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Scattering of sound by finite and infinite chains of equally spaced perforated metallic cylindrical
shells in an ideal (inviscid) and viscous fluid is theoretically studied using rigorous analytical and
numerical approaches. Due to perforations, a chain of thin shells is practically transparent for
sound within a wide range of frequencies. It is shown that strong scattering and redirection of
sound by 90◦ may occur only for a discrete set of frequencies (Wood’s anomalies) where the leaky
eigenmodes are excited. The spectrum of eigenmodes consists of antisymmetric and symmetric
branches with normal and anomalous dispersion, respectively. The antisymmetric eigenmode turns
out to be a deaf mode since it cannot be excited at normal incidence. However, at slightly oblique
incidence both modes can be excited at different but close frequencies. The symmetric mode, due
to its anomalous dispersion, scatters sound in the ”wrong” direction, thus allowing splitting of
the incoming signal containing two harmonics into two beams propagating along the chain in the
opposite directions. Calculations are presented for aluminum shells in viscous air where the effects
of anomalous scattering, redirection, and signal splitting are well manifested.

PACS numbers: 43.20+g,43.30.+m,46.40.-f,42.25.Fx
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I. INTRODUCTION

Periodic chains of highly symmetric scatterers, cylin-
ders or spheres, may serve as waveguides for electromag-
netic waves [1–3]. If the neighboring scatterers interact
through the near-field plasmonic field, such a chain ef-
fectively transverses electromagnetic energy. In a linear
chain, however, the Joule losses are accompanied by ra-
diative [4–8] and collisionless nonradiative losses (Landau
damping) [9]. In the case of acoustic waves, the interac-
tion between two neighboring scatterers is much weaker
due to the lack of an acoustic analog of gap plasmon
resonance. However, in contrast with the dielectric per-
mittivity, there are more possibilities to manipulate the
density, elasticity, and viscosity of the scatterers, that
allows one to predict and observe transport properties
specific for sound waves.

Periodic chains of scatterers with internal structure
(mass-in-mass units) may serve as a waveguide for me-
chanical energy, and also exhibit negative mass density
[10]. Metamaterial behavior, where both the effective
mass and the elastic modulus are negative, was predicted
for a chain consisting of elastic mass-in-mass units with
lateral resonances [11]. The dispersion curve of a chain of
acoustic Helmholtz resonators (soda cans) with two scat-
terers per unit cell has a passing band within a hybridiza-
tion gap where the effective index of refraction becomes
negative [12]. These and other examples [13, 14] demon-
strate that acoustic interactions between scatterers may
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be sufficiently strong, leading to a variety of metamate-
rial properties.

At the same time, periodic structures with artificially
weak scatterers are not less interesting since they allow
observation of very delicate effects originating from inter-
ference between the scattering pattern of a single scat-
terer and collective wave motion resulting from period-
icity [15]. Here, we would like to mention the so-called
acoustic Poisson-like effect in the scattering of sound by
periodic arrangement of cylindrical shells, predicted in
Ref. [16]. This effect of 90◦-redirection of acoustic en-
ergy becomes possible due to resonant excitation of an
antisymmetric mode polarized in the direction perpen-
dicular to the incoming sound. Periodic displacement
of the cylindrical surface at the resonance resembles the
Poisson effect in an elastic solid, which elongates under
squeezing. Excitation of the antisymmetric mode oc-
curs if the the strongest monopole and dipole terms in
sound-matter interaction are switched off. This can be
done by matching the density and elastic modulus of the
solid shell to those of the background fluid [17, 18]. As a
result, the normally deaf antisymmetric collective mode
is excited through the non-isotropic quadrupole term in
the scattering cross-section, giving rise to propagation of
sound waves in the direction perpendicular to incident
wave [16]. Here, the weakness of scattering is not the
physical reason of the Poisson-like effect itself, but it is
the necessary condition for its observation.

A quite different physical reason leads to a similar ef-
fect of 90◦-redirection of sound by a linear chain of per-
forated metallic cylindrical shells predicted in Ref. [19].
A perforated object serves as a weak scatterer if the ra-
dius of perforations r greatly exceeds the thickness of the
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viscous layer δ =
√

η0/ρ0 ω, where η0 is the dynamic vis-
cosity of the fluid, ρ0 is the fluid density, and ω is the
frequency of sound. Since a single perforated cylindrical
shell is a weak scatterer without internal resonances, a
periodic linear chain of perforated shells turns out to be
almost transparent for sound at normal incidence [19].
However, anomalously low transmission was numerically
predicted for the frequencies associated with the Wood’s
anomaly, which for this case occurs when the wavelength
λ becomes close to the period d of the chain. Here, we
propose the microscopic mechanism of this low transmis-
sion, which is due to resonant interaction of the external
plane wave with a symmetric leaky eigenmode, and also
explain why the condition λ ≈ d holds.

For this purpose, we develop a theory of scattering of
external plane waves by a linear chain of perforated cylin-
drical shells with finite and infinite numbers of scatterers
in viscous and ideal (inviscid) fluid. A method of expan-
sion over cylindrical waves applied here leads to an infi-
nite set of linear equations for partial transmission and
scattering amplitudes. Also, a transcendental equation
for the dispersion law of the eigenmodes is derived and
numerically solved for the few lowest bands. Because of
weak scattering, the band structure is close to that ob-
tained in the empty-lattice model. Away from points of
degeneracy, the dispersion is practically linear with speed
equal to the speed of sound in the background fluid. How-
ever, at the Γ-point and at the edges of the Brillouin zone
the doublets of levels are formed due to level repulsion.
The eigenfunctions corresponding to the components of
the doublet are either symmetric or antisymmetric func-
tions of coordinates. Since at normal incidence only the
symmetric mode can be excited, the antisymmetric mode
turns out to be a deaf mode [20, 21]. At normal incidence,
a sharp minimum in the transmission spectrum appears
when the frequency of the external wave coincides with
the frequency of the symmetric component, which turns
out to be the lower level of the doublet.

Excitation of the eigenmodes by an external plane wave
is possible since the spectrum of eigenfrequencies is com-
plex, i.e. all the eigenmodes of a linear chain are leaky
modes radiating acoustic energy into the background
fluid. An excited eigenmode transmits energy along the
chain, i.e. the initial flux of energy is partially redirected
by 90◦. The effect of redirection of acoustic energy was
recently predicted not only for periodic systems of scat-
terers [16, 19, 22] but also for a narrow fluid channel in
a solid elastic plate [23, 24].

Resonant interaction of the external wave with both
eigenmodes – symmetric and antisymmetric – can be re-
alized at oblique incidence. Even at small angles of in-
cidence, the symmetry of the incoming front is broken
by a nonzero component of the wave vector k|| along the
chain which allows excitation of the antisymmetric eigen-
mode. Excitation of any eigenmode in the chain requires
matching of the Bloch vector of this eigenmode q and the
parallel component k|| of the wave vector in the incoming
wave. The direction of propagation of acoustic energy is

given by the vector of group velocity. For the symmet-
ric mode possessing anomalous dispersion the redirected
energy propagates against k||, and for the antisymmet-
ric mode with normal dispersion the energy runs in the
direction of k||. Since at small angles of incidence the
matching condition k|| = q is satisfied for close frequen-
cies, a chain of perforated shells may serve as a splitting
antenna that redirects the higher-frequency harmonic of
incoming signals along the direction of k|| and the lower-
frequency harmonic in the opposite direction. Our calcu-
lations show that anomalous scattering, redirection, and
splitting of sound are robust with respect to viscosity. In
particular, the viscosity of air does not undermine the
pattern of anomalous scattering.

II. SCATTERING PROBLEM FOR A

FINITE-LENGTH LINEAR CHAIN OF

PERFORATED CYLINDRICAL SHELLS

Let a plane wave be scattered by a line of 2N + 1
evenly spaced cylindrical shells. The shells’ axes are
centered along the y-axis at the points yn = nd, n =
0,±1,±2, . . . ,±N . The wave vector k = (kx, ky, 0) of the
pressure plane wave p(r, t) = p0 exp(ik · r − iωt) makes
an angle θ with axis x, see Fig. 1. The cylindrical shells
are produced by rolling up perforated plates. Within the
interval of parameters which we will use, the impedance
of a flat plate perforated by circular holes can be approx-
imated by [25]

Zp = − iωρ0
σ



h

(

1− 2

s
√
i

J1
(

s
√
i
)

J0
(

s
√
i
)

)−1

(1)

+ 4i
√
2δ +

16r

3π

(

1− 2.5

√

σ

π

)]

.

Here h = a − b is the thickness of the shell with a and
b being the outer and inner radii respectively, σ is the
perforation filling fraction, and s = r/δ = r

√

ρ0ω/η0
is the perforate constant, which takes large values, s ≫
1, due to low viscosity η0 and relatively large radius of
perforations r. In the limit of an ideal fluid (inviscid,
s = ∞) the impedance (1) becomes pure imaginary

Zp = − iωρ0
σ

[

h+
16r

3π

(

1− 2.5

√

σ

π

)

]

. (2)

While Eq. (2) was originally derived for a flat perforated
plate, it turns out to be valid for cylindrical shells as well
provided the wavelength exceeds the diameter of the per-
forations. Scattering by a perforated shell and by a shell
with effective impedance (2) was studied numerically and
experimentally in Refs. [26–28]. In each of these publi-
cations a good agreement was reported for a wide range
of frequencies.
In numerical calculations, we use the same material

parameters that were proposed in experimental and nu-
merical study in Refs. [19, 27], namely: a = 4.00 cm,
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FIG. 1: Left panel: A perforated cylindrical shell fabricated
and studied in Refs. [19, 26, 27]. Right panel: Perforated
cylinders aligned along the y-axis with period d. Polar angles
are shown for the central cylinder (l = 0) and for the lth
cylinder. The Cartesian coordinates r = (x, y) are related to
the polar coordinates (rl, ϕl) associated with the center of the
lth cylinder: x = rl cosϕl, y = yl + rl sinϕl.

h = 0.05 cm, d = 11.0 cm, r = 0.25 mm, σ = 14.5%,
ρ0 = 1.25 kg/m3 (air), c0 = 343 m/s (speed of sound in
air), and η0 = 17.8 µPa · s (air).
Scattering of waves by an infinite periodic chain of

cylinders is one of the classical problems of theory of
diffraction. For conducting cylinders illuminated by an
electromagnetic wave the expansion of the scattered field
was proposed in Ref. [8]. For sound waves, the field dis-
tribution resulting from diffraction in a periodic array of
solid spheres in fluid was calculated in Ref. [29]. A simi-
lar problem for elastic waves scattered by a monolayer of
elastic spheres was solved in Ref. [30]. In these studies,
the chain of scatterers was considered to be infinite, i.e.
the Bloch theorem was applicable. Here, we first calcu-
late the acoustic field scattered by a finite-length chain.
A periodic infinite chain is analyzed in the next section.
The incoming pressure plane wave p(r, t) can be ex-

panded over cylindrical waves. Using the relation be-
tween the Cartesian and polar set of coordinates centered
at y = yn shown in Fig. 1 we obtain

p(r, t) = p0 exp(ik · r− iωt) = p (rl, ϕl, t) (3)

= p0e
ikrl cos(ϕl−θ)−iωt = p0

∞
∑

n=−∞

inJn (krl) e
in(ϕl−θ)−iωt.

Here k = ω/c0. The factor e−iωt is omitted in further
calculations. The field scattered by a system of shells is
written as a superposition of outgoing cylindrical waves
radiated by each scatterer. We write this field in polar
coordinates centered at x = y = 0

psc(r, ϕ) =
∑

l′

+∞
∑

n=−∞

Bl′nHn (krl′ ) e
inϕl′ , r′l ≥ a. (4)

Here index l′ numerates the shells in the chain and Hn

denotes the Hankel function of the first kind. If the chain
is infinite, summation over l′ runs from −∞ to∞. Other-
wise, the sum includes only a finite number of terms. The
relation between the polar coordinates r = r0, ϕ = ϕ0

and rl, ϕl is obtained from Fig. 1,

r cosϕ = rl cosϕl, r sinϕ = ld+ rl sinϕl. (5)

To express the scattered field in terms of polar coordi-
nates of the system centered at the lth cylinder (rl, ϕl)
we apply Graf’s addition theorem

Hn(krl′)e
inϕl′ =

∞
∑

n′=−∞

i(n+n′)sign(l−l′)Hn+n′(k|l − l′|d)

Jn′(krl)e
in′(π−ϕl). (6)

It is valid for l′ 6= l and rl < |l − l′|d. Now the scattered
field psc in Eq. (4) can be rewritten in terms of only one
pair of coordinates rl, ϕl (rl < d), linked to the position
of the lth cylinder

psc(rl, ϕl) =

+∞
∑

n=−∞



BlnHn (krl) e
inϕl +

∑

l′ 6=l

Bl′n (7)

+∞
∑

n′=−∞

i(n+n′)sign(l−l′)Hn+n′ (k|l − l′|d)Jn′ (krl) e
in′(π−ϕl)

]

.

Pressure inside the lth cylinder is expanded over the
Bessel functions

pin(rl, ϕl) =

∞
∑

n=−∞

ClnJn(krl)e
inϕl . (8)

The values of pressure in the incident wave (3), scat-
tered wave (7), and the wave which penetrates inside
the shells (8) are connected through the boundary condi-
tions. For a thin perforated shell characterized by acous-
tic impedance Zp the normal component of velocity re-
mains continuous at the fluid-solid boundaries. The value
of the velocity itself is proportional to the jump discon-
tinuity of the pressure,

vr|r=a = vr |r=b =
p|r=b − p|r=a

Zp
(9)

Here the radial velocity in fluid is

vr = − i

ωρ0

∂p

∂r
. (10)

The velocity at the outer, rl = a, and inner, rl = b, shell’s
surfaces is given by pressure p+psc and pin, respectively.
Since the pressure in Eqs. (3), (7), and (8) is presented

in the form of Fourier expansions over einϕl , the bound-
ary conditions (9) can be written for the Fourier coeffi-
cients. This leads to the following set of linear equations
which now does not contain angle ϕl:
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

























p0i
ne−inθ +Bln

H ′
n (ka)

J ′
n (ka)

+
∑

l′ 6=l

∞
∑

n′=−∞

i(n−n′)sign(l−l′)Hn−n′(k|l − l′|)d)Bl′n′ = Cln
J ′
n (kb)

J ′
n (ka)

,

p0i
ne−inθ +Bln

Hn (ka)

Jn (ka)
+
∑

l′ 6=l

∞
∑

n′=−∞

i(n−n′)sign(l−l′)Hn−n′(k|l − l′|)d)Bl′n′ = Cln
Jn (kb)

Jn (ka)
+

ikZp

ωρ0
Cln

J ′
n (kb)

Jn (ka)

(11)

For calculation of the scattered field only the coeffi-
cients Bln are necessary. Eliminating the unknown Cnl

from equations (11) we get the set of linear inhomoge-
neous equations for Bln

SnBln +
∑

l′ 6=l

∞
∑

n′=−∞

i(n−n′)sign(l−l′)Hn−n′

(

k|l − l′|d
)

Bl′n′

= −p0i
ne−inθ, (12)

where

Sn =

Hn (ka)−H ′
n (ka)

(

iZp

ρ0c0
+

Jn (kb)

J ′
n (kb)

)

Jn (ka)− J ′
n (ka)

(

iZp

ρ0c0
+

Jn (kb)

J ′
n (kb)

) . (13)

Solution of the linear set (12) gives the distribution of
the scattered acoustic field Eq. (6) for any finite number
of shells.
This set of equations was solved numerically for differ-

ent number of cylinders 2N + 1 in the chain. Then the
transmission coefficient

T (f) =
1

2Ndp0v0

∫ Nd

−Nd

ptot(d, y)v
∗
tot,x(d, y)dy (14)

was calculated and plot in Fig. 2. Here ptot(x, y) = p+psc
and vtot,x(x, y) = −(i/ωρ0)∂ptot/∂x are the the total
pressure and the x-component of the total velocity, re-
spectively. The transmission spectrum was calculated for
inviscid air [see Eq. (2)] and for air with its real viscos-
ity. In accordance with the numerical results obtained in
Ref. [19] the transmission coefficient is very close to one
within a wide range of frequencies. The only minimum
is observed around 3 kHz. It is demonstrated in the next
section that this minimum is due to resonant coupling of
the incident wave to one of the eigenmodes of the chain.
Viscosity reduces the deepness of the minimum and also
leads to visible red shift of the resonance.
Since the scattering at perforated shells is quite weak,

the spectrum of eigenmodes is established for a suffi-
ciently long chain. Otherwise, the collective behavior
of the eigenmodes is weakly manifested which leads to
a very shallow minimum in the transmission. The spec-
tra for relatively small number of shells are shown in
Fig. 3. For a chain of 15 cylinders the minimum is
hardly seen, while here the viscosity is neglected. In short
chains, adding the viscosity will completely undermine
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FIG. 2: Transmission coefficient for the chain of 31 (dashed-
red lines) and 41 (solid-black lines) perforated shells. Results
for inviscid and viscous air are shown by thick and thin lines
respectively.

the resonance. The resonant minimum becomes deeper
and sharper with the number of scatterers. The posi-
tion of the minimum is blue-shifted approaching 3078 Hz
which is the first non-zero frequency at the Γ-point in the
1D band structure of the infinite periodic chain of shells
imbedded in inviscid air. It is interesting to note that the
deepness of the minimum is less sensitive to the number
of scatterers than the position of the resonance. This can
be seen from the inserts to Fig. 3 where the transmission
at minimum approaches zero faster than the resonant
frequency approaches its limiting value of 3078 Hz.

III. SCATTERING BY AN INFINITE

PERIODIC CHAIN

For infinite periodic chain of scatterers the Bloch’s the-
orem is applicable. Then, the unknowns Bln are related
to the values B0n associated with the central shell at
y = 0

Bln = eikyldB0n, ky = k sin θ. (15)

Substituting this relation to Eq. (12) and renormalizing
the unknowns leads to the following set of linear equa-
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FIG. 3: Transmission coefficient for the chain of 15 (solid-red
line), 29 (dashed-blue line), and 37 (solid-black line) perfo-
rated shells. Results are obtained for inviscid air. Inserts:
position (left panel) of the transmission minimum and its
deepness (right panel) vs number of shells in the chain.

tions for the coefficients bn = i−nB0n:

Snbn+

∞
∑

n′=−∞

F (n′−n)b′n = −p0e
−inθ, n = 0,±1,±2, . . .

(16)
Here

F (n) =

+∞
∑

l′=1

Hn (kl′d)
[

eikyl
′d + (−1)ne−ikyl

′d
]

. (17)

A similar set of equations was obtained in Ref. [8] for
scattering of electromagnetic wave at an infinite periodic
chain of metallic cylinders.
The eigenmodes of an infinite chain of shells are the

nontrivial solutions of Eq. (16) in absence of incident
wave (p0 = 0). Thus, the dispersion relation ω = ω(q),
where q = ky, is obtained by equating to zero the deter-
minant of the corresponding homogeneous linear set

det |Snδnn′ + F (n′ − n)| = 0. (18)

Direct calculation of the matrix elements F (n′ − n) re-
quires summation of slowly converging series of cylindri-
cal functions in Eq. (17). It was shown in Ref. [31]
that these series can be identically replaced by the series
with fast convergence. The necessary formulas, which
also were used in Ref. [8], are given in Appendix A.
The numerical solution of this dispersion equation for

the few lowest bands is presented in Fig. 4. Since per-
forated shells are weak scatterers, the dispersion curve
(blue dots) is very close to the band structure obtained
in the empty-lattice model, shown by the straight broken
line (red). Only at the Γ-point q = 0 (and at the edge
q = π/d) the effect of level repulsion leads to gap opening
of 35 Hz and essentially nonlinear dispersion, see the left
insert to Fig. 4. It is shown in Appendix B that near the
point of degeneracy, f = 3078 Hz, the upper and lower
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k
H
z

0 0.05 qd
3.0
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2.7

3.0

3.3

f, kHz
0.8 0.9 Im(f), Hz
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o

=1
0
o

=1
5
o

FIG. 4: Band structure of an infinite periodic chain of shells
imbedded in inviscid air. Solid straight (red) lines show linear
dispersion in air. Dots (blue) are the real parts of eigenfre-
quencies calculated from Eq. (18). Crossings of the dispersion
curves with three dashed straight lines gives the frequencies
of resonant coupling of the incident plane wave to the eigen-
modes of the chain for three angles of incidence, θ = 5◦,
θ = 10◦, and θ = 15◦. Inserts: (left) band splitting at the
Γ-point near the frequency f = 3 kHz. The Wood’s anoma-
lies are observed at these resonant frequencies. The distance
between the levels in the doublet is 35 Hz; (right) Absolute
value of the imaginary part of eigenfrequency vs its real part
for the region near 3 kHz. The horizontal axes, where the
imaginary part of the frequency is plot, are different for the
upper and lower levels of the doublet.

bands exhibit different behavior. In particular, the gap
opening is strongly asymmetric and the group velocity
vanishes at q = 0 only for the lower band. There are also
some singularities in the dispersion of the upper band
which are not resolved in Fig. 4. They are shown in the
insert to Fig. 10. Away from the Γ-point the dispersion
of the both bands is practically linear but it is normal
for the upper band and anomalous for the lower one.

For real values of the wavevector q all the solutions
ω(q) = 2πf(q) of the transcendental equation (16) are
complex. This means that the acoustic eigenmodes of an
infinite chain of shells are leaky modes, even if the vis-
cosity of the fluid is neglected. The imaginary part of
frequency describes weak radiative decay, i.e. the acous-
tic eigenmodes are not strongly localized near the chain.
However, since the decay is very slow the leaky eigen-
modes are long-living excitations. The imaginary part
is negative, Im f < 0, in order for the time-dependent
factor e−iωt to decay with time. The rate of radiative
decay |Im f | is at least two orders of magnitude smaller
than the frequency of sound f ≈ Re f as it can be seen
from the right insert to Fig. 4. For the frequencies near
the Γ-point the rate of radiative decay is about 1-3 Hz,
i.e. it practically does not contribute to the width of the
resonance minima observed in Figs. 2 and 3. The plots
in Figs. 2 and 3 show that the width of the resonance
is defined mainly by viscosity and by the length of the
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FIG. 5: Transmission spectrum of an infinite chain of perfo-
rated cylindrical shells at normal incidence. Thick and thin
lines are for inviscid and viscous air respectively.

chain. The minimum of the width of resonance, ∆f = 30
Hz, is observed for the ideal situation of infinite chain
and inviscid air, see the thick line in Fig. 5.

The transmission vanishes exactly at f = 3078 Hz,
which is the frequency of the lower level in the doublet.
Numerical results show that the pressure is distributed
symmetrically (antisymmetrically) over the y-axis for the
eigenstates belonging to the lower (higher) level of the
doublet. Only symmetric modes can be excited by ex-
ternal plane wave at normal incidence. The upper level,
being an antisymmetric mode, cannot be excited and for
this geometry it is referred to as deaf mode [20, 21]. Di-
rect excitation of the symmetric mode in one-dimensional
chain of scatterers leads to practically 100% suppression
of transmission, with about 85% of energy being reflected
back and 15% of energy being evenly redirected by ±90◦

into two opposite directions along the chain.

In a sonic crystal of elastic rods proposed in Ref. [16]
the redirection of sound occurs due to the Poisson-like
effect. The effect deals with excitation of one of the an-
tisymmetric deaf modes, which becomes accessible due
to its coupling to flexural resonances of a rod through
an evanescent mode. Since in this case the excitation is
indirect, maximum 46% of acoustic energy is reflected or
redirected at the frequency of the mid-gap.

It is important to note that the resonance in a chain
embedded in a viscous air is only weakly broadened and
slightly red shifted by dissipation, see the thin line in
Fig. 5. Because of viscosity the transmission at the res-
onance becomes finite while still about 80% of acoustic
energy is either reflected or redirected due to excitation of
the symmetric leaky modes of the chain. Since the leaky
modes are not proper spectral modes, they interact with
the environment and can be excited by external sound.
Also, since Im f ≪ ∆f ≪ Ref the resonant excitation is
well established.

IV. ANOMALOUS SCATTERING AT OBLIQUE

INCIDENCE

At oblique incidence the symmetry of the incoming
wave is broken and both eigenmodes (symmetric and an-
tisymmetric) can be excited. Therefore, the transmission
spectra in Fig. 6 exhibit two minima. Each minimum is
observed at the frequency where the matching condition
for the wave vectors

ky = (2πf/c0) sin θ = q(f) (19)

is satisfied. Matching of the tangential components of
the wave vectors is known as the manifestation of Wood’s
anomaly, see, e.g., Ref. [34]. In the reduced zone scheme
this condition is satisfied for several frequencies. For ex-
ample, in Fig. 4 this condition is satisfied at the points
of crossing of two straight dashed lines, corresponding to
the angles of incidence θ = 5◦ and θ = 15◦, with the
dispersion curves. For θ = 5◦ two crossings are shown at
f ≈ 2.85 kHz and f ≈ 3.40 kHz. The transmission min-
ima in Fig. 6 occur near these frequencies. The frequency
interval between these minima is about 550 Hz that sig-
nificantly exceeds the width of each minimum as well as
the width of the doublet at the Γ-point. That is why each
minimum is well-resolved. Strong separation of the min-
ima is due to different dispersion of the upper and lower
bands, which are the continuations of the levels of the
doublet at the Γ-point. For the upper (antisymmetric)
band the dispersion is normal, whereas it is anomalous
for the lower (symmetric) band, i.e. the phase and group
velocities of this eigenmode have opposite directions.

At normal incidence, θ = 0◦, Eq. (19) is formally
satisfied at any non-zero frequency where the dispersion
curve in Fig. 4 crosses the vertical line q = 0. How-
ever, the minimum in the transmission spectrum (Wood’s
anomaly) appears only at the frequencies corresponding
to the symmetric modes. Since the dispersion curve in
Fig. 4 is very close to the linear dispersion in water, the
Wood’s anomaly in Fig. 5 is observed at the wavelength
of 11.1 cm that practically coincides with the period of
the chain, d = 11 cm.

Due to different dispersion, the scattering of incident
waves by a chain of perforated cylinders exhibits an in-
teresting anomaly. For both eigenmodes the direction of
their phase velocities coincides with the direction of the
wave vector q = qŷ, which is obtained from Eq. (19).
However, the group velocity for the lower band is oppo-
site to q that leads to scattering of the incoming wave in
the ”wrong” direction.

The angular distribution of intensity of scattered sound
for θ = 5◦ is plot in Figs. 7 and 8. In Fig. 7, the fre-
quency of the incoming wave is 3.40 kHz that allows cou-
pling with the upper band shown in Fig. 4. Since this
band has normal dispersion, the maximum of the scat-
tered field is pointed towards the direction of the parallel
component ky ŷ of the wave vector in the incoming wave.
For the frequency f = 2.85 kHz, the matching condition
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FIG. 6: Transmission spectrum at oblique incidence, θ = 5◦.
Blue-short-dashed, red-long-dashed, and black solid lines are
for the chains containing 61, 121, and infinite number of cylin-
drical shells, respectively. Thick and thin lines show the re-
sults for inviscid and viscous air. Note that two resonances
are separated by ≈ 550 Hz in frequency, that exceeds much
the width of the doublet (≈ 35 Hz).

(19) is satisfied for the lower band with anomalous dis-
persion. As a result, the maximum of intensity points
against ky ŷ, thus producing anomalous pattern for the
scattered field in Fig. 8. Viscosity of air reduces the in-
tensity of the scattered field in all the directions. Polar
diagrams for viscous air are shown by green-dashed lines
in Figs. 7 and 8. It is clear that the coupling to the eigen-
modes remains effective, leading to the well-pronounced
peaks in the normal and ”wrong” directions.

For the angles of incidence θ ≥ 5◦ the intensities of
the normal and anomalous scattering do not differ much.
This can be seen also from the values of the transmis-
sion coefficients in the minima in Fig. 5 where the
lower-frequency dip is only 10% stronger than the higher-
frequency one. For angles smaller than 5◦ the anomalous
scattering dominates since the eigenmode with normal
dispersion cannot be excited at θ = 0◦ because of its an-
tisymmetric nature. When θ → 0◦ the frequency interval
between two resonant minima in the transmission spectra
approaches the width of the doublet, while at the same
time the minimum corresponding to normal scattering
gradually vanishes.

The plots in Figs. 5-8 clearly demonstrate that a peri-
odic chain of weak scatterers may redirect the incoming
sound beam by an angle of about 90◦ if the frequency
and the angle of incidence satisfy the matching condition
(19). Moreover, a chain may serve as a splitter of bi-
frequency acoustic signal. Let an acoustic beam formed
by mixing of two monochromatic components hit a chain
at a certain angle θ. If the frequencies match the condi-
tion (19), the beam will be split into two monochromatic
signals propagating along the chain in the opposite direc-
tions. If the detuning between the components is quite
small (beats) the crossing of the straight line with the
dispersion curves in Fig. 4 occurs very close to the Γ-

FIG. 7: Polar diagram showing distribution of intensity of
scattered sound of frequency f = 3400 Hz (upper band).
Solid-red and green-dashed lines are for inviscid and viscous
air, respectively. Black arrow shows the direction of the inci-
dent wave. An essential part of scattered sound wave propa-
gates along the chain in the direction of the wave vector k‖.
Note logarithmic scale along radius.

point, that corresponds to almost normal incidence. In
this case, the efficiency of splitting is reduced since the
intensity of the redirected high-frequency component is
suppressed.
In Fig. 9 we show the splitting of a bi-frequency signal

when it hits the chain at the angle of 10◦ in ideal (panel
(a)) and viscous (panel (b)) air. The frequencies of the
monochromatic components, 2625 Hz and 3715 Hz, are
obtained from the band diagram in Fig. 4. Since the
chain contains only 25 shells and the angle of incidence
is not very small, the essential part of acoustic energy
propagates directly through the chain. Nevertheless, a
clear pattern of split fringes is observed even for viscous
air. The efficiency of splitting is quite good for a pure
mechanical splitter, for ideal (viscous) air 8% (5%) of
energy is converted into the low-frequency component,
propagating down (anomalous scattering) and 10% (7%)
of energy is converted into the higher-frequency compo-
nent, propagating up (normal scattering).

V. CONCLUSIONS

In summary, we have demonstrated redirection and
splitting of sound waves impinging a periodic chain of
thin perforated cylindrical shells. These conclusions have
been obtained using an analytical approach to the prob-
lem of diffraction of sound by a periodic chain of perfo-
rated cylindrical shells, which has been developed here.
Scattering at the shells is described in impedance ap-
proximation, which is applicable for both lossless and
viscous background fluid. The dispersion equation for
the eigenmodes of an infinite periodic chain is derived
and its complex solutions are obtained numerically for
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FIG. 8: The same as in Fig. 7 but for the frequency f =
2850 Hz that corresponds to the lower band with anomalous
dispersion. In this case the scattering occurs in the ”wrong”
direction, i.e. opposite to k‖.

FIG. 9: Distribution of intensity of bi-frequency signal (with
f1 = 2625 Hz and f2 = 3715 Hz) transmitted through a chain
of 25 perforated shells. The angle of incidence is 10◦ and the
background air is inviscid (a) and viscous (b). The central
part of the diffraction pattern (shown in grey) is a mixture
of two sound waves with frequencies f1 and f2. The red and
blue fringes are the split monochromatic components. The
low-frequency component (red) exhibits anomalous scatter-
ing, propagating against the ”natural” direction.

aluminum perforated shells in air. Since these shells are
only weak scatterers of sound, the eigenmodes are leaky
waves propagating with phase velocity close to the speed
of sound in air, and they slowly decay due to dissipation
and radiation. The transmission coefficient is calculated
for infinite and finite-length chains within a wide range
of frequencies. At normal incidence, the coupling to the
lowest symmetric eigenmode gives rise to a deep mini-
mum in the transmission. In this geometry, the antisym-
metric mode, which is close in frequency, is not excited
and the incoming wave is equally redirected along the
chain in both directions. At oblique incidence, the ex-
ternal wave can be coupled to both symmetric and anti-
symmetric modes that leads to two deep minima in the
transmission spectrum which are well-resolved for viscous
air. Here anomalous scattering is strongly manifested be-
cause the symmetric mode exhibits anomalous dispersion
while for the antisymmetric one the dispersion is normal.
We find that resonant coupling of external sound to the
symmetric mode results in strong scattering of acous-
tic energy along the chain in the ”wrong” direction with
respect to the direction of incidence. Finally, we show
that due to different dispersion of symmetric and an-
tisymmetric modes a sound beam consisting of two (or
more) monochromatic components can be effectively split
into two parts propagating in opposite directions along
the chain. Each part is a monochromatic wave with the
frequency resonating with either symmetric or antisym-
metric eigenmode. Further experimental work should be
performed in order to support our theoretical predictions,
which foresee useful devices for the filtering and splitting
of sound waves at selected frequencies.
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sitat Politècnica de València. A. B., F. C. and J. S.-D. ac-
knowledge the support by the Ministerio de Economı́a y
Competitividad of the Spanish government, and the Eu-
ropean Union FEDER through project TEC2014-53088-
C3-1-R.



9

[1] M. Quinten, A. Leitner, J.R. Krenn, and F.R. Aussenegg,
Electromagnetic energy transport via linear chains of sil-
ver nanoparticles, Opt. Lett. 23, 1331 (1998).

[2] M.L. Brongersma, J.W. Hartman, and H.A. Atwa-
ter, Electromagnetic energy transfer and switching in
nanoparticle chain arrays below the diffraction limit,
Phys. Rev. B 62, R16356 (2000).

[3] S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel,
B.E. Koel, A.A.G. Requicha, Local detection of electro-
magnetic energy transport below the diffraction limit in
metal nanoparticle plasmon waveguides, Nat. Mater. 2,
229 (2003).

[4] W.H. Weber and G.W. Ford, Propagation of optical ex-
citations by dipolar interactions in metal nanoparticle
chains, Phys. Rev. B 70, 125429 (2004).

[5] V.A. Markel and A.K. Sarychev, Propagation of sur-
face plasmons in ordered and disordered chains of metal
nanospheres, Phys. Rev. B 75, 085426 (2007).

[6] C. Tserkezis, N. Papanikolaou, E. Almpanis, and N. Ste-
fanou, Tailoring plasmons with metallic nanorod arrays,
Phys. Rev. B 80, 125124 (2009).

[7] P. Jasper Compaijen, Victor A. Malyshev, and
Jasper Knoester, Surface-mediated light transmission
in metal nanoparticle chains, Phys. Rev. B 87 205437
(2013).

[8] Sergey Belan and Sergey Vergeles, Plasmon mode prop-
agation in array of closely spaced metallic cylinders, Op-
tical Materials Express, 5, 130 (2015).

[9] Adam Brandstetter-Kunc, Guillaume Weick, Charles
A. Downing, Dietmar Weinmann, and Rodolfo A. Jal-
abert, Nonradiative limitations to plasmon propagation
in chains of metallic nanoparticles, Phys. Rev. B 94,
205432 (2016).

[10] H.H. Huang and C.T. Sun, Wave attenuation in an acous-
tic metamaterial with negative effective mass density,
New J. Phys. 11, 013003 (2009).

[11] H.H. Huang and C.T. Sun, Anomalous wave propagation
in one-dimensional acoustic metamaterial having simal-
taneously negative mass density and Youg’s modulus, J.
Acoust. Soc. Am. 132, 2887 (2012).

[12] N. Kaina, F. Lemoult, M. Fink and G. Lerosey, Nega-
tive refractive index and acoustic superlens from multiple
scattering in single negative metamaterials, Nature 525,
77 (2015).

[13] Michael R. Haberman and Matthew D. Guild, Acoustic
metamaterials, Phys. Today 69(6), 42 (2016).

[14] Steven A. Cummer, Johan Christensen, and Andrea
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Appendix A: Lattice sum

The lattice sum (17) converges slowly since |Hn(kld)| ∝ 1/
√
kld for l ≫ 1. It was shown in Ref. [31] that this

lattice sum can be rewritten in the following equivalent form with much faster convergence:

F (0) = −1− 2i

π

[

γ + ln
k

2p

]

− 2i
(

k2 + 2q2
)

p3d
ζ(3)− 2i

γ0d
− 2i

d

+∞
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m=1
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γ−m
− 2

mp
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m3p3

)

, (A1)
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(A2)
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(A3)

Here Bm is the Bernoulli polynomial, γ = 0.577 is Euler’s constant and

p =
2π

d
, qm = q +mp, γm = −i

√

k2 − q2m, αm = arcsin
qm
k
. (A4)

These equations are true for n ≥ 0 and for any complex k with non-negative imaginary part. For n < 0, obviously,
f−n = (−1)nfn. When Im k < 0, the original series (17) exponentially diverges. Eqs. (A1)-(A3) can be considered as
analytic continuation of the original function F (n) to the lower semispace in the complex k plane. Also, in the case
of complex values of k, the branch cut defining the square root in γm must be properly chosen. The particular choice
of the branch cut will be discussed in Appendix B below.

Appendix B: Perturbation theory

Assuming that the perforated shells are weak scatterers, the solution of the dispersion equation (18) can be found
using a perturbation theory. In zero approximation, the dispersion that corresponds to the empty-lattice model is
linear. Corrections to this linear dispersion are of interest only near the points of degeneracy, i.e. in the vicinity of the
Γ-point and the edges of the Brillouin zone. In the theory of band structures, these corrections are usually obtained
using perturbation theory for degenerate states. Due to weak scattering, the degeneracy is lifted, giving rise to narrow
band gaps. In solids, this kind of perturbation theory is known as the nearly free electron model and it uses the basis
of plane waves as unperturbed eigenfunctions. Here, we look for the solution of the wave equation in the basis of
cylindrical functions that leads to strong modification of the perturbation theory as compared to the well-known
nearly free electron model. While the final result is the same – opening of narrow band gaps, it is worthwhile to get
the explicit formulas for the gap width and for the level repulsion near the points of degeneracy and to compare these
formulas with the results obtained nonperturbatively from the exact dispersion equation (18). It will be shown that
because of the specific form of the boundary condition (9), which assumes a discontinuity of pressure even for very
thin shell, the strength of the level repulsion is quite different from that observed in the nearly free electron model.
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The scattering of sound by perforated cylinders vanishes when the acoustic impedance Zp → 0. This situation is
different from the case of solid cylinders when absence of scattering requires matching of the impedance of the material
of the cylinders and the impedance c0ρ0 of the background fluid. Thus, the small parameter of the perturbation theory
is impedance Zp that requires that the thickness of the shell h = a− b → 0. The latter condition is necessary but not
sufficient, as it is seen from Eqs. (1) and (2).
The coefficient Sn in Eq. (13) approaches infinity when a → b and Zp → 0, so we rewrite the dispersion relation

(18) in the form:

det

∣

∣

∣

∣

δnn′ +
F (n′ − n)

Sn

∣

∣

∣

∣

= 0. (B1)

Since F (n′ − n)/Sn ≪ 1, the determinant of almost diagonal matrix in Eq. (B1) can be approximated by

det

∣
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∣

δnn′ +
F (n′ − n)

Sn

∣

∣

∣

∣

≈ det |δnn′ |+Tr

(

F (n′ − n)

Sn

)

= 1 + F (0)

+∞
∑

n=−∞

S−1
n . (B2)

The terms S−1
n in the series (B2) can be expanded over h = a− b and Zp. In the linear approximation, we obtain

S−1
n =
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(
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, (B3)

It follows from Eq. (B3) that the expansion goes over two real (for inviscid fluid) dimensionless parameters

z =
πka

2

iZp

ρ0c0
and ǫ = πk2ah. Here k = ω/c0. Since Zp ∝ ω (see Eq. (1)) the parameters z, ǫ ∝ ω2. Because of this

quadratic growth the approximation (B3) becomes invalid at high frequencies.
Substitution of the expansion (B3) into the sum over n in Eq. (B2) gives the following result:
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where the identities
∑+∞

n=−∞ J ′2
n (x) = −∑+∞

n=−∞ Jn(x)J
′′
n (x) = 1

2 were used. Now Eqs. (B1) and (B2) can be
simplified to

1

F (0)
= −

+∞
∑

n=−∞

S−1
n = −z − ǫ

2i
. (B5)

In zero approximation, the right-hand side of Eq. (B5) vanishes, therefore the dispersion is obtained from the

condition F (0) = ∞. It can be satisfied due to the resonant terms with γm = −i
√

k2 − q2m in the denominator in Eq.
(A1). One of the terms diverges if for any integer m

ω = c0 |q ± 2πm/d|, m = 0, 1, 2, . . . . (B6)

This recovers the linear dispersion for sound obtained in the empty lattice approximation.
In the next approximation over z and ǫ the same resonant terms are left in the lattice sum

F (0) ≈ −
∞
∑

m′=−∞

2i

γmd
≈ 2

d

∞
∑

m′=−∞

1
√

k2 − (q + 2πm′/d)2
. (B7)

Looking for the level splitting near the Γ-point, the parameter k = ω/c0 is represented as k = |2πm/d|+∆km, where
∆km is a small correction.
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The eigenmodes of a chain of perforated cylinders are leaky waves since the dispersion relation f(q) shown in Fig. 4
contains small negative imaginary part leading to exponential decay of the field amplitude at t → ∞. At the same
time, the function F (n) defined by Eq. (17) becomes singular in the lower complex k plane since the sum over l′

diverges when the complex argument of the Hankel function infinitely grows. This follows from the asymptotical
behavior Hn(kl

′d) ≈
√

2/(πkl′d) exp(ikl′d− iπn/2− iπ/4). The function F (n) can be analytically continued to the

region Im k < 0 by fast convergent series (A1)-(A3), provided that a single-valued branch of
√

k2 − q2m is defined.

While the expansion of the scattered field (7) runs over cylindrical waves, the parameter γm =
√

k2 − q2m serves (far
away from the chain) as a perpendicular to the chain component of the wave vector. A leaky mode with Re(k2−q2m) > 0
and Im(k2 − q2m) < 0 (fourth quadrant) radiates towards x > 0. The corresponding exponent eiγmx oscillates with
exponentially growing amplitude, i.e. Re γm > 0 and Im γm < 0 (fourth quadrant). Increase of the amplitude
”compensates” exponential decay of the energy of leaky mode along the direction of propagation [32, 33, 35]. For

the square root
√

k2 − q2m with its argument k2 − q2m lying in the forth quadrant, the branch of the square root lying
also in the same quadrant is defined if the cut is made, e.g., along the negative imaginary axis. This choice is made,
among other options, because it also provides the correct behavior for the non-radiative (true) eigenmodes [36, 37].
Indeed, for the non-radiative wave Im k < 0 and Re

(

k2 − q2m
)

< 0, so
(

k2 − q2m
)

lies in the third quadrant. Then its

square root lies either in the second or fourth quadrant. The non-radiative condition requires that Im
√

k2 − q2m > 0.
This condition uniquely defines the branch of the square root in the second quadrant and the branch cut along the
negative imaginary axis.
Once the unique branch for γm is defined, the dispersion equation (B5) with F (0) in the form (B7) can be solved.

For a given allowed band with band index m only two terms with m′ = m and m′ = −m are left in Eq. (B7) in order
to calculate the repulsion of levels near the Γ-point (near the edge of the Brillouine zone the terms with m′ = m and
m′ = −m−1 give the principal contribution). In this region where k = ω/c0 ≈ 2πm/d and q ≪ π/d the denominators

in Eq. (B7) can be simplified to
√

k2 − q2±m ≈
√

(4πm/d)(∆km ∓ q). Thus, in the linear approximation the dispersion

equation takes the following form:

1√
∆km − q

+
1√

∆km + q
= −i

√
4πmd (z − ǫ)

−1
. (B8)

This equation has a unique solution provided that the both terms in the left-hand side are pure imaginary. Since
q > 0 the correction ∆km must be negative and also |∆km| > q. These conditions define the lower branch of the
dispersion curve near ω = 2πmc0/d. It is therefore easy to write down the equation for |∆km| as

√

|∆km|+ q +
√

|∆km| − q = 2

√

∆k2m − q2

κm
, (B9)

where κm = (z − ǫ)2/πmd. This equation is valid for any value of the Bloch vector q < |∆km|. To calculate the level
repulsion it is sufficient to solve this equation in the close vicinity of the Γ-point, where q ≪ |∆km|. Exactly at the
Γ-point ∆km(q = 0) = κm. Expansion of the both parts of Eq. (B9) up to the terms ∝ q2 reduces it to a quadratic
equation over |∆km|. Its physically meaningful solution is

∆km = −κm − 3q2

4κm
. (B10)

Using this result, the dispersion relation for the lower branch is written as follows:

ω(q) =
2πmc0

d
+∆kmc0 ≈ 2πmc0

d
− κmc0 −

3q2

4κm
c0. (B11)

This dispersion relation looks similar to what is known from the nearly free electron approximation: the group velocity
vanishes at the Γ-point, the eigenfrequency is red-shifted with respect to that in the empty lattice model, and the width
of the band gap κmc0 scales as a square of the perturbation parameter. Note that the obtained dispersion relation is
real since the non-radiative condition k2 − q2±m < 0 is valid. The imaginary correction to the eigenfrequency appears
when the terms with |m′| 6= m are kept in the sum (B7).
Unlike this, the upper branch of the dispersion curve is obtained as a complex solution of Eq. (B8). According to

the requirement of exponential decay with time, this solution lies in the lower part of the complex plane, Im ∆km =
Im ω/c0 < 0. Since the right-hand-side of Eq. (B8) is pure imaginary, the real parts of (∆km − q) and (∆km + q)
have opposite signs, i.e. the former lies in the third and the latter in the fourth quadrant. Then, the two inequalities
Re(∆km + q) > 0 and Re(∆km − q) > 0 yield |Re ∆km| < q, i.e. the complex solution of Eq. (B8) does not reach
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the Γ-point q = 0. Taking into account the branch cut along the negative imaginary axis, the first and the second
term in Eq. (B8) lie in the third and first quadrants, respectively. Introducing dimensionless variables x = q/κm and
y = ∆km/κm Eq. (B8) can be rewritten as follows:

1√
y − x

= −2i− 1√
y + x

. (B12)

Both sides of this radical equation lie in the same (third) quadrant, therefore it can be safely squared. Repeating this
procedure two times, we come to a biquadratic equation over x

4x4 + x2(1 − 8y2 − 4y) + 4y4 + 4y3 = 0. (B13)

While it can be solved exactly, we are interested in the dependence y(x) in the region of small x and y. It is easy to
get that y(x) can be written as a power series over (x/2)2/3

y(x) ≈ e−iπ/3
(x

2

)2/3

+
5

3
eiπ/3

(x

2

)4/3

+
(x

2

)2

, x << 1. (B14)

Now the dispersion relation for the upper branch is written as follows:

ω(q) =
2πmc0

d
+∆kmc0 ≈ 2πmc0

d
+ κmc0

[

e−iπ/3

(

q

2κm

)2/3

+
5

3
eiπ/3

(

q

2κm

)4/3

+

(

q

2κm

)2
]

. (B15)

This relation is valid for small wavevectors, q << κm. It, however, is not valid very close to the Γ-point where
the group velocity ∂ω/∂q ∝ q−1/3 exhibits infinite growth. The region of validity is obtained from the condition
Re ∆km < q, which numerically gives q > qc ≈ κm/20. Within the interval 0 < q < qc, shown by dashed line in the
insert to Fig. 10, the mode does not propagate. This region is so narrow that it is not resolved in the dispersion
curves for the upper branch shown in Figs. 4 and 10. Unlike the lower band, which exhibits the red-shift, the upper
branch is not blue-shifted, and the gap opening

∆f =
c0κ1

2π
=

c0 (z − ǫ)
2

2π2d
, (B16)

is asymmetric. Numerically the gap width ∆f ≈ 100 Hz given by this perturbation theory formula exceeds much
the band gap of only 35 Hz shown in Fig. 4. The reason is that the expansion in Eq. (B3) runs not over the ratio

of impedances iZp/ρ0c0 but over the parameter z =
πka

2

iZp

ρ0c0
which is not small at all. Near ω = 2πc0/d its

numerical value is as big as 0.95, that is why the perturbation theory gives a poor approximation. Nevertheless, this
approximation is of principal importance since it explains the asymmetry between the lower and the upper band near
the Γ-point.
The asymmetric band opening and non-vanishing group velocity of the upper band have been recently reported for

leaky surface acoustic [36] and electromagnetic [37] modes propagating along periodically corrugated surfaces. The
eigenvalue problem for surface modes at the surface corrugations, having cylindrical symmetry with axis along z, and
the eigenvalue problem for the periodic set of cylinders in Fig. 1 require similar expansions over cylindrical functions.
Due to this similarity the spectra of leaky eigenmodes for these two geometries exhibit the same anomalies.
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FIG. 10: Band structure of infinite periodic chain of shells imbedded in inviscid air. Solid straight (red) lines show linear
dispersion in air. Dots (blue) are the real parts of the eigenfrequencies calculated from Eq. (18). Dashed (blue) lines show the
dispersion obtained from the perturbation theory equations (B11) and (B15). The inset shows the narrow region qd < qcd ≈ 0.01
near the Γ-point where the upper band does not exist. The leaky upper mode beyond q = qc is shown by solid blue line.


