
Escuela Técnica Superior de Ingeniería de Telecomunicación
Universitat Politècnica de València

Blockchain technology analysis and
development of a Java implementation.

DISSERTATION

Degree in Telecommunications Technology and Services Engineering

Author: José Blasco Núñez de Cela
Tutor: Antonio León Fernández

Year 2017-2018

Thank you to those who helped me.
Family, friends and friends who are like family.

Vires in numeris

i

Abstract
In this project we will focus on the analysis of the Blockchain technology and developa basic implementation in Java, including all the basic components such as transactions,consensus and a P2P network. Lastly, we will show a use case by developing a Proof ofExistence platform with our own Blockchain.

Key words: Blockchain, Java, P2P, PoE

Resumen
En este proyecto nos centraremos en el análisis de la tecnología Blockchain y desa-rrollaremos una implementación básica en Java, incluyendo todos los componentes bá-sicos como transacciones, consenso y la red P2P. Por último, mostraremos un caso deuso mediante el desarrollo de una plataforma de Prueba de Existencia con nuestra propiaBlockchain.

Palabras clave: Blockchain, Java, P2P, PoE

Resum
En aquest projecte ens centrarem en l’anàlisi de la tecnologia Blockchain i desenvolupa-rem una implementació bàsica en Java, inclosos tots els components bàsics com transac-cions, consens i la xarxa P2P. Finalment, mostrarem un cas d’ús mitjançant el desenvolu-pament d’una plataforma Prova d’existència amb ela nostra propia Blockchain.

Paraules clau: Blockchain, Java, P2P, PoE
ii

Contents
Contents iii
List of Figures iv
List of Tables iv

1 Introduction 11.1 Goals and distribution of the project . 2
2 Blockchain basics 42.1 What is a block? . 52.2 Achieving consensus on cryptocurrencies . 72.3 Privacy and security on a Blockchain network 82.3.1 What is hashing? . 82.3.2 Reverse-engineering the hash of a block 92.3.3 "51% attack" . 92.4 Forks of a Blockchain . 10
3 Developing a blockchain in Java 123.1 First iteration: core of the blockchain . 143.2 Second iteration: dynamic difficulty . 203.3 Third iteration: SHA-512 hash . 223.4 Fourth iteration: users . 233.5 Fifth iteration: transactions . 29
4 Development of a Proof of Existence platform 334.1 Introduction to PoE . 344.1.1 How it works . 344.2 Development . 364.2.1 Registration of documents . 374.2.2 Verification of documents . 384.2.3 List of registered documents . 39
5 Other blockchain applications 405.1 Money . 415.2 Tokenization . 425.3 Supply chain . 425.4 Content creation monetization . 425.5 Voting and governance . 43
6 Conclusions 44
Bibliography 46

iii

List of Figures

1.1 Comparison of traditional vs blockchain transaction. 2
2.1 Structure of a bitcoin block. 6
3.1 Structure of broadcast network. 143.2 Start window. 173.3 Management window. 193.4 Start diagram. 193.5 Management window with dynamic difficulty 213.6 Connection sequence with users. 253.7 Start window. 263.8 Creating a new Blockchain. 273.9 Joining the network with an existing user. 273.10 Joining the network with a new user. 273.11 Management window with save/load options for users. 283.12 Updated management window. 313.13 Send transaction to network. 313.14 Send transaction to another user. 323.15 Control and verify pending transactions. 32
4.1 Main window of the PoE platform . 364.2 Sending a document to the network . 374.3 Sending a document to another user . 374.4 Verification of the same document . 384.5 Verification of an altered document . 384.6 Verification of a document before signing . 384.7 List of users’ transactions . 39

List of Tables

1.1 Tasks to perform . 3
2.1 Hashing with an imaginative hashing algorithm 82.2 Hashing with MD5 . 9

iv

CHAPTER 1

Introduction

1

"I give you a horse for two pigs."
Trading has been an essential issue during the development of humanity. We startedtrading goods for other goods, and then introduced an intermediary step, such as gold andeventually euros.
This system works just fine, we can buy and sell anything we want as far as we haveenough euros. We can trade Euros to dollars to buy things in the USA, to Pounds to buy inthe UK or to yen to buy in Japan. But this also comes with some issues.
Blockchain technology offers solutions to problems we didn’t know that even existed.With blockchain technology, we can have a decentralised, anonymous, secure network tostore transactions of money, goods and ideas. We can use this secure, future-ready tech-nology to create a new economic ecosystem, with new currencies and contracts.
Blockchain technology is used to put aside intermediate steps, avoiding having to relyon banks or even electricity companies, making thus trading more secure and anonymous,not to mention avoiding extra cost in form of money and time.

Figure 1.1: Comparison of traditional vs blockchain transaction.
However, money is not the only thing Blockchain is disrupting. Potentially every singleindustry can adapt Blockchain for their own field of work and be part of this revolution.
Industries such as transport, energy, smart cities, law or even supply chains are slowlyexploring this technology and we will use it daily in no longer than five years.

1.1 Goals and distribution of the project

The main goals of this project are to understand how blockchain technology works, andwhat can it can offer to the society and business of the future. The project is divided in fourbig chapters.
The first one is an introduction to blockchain and somebasic concepts in order to under-stand how the technology work and be able to comprehend the rest of the project. This ismainly a theoretical part with general concepts that do not relate to any specific blockchainapplication.
The second and third chapters are where most of the project itself is explained. On thesecond chapter, we will develop a blockchain in Java from the groundup. On different iter-

2

ations we will introduce new features step by step and testing and comparing the differentversions.
On the third chapter, we will adapt this application to work as a Proof of Existence plat-form, allowing users to register documents and share them thought the network in a secureand private way, while assuring the integrity of the document.
On the last chapter, we will analyze other blockchain applications aside from PoE, suchas cryptocurrencies, IoT technology, smart cities and others.

Planning and introduction of the project Week 1Research and introduction to blockchain technology Weeks 2 & 3Write chapter ’blockchain basics’ Week 4Preparation and design of the Java implementation Week 5First iteration: core of the blockchain Weeks 6 & 7Second iteration: dynamic difficulty Week 8 (a)Third iteration: SHA-512 hash Week 8 (b)Fourth iteration: users Week 9Fifth iteration: transactions Week 10Development of a PoE platform Week 11Other blockchain applications Week 12Formatting and final changes to the memory Week 13Preparation of the presentation Week 14
Table 1.1: Tasks to perform

3

CHAPTER 2

Blockchain basics

4

Blockchain is a technology that uses a series of blocks linked between them that can’tbe edited after they are chained to the network. These blocks can contain any kind of infor-mation, but in most of the implementations of this technology, the information stored arethe transactions that happen on the network during the time that the block is being built.Therefore, the blockchain works as a decentralized distributed database that synchronizeson every node of the network.
Blockchains can be private (for some business) or public. On private blockchains, thedata canbedistributed among several places or canbe stored just in the company’s servers.On the other hand, public networks are open for anyone to see, collaborate and maintain.
The main characteristics of a Blockchain [1] are:
• It is designed to be distributed and synchronised across networks.
• You can’t just do whatever you want to the data. The types of transactions some-body can carry out are agreed between participants in advance and stored in theblockchain according to the design of the network.
• Immutability of the data. Once you have agreed on a transaction and recorded it, itcan never be changed. You can subsequently record another transaction about thatasset to change its state, but you can never hide the original transaction.

2.1 What is a block?

Blocks, as the "Blockchain" name indicates, are the core of the blockchain. Each blockcontains the information that builds the blockchain. The contents of the block may varydepending on the implementation of the blockchain and its goal. For instance, on a cryp-tocurrency blockchain, blocks contain the transactions that happen while that block wasbeing built.
The first block of a blochchain is called the "genesis" block, and it usually includes someunimportant info, or a commentary of the developer. Bitcoin’s genesis block contained aheadline of a newspaper a month earlier than the creation of the network, " The Times

03/Jan/2009 Chancellor on brink of second bailout for banks"[2]
Each block is linked to the previous and next one. This is done usually by includingthe hash of the previous block as part of the current one, therefore if the previous one ismodified, it can be detected. This creates a robust system where no one can edit previousblocks in their advantage. New transactions are constantly being processed by miners intonew blocks which are added to the end of the chain and can never be changed or removedonce accepted by the network.
An example of a bitcoin block structure[3] is the following. We will get into more detailin the bitcoin specific section of the project.

5

Figure 2.1: Structure of a bitcoin block.

6

2.2 Achieving consensus on cryptocurrencies

Every cryptocurrency has its own public blockchain to store all the transactions that oc-curred. A proof of work and proof of stake algorithm[4] are different methods (or algo-rithms) to achieve consensus on which block will be added next to the blockchain.
Proof of work (PoW) requires proof that work of some kind has occurred. In the case ofBitcoin, miners are required to do this work before any of their blocks is accepted by others.In PoW you are as powerful as your hardware is, with respect to the network.
Proof of stake (PoS) requires users that have a high stake at the currency (i.e. holda lot of coins) to determine the next block. This has a high risk of some party achievingmonopoly of the currency but there are several methods to prevent that (we will analyze itlater on the project). If you have 5% of the total amount of coins in the network, you willreceive 5% of the new tokens created.
The main difference could be summarized in that proof of work requires burning anexternal resource (mining hardware with a lot of computational power) while proof of stakedoes not. Proof of work could be criticized that if the profitability (earnings with respectto investment) drops then less people will have incentives to mine thus the security of thesystem is reduced. Proof of stake could be criticized that since it is free to stake/add newblocks to the blockchain you could use it to stake several similar coins at the same timewithout any additional effort.
There is a third, less used technology called Proof of Importance (PoI)[5]. This tech-nology aims to solve the problems mentioned above, by giving more importance to thosewho are more valuable to the network, mainly by being more active and trustful, thereforeloyal to the network. The first cryptocurrency that used this technology was NEM(XEM).
Examples:
• Bitcoin, Litecoin and many others use the PoW method.
• NXT, BitShares and others use the PoS method.
• Ethereum uses PoW but is scheduled to change to PoS.
• Peercoin uses a combination of PoW and PoS.
This process of achieving consensus is also known as "mining". Mining is the operationof collaborating on themaintenance of the network by confirming transactions and closingblocks that are chained to the network. Mining takes a lot of different forms depending onthe consensus technology the network is using.
In PoW, a "miner" (person whomines) uses computational power in order to find a hashof the current block with a defined goal. Usually, this goal is set by the difficulty by definingthe hash to start with a number of ’0’s. To do so, the miner adds a random string to theblock in order to change the outcome of the hash. The difficulty is dynamically changed tomaintain a consistent time between blocks. The more computational power there is on thenetwork, the more difficult the process is (more ’0’s at the beginning of the hash).
For example, in an imaginative hashing algorithm, the following hashes occur:

7

INPUT HASH OUTPUTTX1 TX2 TX3 abcdefghijk1234567TX1 TX2 TX3random text 00lmnopqrstu987654
Table 2.1: Hashing with an imaginative hashing algorithm

If the target was to get a hash that starts with "00xxxx..." the second input would meetthe difficulty and close the block. With this method, the more computing power you have,the more rewards you get.
OnPoS, insteadof "wasting" energy and computing power onmining, the network closesthe blocks automatically every given time (defined by the network) and rewards the minerswho host the nodes of the blockchain with a proportional amount of coins with respect ofhow much they have in their wallets. This way, the more coins you have, the more rewardsyou get.
As you might have guess, mining is not viable if your resources are small, since youwill probably get no reward in PoW and very little in PoS. That’s why people join each otherin mining pools. A mining pool is a conglomerate of miners that work together to minethe coins, and split the rewards among them. Even though on the long term the rewardsa miner gets are similar to what they would earn doing solo-mining, they will get rewardsasidually.

2.3 Privacy and security on a Blockchain network

One of the key features of the blockchain technology is the robustness and privacy it offers.This relies in two main ideas, first of all, users are identified by an address and not a name,and secondly by the inherent property of the blockchain to be regulated and protected byits users.
Each user has to be identified on the network, and this is done using addresses. The for-mat of this address is irrelevant, and can take many forms. The important thing is the pur-pose of the address, sending and receiving transactions inside the blockchain. Addressesare unique and secure. If we had to compare it, we would think this is the equivalent of anIBAN number. However, these addresses are not assigned by any central authority.
Every Blockchain implementation has its own way of designing addresses, but the ba-sic idea is having an address, a public key and a private key. We will get into the details ofsome cryptocurrencies technology in the next chapter. On private blockchains, each imple-mentation has its own characteristics, so we can’t get into details.
Something all implementations of the blockchain have is that they use hashing to se-cure the blockchain.

2.3.1. What is hashing?

In simple terms, hashingmeans taking an input string of any length and giving out an outputof a fixed length. This means that whether you try to "hash" a single character or a fulldocument, the output of this operation will be a string with the same length. For example,using MD5 (a basic algorithm that is in currently in disuse) we will get the following results.
Every cryptographic hash function has four properties that makes it secure.

8

INPUT MD5 HASH OUTPUTHI 49f68a5c8493ec2c0bf489821c21fc3bJOSE BLASCO 0a41ed1c3ffd435766021e68ef7409c1TEXT123 11baab40ab8f2dfe291122dfc56ac9e1
Table 2.2: Hashing with MD5

1. Fast: The hash function is quick enough to perform the operation a lot of times persecond.
2. Deterministic: Every time you perform the operation on the input, the output will bethe same.
3. Collision resistant: Two different inputs can’t have the same output. This is some-times difficult to accomplish because the hashing output is a fixed length string.
4. Pre-image resistance: This means that doing the operation is quick in one way, butunfeasible to do in the other way.

2.3.2. Reverse-engineering the hash of a block

When choosing a hashing algorithm for a blockchain, one of the most important charac-teristics is the "collision resistance".
This characteristic avoids anyone from creating a fraudulent block and spoof it into thenetwork. Imagine my block A has the following contents:

Block ATransactions:
A sent 50 tokens to BC sent 2 tokens to AHash: abcdefghijklmnopqrstuvwz

Block A’Transactions:
A sent 5000 tokens to BAD PERSONB sent 150 tokens to BAD PERSON
[random contents to get hash]Hash: abcdefghijklmnopqrstuvwz

Now imagine someone finds a way to achieve the block A’ with the same hash. Sincethe blockchain is verified using that hash, the attacker can introduce this block into thenetwork after some time and every node will accept it as valid, faking the transaction andhacking the network.
2.3.3. "51% attack"

On public blockchains, whether or not a block is accepted as part of the chain is achievedby consensus as we have already seen. But when consensus is manipulated, a so-called51% attack happens.
9

It does not matter if you are using PoW, PoS or any other technology, if a person or agroup of people gets control of more than 50% of the power, they can approve or deny theacceptance of any block they want. Imagine that Alice (A) is in control of the blockchain,and Bob (B) wants to send 10 tokens to Alice in order to pay for a bottle of water. Alice cannow say that Bob has only paid 5 tokens and refuse to give him the bottle, while taking the10 tokens. Or even worse, Alice can say that Charlie (C) has transferred to her 500 tokenseven if Charlie is unaware of this.
Blockchain networks are aware of this, and even those who could make profit out of itdecide not to, since the community would notice and abandon the blockchain, making ituseless and the attackers would not get any profit. This was the case of Ghash.io, whichbriefly exceed 50% of the bitcoin network’s computing power in 2014. The pool voluntarilyreduced its share and promised to never again reach 40% of the total mining power [6].
We will test this attack on our own cryptocurrency later in the project.

2.4 Forks of a Blockchain

Blockchain is a technology, and every technology evolves. Every implementation is differ-ent, they have a different design and a different approach when they are implemented, andevery user accepts and works on this design.
This iswhat gives a blockchain the robustness thatwehave already explained. Everyoneworks together on the same way with the same goal and the same parameters, but whathappens when someone thinks the network needs a change?
This change can be anything: changing the name, the size of a block, the hashing algo-rithm... and this is where the problem appears, as some of the users might be against thischange.
Forking is the process where a person or a group "clones" the code and technologyand develops and implements the technology independently of the original implementation.There are three main types of forks [7]:
1. Hard fork.

A hard fork is a software upgrade that introduces a new rule to the network that isn’tbackwards-compatible. Hard forks are something like an expansion of the rules. Forexample, changing block size from 2 MB to 10 MB, since blocks of 5MB are not al-lowed in the initial version and the transactions on that block would be marked asinvalid.
In this case, if part of the community does not change, a newnetworkmust be createdseparately.

2. Soft fork.
A soft fork, by contrast, is any change that’s backward compatible. Say, instead of 2MB blocks, a new rule might only allow 1 MB blocks.
Non-upgraded nodes will still see the new transactions as valid (500k is less than 1MB in this example). However, if non-upgraded nodes continue to mine blocks, theblocks they mine will be rejected by the upgraded nodes. This is why soft forks needa majority of hash power in the network.
What can go wrong? When a soft fork is supported by only a minority of hash powerin the network, it could become the shortest chain and get orphaned by the network.Or, it can act like a hard fork, and one chain can splinter off.

10

3. User-activated soft fork.
A user-activated soft fork (UASF) is a theoretical idea that explores how a blockchainmight add an upgrade that is not supported by those who provide the network’s hash-ing power, for instance to be forced by wallets, exchanges or other network partici-pants.
Currently this idea is theoretical and has not been implemented.

11

CHAPTER 3

Developing a blockchain in Java

12

One of the goals of this dissertation is to discover how a blockchain works, and there isno better way to do so than creating one from scratch. We will start with a simple networkto put text into a blockchain, this will allow anyone on the network to place whatever textthey want and ensure that it will not be modified while anyone has access to it. Then wewill develop different implementations in order to achieve different goals, such as identify-ing who added the text, or adding transactions, automatically change mining difficulty andimplement different clients (host of a blockchain, miner, user...).
Among every programming language there is, Java is probably not the ideal one, butit allows us to apply everything we have learned through the degree, which is one of thekey objectives of every dissertation. We aim to use object programming to implement theblockchain, and sockets to communicate among the devices on the network.
The code for every iteration is available on the different branches of the Github reposi-tory:
https://github.com/pepebndc/Blockchain-JAVA

13

https://github.com/pepebndc/Blockchain-JAVA

3.1 First iteration: core of the blockchain

A blockchain, by definition, is a big P2P network. We design our network based on thisprinciple. With every event, the information is broadcasted through the network. Therefore,every node must have information on every other node. In this iteration, the informationstored is the IP address of every node. For now, we are only capable to connect nodes onthe same local area network, although if all the clients had a public IP address, the networkwould work.
The goal of this iteration is to create the foundation for future developments. Therefore,functions such as consensus between the nodes or dynamic changes on the difficulty arenot yet implemented. The code for this iteration can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v1–core

Figure 3.1: Structure of broadcast network.
Since this is the first iteration, and the base for future iterations, we are going to explainthe structure of the program.
We are using the following custom objects to perform the operations:

BlockChain Object

The object BlockChain is the biggest object in our program, and contains all the informationof the network. It contains:
1. Name: The name of the blockchain. It’s only used to show it to the user
2. Difficulty (diff): The difficulty of the blockchain used to mine the blocks
3. A list of Blocks: A list of every block of the blockchain and its contents
4. Current mining contents: The contents that are currently being mined and waiting tobe included into a block
5. A list of hosts: A list containing all the IP addresses of the nodes currently connectedto the network
It also has the method validateChain, which checks if the contents of the blockchainhave been modified, by comparing the hashes of the blocks sequentially.

14

https://github.com/pepebndc/Blockchain-JAVA/tree/v1--core

public boolean validateChain() throws NoSuchAlgorithmException,
UnsupportedEncodingException {
String[] hashes = new String[this.getChain().size()];
int length = this.getChain().size();

Iterator<Block> iterator = this.getChain().iterator();

while (iterator.hasNext()) {

Block b = iterator.next();

String hash = b.getHash();
int index = b.getIndex();
String hashPreviousBlock = b.getLastHash();
long time = b.getTime();
String data = b.getData();
int nonce = b.getNonce();

hashes[index] = hash;
String newHash = Block.computeHash(index, time, data, hashPreviousBlock,

nonce);

if (index != 0) {
if (index != 1) {

if (index < (length - 1)) {
if (!hash.equals(newHash)) {

System.out.println("Different recomputed hash in block " +
(index - 1));

return false;
}

if (!hashPreviousBlock.equals(hashes[(index - 1)])) {
System.out.println("Different previous hash in block " +

(index - 1));
return false;

}
}

}
}

}
return true;

}

15

Block Object

A block contains the information of a single block of the chain, including:
1. Index: Number of the block in the chain
2. Time: Current time when the block was mined
3. Data: Contents of the block
4. Last Hash: Hash of the previous block. It is used to verify integrity of the blockchain
5. Hash: The hash of the block, stored for informational purposes
6. Nonce: Random number that helps getting the hash below a defined value
It also implements the methods mineBlock and computeHash. computeHash providesthe MD5 hash of the contents we want to include in the hash of the block (index, time,data, lastHash and nonce), while mineBlock performs the mining operations by continu-ously computing the hash and increasing the nonce until the hash matches the difficulty.

CommandMessage Object

We have designed the whole protocol from scratch, and decided that the best way to trans-mit information among hosts in the network is to send custom objects filled with the infor-mation we share. This object consists of:
1. Command: This is the command sent. We will explain the different commands in thenext section
2. Address: A string used to send the IP address when needed
3. Blockchain: A BlockChain object in order to send the whole chain and it’s information
4. Block: To send a block when needed
5. Contents: Used to send other information such as difficulty

List of commands

In this first iteration, the commands are sent using sockets and sending the CommandMes-
sage Object with the information needed in each case. When a command has to be sent toall the host in the network, we use an iterator to recursively fetch the different IPs and sendthe information. The different commands are:

1. NEW HOST CONNECT: This message is sent by a new host who wants to connectto the network. The new host can connect to any member of the network with thismessage, the member will notify the rest of the network of this new host sending aNEW HOST ADD message and responding to the new member with the contents ofthe Blockchain (NEW HOST ACCEPTED).
2. NEWHOST ACCEPTED: Thismessage is sent to the new host and contains the infor-mation of the blockchain. This host places the BlockChain received into its Blockchainobject.

16

3. NEW HOST ADD: This message is sent to the rest of the members of the network tonotify the addition of a new member. This message contains the IP address of thenew host and the receiver of the command has to add this IP to its host list.
4. ADD CONTENT: Message containing the new contents to be mined. When received,the host updates the mining contents.
5. DIFF: Message containing the new difficulty of the network. When received, the hostupdates the difficulty.
6. NEW BLOCK: When a new block is mined, this message transmits it through the net-work and the other hosts add it to their chain.
7. DISCONNECT: When a host disconnects, it sends a signal to the rest of the networkand the other nodes take it out of the hosts list.

Executing the program

Figure 3.2: Start window.
When launching the program, the user has the option to create a new blockchain net-work or to join a running one. The buttons are disabled until the user places an input in thecorresponding text fields. When creating a blockchain, you need to name it, whereas whenconnecting to an existing one, you have to place the IP of a host already in the network.After performing one of these actions, the management window is opened (automaticallywhen creating a blockchain, and when clicking on "manage" when connecting to one).
The execution consists of two main components: the mining process and the TCPserver.
Themining process is a thread where the program is continuously computing the hashof the block and comparing it to the difficulty (number of ’0’s at the beginning of the hash).Once it matches, the block is added to the blockchain and the network is notified with the

NEW BLOCK command. This thread also has a "stop" switch built-in, although it is not yetpossible to trigger it on the managing window.
On the other hand, the TCP server is a thread continuously listening to port 4001 tocommands, and managing the reaction to those commands. The serverManager createsup to 256 sessions so that it can handle several clients at once. When sendingmessages toother hosts, we use the TCP client where every CommandMessage is created in methodswhere the only input is the IP of the destination (end point). An example of an outgoingconnection is the following:

17

public static void sendNewContent(String endPoint) {

try {

ObjectOutputStream oo = null;
Socket so = null;
try {

so = new Socket(endPoint, 4001);
oo = new ObjectOutputStream(so.getOutputStream());

} catch (IOException e) {
System.out.println("Problems conecting on TCP");
System.out.println(e);

}

String com = "ADD CONTENT";
String a = null;
BlockChain bc = null;
Block b = null;
String c = main.TFG.getCurrentMiningContents();

CommandMessaje command = new CommandMessaje(com, a, bc, b, c);
oo.writeObject(command);
oo.flush();
oo.close();
so.close();
System.out.println("new contents messaje sent to " + endPoint+" - "+c);

} catch (IOException ex) {
Logger.getLogger(TCPclient.class.getName()).log(Level.SEVERE, null, ex);

}
}

Once the Blockchain is connected, you can enter the managing window, where you caninteract with the Blockchain and the network. On this window you can see the name of theBlockchain you are connected to at the top, and then the following options are displayedfrom top to bottom:
1. ADDNEWCONTENT:When you enter text on the text field and clickADD, the contentsof the field are added to the currentMiningContents and sent to the rest of the network.This way, the text you insert will be mined and added to the next block.
2. VALIDATE:Pressing this button displays a text indicatingwhether or not the blockchainis valid.
3. CHANGE DIFF: It changes the current mining difficulty to the number in the text nextto it and broadcasts the change to the network so that everyone has the same diffi-culty on the next block.
4. SEE / CHANGE CONTENTS: Entering a block number shows the contents of thatblock in the Blockchain, you can then edit those contents and when clicking CHANGE

CONTENTS the new text will be placed into the contents of the block and the hashwill be recomputed.
This action will not broadcast the changes to the network for safety purposes andwill invalidate the blockchain (when clicking on VALIDATE it will say "not valid").

Lastly, when the user closes the window, the system automatically sends the DISCON-
NECT message to all the other nodes.

18

Figure 3.3: Management window.

Figure 3.4: Start diagram.

19

3.2 Second iteration: dynamic difficulty

On this second iteration, we use the code from the first one and add the capacity to dynam-ically change the difficulty depending on the mining rate. The code can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v2-dynamic-diff
As a design key, we want to have a block every minute (more or less). This makes theblockchain fast enough that we can easily and quickly check new contents, while avoidinga flooding in blocks (making a lot).
Difficulty will be dynamically changed each time a node finds a valid hash for a blockwith an index multiple of 10 (10, 20, 30...). This avoids everyone to be checking the difficultycontinuously and possible missunderstandings between the nodes.
In order to do this in a reliable way, we must adapt first some of the code we previouslycreated. In each block, the current time will be saved in milliseconds from epoch using the

System.currentTimeMillis(); Java method.
We choose to check with the previous 10 blocks to avoid changes when a single block ismined too fast or too slow, and if on average, a block took ± 15s to be mined, the difficultyis adjusted by 1. This way, if a block takes on average 30 s, the difficulty is increased andthe average mining time will be increased.

//CHECK FOR DIFFICULTY CHANGES NEEDED IF BLOCK IS MULTIPLE OF 10
if (length % 10 == 0) {

long thisTime = Long.valueOf(mined[2]);
long prevBlockTime = main.TFG.getChain().get((length - 10)).getTime();
long difference = thisTime - prevBlockTime;
int differenceInSeconds = (int) difference / 1000;
System.out.println("difference in seconds: " + differenceInSeconds);

int newDiff = main.TFG.getDiff();;
if (differenceInSeconds > 750) {

newDiff = main.TFG.getDiff() - 1;
}

if (differenceInSeconds < 450) {
newDiff = main.TFG.getDiff() + 1;

}
//set the new diff
System.out.println("new diff after comprobation: " + newDiff);
main.TFG.setDiff(newDiff);

//notify the network about the new difficulty
Iterator<String> it = main.TFG.getHosts().iterator();
while (it.hasNext()) {

String host = it.next();
try {

if (!host.equals(InetAddress.getLocalHost().getHostAddress())) {
TCPclient.sendNewDiff(host);

}
} catch (UnknownHostException ex) {

Logger.getLogger(manage.class.getName()).log(Level.SEVERE, null, ex);
}

}
}//end of difficulty changes

20

https://github.com/pepebndc/Blockchain-JAVA/tree/v2-dynamic-diff

We also need to adapt the GUI in order to let the user see the current difficulty. For now,the user will still be able to manually change the difficulty of all the network, but will not beable to stop the dynamic changes (when the blockchain gets to a block multiple of 10, thedifficulty will adjust). The result will be this:

Figure 3.5: Management window with dynamic difficulty

21

3.3 Third iteration: SHA-512 hash

Currently, the hashing algorithm we are using is MD5. This algorithm is known for beinginsecure and easily breakable, but it was easy to implement for the early stages of develop-ment. Now, before we start implementing more security on the blockchain, we are going tochange to SHA-512. Without getting into much detail on the specifics of this hashing algo-rithm, this technology is considered secure and even "overkill" on most of the implementa-tions. Even Bitcoin uses a less secure hashing algorithm (SHA-256), so our blockchain willbe properly secured.
The only change in the code is in the computeHash method and it can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v3-sha512-hash

static String computeHash(int index, long time, String data, String lastHash,
int nonceInt) throws NoSuchAlgorithmException, UnsupportedEncodingException {

String plaintext="";
String hashtext="";
plaintext = index + time + data + lastHash + Integer.toString(nonceInt);

try {
MessageDigest md = MessageDigest.getInstance("SHA-512");
byte[] bytes = md.digest(plaintext.getBytes("UTF-8"));
StringBuilder sb = new StringBuilder();
for(int i=0; i< bytes.length ;i++){
sb.append(Integer.toString((bytes[i] & 0xff) + 0x100, 16).substring(1));

}
hashtext = sb.toString();
}
catch (NoSuchAlgorithmException e){
e.printStackTrace();
}

return hashtext;
}

This will create a 128-character hash for each block. Computing SHA-256 hashes ismore computationally demanding than MD5, so we change our concept of difficulty. Now,instead of the number of ’0’s at the beginning of the hash, we will introduce intermediatesteps in order to make more viable achieving the 1-minute-per-block goal.
Each character on a SHA-512 hash can take any hexadecimal value (0-9 and A-F), for atotal of 16 different characters.
This security is needed in order to prevent possible attacks where the attacker knowsthe hash (it is public) and reverse-engineers the contents of the block and fakes those con-tents, as we explained in the blockchain basics chapter (2.3.2).

22

https://github.com/pepebndc/Blockchain-JAVA/tree/v3-sha512-hash

3.4 Fourth iteration: users

Contents on a Blockchain are immutable, but identifying who created a certain transactionor added specific information is crucial to the correct operation of the network. On the nexttwo iterations wewill approach this issue andmodify the project accordingly. On this fourthiteration, we will be adding basic users and identifying those users through the network,while on the fifth iteration we will redesign how data is stored in blocks and how users"sign" those blocks. As usual, all the code corresponding to this iteration can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v4-Users
But first, let’s start with the users. In a blockchain network, users are usually identi-fied by an unique address inside the network. In our network, an address is a 50 charac-ter long String with randomly generated characters in it, including lowercase and capitalletters, as well as numbers. With a 50-character-long random address, there are in total

6250 = 4.16 ∗ 1089 different addresses, effectively making it impossible for two users togenerate the same address. Addresses can’t be created sequentially since this will createtwo problems:
1. The first issue is a security issue. If addresses are created sequentially, you will cer-tainly know that the previous address to you does exist, and every combination pre-vious to you is linked to an existing user, therefore opening the gates for a possibleattack.

With randomaddresses, sequential attacks can’t be performed, although anyone con-nected to the network knows the address of all the users.
2. The second problem is a logistic problem. As we will see later on the section, usersare created before connecting to the network, and you can’t know what addressesare being used and which onces aren’t.
On this design, we will use asymmetric cryptography (RSA 1024) to identify and validateusers on the network. Asymmetric cryptography systems work providing a public and aprivate key to each user. The public key is supposed to be known by everyone while privatekey must remain secret. This mechanism allows the implantation of many things, but wewill be focused on two of them:
1. When you encrypt a content with your Private key, anyone can decrypt it using yourpublicly available Public key. This allows anyone to certify that the content was sentby you and only you, since no one else has access to your Private key.
2. On the other hand, when someone encrypts a content with your Public key, you andonly you can decrypt it and know the original contents. This is used to privately senddata that only the designated receiver can read.
Oncewe have some base knowledge, we can further explain howwe have implementedit on our project. We have created two new objects: User and LocalUser. LocalUsercontains the Name, Address, Public Key and Private Key of a user, and also implementsa method to create a new LocalUser.

23

https://github.com/pepebndc/Blockchain-JAVA/tree/v4-Users

public static LocalUser create(String newName) throws NoSuchAlgorithmException {

String newAddress = "";
KeyPairGenerator keyGen;
KeyPair pair;
PrivateKey newPrivate;
PublicKey newPublic;

//generate address
char[] chars =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
.toCharArray();

StringBuilder sb = new StringBuilder();
Random random = new Random();
for (int i = 0; i < 50; i++) {

char c = chars[random.nextInt(chars.length)];
sb.append(c);

}
newAddress = sb.toString();

//generate keys
keyGen = KeyPairGenerator.getInstance("RSA");
keyGen.initialize(1024);

pair = keyGen.generateKeyPair();
newPrivate = pair.getPrivate();
newPublic = pair.getPublic();

return new LocalUser(newName, newAddress, newPublic, newPrivate);
}

User is an object that contains the same information as LocalUser excluding the privateKey. This object is designed in order to store through the network the information of eachuser.
Once the users are created, we have tomodify some of the operations on the blockchainand the management console.

Joining the network

Now that users can be identified, we have to make sure they are who they say they arewhen joining the network. This mainly means corroborating that their public and privatekeys match. In order to do this, we have to modify the connection process.
Previously, users simply had to send a request to join, and theywould be accepted. Now,users are sent a "challenge" they have to solve and prove their keys are in order.
This challenge is simply a random string encrypted with the public key of the new userand sent in bytes in order to be decrypted by the user. Once the decryption happens, theuser sends the solution and if it matches the original challenge, the user is admitted in thenetwork.

24

Figure 3.6: Connection sequence with users.

25

//encrypt the challenge with the public key of the new host
PublicKey pubKey = command.getPubKey();
Cipher encrypt = Cipher.getInstance("RSA/ECB/PKCS1Padding");
encrypt.init(Cipher.ENCRYPT_MODE, pubKey);
byte[] encryptedMessage = encrypt.doFinal(plainTextChallenge.getBytes());
System.out.println("I have created a challenge, encrypted: " + encryptedMessage);
TCPclient.sendChallenge(ClientIP, encryptedMessage);

This processworks the sameway either if it is a newuser or an existing onewho is tryingto connect. Existing users have to load their credentials before connecting (explained onthe next subsection).
Since now there are two different categories in the network (users and hosts), we haveto check if those are already on the network before notifying the rest of the hosts. A hostis a node of the network and is identified by its IP address. Hosts are removed from the listwhen they disconnect, while users are saved forever.

Managing users

When using a service, users expect to be able to log in from different hosts or locations,as well as going "offline" and then connecting again. When using a password-based ser-vice, the user simply has to remember the password and they will be able to log in fromanywhere. On this asymmetric credential-based system, users must save their credentials(name, address, public and private key) somewhere safe, since it’s almost impossible foranyone to remember all those data.
In order to solve this issue, we can save and load credentials from a file. This file con-tains a LocalUser object and has an extension .BCpepe and can be loaded fromour project.

Minor changes

We have also changed the way data is inserted in the chain. Now it’s a String with theaddress of the sender and the data, instead of just the data. This is a minor step and aguide to the next iteration of the project, where transactions are completely redesigned.
Redesigned windows

Implementing users force some changes in the windows of the program.

Figure 3.7: Start window.

26

Figure 3.8: Creating a new Blockchain.

Figure 3.9: Joining the network with an existing user.

Figure 3.10: Joining the network with a new user.

27

Figure 3.11: Management window with save/load options for users.

28

3.5 Fifth iteration: transactions

In this iteration, we are changing the basic design of our blockchain network. We used toadd simple strings to the blockchain as contents and now we are going to include trans-actions. A transaction is an interaction of a user with the blockchain and it includes thecontents the user wants to include (which are encrypted, more on that later), as well as thedate it was created at and the users who interact with it. The code for this iteration can befound in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v5-Transactions
There are two essential types of transaction, those which are saved into the blockchainby only one user, and those agreed by two or more users.
Before we take a deep look on transactions, in this iteration we have added an option tostart / stop mining, since some users might want to control the CPU use of their computer.This is possible due to an introduction of a "kill switch" on the mining thread.
Now, focusing on transactions, we have to maintain the idea that the blockchain is aconcatenation of blocks, and each block stores information sent by the users to the net-work. With this redesign, that information is now a list of transactions created by users.
It is important to be aware that one of the key functions of a blockchain is security. Se-curity is implemented in different ways, and in this blockchain several techniques combineto create one of themost (if not themost) securemethod of storing data. In our blockchain,security takes place when hashing the blocks with SHA-512 and connecting the blocks be-tween them so that they can not be edited without invalidating the whole chain.
Whenwe created the users, wewent one step forward and forgot about traditional pass-words and implemented an RSA-based system with public and private keys. Those keysare used to certify that the user is who they say they are, avoiding identity thefts.
Now, with transactions, we take a giant leap forward ensuring that the content that isincluded by the users is stored securely and every user on the network can certify whocreated that transaction.
Each transaction is identified by a 75-character-longString and the contents of the trans-actions are secured by an encryption process combining RSA and SHA. RSA, as we ex-plained in the previous section, is an asymmetric encryption algorithm where each userhas a private and public key. On the other hand, SHA allows for a secure hash of contents.Both of these processes are secure on their own, but combined are almost impossible tohack while being able to create a beautiful and optimized encryption process.
Depending on the type of transaction it is (sent to the network or to other users), theprocess differs a bit. When a user wants to send a transaction directly to the network, theuser hashes the content of the transaction, and then encrypts it with his private RSA key.This way, anyone with the public RSA key would be able to decrypt the hash and comparewith the hash of the content he received and verify its integrity
If the transaction is created by two or more users (agreed transaction), the first user(creator) performs the same process as before but instead of sending the transaction intothe network for mining, it is stored in a pending-transactions list. Then, the second user(receiver) can see this pending transaction and read the contents. He hashes the contentsand compare it to the signed hash from the creator, if he agrees to it then he signs the hashwith his private RSA key.

29

https://github.com/pepebndc/Blockchain-JAVA/tree/v5-Transactions

//find the number of semicolons
int count = receivingAddresses.length() -

receivingAddresses.replace(";", "").length();
//separate the string
String[] address = receivingAddresses.split(";");

//hash contents of the field
String myHashedContents = main.findHash(contents);

//Sign the hash with my private key
byte[] mySignature = Transaction.encryptSHA(myHashedContents.getBytes

(Charset.forName("UTF-8")), null,
main.getLocalUser().getPrivateKey());

//create the random string for the ID
char[] chars =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789"
.toCharArray();

StringBuilder sb = new StringBuilder();
Random random = new Random();
for (int i = 0; i < 75; i++) {

char c = chars[random.nextInt(chars.length)];
sb.append(c);

}
String transactionID = sb.toString();

//create the transaction
//1.create the list of users and signatures and add yourself
List<String> newUserList = new ArrayList<>();
newUserList.add(main.getLocalUser().getAddress());

List<byte[]> newSignatureList = new ArrayList<>();
newSignatureList.add(mySignature);

//add the receiving addresses
for(int a=0; a<1+count; a++){

newUserList.add(address[a]);
newSignatureList.add(null);

}

//2. create the transaction
Transaction t = new Transaction(transactionID, newUserList, contents,

newSignatureList, System.currentTimeMillis(), 1);

In this scenario, if someone wants to read the contents of a transaction and verify thateveryone involve agreed, he hashes the contents and compares them to the signed hash ofthe creator, checking that the content he is seeing is what the creator and the rest of usersagreed on.
The graphic interface has changed and adapted to this new structure. Now, when userssearch for the contents of a block, they get a list of transactions that were included in theblock. Then, they can search for the contents of a specific transaction in a new designatedarea.
Every user can see all the transactions on the network once they have been signed byevery user. Transactions that are pending to verify will only be visible on the user interface

30

of those who are part of it. This version will be the base for future development and will beused for implementing a proof of existence platform.

Figure 3.12: Updated management window.

Figure 3.13: Send transaction to network.

31

Figure 3.14: Send transaction to another user.

Figure 3.15: Control and verify pending transactions.

32

CHAPTER 4

Development of a Proof of Existence
platform

33

4.1 Introduction to PoE

Proof of Existence[8], or PoE for short, is the digital equivalent of sealing an envelope andsecuring it in a trustful place.
However, doing this in a traditional way is very complicated and involves a lot of risks.For instance, you have to completely trust a single point of failure, such as a notary or abank. Also, once it has been tampered, you have no information on who, when and whereinteracted with this document.
Digital computers revolutionized this by storing a secure copy of the hash of a docu-ment and checking whether or not the hash was the same when you wanted to verify thisdocument, but you still had the issue of the centred point of failure.
However, in blockchain, as we saw in the introduction of this project, there is no singlepoint of failure, since the information is safely stored on every node in the network, thereforehaving redundancy and not a single point of failure.
Proving the existence of data at a certain point in time can be very useful for manypeople, such as entrepeneurs, universities and even attorneys. Timestamping data in anunalterable state while maintaining confidentiality is perfect for legal applications. Attor-neys (or clients) can use it to prove the existence of many documents including a will, deed,power of attorney, health care directive and so on without disclosing the contents of thedocument. A person can use the blockchain to prove that a document, such as a will, thatwill be presented in court in the future is the same unaltered document that was presentedto the blockchain at a prior point in time.
Other applications and uses for PoE are timestamping a document to prove that thedocument existed in a certain point in time (for example, for bachelor’s thesis and master’sthesis).
It is also possible to use this kind of platforms to perform fair public contest betweencompanies that apply for a certain project. Currently, if company A turns in their offer andthe public register is corrupted, company B might get their hands on A’s offer, thereforemodifying theirs and having a better deal. This can be avoided by registering the documentsin a blockchain-based PoE platform that stores the hash and the timestamp in a secureway,and once after the deadline for the project is met, companies would present the full offerand the verification that the offer matches the one registered on the blockchain.

4.1.1. How it works

Storing data in a blockchain is expensive, so we need to find a way to reduce the number ofbytes stored in order to make things go faster and cheaper while maintaining the securityand uniqueness we need.
This is why we use, once again, hashes. Hashing a document creates a unique hashthat works as an "ID" to that document. If the document is changed in any way, the hashwill be different, therefore allowing us to detect modifications of a registered document.
The process of registering a document into a PoE platform consists in uploading thedocument to the platform, where the hash will be computed and stored into the blockchain.Then, when you want to verify the integrity of the document, you have to recompute thehash and compare it with the one which was initially stored. If the document was modifiedin any way, the hash will not be the same.
It is worth mentioning that some file formats change over time, for instance a Worddocument is different every time you open it, therefore the verification would always be

34

wrong. This is why it’s highly recommended to verify persistent documents such as PDF,images or plain text notes.

35

4.2 Development

In order to create our own Proof of Existence platform, we will adapt our previous work tomatch the requirements we need. All the code can be found in:
https://github.com/pepebndc/Blockchain-JAVA/tree/v6-PoE
First of all, we need to plan howwewill transfer and register the hashes. After analyzingour previous work, it is trivial that by simply introducing the hash into the "contents" fieldin our transaction object, the network will behave correctly and all the requirements will bematched.
On the other hand, we need to adapt our user interface to allow users to upload filesand send the hash to other users, while also allowing the receiving user to check if thedocument they are verifying matches the one they own.
In order to do this, themain interface has been adapted to correctly show all the optionsregarding the documents.

Figure 4.1: Main window of the PoE platform

36

https://github.com/pepebndc/Blockchain-JAVA/tree/v6-PoE

4.2.1. Registration of documents

When adding a new document, the user is presented with a user-friendly menu where theycan upload a file from their computer.

Figure 4.2: Sending a document to the network

Figure 4.3: Sending a document to another user

37

4.2.2. Verification of documents

As we can see, the user has now all the options to send, publish and verify documents inthe network, with the addition of the option to compare a registered document with one oftheir own at the bottom of the window.

Figure 4.4: Verification of the same document

Figure 4.5: Verification of an altered document
When a second user needs to verify a document that a first user has sent, he is alsopresented the option to verify the document before signing the transaction.

Figure 4.6: Verification of a document before signing

38

4.2.3. List of registered documents

The user needs a way to list all of their documents. This is why it is implemented a methodto export to a plain text file all the documents he has registered. The exported file it isincludes the transaction hash, the document hash, the block in which the transaction wasincluded and the type of transaction it was.
With this information, the user can go to the main interface of the platform and look forthe transaction hash they are interested in, which will give themmore information includinga timestamp and other user’s info.

Figure 4.7: List of users’ transactions

39

CHAPTER 5

Other blockchain applications

40

As we have seen, blockchain is not only able to transform the technological part ofbusiness, but it also transforms the business part of business. With blockchain technologynew paradigms and opportunities are arising across industries. [9][10][11][12]
In this chapter, we will collect different use cases that are being redefined by blockchainso that we can get a real sense of the broad range of opportunities this technology offers.
From money to law, including smart cities and car rental, disrupting digital identity andaudits, blockchain technology has proven to be useful in many more contexts than whatwe could initially imagine. As we analyse on the beginning of this document, the key pointsof blockchain technology are:
• Decentralisation: Data is stored on different nodes and information does not dependof a single central identity.
• Trustless: Consensus mechanisms are applied, therefore trusting the network coderather than a single set of identities.
• Persistent: Transactions are inmutable and timestamped by concatenating hashesand invalidating any modification on the network.
With this three base points, we are now able to identify and analyse some of the mostcommon use cases for this technology. This analysis will be rather short and concise sincewe are not implementing them, just identifying them for future development of this tech-nology.

5.1 Money

Money is, and probably will always be, the key gear on our society. Although money is nowcentralised on banks, it has not always been that way. People used to trade directly amongthem with the goods they had, society used to be a (very rudimentary) P2P network thatshifted to central banks for many reasons.
However, money is now returning to a P2Pmodel. Blockchain has proven to be a secure,fast and reliable enough technology to send and receive money. Currently, a big part ofblockchain implementations are related to money.
Projects like Bitcoin, Litecoin, Monero andmanymore allow their users to transfer valueamong them in a decentralisedway, allowing anyone to participate and validate everymoveperformed on the network, therefore avoiding the complications and administrative delaysand issues central banks could introduce.
Advantages:

• Secure. Transactions are secure and will never be erased, assuring that once youreceive some money, it will not magically disappear.
• Trustless. Users avoid the need to trust an external organisation such as a bank,instead they can actively participate on the network.
Disadvantages:

• Throughput. Current implementations of blockchain technology offer a low volumeof transactions per second, making it difficult to implement a global network with therequired volume of millions per second.
41

Examples:
• https://bitcoin.org/

• https://litecoin.org

5.2 Tokenization

On our lives, everything is a token we can change for another token (in most of the cases,a token named "euro"). For instance, we change a token of "banana" for a token of "euro".
So, what if we digitalize those tokens and allow users to buy, sell and trade them? Therearemany standars on tokenized assets (ERC20, ERC 721...) that allow platforms to tokenizealmost everything. You have a house, you can tokenize it. You have a kilogram of paper,you can tokenize it. You have "one hour worth of energy", you can tokenize it.
Virtually everything is tokenizable, therefore allowing for an easy trade and verificationof authenticity, owneability and usage.
You could buy a token of "one hour of driving a Tesla car" when you go to another cityand need to rent a car for only one hour. The system will know when and where you pickedup the car and when and where you left it, the recharge cost and maintenance fee will becalculated and the value of the token "one hour of driving a Tesla car" will vary accordingly.
Examples:
• https://www.cryptokitties.co/

• https://crypto20.com/en/

5.3 Supply chain

When you go to a sushi restaurant, you trust the restaurant to buy and preserve good qualityfish so that you don’t get any disease. The same thing happens when you buy a diamondand want to know where it came from.
Blockchain allows companies to create a global, trustless network where everythingis tracked and verified. When you get to the sushi restaurant, you could get a QR codenext to your nigiri identifying when the fish was caught, the temperature of the ship whiletransporting and whether or not the cold chain was preserved.

5.4 Content creation monetization

Some of the biggest problems on the content creation industry is transparency, royalty dis-tribution and ownership rights. With blockchain and smart contracts anyone could createa decentralized, comprehensive and accurate database of music rights.
Using that network, I could play a song on my Youtube video and part of my benefitswould go directly to the artist. That artist could also have setup an smart contract thatdivides the benefits of the group among the members of the group.
Examples:
• https://musicoin.org/

• https://opus.audio/

42

https://bitcoin.org/
https://litecoin.org
https://www.cryptokitties.co/
https://crypto20.com/en/
https://musicoin.org/
https://opus.audio/

5.5 Voting and governance

In many of the countries in the world, there are democracies as political systems. In thosesystems, citizens cast a vote to decide on who should rule the country and what rulesshould be implemented.
However, this is not a very effective method as it is currently being done (at least inSpain), since we can only express our opinion once every four years and we can’t changeour opinion in the meantime. Wouldn’t it be great if we could create an Smart-Contractwhich could verify the identity of everyone on Spain, allowing them to vote not only every 4years, but maybe even every day for each separate proposed rule?
This way, everything would be truly democratic and we could cut a huge part of thecost of democracy (salaries and a huge waste of paper every election). This might soundlike a crazy idea that is far away in time, but it has been already implemented in places likeSierra Leone [13] and many cities and companies are working on projects to make this ideaa reality.

43

CHAPTER 6

Conclusions

44

In this project we have seen how Blockchain technology is a reality and is disruptingsome of the biggest parts of how we currently see the world. After completing this disser-tation both the student and the reader have a broad understanding of what Blockchain isand how it works.
We have developed our own Blockchain using Java and the knowledge acquired duringthe degree regarding cryptography and networking. We structured the project in a clear andorganized way that allowed us to develop step by step a complete blockchain and modifyit for a demonstration of a very interesting use case as is the verification of documents.
The implementation of our blockchain is completed, but could be improved in a furtherrevision by increasing the security of the P2P network and adding othermethods to interactwith the network, such as a server or an API.
At the end of this project, the biggest thing we can conclude is that Blockchain is notonly money and that the potential of this technology of future developments will disruptand improve our lives, and I hope to be part of that revolution.

45

Bibliography

[1] 4 characteristics that set blockchain apart. https://ibm.com.
[2] Genesis block. https://en.bitcoin.it/wiki/Genesis_block
[3] Block. https://en.bitcoin.it/wiki/Block.
[4] The difference between PoW, PoS and PoI algorithms. https://steemit.com.
[5] NEM Technical Reference Introduces Reputation-Enhanced ‘Proof of Importance’.

https://cointelegraph.com.
[6] The Bitcoin Mining Arms Race: GHash.io and the 51% Issue. https://www.coindesk.

com.
[7] A Short Guide to Bitcoin Forks. https://www.coindesk.com.
[8] Proof of Existence. https://www.newsbtc.com/proof-of-existence/
[9] 17 Blockchain applications that are transforming society. https://blockgeeks.com/

guides/blockchain-applications/

[10] 8 Blockchain Applications That Could Help Your SmallBusiness. https://www.upwork.com/hiring/for-clients/
8-blockchain-applications-help-small-business/

[11] What Are the Applications and Use Cases of Blockchains? https://www.coindesk.
com/information/applications-use-cases-blockchains/

[12] Popular Use Cases of Blockchain Technology You Need to Know https://
hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d373

[13] https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1 https://techcrunch.com/2018/03/14/
sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=
1

46

https://ibm.com
https://en.bitcoin.it/wiki/Genesis_block
https://en.bitcoin.it/wiki/Block
https://steemit.com
https://cointelegraph.com
https://www.coindesk.com
https://www.coindesk.com
https://www.coindesk.com
https://www.newsbtc.com/proof-of-existence/
https://blockgeeks.com/guides/blockchain-applications/
https://blockgeeks.com/guides/blockchain-applications/
https://www.upwork.com/hiring/for-clients/8-blockchain-applications-help-small-business/
https://www.upwork.com/hiring/for-clients/8-blockchain-applications-help-small-business/
https://www.coindesk.com/information/applications-use-cases-blockchains/
https://www.coindesk.com/information/applications-use-cases-blockchains/
https://hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d373
https://hackernoon.com/popular-use-cases-of-blockchain-technology-you-need-to-know-df4e1905d373
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1
https://techcrunch.com/2018/03/14/sierra-leone-just-ran-the-first-blockchain-based-election/?guccounter=1

	Contents
	List of Figures
	List of Tables
	Introduction
	Goals and distribution of the project

	Blockchain basics
	What is a block?
	Achieving consensus on cryptocurrencies
	Privacy and security on a Blockchain network
	What is hashing?
	Reverse-engineering the hash of a block
	"51% attack"

	Forks of a Blockchain

	Developing a blockchain in Java
	First iteration: core of the blockchain
	Second iteration: dynamic difficulty
	Third iteration: SHA-512 hash
	Fourth iteration: users
	Fifth iteration: transactions

	Development of a Proof of Existence platform
	Introduction to PoE
	How it works

	Development
	Registration of documents
	Verification of documents
	List of registered documents

	Other blockchain applications
	Money
	Tokenization
	Supply chain
	Content creation monetization
	Voting and governance

	Conclusions
	Bibliography

