Index

Chapter 1. Introduction

	Page
1.1. The lignocellulosic biomass alternative	3
1.1.1. Lignocellulosic biomass composition	6
1.2. Bio-refinery concept	9
1.2.1. Biomass transformation processes	12
1.3. Bio-oils production from fast pyrolysis processes	16
1.4. Bio-oils upgrading processes	23
1.4.1. Catalytic pyrolysis, vapour upgrading and co-processing	23
1.4.2. Hydrotreating	24
1.4.3. Bio-oils fractionation and downstream processes	28
1.4.4. Liquid-liquid extraction upgrading	29
1.5. Aqueous effluents catalytic valorisation	33
1.5.1. Aqueous phase reforming (APR)	33
1.5.2. C-C bond formation reactions	34
1.5.2.1. Aldol condensation	35
1.5.2.2. Ketonization	38
1.5.3. Esterification	41
1.5.4. Reaction conditions	42
1.6. Fermentation processes	44
1.6.1. Carboxylic acids production	45
1.6.2. ABE (Acetone-Butanol-Ethanol) mixtures	47
1.7. References	51
Chapter 2. Objectives	
	Page
2.1. Main objectives	63
2.2. Specific objectives	64

Chapter 3. Experimental Procedure

	Page
3.1. Reactants and commercial catalysts	67
3.2. Catalysts synthesis	70
3.2.1. Hydrotalcite-derived mixed oxides	70
3.2.2. Mixed metal oxides via incipient wetness impregnation	70
3.2.3. Mixed metal oxides via wet impregnation	71
3.2.4. Mixed metal oxides via co-precipitation	71
3.2.5. Faceted TiO ₂ materials via hydrothermal synthesis	73
3.2.6. Nb ₂ O ₅ and WNb oxides via hydrothermal synthesis	73
3.3. Catalysts analysis and characterization	74
3.3.1. Inductively coupled plasma atomic emission spectroscopy (ICP-AES)	74
3.3.2. X-ray fluorescence spectrometry (XRF)	75
3.3.3. X-ray diffraction (XRD)	76
3.3.4. Raman spectroscopy	78
3.3.5. Textural analysis. N ₂ adsorption isotherms	79
3.3.6. Fourier transform infrared spectroscopy (FTIR-KBr)	81
3.3.7. Fourier transform infrared spectroscopy with pyridine	
adsorption (FTIR-PY)	82
3.3.8. Temperature-programmed desorption (TPD) of ammonia and carbon dioxide	83
3.3.9. X-ray photoelectron spectroscopy (XPS)	84
3.3.10. Scanning electron microscope with energy dispersive X-ray spectroscopy (SEM-EDX)	85
3.3.11. Transmission electron microscopy (TEM) and high-	
resolution transmission electron microscopy (HRTEM)	87
3.3.12. Thermogravimetric analysis (TG)	88
3.3.13. Elemental analysis (EA)	89
3.4. Catalytic tests	90
3.5. Reaction mixtures analysis	95
3.6. References	102

Chapter 4. Ceria-Zirconia and hydrotalcite-derived mixed oxides as acid catalysts for the aqueous-phase condensation of oxygenated compounds

V 8 1	
	<u>Page</u>
4.1. Introduction	105
4.2. Ce _x Zr _{1-x} O ₂ mixed oxides as reference materials	109
4.3. Hydrotalcite-derived mixed oxides	118
4.3.1. Hydrotalcite-derived mixed oxides characteristics	118
4.3.2. HT-Mg/Al and HT-Zn/Al hydrotalcite-derived mixed	
oxides	121
4.3.3. HT-MgZnAl (1-1-1) mixed oxide vs. $Ce_{0.55}Zr_{0.45}O_2$	129
4.3.4. Tertiary hydrotalcite-derived mixed oxides	131
4.4. Monometallic and mixed metal oxides	136
4.4.1. Monometallic oxides	136
4.4.2. A _x Ti _{1-x} O mixed oxides (A: Mg, Zn)	138
4.4.3. A _x Zr _{1-x} O mixed oxides (A: Mg, Mn, Zn)	141
4.4.4. Stability study of Ce _x Zr _{1-x} O and Zn _x Zr _{1-x} O mixed oxides	146
4.5. Conclusions	148
4.6. References	149
Chapter 5. {001} Faceted TiO ₂ materials as acid cata for the aqueous-phase condensation of oxygenate	•
compounds	D
5.1. Turkuu Jurkkau	Page
5.1. Introduction	153
5.2. Results and discussions	156
5.2.1. Synthesis of faceted TiO ₂ materials	156
5.2.2. Catalysts characterization	157

5.2.3. Catalytic performance of TiO₂ samples in the condensation reaction of a mixture of oxygenated compounds in

5.2.4. Effect of H₂O and acetic acid on catalytic results of

aqueous phase

TiO₂-based materials

168

175

5.2.5. Effect of heat-treatments and facet exposition	on
catalytic results of TiO ₂ -based materials	182
5.2.6. Stability tests	187
5.3. Conclusions	192
5.4. References	193
Chapter 6. Niobium and Tungsten-Niobium oxid catalysts for the aqueous-phase condensatio oxygenated compounds	
	Page
6.1. Introduction	197
6.2. NbO _x -based materials	199
6.2.1. Synthesis of NbO _x -based materials	199
6.2.2. Catalysts characterization	200
6.2.3. Catalytic performance in the condensation reaction	
mixture of oxygenated compounds in aqueous phase	207
6.2.4. Stability tests	216
6.3. WNbO mixed oxides	219
6.3.1. Synthesis of WNbO mixed oxides	220
6.3.2. Catalysts characterization	221
6.3.3. Catalytic results: Experiments at 180 °C	228
6.3.4. Catalytic results: Experiments at 200 °C	233
6.3.5. Reaction network and mechanism discussion	238
6.3.6. Catalysts post-synthesis optimization	243
6.3.7. Stability tests	246
6.4. Conclusions	249
6.5. References	250

Chapter 7. Tin-based mixed oxides as acid catalysts for the aqueous-phase condensation of oxygenated compounds

	<u>Page</u>
7.1. Introduction	253
7.2. Sn _x Zr _y O mixed oxides	254
7.3. Sn _x Ti _v O mixed oxides	257
7.3.1. Synthesis of Sn _x Ti _y O materials	257
7.3.2. Catalysts characterization	258
7.3.3. Catalytic results	263
7.3.3.1. Catalytic performance of Sn_xTi_yO materials in the condensation of a mixture of oxygenated compounds in aqueous	
phase	263
7.3.3.2. H ₂ O and acetic acid effect on the catalytic performance of Sn _x Ti _y O materials in light oxygenates	
condensation reactions	266
7.3.3.3. Stability tests of Sn_xTi_yO materials in the	
condensation of a mixture of oxygenated compounds in aqueous	271
phase	271
7.4. Sn _x Nb _y O mixed oxides	
7.4.1. Synthesis of Sn _x Nb _y O materials	273
7.4.2. Catalysts detailed characterization	275
7.4.3. Catalytic results	284
7.4.3.1. Catalytic performance of Sn _x Nb _y O materials in the condensation of a mixture of oxygenated compounds in aqueous	
phase	284
7.4.3.2. Catalytic performance of supported K/ and Cs/ Sn _x Nb _y O materials in the condensation of a mixture of	200
oxygenated compounds in aqueous phase	290
7.4.3.3. Acetic acid and H ₂ O effect on the catalytic performance of Sn _x Nb _y O materials in light oxygenates	•01
condensation reactions	291
7.4.3.4. Stability tests of Sn _x Nb _y O materials in the condensation of a mixture of oxygenated compounds in aqueous	
phase	295

7.5. Sn _x Ti _y Nb _z O mixed oxides	297
7.5.1. Synthesis of Sn _x Ti _y Nb _z O materials	297
7.5.2. Catalysts characterization and catalytic results	297
7.6. Process application and intensification	301
7.6.1. Organic phase characterization: Partition coefficients	301
7.6.2. Process intensification: ABE mixtures valorisation	305
7.7. Conclusions	309
7.8. References	311
Chapter 8. General conclusions	<u>Page</u>
8.1. General conclusions	315
Chapter 9. List of Figures and Tables	
	<u>Page</u>
9.1. List of Figures	321
9.2. List of Tables	328