
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

Taylor & Francis

Ruiz Fernández, LÁ.; Recio Recio, JA.; Crespo-Peremarch, P.; Sapena, M. (2018). An
object-based approach for mapping forest structural types based on low-density LiDAR and
multispectral imagery. Geocarto International. 33(5):443-457.
doi:10.1080/10106049.2016.1265595

https://doi.org/10.1080/10106049.2016.1265595

http://hdl.handle.net/10251/109833



Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tgei20

Download by: [Universitat Politècnica de València], [laruiz@cgf.upv.es] Date: 29 November 2016, At: 10:02

Geocarto International

ISSN: 1010-6049 (Print) 1752-0762 (Online) Journal homepage: http://www.tandfonline.com/loi/tgei20

An object-based approach for mapping forest
structural types based on low density LiDAR and
multispectral imagery

Luis Ángel Ruiz, Jorge Abel Recio, Pablo Crespo-Peremarch & Marta Sapena

To cite this article: Luis Ángel Ruiz, Jorge Abel Recio, Pablo Crespo-Peremarch &
Marta Sapena (2016): An object-based approach for mapping forest structural types
based on low density LiDAR and multispectral imagery, Geocarto International, DOI:
10.1080/10106049.2016.1265595

To link to this article:  http://dx.doi.org/10.1080/10106049.2016.1265595

Accepted author version posted online: 28
Nov 2016.

Submit your article to this journal 

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tgei20
http://www.tandfonline.com/loi/tgei20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/10106049.2016.1265595
http://dx.doi.org/10.1080/10106049.2016.1265595
http://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tgei20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/10106049.2016.1265595
http://www.tandfonline.com/doi/mlt/10.1080/10106049.2016.1265595
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2016.1265595&domain=pdf&date_stamp=2016-11-28
http://crossmark.crossref.org/dialog/?doi=10.1080/10106049.2016.1265595&domain=pdf&date_stamp=2016-11-28


Publisher: Taylor & Francis 

Journal: Geocarto International 

DOI: http://dx.doi.org/10.1080/10106049.2016.1265595 

 

 

 

An object-based approach for mapping forest structural types based 

on low density LiDAR and multispectral imagery 

Luis Ángel Ruiz, Jorge Abel Recio, Pablo Crespo-Peremarch, Marta 

Sapena 

Geo-Environmental Cartography and Remote Sensing Group (CGAT), Universitat 

Politècnica de València, Valencia, Spain 

 

Corresponding author:  

Luis Ángel Ruiz (laruiz@cgf.upv.es) 

Depto. Ingeniería Cartográfica, Geodesia y Fotogrametría, Universitat Politècnica de 

València, Camí de Vera s/n 46022 – Valencia, Spain. 

 

Acknowledgements 

This work was supported by the Spanish Ministerio de Economía y Competitividad and 

FEDER under Grant CGL2013-46387-C2-1-R; and Fondo de Garantía Juvenil under 

contract PEJ-2014-A-45358. The authors also thank the Spanish Instituto Geográfico 

Nacional (IGN) for making available the LiDAR data used. 

 



 

An object-based approach for mapping forest structural types based 

on low density LiDAR and multispectral imagery 

Mapping forest structure variables provides important information for estimation 

of forest biomass, carbon stocks, pasture suitability or for wildfire risk prevention 

and control. The optimization of the prediction models of these variables requires 

an adequate stratification of the forest landscape in order to create specific 

models for each structural type or strata. This paper aims to propose and validate 

the use of an object-oriented classification methodology based on low density 

LiDAR data (0.5 m-2) available at national level, WorldView-2 and Sentinel-2 

multispectral imagery to categorize Mediterranean forests in generic structural 

types. After preprocessing the data sets, the area was segmented using a 

multiresolution algorithm, features describing 3D vertical structure were 

extracted from LiDAR data, and spectral and texture features from satellite 

images. Objects were classified after feature selection in the following structural 

classes: grasslands, shrubs, forest (without shrubs), mixed forest (trees and 

shrubs) and dense young forest. Four classification algorithms (C4.5 decision 

trees, random forest, k-nearest neighbor and support vector machine) were 

evaluated using cross-validation techniques. The results show that the integration 

of low density LiDAR and multispectral imagery provide a set of complementary 

features that improve the results (90.75% overall accuracy), and the object-

oriented classification techniques are efficient for stratification of Mediterranean 

forest areas in structural and fuel related categories. Further work will be focused 

on the creation and validation of a different prediction model adapted to the 

various strata. 

Keywords: fuel strata, object-based classification, LiDAR, WorldView-2, Sentinel-2 

Introduction 

The concept of forest structure refers to the three-dimensional distribution of all the 

elements that configure a forest stand, including species type, size, ages, variety, heights 

strata, and others. Their characterization is usually performed by direct in-field 

measurements or indirect estimations from remote sensing data, such as multispectral, 



hyper-spectral, radar images or LiDAR data. A particular group of forest structural 

variables are those used to describe and quantify the fuel potential of the stands. The 

estimation and mapping of fuel variables, such as canopy base height, canopy fuel load 

or canopy bulk density, are important because they constitute some of the inputs needed 

to predict and model the fire behaviour, in order to reduce the risk and the effect of 

wildfires. During the last decade, LiDAR-based fuel variables prediction models have 

been developed in many areas of the world and under different ecological conditions 

using discrete (Riaño et al. 2003, 2004; Andersen et al. 2005; Popescu & Zhao 2008; 

Erdody & Moskal 2010; González-Olabarría et al. 2012) and full-waveform data 

(Hermosilla et al. 2014; Crespo-Peremarch et al. 2016). In order to obtain accurate 

estimations of structural variables, it is more efficient to divide the working area in 

strata or patches attending to their specific structural type, and then to develop a 

particular model for each of the classified strata (Latifi et al. 2012). Information on 

forest type and forest structure is also critical to land managers for accurate forest 

inventory and ecological monitoring (Kennaway et al. 2008), and to improve 

estimations of forest biomass, carbon stocks, etc. Different data sets and methods have 

been used for mapping forest structure. Thus, Vohland et al. (2007) identified eight 

forest classes with an overall accuracy of 87.5% using a supervised parametric 

classification based on a Landsat-5 TM scene, in order to predict more accurately the 

stem number per hectare for Norway spruce. Zhang and Franklin (2002) used texture 

features from high-resolution multispectral imagery to improve forest structure 

classification, considering that textures would be less sensitive to random variations in 

spectral response and more related to structural features, such as crown size and shape, 

obtaining 83% classification accuracy for nine classes. Kennaway et al. (2008) used 

pan-sharpened Landsat ETM+ images and decision trees to classify and map land cover 



and forest type for the Virgin Islands, illustrating a low cost approach.  However, they 

found difficulty in distinguishing very small forest patches, small clearings or man-

made structures in forest. More recently, Mishra & Crews (2014) used Landsat TM 

imagery and topographic variables to map structural vegetation types in a dry savanna. 

Combining features related to structure and intensity from LiDAR data, Orka et al. 

(2009) reached an overall classification accuracy of 88% to discriminate between 

coniferous and deciduous tree species. Sullivan et al. (2009) recommended stand 

delineation as an important step in the process of establishing a forest inventory, also 

providing the spatial framework for many forest management decisions. These authors 

investigated the use of LiDAR data as a potential tool for delineation of forest structure 

to create stand maps in six stand structural classes using object-oriented supervised 

classification, and Dalponte et al. (2008) analyzed the joint effect of hyperspectral and 

LiDAR data for the classification of complex forest areas, finding that the elevation 

channel of the first LiDAR return was very effective for the separation of species with 

similar spectral signatures but different mean heights. Martín Alcón et al. (2015) 

combined LiDAR and multispectral imagery to assess post-fire regeneration types. 

 

Other approaches were developed to characterize 3-D layers within forests patches for 

fuel mapping using LiDAR (Ferraz et al. 2012), or combining it with multispectral 

(García et al. 2011), hyperspectral images (Varga & Asner 2008) or aerial ortho-images 

(Rosa & Stow 2013). This stratification can be obtained using image classification 

techniques (Riaño et al. 2007; Mutlu et al. 2008; Parent et al. 2015), which provide a 

more efficient approach than using traditional photointerpretation (Arroyo et al. 2008). 

Due to the discontinuous character of many forested areas, especially those located in 

steep mountain zones, object-oriented classification techniques seem to be appropriate 



to achieve these spatially complex classifications. Object-based classifications have 

been successfully used for this purpose in Arroyo et al. (2006) and García et al. (2011). 

Chirici et al. (2013) used multispectral IRS LISS-III images and LiDAR data to classify 

forest fuel types in two areas of Sicily (Italy) using regression trees. Blanchard et al. 

(2011) used LiDAR and object-based image analysis (OBIA) for classification and 

quantification of downed logs on the forest floor, obtaining 73% of classification 

accuracy. Dupuy et al. (2013) used similar data to discriminate six vegetation classes 

based on canopy height and horizontal heterogeneity, and Hellesen & Matikainen 

(2013) for mapping small shrubs and trees. In general, the results reported are obtained 

in specific ecological areas and structural types. As a result of some tests performed by 

Kennaway et al. (2008) for mapping forest structural attributes using coarse-resolution 

discrete LiDAR data, they concluded that further work is needed in stratification of 

forest types. It is still needed to evaluate the performance of different classifiers, as well 

as to compare a variety of combinations of very low-density LiDAR data and new 

multispectral imagery.  

The objectives of this work are to compare and evaluate a stratification method 

based on low density country-wide LiDAR data and multispectral satellite imagery that 

allow us for the classification of basic generic types present in our study area, typically 

Mediterranean, and to assess the use of the newly available Sentinel-2 images and their 

joint use with LiDAR, as compared to other very high resolution images, such as the 

WorldView-2 multispectral images. 

 



Material and methods 

Study area and field data 

The Natural Park of Sierra de Espadán is located in the central Mediterranean region of 

Spain, in the foothills of the Iberian System, with a topography characterized by very 

steep slopes, ranging from an altitude close to sea level to 1100 m. Due to the 

orientation of the mountain range, there is slightly more accumulation of rainfall than 

what it would be expected for this location. The study area (Figure 1) has an extension 

of about 15,400 ha, approximately half the extension of the Natural Park. The dominant 

forest species are Pinus halepensis, Pinus pinaster and Quercus suber, other species are 

Castanea sativa, Acer sp. or Arbutus unedo. There is also an important presence of 

shrubs and high herbaceous species (Quercus faginea, Ilex aquifolium, Genista 

scorpius, Erica sp, Juniperus phoenicea, among others) appearing in patches or as 

understory forest vegetation layers. 

 

[Figure 1 here] 

 

A field data campaign was done in September 2015, as part of a complete forest 

inventory data collection, where standard forest inventory measurements (DBH, tree 

heights, and number of trees) were registered in 80 circular plots (15 m radius), as well 

as descriptive information concerning types of vegetation and strata. The area suffered 

localized recurrent wildfires from different severity degrees and distributed in patches 

of a variety of sizes, mainly during the decade of 1990. During the last years, there has 

been a lack of forest maintenance works, which facilitates the creation of patches with 

trees together with a dense bushy and herbaceous vegetation layer. From forest fuel and 

fire behaviour perspectives, and aiming to eventually facilitate the generation of fuel 



quantitative prediction models, four generic vegetation strata were differentiated (Figure 

2). 

(1) Forest: composed by P. pinaster and P. halepensis, often combined with 

Quercus suber, with no presence of shrub or understory vegetation layer (Figure 2a). (2) 

Mixed forest: this is a combination of pine trees and shrub or high herbaceous 

vegetation, usually conforming a dense understory layer (Figure 2b). (3) Shrub: dense 

shrub species, sometimes with the presence of isolated trees (Figure 2c). (4) Young 

forest: very dense concentration of young P. halepensis trees, with densities ranging 

from 20,000 to 40,000 trees/ha, distributed in patches as a result of spontaneous 

regeneration after wildfires (Figure 2d). A fifth strata or class, Grassland, with very low 

occurrence in the study area, was defined to complete the structural vegetation types for 

classification. 

 

[Figure 2 here] 

 

LiDAR data 

LiDAR data were acquired by a RIEGL LMS-Q680 laser scanner device during the 

summer of 2009 as part of the Spanish National Aerial Orthophotography Programme 

(PNOA), with an average density of 0.5 pulses m-2 and distributed by the National 

Mapping Agency (IGN). The point cloud was first filtered to eliminate outliers, then the 

points belonging to the terrain were preserved using FUSION 3.5 software (McGaughey 

2015), and improved using a broad (5 m/pixel) digital terrain model (DTM) provided by 

the IGN as ancillary data, so that the height value of those points from the filtered cloud 

whose height differed in more than 1 m from the ancillary DTM, were reassigned with 

the height of this broader DTM. This process allowed us to clean the point cloud from 



misclassified terrain points, in order to create the new 2 m DTM. The digital surface 

model (DSM) or canopy height model (CHM) was obtained by selecting the maxima 

height in a grid of 2 m. Finally, a normalized digital surface model (nDSM) of the same 

resolution was obtained by subtracting the DTM from the DSM, and a 3x3 median filter 

was applied to avoid pixels with zero value caused by occasional lack of points in the 

final 2x2 m cells, due to the very low density of LiDAR data. 

Image data 

A WorldView-2 eight bands multispectral image (2 m/pixel spatial resolution) from 

November 2013 was orthorectified using the RPC parameters in the metadata, control 

points and the DTM model from the PNOA programme. A Sentinel-2 image acquired in 

December 3rd, 2015 was downloaded from the Copernicus Sentinels Scientific Data 

Hub repository (https://scihub.copernicus.eu), and georeferenced with the SNAP 

Sentinel toolbox (v.3.0) using the image metadata file, according to the three different 

spatial resolutions of the thirteen spectral bands available (10, 20 and 60 m/pixel spatial 

resolution). Sentinel-2 images were clipped to the same size as the WorldView-2 image, 

representing the complete study area. 

Figure 3 shows a flowchart of the object-oriented methodology followed, 

beginning with the data pre-processing, object definition, feature extraction and 

generation of classification models. 

 

[Figure 3 here] 

 



Segmentation and Feature Extraction 

Segmentation is a previous step to classification in object-based image analysis, 

consisting on the definition of objects, or groups of pixels, based on their spatial 

homogeneity according to one or several properties. Considering that segmentation 

algorithms become increasingly instable with growing input space dimension (Roth & 

Lange 2004), we used only the nDSM obtained from LiDAR and the normalized 

difference vegetation index (NDVI) from the WorldView-2 image as input data for 

segmentation, therefore the objects generated were homogeneous in terms of the 

presence and density of vegetation, and the height of the elements within the objects.  

The multiresolution algorithm implemented in eCognition software (Baatz & 

Shäpe 2000) was applied, using a scale factor of 10, a weight for the objects shape 0.1 

and for the bands (NDVI+nDSM) 0.9. Additionally, two vector layers extracted from 

the official Topographic Map of the Comunitat Valenciana, BCV05 (1:5000), 

corresponding to roads and buildings, were used as input masks in order to exclude 

these elements from the classification process. Figure 4 shows a detail of the final 

segments generated. 

Feature extraction was performed using two freely available software 

programmes: FUSION 3.5 (McGaughey 2015) and FETEX 2.0 (Ruiz et al. 2011). The 

former was used to extract a set of statistical features computed from the normalized 

LiDAR point cloud, using point elevations and intensity. FETEX 2.0 is a feature 

extraction software tool that accepts images and segment limits as inputs and calculate a 

set of spectral, texture, structure and shape features of every object. In our case, spectral 

features (mean and standard deviation of intensity values) were computed from all 

bands of WorldView-2 and Sentinel-2 images. Texture features were computed from 

the red band of satellite images, including those derived from the grey level co-

occurrence matrix and the features extracted from the semivariogram of the intensity 



values of pixels within each object, as described by Balaguer et al. (2010). Shape 

features based on object area and perimeter (compactness, fractal dimension and shape 

index) were also extracted. The complete set of features extracted from the different 

data sources is summarized in Table 1. 

 

[Table 1 here] 

 

Based on the qualitative information collected in the field campaign, and by 

photointerpretation of the WorldView-2 image and the LiDAR data, a total of 482 

objects were selected as training samples in a first binary classification step to 

discriminate between agricultural (128 objects) and non-agricultural (354 objects). 

Then, the 354 non-agricultural objects were used as samples for a second and more 

specific classification into generic structural strata. There are two main alternatives for 

the selection of samples, proportional to area or equal allocation. In former studies, 

Colditz (2015) recommended area proportional training sample allocation of each class 

for classification trees. Jin et al. (2014) also suggest proportionally allocated sampling 

designs to increase overall accuracy and to reduce RMSE in urban areas, but always 

considering that the choice of an appropriate sampling design for training data selection 

is generally an application-specific decision. In our case, the number of samples per 

class was defined according to their approximate proportion in the study area. In 

consequence, samples were distributed as follows: 40 samples of class forest, 10 of 

grassland, 214 of mixed-forest, 56 of shrub, and 34 of young forest. Figure 4 shows 

some examples of samples used for the five classes. 

 

[Figure 4 here] 



 

The GreedyStepwise algorithm from WEKA 3 (Hall et al. 2009) was used for 

feature selection. This method performs a forward search through the space of attribute 

subsets, starting with no attributes, and stops when the addition of any remaining 

attributes results in a decrease in the evaluation. Additionally, we set a more restrictive 

threshold of 0.5% of increase rate in the overall accuracy per step for the stepwise 

process to stop, and a maximum of six attributes. 

Classification of generic structural types 

Classification of Agricultural and Non-agricultural areas 

Subsistence mountain agriculture used to be a traditional land use in the study area, with 

the existence of small orchards arranged in terraces to reduce the effect of the slope. 

Even if nowadays these areas have been sharply reduced, some of them still remain 

close to the valleys or interleaved with the forest. Since our purpose was focused on the 

classification of fuel types, and the availability of LiDAR and spectral data made 

feasible the accurate pre-classification of agricultural lands, a previous binary 

classification was done to mask agricultural from non-agricultural segments. For this 

purpose, the C4.5 decision tree classification algorithm (Quinlan 1993) was used. 

Previous to the classification, the feature selection was performed considering all the 

available features and the classes ‘Agricultural’ and ‘Non-agricultural’. 

Once the agricultural areas were masked, two classification tests were 

performed: First, four classification algorithms were compared using the selected 

features from all data sets; secondly, the effectiveness of various groups of data sources 

was evaluated. 

 



Comparison of Classification Methods 

With the features selected from the whole dataset (S2+WV2+L), four classification 

methods were compared: C4.5 decision trees, Random Forest (RF), k-nearest-

neighbours (k-NN), and Support Vector Machine (SVM). All of them were 

implemented using WEKA 3 software. The C4.5 decision trees algorithm (Quinlan 

1993) consists on a set of mutually exclusive conditions organised in a hierarchical 

structure, created iteratively by dividing the initial sample in subgroups and using a 

splitting criterion until the dynamically generated subgroups become homogeneous. 

Random Forests (Breiman 2001) is a method based on the construction of multiple 

decision trees that are averaged and trained on different parts of the same training set, 

with the goal of reducing the variance (Hastie et al. 2008). The k-NN classification 

algorithm computes the distances in the feature space of objects with respect to k 

prototypes per class defined from the training samples, assigning each object to the 

class most common among its k nearest neighbours. In our tests we used k=5. The 

Support Vector Machine algorithm is based on finding the hyperplane that gives the 

largest minimum distance to the training examples. Therefore, the optimal separating 

hyperplane maximizes the margin of the training data (Cortes & Vapnik 1995). The 

classification results of these four methods were expressed in terms of overall accuracy 

and kappa index for comparison purposes. 

Evaluation of data source groups for structural type classification 

Four different classifications in the five structural types described were conducted, 

using the following groups of features: using only LiDAR features (L); Sentinel-2 and 

LiDAR (S2+L); WorldView-2 and LiDAR (WV2+L); and all features (S2+WV2+L). 

Since discrimination of vegetation height layers was needed, the use of only Sentinel-2 



or WorldView-2 was discarded due to the lack of height information. For the four 

groups of features, the same feature selection process was performed, and the C4.5 

decision tree classification algorithm was used in all cases. Results were compared by 

reporting the overall, producer’s and user’s accuracies, and the kappa index, all obtained 

from the respective error matrices. In all cases, these results were expressed considering 

the number of objects correctly or incorrectly classified, as well as weighted by the area 

represented by the objects. 

As a mechanism to avoid overfitting, a common method is to split the samples in 

two parts, one for model calibration, and one for evaluating the predictive error. 

Methods that use this approach include leave-one-out cross-validation, k-fold cross-

validation, as well as repeated splits in training and validation samples (Kuhn & 

Johnson 2013). Cross-validation is a widely used evaluation method when a small 

number of samples are available. After a preliminary test of the number of folds, 

stratified cross-validation in ten folds was used to evaluate the classification results in 

all the tests performed.  

Results 

The results and discussion of the object-based classification tests are independently 

organized in the next three sub-sections. 

Classification of Agricultural and Non-agricultural areas 

Discrimination between agricultural land use and non-agricultural was efficiently 

performed by the decision tree using only three variables: height percentiles 95 and 20, 

and the contrast derived from the grey level co-occurrence matrix of the WorldView-2 

red band. From a sample of 482 objects, a total of 463 were correctly classified, which 

means a 96.06% of accuracy (0.9 kappa index). Considering the results after weighting 



by the actual area of each classified segment, the overall accuracy was 96.16% (0.92 

kappa index). This shows the ability to mask out the agricultural crops using a simple 

decision tree based on height features from LiDAR and texture information extracted 

from high-resolution satellite imagery, without using spectral information. The use of 

such decision tree as a preliminary step of the classification allows for the reduction of 

complexity in the classification of forest fuel types. 

Comparison of Classification Methods 

After application of the stepwise feature selection algorithm, the final variables used for 

classification are shown in Table 2. In all cases, elevation percentile 90 from LiDAR 

data is one of the first features selected. Spectral information, either from the 

WorldView-2, Sentinel-2 or LiDAR intensity data is also selected, which confirms a 

complementary effect of spectral and 3D features. 

 

[Table 2 here] 

 

The summary of the results obtained with the four classification methods tested is 

shown in Table 3. All methods except for SVM perform well, ranging from 86.76% to 

90.75% of overall accuracy. C4.5 decision tree algorithm performs slightly better in 

terms of the total area correctly classified. However, random forest accuracy is slightly 

higher when the number of objects correctly classified is considered. Even considering 

that both methods provide a high overall accuracy, we chose the method of C4.5 

decision trees for the classification comparative tests using different groups of data 

sources. Compared to a recent study about classification of forest development stages in 

Finland (Valbuena et al. 2016), random forest seems to be a robust classifier for 



different areas and forest conditions, while support vector machine has a more variable 

performance. 

 

[Table 3 here] 

 

Evaluation of Data Source Groups 

After a preliminary test, we discarded the use of only WV2 or S2 images, due to the 

very low overall accuracies obtained (below 70%) when using only spectral 

information. Classification of forest fuel types produced good overall accuracy results 

using the other four combinations of data sources tested, obtaining 90.75% of accuracy 

in weighted area combining the three data sets (WV2+S2+L) (Table 4). Therefore, the 

use of LiDAR, that provides information about the height distribution of the canopy 

layers, seems to be necessary in order to obtain operative performance. The lowest 

accuracies were obtained (82.2%–88.2%) using LiDAR without multispectral 

information, however the difference is only 3-4% less than using the combination of all 

data sets (WV2+S2+L). In this sense, these results confirm those obtained by García et 

al. (2011) and by Chirichi et al. (2013), but using a very low density LiDAR data and an 

object-oriented approach. This approach allowed us for the calculation of metrics from 

low density LiDAR, since the size of objects is larger than the pixel size and a minimum 

number of points is ensured for the computation of metrics. 

 

[Table 4 here] 

 

In terms of class-specific accuracies (producer’s and user’s) the results show that 

it is necessary to combine LiDAR data with high-resolution multispectral images 



(WV2) in order to discriminate class forest with a minimum of confidence level 

(Figures 5 and 6). 

Using L or L+S2 data sets produced a very low user’s accuracy, while the 

former produced a very low producer’s accuracy for this class. As described in sub-

section 2.1, class forest is composed of Pinus trees sometimes mixed with Quercus 

suber in different proportions. This irregular composition increases the variability 

within the class and consequently makes more difficult to characterize the class for 

classification purposes. Misclassification occurs mainly by confusion with objects from 

mixed forest class, which is also composed of Pinus trees, but associated with a more or 

less dense layer of understory shrub. Class mixed forest does not seem to be as sensitive 

to these errors, due to the higher proportion in the study area, and therefore having a 

larger number of samples represented in the training/testing set.  

 

[Figure 5 here] 

 

[Figure 6 here] 

 

In our case, the class young trees was properly segmented and correctly 

classified, which is relevant to obtain accurate fuel or forest structure variable prediction 

models. Therefore, the object-based approach used facilitates the delineation of patches 

with specific structural types existing in the landscape. In addition to the combination of 

multispectral and LiDAR data, future work may explore the use of multitemporal data 

available from middle-resolution imagery such as Landsat or Sentinel-2, similar to the 

work reported by Fagan et al. (2015), who examined the potential of combining 

moderate-resolution hyperspectral imagery with multitemporal, multispectral data 



(Landsat) to accurately classify general forest types, finding that adding multitemporal 

data significantly improved classification accuracy. The application of this methodology 

in a larger area with more variety of structural forest types could help to obtain more 

accurate and complete prediction models for forest structure variables.  

Figure 7 shows the final classification result obtained after following the 

proposed methodology, using the C4.5 decision tree classifier and a representation of 

features from the three data sets tested. 

 

[Figure 7 here] 

 

Conclusions 

An object-based classification approach has been presented for classification of generic 

fuel types of a Mediterranean area in Spain, in order to facilitate structure and fuel 

variable prediction models based on LiDAR data. 

Due to the typical irregular distribution of forest stands in these areas, a 

preliminary binary classification in agricultural and non-agricultural land using LiDAR 

and texture data from images was carried out, resulting in high accuracy and 

consequently reducing the complexity for a second classification in structural types. 

Regarding structural type classification, decision trees (C4.5) and random forest 

classifiers performed better than SVM and k-NN, allowing for overall accuracies near 

90%, which makes these methods highly operative for practical applications. 

For discrimination of structural types, the parameters derived from LiDAR data 

are more relevant than those obtained from multispectral imagery, since they convey 

information from the vertical structure of the vegetation canopy, which is crucial to 

distinguish the distribution of different vertical vegetation strata and species that are 



within the objects. Additionally, it is suitable to combine both data sources, particularly 

when two or more tree species (P. halepensis, P. pinaster, Q. suber) or tree types (i.e., 

conifers and broad leaf trees) coexist in the same object. For this purpose, very high 

resolution images, such as WV2, increase the accuracies with respect to the medium 

resolution images. Sentinel-2 images would perform better when larger objects are 

generated after segmentation, or broader scales are considered. 

Object-oriented classification techniques combining multispectral imagery and 

low density LiDAR data resulted to be efficient for stratification of fuel types prior the 

fuel modelling phase, which opens new possibilities to optimise the structure and fuel 

variable mapping in Mediterranean areas. Future work in larger areas should be focused 

on the discrimination of more specific structural classes, such as pine-dominated and 

oak-dominated forests, in order to obtain separate models that improve the prediction of 

forest structure and fuel variables. The estimation of the proportions of forest types mix 

within strata could also be considered for the generation of hybrid prediction models. 
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Table 1. Complete set of features extracted from the objects, organized attending 

to the different data sources and typologies. 

DATA SOURCES VARIABLES 

SPECTRAL 

W2 and S2: All bands and NDVI Mean, Standard deviation, Minimum, Maximum, Range, Mode 

TEXTURE 

WV2: Edgeness (Sutton & Hall 1972) from 
Pan and B5; S2: Edgeness from B4 

Mean, Standard deviation 

WV2: GLCM derived features (Haralick et al. 
1973) from Pan and B5; S2: GLCM from B4 

Uniformity, Entropy, Contrast, Inverse difference moment, Covariance, Variance, 
Correlation 

WV2: Distribution of values of the histogram 
from Pan and B5; and S2: B4  

Skewness and Kurtosis 

SEMIVARIOGRAM (Balaguer et al., 2010) 

W2: Semivariogram from Pan and B5; S2: 
Semivariogram from B4 

γmax_1, γmin_1, γmax_1, HA: First maximum, First minimum, Second maximum, Hole 
area 

RVF: Ratio variance at first lag 

RSF: Ratio between semivariance values at second and first lag 

FDO: First derivative near the origin 

SDT: Second derivative at third lag 

FML: First maximum lag value 

MFM: Mean of the semivariogram values up to the first maximum 

VFM: Variance of the semivariogram values up to the first maximum 

DMF: Difference between the mean of the semivariogram values up to the first 
maximum 
RMM: Ratio between the semivariance at first local maximum and the mean 
semivariogram values up to this maximum 

SDF: Second-order difference between first lag 

AFM: Area between semivariogram value in the first lag and the semivariogram 
function until the first maximum 
DMS: Distance between the location of the first local maximum and the second 
local maximum 

DMM: Distance between the first maximum and the first minimum 

SHAPE 



Objects from segmentation Compactness, Shape Index, Fractal dimension, Area, Perimeter of the object 

HEIGHT DISTRIBUTION FEATURES (LiDAR) 

Point cloud number 
Number of returns 

Number of n-order returns 

Point cloud elevation and intensity 

Minimum, Maximum, Mean, Mode, Standard deviation, Variance, Coefficient of 
variation, Interquartile distance, Skewness, Kurtosis, Average absolute deviation 

Average absolute deviation, L-moments 

Coefficient of variation, Skewness and Kurtosis of L-moments 

Percentiles (1, 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95, 99) 

Point cloud elevation 

Median of the absolute deviations from the overall median 

Median of the absolute deviations from the overall mode 

Canopy relief ratio 

Elevation quadratic mean 

Elevation cubic mean 

 

Table 2. Final variables selected for object classification using different data set 

combinations: WorldView2 (WV2), Sentinel2 (S2), LiDAR (L). 

DATA SET VARIABLES 

W2+S2+L 

Mean B8 W2 (Near-IR2) 
Maximum NDVI W2 
Elevation Percentile 90 LiDAR 
Elevation Quadratic Mean LiDAR 
Intensity Kurtosis LiDAR 

W2+L 

Maximum NDVI W2 
Elevation Percentile 90 LiDAR 
Elevation Quadratic Mean LiDAR 
Intensity Kurtosis LiDAR 

S2+L 

Mean B2 S2 (Blue) 
Elevation Percentile 90 LiDAR 
Elevation Quadratic Mean LiDAR 
Intensity Kurtosis LiDAR 
Intensity L-moment Kurtosis LiDAR

L 

Elevation Percentile 90 LiDAR 
Elevation Quadratic Mean LiDAR 
Intensity Skewness LiDAR 
Intensity Kurtosis LiDAR 

 

 

 

 



 

 

Table 3. Overall comparative results of the four classification methods tested for fuel 

type discrimination. Results are expressed both, weighted by the area of the objects and 

only considering the number of objects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Overall Accuracy Kappa Index 

 Weighted 

(Area) 

No. 

Objects

Weighted 

(Area) 

No. 

Objects 

C4.5 90.75% 86.76% 0.863 0.764 

Random Forest 90.42% 89.30% 0.858 0.816 

kNN (k=5) 88.00% 88.17% 0.823 0.792 

SVM 86.48% 78.31% 0.797 0.572 

 



 

 

 

Table 4. Overall results for fuel type classification using different dataset combinations: 

WorldView2 (WV2), Sentinel2 (S2), LiDAR (L). Results are expressed both, weighted 

by the area of the objects, and considering the number of objects. 

 

 

 

 

 

 

 

 

 

 

 

 Overall Accuracy Kappa Index 

 Weighted 

(Area) 

No. 

Objects

Weighted 

(Area) 

No. 

Objects

WV2+S2+L 90.75% 86.76% 0.763 0.764 

WV2+L 90.95% 86.44% 0.865 0.779 

S2+L 90.15% 84.51% 0.855 0.733 

L 88.23% 82.20% 0.824 0.685 

 



 

 

 

 

Figure 1. WorldView-2 false colour infrared image (RGB:753) of Sierra de Espadán, 

Castellón (Spain). Green polygons represent the samples selected for classification. 

Figure 2. Examples of four generic fuel strata to be characterized for classification: a) 

forest; b) mixed forest; c) shrub; d) young forest. 

Figure 3. Overall flow chart of the classification process. 

Figure 4. Detail of objects generated after segmentation overlying the nDSM (above). 

Examples of five segments from different classes (from left to right: forest, mixed 

forest, shrub, young forest, and grassland) represented on nDSM (center) and WV2 

image (below). 

Figure 5. Producer’s accuracies obtained in the comparative analysis using variables 

coming from different data set groups to classify five generic fuel types. 

Figure 6. User’s accuracies obtained in the comparative analysis using variables coming 

from different data set groups to classify five generic fuel types. 

Figure 7. Final classification of generic fuel types of the study area in Natural Park 

Sierra de Espadán, using C4.5 decision tree algorithm and S2, WV2 and LiDAR 

features. 

 

 

  



 

 

 

 

  



 

 

 

 

 

  



 

 

 

 

  



 

 

 

  

 



 

 

  

 



 

 

  

 



 

 


