Focusing properties of diffractive lenses constructed
with the aperiodic m-bonacci sequence
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ABSTRACT

In this contribution we present a new family of diffractive lenses which are designed using the m-bonacci sequence.
These lenses are a generalization of the Fibonacci Zone Plates previously reported. Diffractive elements of this type are
called aperiodic zone plates because they are characterized by a radial profile that follows a given deterministic aperiodic
sequence (Cantor set, Thue-Morse, Fibonacci...). Aperiodic lenses have demonstrated new interesting focusing and
imaging properties that have found applications in different fields such as soft X-ray microscopy and spectral domain
optical coherence tomography. Here, we show that m-bonacci zone plates are inherently bifocal lenses. We demonstrate
that the relative separation of their foci depends on the m-value of the sequence and also can be correlated with the
generalized golden ratio. As a particular case, the properties of the m-bonacci sequence with =2 and m=3, called
Fibonacci and Tribonacci Zone Plates respectively are discussed.
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INTRODUCTION

In photonics technology, Diffractive Optical Elements (DOEs) have found a large number of new applications in many
different areas, covering the whole electromagnetic spectrum from X-ray Microscopy [1], to THz Imaging [2].
Diffractive lenses, such as conventional Fresnel zone plates are essential in many focusing and image forming systems
but they have inherent limitations, especially under polychromatic illumination. A Fresnel zone plate can be understood
as a periodic element along the squared radial coordinate.

On the other hand, we have shown that also non-periodic and aperiodic structures, can generate diffractive lenses with
unique features. In fact. aperiodic order has attracted considerable interest of researchers of several fields. From a
theoretical point of view, it is considered a suitable theoretical model to describe the conceptual transition from
randomness to periodic order. Besides, from a practical point of view, there is evidence that deterministically ordered
aperiodic structures may offer interesting possibilities for technological applications [3]. Our work in this line started
with the proposal of the first lenses showing a fractal distriburtion of foci: the Fractal Zone Plates [4, 5], these diffractive
lenses, that are generated with the fractal Cantor set, have shown an improved behavior compared with Fresnel zone
plates, especially under wide band illumination [6].

Another interesting mathematical generator of aperiodic Zone Plates is the Fibonacci sequence [7], which is generated
from the Fibonacci numbers. The Fibonacci sequence is one of the most recurrent mathematical fitting models of
different natural phenomena. This sequence has been also employed in the development of different photonic devices
[8], such as multilayers and linear gratings [9], circular gratings [10], spiral Zone Plates [11].

In this work we show that Fibonacci zone plates are particular cases of a general set that we have called m-bonacci Zone
Plates. In particular, we compare the focusing properties of these aperiodic lenses with m=2 (Fibonacci) and m=3
(Tribonacci).
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M-BONACCI ZONE PLATES DESIGN

We start the design of our aperiodic Zone Plates by obtaining previously the Fibonacci and Tribonacci numbers. Starting
with two elements (seeds) /=0 and F=1 , the Fibonacci numbers, F="{0,1,1,2,3,5,8,13,21,...} , are obtained by the
sequential application of the iterative rule Fj,;= F; + F}.;, (j =1, 2, ...). The golden mean, or golden ratio, is defined as the
limit of the factor between two consecutive Fibonacci numbers:

@, =lim_ F./F. =(1+5)/2~1618 : (1)
2 J

Jjow J+ T

On the other hand, the Tribonacci numbers 7;="{0, 1, 1, 2, 4, 7, 13, 24, 44,...}, are obtained starting from the first three

elements 7,=0 and 7\=1 and 7,=1 by the sequential application of the iterative rule Tiw=Tj+ Ty + Ty,

(/=2,3, ...). In this case the limit of the factor between two consecutive Tribonacci numbers approaches the value:
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In a similar way, a binary aperiodic Fibonacci sequence can also be deterministically generated starting from two seed
elements, as for example, S1= {4} and So={B}, and the successive elements of the sequence are obtained simply as the
concatenation of the two previous ones: Sy+1= {S;, S;.; } for>1. In this way we obtain the Fibonacci based sequence:
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Note that, in any given sequence of order Sj, two successive “B” are separated by either, one or two “4”, and that the
total number of elements Fj+1, results from the sum of Fjelements “4”, and Fj+1 elements “B”.

A similar procedure can be followed to create a binary aperiodic structure based on the Tribonacci: Starting from the
seed elements: S1 = {4} So = {B} and So = {AB}, the successive elements of the sequence are generated as the
concatenation of the three previous ones: Sjy= S; + Sj.; + Sj.5, for j > 2. In this way we obtain the Tribonacci based
sequence:
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Note that, as for the Fibonacci based structure, in any given sequence of order Sj, two successive “B” are separated by
either, one or two “4”, but the total number of elements Tj,, , results from the sum of 7j elements “A”, and T; + T},
elements “B”.

The m-bonacci binary structure of any order m is obtained following the same, conceptually simple, procedure.

When designing a zone plate, each one of these sequences can be used to define the binary generating function ¢(&)
with compact support on the interval [0,1]. This interval is partitioned in N sub-intervals of length d = 1/N, and the value
that takes at the j-th sub-interval S is associated to the value of the element for the Fibonacci and the Tribonacci based
Zone Plate, being 0 or 1 when its value is “A” or “B”, respectively.

Figure 1. (Top) Zone Plate based on the Fibonacci sequence of order 7.

(Bottom) Zone Plate based on the Tribonacci based sequence of order 7.
From a particular generating function ¢(&) the transmittance ¢(&) of the corresponding mi-bonacci Zone Plate is
obtained after performing the following coordinate transformation: £ = (r/a)2 , where r is the radial coordinate of the

zone plate, and ¢ is its maximum value. In Fig. 1 we show the Fibonacci based Zone Plate of order 7 (top) and
Tribonacci based Zone Plate of order 7 (bottom). Note that the number of rings in each zone plate is the same to the
number of elements of the corresponding sequence (see Eqs 3 and 4).

FOCUSING PROPERTIES

We have computed the axial irradiance along the optical axis provided by the m-bonacci zone plates within the Fresnel
approximation. Provided that we are dealing with rotationally invariant pupil functions, they can described in terms of a
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function that only depends on the radial coordinate: p(r). Thus, the axial irradiance at a given axial point under a
monochromatic plane wave illumination can be expressed as a function of the axial distance from the pupil plane z:

o)

In the above equation, g is the maximum extent of the pupil function, and A is the wavelength of the light. For our
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purposes it is convenient to express the pupil transmittance as function of a new variable defined as £ = ( rl a)2 in such a

way that g(£)=p() By using the dimensionless axial coordinate u=a’/2z, the irradiance along the optical axis can be
now expressed as

I(u) = 47’ Iolq(i)exp[—?,inuf] fdﬁz, (6)

Therefore the axial irradiance can be expressed as the square modulus of the Fourier transform of the pupil function g(&)

By using the above equation we have computed the axial irradiances provided by the Fibonacci based Zone Plates of
order 7 and 9. As it can be seen in Fig. 2, the Fibonacci Zone Plate drive most of the incoming light into two main foci

located at = Fj.; and u,= F; being the ratio of the focal distances uy 1= @ , = 1.618.

In the same way we have computed axial irradiances for the Tribonacci Zone Plate of order 7 and order 9. The results are
shown in Fig. 3. It can be also observed that the Tribonacci Zone Plate also drive most of the incoming light into two
main foci which in this case are located at = T}, + T, and u,= T}, being the ratio of the focal distances

uy = 1/(@p;-1)=1.1991.
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Figure 2. Computed axial irradiance for Fibonacci Zone Plates of different orders.
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Figure 3. Computed axial irradiance for Tribonacci Zone Plates of different orders.

CONCLUSIONS

Sumarizing, the generalization of the Fibonacci Zone Plate has been presented with the m-bonacci sequence. In
particular, the focusing properties of Tribonacci Zone Plate has been computed and compared with that provided by the
Fibonacci Zone Plate. It was found that the Tribonacci Zone Plates also produces a bifocal axial irradiance which focal
positions are related with the Tribonacci numbers. It has been also observed that the pair of foci provided by the
Tribonacci based Zone Plate are closer than the two foci of the Fibonacci Zone Plate.
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