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ABSTRACT 26 

The feasibility of using visible and near-infrared spectroscopy technology combined 27 

with multivariate analysis to discriminate cv. 'Big Top' and cv. 'Diamond Ray' 28 

nectarines has been studied. These varieties are very difficult to differentiate visually 29 

on the production line but show important differences in taste that affects the 30 

acceptance by final consumers. The relationship between the diffuse reflectance 31 

spectra and the two nectarine varieties was established. Five hundred nectarine 32 

samples (250 of each variety) were used for the study. Tests were performed by 33 

using a spectrometer capable of measuring in two different spectral ranges (600 – 34 

1100 nm and 900 – 1700 nm). These spectral ranges were used to develop two 35 

accurate classification models based on linear discriminate analysis (LDA) and partial 36 

least squares discriminate analysis (PLS-DA). Later, selection techniques were 37 

applied to select the most effective wavelengths. The results showed that the PLS-38 

DA model achieved better accuracy and less latent variables than LDA model, and 39 

specifically, good results with 100 % classification accuracy were obtained using only 40 

the 600 – 1100 nm spectral range for the two models and eight selected 41 

wavelengths. These results places visible and near-infrared spectrocopy as an 42 

accurate classification tool for nectarine varieties with a very similar appearance but 43 

different tastes that could be potentially used in an automated inspection system.  44 

 45 

Keywords: nectarine, sweet taste, nonsweet taste, visible and near-infraed 46 

spectroscopy, discrimination, chemometrics 47 

 48 

1. INTRODUCTION 49 
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Nectarine and peach fruit [Prunus persica (L.) Batch] are the second most important 50 

fruit crop in the European Union (EU) after apple (Iglesias & Echeverría, 2009). 51 

Recently, significant innovations have been made in the field of fruit varieties that 52 

seek improvements in colour and size, consistency of pulp, texture, taste and flavour 53 

(Jha et al., 2012; Jha et al., 2006; Picha, 2006; Jha et al., 2005; Jha et al., 2004). 54 

New varieties obtained show an attractive range of colours, tastes and forms as well 55 

as having an extended maturity schedule, which have given rise to excellent 56 

acceptance by consumers in both national and international markets (Iglesias, 2013; 57 

Iglesias & Casals, 2014). 58 

The most appreciated attributes among fruit consumers have been described as 59 

being taste, food safety (absence of pesticides), ease of consumption and cost 60 

(Wandel & Bugge, 1997; Radman, 2005; Dragsted, 2008). Regarding taste 61 

consumers generally prefer sweet and balanced tastes, except in some countries like 62 

Germany or England, where there is preference for nonsweet tastes (Cembalo et al., 63 

2009). In fact, the introduction of 'Big Top' nectarine variety intro the market 64 

represented a remarkable innovation for its sweet taste (< 6 g L-1 of malic acid) and 65 

excellent consistency, and has been widely accepted by national and international 66 

markets. 67 

Recently, new varieties of nectarines completing the collection period from late May 68 

to late September have been introduced into the market. This varietal range is 69 

complemented by new or existing varieties showing a similar appearance, but a 70 

balanced or nonsweet taste (> 6 g L-1 of malic acid), as occurs in the case of the 71 

'Diamond Ray' variety. In nectarine fruit, it is essential to differentiate the varieties 72 

from in processing line, which would allow the consumer to choose the ones that best 73 

adapt to their preferences.  74 
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The application of visible and near-infrared spectroscopy  for the analysis of fruit has 75 

allowed the prediction of chemical composition, notably sugar content (Li et al., 2013; 76 

Reita et al., 2008), and textural parameters (Lee et al., 2012; Sánchez et al., 2011), 77 

as well as the identification of varieties (Li et al., 2016; Guo et al., 2016) and the 78 

measurement of quality-related parameters (Pérez-Marín et al., 2011). This 79 

technique is relatively rapid, simple, cost-effective, non-destructive, and 80 

environmentally friendly. Its application in combination with chemometrics has been 81 

successfully used in non-destructive discrimination between varieties of agricultural 82 

products such as peach (Guo et al., 2016), bayberry (Li et al., 2007), orange 83 

(Suphamitmongkol et al., 2013), and pummelos (Li et al., 2016). 84 

This study aimed to evaluate the ability of visible and near-infrared spectroscopy to 85 

discriminate between two varieties of nectarine (cv. 'Big Top' and cv. 'Diamond Ray'), 86 

which, because there are similar in colour and appearance, are very difficult to 87 

differentiate visually on the production line but show important differences in taste, 88 

thereby affecting the acceptance by the final consumers. Two supervised methods 89 

such as linear discriminate analysis (LDA) and partial least squares discriminate 90 

analysis (PLS-DA) were used for this purpose. 91 

  92 

2. MATERIALS AND METHODS 93 

2.1. Experimental procedure 94 

A total of 500 nectarines with commercial maturity and uniform size and the absence 95 

of any external damage were harvested in a commercial orchard in Lérida, Spain. 96 

They were then stored at 0.1 °C with 87 % relative humidity to prevent the evolution 97 

of maturity during the experiment and to extend their shelf-life (Gorny et al., 1998). 98 

Half of the total samples belonged to the variety ‘Big Top’ and the other half to the 99 
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variety ‘Diamond Ray’. These varieties were selected because they are grown in the 100 

same period and have a similar evolution and physical appearance, although they 101 

differ critically in some of their organoleptic properties.  102 

On arrival at the laboratory, fruits were cleaned, individually numbered and each 103 

variety was randomly divided into five sets of 50 fruits. The visible and near-infraed 104 

spectra of the fruits in each set were collected and their physicochemical properties 105 

(soluble solids, firmness and flesh and external colour) were analysed by standard 106 

destructive methods (Cortés et al., 2016; Martins et al., 2016; Li et al., 2013; 107 

Hernández et al., 2006). 108 

 109 

2.2. Visible and near-infrared spectra acquisition 110 

Diffuse visible and near-infraed reflectance spectra of intact nectarines were 111 

collected using a multichannel spectrometer platform (AvaSpecAS-5216 USB2-DT, 112 

Avantes BV, The Netherlands) equipped with two detectors. The first detector 113 

(AvaSpec-ULS2048 StarLine, Avantes BV, The Netherlands) included a 2048-pixel 114 

charge-coupled device (CCD) sensor (SONY ILX554, SONY Corp., Japan), 50 μm 115 

entrance slit and a 600 line mm-1 diffraction grating covering the visible and near-116 

infrared range from 600 nm to 1100 nm (VNIR) with a spectral FWHM (full width at 117 

half maximum) resolution of 1.15 nm and a spectral sampling interval of 0.255 nm. 118 

The second detector (AvaSpec-NIR256-1.7 NIRLine, Avantes BV, The Netherlands) 119 

was equipped with a 256 pixel non-cooled InGaAs (Indium Gallium Arsenide) sensor 120 

(Hamamatsu 92xx, Hamamatsu Photonics K.K., Japan), with a 100 μm entrance slit 121 

and a 200 line mm-1 diffraction grating covering the near-infrared range from 900 nm 122 

to 1700 nm (NIR) with a spectral FWHM resolution of 12 nm and a spectral sampling 123 

interval of 3.535 nm.  124 
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The measurements were performed using a bi-directional fibre-optic reflectance 125 

probe (FCR-7IR200-2-45-ME, Avantes BV, The Netherlands). The probe was 126 

configured fitted with an illumination leg which connects to a stabilised 10 W tungsten 127 

halogen light source (AvaLight-HAL-S, Avantes B0V, The Netherlands) and the other 128 

leg of the fibre-optic probe was connected to both detectors for simultaneous 129 

measurement. A personal computer equipped with software (AvaSoft version 7.2, 130 

Avantes, Inc.) was used to control both detectors and to acquire the spectra. The 131 

integration times were adjusted for each spectrophotometer using a 99 % reflective 132 

white reference tile (WS-2, Avantes BV, The Netherlands), so that the maximum 133 

reflectance value over each wavelength range was around 90 % of saturation 134 

(Lorente et al., 2015). The white reference tile for reflectance measurements was a 135 

32 mm diameter and 10 mm thick block of white polytetrafluoroethylene (PTFE). The 136 

white reference tile was placed at a distance of 5 mm from the probe to make a 137 

reference measurement. The dark spectrum was obtained by turning off the light 138 

source and completely covering the tip of the reflectance probe. The integration time 139 

was set to 120 ms for the VNIR detector and 550 ms for the NIR detector due to the 140 

different features of the two detectors. For both detectors, each spectrum was 141 

obtained as the average of five scans to reduce the thermal noise of the detector 142 

(Nicolaï et al., 2007). The average reflectance measurements of each sample (S) 143 

were then converted into relative reflectance values (R) with respect to the white 144 

reference using dark reflectance values (D) and the reflectance values of the white 145 

reference (W), as shown in Eq. (1): 146 

 147 

𝑅𝑅 =  𝑆𝑆−𝐷𝐷
𝑊𝑊−𝐷𝐷

     (1) 148 

 149 
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Prior to the spectral measurements, the temperature of the nectarines was stabilised 150 

at a room temperature of 22 ± 1 °C. All the measurements were taken at two points 151 

on each side of the fruit and mean values of the spectra were used for the analysis.  152 

 153 

2.3. Determination of the quality attributes 154 

Destructive methods were performed immediately after the spectral acquisition to 155 

determine the quality attributes for use as reference values. Both the external and the 156 

flesh colours were measured using a spectrocolorimeter (CM-700d, Minolta Co., 157 

Tokyo, Japan) every 10 nm between 400 and 700 nm. The colour was evaluated 158 

using the L*, a* and b* space proposed by the International Commission on 159 

Illumination (CIE). L*a*b* were determined from the reflectance spectra, considering 160 

standard illuminant D65 and standard observer 10 .̊ L* refers to the luminosity or 161 

lightness component, a* (intensity of red (+) and green (-)) and b* (intensity of yellow 162 

(+) and blue (-)) are the chromaticity coordinates. The total colour difference (ΔE) 163 

between the ’Big Top’ samples and the ‘Diamond Ray’ samples was calculated by 164 

Eq. (2).  165 

 166 

ΔE = �(𝐿𝐿∗𝐵𝐵𝐵𝐵 − 𝐿𝐿∗𝐷𝐷𝐷𝐷)2 + (𝑎𝑎∗𝐵𝐵𝐵𝐵 − 𝑎𝑎∗𝐷𝐷𝐷𝐷)2 + (𝑏𝑏∗𝐵𝐵𝐵𝐵 − 𝑏𝑏∗𝐷𝐷𝐷𝐷)2   (2) 167 

      168 

where subscript ‘BT’ refers to the colour reading of the ‘Big Top’ samples and ‘DR’ 169 

refers to the colour reading of the ‘Diamond Ray’ samples.  170 

Nectarine firmness was measured using a Universal Testing Machine 171 

(TextureAnalyser-XT2, Stable MicroSystems, Haslemere, England) to perform 172 

puncture tests using a 6 mm diameter cylindrical probe (P/15ANAMEsignature) to a 173 

relative deformation of 30 % at a speed of 1 mm s-1. Two measurements were 174 
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performed for each fruit on opposite sides along the equator. The fracture strength 175 

(Fmax) was analysed for all samples as the maximum force applied to break up the 176 

sample, being expressed in Newtons.  177 

Immediately after firmness measurements, juice samples were extracted to estimate 178 

the total soluble solids content (TSS) and titratable acidity (TA). The TSS was 179 

determined by refractometry (%) with a digital refractometer (set RFM330+, VWR 180 

International Eurolab S.L Barcelona, Spain) at 20 ºC with a sensitivity of ± 0.1 %. 181 

Samples were analysed in triplicate and average values were calculated. The 182 

analysis of the TA was performed with an automatic titrator (CRISON, pH-burette 24, 183 

Barcelona, Spain) with 0.5 N NaOH until a pH of 8.1 (UNE34211:1981), using 15 g of 184 

crushed nectarine, which was diluted in 60 mL of distilled water. The TA was 185 

determined based on the percentage of citric acid, which was calculated using Eq. 186 

(3). 187 

 188 

 
𝑇𝑇𝑇𝑇 [𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 100⁄ 𝑔𝑔 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜] = (((𝐴𝐴 × 𝐵𝐵 × 𝐶𝐶)/𝐷𝐷) × 100)/𝐸𝐸  (3) 189 

 190 

where A is the volume of NaOH consumed in the titration (in L), B is the normality of 191 

NaOH (0.5 N), C is the molecular weight of citric acid (192.1 g mol-1), D is the weight 192 

of the sample (15 g) and E is the valence of citric acid (E = 3). 193 

 194 

2.4. Spectral pre-processing 195 

The spectral data were organised in a matrix, where the rows represent the number 196 

of samples (#N = 500 samples) and the columns represent the variables (X-variables 197 

and Y-variables). The X-variables, or predictors, were the spectral signals from the 198 

two detectors. The Y-variables, or responses, were the artificial (dummy) variables 199 
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created by assigning different values or letters to the different classes to be 200 

discriminated. In the case of PLS-DA, assuming a discrete numerical value (zero for 201 

the cv. ‘Diamond Ray’ or one for the cv. ‘Big Top’), was used as Y-variable. However, 202 

for LDA the Y-variable was a categorical value created by assigning different letter to 203 

the different cultivar (A for the cv. ‘Diamond Ray’ and B for the cv. ‘Big Top’). In 204 

addition, for LDA the number of samples in the training set must be larger than the 205 

number of variables included in the model (Kozak & Scaman, 2008; Sádecká et al., 206 

2016), thus requiring a variable selection or variable reduction. This was performed 207 

using the principal component analysis (PCA) scores as input data, since the linear 208 

combinations of the original variables, called principal components, are uncorrelated 209 

(Rodríguez-Campos et al., 2011).  210 

The raw spectra were transformed to apparent absorbance (log (1/R)) values so as to 211 

be able to linearise the correlation with the concentration of the constituents 212 

(Hernández et al., 2006; Shao et al., 2007; Liu et al., 2009) using The Unscrambler X 213 

software package (CAMO, Norway). Then, the raw spectra belonging to the two 214 

detectors were normalised (Bakeev, 2010) by dividing each variable by its standard 215 

deviation (Bouveresse et al., 1996). By so doing, the spectral intensities are rescaled 216 

to a common range, thus allowing the comparison of spectra acquired using two 217 

detectors with different resolutions. 218 

In addition, different pre-processing techniques were applied. Savitzky-Golay 219 

smoothing with a gap of three data points (Carr et al., 2005) was applied to improve 220 

the signal-to-noise ratio in order to reduce the effects caused by the physiological 221 

variability of samples (Carr et al., 2005; Beghi et al., 2017). Due to the fresh light 222 

scattering in samples (Gelbukh et al., 2006), the light does not always travel the 223 

same distance in the sample before it is detected. A longer light traveling path 224 
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corresponds to a lower relative reflectance value, since more light is absorbed. This 225 

causes a parallel translation of the spectra. This kind of variation inteferes in the 226 

calibration models and need to be eliminated by the extend multiplicative scatter 227 

correction (EMSC) technique (He et al., 2007; Martens et al., 2003; Bruun et al., 228 

2007). In addition to those two pre-processing, the second derivate with Gap-229 

Segment (2.3) were applied for the NIR spectra because it allowed the extraction of 230 

useful information (Cortés et al., 2016; Rodriguez-Saona et al., 2001).   231 

 232 

2.5. Multivariate data analysis of spectral data 233 

PCA (Naes et al., 2004), PLS-DA and LDA were used in this work by means of The 234 

Unscrambler X software package. PCA was selected as the method for outlier 235 

detection (through the analysis of Hotelling’s T2 and squared residual statistics) and 236 

to explore the data structure and the relationship between objects (Beghi et al., 2017; 237 

Beebe et al., 1998), in order to pinpoint the most relevant varietal groups and 238 

spectral features. So, the use of suitable projection, e.g., PCA or partial least square 239 

regression (PLS) (Balabin et al., 2007; Xiabo et al., 2010) may help to minimize the 240 

large number of spectral variables in the data sets and identify variables that 241 

contribute useful information (effective wavelengths, EWs). In this study, wavelengths 242 

with large loading weight values were selected as important for the varietal 243 

discrimination. EWs were selected as only those located at the peaks or valleys of x-244 

loading weights plots, and with an absolute x-loading weight higher than 0.1 (Liu et 245 

al., 2008). 246 

PLS-DA and LDA were used to classify the nectarines in terms of variety. These 247 

discriminant analyses seek to correlate spectral variations (X) with defined classes 248 

(Y), attempting to maximise the covariance between the two types of variables.  249 
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A training set was used and consisted in randomly selecting 80 % of the samples that 250 

were studied to develop a calibration model. Each calibration model was internally 251 

validated using the leave-one-out cross-validation technique (Huang et al., 2008). In 252 

order to correct the relative influences of the different instrumental responses on a 253 

model, a standardisation technique was used, where the weight of each X-variable 254 

was the standard deviation of the variable (Bouveresse et al., 1996). An independent 255 

test set composed of the remaining 20 % of the samples was used for the evaluation 256 

and comparison of the classification models (Soares et al., 2013).  257 

 258 

2.6. Model performance evaluation 259 

The PLS-DA cut-off value for nectarine samples discrimination was fixed at 0.5. If the 260 

predicted value of a sample was less than 0.5, the sample was assigned to the group 261 

of the 'Diamond Ray' samples, while if the predicted value was more than 0.5, the 262 

sample was assigned to the group of the 'Big Top' samples. The determination 263 

coefficient (R2), root mean square error (RMSE) and the number of latent variables 264 

(LVs) were used to evaluate the accuracy of the PLS-DA calibration model to predict 265 

new samples. In the case of LDA, the criterion for the selection of LVs is maximum 266 

differentiation between the categories and minimal variance within categories 267 

(Cardoso & Silva, 2016; Naes et al., 2002; Adams, 1995). The method produces a 268 

number of orthogonal linear discriminant functions, equal to the number of categories 269 

minus one, that allow the samples to be classified in one category or another (Naes 270 

et al., 2002; Otto, 1999). 271 

 272 

3. RESULTS AND DISCUSSION 273 

3.1. Analysis of the quality attributes 274 
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Table 1 shows the minimum, maximum, mean and standard deviation of the 275 

physicochemical characteristics (fracture strength, total soluble solids, tritatable 276 

acidity, and flesh and external colour) analysed in the samples of both varieties of 277 

nectarines (#N = 250 samples for each variety).  278 

 279 

Table 1. Descriptive statistics for the physicochemical characteristics of nectarines 280 

during the storage period  281 
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 282 

No differences were observed between the two varieties, and among the different 283 

sets, in terms of soluble solids, firmness, and flesh and external colour.   284 
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The TSS ranged from 8 to 17 % with an average value of 12 ± 2 % for cv. 'Diamond 285 

Ray' and from 7 to 22 % with an average value of 13 ± 2 % for cv. ‘Big Top’. In all 286 

cases, the values of TSS were greater than 8 %, which is the minimum established 287 

by the European Union to market peaches and nectarines (R-CE No. 1861/2004). 288 

Several authors have reported a linear relationship between TSS and consumer 289 

acceptance (Crisosto & Crisosto, 2005), a TSS below 10 % generally being 290 

unacceptable to consumers (Clareton, 2000).  291 

The firmness of ‘Diamond Ray’ samples ranged from 5 to 57 N with an average value 292 

of 33 ± 10 N, and ‘Big Top’ samples ranged from 6 to 53 N with an average value of 293 

35 ± 7 N. According to Crisosto (2002) and Valero et al. (2007), these firmness 294 

values are in the commercial range considered 'ready to buy'. 295 

For flesh colour, L*, a*, b*, C* and h* ranged from 52 to 76, -6 to 23, 23 to 35, 28 to 296 

36 and 46 to 100 for cv. ‘Diamond Ray’ and from 60 to 75, -8 to 4, 30 to 36, 30 to 36 297 

and 83 to 105 for cv. ‘Big Top’, with average values of 67 ± 4, 2 ± 4, 31 ± 2, 32 ± 1, 298 

86 ± 8 and 68 ± 3, -2 ± 2, 33 ± 1, 33 ± 1, 93 ± 3 respectively. These values indicated 299 

that the flesh of both varieties has a high luminosity, low chroma and yellow hue. No 300 

differences were observed in luminosity and chroma between sets and between 301 

varieties, whereas slight differences in hue were observed between varieties. Despite 302 

these differences, the overall perception of flesh colour would make it very difficult to 303 

discriminate both varieties, especially during any industrial process where fruits must 304 

be inspected quickly, as shown in the images in Figure 1 with examples of each of 305 

the sets analysed. According to ISO 12647-2, colour differences (ΔE) lower than ± 5 306 

units make the human eye unable to discriminate two samples. In this case, the ΔE 307 

between both varieties measured with the colorimeter was ± 4.5. Furthermore, 308 

differentiating nectarine varieties by the flesh colour requires the destruction of the 309 
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sample, and therefore this destructive analysis results in high costs and does not 310 

allow the whole production to be analysed (Torres et al., 2013). 311 

 312 

Fig. 1. Example of the internal appearance of both cultivars on each day of analysis. 313 

 314 

Regarding the external colour of the nectarines, no significant differences were found 315 

in the values of luminosity, chroma and hue for the sets and the varieties studied. 316 

The L*, a*, b*, C* and h* ranged from 25 to 59, 15 to 38, 4 to 28, 18 to 42 and 10 to 317 

60 for cv. ‘Diamond Ray’ and from 26 to 63, 8 to 34, 4 to 31, 21 to 39 and 12 to 75 for 318 

cv. ‘Big Top’, with average values of 37 for luminosity, 31.3 for chroma and 25.9º for 319 

hue, for both varieties. These values indicated that, externally, both varieties had low 320 

luminosity, low chroma and red-orange hue. The ΔE of external colour between 321 

varieties was 1.5, and therefore barely perceptible. Hence, this non-destructive 322 

analysis was not valid for varietal discrimination. 323 

The main difference between the two varieties of nectarine was TA, the ‘Diamond 324 

Ray’ variety being more acid than the ‘Big Top’ variety or, according to the definition 325 

of Reig et al. (2013), the are a nonsweet and sweet variety, respectively.  All sets of 326 

the cv. 'Diamond Ray' had an average value of 0.65 ± 0.1 g 100g-1, unlike the 327 

average value of the sets of the cv. 'Big Top' which was 0.37 ± 0.1 g 100g-1. These 328 
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results are in accordance with the sensorial profile performed by Iglesias (2012). The 329 

study concluded that the only difference between these two varieties is in the 330 

perception of acidity. Similarly, Reig et al. (2013) and Liverani et al. (2002) compared 331 

sweet cultivars (such as 'Big Top', ‘Gardeta’ and ‘Luciana’) with nonsweet cultivars 332 

(such as 'Diamond Ray', ‘Amiga’ and ‘Rose Diamond’), and determined that they 333 

differed mainly in their TA value and the perception of acidity, the rest of their 334 

physicochemical characteristics being similar among the cultivars. 335 

 336 

3.2. Visible and Near-infrared spectra of the two nectarine varieties 337 

Figure 2 represents the mean raw VNIR and NIR spectra for the ‘Diamond Ray’ and 338 

‘Big Top’ samples at different sets of analysis. The trend and absorbance bands of 339 

the spectral curves were similar. Previous studies have documented similar values 340 

(Pérez-Marín et al., 2009; Pérez-Marín et al., 2011; Martins et al., 2016). The 341 

varieties analysed showed the same absorbance bands around 670 nm, 970 nm, 342 

1160 nm and 1450 nm. Authors such as Tijskens et al. (2007) confirmed that the 343 

absorption at 670 nm allowed the maturity of nectarine to be evaluated because it is 344 

indicative of the presence of chlorophyll, with its characteristic green colour (Merzlyak 345 

et al., 2003; Hernández et al., 2006). The peak centred at 970 nm is present in the 346 

signal recorded by the two detectors. This peak and the one present at 1450 nm are 347 

related to pure water (Williams & Norris, 1987; McGlone & Kawano, 1998). A 348 

characteristic absorption band at around 1160 nm related to second overtone C-H 349 

stretching (Osborne et al., 1993; Walsh et al., 2004).  350 

 351 
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 352 

Fig. 2. Averaged raw VNIR and NIR spectra for the two varieties of nectarines at 353 

different sets of analysis.  354 

 355 

3.3. Varietal classification 356 

Classification models were built based on supervised PLS-DA and LDA with the full 357 

spectral range, with only the VNIR and NIR spectral ranges separately, and with the 358 

effective wavelengths selected (EWs) from the original ranges. Table 2 shows the 359 

predictive ability for each validation set for the twelve models developed. Similar 360 

results were obtained to PLS-DA models for each spectral ranges and with the most 361 

important EWs. However, the LDA models were less accurate with higher number of 362 

LV and EWs than PLS-DA models. The optimal number of LVs was chosen 363 

according to the lowest RMSE cross-validation (RMSECV) by internal validation 364 

using the leave-one-out cross validation technique, in combined analysis with the 365 

cumulative variance in the X and Y blocks (Bachion de Santana et al., 2016). The x-366 

loading weights obtained for the different spectral ranges with only the EWs selected 367 

are shown in Figure 3.  368 
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 369 

Table 2. Varietal classification results for each methods, presented both as a 370 

percentage and an absolute number of correctly classified samples in the validation 371 

sets. 372 

 373 

Methods 

   Classification accuracy 

 EWs LVs 
cv. 

'Diamond Ray' 

cv. 

'Big Top' 

Total 

samples 

PLS-DA Full 2189 5 100 % (50/50) 100 % (50/50) 100 %  

  12 4 94 % (47/50) 86 % (43/50) 90 %  

 VNIR 1838 6 100 % (50/50) 100 % (50/50) 100 %  

  8 5 100 % (50/50) 100 % (50/50) 100 %  

 NIR 213 8 100 % (50/50) 100 % (50/50) 100 %  

  7 4 92 % (46/50) 98 % (49/50) 95 %  

LDA Full 2189 14 100 % (50/50) 100 % (50/50) 100 %  

  12 10 94 % (47/50) 86 % (43/50) 90 %  

 VNIR 1838 12 98 % (49/50) 100 % (50/50) 99 %  

  8 7 100 % (50/50) 100 % (50/50) 100 %  

 NIR 213 5 84 % (42/50) 76 % (38/50) 80 %  

  7 6 98 % (49/50) 96 % (48/50) 97 %  

 374 

Using all 2189 spectrum features, PLS-DA and LDA achieved external validation 375 

accuracies of 100 %. Selecting 12 wavelenghts, PLS-DA and LDA achieved 376 

classification accuracy of 90% with four and ten LVs, respectively. PLS-DA was able 377 



18 
 

to correctly classify all samples in the validation set by using the 213 wavelengths of 378 

NIR detector and with only seven EWs and four LVs attained 95 %, although LDA 379 

achieved better results with only seven EWs and six LVs (97 % of accuracy) than 380 

with all wavelengths of the NIR detector (80 % of accuracy). However, selecting only 381 

eight EWs out 1838 available features of VNIR detector, PLS-DA and LDA model 382 

attained 100 % validation accuracies with five and seven LVs, respectively. These 383 

eight EWs were selected including 648, 883, 949, 1006, 1025, 1026, 1037, and 1054 384 

nm. So, with only these eight EWs obtained by VNIR detector was possible achieved 385 

better accuracy classification results (100 %) than the other models developed with 386 

the other spectral ranges. An explanation for this result would be that visible 387 

spectroscopy is more suitable for the characterization of nectarine colours, which are 388 

very similar in both varieties, while near infrared spectra provides complementary 389 

information (Liu et al., 2003) related to the macronutrients and the interactions that 390 

they can develop with other constituents (Lucas et al., 2008).  391 

 392 

 393 

Fig. 3. The x-loading weights for the EWs selected at different spectral ranges. 394 
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 395 

Figure 4 shows that all the training set and validation samples were correctly 396 

classified by the best PLS-DA model obtained with eight EWs. In this situation, all 397 

'Big Top' samples have predictive values close to 1, thus classifying these as 398 

belonging to class ‘1’, and 'Diamond Ray' samples have predictive values close to 0, 399 

thereby classifying these as belonging to class ‘0’. The values of the RMSE were 400 

0.179 and 0.183 for calibration and validation respectively, which exhibit good 401 

agreement, thus indicating that the calibration error is a good estimation of the 402 

standard error of prediction observed in samples of the test set. Moreover, the test 403 

set yielded similar results to those of the calibration set, with R2 of 0.872 and 0.866 404 

respectively, which indicates a good performance of the model for varietal 405 

classification. 406 

 407 

Fig. 4. Estimated class values for training and validation sets for varietal 408 

discrimination by the best PLS-DA model. 409 

 410 

Regarding LDA, Figure 5 shows the results of the external validation by test set (20 411 
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samples of the cv. 'Diamond Ray' are in red. There were not misclassified samples, 413 

so the classification accuracy was 100 % using only eight wavelengths of the VNIR 414 

spectral region. 415 

 416 

Fig. 5. Discrimination plot of the best LDA model for (a) the training samples and (b) 417 

the validation samples. 418 

 419 

Several authors (Balabin et al., 2010; Liu et al., 2006; Sinelli et al., 2007) have 420 

reported that the PLS-DA method is more effective than LDA. Indeed the LDA 421 

method suffers from several limitations, for example, the number of variables cannot 422 
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exceed the number of samples (Roggo et al., 2003) and it is not able to cope with 423 

highly collinear data, which are quite common. To overcome some limitations, over 424 

the years other techniques, in particular PLS-DA, have been devised (Marini, 2010). 425 

Similarly, to us, Long et al. (2015) combined near-infrared spectroscopy with PLS-DA 426 

for the discrimination of transgenic rice and they achieved a classification rate of 100 427 

% in the validation test. Addicionally, a considerable effort has been made in this 428 

work towards the development of models that objectively identify variables that 429 

provide useful information and eliminate those that contain unnecessary data. 430 

 431 

4. CONCLUSIONS 432 

Classification models were developed in order to discriminate two nectarine varieties 433 

(cv. ‘Big Top’ and cv. ‘Diamond Ray’) in different spectral ranges (VNIR, NIR, and the 434 

whole spectra combined). Two classification methods including PLS-DA and LDA 435 

were evaluated based on all wavelengths or the EWs selected for the spectral 436 

regions considered. The best models were obtained using only eight EWs out of the 437 

1838 available features of the VNIR detector, identified from the x-loading weights as 438 

the most important ones. PLS-DA and LDA models attained an accuracy of 100 % for 439 

the validation set with five and seven LVs, respectively. Therefore, PLS-DA and LDA 440 

resulted as robust models for discriminating varieties of nectarine with a satisfactory 441 

level of accuracy. The comparison of the different analysis performed indicated that 442 

both  detectors were able to achieve a good varietal classification, being the detector 443 

sensible in the VNIR range the one that achieved better results identifying the studied 444 

varieties of nectarines, almost identical in external and internal appearance but very 445 

different in taste and organoleptic properties..  446 

 447 
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