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Abstract

The problem of predicting the failure of water mains has been considered from
different perspectives and using several methodologies in engineering literature. No-
wadays, it is important to be able to accurately calculate the failure probabilities of
pipes over time, since water company profits and service quality for citizens depend
on pipe survival; forecasting pipe failures could have important economic and social
implications. Quantitative tools (such as managerial or statistical indicators and
reliable databases) are required in order to assess the current and future state of
networks. Companies managing these networks are trying to establish models for
evaluating the risk of failure in order to develop a proactive approach to the renewal
process, instead of using traditional reactive pipe substitution schemes.

The main objective of this paper is to compare models for evaluating the risk
of failure in water supply networks. Using real data from a water supply company,
this study has identified which network characteristics affect the risk of failure and
which models better fit data to predict service breakdown.

The comparison using the Receiver Operating Characteristics (ROC) graph leads
us to the conclusion that the best model is a Generalised Linear Model. Also, we
propose a procedure that can be applied to a pipe failure database, allowing the
most appropriate decision rule to be chosen.
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1 Introduction

Worldwide, water supply systems (WSS) face the problem of aging infrastruc-
tures and increasing maintenance costs. The classic reactive approach used by
most companies is obviously not the best way of managing this essential pu-
blic service, from both quality and availability optics, proactive strategies are
required. However, proactive approaches require information and models to
evaluate risks, predict the best measures to take and to forecast water supply
network performance. The need for proactive models is even greater in deve-
loping countries, with tight economic restrictions, than in advanced countries.
Authors such as Saegrov [18] conclude by identifying a knowledge gap and
research possibilities, mainly relating to data collection and how best to use
existing data for the developement and calibration of predictive deteroriation
models, risk assesment methods, etc. In this study we will present an analysis
of the reliability data from the water supply network of a medium-sized city
on the Spanish Mediterranean coast. Three different models will be used to
analyze data, to identify the main factors affecting pipe failure and to predict
the risk of failure.

Fenner [11] concludes that to be cost effective, proactive maintenance involving
inspection and repair must be focused on those pipes which can be shown to
have an early predisposition to failure. In line with that we suggest some
statistical tools which can optimise and prioritise any proactive work. The
main objective of this study is to promote the use of quantitative tools in the
management of water supply systems, to evaluate their present state and to
forecast the future deterioration of infrastructures.

The contents of this article are structured as follows. In the second section
we present the three survival models we have applied: the Cox Proportional
Hazard model, Accelerate Failure models and the Generalized Linear models.
We also introduce a Receiver Operating Characteristics (ROC) graph as a
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way to evaluate concordance between models and real data. The third section
starts describing data from the water supply network studied. In this third
section, we apply the three different models to these data, commenting on their
advantages and disadvantages, as well as on their suitability in the failure risk
analysis in question. The section ends with a comparison of two different fits
by means of the ROC curves. Finally, we will come to some conclusions in
which we try to assess their validity not only for this case but also, to some
extent, for any other WSS.

2 Survival Analysis

Statistical models of differing complexity have been suggested in the litera-
ture for predicting pipe breaks in water distribution systems, from Proportio-
nal Hazard models to Generalised Linear Models (GLM). A review of these
statistical models can be found in Kleiner and Rajani [13]. The most recent
contributions have also been compiled by Yamijala et al. [21] with a special
emphasis on comparing the accuracy and usefulness of these models by means
of goodness of fit statistics. These models were designed to show the impact
of each predictive variable for the risk of failure of a individual pipe.

2.1 Cox model

Cox regression, also called Proportional Hazard model or Duration model, is
designed to analyze the time lapse until an event occurs or the time lapse
between events. One or more predictor variables, called covariables, are used
to predict a status (event). The Proportional Hazard model [6] has been widely
used in analyzing survival data.

The model specifies that the survival time T , given the covariate vector x, has
the hazard function

h(t; x) = h0(t)exp(β ′x) (1)

where h0(t) is an unspecified baseline function and β is the regression coef-
ficient vector associated with x. The common definition of hazard rate in
Survival Analysis is the probability that an individual assumed to be alive
until instant t will not survive the following limited time interval,

h(t) = lim
△t

P (t ≤ T < t+ △ t)

△ t
. (2)
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The interest is mainly in the proportional factors rather than the baseline
hazard. This model is semi-parametric because while the baseline hazard can
take any form, the exponent is linear in the covariables. Remarkably, even
though the baseline hazard is unspecified, the Cox model can still be estimated
by the method of partial likelihood, developed by [6] in the same paper in
which he introduced the Cox model.

Similar methods were used by Eisenbeis [8,9] applying Cox’s Proportional
Hazard model for four water pipe networks in France. To describe the early
deterioration behavior, [5,3,2] used a Cox Proportional Hazard Model based
on US data.

2.2 Accelerated lifetime models

Accelerated lifetime models are designed to analyze what influence the cova-
riables have on the failure time T , whose expression is,

ln(T ) = µ + x′β + σZ. (3)

where Z is the random variable which describes the random behavior of ln(T ).
The accelerate lifetime model can be viewed as analogous to the Proportional
Hazard model. It differs from the Cox model in that the covariates act to the
time to failure, whereas failure hazard is affected in the Cox model [13]. There
are different types of Accelerate Lifetime models. The simplest parametric
model is the exponential one which assumes a constant risk function,

h(t) = λ, 0 ≤ t ≤ ∞.

However, in the majority of phenomena of interest the hypothesis that the
risk function is constant is overly restrictive. The Weibull distribution defines
a more general model whose risk function is,

h(t) = λααtα−1, 0 ≤ t ≤ ∞,

where the parameters λ and α, denominated scale and shape parameters res-
pectively, are positive values. The Accelerate Lifetime model translates into
Proportional Hazard when Z has a Weibull distribution [7].

It is possible to specify other distribution for the variable Y = ln(T ), which
have any real value. One possibility is to consider that ln(T ) has a Normal
distribution with average µ and variance σ2, which means that T follows a
Lognormal distribution. In this case h(0) = 0, grows until reaching a maximum
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and subsequently decreases again towards 0; These characteristics hardly make
it realistic.

One distribution obtained with the same procedure and which, different to the
Lognormal, has relatively simple expressions of the basic functions is the Log-
logistic distribution. We can say that T has a Log-logistic distribution if the
variable ln(T ) has a logistic distribution, which is symmetrical distribution
similar to the Normal standard, except at the tails.

Lei [14] applied both the Cox model and the Accelerated Lifetime models to
the distribution system of Trodheim, Norway. This study did not say whether
the model was validated or comment on the quality of the predictions. Eisen-
beis [9] applies the Weibull model to the same data that had applied in the
Cox model.

2.3 Generalised Linear Models

Generalised Linear Models (GLM) are an extension of linear models for non-
normal distributions of the response variable and non-linear transformations.
A regression model constitutes a specification for the variable mean, m, in
terms of a small number of unknown parameters β0, β1, . . . , βp corresponding
to the covariables. In the particular case of linear models, we wish to find a

linear function such that E(Y |X) = m = β0 +
p∑

i=1

βixi, with the variance of Y

supposed to be constant, var(Y ) = σ2.

In a different way, a generalised linear model (GLM) provides a method for
estimating a function of the average of the response variable as a linear com-
bination of the set of predictive variables, that is

l(E(Y |X)) = l(m) = η(x) = β0 +
p∑

i=1

βixi.

The function of the response average, l(m), is called function link, and is
considered to be the same as a linear function of the predictors, η(x), which
is called linear predictor. Each component yi of Y has a Binomial, Poisson or
Gamma distribution. The GLM comprehensive reference is [16]. GLM with
qualitative predictors are well described in [1].

In the field of Reliability these GLM have been used before by [4] and [21].
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2.4 ROC curves

A Receiver Operating Characteristic (ROC) graph is a technique for visuali-
zing, organizing and selecting classifiers based on their performance [10]. ROC
graphs are commonly used in medical decision making, and in recent years
have been used increasingly in machine learning and data mining research.
The purpose of this paper is to use it in research into pipe failure analysis.
We consider problems where the items can only belong to two classes and
some classification models (or classifiers) that produce a continuous output
(e.g., an estimate of hazard rate) to which different thresholds may be applied
to predict class. For each individual we have both the model prediction and
the actual class. Given a classifier and an instance, there are four possible
outcomes, Table 1 showing the possibilities

Table 1
Results in table form

True class

A B

Predicted
class

A True positives False positives

B False negatives True negatives

Total positives Total negatives

The true positive rate (tp rate) of a classifier is estimated as

tp rate =
True positives

Total positives
.

The false positive (fp rate) rate of a classifier is estimated as

fp rate =
False positives

Total negatives
.

Additional terms associated with ROC curves are

sensivity = tp rate

and

specificity = 1 − fp rate =
True negatives

Total negatives
.

ROC graphs are two-dimensional graphs in which the tp rate is plotted on
the Y axis and the fp rate is plotted on the X axis. A ROC graph depicts
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relative tradeoffs between benefits (true positives) and cost (false positives).
Several points in ROC curve are important to highlight. The lower point (0,0)
represents the strategy of never issuing a positive classification; such a classifier
commits no false errors but also gains no true positives. The opposite strategy,
of unconditionally issuing positive classifications, is represented by the upper
right point (1,1). The point (0,1) represents perfect classification. Informally,
classifiers with a ROC curve closer to this point are preferred. The diagonal
line y=x represents the strategy of randomly guessing a class. It is possible
for a classifier to perform worse in a specific region than another classifier if
its curves are cut.

The model will be good if we can discern the pipes that break and those which
do not. The ROC curve provided an overall representation of the accuracy.
If the test did not allow discrimination between classes, the ROC curve was
the diagonal joining the vertices from lower left to upper right. The accuracy
of the test increased as the curve moves from the diagonal towards the upper
left corner. To evaluate the discriminative performance of the model and to
compare classifiers, we wanted to reduce ROC performance to a single scalar
of value representing expected performance. Calculating the area under the
ROC curve of the classifier, for short AUC, was a common method. Since
the AUC is a portion of the area of the unit square, its value will always be
between 0 and 1, the random guessing procedure having an area of 0.5. The
greater the AUC, the better is the classifier.

Moreover, we can obtain the optimal operating point on the ROC curve, which
is the point closest to the top-left corner. This gives the threshold value that
will provide a good compromise between sensitivity and specificity. This th-
reshold value of pipe failure risk can be selected to detect pipes which have
a high risk of failure. There are other tools that allow classification of the
broken and non-broken pipes like the discriminatory analysis. However, the
ROC curves have the advantage of being able to decide about the breakage
point or risk for the classification. They can be used where managers are more
risk-averse or risk accepting than that which uses the “optimum” point.

3 Application to real data

3.1 Data

In the development of the research project, we had access data from the water
supply company of a medium-sized Spanish city. The water supply company
gave us access to a database containing information on pipe sections making
up the network. The database includes 32,387 entries, corresponding to each of
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the sections. Among other variables, the entries contain: section identification,
section diameter, pressure, installation year, pipe material, date of failure,
section length, traffic conditions and type of failure. There were some problems
with the quality of data: data corresponding to the oldest sections were not
reliable; the failures have only been included in the data-base since 2000 (when
the use of the GIS 1 was established), and there was no possibility of recovering
older failure data. This means a very high censoring rate, up to 98%. Also, no
consideration was given to the fact that a pipe section can fail more than once
because the database structure was not prepared to consider this. Some minor
errors had to be corrected prior to using the database, frequently meaning the
loss of the corresponding failure entries. One of the major problems with the
database was the lack of reliability of the data on the oldest pipe sections.
Due to that lack of reliability of older data, only those pipes installed after
1940 were considered. According to the database, four different materials have
been used: ductile cast iron, gray cast iron, polyethylene and asbestos cement.
The database also records the traffic conditions of the installation area of the
pipes considering three kinds of traffic: under sidewalk, normal traffic and
heavy traffic.

Because failures occurring between 1941 and 1999 are unknown, and those
between 2000 and 2006 are known, we consider that failures occurring before
1941 are not important following [15], who found left-censoring is a minimal
problem. We need a further condition on the censoring para to apply the
previous Cox model, specifically that the censure is independent and uninfor-
mative which assumes that the likelihood for censored observations does not
depend on β [12].

Moreover, given that we only had the year of the failure, the times have been
calculated discretely in number of years, and therefore failures equal to 0 prose
a problem when the logarithm is applied to them, the problem being resolved
by substituting them for 1/365, on the assumption that the pipes had lasted
at least one day.

3.2 Cox model

As is common in survival techniques, the estimation of the covariable effects
(diameter, pressure, material, length) are analyzed on the hazard rate associa-
ted with pipe duration. We begin with the Proportional Hazard model, also
called Cox Regression [6]. Its mathematical expression is in equation (1). By
analogy, in this work, hazard rate (2) is the probability that a pipe, which

1 A geographic information system (GIS), also known as a geospatial information
system, is any system for capturing, storing, analyzing and managing data and
associated attributes which are spatially referenced to Earth.
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has not failed until instant t, would start breaking within the following time
interval. Whereas in our case, the hazard function h(t) measures the hazard
rate that a pipe may break, conditioned by the fact that it had not broken
until the instant t. Moreover, xi is the vector of covariates for the ith case.
The main assumption is that the hazard rate in all cases is a multiple of an
unspecified baseline hazard rate h0(t). The Cox proportional-hazards regres-
sion model was fitted in R with the coxph function using library survival [17].
Detailed arguments and estimations are available in [20].

The results of the Cox Regression are shown in Table 2, which includes the
value of the coefficients for each of the covariables, the exponential of the coef-
ficient values (which express the effect of the corresponding covariable on the
hazard rate), and the standard error and significance for each of the coeffi-
cients. In Tables 2, 3 and 4 the values listed above the double line are model
coefficients including all variables and below the double line are when the non-
significant variables are omitted. The reference categories, heavy traffic and
asbestos cement, for the qualitative variables, traffic and material, respecti-
vely, do not appear in those tables.

The meaningfulness of the positive coefficient β which corresponds to the
length of the pipe can be interpreted thus: the failure hazard rate is higher in
the longer pipes than in the shorter ones. Similarly, if we consider the pressure
effect, this risk value increases with higher pressures. On the contrary, the
meaningfulness of the negative coefficient which corresponds to the diameter
of the pipe can be interpreted thus: the failure hazard rate is lower in the
widest pipes. If we consider the traffic effect in isolation, according to our
results the risk that a pipe will break is lower with normal traffic or under
a sidewalk than with heavy traffic. If we consider the impact of material on
the risk of failure, gray cast iron is not significant and the risk that a pipe
will break is higher with ductile cast iron or polyethylene than with asbestos
cement material.

From Table 2 each individual regression coefficient value in the second column
below the double line can be interpreted in this way: for explanatory variable
length, the increase in the risk of failure for an increase of 1 m is 0.4%; in the
case of diameter the decrease in the risk of failure for an increase of 1 mm
is 0.3%; with an increase of 1 in the preassure the risk of failure increase by
2.2%; under sidewalk and normal traffic decrease normal hazard rate by 50.6%
and 42.0% respectively; the failure risk of asbestos cement pipes or gray cast
iron pipes is the same but ductile cast iron increases the risk by 42.2% while
polyethylene increases it by 471.4% if the rest of covariables remain fixed.
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Table 2
Cox Regression

Covariables β exp(β) se(β) sig.

length 0.004 1.004 0.000 0.000

diameter -0.003 0.997 0.001 0.003

pressure 0.023 1.023 0.005 0.000

traffic

under a sidewalk -0.726 0.483 0.264 0.006

normal traffic -0.551 0.576 0.272 0.044

material

ductile cast iron 0.331 1.392 0.146 0.023

gray cast iron -0.134 0.875 0.184 0.473

polyethylene 1.728 5.631 0.266 0.000

length 0.003 1.004 0.000 0.000

diameter -0.003 0.997 0.001 0.001

pressure 0.022 1.022 0.005 0.000

traffic

under a sidewalk -0.706 0.494 0.263 0.000

normal traffic -0.545 0.580 0.272 0.045

material

ductile cast iron 0.352 1.422 0.143 0.001

polyethylene 1.743 5.714 0.265 0.000

3.3 Weibull model

It is important to highlight that in the Accelerate Lifetime models the inter-
pretation of the coefficients β is different from the Proportional Hazard model.
The covariable effects (diameter, pressure, material, length) are analyzed on
the failure time. We are going to apply the Weibull distribution on account
of its good properties. Moreover, xi is the vector of covariates for the ith

case. The Weibull regression model was fitted in R with survreg function using
library survival [17]. Detailed arguments and estimations are available in [20].

Results of the Weibull Regression are shown in Table 3. The table includes
the value of the coefficients for each of the covariables, the exponential of
the coefficient values, which express the effect of the corresponding covariable
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on the failure time, and the standard error and significance for each of the
coefficients. In Table 3 only gray cast iron material is non-significant as in the
Cox model.

Table 3
Weibull Regression

Covariables β exp(β) se(β) sig.

intercept 5.241 188.95 0.1887 0.000

length -0.002 0.998 0.0002 0.000

diameter 0.001 1.001 0.0005 0.002

pressure -0.013 0.987 0.0026 0.000

traffic

under a sidewalk 0.504 1.656 0.1432 0.000

normal traffic 0.363 1.437 0.1462 0.001

material

ductile cast iron 0.227 1.255 0.0759 0.003

gray Cast iron -0.088 0.916 0.0971 0.365

polyethylene -0.598 0.550 0.1397 0.000

log(scale) -0.627 0.534 0.0439 0.000

intercept 5.224 185.67 0.1871 0.000

length -0.002 0.998 0.0002 0.000

diameter 0.001 1.001 0.0005 0.002

pressure -0.013 0.987 0.0026 0.000

traffic

under a sidewalk 0.521 1.684 0.1420 0.000

normal traffic 0.370 1.447 0.1458 0.001

material

ductile cast iron 0.239 1.270 0.0748 0.003

polyethylene -0.587 0.556 0.1388 0.000

log(scale) -0.629 0.533 0.0438 0.000

The meaningfulness of the negative coefficient β which corresponds to the
length of the pipe can be interpreted thus: the failure time is smaller in the
longer pipes than in the shorter ones. Similarly, if we consider the pressure
effect, this failure time value increases with higher pressures. On the contrary,
the meaningfulness of the positive coefficient which corresponds to the diame-
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ter of the pipe can be interpreted thus: the failure time is higher in the widest
pipes. If we consider the traffic effect in isolation, according to our results
the time that a pipe breaks is higher with normal traffic or under a sidewalk
than with heavy traffic. If we consider the impact of material on failure time,
the time when a pipe breaks is higher with ductile cast iron and smaller with
polyethylene than with asbestos cement. In Gray cast iron is not significant.

From Table 3 each individual regression coefficient value can be interpreted in
this way, for explanatory variable length, the decrease in failure time for an
increase of 1 m is 0.2%, in the case of diameter the increase in failure time for
an increase of 1 mm is 0.1%, with an increase of 1 in the preassure the failure
time decrease by 1.3%, under a sidewalk and normal traffic increase time by
68.4% and 44.7% respectively, the failure time of an asbestos cement pipe
or a gray cast iron pipe is the same but ductile cast iron increases the time
in 27.0% while polyethylene decreases it by 44.4% if the rest of covariables
remain fixed.

3.4 Generalized linear models

In order to check the consistency of these previous results, we use a different
technique: the Generalised Linear Model analysis which allows us to analyze
the data on the assumption that the number of pipe failures is Poisson. Our
model is formally a Poisson Generalized Linear Model with a logarithmic link
function as in the model used in [4], our model was fitted in R with glm

function. Detailed arguments and estimations are available in [20]. Results of
the Generalized Linear Model are shown in Table 4.

We can observe some differences comparing with Cox model, Weibull model
and GLM, specifically, in material variable, where results for polyethylene are
not significant. The significance of the remaining variables in the three models
is the same.

As regards the values and sign of the coefficients, we can observe that they
are similar in three models, despite the coefficients corresponding to materials.
Three aspects deserve a special mention: the greater increase for two kinds of
traffic, different sign in ductile cast iron material and the non influence of
polyethylene in the risk. The differences in the models for polyethylene pipe
material are especially striking. Polyethylene pipe is often marketed as being
more resistent to breaks in certain circumstances. The results are due to the
polyethylene material used in more recently installed pipes, as well as it being
a less frequently used material in our database. This fact strengthens the
decision to prefer GLM over Cox or Weibull.
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Table 4
GLM Regression

Covariables β exp(β) se(β) sig.

Constant -3.339 0.000 0.3919 0.000

Age 0.011 1.011 0.0058 0.053

length 0.003 1.003 0.0004 0.000

diameter -0.003 0.997 0.0009 0.000

pressure 0.027 1.027 0.0045 0.000

traffic

under a sidewalk -1.156 0.000 0.2639 0.000

normal traffic -0.787 0.455 0.2718 0.004

material

ductile cast iron -1.795 0.000 0.1805 0.000

gray Cast iron 0.310 1.363 0.1827 0.089

polyethylene 0.168 1.183 0.2808 0.550

Constant -3.263 0.038 0.378 0.000

Age 0.011 1.011 0.005 0.034

length 0.003 1.003 0.000 0.000

diameter -0.003 0.997 0.000 0.000

pressure 0.028 1.028 0.004 0.000

traffic

under a sidewalk -1.231 0.292 0.260 0.000

normal traffic -0.827 0.437 0.271 0.002

material

ductile cast iron -1.838 0.159 0.171 0.000

3.5 ROC curve

The above models are designed to show the impact of each variable in the pipe
failure rate. To evaluate the discriminate performance of the models and to
compare them we may represent the ROC curve and calculate the AUC. They
are typically used for any test in which there are two possible outcomes that
are of interest to the researcher. Does the test give a correct positive result (A)
or a correct negative result (B). In this case, it corresponds to the fact that
either the pipe has actually failed (A) or not (B). A ROC curve is considered
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to be a summary measurement in the sense that it uses all possible decision
thresholds for the test to create the curve. The ROC Curves serve to compare
models with the same response variable, as is the case with the GLM and Cox
whose response is the hazard rate, but not that of Weibull whose response
is failure time. The ROC curves were obtained in R using the ROCR library
[19].

In Table 5 we show the fp rate and tp rate values for three thresholds, the
optimal operating point being the central one.

Table 5
ROC curve decisions

Model fpr (sensivity) tpr (1-specificity) risk threshold

Cox 0.4620 0.8680 0.003000

0.3337 0.8122 0.006209

0.3081 0.7690 0.007998

GLM 0.2788 0.7919 0.010003

0.2445 0.7690 0.017952

0.2267 0.7487 0.022396

When comparing the ROC curves for the two models, tests with larger areas
are typically considered to be better tests, it is possible for tests to have the
same area and yet not be considered to be equivalent. Thus, is important to
compare ROC curves and their areas.

False positive rate
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Fig. 1. ROC curves.

Figure 1 shows ROC curves based on the corresponding models whose com-
parison allows us to say that the hazard rate obtained by GLM discriminates

14



better between the pipes that break than those that do not, because its curve
is always above the corresponding Cox model curve.

In addition, the AUC corresponding to the risk obtained by GLM is 0.8278
greater than the AUC corresponding to the risk obtained by Cox model of
0.7686. This confirms the superiority of the GLM.

Likewise, Figure 1 shows the ROC curve of each model with the optimal
operating point marked.

4 Conclusions

Fist of all, what is suggested from here on is that, as far as is possible, the
date of failure should be noted in order to have a failure time variable without
zeros and to resolve the problem with the data at the same time achieving
greater precision.

The study has sought to provide insight into the impact of different variables
on the risk of failure in water supply networks. The analysis described above
showed that pipes which were less prone to failure had the following charac-
teristics: short lengths, large diameters, low pressure and installed under a
sidewalk. As regard to material, there is not the same solution for the three
models: pipes made with asbestos material for the Cox model, but pipes made
with ductile cast iron are for the Weibull model and GLM.

We have compared two different models by choosing the best fits for each
one of them. Specifically, we have compared the Cox model and GLM. The
comparison is carried out by applying the ROC curve, from which we can
conclude that the Cox model model produces worse fit than GLM. Moreover,
this methodology has allowed us to establish a threshold at which a pipe can
be considered high-risk, decision making which allows for the renewal of the
network.

In relation to the work of other authors, we should highlight one distinctive
feature of the methodology presented here, which is the possibility of compa-
ring the different models with a simple and objective criterion. ROC graphs are
able to provide a measure of classification performance, to be a complement
to scalar measures such as goodness of fit statistics proposed by [21].

In short, we propose a statistical tool which provides a clear framework for
decision support in the diagnosis and rehabilitation of water supply systems.
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