about resting-state categorization of CBFV in general population [22–24] have

also proposed the use of features extracted from both the raw and the envelope signals using

not only temporal analyses, but also frequency, time-frequency and information theory analy-

ses. These features can contribute to a better characterization of the CBFV signals in different

groups of people or different experimental conditions, complementing typical approaches

based on analyzing the temporal evolution of the signals. Sejdić et al. [22] and Huang et al. [24]

observed sex-based differences in parameters from the three additional domains both for the

envelope signals and the raw CBFV signals from MCA and ACA vessels.

Although previous studies that have applied TCD to evaluate CBFV characteristics of FMS

patients have been based on temporal analyses of the signals, the described methodology based

on frequency, time-frequency and information theory features is worth to consider in order to

assess the resting-state characteristics of CBFV of FMS patients.

As previously described, TCD has started to be applied for evaluating differences in cerebral

hemodynamics between patients and controls during pain processing. The current work will

advance in this kind of analysis by evaluating other kinds of signal processing and feature

extraction methods that can help to differentiate between FMS patients and controls.

Specifically, the main goal of the present work is to characterize the CBFV signals from

FMS population in resting-state conditions in comparison with healthy population. Taking

Resting-state cerebral blood flow velocity and fibromyalgia
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into account studies with general population [22], we propose the application of different sig-

nal processing methods based on time, information theory, frequency and time-frequency

analyses in order to extract different features that enable us to characterize the CBFV from the

ACA and MCA, vessels that feed different areas of the pain neuromatrix.

Our first hypothesis is that there will be significant differences between FMS patients and

the control group in frequency, time-frequency and information theory parameters obtained

from the CBFV signal. This first hypothesis is supported by the evidence from previous studies

that have applied this kind of analyses in general population and by the fact that other neuro-

imaging techniques have observed that resting-state networks of chronic pain patients show

alterations in comparison with healthy subjects [10–12].

Furthermore, our second hypothesis is that we expect to find an association between these

TCD parameters and psychological and clinical measures related to depression, anxiety and

pain. Previous studies [26,27] have observed higher levels of depressiveness and anxiety in

FMS patients in comparison with healthy controls, Besides, previous studies with other neuro-

imaging tools have also found correlations between altered physiological parameters and

scores obtained from depression and anxiety questionnaires [12]. For these reasons, we expect

to find relations between depression and anxiety measures and specific frequency, time-fre-

quency and information theory parameters calculated from the CBFV signal.

Materials and methods

Participants

Fifteen females with FMS aged between 36 and 67 years (mean age 53.08 years; SD 7.64) and

fifteen pain-free females aged between 33 and 53 years (mean age 45.60 years; SD 6.17) with

comparable sociodemographic data were recruited for the study. Patients were recruited via

the Valencian Fibromyalgia Association (AVAFI). Exclusion criteria included neurological

disorders, major psychiatric diseases, and migraines during the day of the experimental ses-

sion, strokes or inflammatory causes of pain. The control group was recruited by means of

announcements in notice boards of universities and sport associations. The exclusion criteria

for the control group were the same applied to patients, and the presence of any kind of

chronic pain disorder. All participants were right-handed based on Edinburgh Handedness

Inventory responses (FMS group: mean 19.3, SD 5.16; Control group: mean 18.3, SD 4.87). All

the participants gave their informed written consent prior to their inclusion in the study. The

study was approved by the ethics committees of the Universitat Politècnica de València and of

the Hospital Universitari and Politècnic La Fe.

Clinical assessment

In order to evaluate the mood, manual preference and the impact of pain on participants’ lives,

they had to complete several questionnaires before the experimental session: several visual-

analog scales for assessing daily and worst pain intensity during the last week, and also the

pain laterality (referring to which body side, right versus left was perceived more painful), the

State-Trait Anxiety Inventory questionnaire (STAI [28]), the Edinburgh Handedness Inven-

tory test [29,30], the Beck Depression Inventory (BDI-II; Spanish adaptation by [31]) and the

West Haven-Yale Multidimensional Pain Inventory (WHYMPI: [32]; Spanish adaptation by

[33]).

An additional questionnaire had to be answered at the end of the experimental session: a

reduced version of the resting state questionnaire (RQ) [34]. It consisted of 12 yes/no items

about the participants’ experience during the resting period, to evaluate if they were able to

remain thought-free during this period.

Resting-state cerebral blood flow velocity and fibromyalgia

PLOS ONE | https://doi.org/10.1371/journal.pone.0180253 July 12, 2017 3 / 21

https://doi.org/10.1371/journal.pone.0180253


Physiological recordings

In order to measure the cerebral hemodynamic of participants, a commercial transcranial

Doppler sonography device (Multi-Dop T; DWL, Germany) was used. Blood flow velocities

(in cm/s) in ACA and MCA from both hemispheres were simultaneously monitored using two

2-MHz probes. Each probe was capable of conducting the exploration at two different depths

at the same time. The probes were placed in the temporal bone window and fixed using a head-

set provided with the Doppler Box. The insonation depth of each probe varied between 50 and

55 mm to register MCA blood flow velocity, and between 65 and 70 mm to monitor ACA

blood flow velocity.

QL software (provided with the system) was used to register the signals from the Doppler

Box and export them to text files for later analyses. The CBFV signals were stored with a sam-

pling rate of 100 Hz while the raw signal was extracted as a binary file sampled at 7042 Hz.

Blood pressure was measured using a wrist blood pressure monitor (R3 Intellisense;

Omrom Healthcare Co., Ltd., Kyoto, Japan). Mean arterial pressure was calculated from sys-

tolic and diastolic pressures.

Experimental design

Before starting the experiment, participants had to fill out all the questionnaires described

above except from the RQ questionnaire. They also received information about the experiment

prior to data acquisition.

Thereafter, the Doppler sonography probes with the headset were placed on the partici-

pant’s head by an experienced neurologist.

Once the probes were correctly located, participants received instructions to remain awake,

in silence and to avoid any thought during a 5-minute resting period. After this period, the

participants had to complete the RQ questionnaire. Finally, they had to complete other tasks,

which are not considered in this study.

Blood pressure was measured before and after the resting period.

Data analysis

The envelope and raw signals obtained by Transcranial Doppler were analyzed offline using

MATLAB R2015b (The Mathworks Inc., Natick, MA, USA) and its toolboxes with custom

MATLAB scripts. Only the measurements with a signal quality enough to allow their analyses

were considered.

The preprocessing of the envelope and raw signals was applied to the 5-minute data corre-

sponding to the resting period. The first step was a detection and correction of outliers caused

by artifacts. In the case of the envelope signals, this was followed by a linear low-pass filter

(with a 10 Hz cut-off frequency) that removed the effect of higher frequency artifacts. Finally,

in order to avoid the dependence with the incidence angle between the ultrasound probe and

the artery, the envelope signal was normalized dividing it by its mean during the resting period

and multiplying by 100, in a similar way to other studies [20]. On the other hand, the raw sig-

nal was divided by its maximum value during the resting period to restrict its range to normal-

ized values between -1 and 1 for all the subjects.

Several parameters were calculated to characterize the hemodynamic signals from different

perspectives: time, frequency, time-frequency and information theory [22,24]. The specific

parameters are described below. All the parameters were obtained from the ACA and MCA

signals, in both hemispheres and for envelope and raw signals.

Finally, heart rate was calculated from the intervals between the peaks of the normalized

envelop signal, also known as inter-systolic intervals [35].

Resting-state cerebral blood flow velocity and fibromyalgia
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Statistical features. Five statistical features widely used were calculated to characterize the

signals from each vessel. These statistical features included mean, standard deviation (StD),

variance, kurtosis and skewness. They were calculated both to the signals before normalizing

and after normalizing.

Information-theoretic features. The goal of information-theoretic analysis is to assess

the complexity (or predictability) and the regularity of signals and it is often applied in the

analysis of biomedical signals [22,36]. The parameters that have been obtained in the current

study to evaluate complexity and regularity of CBFV signals are Lempel-Ziv complexity (LZC)

[37–39], entropy rate (EntrRate) [40], and multiscale entropy (MSE) [41,42].

The LZC is a non-parametric feature that evaluates the randomness of finite sequences in a

one-dimension signal [38]. It is related to the number of distinct substrings and the rate of

their recurrence along the signal [39]. High values reflect a more complex signal.

The entropy rate measures the regularity by means of the evaluation of repetitive sequence

of patterns in a signal [40]. Entropy rate varies between 0 (maximum randomness) and 1

(maximum regularity) [22].

Finally, the MSE method evaluates the regularity of complex signals by applying a consecu-

tive coarse-graining process to the signal by averaging a successively increasing number of

data points (scale or length) in non-overlapping windows [41]. The sample entropy is calcu-

lated for each coarse-grained signal [42]. In this case, an entropy of 0 represents maximum

regularity.

Frequency features. The frequency features that were calculated included peak frequency

(PeakFreq), centroid frequency (CentFreq), bandwidth (BW) [22,24,43] and spectral power in

different frequency bands. Power Spectral Density (PSD) was calculated using the Welch

method with a Hamming window of 1024 points and a 50% overlap.

The peak frequency and the centroid frequency are measures that can be used to evaluate

spectral changes in the signals, while the BW is used to measure the spectral spread [43].

In addition, the PSD provides information on how power is distributed as a function of

frequency.

The peak frequency, the centroid frequency and the BW were calculated from the prepro-

cessed signal and also after applying a more restrictive low-pass filter (cut-off frequency of 0.6

Hz), in order to remove the effect on these parameters of the cardiac cycle.

On the other hand, the spectral power in frequency bands described in previous TCD stud-

ies [44] was calculated: low frequency band (LF: 0.04–0.15 Hz), high frequency band (HF:

0.15–0.4 Hz) and the ratio between the LF and HF components (LF/HF ratio).

Finally, an additional band (0.12–0.25 Hz) (B012-015) that has shown accentuated fluctua-

tions in the brain metabolism of chronic pain patients in resting-state was also analyzed [10].

The spectral power in this band was calculated and normalized with respect to the spectral

power in the band up to 1 Hz.

Time-frequency features. A time-frequency analysis based on the wavelet transform was

made in order to examine how spectral components change over time. In this analysis, two

parameters were calculated: the relative energy from the approximation coefficients (RWEa10)

in different time-frequency bands and the wavelet entropy (Wentropy). The discrete Meyer

wavelet was used to obtain a 10-level discrete wavelet decomposition [22,45].

Statistical analysis. In order to explore the differences between the FMS and the control

group regarding the questionnaire data and the extracted features from the cerebral hemody-

namic responses, several statistical data analyses were applied. All the analyses were conducted

using SPSS 16.0 (SPSS Inc., Chicago, USA) with a 0.05 significance level.

An analysis of variance (ANOVA) was applied. The between-subject factor was the experi-

mental group (FMS vs. control). Dependent variables included the extracted features from

Resting-state cerebral blood flow velocity and fibromyalgia
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bilateral ACA and MCA, the data from questionnaires and the heart rate. Prior to applying the

ANOVA, Kolmogorov-Smirnov and Levene tests were used to check the different dependent

variables for normality and homoscedasticity, respectively. If a specific variable did not follow

normality criteria, a non-parametric test was applied instead (Mann-Whitney U).

Spearman correlations were calculated between the variables from questionnaires and the

CBFV features to analyze possible relations between pain-related variables (depressiveness,

anxiety, pain severity and pain intensity) and cerebral blood flow. Furthermore, Pearson corre-

lations were calculated between the information-theoretic features and the heart rate in order

to evaluate the effects of heart rate in the complexity and the regularity parameters.

Finally, a Linear Discriminant Analysis (LDA) [46] was applied to evaluate if the features

obtained from TCD CBFV signals are suitable to discriminate between fibromyalgia patients

and controls. LDA finds the best linear discriminant function that separates the groups under

study. After selecting the features that will be included in the classification model, the LDA

model was evaluated by means of a leave-one-out cross-validation method. This feature selec-

tion and classification method was applied over three different data sets. The first one was

composed by all the calculated features, both from ACA and MCA, the second data set was

only composed by the ACA features and the third data set was composed by the MCA

features.

Results

Clinical data

The clinical data are summarized in Table 1 (including number of participants taking different

kinds of medication).

Focusing on clinical questionnaires, the FMS group showed significantly higher levels of

pain intensity than the control group in the Pain Intensity/Laterality questionnaire.

Regarding anxiety measures (STAI questionnaire), significant differences were observed for

the STAI-state and STAI-trait, with higher levels of anxiety for the FMS group. Regarding

depression (BDI questionnaire), significantly higher values were obtained in the FMS group

for overall depression scores.

Finally, the results obtained for the different scales and subscales of the WHYMPI question-

naire showed statistically significant differences for sections I and II. Section I is related to

“pain experience”, and significant effects were found in the following subscales: negative

mood, pain interference, activity interference and pain severity. In Section II (“response by sig-

nificant others”), significant differences were found in the following subscales: distracting

responses, solicitous responses and punishing responses. FMS patients perceived a lower psy-

chological and instrumental support and a higher negative support by significant others than

the control group. The subscales from section III (daily activity) did not reveal any significant

effect.

No significant differences were found between the mean arterial pressure before and after

the resting period, neither for the control group nor for the FMS group.

Finally, the resting questionnaire responses did not show any behavior that was considered

sufficient to exclude any participant from the experiment.

Transcranial Doppler signals

Some vessels were discarded because the quality of the signal was not enough to allow their

analysis, giving a total number of 25 subjects for L-MCA (12 FMS group), 25 subjects for

R-MCA (12 FMS group), 23 subjects for L-ACA (11 FMS group) and 24 subjects for R-ACA

(11 FMS group).

Resting-state cerebral blood flow velocity and fibromyalgia
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For the envelope signals, Tables 2–5 summarize the obtained results for the different calcu-

lated features in the envelope CBFV signals from the four considered arteries. There were sig-

nificant differences in several information-theoretic, frequency and power spectral density

features between the control and FMS groups. However, there were no significant differences

in any statistical or time-frequency feature.

The envelope signals from the FMS group in the left hemisphere were less predictable than

those of the control group as measured by different information-theoric features. Mean MSE

values for the different scales, arteries and groups can be observed in Fig 1.

Regarding the frequency analysis, results show a lower LF/HF ratio in different vessels of

the FMS group and a higher spectral power in the frequency band between 0.12 Hz and 0.25

Hz in the L-MCA of this group. Besides, the centroid frequency in the lower frequencies spec-

trum (0–0.6 Hz) in the L-MCA and L-ACA and the peak frequency in the L-MCA were higher

in the FMS group.

The grand average power spectral density for each group in the different arteries can be

observed in Fig 2 (including all the frequency range between 0 and 5 Hz–global spectrum) and

Table 1. Clinical data from the FMS group and the control group. Data are presented as mean values ± SD. Bold text indicates the clinical parameters

that have shown significant differences between groups (using F or χ2).

Control group (n = 15) FMS group (n = 15) F[1,29] or χ2 p Partial η2

Intensity/laterality pain

Maximum intensity 3.27 ± 3.22 6.67 ± 2.1 11.77 0.002 0.296

Minimum intensity 0.93 ± 2.63 4 ± 2.2 11.97 0.002 0.300

Medium intensity 2.27 ± 2.84 5.73 ± 2.12 14.35 0.001 0.339

Current intensity 1.07 ± 1.98 5.4 ± 1.92 37.01 <0.001 0.569

Right-lateralization pain 2.13 ± 2.48 6.73 ± 2.1 30.3 <0.001 0.520

Left-lateralization pain 1.53 ± 1.92 5.73 ± 2.8 23.06 <0.001 0.452

Medication

Antidepressants (%) 0 (0) 6 (40) 7.5 0.006

Analgesics/relaxants/NSAIDS(%) 1 (7) 10 (67) 11.63 0.001

Anxiolytics (%) 0 (0) 8 (53) 10.91 0.001

STAI

STAI-state 16.4 ± 6.84 26.7 ± 11.2 9.32 0.005 0.250

STAI-trait 14.9 ± 8.48 31.4 ± 12.0 19.09 <0.001 0.405

BDI 5.8 ± 5.41 21.67 ± 13.1 18.82 <0.001 0.402

WHYMPI

Perceived support 3.42 ± 2.00 2.62 ± 1.62 1.45 0.239 0.049

Negative mood 1.45 ± 1.23 3.88 ± 1.25 29.0 <0.001 0.493

Pain interference 0.42 ± 0.69 3.53 ± 1.7 42.87 <0.001 0.593

Activity interference 0.98 ± 1.17 3.88 ± 1.64 31.24 <0.001 0.512

Pain severity 1.25 ± 1.14 3.83 ± 1.4 30.67 <0.001 0.506

Self-control 4.13 ± 1.42 3.97 ± 1.61 0.090 0.766 0.003

Distracting responses 3.72 ± 0.68 2.5 ± 1.72 6.21 0.019 0.187

Solicitous responses 2.85 ± 1.43 1.65 ± 1.46 4.97 0.034 0.156

Punishing responses 0.14 ± 0.53 1.47 ± 1.57 8.99 0.006 0.250

Household chores 4.30 ± 0.84 3.62 ± 1.23 3.13 0.088 0.100

Outdoor work 2.76 ± 0.81 2.21 ± 1.45 1.62 0.214 0.055

Activities away from home 1.91 ± 1.59 1.13 ± 1.45 1.96 0.172 0.066

Social activities 3 ± 0.89 2.13 ± 1.67 3.14 0.087 0.101

https://doi.org/10.1371/journal.pone.0180253.t001
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in Fig 3 (focusing on a lower frequency range not affected by the cardiac cycle–lower frequen-

cies spectrum).

The heart rate did not show any significant difference between the Control (68.568 ± 8.768)

and the FMS (72.224 ± 11.37) groups (F(1,25) = 0.855; p = 0.364; partial η2 = 0.034).

Regarding raw data, no significant differences were found in any calculated parameter

between the control group and the FMS group. The analyses described in following sections

(correlation and LDA) were applied only to the envelope CBFV features.

Correlation analysis

Correlations were found between BDI questionnaire results, STAI-state, STAI-trait, pain

severity factor (WHYMPI) and different envelope CBFV features. Significant correlations are

shown in in Table 6. Some of the correlations are graphically represented in Fig 4.

Linear discriminant analysis

In the case of the data set composed by all the features from the four vessels (excluding the statisti-

cal features, that had not shown any significant relevance in previous analyses), the selected fea-

tures by the model were: LZC, LF, MSE factor 1 and the normalized power in the 0.12–0.25 Hz

Table 2. A summary of statistical parameters (calculated before and after normalization), information-theoretic, frequency and time-frequency fea-

tures extracted from L-ACA envelope CBFV signals. All the values with no indicated units are dimensionless. Data are presented as mean

values ± standard deviation. Bold text indicates the features that have shown significant differences between groups.

L-ACA

Control group

(n = 12)

FMS group

(n = 11)

F[1,22] p Partial η2

Statistical

(before)

Mean (cm/s) 50.47±6.05 53.27±7.67 0.959 0.339 0.044

StD (cm/s) 13.22±2.32 13.48±2.15 0.079 0.781 0.004

Statistical

(after)

StD 26.18±3.23 25.38±2.17 0.543 0.469 0.025

Inf-Theor LZC 0.46±0.01 0.48±0.03 4.669 0.042 0.182

EntrRate 0.90±0.03 0.87±0.04 3.729 0.067 0.151

MSE_1 0.18±0.02 0.21±0.04 2.752 0.112 0.116

MSE_5 0.47±0.07 0.53±0.14 2.135 0.159 0.092

MSE_10 0.57±0.08 0.69±0.15 5.346 0.031 0.203

MSE_15 0.73±0.10 0.84±0.15 4.661 0.043 0.182

MSE_20 0.89±0.14 0.96±0.10 1.667 0.211 0.211

Freq.

<0.6Hz

PeakFreq (Hz) 0.03±0.04 0.05±0.05 0.407 0.530 0.019

CentFreq (Hz) 0.12±0.02 0.15±0.03 8.860 0.007 0.297

BW (Hz) 0.11±0.02 0.13±0.03 2.805 0.109 0.118

Freq.

<10Hz

(Global)

PeakFreq (Hz) 1.13±0.14 1.26±0.14 3.905 0.060 0.158

CentFreq (Hz) 1.58±0.18 1.70±0.17 2.463 0.131 0.105

BW (Hz) 1.23±0.12 1.21±0.14 0.153 0.700 0.007

LF (Hz) 5.57±2.65 4.34±2.24 1.438 0.244 0.064

HF (Hz) 2.59±2.33 3.24±2.39 0.441 0.514 0.021

LFHFRat (Hz) 3.15±1.59 1.62±0.71 8.655 0.008 0.292

B012-025a 0.21±0.16 0.24±0.08 41.00 0.134 0.321

Time-Freq. RWEa10 98.40±0.28 98.45±0.40 0.145 0.707 0.007

Wentropy 0.14±0.02 0.14±0.03 0.135 0.717 0.006

a A Mann-Whitney test was performed (data presented correspond to the statistic U, p value and effect size r).

https://doi.org/10.1371/journal.pone.0180253.t002
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band for L-MCA; MSE factors 3 and 13 for R-ACA and MSE factor 14 for R-MCA. Initially, the

classification model used all the features from all the samples as the training set to assess the LDA

model. The classification achieved an accuracy of 91.30%. On the other hand, the classification

results of the leave-one-out cross-validation (CV) approach achieved an accuracy of 100%.

Regarding the data set composed by ACA vessels features, the selected feature was the cen-

troid frequency in the lower frequency band in the left hemisphere. The classification results

using this feature from all the samples as the training set achieved an accuracy of 65.20% and

the leave-one-out CV approach achieved an accuracy of 65.20%.

Finally, in the data set composed by MCA vessels features, the selected features were: LF/HF

ratio and MSE1 for the left hemisphere and Entropy Rate and LF for the right hemisphere. The

classification results using MCA vessels features from all the samples as the training set showed

91.7% of accuracy. The same accuracy was obtained with the leave-one-out CV approach.

The confusion matrices of the different classification models are shown in Table 7.

Discussion

This study has characterized the CBFV features obtained by TCD from FMS patients and

healthy population. Results have shown that there exist significant differences in CBFV param-

eters of the TCD envelope signals of these groups in resting-state conditions.

Table 3. A summary of statistical parameters (calculated before and after normalization), information-theoretic, frequency and time-frequency fea-

tures extracted from R-ACA envelope CBFV signals. All the values with no indicated units are dimensionless. Data are presented as mean

values ± standard deviation. Bold text indicates the features that have shown significant differences between groups.

R-ACA

Control group

(n = 13)

FMS group

(n = 11)

F[1,23] p Partial η2

Statistical

(before)

Mean (cm/s) 55.28±12.5 53.19±11.4 0.179 0.677 0.008

StD (cm/s) 14.37±2.83 13.72±2.47 0.353 0.558 0.016

Statistical

(after)

StD 26.22±3.52 26.05±2.50 0.018 0.894 0.001

Inf-Theor LZC 0.48±0.03 0.49±0.03 0.798 0.381 0.035

EntrRate 0.88±0.04 0.85±0.05 1.696 0.206 0.072

MSE_1 0.21±0.05 0.22±0.06 0.407 0.530 0.018

MSE_5 0.55±0.20 0.59±0.20 0.183 0.673 0.008

MSE_10 0.67±0.21 0.73±0.23 0.499 0.487 0.022

MSE_15 0.81±0.20 0.90±0.22 1.094 0.307 0.047

MSE_20 0.96±0.18 1.01±0.16 0.445 0.512 0.020

Freq.

<0.6Hz

PeakFreq (Hz) 0.04±0.04 0.02±0.00 1.707 0.205 0.072

CentFreq (Hz) 0.13±0.03 0.15±0.03 2.804 0.108 0.113

BW (Hz) 0.11±0.02 0.13±0.02 1.716 0.204 0.072

Freq.

<10Hz

(Global)

PeakFreq (Hz) 1.14±0.13 1.25±0.14 4.236 0.052 0.161

CentFreq (Hz) 1.65±0.19 1.78±0.19 2.803 0.108 0.113

BW (Hz) 1.30±0.14 1.30±0.17 0.002 0.965 <0.001

LF (Hz) 6.29±3.49 4.51±2.17 2.143 0.157 0.089

HF (Hz) 2.86±2.74 2.66±1.71 0.045 0.834 0.002

LFHFRat (Hz) 2.95±1.49 1.96±0.99 3.518 0.074 0.138

B012-025a 0.20±0.16 0.23±0.8 44.00 0.119 0.325

Time-Freq. RWEa10 98.33±0.42 98.39±0.27 0.146 0.706 0.007

Wentropy 0.15±0.03 0.14±0.02 0.077 0.784 0.003

a A Mann-Whitney test was performed (data presented correspond to the statistic U, p value and effect size r).

https://doi.org/10.1371/journal.pone.0180253.t003

Resting-state cerebral blood flow velocity and fibromyalgia

PLOS ONE | https://doi.org/10.1371/journal.pone.0180253 July 12, 2017 9 / 21

https://doi.org/10.1371/journal.pone.0180253.t003
https://doi.org/10.1371/journal.pone.0180253


The analyses of clinical pain measures showed results that are in line with previous studies

[13]. More specifically, the FMS group had significantly higher levels of depressiveness and

anxiety (state and trait) than the healthy population [1,47]. As expected, the FMS patients also

showed significantly higher scores of pain intensity. These results are in accordance with those

presented in other psychophysiological works where FMS patients participated [26,27].

Regarding the analyses of the registered TCD signals, we analyzed the envelope and raw

CBFV signals, both for the FMS patients and the healthy population. Even though the raw

CBFV analysis did not show any significant differences between the parameters from both

groups, the envelope CBFV analysis showed differences in some of the parameters. The raw

CBFV signal had been used previously as a valuable signal that can provide complementary

information to the envelop CBFV analysis in resting-state conditions [22] and during the per-

formance of cognitive tasks [48] in healthy population. However, in the present work only the

envelope CBFV seems to include relevant information to characterize the groups under study.

Focusing on the envelope signal, the information-theoretic analysis showed significant dif-

ferences for the LZC features in the two vessels of the left hemisphere. Although previous evi-

dence indicates that several forms of pain are characterized by bilateral cerebral activations

[49], there is not an exact correspondence between the activations and responses to pain that

are observed in each hemisphere. Craggs et al. [50] used fMRI data from chronic pain and

Table 4. A summary of statistical parameters (calculated before and after normalization), information-theoretic, frequency and time-frequency fea-

tures extracted from L-MCA envelope CBFV signals. All the values with no indicated units are dimensionless. Data are presented as mean

values ± standard deviation. Bold text indicates the features that have shown significant differences between groups.

L-MCA

Control group

(n = 13)

FMS group

(n = 12)

F[1,24] p Partial η2

Statistical

(before)

Mean (cm/s) 70.42±10.1 68.45±13.0 0.181 0.674 0.008

StD (cm/s) 17.65±2.70 16.36±2.13 1.747 0.199 0.071

Statistical

(after)

StD 25.21±3.22 24.17±2.03 0.936 0.343 0.038

Inf-Theor LZC 0.46±0.02 0.48±0.02 5.134 0.033 0.182

EntrRate 0.90±0.05 0.87±0.05 2.383 0.136 0.094

MSE_1 0.17±0.03 0.20±0.03 4.937 0.036 0.177

MSE_5 0.43±0.11 0.49±0.11 2.022 0.168 0.081

MSE_10 0.55±0.12 0.63±0.12 2.703 0.114 0.105

MSE_15 0.71±0.12 0.79±0.11 3.181 0.088 0.121

MSE_20 0.86±0.14 0.91±0.12 0.927 0.346 0.039

Freq.

<0.6Hz

PeakFreq (Hz) 0.03±0.03 0.04±0.04 0.198 0.661 0.009

CentFreq (Hz) 0.12±0.03 0.16±0.04 6.458 0.018 0.219

BW (Hz) 0.11±0.02 0.12±0.02 2.666 0.116 0.104

Freq.

<10Hz

(Global)

PeakFreq (Hz) 1.14±0.14 1.26±0.14 4.590 0.043 0.166

CentFreq (Hz) 1.60±0.19 1.73±0.14 3.692 0.067 0.138

BW (Hz) 1.24±0.14 1.26±0.12 0.176 0.679 0.008

LF (Hz) 8.13±3.01 5.40±2.36 6.282 0.020 0.215

HF (Hz) 3.85±3.17 4.11±2.32 0.053 0.820 0.002

LFHFRat (Hz) 3.02±1.75 1.57±0.81 6.857 0.015 0.230

B012-025a 0.19±0.17 0.25±0.08 35.00 0.019 0.47

Time-Freq. RWEa10 98.31±0.59 98.63±0.23 2.969 0.098 0.114

Wentropy 0.15±0.04 0.12±0.02 2.732 0.112 0.106

a A Mann-Whitney test was performed (data presented correspond to the statistic U, p value and effect size r).

https://doi.org/10.1371/journal.pone.0180253.t004
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healthy control to estimate models of effective connectivity of pain-related processes. Although

the models they obtained were similar between hemispheres, they observed group differences

which involved the lack of paths of influence from S1 to S2 and from S1 to posterior insula in

the left hemisphere of the FMS group (contralateral to the painful stimulation). Alterations of

the connectivity between the default mode network (DMN) and different structures from each

hemisphere have also been observed in FMS patients, also denoting a differentiation between

hemispheres [51]. Patients have shown greater connectivity between the DMN and brain

regions from the left hemisphere such as the left anterior, middle, and posterior insula and the

left secondary somatosensory cortex [52]. The CBFV complexity features from the left hemi-

sphere that are altered in the present study may be somehow related to these changes in con-

nectivity that have been observed in previous studies in the same hemisphere.

LZC measures the possibilities of finding new patterns in a temporal series, so a larger LZC

implies a more complex dynamical behavior [37]. Our results showed that the envelope signal

of the FMS patients has a dynamical behavior with greater complexity and, hence, a lower

predictability than the healthy participants. In this line, this analysis also revealed significant

differences in the MSE for the scale factor 1 in L-MCA and for the scale factors 9 to 16 in

L-ACA, being the envelope CBFV from the FMS patients more irregular and unpredictable

than that from the control group.

Table 5. A summary of statistical parameters (calculated before and after normalization), information-theoretic, frequency and time-frequency fea-

tures extracted from R-MCA envelope CBFV signals. All the values with no indicated units are dimensionless. Data are presented as mean

values ± standard deviation. Bold text indicates the features that have shown significant differences between groups.

R-MCA

Control group

(n = 13)

FMS group

(n = 12)

F[1,24] p Partial η2

Statistical

(before)

Mean (cm/s) 66.43±11.5 66.29±11.1 0.001 0.974 <0.001

StD (cm/s) 16.50±2.69 16.64±2.75 0.016 0.899 0.001

Statistical

(after)

StD 25.08±3.49 25.22±2.35 0.016 0.902 0.001

Inf-Theor LZC 0.46±0.03 0.46±0.02 0.350 0.560 0.015

EntrRate 0.90±0.04 0.90±0.04 0.181 0.675 0.008

MSE_1 0.18±0.03 0.18±0.02 0.295 0.592 0.013

MSE_5 0.43±0.15 0.42±0.09 0.016 0.899 0.001

MSE_10 0.54±0.15 0.55±0.10 0.107 0.747 0.005

MSE_15 0.69±0.13 0.72±0.09 0.365 0.552 0.016

MSE_20 0.86±0.16 0.88±0.12 0.065 0.801 0.003

Freq.

<0.6Hz

PeakFreq (Hz) 0.03±0.03 0.03±0.01 0.543 0.469 0.023

CentFreq (Hz) 0.12±0.03 0.15±0.04 3.835 0.062 0.143

BW (Hz) 0.11±0.02 0.12±0.02 2.505 0.127 0.098

Freq.

<10Hz

(Global)

PeakFreq (Hz) 1.15±0.14 1.26±0.14 3.391 0.078 0.129

CentFreq (Hz) 1.64±0.21 1.73±0.14 1.498 0.233 0.061

BW (Hz) 1.27±0.16 1.26±0.13 0.040 0.842 0.002

LF (Hz) 7.24±2.63 5.39±1.98 3.894 0.061 0.145

HF (Hz) 3.57±3.16 4.14±2.77 0.223 0.642 0.010

LFHFRat (Hz) 3.10±1.99 1.71±1.06 4.594 0.043 0.166

B012-025a 0.19±0.17 0.25±0.09 48.00 0.110 0.326

Time-Freq. RWEa10 98.39±0.44 98.51±0.30 0.625 0.437 0.026

Wentropy 0.14±0.03 0.13±0.02 0.577 0.455 0.024

a A Mann-Whitney test was performed (data presented correspond to the U statistic, p value and effect size r).

https://doi.org/10.1371/journal.pone.0180253.t005
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Fig 1. Multiscale entropy (MSE) analysis of the envelop signal time series in the following arteries: (a) L-ACA

(b) R-ACA (c) L-MCA (d) R-MCA. Mean values (dimensionless) for each group (Control and FMS) are shown

for scales 1 to 20.

https://doi.org/10.1371/journal.pone.0180253.g001

Fig 2. Grand average power spectral density (PSD) of the envelope cerebral blood flow velocity signal in the

following arteries: (a) L-ACA (b) R-ACA (c) L-MCA (d) R-MCA. The frequency range between 0 and 5 Hz is

included. Mean values (Hz-1) at each frequency bin for each group (Control and FMS) are shown.

https://doi.org/10.1371/journal.pone.0180253.g002
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The correlation results show an association of complexity measures such as LZC and MSE

(scale factor 1) of the L-MCA with current anxiety (STAI State) and, in the case of LZC, with

current pain level. Besides, the MSE values (scales factors 9 to 16) of the L-ACA are positively

correlated with current anxiety (STAI State). The regularity (Entropy rate) of the CBFV signals

in the R-MCA is negatively linked with the depression level (BDI measure).

Finally, the correlation analysis also shows the absence of relation between heart rate and

information-theoretic parameters. Taking into account that the number of participants in the

present study is rather small, this is a result that should be confirmed in future studies, as a

larger sample size may be required to detect significant correlations between the studied

parameters. However, it should be noted that this result is consistent with previous studies.

Aboy et al. [38] had already concluded that the LZC was not influenced by the frequency of the

signals being analyzed (in their study, simulated and intracranial pressure signals). Further-

more, previous TCD studies have observed that peripheral physiological mechanisms did not

have any effect on slow changes of the cerebral blood flow velocity signal [35].

All these results seem to indicate that the complexity of the CBFV is influenced by different

factors such as the depression, pain and anxiety levels of the participants in the study.

Although the bases of the observed differences in CBFV are unknown, there are evidences

that have found a link between higher complexity in neuronal electrical activity and depres-

sion. Li et al. [53] described a significantly higher complexity in EEG from depression and

schizophrenia patients in comparison with healthy participants during a resting task. They

hypothesized that the origin of this increase in complexity could be in the activation of more

neurons during this resting period in the case of patients. It has also been observed that depres-

sion patients had higher complexity in the MEG signal in resting-state conditions before start-

ing a treatment than the healthy group [54]. Indeed, these complexity values decreased after an

Fig 3. Grand average power spectral density (PSD) of the envelope cerebral blood flow velocity signal in the

following arteries: (a) L-ACA (b) R-ACA (c) L-MCA (d) R-MCA. The frequency range between 0 and 0.8 Hz is

included. Mean values (Hz-1) at each frequency bin for each group (Control and FMS) are shown.

https://doi.org/10.1371/journal.pone.0180253.g003
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effective pharmacological treatment. This higher complexity in depression patients could be

explained by a higher number of oscillatory systems working simultaneously and by increased

frequency variability during the resting period in those patients. The authors of the study

based their interpretation on previous works that had found that the EEG of depressed patients

showed increased frequency variability caused by a higher disorganized neuronal activity [55]

Table 6. Correlations between BDI, STAI-state, STAI-trait and Pain Severity Factor (WHYMPI) and different parameters from the envelop BFV sig-

nal in the different vessels. Only the envelop BFV signal parameters that show significant correlations with each of the questionnaire values are included in

the table.

BDI STAI-State STAI-trait Pain severity (WHYMPI)

Inf-Theor LZC L-MCA

r = 0.476

p = 0.016

EntrRate R-MCA L-MCA

r = -0.458 r = -0.450

p = 0.021 p = 0.024

MSE (various scales) L-ACA / L-MCA

0.403� r� 0.526

0.007� p� 0.049

Frequency

<0.6Hz

CentFreq ACA / R-MCA ACA ACA

0.449� r� 0.523 0.489� r� 0.515 0.454� r� 0.504

0.009� p� 0.024 0.012� p� 0.015 0.014� p� 0.026

BW R-MCA

r = 0.414

p = 0.040

Frequency

<10Hz

(Global)

PeakFreq ACA ACA / L-MCA R-ACA

0.419� r� 0.451 0.430� r� 0.467 r = 0.466

0.031� p� 0.041 0.021� p� 0.032 p = 0.022

CentFreq L-ACA / MCA L-MCA R-ACA

0.446� r� 0.564 r = 0.475 r = 0.439

0.005� p� 0.025 p = 0.016 p = 0.032

LF L-ACA / L-MCA

-0.442� r� -0.434

0.030� p� 0.035

HF R-ACA

r = 0.424

p = 0.039

LFHFRatio ACA / MCA ACA / L-MCA L-ACA

-0.535� r� -0.435 -0.569� r�-0.399 r = -0.426

0.008� p� 0.030 0.004� p� 0.048 p = 0.043

B012-025 R-ACA R-ACA

r = 0.427 r = 0.455

p = 0.037 p = 0.026

Time-Freq RWEa10 L-MCA L-MCA L-MCA

r = 0.463 r = 0.423 r = 0.419

p = 0.020 p = 0.035 p = 0.037

Wentropy L-MCA L-MCA L-MCA

r = -0.425 r = -0.422 r = -0.402

p = 0.034 p = 0.036 p = 0.046

https://doi.org/10.1371/journal.pone.0180253.t006
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and that had concluded that the basis of the LZC complexity estimate is precisely the variability

in the frequency components [38]. There are also studies that have got decreased complexity

of these signals in major depressive patients in the context of other medical conditions [56].

Although we cannot assure that there is a direct relationship between the observations from

neuronal activity and those from CBFV, it is interesting to consider those previous studies to

analyze the origin of the higher CBFV complexity obtained in main cerebral arteries in the cur-

rent work.

On the other hand, we have also found significant differences between the experimental

groups in parameters from the frequency analysis. As can be observed in Fig 2, the CBFV spec-

trum is highly influenced by the cardiac cycle. A peak is present in all the arteries around 1.3

Fig 4. Significant correlations between the LF/HF ratio from L-ACA and (a) BDI scores, (b) STAI-trait

scores and (c) Pain Severity Factor, as well as, between (d) LZC from L-MCA and STAI-state. No

correlation was found between heart rate and information-theoretic parameters (p�0.055).

https://doi.org/10.1371/journal.pone.0180253.g004

Table 7. Confusion matrices for LDA using all the features, ACA vessels features and MCA vessels features (except the statistical ones) from all

the samples as the training set, using the leave-one-out cross validation approach, to discriminate between FMS group and control group.

Predicted—All Features Predicted-ACA Features Predicted—MCA Features

Expected Control FMS Control FMS Control FMS

Control 11 1 9 3 11 1

FMS 1 10 5 6 1 11

CV Control FMS Control FMS Control FMS

Control 12 0 9 3 11 1

FMS 0 11 5 6 1 11

https://doi.org/10.1371/journal.pone.0180253.t007
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Hz (global peak frequency). Several harmonic peaks can be observed in higher frequency

bands, with some concentrated power also present in lower frequency bands.

The global peak frequency is significantly higher in the FMS patients than in healthy partic-

ipants (specifically, in L-MCA results). The CBFV component that has the biggest influence on

the power spectrum is the cardiac cycle, which determines the position of the global peak fre-

quency. Although the analyses with the current sample have not been able to detect significant

differences between groups in the heart rate calculated from the intervals between the peaks of

the normalized envelop signal, the higher values in the global peak frequency that have been

obtained in the present study are coherent with the already known observation that FMS

patients have higher heart rates than healthy population [26,57]. There is probably a different

vegetative nervous response in both groups that can lead to these results [19].

When focusing on lower frequency bands, patients seem to have a decreased spectral power

in the LF band in comparison with controls, and an increased spectral power in higher fre-

quencies (Fig 3). The LF/HF ratio also presented significant differences for both hemispheres

of MCA and for L-ACA, being the values of the healthy participants greater than those of FMS

patients. The HF and LF fluctuations of CBFV have been described as secondary to the HF

and LF fluctuations of the arterial blood pressure. The HF fluctuations of CBFV are secondary

to HF fluctuations of arterial blood pressure (ABP) induced by respiration; LF fluctuations of

CBFV are secondary to LF fluctuations of ABP, which originate from peripheral vasomotor

activity and are additionally modified by cerebral autoregulation [44]. The LF/HF differences

between FMS groups and healthy controls in resting state could reflect differences in periph-

eral vasomotor activity, vegetative nervous response, interference of drugs as well as subtle dif-

ferences in cerebral autoregulation.

The correlation analyses show that the lower values the LF/HF ratio observed in the FMS

group, for example in the L-MCA, are associated with higher values of both depression

and anxiety (STAI trait). On the other hand, the LF spectral power of the L-MCA, which is

also lower in the FMS group, is associated with pain indicators (Pain severity factor of the

WHYMPI). Finally, the centroid frequency in the lower frequency band is associated with

depression and anxiety (STAI state).

Our results also show that the fluctuations in the frequency band between 0.12 and 0.25 Hz

are accentuated, in accordance to Malinen et al. [10], who had observed this effect in the

BOLD fMRI signal in the insula of patients with chronic pain. This might be associated to an

aberrant activity of the autonomic nervous system in the FMS patients. Modified vasomotion

in the activated brain regions, typically occurring around 0.1 Hz, could be the origin of the dif-

ference between groups [58,59]. A posterior study was unable to find this behavior in the

BOLD fMRI signal of FMS patients, but reported having found differences in even lower fre-

quency bands [11]. Although further research will be needed to extract conclusions about

these fluctuations in low frequency bands and the influence on them of processes such as cere-

bral autoregulation, baroreceptor reflex and vasomotion, TCD can be applied as a complemen-

tary tool to evaluate this kind of low frequency variations in the brain response.

All the obtained results are in accordance with previous studies that have demonstrated the

relationship between negative emotional factors and activation of brain areas that are related

to pain [60,61]. Therefore, our results would confirm that the complexity and the frequency

features of CBFV are linked with other factors such as the depression levels, the state and trait

anxiety, and pain indicators of the participants.

Finally, results from the LDA classification show that features extracted from CBFV could

be useful to discriminate between FMS patients and healthy population by means of lineal

models. The best accuracy was achieved when using all the calculated parameters from MCA

and ACA, confirming the importance of characterizing the four arteries (MCA and ACA) in
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order to classify between FMS patients and healthy population. In addition, the stepwise fea-

tures selection showed the high influence of the information-theoretic and frequency features

in the LDA models, which would be in line with the previous results.

There are other studies with TCD that are applying classifiers to automatically detect cogni-

tive states, i.e., [62–65]. Although their purpose is different from the one of the present study,

it is interesting to indicate that their accuracies are in accordance with those obtained in the

present work.

The present study has some limitations that should be taken into account. Firstly, the num-

ber of participants in this work is reduced. The results should be confirmed with a large popu-

lation of different age ranges and ethnicities, making possible to analyze the influence on the

results of other related factors such as medication. Due to this limitation, the correlation analy-

ses between the TCD parameters and questionnaire scores have been conducted globally with

the whole sample, and not separately for each group. This has to be taken into account when

interpreting the correlation results. Most of the participants on the FMS group take prescrip-

tion drugs, mainly analgesics, antidepressant and anxiolytic drugs. Therefore, the influence of

drugs in our results cannot be completely discarded. Secondly, other physiological parameters

were not continuously monitored during the procedure because the work did not have the

goal of studying phenomena such as vasomotor activity or cerebral autoregulation. Conse-

quently, we do not have direct indicators of the influence of those phenomena in the obtained

results. Thirdly, the participants in this work were women. The results should be confirmed

using also a sample with FMS male patients. Finally, the TCD technique has some limitations.

It measures CBFV, which is just an indirect estimation of cerebral blood flow. Besides, its spa-

tial resolution is rather low [17], being restricted to the cerebral areas supplied by the analyzed

vessels. Consequently, it would not be possible to detect the activity in smaller foci of cerebral

activation.

Conclusion

The main goal of this study was to characterize the resting-state TCD in fibromyalgia patients.

Therefore, we acquired raw and envelop CBFV signals in the main cerebral vessels (ACA and

MCA). We observed that the fibromyalgia patients were characterized by a higher complexity

of the envelope CBFV signal, as well as by a higher peak frequency, a higher 0.12–0.25 Hz

band power, a lower LF/HF ratio and a higher centroid frequency in the lower frequency band

in resting-state. In addition, these results showed a significant association with clinical pain

parameters and emotional factors. Finally, we were able to classify with a high accuracy

between FMS patients and healthy participants using the characterization features from the

envelope CBFV signal.
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