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Abstract 
Conventional standard procedure used to determine the design value of a headed stud shear 
resistance in composite steel-concrete beams is very simple but, in fact, mathematically 
incorrect, particularly in the case when such connector is automatically welded and when it is 
working in a solid slab. According to this approach the considered value is specified as a 
minimum of two separate design values. One of them is related to the resistance of the stud 
itself while the other is associated with the failure of the surrounding concrete. In the paper 
presented by the authors a new algorithm which allow to evaluate this value is recommended 
and discussed in detail. It seems to be more accurate because it is based on the fully 
probabilistic inference. In such approach a new random variable is introduced, being a 
minimum of two other, statistically independent, random variables. Analogously as it is in the 
concept previously mentioned, the first random variable quantifies now the steel stud shear 
resistance whereas the second one – the resistance of the adjacent concrete. Consequently, the 
sought design value is determined as a suitable quantile of this new random variable, 
characterized by log-normal probability distribution. It is shown that the design value of a 
headed stud shear resistance, calculated in this manner, strongly depends on the variability of 
strength parameters, relating both to the steel of which the connecting stud is made and to the 
concrete of the slab. In addition, it is found that in the case when the variability of concrete 
strength is too high, the safety factor recommended to use in European standards is not able to 
provide the required safety level, acceptable by the building users. The considerations presented 
in the article are illustrated by a detailed computational example. 

Keywords: Headed stud; shear resistance; design value; probability analysis; log-normal 
probability distribution; strength variability.  

 
 

1. Introduction 
It is common knowledge that the headed 

studs are the conventional connectors widely 
used in composite steel – concrete structures to 
resist both horizontal shear and vertical uplift 
forces [1]. Much research has been carried out 
to estimate the strength of such studs. These 
were both the experimental tests and numerical 
simulations [2, 3]. As a consequence, various 
equations have been proposed to specify the 
design value of a random shear resistance 
relating to the studs of this type. Among all the 
calculation procedures being available for use 
in this field the computational approach 
formalized in the standard EN 1994-1-1 [4, 5] is 
most often chosen by designers. According to 
this formal model, if the considered connector 

is placed in a concrete solid slab, the design 
value of a shear stud resistance dRP ,  is 
determined as the lesser of the design values 

dsRP ,,  and dcRP ,, . These values are given by 
two separate equations, one of which represents 
failure of the stud itself (a “steel failure”) while 
the other - failure of the surrounding concrete. 
Consequently, there is: 

( )dcRdsRdR PPP ,,,,, ,min=                              (1) 

where, in particular: 

υυ γγ
π ksR

udsR
PdfP ,,
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,,
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8,0 ==                     (2) 

and also: 
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129,0 ==        (3) 

In the above mentioned formulae the quantities 
ksRP ,,  and kcRP ,,  are the characteristic values 

of the random resistances sRP ,  and cRP , , 
respectively. This means that the coefficient 

25,1=υγ  may be interpreted here as the partial 
safety factor specified specially for a considered 
connection. Furthermore, [ ]MPafu  - is the 
ultimate tensile strength of the steel from which 
the stud is made, [ ]MPafck  - is the 
characteristic cylinder strength of the 
surrounding concrete, [ ]GPaEcm  - is the secant 
modulus of elasticity of this concrete, [ ]mmd  - 
is the diameter of the shank of a considered 
stud, α - is the coefficient taking into account 
the effective slenderness of such stud. In further 
analysis it is assumed that 4>dhsc , where 

[ ]mmhsc  is the stud length measured after 
welding. This allows to take that 0,1=α . The 
basic advantage of such a computational 
approach is simplicity, however, it is not fully 
correct in the mathematical sense. For this 
reason in this study the authors want to propose 
and to discuss in detail an alternative procedure, 
useful for more accurately determining the 
sought design value of a headed stud shear 
resistance. It is based on fully probabilistic 
calculations.  

2. Headed stud shear resistance as a new 
joint random variable 

2.1. A single random implementation 
In our analysis both the resistance sRP ,  and 

the resistance cRP ,  are interpreted as the 
random variables. Moreover, it is assumed that 
these variables are statistically independent. 
Such a limitation seems to be justified because 
not only each of these quantities depends on 
different factors but also the failure modes 
corresponding to each of them can be analysed 
as formally separate cases. The small 
correlation between both random variables 
considered above, being a consequence of their 
common dependence on the stud diameter, is 
neglected in further considerations.  

In order to determine for a single random 
implementation a representative value of a 

headed stud shear resistance RP  it is necessary 
to choose a smaller value from a random pair of 
numbers sRP ,  and cRP , . This means that: 

( )cRsRR PPP ,, ,min=                                       (4) 

Let XP sR =,  and YP cR =, . In such an 
approach the random headed stud shear 
resistance can be defined by a new variable Z , 
such that: 

( )YXZ ,min=                                               (5) 

It should be emphasized that the design value 
dZ , specified for a joint random variable Z  

which is defined as a minimum of two 
statistically independent random variables sRP ,  
and cRP , , is not equal to the minimum of 
design values dsRP ,,  and dcRP ,,  which were 
calculated separately for these variables [6]. 

2.2. Cdf and pdf functions 

To identify a cdf (cumulative distribution) 
function ( )zFZ , specified for a new random 
variable Z , it is necessary to integrate the joint 
pdf (probability density) function, continuous 
by assumption and specified jointly for random 
variables X  and Y . The integration limits are 
in this case limited to the area in which the 
minimum x  and y  is smaller than z  [7]. This 
is also the complement of the area in which x  
and y  are both greater than z  (Fig. 1). Hence: 

( ) ( ) ( )[ ]
( )[ ]

( )dxdyyxf

zYXP
zYXPzZPzF

z z
XY

Z

,1

,min1
,min

∫ ∫
∞∞

−=

=>−=
=≤=≤=

         (6)                 

Thus, an appropriate pdf function may be 
specified by a formula: 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )zFzfzFzfzfzf

zF
dz
dzf

XYYXYX

ZZ

−−+=

==
(7) 

If the form of a continuous pdf function 
( )zfZ  is known in advance then two basic 

probabilistic moments of a random variable Z  
may be calculated in a classic way. These are as 
follows: 

• a mean value ( )ZEZ =µ  as the first raw 
moment: 
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( )dzzzfZZ ∫
∞
∞−=µ                                           (8) 

• a variance ( )ZZ var2 =σ  as the second 
central moment: 

( )( )dzzzf ZZZ ∫
∞
∞− −= 22 µσ                            (9) 

 
Fig. 1. The integration area used to determine the cdf 

function specified for the random variable Z . 

2.3. Characteristics of a random variable Z  
assuming its description by the log-normal 
probability distribution  

The random variable Z  has an interpretation 
of a headed stud shear resistance. For this 
reason the log-normal probability distribution is 
usually assigned to its description, because such 
distribution is specified only for 0≥z  (i.e. in 
the range ∞<≤ z0 ). In this approach the 
random variable Zln  is characterised by the 
normal probability distribution described in the 
range ∞<<∞− Zln . This means that: 

( )
( )[ ]











 −

−=

=
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2
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2
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Z

Z

Z

Z

z
z

zf
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πσ
          (10) 

Because the following occurs: 

𝜇𝜇lnZ = ln𝜇𝜇�𝑍𝑍                                                   (11) 

where the quantity 𝜇𝜇�𝑍𝑍 is a median value of the 
random variable Z , then: 

 𝜇𝜇�𝑍𝑍 = exp(𝜇𝜇lnZ)                                           (12) 

This value is quantitatively different than the 
analoguous mean value ( )ZEZ =µ  calculated 
from the formula: 
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2
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ZZ
σµµ                             (13) 

Moreover, a variance ( )ZZ var2 =σ  is equal to: 

( )[ ]
( )[ ] ( )2

lnln
2
ln

22
ln

2

2exp1exp

1exp

ZZZ

zZZ

σµσ

µσσ

+⋅−=

=−=
            (14) 

which means that: 











+= 1ln 2

2
ln

Z

Z
Z

µ
σσ                                    (15) 

This allows to calculate the appropriate 
standard deviation: 

( ) ( ) 1expvar 2
ln −== ZZZ Z σµσ              (16) 

as well as the corresponding coefficient of 
variation: 

( ) 1exp 2
ln −= ZZ σν                                   (17) 

3. Specification of design and 
characteristic values for a random 
headed stud shear resistance  

A general safety condition defined for the 
log-normally standardized random variable 
ln�𝑍𝑍� 𝑧𝑧⁄ � = 𝑙𝑙𝑙𝑙(𝜇𝜇�𝑍𝑍 𝑧𝑧⁄ ) has a form: 

𝛽𝛽𝑅𝑅 = ln(𝑍𝑍� 𝑧𝑧⁄ )
𝜈𝜈𝑍𝑍

≥ 𝛽𝛽𝑅𝑅,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛼𝛼𝑅𝑅𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟                 (18) 

In this formula Rβ  is a partial reliability index 
specified for a considered stud shear resistance 
while reqR,β  means the target value of such 
index setting the required safety level 
depending on the acceptable failure probability. 
Let us note that the failure is identified in our 
analysis as a random event in which the 
implemented value of a random headed stud 
shear resistance turns out to be smaller than the 
appropriate design value, determined earlier as 
a proper quantile of the log-normal probability 
distribution. Obviously, index reqR,β  is here 
only a part of a conventional global reliability 
index reqβ  commonly used to verify the global 
safety condition type dRdd PZE ,=≤  (symbol 

dE  denotes in this case the design value of an 
authoritative, most unfavourable, action effect 
of a combination of the loads applied to the 
considered stud). According to the standard EN 
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1990 [8], for the ordinary safety requirements it 
is assumed that 8,3=reqβ , which is associated 
with the acceptable failure probability set at the 
level 5

, 102,7 −⋅≈ultfp . Moreover, using the 
computational format recommended in [8] a 
fixed value 8,0=Rα  can be assumed in the 
analysis. This leads to the specification that 

04,38,38,0, =⋅== reqRreqR βαβ . 

Condition (18) is equivalent to the formula: 

( )
( ) ( )reqRreqR

ultfd pZZP

βαΦβΦ −=−=

=≤<

,

,                           (19) 

Symbol ( )Φ  means here the cdf function of a 
standardized normal probability distribution. In 
other words, it is a well-known Laplace 
function with values compiled in the 
conventional statistical tables. If it is accepted 
that 04,3, =reqRβ  then, based on (19), the 

following occurs 3
, 1018,1 −⋅≈ultfp .  

In a situation when the ultimate limit state 
(18) is reached the equality dZZ =  occurs. 
This allows to transform this formula to a form: 
ln(𝑍𝑍� 𝑍𝑍𝑑𝑑⁄ )

𝜈𝜈𝑍𝑍
= 𝛽𝛽𝑅𝑅,𝑟𝑟𝑟𝑟𝑟𝑟 = 𝛼𝛼𝑅𝑅𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟                          (20) 

which gives: 

𝑍𝑍𝑑𝑑 = 𝑍𝑍�𝑒𝑒𝑒𝑒𝑒𝑒�−𝛼𝛼𝑅𝑅𝛽𝛽𝑟𝑟𝑟𝑟𝑟𝑟𝜈𝜈𝑍𝑍� = 𝑍𝑍�𝑒𝑒𝑒𝑒𝑒𝑒(−3,04𝜈𝜈𝑍𝑍) 

                                                                 (21) 

By converting the equations (12) and (13) one 
can obtain that: 

𝑍𝑍� = 𝜇𝜇�𝑍𝑍 = 𝑒𝑒𝑒𝑒𝑒𝑒 �ln𝜇𝜇𝑍𝑍 −
σlnZ2

2
� = 

𝜇𝜇𝑍𝑍

exp�
σlnZ
2

2 �
= 𝐸𝐸(𝑍𝑍)

𝑟𝑟𝑒𝑒𝑒𝑒�
σlnZ
2

2 �
                                     (22)                                                        

This allows to describe a formula (21) in an 
alternative way: 

( ) 









−−=
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−−=

2
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2
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2
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Z
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ZreqRZd
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Z
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σνβαµ

         (23) 

The characteristic value of a random headed 
stud shear resistance is recommended here to be 
determined in a classic way, as a 95%  quantile 

of the log-normal pdf function ( )zfZ . This 
leads to a formula: 

𝑍𝑍𝑘𝑘 = 𝑍𝑍�𝑒𝑒𝑒𝑒𝑒𝑒(−1,645𝜈𝜈𝑍𝑍) =
𝐸𝐸(𝑍𝑍)𝑒𝑒𝑒𝑒𝑒𝑒 �−1,645𝜈𝜈𝑍𝑍 −

𝜎𝜎lnZ
2

2
�                       (24) 

Based on the values dZ  and kZ , calculated 
from (23) and (24) respectively, it is possible to 
determine a minimum value of the partial safety 
factor min,υγ  for which a randomly 
implemented headed stud shear resistance will 
not be underestimated. Such factor can be 
computed as a ratio: 

( )[ ]

( )Z

Z
d

k
Z
Z

ν

νγυ

395,1exp

645,104,3expmin, =−==
       (25) 

Let us note that this value depends on the value 
of a coefficient of variation Zν . Simple 
comparison of results obtained from (24) with a 
constant value 25,1=υγ  recommended in the 
standard [4] is given in Fig. 2. As one can see, 
in case when the variability Zν  is large enough 
(i.e. for 17,0>Zν ) a constant value 25,1=υγ  
turns out to be insufficient to ensure the 
required safety level. 

 
Fig. 2. The minimum values of a partial safety factor 

υγ  ensuring the required safety level relating to 
the random headed stud shear resistance. 
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4. Recommended procedure for 
determining the design value of a headed 
stud shear resistance  

In the approach proposed by the authors in 
this paper the sought design value of a random 
headed stud shear resistance should be 
calculated directly from (23). A mean value 

( )ZEZ =µ  used in such formula is then 
determined on the basis of (8) while a 
coefficient of variation Zν  - according to (17). 

To do this, a variation ( )ZZ var2 =σ  has to be 
specified earlier, as shown in (9), giving in the 
next step a representative value of the standard 
deviation  Zlnσ , based on (15). Alternatively, 

in (23) the value 2
ln Zσ  can be effectivelly 

eliminated by the substitution:  

( )1ln 22
ln += ZZ νσ                                          (26) 

The procedure mentioned above is useful in 
practical application due to the assumption that 
the boundary pdf functions, both ( )zf X  and 

( )zfY , taking into account in (7) to establish 
the joint pdf function ( )zfZ , are characterized 
by the log-normal probability distribution. 

5. Calculation example  
A computational procedure discussed in the 

previous chapter is illustrated here by an 
exemplary evaluation of the design value of a 
random headed stud shear resistance. Let the 
considered stud has the diameter mmd 16= and 
the length measured after welding mmhsc 70= . 
It is assumed that this stub was made of steel 
for which MPafu 400= . As far as the 
parameters of the surrounding concrete are 
concerned these are as follows: MPafck 20=  
and GPaEcm 5,30=  (being typical for the 
concrete C20/25). Such data, after applying the 
conventional standard formula (1), leads to the 
evaluation that kNPEC

dR 46, = . 

Using the new probabilistic approach, 
however, reveals the relationship between the 
sought design value of a random headed stud 
shear resistance ddR ZP =,  and the coefficient 
of variation Zν  (in accordance with (23)). This, 
after taking into account (7) and (9), 
transformes into appropriate dependences: on 

the degree of variability sX νν = , relating to 
the strength of steel the considered stud was 
made of, as well as on the degree of variability 

cY νν = , corresponding to the surrounding 
concrete parameters. The sought design values 
of a random headed stud shear resistance 

( )cdRdR PP ν,, = , obtained in the example for 
subsequent values of the variability cν , with an 
assumption that the variability of steel strength 
is constant and set at the level 10,0=sν , are 
shown in detail in Fig. 3.  

 
Fig. 3. The design values of a random headed stud 

shear resistance obtained for the data considered 
in the example. 

6. Concluding remarks  
The detailed analysis performed by the 

authors in this paper discloses an important 
dependence between the design value of a 
random headed stud shear resistance dRP , , 
established by calculations, and the known a 
priori values of the coefficients of variation 
including: sν - relating to the resistance of steel 
the considered stud is made of, and cν  - 
associated with the strength of surrounding 
concrete, respectively. This type of impact 
cannot be visualized using only a simplified 
approach to determine the sought design value, 
based on the recommendations given in the 
standard EN 1994-1-1 [4]. Hence, a conclusion 
may be formulated that the numerical results 
obtained due to the application of formula (1), 
without any additional research, can be 
interpreted at most as the fairly rough estimates 
of the analoguous values computed in more 
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complex way. Such new values seem to be 
more accurate because  these are identified as 
the relevant quantile of the appropriate 
probability distribution describing the random 
nature of a headed stud shear resistance. The 
quantile of this type is usually determined for 
the failure probability set at the level 

3
, 1018,1 −⋅≈ultfp , which correspond to the 

specification that 04,3, =reqRβ . 

To unambiguously determine a headed stud 
shear resistance for a single random 
implementation a minimum value of two 
random variables, sRP ,  and cRP ,  respectively, 
should be identified. It is essential that the 
design value specified for such random 
minimum is not quantitatively equivalent to the 
deterministic minimum of the design values 

dsRP ,,  and dcRP ,, , calculated separately, as it 
is incorrectly recommended in the standard [4]. 
This means that: 

( )[ ] ( )[ ]
( )dcRdsR

dcRsRddR

PP

PPYXP

,,,,

,,,

,min

,min,min

≠

≠==
 (27) 

The results of a numerical example, 
presented in this paper, allow to conclude that 
for a fixed value of the variability sν , set at the 
level 10,0=sν , and with a sufficiently high 
homogeneity of surrounding concrete (which is 
equivalent to the specification that the level of 
the variability cν , relating to its strength, is low 
enough), the design value of a random headed 
stud shear resistance, determined by the use of 
fully probabilistic calculations, is higher than 
the analoguous design value resulting from a 
simple deterministic comparison of the values 

dsRP ,,  and dcRP ,, . However, if the concrete 
surrounding the considered headed stud is 
identified to be heterogeneous (for instance for 
the data used in the presented example the 
variability of its strength in such case should 
meet the condition that 17,0>cν ) the design 
value of a random headed stud shear resistance, 
specified by conventional standard methods, 
turns out to be clearly overestimated.  
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