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Abstract 
Steel and composite structures are traditionally designed through strength based 
calculations. An alternative approach is to consider deformation capacity. Deformation 
based design enables a more accurate allowance to be made for the spread of plasticity and 
allows strain hardening to be considered in a systematic manner. Importantly, the level of 
deformation required by the structure at ultimate limit state to reach the required design 
capacity can also be assessed. In composite construction, deformation based design enables 
a more rigorous assessment to be made of the development of strength in the structural 
system taking due account of the compatibility between the constituent materials. In this 
paper, recent developments to the deformation based continuous strength method for steel 
and composite design are described. Comparisons of capacities obtained from experiments 
and numerical simulations with those predicted using the continuous strength method are 
presented and discussed. Recommendations for future work on this topic are also set out. 

Keywords: Compatibility; deformation based; steel; steel-concrete composite; strain 
based. 

 
 

1. Introduction 
Structural design codes for steel and steel-

concrete composite structures are typically 
strength-based. The criteria for assessing the 
acceptability of the structural design at ultimate 
limit state involve comparisons between the 
factored member forces and the factored 
resistances. Checks, typically under unfactored 
loads, are also carried out to assess the 
acceptability of the performance of the structure 
in service. However, an explicit assessment of 
the deformation of the structure and, for 
composite construction, the compatibility of 
deformations between the constituent elements, 
at ultimate limit state, is not typically performed. 
This can lead to (1) highly inconsistent 
deformation demands being placed on different 
structural elements prior to the attainment of 
their design resistance, (2) non-ductile failure 
modes and (3) hindrance to the systematic 
exploitation of the beneficial influence of the 
spread of plasticity and strain hardening. 

In this paper, recent developments to the 
deformation based continuous strength method 

(CSM) for steel and steel-concrete composite 
design are described, and advantages over 
existing design methods are highlighted. 

2. Continuous strength method 
The key features of the CSM are (1) a base 

curve that defines the maximum level of strain 
εcsm that a cross-section can endure prior to 
failure by (inelastic) local buckling as a function 
of the cross-section slenderness and (2) the 
adoption of a material model that allows for the 
beneficial influence of strain hardening. 

2.1. CSM design base curve 
The CSM design base curve provides a 

continuous relationship between the strain ratio 
εcsm/εy (i.e., deformation capacity) and the cross-
section slenderness pλ , where εy is the material 
yield strain equal to fy/E, with fy being the steel 
yield stress and E being the Young’s modulus. 
The cross-section slenderness pλ  is defined in a 
non-dimensional form by Eq. (1), where σcr is the 
elastic buckling stress which should preferably 
be determined for the full cross-section either 
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using numerical methods, such as the finite strip 
software CUFSM [1], or approximate analytical 
methods [2]. 

p y cr/λ f σ=                                                           (1) 

Experimental data from stub column tests and 
four-point bending tests on hot-rolled carbon 
steel, cold-formed carbon steel, high strength 
steel and stainless steel sections have been 
collated and plotted in Fig. 1 on a graph of strain 
ratio εcsm/εy versus pλ . The test data for the 
different materials show a clear trend of reducing 
deformation capacity (i.e. lower εcsm/εy) with 
increasing cross-section slenderness pλ . The 
CSM base curve is given by Eq. (2), where εu is 
the strain corresponding to the ultimate tensile 
strength fu, and can be seen to provide good 
predictions of normalised deformation capacity 
for all the considered materials. Two upper 
bounds have been placed on the predicted CSM 
strain ratio εcsm/εy; the first limit of 15 is related 
to the material ductility requirement according to 
EN 1993-1-1 (EC3) [3] and prevents excessive 
deformations, and the second limit of C1εu, 
where C1 is a coefficient corresponding to the 
adopted CSM material model as described in the 
subsequent section, defines a ‘cut-off’ strain to 
avoid over-predictions of material strength. It is 
noted that the CSM base curve (Eq. (2)) applies 
to non-slender cross-sections where p 0.68λ ≤ , 
with p 0.68λ =  being the transaction point 
between non-slender and slender sections [4], 
though extension the base curve to slender cross-
sections has also recently been presented [5]. 

csm csm 1 u
3.6

y y yp

0.25 , but min 15,ε ε C ε
ε ε ελ

 
= ≤   

 
            (2) 

 
Fig. 1. CSM base curve for non-slender cross-

sections. 

2.2. CSM material models 
An elastic, linear hardening material model 

has been employed throughout the development 
of the CSM to represent the strain hardening 
response of metallic materials with rounded 
stress-strain behaviour, such as stainless steel, 
aluminium and cold-formed steel. However, this 
bi-linear material model is unsuitable for hot-
rolled carbon steels due to the presence of the 
characteristic yield plateau, with strain 
hardening not commencing until the attainment 
of strain hardening strain εsh. Thus, the quad-
linear material model proposed in [6], as 
illustrated in Fig. 2 and described in Eq. (3), is 
adopted as the CSM material model for hot-
rolled carbon steels, taking account of both the 
yield plateau and the strain hardening. 

 
Fig. 2. The quad-linear material model for hot-

rolled carbon steels. 
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(3) 

Four material coefficients, C1, C2, C3 and C4, 
are used in the material model; C1 defines a ‘cut-
off’ strain to avoid over-predictions of material 
strength and is also included in the CSM base 
curve (Eq. (2)); C2 is used in Eq. (4) to define the 
strain hardening slope Esh; and C3 and C4 are 
used in the predictive expression for ultimate 
strain εu (Eq. (5)), which is also needed for the 
determination of Esh. The strain hardening strain 
εsh for hot-rolled carbon steels may be 
determined from Eq. (6). Note that the quad-
linear material adopts the same definitions for 
the material coefficients as used in the previous 
CSM elastic, linear hardening material model, 
and can indeed be seen as a superset of the 
previous model, with the principal difference 
being that the strain hardening strain εsh is equal 
to the yield strain εy in the CSM elastic, linear 
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hardening model, resulting in Eq. (7) for the 
calculation of Esh. 

u y
sh

2 u sh

f f
E

C ε ε
−

=
−

for hot-rolled carbon steels          (4) 

y
u 3 4

u

1
f

C C
f

ε
 

= − + 
 

 

but εu ≥ 0.06 for hot-rolled carbon steels          (5) 

y
sh

u

0.1 0.055
f
f

ε = − , but 0.015 ≤ εu ≤ 0.03             (6)

u y
sh

2 u y

f f
E

C ε ε
−

=
−

for stainless steels, aluminium  

and cold-formed steels         (7) 

Recommended values or predictive 
expressions for the coefficients for the different 
materials are summarised in Table 1. Detailed 
information on the derivation of these 
coefficients is given in [4,6-11]. 

Table 1. Summary of coefficients for the CSM 
material model. 

Material  C1 C2 C3 C4 
Hot-rolled steel Eq. (8) Eq. (9) 0.60 0 
Cold-formed steel 0.40 0.45 0.60 0 
Austenitic and duplex 
stainless steel 0.10 0.16 1.00 0 

Ferritic stainless steel 0.40 0.45 0.60 0 
Aluminium 0.50 0.50 0.13 0.06 
 

sh u sh
1

u

0.25( )C ε ε ε
ε

+ −
=                                          (8) 

sh u sh
2

u

0.4( )C ε ε ε
ε

+ −
=                                            

(9) 

Having introduced the CSM base curve and 
material models, the development of strength 
equations for carbon steel and steel-concrete 
composite design was explored. The most recent 
research studies into this field are summarised in 
the following sections. 

3. Recent CSM developments for carbon 
steel design 

The research detailed below focuses on 
recent developments to the CSM for application 
to carbon steel structural elements, including 
both cold-formed and hot-rolled steels. 

3.1. Cold-formed steels 
Within the CSM design framework, the 

cross-section resistances in compression or 
bending are determined utilizing the limiting 
strain εcsm from the CSM design base curve (Eq. 
(2)), in conjunction with the CSM material 
model summarised in Section 2.2. 

For non-slender cross-sections ( pλ ≤ 0.68), 
the CSM cross-section compression resistance 
Ncsm is determined as the product of the gross 
cross-section area A and the CSM limiting stress 
fcsm, as given by Eq. (10), in which fcsm is 
calculated from Eq. (11) based on the proposed 
CSM material model for cold-formed steels [8]. 

csm csmN Af=                                                           (10) 

( )csm y sh csm yf f E f f= + −                                       (11) 

For cross-sections with pλ  ≤ 0.68, the cross-
section bending resistance Mcsm is determined 
from Eqs. (12) and (13) for major and minor axis 
bending, respectively, where Wpl is the plastic 
section modulus, Wel is the elastic section 
modulus, y and z refer to the major and minor 
axis, respectively, and α is a dimensionless 
coefficient that depends on the cross-section 
shape and axis of bending as defined in Table 2. 

el,ysh csm
csm,y pl,y y

pl,y y

el,y csm

pl,y y

1 1

                       1

WEM W f
E W

W
W

α

ε
ε

ε
ε

  
= + −     

   
− −           

               (12) 

el,zsh csm
csm,z pl,z y

pl,z y

el,z csm

pl,z y

1 1

                       1

WEM W f
E W

W
W

α

ε
ε

ε
ε

  
= + −     

   
− −           

              (13) 

Table 2. CSM coefficient factors α and β for bending. 

 α  β 
 Major Minor  Major Minor 

I-sections 2.0 1.2  0.08 0.05 

Box-sections 2.0 2.0  0.08 0.08 

 

Work performed in [8] examines the 
accuracy of the CSM for the design of cold-
formed steel cross-sections in compression and 
bending through comparisons against over 600 
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test and FE data. The comparisons revealed that 
the CSM provides more accurate and consistent 
resistance predictions of cold-formed steel cross-
sections in compression and bending than the 
design provisions of EC3. The CSM predicts 
enhanced resistances over EC3 due to its rational 
exploitation of the spread of plasticity and strain 
hardening for non-slender cross-sections, with 
average enhancements in compressive and 
bending resistances being 5% and 3%, 
respectively, for typical dimensions.  

A new design approach for cold-formed steel 
box sections under combined loading, which 
adopts similar interaction expressions to those 
given in EC3 but utilizes the CSM compression 
and bending resistances as the end points, was 
also proposed and examined in [8]. The 
proposed interaction expressions for cold-
formed steel box sections under major and minor 
axis bending plus compression are given by Eqs. 
(14) and (15), respectively, while Eq. (16) was 
put forward for biaxial bending plus 
compression, where MEd is the applied design 
bending moment, MR,csm is the reduced CSM 
bending resistance due to the existence of axial 
load NEd, ncsm is the ratio of the design axial load 
to CSM compression resistance NEd/Ncsm, aw and 
af are the ratios of the cross-section web area Aw 
and flange area Af to the gross area A, 
respectively, φ is the reduction factor for the 
plateau length, as illustrated in Fig. 3 and given 
by Eq. (17), and αcsm and βcsm are the interaction 
coefficients for biaxial bending, whose values, 
which depend on the axial load ratio ncsm and 
cross-section slenderness pλ , are given in Table 
3. 

csm
R,csm,y csm,y csm,y

w

1
1-0.5

nM M M
aϕ

−
= ≤                      (14) 

csm
R,csm,z csm,z csm,z

f

1
1-0.5

nM M M
aϕ

−
= ≤                       (15) 

csm csm

Ed,y Ed,z

R,csm,y R,csm,z

1
M M

M M

α β
   

+ ≤        
                        (16) 

p1.36 2 1ϕ λ= − ≤                                                 (17) 

 

Fig. 3. Proposed design interaction curves for 
cold-formed steel box sections under 
uniaxial bending plus compression. 

Table 3. Proposed interaction coefficients for cold-
formed steel box sections subjected to 
biaxial bending plus compression. 

 pλ  ≤ 0.5  0.5 < pλ  ≤ 0.68 
ncsm < 0.8 0.8 < ncsm ≤ 1   

αcsm 1.45/(1-1.2ncsm
2) 6  -2.5 pλ +2.7 

βcsm 1.45/(1-1.2ncsm
2) 6  -2.5 pλ +2.7 

 

A total of 12 test results and 1285 
complementary finite element (FE) results on 
cold-formed steel box sections under combined 
loading has been compared with design 
predictions using the proposed CSM [8] and EN 
1993-1-1. The ratios of the test (or FE) to the 
predicted capacities Ru,test/FE/Ru,pred, which are 
graphically defined in Fig. 4, are plotted against 
the cross-section slenderness pλ  in Figs 5 and 6 
for cold-formed steel box-sections under 
compression plus biaxial bending. Note that a 
value of Ru,test/FE/Ru,pred greater than unity means 
that the test or FE data point lies beyond the 
interaction curve, thus indicating a safe-sided 
result. The mean and coefficient of variation 
(COV) values of Ru,test/FE/Ru,pred from the 
comparisons are provided in Tables 4 and 5 for 
cross-sections under compression plus uniaxial 
bending and biaxial bending, respectively. The 
statistical values in Tables 4 and 5 clearly 
indicate that the proposed CSM for cold-formed 
steel box sections under combined loading 
provides closer and more consistent predictions 
of capacity than EC3 through a rational 
allowance of strain hardening and the adoption 
of more accurate interaction expressions, i.e. a 
gradual transition between the bi-linear 
interaction curve to the linear curve for pλ  > 
0.68 for cross-sections under compression and 
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uniaxial bending (see Fig. 3) and a modified 
nonlinear interaction equation for cross-sections 
under compression and biaxial bending (see 
Table 3). The robustness of the CSM predictions 
for cold-formed steel box-sections under 
combined loading is also highlighted in Figs 5 
and 6. 

 
Fig. 4. Graphical definition of Ru,test/FE and Ru,pred 

for the assessment of design provisions. 

 

Fig. 5. Comparison of test and FE results with 
EC3 resistance predictions for cross-
sections under biaxial bending plus 
compression. 
 

 
Fig. 6. Comparison of test and FE results with 

CSM resistance predictions for cross-
sections under biaxial bending plus 
compression. 
 

Table 4. Comparison of uniaxial bending plus 
compression test and FE results with EC3 
and CSM predicted strengths. 

No. of tests: 1 Ru,test/FE/Ru,EC3 Ru,test/FE/Ru,csm 
No. of FE data: 489   

Mean 1.071 1.048 
COV 0.078 0.039 

Table 5. Comparison of biaxial bending plus 
compression test and FE results with EC3 
and CSM predicted strengths. 

No. of tests: 11 Ru,test/FE/Ru,EC3 Ru,test/FE/Ru,csm 
No. of FE data: 796   

Mean 1.111 1.060 
COV 0.131 0.034 

3.2. Hot-rolled steels 
The first three stages of the quad-linear 

material model (see Fig. 2) has been adopted for 
the development of the CSM for hot-rolled 
carbon steel cross-sections [9]. The CSM 
resistance expressions for hot-rolled steel cross-
sections under compression Ncsm and bending 
Mcsm are summarized in this section. A detailed 
description of the derivation of these equations 
can be found in [9]. 

The CSM compression resistance Ncsm for a 
hot-rolled steel non-slender cross-section can be 
determined using Eq. (10) but fcsm should be 
calculated from Eq. (18) based on the proposed 
CSM material model for hot-rolled steels. 

y y csm sh
csm

y sh csm sh sh csm 1 u

                           for     
( ) for  

f
f

f E C
ε ε ε

ε ε ε ε ε
< ≤=  + − < ≤

(18) 

For cross-sections with pλ  ≤ 0.68, the CSM 
bending resistance Mcsm depends upon whether 
or not strain hardening is experienced (i.e. 
whether or not εcsm > εsh). If εcsm ≤ εsh, then the 
cross-section bending resistance Mcsm is given by 
Eqs. (19) and (20) for major and minor axis 
bending, respectively. EC3 limits the bending 
resistances of Class 3 cross-sections to the elastic 
bending moment, which is overly conservative 
for some Class 3 cross-sections due to the 
neglect of the spread of plasticity. However, this 
effect has been considered in Eqs. (19) and (20), 
which allow for the increasing resistance with 
increasing deformation capacity (i.e. strain ratio 
εcsm/εy). 
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el,y csm
csm,y pl,y y

pl,y y

1 1  
α

W εM W f
W ε

    
 = − −           

 

                                                          for εcsm ≤ εsh  (19) 

el,z csm
csm,z pl,z y

pl,z y

1 1  
α

W εM W f
W ε

    
 = − −           

 

                                                          for εcsm ≤ εsh  (20) 

For the more stocky cross-sections, where 
εcsm > εsh, some benefit from strain hardening can 
also be exploited, and the CSM cross-section 
bending resistance is given by Eqs. (21) and 
(22), for major and minor axis bending 
respectively, where α and β are dimensionless 
coefficients, values of which are given in Table 
2. 

el,y csm
csm,y pl,y y

pl,y y

2

csm sh sh

y

1 1

                                 

α
W εM W f
W ε

ε ε Eβ
ε E

    
= − −          

 − +      

 

                                                          for εcsm > εsh  (21) 

el,z csm
csm,z pl,z y

pl,z y

2

csm sh sh

y

1 1

                                 

α
W εM W f
W ε

ε ε Eβ
ε E

    
= − −          

 − +      

 

                                                          for εcsm > εsh  (22) 

The accuracy of these resistance functions 
has been assessed in [9] by comparing the 
predicted resistances with experimental and FE 
results for hot-rolled steel cross-sections, 
including both I-sections and box sections. The 
comparisons revealed that the CSM generally 
provides more accurate and consistent 
predictions than EC3, especially for very stocky 
cross-sections and for Class 3 sections in 
bending. 

Recent work [12,13] has extended the CSM 
to cover hot-rolled steel I-sections under 
combined loading. The proposed CSM for hot-
rolled steel I-sections under combined loading 
utilises the same concept as applied to cold-
formed box sections i.e. adopting similar 
interaction expressions and coefficients 
employed in EC3 but replacing the EC3 design 
resistances for compression and bending with 
the corresponding CSM resistances. The 

proposed CSM design equations are summarised 
as follows: 

For hot-rolled steel I-sections under combined 
compression and uniaxial bending, 

csm
R,csm,y csm,y csm,y

w

1 , but
1 0.5

nM M M
a

−
= ≤

−
               (23) 

csm,z csm w

2
R,csm,z csm w

csm,z csm w
w

                                for 

1   for 
1

M n a

M n aM n a
a

≤
  =  −  − >  −    

 

(24) 

w
w w,  but 0.25Aa a

A
= ≤                                         (25) 

For hot-rolled steel I-sections under combined 
compression and biaxial bending, 

csm csm

Ed,y Ed,z

R,csm,y R,csm,z

1
M M

M M

α β
   

+ ≤        
  for pλ  ≤ 0.6    (26) 

where αcsm = 2 and βcsm = 5ncsm ≥ 1, 

Ed,y Ed,zEd

csm csm,y csm,z

1
M MN

N M M
+ + ≤             for pλ  > 0.6   

(27) 

The proposed CSM for hot-rolled steel I-
sections under combined loading has also been 
found to provide more accurate and consistent 
resistance predictions than EC3, and extension 
of the method to cover hot-rolled steel box 
section under combined loading and 
indeterminate structures is currently underway. 

4. Recent CSM developments for steel-
concrete composite design 

Research [14,15] have begun to investigate 
the applicability of the CSM to the design of 
steel-concrete composite elements. Maintaining 
the basic design philosophy of the CSM, 
Gardner et al. [14] developed an analytical 
model to calculate the bending capacity of 
composite beams (see Fig. 7) with full shear 
connection under sagging bending moment, 
allowing for the influence of strain hardening 
through the CSM material model for hot-rolled 
steels as described in Section 2.2. The analytical 
model was derived for one scenario, that being 
where the neutral axis lies within the concrete 
slab, as shown in Fig. 7, and the strain at the 
bottom outer fibre of the steel section reaches the 
strain hardening strain εsh. The resulting CSM 
design procedure for determining the bending 
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resistance of composite beams under sagging 
moment is summarized in the following four 
steps: 

(1) Determine the neutral axis position ycsm,c, as 
shown in Fig. 7, assuming that concrete crushing 
governs the failure (i.e. the maximum outer fibre 
strain in the concrete slab reaches the limit of 
0.0035) by solving the quadratic Eq. (28).  

2
csm,c csm,cB C D 0y y+ + =                                          (28) 

in which the coefficients B, C and D are given 
by Eqs. (29), (30) and (31), respectively. 

2
sh

cd eff w sh
0.0035B 0.85 1

2 0.0035
f b t E ε = − + 

 
          (29) 

sh
sh f f w c a y aC 0.0035 1 [ ( )]

0.0035
E b t t h h f Aε = + + + − 

 
 

                                                                              (30) 

w
sh c a f f c aD 0.0035 ( ) ( )

2
tE h h b t h h = − + + +  

        (31) 

where fcd is the design concrete (cylinder) 
compressive strength, beff is the effective width 
of the concrete slab, tw and tf are the web and 
flange thickness of the steel beam, respectively, 
bf is the flange width of the steel beam, ha and hc 
are the depth of the steel beam and the concrete 
slab, respectively, and fy and Aa are the yield 
stress and cross-sectional area of the steel 
section, respectively. 

(2) Determine the neutral axis position ycsm,a 
assuming that steel failure governs the 
deformation capacity (i.e. the strain at the outer 
fibre of the steel section reaches the limiting 
strain of 15εy) 

( ) [

( )

csm,a y a sh y sh f f

sh y sh w c a sh y cd eff

sh y sh w sh y

(15 )

( / 2)(15 ) ( ) 1 15 0.85

                                +( / 2)(15 ) 1 15

y f A E b t

E t h h f b

E t

ε ε

ε ε ε ε

ε ε ε ε

= + −
+ − + − 

− −       
                                                                         (32) 

(3) Calculate the corresponding limiting 
curvatures κcsm,c and κcsm,a for concrete failure 
and steel failure, respectively 

csm,c
csm,c

0.0035
y

κ =                                                      (33) 

y
csm,a

c a csm,a

15
h h y

ε
κ =

+ −
                                         (34) 

The critical curvature κcsm is identified as the 
lower value of κcsm,c and κcsm,a. 

(4) Determine the moment capacity Mcsm,c of the 
composite section using the critical κcsm and its 
corresponding neutral axis position ycsm 

csm
csm,c csm y f f c a

a csm w
y a c csm y

sh sh
c a csm c a csm

csm csm

( )
2

( )
2 2 12

4( ) 2

yM f f b t h h

h y tf A h f f

h h y h h yε ε
κ κ

 = − + − 
 

 + + − + − 
 

   
+ − − + + −   

   

 (35)

 

The moment capacities obtained from the 
proposed analytical method have been compared 
against a series of experimental results collected 
from the literature on composite beams with full 
shear connection [14]. The proposed method has 
been shown to provide a more accurate 
prediction of test capacity than the current 
approach given in EN 1994-1-1 [16], with an 
average of 5% resistance enhancement being 
exploited when the beneficial effect of strain 
hardening is accounted for. 

For composite beams with partial shear 
connection, a tentative approach utilizing the 
CSM bending resistance of the bare steel section 
Mcsm and the proposed bending resistance of the 
composite beam with full connection Mcsm,c has 
been proposed on the basis of numerical 
investigations in [14]. Further experimental and 
analytical research in this area is currently 
underway. 

 
Fig. 7. Strain and stress distributions for a composite beam with full shear connection. 
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Yang et al [15] recently extended the CSM to 
predict the ultimate bending capacities of 
composite plate girders, whose ultimate hogging 
flexural state are governed by local buckling of 
the bottom flange of the steel beam. Depending 
on the accuracy required for the calculation of 
the ultimate bending capacities of composite 
sections under hogging moment, linear and 
quadratic interpolation equations were also 
proposed and examined in [15]. 

The application of the CSM to concrete-filled 
steel tubular (CFST) members is currently 
underway. Compared with empty steel tubular 
sections, local buckling is inhibited in concrete-
filled specimens due to the presence of the 
concrete. By allowing for the influence of the 
concrete infill on the local buckling stress and 
hence slenderness of the steel section, the 
deformation capacity can be obtained from the 
base curve. This can be used to assess 
compatibility with the concrete failure strain, 
predict the failure mode and hence determine the 
resistance of the composite cross-section. This 
approach is currently being explored. 

5. Conclusions 
The continuous strength method (CSM) is a 

new design methodology for steel and composite 
design. The CSM enables a more accurate 
allowance to be made for the spread of plasticity 
and the influence of strain hardening; this 
method has been formally adopted as an 
alternative design procedure in North American 
and European design provisions [17,18] for 
stainless steel design. Expansion of the CSM to 
systematically cover carbon steel and composite 
structures is underway. Much work, including 
extension of CSM to consider indeterminate 
structures, high strength steels and CFST 
members under different loading conditions, 
remains for the further development of the CSM.  
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