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Abstract

Spaces X for which the annihilator of Sλ(X), the λ-super socle of C(X)
(i.e., the set of elements of C(X) that cardinality of their cozerosets are
less than λ, where λ is a regular cardinal number such that λ ≤ |X|)
is generated by an idempotent are characterized. This enables us to
find a topological property equivalent to essentiality of Sλ(X). It is
proved that every prime ideal in C(X) containing Sλ(X) is essential
and it is an intersection of free prime ideals. Primeness of Sλ(X) is
characterized via a fixed maximal ideal of C(X).
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1. Introduction

Unless otherwise mentioned all topological spaces are infinite Tychonoff and
we will employ the definitions and notations used in [11] and [7]. C(X) is the
ring of all continuous real valued functions on X . The socle of C(X), denoted
by CF (X), is the sum of all minimal ideals of C(X) which plays an important
role in the structure theory of noncommutative Noetherian rings, see [12], but
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O.A.S. Karamzadeh initiated the research regarding the socle of C(X) (see
[16]), which is the intersection of all essential ideals in C(X) (recall that, an
ideal is essential if it intersects every nonzero ideal nontrivially), see[12] and
[16]. Also the minimal ideals and the socle of C(X) are characterized via their
corresponding z-filters; see [16]. In [10] and [15], the socle of Cc(X) (the func-
tionally countable subalgebra of C(X)), and Lc(X) (the locally functionally
countable subalgebra of C(X)), are investigated. The concept of the super so-
cle is introduced in [8], denoted by SCF (X), which is the set of all elements f
in C(X) such that coz(f) is countable. Clearly, SCF (X) is a z-ideal containing
CF (X). Recently, the concept of SCF (X) has been generalized to the λ-super
socle of C(X), Sλ(X), where Sλ(X) = {f ∈ C(X) : |X \ Z(f)| < λ}, in which
λ is a regular cardinal number with λ ≤ |X |, is introduced and studied in [17].
It is manifest that CF (X) = Sℵ0

(X) and SCF (X) = Sℵ1
(X). It turns out,

in this regard, the ideal CF (X) plays an important role in both concepts. As
we know the prime ideals are very important in the context of C(X). It turns
out that every prime ideal in C(X) is either an essential ideal or a maximal
one, therefore the study of essential ideals in C(X) is worthwhile. It is easy
to see that for any ideal I in any commutative ring R, the ideal I + Ann(I),
where Ann(I) = {x ∈ X : xI = (0)} is the annihilator of I, is an essential
ideal in R. Hence an ideal I in a reduced ring is an essential ideal if and only
if Ann(I) = (0) (note: it suffices to recall that R is reduced if and only if
Z(R) = {x ∈ R : Ann(x) is essential in R} = (0)). In [16, Proposition 2.1], it
is proved that CF (X) is an essential ideal in C(X) if and only if the set of all
isolated points of X is dense in X . We note that in this case the socle is the
smallest essential ideal in C(X). Also the ideal SCF (X) (the super socle of
C(X)) is an essential ideal in C(X) if and only if the set of countably isolated
points of X is dense in X , see [8, Corollary 3.2]. Similarly, in what follows, we
aim to relate the density of the set of λ-isolated points to an algebraic prop-
erty of C(X). In [3, Proposition 2.5], it is shown that the socle of C(X), i.e.,
CF (X) is never a prime ideal in C(X), but in [8], it is seen that SCF (X) can
be a prime ideal (or even a maximal ideal) which this may be considered as an
advantage of SCF (X) over CF (X). In this article we will see that Sλ(X) can
be a prime ideal, as well.

In Section 2, some concepts and preliminary results which are used in the
subsequent sections are given. In Section 3, we deal with the essentiality of
Sλ(X) and also with the essential ideals containing Sλ(X). In this section,
we characterize spaces X for which the annihilator of Sλ(X) is generated by
an idempotent. Consequently, this enables us to find an algebraic property
equivalent to the density of the set of λ-isolated points in a space X . In
contrast to the fact that CF (X) is never a prime ideal in C(X), in Section
4, we characterize spaces X for which Sλ(X) is a prime ideal (even maximal
ideal).

In the final section, for a class of topological spaces, including maximal
λ-compact ones, we prove that the λ-super socle of C(X) is the intersection
of the essential ideals Ox containing Sλ(X), where x runs through the set of
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non-λ-isolated points in X . Also we show that the z-filter corresponding to
the λ-super socle of C(X) is the intersection of all essential z-filters containing
Sλ(X).

2. Preliminaries

First we cite the following results and definitions which are in [14] and [17].

Definition 2.1. An element x ∈ X is called a λ-isolated point if x has a
neighborhood with cardinality less than λ. The set of all λ-isolated points of
X is denoted by Iλ(X). If every point of X is λ-isolated, then X is called a
λ-discrete space, i.e., Iλ(X) = X .

Definition 2.2. A topological space X is said to be λ-compact whenever each
open cover of X can be reduced to an open cover of X whose cardinality is less
than λ, where λ is the least infinite cardinal number with this property.

Definition 2.3. X is a Pλ-space if every intersection of a family of cardinality
less than λ of open sets (i.e., Gλ-set) is open.

We begin with the following well-known result for Sλ(X), see [17, Lemma
2.6].

Theorem 2.4.
⋂

Z[Sλ(X)] is equal to the set of non-λ-isolated points, i.e.,
⋂

Z[Sλ(X)] = X \ Iλ(X). In particular, if x ∈ X is a λ-isolated point, then
there exists f ∈ Sλ(X), such that f(x) = 1.

Corollary 2.5. For any space X the following statements hold.

(1) An element x ∈ X is a λ-isolated point if and only if Mx + Sλ(X) =
C(X).

(2) X is a λ-discrete space if and only if for all x ∈ X, Mx + Sλ(X) =
C(X).

(3) The ideal Sλ(X) is a free ideal in C(X) if and only if for all x ∈ X,

Mx + Sλ(X) = C(X).

(4) An element x ∈ X is non-λ-isolated point if and only if Sλ(X) ⊆ Mx.
(5) If |X | ≥ λ and |Iλ(X)| < λ, then Sλ(X) =

⋂

x∈X\Iλ(X) Mx.

3. On the essentiality of Sλ(X) in C(X)

We begin with the following theorem, which is, in fact, our main result in
this section.

Theorem 3.1. Ann(Sλ(X)) = (e), where e is an idempotent in C(X) if and
only if X = A∪B, where A and B are two disjoint open subsets of X such that
the set of λ-isolated points of X is a dense subset of A and B has no λ-isolated
points of X .
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Proof. Let us first get rid of the case that Ann(Sλ(X)) = (1). Clearly, this case
holds if and only if Sλ(X) = (0), or equivalently if and if X has no λ-isolated
point, since 1.g = 0, for each g ∈ Sλ(X), i.e., Sλ(X) = (0). Conversely, if
Sλ(X) = (0), then Ann(Sλ(X)) = C(X) = (1). So put X = A ∪ B, where
A = φ and B = X , see Theorem 2.4. Now let Ann(Sλ(X)) = (e), where e
is an idempotent in C(X) and H = Iλ(X) be the set λ-isolated points of X .
We claim cl(H) = Z(e). In view to Theorem 2.4, for each x ∈ H , there exists
f ∈ Sλ(X) such that f(x) = 1. But by assumption, ef = 0, implies e(x) = 0,
i.e., H ⊆ Z(e) and consequently cl(H) ⊆ Z(e). Now let x ∈ Z(e) \ cl(H) and
seek a contradiction. By complete regularity of X , there exists g ∈ C(X), such
that g(x) = 1 and g(cl(H)) = (0). On the other hand for each y ∈ X \ H
and every f ∈ Sλ(X), we have f(y) = 0, see Theorem 2.4, this implies that
gf = 0, for every f ∈ Sλ(X), which in turn implies g ∈ Ann(Sλ(X)) = (e).
Since x ∈ Z(e) and g = he, g(x) = h(x).e(x) = 0, which is a contradiction.
Consequently, cl(H) = Z(e) and so cl(H) is clopen. Now put A = cl(H) and
X \ cl(H) = B, thus we are done. Conversely, let X = A ∪ B such that A
and B are two disjoint open subsets of X , where A and B have the assumed
properties. We may define

e(x) =

{

0 , x ∈ A

1 , x ∈ B

It is clear e ∈ C(X) and e2 = e. We claim Ann(Sλ(X)) = (e). If f ∈ Sλ(X)
then |X \ Z(f)| < λ and this implies X \ Z(f) ⊆ A = Z(e), i.e., fe = 0
or e ∈ Ann(Sλ(X)). It reminds to be shown that if f ∈ Ann(Sλ(X)), then
f ∈ (e). First, we prove that if f ∈ Ann(Sλ(X)), then Z(e) ⊆ Z(f). To see
this, put H = Iλ(X), since for each x ∈ H , we infer that there exists g ∈ Sλ(X)
such that g(x) = 1. Hence (fg)(x) = 0 implies that f(x) = 0, for every x ∈ H .
So f(cl(H)) = 0 (note, f(cl(H)) ⊆ clf(H) ). So cl(H) = A = Z(e) ⊆ Z(f),
and since Z(e) is clopen, Z(e) ⊆ int Z(f) and by [11, Problem 1D], f is a
multiple of e, thus f ∈ (e) and we are done. �

As previously mentioned, the set of isolated points in a space X is dense if
and only if the socle of C(X) is essential. Similarly, in [8, Corollary 3.2], it
has shown that the ideal SCF (X) is an essential ideal if and only if the set of
countably isolated points of X is dense in X . But in the following corollary,
we generalize this result for λ-super socle.

Corollary 3.2. The ideal Sλ(X) is an essential ideal in C(X) if and only if
the set of λ-isolated points of X is dense in X.

Proof. Let Sλ(X) be essential ideal, as the previous result Ann(Sλ(X)) = (0),
see[1, Proposition 3.1]. Therefore by the comment preceding Theorem 3.1, e =
0 and A = Z(e) = X , i.e., Iλ(X) is dense in X . Conversely, let cl(Iλ(X)) = X ,
since int(

⋂

Z[Sλ(X)]) = int((Iλ(X))c) = (cl(Iλ(X))c = φ, we infer that Sλ(X)
is essential in C(X), see[1, Proposition 3.1]. �
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Clearly, every essential ideal in any commutative ring R contains the socle
of R. Now the following definition is in order.

Definition 3.3. An essential ideal in C(X) containing Sλ(X) is called a λ-
essential ideal where λ is a cardinal number greater than or equal ℵ0.

It is well known that the intersection of the essential ideals in a commutative
ring R is equal to the socle of R. More generally, any ideal containing the socle
of R is also an intersection of essential ideals, see [13, 3N]. It is obvious that
Sλ(X) is the intersection of the λ-essential ideals of C(X).

Proposition 3.4. Let X be a λ-discrete space, then the set of λ-essential ideals
and the set of free ideals containing Sλ(X) coincide. In particular, Sλ(X) is
the intersection of free ideals containing it.

Proof. Let X be a λ-discrete space and E be a free ideal containing Sλ(X), it is
well known that every free ideal in C(X) is an essential ideal, see [2, Proposition
2.1] and the comment preceding it, hence E is a λ-essential ideal which implies
that the set of λ-essential ideals and the set of free ideals containing Sλ(X)
coincide. �

It is clear that every maximal ideal containing the socle of any commutative
ring is essential, see [16]. So each maximal ideal M containing Sλ(X) is λ-
essential, since CF (X) ⊆ Sλ(X). We also recall that every prime ideal in C(X)
is either essential or it is a maximal ideal which is generated by idempotent and
it is a minimal prime too, see [4]. In view of these facts and using the above
proposition and the fact that Sλ(X) is a z-ideal (hence it is an intersection of
prime ideals), we immediately have the following proposition.

Proposition 3.5. Every prime ideal P in C(X) containing Sλ(X) (or even
CF (X)) is an essential ideal. In particular if X is a λ-discrete space, then
Sλ(X) is an intersection of free prime ideals.

4. On the primeness of Sλ(X) in C(X)

Our main aim in this section is to investigate the primeness of the λ-super
socle. First, we give an example to show that Sλ(X) can be a prime ideal (even
a maximal ideal), which is the difference between Sλ(X) and CF (X).

Example 4.1. Let X = Y ∪ {x} be one point λ-compactification of a discrete
space Y , see [17, Definition 2.11]. We claim that C(X) = R + Sλ(X), i.e.,
Sλ(X) is a real maximal ideal. Let f ∈ C(X), then we consider two cases. Let
us first take x ∈ Z(f), since X is a Pλ-space, Z(f) is open and so |X\Z(f)| < λ
implies f ∈ Sλ(X) ⊆ R + Sλ(X). Now, we suppose x /∈ Z(f), so there exists
0 6= r ∈ R such that f(x) = r. Put g = f − r, hence x ∈ Z(g) and therefor
g ∈ Sλ(X). We are done.

Using Corollary 2.5, it is evident that if x ∈ X is the only non-λ-isolated
point of X , then Mx is the unique fixed maximal ideal in C(X) such that
Sλ(X) ⊆ Mx. It is well-known that every prime ideal in C(X) is contained in
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a unique maximal ideal, see [11, Theorem 2.11]. Now let Sλ(X) be a prime
ideal in C(X), then Sλ(X) is contained in the unique maximal ideal Mx, such
that x is the only non-λ-isolated point. So the space X has only one non-λ-
isolated point. Consequently, if X has more than one non-λ-isolated point then
Sλ(X) can not be a prime ideal in C(X), see 2.5. Now we have the following
results.

Proposition 4.2. If X is a topological space with more than one non-λ-isolated
point in X, i.e., |X \ Iλ(X)| > 1, then Sλ(X) is not a prime ideal in C(X).

Theorem 4.3. Let X be a Pλ-space, then the following statements are equiv-
alent.

(1) Sλ(X) = Mx, for som x ∈ X.
(2) X is a λ-compact space containing only one non-λ-isolated point.

Proof. ((1) ⇒ (2)) Evidently, x ∈ X is the only non-λ-isolated point in X ,
see Corollary 2.5 and Proposition 4.2. Now we show that X is a λ-compact
space. Put X =

⋃

i∈I Gi, such that Gi is an open set in X , for each i ∈ I
and |I| ≥ λ. Since x ∈

⋃

i∈I Gi, there exists k ∈ I, such that x ∈ Gk. But by
complete regularity of X , there exists f ∈ C(X) such that x ∈ int(Z(f)) ⊆ Gk.
Since X is a Pλ-space, x ∈ Z(f) and therefore f ∈ Mx = Sλ(X). Thus
|X \Gk| ≤ |X \ Z(f)| = |coz(f)| < λ, i.e., X = (

⋃

j∈J Gj)
⋃

Gk, where J ⊆ I

and |J | < λ. Now, it is sufficient to show that λ is the least infinite cardinal
number with this property. To see this we show that there exists an open
cover of X with cardinality β < λ which is not reducible to a subcover with
cardinality less than β. By [17, Lemma 2.13], there exists a closed subspace
F ⊂ X , such that |F | = β and x ∈ F . Now, by complete regularity of X , for
each s ∈ F and y ∈ F \ {s}, there exists fy ∈ C(X), such that fy(s) = 0 and
fy(y) = 1. Therefore s ∈

⋂

y∈F\{s} Z(fy) = Gs and since X is a pλ-space, Gs

is an open set of X . So X = (X \ F ) ∪ {Gs}s∈F is an open cover of X . It
goes without saying that Gs ∩ F = {s} and therefore the above cover cannot
reduce to an open cover of X with cardinality less than β. Consequently, X is
a λ-compact space.
((2) ⇒ (1)) It is sufficient to show that Mx ⊆ Sλ(X), where x is the only
non-λ-isolated point of X . Let f ∈ Mx, i.e., x ∈ Z(f). Since each point of
X except x is a λ-isolated point we infer that for every y ∈ X \ Z(f), there
exists a neighborhood of y in X , say Gy, with cardinality less than λ. Hence
(X \ Z(f)) ⊆

⋃

i∈I Gyi
, where |I| < λ and yi is a λ-isolated point, for each

i ∈ I. Thus |
⋃

i∈I Gyi
| < λ implies that |X \ Z(f)| < λ and we are done. �

We note that if X has at most one non-λ-isolated point, then by criterion for
recognizing the essential ideals in C(X), see [1, theorem 3.1], Sλ(X) is essential
in C(X) and by Proposition 4.2, it is an essential prime ideal of C(X). If X is
the one point λ-compactification of a discrete space, then Sλ(X) is an essential
maximal ideal, see Theorem 4.3. The above discussion refers to the following
proposition which is proved in [1, Proposition 4.1].
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Proposition 4.4. If X is an infinite space, there is an essential ideal in C(X)
which is not a prime ideal.

The following theorem is the counterpart of the above proposition.

Theorem 4.5. Let X be a topological space with |X | ≥ λ such that |X \
Iλ(X)| > 1, then there exists a λ-essential ideal in C(X) which is not a prime
ideal.

Proof. By assumption, there exist two distinct non-λ-isolated points, say x
and y. Now, define E = {f ∈ C(X) : {x, y} ⊆ Z(f)}, then

⋂

Z[E] = {x, y}
and therefore by the criterion for recognizing the essential ideals, E is essential.
Since x, y ∈

⋂

Z[Sλ(X)], by Theorem 2.4 we infer that Sλ(X) ⊆ E. It is evident
that E is not a prime ideal, see [11, Theorem 2.11] and we are done. �
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