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1. RESUMEN 

 

La influencia del microbioma sobre los rasgos complejos relevantes para el ganado 

lechero, tales como la eficiencia alimenticia o las emisiones de metano, ha sido bien 

establecida. Además, estudios recientes han publicado evidencias sobre el control de los 

antecedentes genéticos del animal sobre la composición de la microbiota. Sin embargo, 

hasta ahora la mayoría de los análisis se han centrado en enfoques de microorganismos 

únicos en lugar del conjunto de microbiomas que incluyen las relaciones subyacentes. El 

análisis conjunto de los antecedentes genéticos del huésped y su microbiota requiere tener 

en cuenta la distancia (o disimilitud) entre las comunidades de microorganismos en 

diferentes hospedadores. Por lo tanto, es necesario incorporar el microbioma completo en 

los modelos estadísticos para evaluar su asociación con rasgos complejos. La matriz de 

relación del microbioma (MRM) permite considerar la microbiota como un todo. Se han 

propuesto varios métodos para ordenar estas matrices; los cuales difieren en la métrica 

utilizada en la distancia (o disimilitud) entre las comunidades microbianas (por ejemplo, 

Euclidiana, Bray-Curtis, χ2). Estas distancias representan la diversidad alfa y beta de 

diferentes maneras. Aún no se ha llegado a un consenso sobre qué método es el más 

apropiado y podría depender de las singularidades de los datos y del propósito del estudio.  

El objetivo de este estudio fue comparar varias matrices de relación de microbiota, dentro 

de un marco de estimación de componentes de varianza. Se probaron cinco métodos de 

ordenación para construir la MRM: escalado multidimensional métrico (MDS), análisis 

de correspondencias sin tendencia (DCA), escalado multidimensional no métrico 

(NMDS), análisis de redundancia (RDA) y análisis de correspondencia restringida 

(CCA). La matriz de abundancias relativas log-transformada y estandarizada descrita en 

Ross et al. (2013) se utilizó como matriz de referencia. 

Se utilizaron datos simulados (n = 1000) para estimar los componentes de la varianza, 

incluidos los fenotipos, los genotipos y la información de la microbiota del rumen. Los 

datos fueron analizados considerando dos posibles modelos. Primero, el efecto genómico 

y el efecto de la microbiota se incluyeron de forma independiente. Segundo, se agregó un 

efecto de interacción entre los efectos genómico y de microbiota. Todos los modelos se 

implementaron dentro de un marco Bayesiano utilizando el paquete BGLR en R. Se 

generaron un total de 100 repeticiones. Los datos reales se analizaron utilizando los 

mismos modelos. 
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Una estimación similar o ligeramente mejor en la simulación de h2 (0,30) y m2 (0,50) para 

los modelos de efectos independientes resultó de los métodos de ordenación MDS (0,307 

y 0,493), RDA (0,307 y 0,501) y CCA (0,305 y 0,500) en comparación con la MRM de 

referencia (0,304 y 0,480), mientras que un pobre desempeño de los métodos DCA (0.249 

y 0.349) y NMDS (0.217 y 0.266) se obtuvieron al estimar esos parámetros. Los 

coeficientes de correlación entre los valores genómicos de cría estimados (GEBV) y los 

valores verdaderos de cría (TBV), de mayor a menor, fueron: los obtenidos con la matriz 

de referencia (ρ = 0.633), CCA (ρ = 0.631), RDA (ρ = 0.624), DCA (ρ = 0.598), MDS (ρ 

= 0.592) y NMDS (0.557). Del mismo modo, las correlaciones para el efecto predicho de 

la microbiota en el mismo orden fueron: la matriz de referencia (ρ = 0.975), CCA (ρ = 

0.966), RDA (ρ = 0.949), MDS (ρ = 0.845), DCA (ρ = 0.807) y NMDS (ρ = 0.517). 

Resultados similares, en términos de rendimiento de matrices, se obtuvieron para el 

modelo que incluyó interacción entre efectos. Un conjunto de datos reales (n = 70) 

también se analizó bajo los mismos estándares. Se observaron bajas estimas de 

heredabilidad para la eficiencia alimenticia (de 0.077 a 0.083) y la microbiabilidad (de 

0.073 a 0.103); sin embargo, se obtuvieron valores consistentes para la microbiabilidad 

con las MRM que se desempeñaron mejor en las simulaciones (de 0,073 a 0,077). 

Además, se obtuvieron altas correlaciones (ρ > 0.85) entre el efecto genético del huésped 

y los fenotipos para todos los métodos, así como altas correlaciones entre el efecto de la 

microbiota y los fenotipos para las matrices RDA (ρ = 0.91) y CCA (ρ = 0.91). 

Ambos modelos se compararon utilizando los criterios de información de desviación 

(DIC), número efectivo de parámetros (pD) y la media posterior del logaritmo de la 

verosimilitud (PostMeanLogLik), resultando en valores ligeramente inferiores para el 

modelo de efectos independientes (DIC: 183.9 a 189.3) en comparación con el modelo de 

efectos de interacción (DIC: 187.5 a 191.7), esos resultados indican que podría existir una 

relación que vincula genotipo-microbioma-fenotipo que podría usarse en la predicción de 

rasgos complejos. 

Los análisis realizados en esta tesis sugieren que los métodos de ordenación canónica de 

RDA y CCA para crear MRM son preferidos cuando la información completa de la 

microbiota se incluye en los modelos estadísticos para el análisis de rasgos complejos. 

 

Palabras clave: eficiencia alimentaria, microbiabilidad, heredabilidad, métodos de 

ordenación 
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2. ABSTRACT  

 

The influence of the microbiome on relevant complex traits for dairy cattle, such as feed 

efficiency or methane emissions has been well established. Further, recent studies have 

released evidences on the control of the genetic background of the animal over the 

microbiota composition. However, until now most analyses have focused on single 

microorganism approaches instead of the joint microbiome as a whole, including 

underlying relationships. The joint analysis of the genetic background of the host and its 

microbiota requires accounting for the distance (or dissimilarity) between communities 

of microorganisms in different hosts. Therefore, it is necessary to incorporate the whole 

microbiome into the statistical models to assess its association with complex traits. 

Microbiome relationship matrix (MRM) allow considering the microbiota as a whole. 

Several methods have been proposed to ordinate these matrices; those differ on the metric 

used to account for the distance (or dissimilarities) between microbial communities (e.g. 

Euclidean, Bray-Curtis, χ2). These distances account for alpha and beta diversity in 

different ways. Consensus on what method is the most appropriate hasn’t been reached 

yet, and might depend on data singularities and the purpose of the study.  

The aim of this study was to compare several microbiota relationship matrices, within a 

variance component estimation framework. Five ordination methods to build the MRM 

were tested: metric multidimensional scaling (MDS), detrended correspondence analysis 

(DCA), non-metric multidimensional scaling (NMDS), redundancy analysis (RDA) and 

constrained correspondence analysis (CCA). The log transformed and standardized 

relative abundances matrix described in Ross et al. (2013) was used as a benchmark 

matrix.  

Simulated (n=1000) data were used to estimate variance components including 

phenotypes, genotypes and rumen microbiota information. Data were analysed 

considering two possible models. First, the genomic effect and the microbiota effect were 

included independently. Second, an interaction effect between the genomic and 

microbiota effects was added. All models were implemented within a Bayesian 

framework using the BGLR package in R. A total of 100 replicates were generated. Real 

data were analysed using the same models.  

Similar or slightly better estimation of simulated h2 (0.30) and m2 (0.50) in the 

independent effects models resulted from ordination methods of MDS (0.307 and 0.493), 

RDA (0.307 and 0.501) and CCA (0.305 and 0.500) compared to the benchmark MRM 
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(0.304 and 0.480), while poor performance of the DCA (0.249 and 0.349) and NMDS 

(0.217 and 0.266) methods were obtained at estimating those parameters. The correlation 

coefficients between genomic estimated breeding values (GEBV) and true breeding 

values (TBV), from higher to lower, were: the obtained with the benchmark matrix (ρ = 

0.633), CCA (ρ = 0.631), RDA (ρ = 0.624), DCA (ρ = 0.598), MDS (ρ =0.592) and 

NMDS (0.557). Likewise, correlations for predicted microbiota effect in the same order 

were: the benchmark matrix (ρ = 0.975), CCA (ρ = 0.966), RDA (ρ = 0.949), MDS (ρ = 

0.845), DCA (ρ = 0.807) and NMDS (ρ = 0.517). Similar results, in terms of matrices 

performance, were obtained for the interaction effects model. 

A real data set (n=70) was also analysed under the same frameworks. Low heritability 

estimates for feed efficiency (from 0.077 to 0.083) and microbiability (from 0.073 to 

0.103) were observed; however, consistent values for the microbiability were obtained 

with the MRM that performed better in the simulations (from 0.073 to 0.077). Besides, 

high correlations (ρ > 0.85) between the genetic effect of the host and the phenotypes 

were obtained for all methods, as well as high correlations between the microbiota effect 

and the phenotypes for the RDA (ρ = 0.91) and CCA (ρ = 0.91) matrices.  

Both models were compared using the deviance information criteria (DIC), the effective 

number of parameters (pD), and the posterior mean of the log likelihood 

(PostMeanLogLik), resulting in slightly lower values for the independent effects model 

(DIC: 183.9 to 189.3) than the interaction effects model (DIC: 187.5 to 191.7), those 

results indicate that it might be a relationship linking genotype-microbiome-phenotype 

which could be used in prediction of complex traits.  

 

The analyses performed in this thesis suggest that canonical ordination methods of RDA 

and CCA to create MRM are preferred when whole microbiota information is included 

in the statistical models to analyse complex traits.  

 

Keywords: feed efficiency, microbiability, heritability, ordination methods 
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3. INTRODUCTION 

  

3.1. Background 

 

New discoveries in “omics” technologies have turned on the attention of the 

scientific community. Metagenomics has recently become a field of interest to worldwide 

researchers in human, animal and other biological systems. Whole genome shotgun 

metagenomics (WGS) has been used to analyse microbiome at a functional level. 

However, WGS approach is currently more expensive than amplicon-based sequencing 

methods like 16S ribosomal RNA (16S rRNA) analysis, which is commonly used to 

estimate relative abundance of microorganism taxa, and allows analysing microbiome at 

a compositional level (Malmuthuge and Guan, 2016). Both molecular approaches (WGS 

and amplicon-based sequencing methods) have increased the boundaries of microbial 

identification, previously limited to those, proportionally, few microbes identifiable by 

traditional laboratory cultures methods. 

Microbiome effect on the estimation of host phenotypic complex traits has also 

been reported (e.g. Beaumont et al., 2016) leading to hypothesises that microbiome is a 

source of information to take into account when predicting difficult to measure traits. 

There is evidence supporting that gut microbiome, is partially controlled by host 

genetic variation. Several species such as humans (Zoetendal et al., 2001; Blekhman et 

al., 2015), mice (Benson et al., 2010; McKnite et al., 2012), poultry (Zhao et al., 2013), 

pigs (Camarinha-Silva et al., 2017) and cattle (Roehe et al., 2016; Gonzalez-Recio et al., 

2017) are among the studied  superorganisms that consistently confirm the effect of host 

genetic variation controlling microbiome composition. 

In livestock genetics, prediction of phenotypic complex traits of the host using its 

microbiome is a promising field. For instance, the microbiability or proportion of the 

phenotypic variance attributed to the microbiome variance (Difford et al. 2016) has 

previously shown higher values than narrow-sense heritability for feed efficiency and 

feed intake in pigs (Camarinha-Silva et al., 2017). 

Microbiome is itself a holobiont organism affecting the complex trait (Benson, 

2016), hence appropriate statistical fitted methods should be used to improve accuracy on 

the estimation of variance components, when involved on prediction of host phenotypic 

complex traits.  
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Two economic and environmentally relevant complex traits in cattle, that have 

previously been related to microbiome, are feed efficiency (Roehe et al., 2016) and 

methane emissions (Roehe et al., 2016; Tapio et al., 2017). Both traits are related to 

digestion efficiency; feed efficiency strongly determines the profitability of the 

productive system, whereas methane emissions also cause detrimental effects over 

environment by releasing a greenhouse gas 28 folds more harmful than carbon dioxide, 

in the global warming context.   

A deeply review on this subjects will be addressed in this study, in order to 

understand the state of the art focusing on the development and evaluation of microbiome 

relationship matrices, innovative in prediction of complex traits. 

 

3.2. Definitions 

 

3.2.1. Microbiota, metagenome and microbiome 

 

There are different definitions for the term “microbiome”. This term was first 

coined, in humans, by Joshua Lederberg in 2001(Lederberg and McCray, 2001) to signify 

the “ecological community of commensal, symbiotic, and pathogenic microorganisms 

that literally share our body space”. However, this meaning is often used interchangeably 

with “microbiota”, which is confusing (Ursell et al., 2013).  

According to the latter authors, there are differences between microbiota (the 

microbial taxa associated with humans) and microbiome (the catalog of these microbes 

and their genes), as supported by a more inclusive definition of microbiome (and 

microbiota) in Springer Nature (scientific journal) online portal, where is mentioned as: 

“all of the genetic material within a microbiota (the entire collection of microorganisms 

in a specific niche, such as the human gut). This can also be referred to as the metagenome 

of the microbiota.” (Springer Nature, 2017). 

The last definition of microbiome (and microbiota) leads to define metagenome, 

which would be the product of metagenomics analysis. Metagenomics is defined as the 

direct genetic analysis of genomes contained within an environmental sample (Thomas 

et al., 2012), the analysis of DNA from microbial communities in environmental samples 

without prior need for cultivating clonal cultures (Oulas et al., 2015), and has also been 

defined as the study of overall genetic material from a microbiome (Malmuthuge and 

Guan, 2016). Based on these definitions, microbiome and metagenome could be used as 
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synonyms, although other authors define microbiome as the microbiota, their genes and 

its surrounding environmental conditions while metagenome is defined strictly as the 

collection of genomes and genes from the members of a microbiota (Marchesi and Ravel, 

2015). 

In livestock, the definition of microbiome is applied like in Springer Nature’s  

definition, but focused on animal hosts, however different adjustments are done to fit 

within specific areas of study, for instance, in gut microbiome studies, authors usually 

define gut microbiome as the total genome of microbiota present in the gut (Malmuthuge 

and Guan, 2016). For our interests, the definition of Marchesi and Ravel, (2015) will be 

used in this document. 

 

3.2.2. Operational taxonomic units (OTUs) 

 

Another relevant definition in microbiome research is operational taxonomic units 

(OTUs); in the context of microbiome studies, OTUs are obtained by comparing shared 

similarities of sequences from molecular analysis between each other (de novo sequences) 

or compared to previously established and freely available data frames. Some degree of 

sequence divergence is typically allowed (95%, 97%, or 99%) and the resulting cluster of 

nearly-identical tags (genomes are assumed as identical) is referred to as an Operational 

Taxonomic Unit or sometimes phylotype (Morgan and Huttenhower, 2012). 

The degree of similarity between sequences is calculated as twice the number of 

base pairs that match, divided by the total number of bases in both sequences being 

compared. For instance, if 48 base pairs are equal when comparing 50 base pairs, the 

similarity between those sequences is 96% ((2*48)/100), sequences are usually compared 

between de novo sequences (Figure 1), or against a catalogue of sequences in widely 

recognised data frames, leading to taxonomic classification.  

According to (Almeida et al., 2016), information of an extensive 16S rRNA 

catalogue compiling over two million distinct entries are available through three main 

databases RDP (Cole et al., 2009), Silva (Quast et al., 2013) and Greengenes (DeSantis 

et al., 2006). These OTUs are used to classify sequences into its corresponding taxonomic 

groups, previously established in the data bases. 
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Figure 1.Ten de novo sequences clustered at 96% similarity, colours on the branches 

denote OTUs  (seven OTUs total, three with two sequence representatives and 

four composed of a single sequence).  

Taken from (Gibbons, 2015). 

 

3.3. Main molecular technics of analysis in microbiome studies  

 

3.3.1. 16S rRNA amplicon 

New standards for identifying microbial isolates began to be developed in the 

80’s, prior taxonomic classification were performed by comparison of morphologic and 

phenotypic description of type strains. This new method showed that phylogenetic 

relationships of bacteria could be determined by comparison of a conserved region of the 

genetic code. The genes that code for 16S rRNA (in the small subunit) were among the 

best candidates because of its conservativeness in the bacterial genome (derivated from 

the importance of those genes in the cell function) which allow them to be used for 

taxonomic classification (Clarridge, 2004). The sequence analysis of 16S rRNA of 

distinct phylogenetic groups revealed the presence of one or more short specific 

sequences denominated “signature oligonucleotide” (Woese et al., 1985) present in all (or 

most) members of a determined phylogenetic group and never (or unfrequently) present 

in other groups, nor even in the nearest ones. These particularities of the 16S rRNA 
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analysis allowed to identify each bacteria within a given group (Rodicio and Mendoza, 

2004).  

 

Figure 2. Secondary-structure model of the 16S rRNA (double lines indicate variable or 

hypervariable; black lines indicate highly conserved; V1 to V9 indicate major 

variable regions, numbers 6 to 48 indicate loops).  

Taken from (Tortoli, 2003). 

 

The 16S rRNA (Figure 2) genes are essential in prokaryotes and are in at least one 

copy in a genome (Wang and Qian, 2009), its extended presence is one of the main 

reasons why 16S rRNA gene sequence has been the most used DNA region for taxonomic 

purposes (Janda and Abbott, 2007). There exist up to nine known hypervariable regions 

(Figure 3) in the 16S rRNA gene (Chakravorty et al., 2007), which allow a comprehensive 

classification of the microbiome composition and thus of the relative abundance of all 

taxa.  
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Figure 3. Hypervariable regions (V1 to V9) within the 16S rRNA gene in Pseudomonas. 

Taken from (Bodilis et al., 2012). 

 

Microbiota identification using 16S rRNA methodology is often restricted to 

bacteria and archaea (Janda and Abbott, 2007), and provided relatively high accuracy at 

genus level identification, but it provides common misclassification at species level 

(Poretsky et al., 2014). 

Although 16S rRNA amplicon is not the gold standard to assess functional 

capabilities of the microbiome, one way to infer functional capabilities of a microbiome 

from amplicons involves the correlation between phylogenetic trees and clusters of genes 

shared between taxa (Langille et al., 2013). A comprehensive explanation of this 

association is described in Jovel et al. (2016). A software (PICRUSt) was developed by 

these authors to construct a phylogenetic tree from a gene database (e.g. Greengenes), 

then genes are assigned to nodes in the previously constructed tree if sequenced genomes 

are available, or predicted by algorithms if not available. After that, sequences from OTUs 

which are associated with the gene database identifiers are normalized by 16S rRNA gene 

copy number and mapped to the associated gene database identified in the reference tree. 

The final product is an annotated table of gene counts per sample that can be linked to the 

Kyoto encyclopedia of genes and genomes (KEGG) orthology (KO) numbers or other 

orthologous protein catalog.  

 The analysis of the 16S rRNA amplicon gene has been the most used microbiome 

analysis by the Human Microbiome Project (HMP) to compile most of the data (Ranjan 

et al., 2016). 

 The HMP is a consortium established in 2008 and funded by the common fund of the 

National Institutes of Health (United States of America). Its goals are: “(1) to take 
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advantage of new, high-throughput technologies to characterize the human microbiome 

more fully by studying samples from multiple body sites from each of at least 250 

‘‘normal’’ volunteers; (2) to determine whether there are associations between changes 

in the microbiome and health/disease by studying several different medical conditions; 

and (3) to provide both a standardized data resource and new technological approaches to 

enable such studies to be undertaken broadly in the scientific community.” (The NIH 

HMP Working Group, 2009).  

 

3.3.2. Whole genome shotgun metagenomics 

Whole genome shotgun metagenomics (WGS) allows assessing both taxonomic 

composition and diversity of microbial communities without the limitation of target and 

amplify a specific gene, giving robust estimates (Poretsky et al., 2014) and accurately 

defining taxa at the species level (Ranjan et al., 2016), if the genome has previously been 

entered in the databases. Moreover WGS provides a quickly microbiome analysis without 

the cultivation bias or variation related to PCR amplification anomalies or primer 

selection (Tapio et al., 2017). There is evidence supporting that WGS has multiple 

advantages like increased detection of diversity, increased prediction of genes and 

improved accuracy of species detection, compared to 16S amplicon method (Ranjan et 

al., 2016). The WGS analysis is also a more accurate method to elucidate functional 

capabilities of the microbial community than 16S rRNA technique, however WGS is a 

less cost-effective method than 16S rRNA sequencing for taxonomic purposes, therefore, 

several software have been developed to predict functional features of the microbiome 

from 16S rRNA outputs (Aßhauer et al., 2015).  
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A schematic workflow of WGS steps and tools are shown in Figure 4. 

 

Figure 4. Workflow diagram of basic metagenomics steps and tools currently in practice 

for Whole Genome Shotgun Metagenomics (WGS). 

     Taken from: https://www.cd-genomics.com/Metagenomic-Shotgun-Sequencing.  

 

 

When performing WGS, information about functionality of the community can be 

obtained from the complete sequences of protein coding genes in the sequenced genomes. 

An assembly of shorter reads into genomic contigs and orientation of these into scaffolds 

is often performed to provide a more compact and concise view of the sequenced 

community under investigation (Oulas et al., 2015). 

Direct assessment of the functional attributes of the microbiome can be done using 

WGS approach (Knight et al., 2012). Regarding patterns of KO abundance, the 

concordance between 16S rRNA and WGS depends on the pathway under consideration, 

a clear example of this phenomenon is shown in Jovel et al. (2016) who compared two 

KEGG reference pathways (at the KO level), glycolysis and fatty acid biosynthesis using 

both techniques, and obtained high (r = 0.88) and medium (r = 0.52) associations values, 

for correlations between 16S rRNA and WGS methods, respectively (Figure 5). However, 

it is known that a more reliable assessment of functional profiling of the microbiome is 

obtained with WGS, compared to 16S rRNA (Franzosa et al., 2015).  

 

https://www.cd-genomics.com/Metagenomic-Shotgun-Sequencing
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Figure 5. Two KEGG pathways at the gene (KEGG orthology, KO, groups) level, 

comparing 16S rRNA (16S-V4) vs WGS (Shotgun). On top of each heatmap 

pair, the Pearson correlation coefficient for relative abundance of KOs 

derived with each method.  

Taken from Jovel et al. (2016). 

 

3.4. Microbiome effect on host phenotypic complex traits  

 

Research in human microbiome has revealed associations between imbalances in 

the gut microbiome and a variety of host phenotypes (Jovel et al., 2016), including obesity 

(Turnbaugh and Gordon, 2009; Turnbaugh et al., 2009), inflammatory bowel disease 

(Norman et al., 2015; Imhann et al., 2016), type II diabetes (Hartstra et al., 2015), fatty 

liver disease (Arslan, 2014), among other disorders. 

Beaumont et al. (2016) found that heritable components of the human fecal 

microbiome were significantly associated with visceral fat, which is a cardio-metabolic 

disease risk factor. They state that their findings, association of Oscillospira and Blautia 

to visceral fat mass (VFM), support the hypothesis that microbiome plays a role as a 
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biomarker of cardio-metabolic disease risk. They also mentioned that the microbiome 

may be one potential source contributing to missing heritability in obesity, although this 

has not been proved yet. Hall et al. (2017) also mentioned Blautia as an over-represented 

microbial specie in human obesity (Figure 6). 

 

Figure 6. Heritable species partially responsible for microbiome composition in obesity. 

Relative abundance of Christensenella minuta, Akkermansia muciniphila and 

Methanobrevibacter smithii, are consistently under-represented in obesity, 

and Blautia, is over-represented in obesity.  

Taken from (Hall et al., 2017). 

 

(Bonder et al., 2016) identified several associations of genetic variants and the 

human gut microbiome composition and their function were identified. For instance, they 

observed association between the abundance of Lactococcus bacteria and a single 

nucleotide polymorphism (SNP) associated with body fat distribution affecting the 

expression of the nearby ZNRF3 gene, which is a gene that acts as a tumour suppressor 

in gastric cancer. Association of the microbiome with several GWAS SNPs suggests that 

microbiome could mediate some link between host genetics and immunological and 

metabolic phenotypes. 
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In dairy cattle, microbiome has also been associated to several phenotypic traits. 

Lima et al. (2015) used multivariable models to identify associations between bacterial 

taxa and milk production and composition. They used microbiome information to develop 

a metagenome-based prediction, and obtained a high association with milk yield and milk 

composition. Li and Guan (2017) analysed rumen microbiome to associate relative 

abundance of specific taxon to feed efficiency in beef cattle. They argue that their results 

obtained by comparative analysis of extreme phenotypes for feed efficiency (efficient, 

n=10; inefficient, n=10) showed that “three bacterial families 

(Lachnospiraceae, Lactobacillaceae, and Veillonellaceae) tended to be more abundant in 

inefficient animals (P < 0.10), and one archaeal taxon (Methanomassiliicoccales) tended 

to be more abundant in high-feed-efficiency (efficient) cattle (P < 0.10)”. However due 

to the low number of animals and the high P value they used, those results are to be 

supported by studies with larger sample size. A meta-analysis by Guyader et al. (2014) 

from 28 different experiments in ruminants, studying the relationship between methane 

emissions and protozoal numbers, showed a strong linear significant relationship (R2 = 

0.90). In ruminants these findings also provide evidence for a potential interaction 

between microbiome and host phenotypic traits. 

 

3.5. Host genetic variation effect on gut microbiome 

 

In the last years, there is increasing evidences that support the hypothesis of host 

genetic effect over gut microbiome. For instances, in humans, Zoetendal et al. (2001) 

showed that the microbiome of monozygotic twins were more similar than those of 

marital couples or unrelated individuals, which suggest that host genetic variation 

partially control gut microbiome. Likewise, a study comparing concordance rate between 

monozygotic (MZ) and dizygotic (DZ) twins, for Methanobrevibacter, showed higher 

concordance in MZ twins (Hansen et al., 2011). Another twin study also found grater 

similarities for MZ compared to DZ in Lachnospiraceae and Ruminococcaceae 

(Firmicutes) bacterial families, not so for the Bacteroidaceae bacterial family (Goodrich 

et al., 2014). They showed heritability estimates for Blautia and Methanobacteriaceae of 

0.34 and 0.22 respectively, which also indicates a heritable component of the microbial 

composition. In this study, the abundance of specific taxa were more highly correlated 

within MZ compared to DZ twins, corroborating that host genetics influence the human 

gut microbiome composition. A reanalysis of two previously published data sets of twins 
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population from Missouri, USA (Turnbaugh et al., 2009; Yatsunenko et al., 2012), also 

showed significantly greater mean twin-pair intraclass correlation coefficients of OTU 

abundances for MZ compared to DZ. 

Another study estimating heritability in the human fecal microbiome using twins 

can be found in Beaumont et al. (2016). These authors showed differences in heritability 

(Wilcoxon rank test, P < 2.2 x 10-16) between specific phenotypic-associated OTUs and 

overall OTUs:  heritability estimates from 97 adiposity-associated OTUs was 0.16, while 

overall average heritability over all OTUs was 0.07. Furthermore, the average unique 

environmental component of the 97 adiposity-associated OTUs was 0.79, while overall 

average for all OTUs was 0.93 also differing by Wilcoxon rank test (P < 2.2 x 10-16), 

suggesting that host genetics impacts fecal microbiome. Based on these results, these 

authors inferred that host genetics affects the variation of microbes associated to obesity.  

There is also evidence of host genetic variation affecting gut microbiome in cattle. 

For instance, Weimer et al. (2010) found that bacterial community composition of the 

rumen differed between individual cows, under the same diet, using correspondence 

analysis and automated ribosomal intergenic spacer analysis. Another study using the 

same statistical analysis found differences between dairy cows for the bacterial 

community composition (Welkie et al., 2010). King et al. (2011) compared microbiome 

from Holstein and Jersey cows located within the same herd and managed under the same 

diet and environmental conditions. They found twenty OTUs common in both breeds 

while 23 and 18 OTUs were found only in Holstein and Jersey, respectively. These 

authors concluded that the differences they observed may be due to differences in host 

breed genetics. Recently, another study assessing host genetic influence on rumen 

microbial methane production and feed conversion efficiency, used sire progeny groups 

and found consistent ranking of the sire progeny groups (overall and within diet) based 

on methane emissions or relative archaeal abundance, proposing a genetic control of the 

host for these traits, and suggesting that rumen microbial gene abundance could be used 

as a predictor for complex traits (Roehe et al., 2016). 

 

3.6. Statistical approaches 

3.6.1. Common statistical analysis on host-microbiome studies 

 Simple statistical tools for the analysis of the relationship between complex traits 

and the host microbiome have been used frequently. For instance, Pearson correlation 

analysis were implemented in a study associating productive and physiological 
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parameters in dairy cows and its ruminal microbiome (Jami et al., 2014), authors found 

positive correlations between the ratio of Firmicutes-to-Bacteroidetes and daily milk fat 

yield (𝜌 = 0.72, P = 2x10-3), and between Prevotella genus and milk fat yield (𝜌 = -0.69, 

P = 5x10-3), among other Pearson correlation results. The correlation coefficient (𝜌) is 

used to measure the strength of the linear relationship between two variables and is used 

when it is not clear which one is the independent variable, its values range between -1 

and 1. For ρ > 0, the two variables have a positive correlation, whereas the two variables 

have a negative correlation for ρ < 0. The value ρ = 1 or ρ = –1 indicates an ideal or perfect 

linear relationship, and ρ = 0 means that there is no linear association (Kaps and 

Lamberson, 2004). The coefficient of correlation (ρ) is defined in equation 1 as:  

𝝆 =  
𝝈𝒙𝒚

√𝝈𝒙
𝟐𝝈𝒚

𝟐

 
[1] 

where: 

𝜎𝑥𝑦 = covariance between x and y  

𝜎𝑥
2 = variance of x 

𝜎𝑦
2 = variance of y 

Variables x and y are assumed to be random normal variables jointly distributed 

with a bivariate normal distribution  (Kaps and Lamberson, 2004).  

 Another common statistical approach, which has also been used to associate 

microbiome to complex traits, is linear regression. Roehe et al. (2016) regressed methane 

emission on the relative abundance of different microbial genes of cows under the same 

diet and found that the slope of the regression were similar among diets. Linear regression 

comprises procedures designed to analyse statistical associations among variables 

defining one variable as dependent while others are defined as independent variables. 

Simple linear regression is defined when changes of the dependent variable are described 

by linear relationship of only one independent variable, while multiple linear regression 

procedures are used when changes in two or more independent variables explain the 

change of the dependent variable (Kaps and Lamberson, 2004). Multiple linear regression 

is another frequent approach to analyse microbiome association with complex traits. 

A t-test can be used when two small samples are compared and the number of 

observations in both samples is the same. This statistic test is described in equation 2: 
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𝒕 =
(�̅�𝟏 − �̅�𝟐) − 𝟎

√𝒔𝟏
𝟐 + 𝒔𝟐

𝟐

𝒏

 
[2] 

For instance, the study by (Mao et al., 2015) used an independent t-test to compare 

the sample type (mucosal tissue vs. digesta) effects on bacterial prevalence and found that 

the abundance of certain OTU in the ruminal digesta were significantly higher than in the 

rumen epithelium. 

Some authors emphasise that appropriate correction for multiple hypothesis 

testing (e.g. Bonferroni correction for t-test based analyses) are to be applied in 

metagenomics studies. They advise so because the number of species or gene functions 

are often more than the number of samples taken (Thomas et al., 2012). Bonferroni 

correction is frequently used in multiple testing to compensate the likelihood of commit 

type I error by testing each individual hypothesis at an alpha level of α/n, where α is the 

desired overall alpha level and n is the number of hypothesis. For instance consider a case 

where you have chosen an overall alfa value of 0.05 and 30 hypothesis test are to be 

performed, then the significance cut-off value for each hypothesis would be 0.05/30 = 

0.0017 (Glickman et al., 2014). 

Bonferroni correction is suitable when not many hypothesis are involved (e.g. 

fewer than 50) and when variables are independent. One limitations of this correction is 

that is overly conservative when much more hypothesis are to be tested. Other correction 

methods like false discovery rate are more appropriate when there are dependencies 

among variables, and more hypothesis are to be tested (Khatri and Draghici, 2005). 

According to (Xia and Sun, 2017), classical statistical test are available for 

hypothesis testing in microbial taxa, which can be conducted by comparing alpha 

diversity (within samples) and beta diversity (between samples) indices. Those authors 

mentioned that two-sample t-test and its nonparametric counterpart Wilcoxon rank-sum 

test (also called Mann-Whitney U) were widely used in microbiome studies to comparing 

continuous variables between two groups. They also mentioned that when comparing 

more than two groups, the one-way ANOVA or its non-parametric equivalent, the 

Kruskal-Wallis test are appropriate, depending on fulfil or not of normality assumption, 

respectively.  

Zero inflated models (e.g. Zero-Inflated Poisson (ZIP), Zero-Inflated Negative 

Binomial (ZINB), hurdle model or Zero-Inflated Gaussian distribution mixture model 
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(ZIG) and negative binomial models are often used in microbiome studies because of 

presence of many zeros and overdispersed data, respectively (Xia and Sun, 2017).  

Regarding multivariate statistical tools in microbiome studies, Xia and Sun (2017) 

mentioned multivariate analysis of variance with permutation (PERMANOVA), analysis 

of group similarities (ANOSIM), multi-response permutation procedures (MRPP), and 

Mantel’s test (MANTEL), as  tests of among-group differences for analysing microbiome 

data. Also mention Dirichlet multinomial model (based on difference between mean 

comparison and variance comparison/dispersion) and UniFrac distance metric family 

(weighted or unweighted by relative abundance of taxa) which is based in phylogenetic 

distances, as recently developed statistical methods more suitable for microbiome studies. 

Those authors also mentioned ANOVA-like differential express (ALDEx and ALDEx2) 

and analysis of composition of microbiomes (ANCOM) for compositional analysis of 

microbiome data, and remark that currently, microbiome researchers are shifting their 

emphasis from correlation to causality, as a better approach of host-microbiome studies.  

 

 

3.7. Opportunities  

Regarding greenhouse gas production from agriculture, some authors (Ross et al., 

2013) argue that it is possible that metagenomic predictions could aid in its reduction, if 

increased accuracy in the prediction of enteric methane production level is achieved. 

Microbiome-host interactions and prediction of phenotypic complex traits of the 

host using its microbiome and genetic parameters are among the topics that remain under 

study, but still to be deciphered. Genetic selection using estimation of additive breeding 

values are potentially the most sustainable way of reducing enteric methane emission 

from ruminant (Pickering et al., 2015)  

Complex traits like feed efficiency and methane emissions can be included in 

genetic evaluations of ruminants in order to obtain more cost effective animals while 

diminish environmental impact. Because of difficulty to measure methane emissions, 

some correlated traits are to be evaluated. 

Residual feed intake (RFI) is an associated trait to methane emissions, and is 

estimated as the difference between net energy intake and calculated net energy 

requirements for maintenance, this latter takes into accounts body weight and fat and 

protein corrected milk yield; both methane emissions and RFI are heritable traits with 

narrow sense heritabilities estimated of 0.35 and 0.40, respectively  (de Haas et al., 2011). 
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Positive genetic correlations (0.44) between RFI and methane output has been reported 

in beef cattle (Nkrumah et al., 2006) and microbiome has been also associated to methane 

emissions and RFI (Roehe et al., 2016) 

If these results are consistent among livestock populations and the microbiome is 

persistently different between animals and also heritable in some extent, it could represent 

an opportunity to use genetic selection of the livestock to select animals with desirable 

microbiomes for these traits (Tapio et al., 2017). Consequently, application of statistical 

methods that might elucidate causative relationships between genotype, microbiome and 

these relevant complex traits are to be tested as a challenging and ambitious gold that 

might have a pertinent impact in livestock and environmental issues. 

This study aims to develop and test some statistical approaches to evaluate feed 

efficiency in dairy cattle accounting for the host genotype and the microbiome 

simultaneously. 
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4. OBJECTIVES 

 

4.1. Main Objective 

 

 The objective of this research was to develop and test some statistical approaches 

to evaluate feed efficiency in dairy cattle accounting for the host genotype and the 

microbiome simultaneously. 

 

 

4.2. Specific objectives  

 

1. Compare ordination methods to construct microbiome distance (or dissimilarity) 

matrices through simulation.  

2. Estimate the proportion of phenotypic variance for feed efficiency explained by 

microbiome, considering the interaction between the microbiome and the host 

genetics. 
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5. MATERIALS AND METHODS  

 

This study was developed in the Department of Animal Breeding and Genetics of 

the National Agricultural and Food Research and Technology Institute (INIA), Madrid, 

Spain.  

 

5.1. Data 

Variance components, heritability and microbiability, regarding feed efficiency in 

dairy cows, was estimated using two data subsets: either simulated or real data.  

 

5.1.1. Real data 

All cows belonged to “BLANCA de los Pirineos” located in Lleida, Spain. Three 

data frames containing phenotypic performance data, genotypic information and relative 

abundances of OTUs from 70 Holstein cows were used. The phenotypic data set enclosed 

information for each cow regarding: ID, sire, born date, calving date, days in milk, 

parturition, pen, dry matter intake, residual feed intake, feed efficiency, milk yield, fat 

yield, protein yield and body weight. Microbiota information was obtained from 

independent samples of the rumen content of 70 Holstein cows, previously collected via 

intra-oesophagic hose extraction, and sequenced using Illumina Miseq for the 

hypervariable region V3-V4 of the16S rRNA amplicon.  

The final data frame of relative abundances of OTUs contained information about the 92 

OTUs in the core (RA > 0.1%) rumen microbiome in rumen content for each cow (host).  

 

5.1.2. Simulated data  

Simulations were generated using the observed data structure in the real data set. 

A data frame of 1000 genotyped Holstein animals with allelic variants for 9244 SNPs was 

used. Additive genetic effects were determined by 1000 QTL that were simulated as 

randomly distributed along the genome. QTL effects were generated based on a normal 

distribution (N ~ (0, 1)). True breeding values (u) were calculated by summing all QTL 

effects and were subsequently scaled to a realized genetic variance of 𝜎𝑢
2. 

Simulation of the OTU effects started with a symmetric co(variance) matrix 

obtained from the real relative abundance of the 92 OTUs from the rumen content samples 

of the 70 animals. The correlation elements lower than 0.20 were set to 0. The resulting 
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symmetric matrix was then converted to the nearest positive-definite matrix to ensure it 

was a valid covariance matrix. 

Then, 1000 vectors of 92 OTUs were generated using the variance covariance 

matrix described above, using Cholesky factorization: First, relative abundance of OTUs 

were sampled from a normal distribution (N~(0.5, 0.1)). This matrix was then multiplied 

by the cross product of the Cholezky factorized matrix of the positive-definite matrix of 

(co)variances calculated before. This creates a final matrix of 1000 simulated microbiotas 

with 92 OTUs each. Any OTU resulting in negative values for the RA was set to zero. 

Once the relative abundance of the simulated OTUs was generated, the 

microbiome effect (m) for each animal was simulated as follows: 50 OTUs were 

randomly selected out of the 92 OTUs. Then, an effect (𝜷𝒋) was sampled from a normal 

distribution (N ~ (0, 1)) and assigned to each of the selected 50 OTUs. The 𝑚𝑖 was then 

simulated as follow: 

 

𝒎𝒊 = ∑ 𝜷𝒋 × 𝑶𝑻𝑼𝒊𝒋
𝒋

 
[3] 

 Where 𝜷𝒋 is the effect of  𝑂𝑇𝑈𝑗 sampled from a N ~ (0, 1) and 𝑶𝑻𝑼𝒊𝒋 is the relative 

abundance of OTU j in animal i. The resulting {mi} were scaled to have a variance of 𝜎𝑚
2 . 

Phenotypes were finally simulated assigning a residual variance to obtain a 

heritability and a microbiability of 0.30 and 0.50, respectively. Phenotypes were 

respectively simulated for an independent effects model and for an interaction effect 

model as: 

 

𝒚𝒊 =  𝝁 + 𝒖𝒊 + 𝒎𝒊 + 𝒆𝒊 [4] 

And  

𝒚𝒊 =  𝝁 + 𝒖𝒊 + 𝒎𝒊 + 𝒖𝒊 × 𝒎𝒊 + 𝒆𝒊 [5] 

 

Where 𝝁 is the population mean, 𝒖𝒊 is the genomic effect, 𝒎𝒊 is the microbiome 

effect, 𝒖 × 𝒎𝒊 is a genomic-microbiome interaction effect and 𝒆𝒊 is the residual error. 
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5.2. Genomic relationship matrix 

 A genomic relationship matrix (GRM), between individuals j and k was 

constructed following method 2 of VanRaden (2008) and Yang et al. (2010) with the 

following formula: 

 

𝑮𝑹𝑴𝒋𝒌 =  
𝟏

𝑵
∑ 𝑮𝑹𝑴𝒊𝒋𝒌

𝑳

𝒊=𝟏

=
𝟏

𝑵
∑

(𝒙𝒊𝒋 − 𝟐𝒑𝒊)(𝒙𝒊𝒌 − 𝟐𝒑𝒊)

𝟐𝒑𝒊(𝟏 − 𝒑𝒊)

𝑳

𝒊=𝟏

 [6] 

 

Where 𝒙𝒊𝒋 refers to the AA, Aa and aa SNP genotypes, coded as 2, 1, and 0, 

respectively, of individual j or k at locus i (i = 1, …, L), with L being the number of SNP  

(9244) and 𝑝𝑖 being the allele frequency in the whole genotyped population. This matrix 

depicted genetic relationships within individuals (diagonal elements) and between 

individuals (out-diagonal elements). The Gmatrix.f90 code (Legarra, A. personal 

communication) in Fortran® was used for its construction, resulting in a 70 x 70 square 

matrix for real data and a 1000 x 1000 square matrix for the simulated set, where elements 

in the diagonal were close to the value one (describing within relationship) whereas 

elements out of the diagonal variated according to genomic relationship between 

individuals. 

 

5.3. Microbiome relationship matrix (MRM) 

As the genomic relationship matrix is constructed, to establish the relationship 

between genotypes of different individuals, likewise a microbiome relationship matrix 

(MRM) can be built to associate microbiome of a given community of microorganisms 

between hosts. There are many methods to build a MRM matrix, for instance, Ross et al. 

(2013) mentioned that “the relationship between samples can be described by a matrix G 

= XX /m”, where “metagenomic profiles in a group of samples are defined as an n x m 

matrix X with elements {xij}, being the log tansformed and standarised count  for sample 

i for contig j, with n samples and m contigs”. There are other ways to ordinate a MRM 

matrix, understanding ordination as the arrangement of units in some order (Goodall, 

1954), to represent objects as points along one or several axes of reference (Legendre and 

Legendre, 1998). There are packages that allow ordination of matrices, for instances, the 

Phyloseq Package can be used to perform ordination in R software.  
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Several methods of ordination in R (MDS, DCA, NMDS, RDA and CCA) were 

compared to previously published method of Ross et al., (2013) in order to disentangle 

the most appropriate MRM to be used in further statistical analysis according to our 

interests.  

 

5.3.1. Metric Multidimensional Scaling (MDS)  

The MDS, also known as Principal Coordinate Analysis (PCoA), uses a linear 

(Euclidean) mapping of the distance or dissimilarities between objects onto the ordination 

space (i.e. projection in a Cartesian space), and the algorithm attempts to explain most of 

the variance in the original data set. This method uses any dissimilarity measure and thus 

specific association coefficients that better deal with the problem of the presence of many 

double zeros in data sets. This should be consistent to analyse data of many OTUs only 

present in few samples leading to value of cero in many samples. MDS does not provide 

a direct link between the components and the original variables making more difficult the 

interpretation of variable contribution (Ramette, 2007). 

MDS components are complex functions of the original variables depending on 

the selected dissimilarity measure, and not on linear combinations of the original 

variables as in PCA. The selection of the distance measure is thus very important, and 

subsequent transformation of the data to correct for negative eigenvalues is sometimes 

necessary. Although there is no direct, linear relationship between the components and 

the original variables, it is still possible to correlate object scores on the main axis (or 

axes) with the original variables to assess their contribution to the ordination (Ramette, 

2007). 

MDS takes a symmetric matrix of distances (D) of any type among replicates and 

produces corresponding Cartesian (Euclidean) coordinates for each replicate which, in 

the full-dimensional principal coordinate space, preserve the original distances calculated 

among replicates (Gower, 1966). 

 The procedure of MDS is summarize from Legendre and Anderson (1998) as 

follow: 

1) Transform the symmetric matrix of distances D of elements {dij}, i = 1, . . . , N 

and h = 1, . . . , N, where N = total number of replicates, into a new matrix A 

of elements {aih} by means of the following equation:  
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𝒂𝒊𝒉 = −
𝟏

𝟐
 𝒅𝒊𝒉

𝟐  [7] 

 

2) Center the values in matrix A by its rows and columns, transforming it into 

matrix ∆1of elements {ẟih} by means of the following equation: 

 

𝜹𝒊𝒉 = 𝒂𝒊𝒉 − 𝒂�̅� − 𝒂𝒉̅̅̅̅ + �̅� [8] 

 

where �̅�𝑖 = average of row i, �̅�ℎ = average of column h and �̅� = average of 

entire matrix A.  

3) Compute the eigenvalues and eigenvectors of matrix ∆1.  

4) To obtain principal coordinate axes, scale the eigenvectors to the square root 

of their respective eigenvalues. For the special case of the Euclidean distance, 

if there are fewer variables (species) than there are replicates in Y, then (1) the 

maximum number of principal coordinates is the number of variables in the 

original matrix, and (2) the principal coordinates are the same as principal 

components. For metric distance measures (such as Euclidean or chi-square 

distances), axes determined using MDS will preserve all of the original 

distances, D. 

 

5.3.2. Detrended Correspondence Analysis (DCA) 

The correspondence analysis was proposed by Hirschfeld and Wishart (1935) in 

a paper entitled  “Connection between correlation and contingency”, as a multivariate 

statistical technic to analyse categorical data similarly as continuous variables are 

analysed in Principal Component Analysis. The correspondence analysis method is 

widely used for analysing cross tabular data in the form of numerical frequencies, 

resulting in a plot which allows interpretation and understanding of the data (Greenacre, 

2017).  

Correspondence analysis, also called reciprocal averaging, can be calculated 

beginning with a matrix of n rows of samples and p columns of taxa, following a 

reciprocal averaging approach as follow: 
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𝒚𝒋 =  
∑ 𝒂𝒊𝒋𝒙𝒊

𝒏
𝒊=𝟏

𝒂+𝒋
 [9] 

 

Where 𝑦𝑗  is the score for taxon j, 𝑎𝑖𝑗  the abundance of a taxon j in sample I, 𝑥𝑖  

is an arbitrarily chosen score for each sample and 𝑎+𝑗 is the total abundance for the taxon 

across all samples. Then the taxon scores are used to calculate a new set of sample scores 

using the same procedure as follow: 

𝒙𝒊 =  
∑ 𝒂𝒊𝒋𝒚𝒋

𝒑
𝒋=𝟏

𝒂𝒊+
 [10] 

 

Sample scores are centered and standardized such that their mean is zero and their 

variance is one 

∑ 𝒂𝒊 + 𝒙𝒊

𝒏

𝒊=𝟏

=  𝟎 [11] 

and 

∑ 𝒂𝒊 + 𝒙𝒊
𝟐

𝒏

𝒊=𝟏

=  𝟏 [12] 

 

This procedure of alternately calculating sample and taxon scores is repeated until 

the scores stabilize, producing the correspondence analysis axis I scores for both samples 

and taxa. The DCA is a methodology developed by Hill and Gauch (1980) to perform an 

ordination method that corrects for the two major problems of “Correspondence 

Analysis”, the “arch effect” and the distortion of relative distances between samples (and 

species) on its axes. In DCA, after a correspondence analysis is performed, there are 

several approaches to detrend and rescale axes. One approach is to divide the axis into an 

arbitrary number of equal length segments and within each segment, the scores on the 

next higher order axis are re-centered such that the mean is zero these procedure causes, 

if there is arch present, flattened of the lower order axis. The process to detrend is sensitive 

to the number of segments used, usually a value of 26 has produced acceptable results, a 

sliding moving average window is the method performed by the algorithm to detrend and 
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rescale axes. The rescaling of an axis is accomplished by equalizing the weighted variance 

of taxon scores along the axis segments (Holland, 2008). 

The “arch effect” in correspondence analysis is a mathematical artifact, 

corresponding to no real structure in the data, which arises because the second axis of 

correspondence analysis is constrained to be uncorrelated with the first axis, but not 

constrained to be independent of it, and for the axes to be separately interpretable, they 

need to be independent. Distortion of relative distances between samples (and species) on 

its axes, occurs when samples differing ecologically by an identical amount show 

different distances in the ordination. Correspondence analysis with detrending, followed 

by standardization to unit within-sample variance combine to characterize the method of 

DCA (Hill and Gauch, 1980). Even DCA corrects the “arch effect”, results obtained with 

DCA vary depending on the number of segments used to remove the arch effect and 

should be avoided when analysing data that represent complex ecological gradients 

(Legendre and Legendre, 1998). 

 

5.3.3. Non-metric Multidimensional Scaling (NMDS) 

The NMDS algorithm ranks distances between objects, and uses these ranks to 

map the objects nonlinearly onto a simplified, two dimensional ordination space 

preserving their ranked differences, instead of the original distances (Shepard, 1966). 

Therefore in NMDS ordination, the proximity between objects corresponds to their 

similarity, but the ordination distances do not correspond to the original distances among 

objects. The NMDS procedure works randomly placing objects in the ordination space, 

previous definition of the desired number of dimensions, and their distances in this 

configuration are compared by monotonic regression with the distances in the original 

data matrix based on a stress function (values between 0 and 1). The stress function 

establishes how different the ranks on the ordination configuration are from the ranks in 

the original distance matrix. This is repeated in an iterative procedure until the lowest 

stress possible value is obtained (i.e. best fitness) using different random initial positions 

of the objects in the ordination space. NMDS has higher computer requirements than 

eigen analysis such as PcoA, PCA (Principal Component Analysis), or CA 

(Correspondence Analysis) because of the involved iterative procedure, nevertheless it is 

not considered a problem for small to medium size matrices because of constant 

improvements in computer power (Ramette, 2007). 
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The Bray-Curtis distance was used here. However, in the mathematical strict sense 

it is not a distance because it doesn’t accomplish one of the three properties (the 3rd) of a 

true measure of distance which are the metric axioms described below: 

1. dab = dba 

2. dab ≥ 0 and = 0 if and only if a = b 

3. dab ≤ dac + dcb (also called triangle inequality) 

Where dab denotes the distance between objects a and b.  

The formula for the estimation of Bray-Curtis dissimilarity between two samples 

i and h is as follows (McCune et al., 2002): 

 

𝑫𝒊,𝒉 =
∑ 𝒂𝒊,𝒋 − 𝒂𝒉,𝒋

𝒑
𝒋=𝟏

∑ 𝒂𝒊𝒋
𝒑
𝒋=𝟏 + ∑ 𝒂𝒉,𝒋

𝒑
𝒋=𝟏

 [13] 

Where 𝒂𝒊,𝒋 is a matrix with each of its elements being the abundance of species j 

in sample unit i. 

 

5.3.4. Redundancy Analysis (RDA) 

The RDA is a canonical ordination method, thus some similarities are seen 

between RDA and Constrained Correspondence Analysis (CCA) which are common 

between canonical ordination technics. RDA is considered the canonical version of 

principal component analysis (PCA), (Ruokolainen and Blanchet, 2014). RDA is similar 

to CCA, the main difference is that RDA preserves the Euclidean distance instead of the 

χ2 distance among objects. Euclidean distance between two p-dimensional vectors i and 

h is calculated as follow (McCune et al., 2002): 

 

𝑬𝑫𝐢,𝐡 =  √∑(𝒂𝒊,𝒋 − 𝒂𝒉,𝒋)𝟐

𝒑

𝒋=𝟏

 [14] 

 

Where 𝑎𝑖,𝑗 is a matrix with each of its elements being the abundance of species j 

in sample unit i. 

In many cases the explanatory variables are not dimensionally homogeneous, thus, 

canonical ordinations are usually carried out using standardized explanatory variables. 
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This heterogeneity of dimensions don’t affect the choice between running the analysis on 

a covariance or a correlation matrix in RDA, however; depending on the algorithm used, 

optimal linear combinations of explanatory variables is done either sequentially (axis by 

axis, using iterative algorithm) or in one step (direct algorithm). This latter method uses 

four steps, the first one is to regress each dependent variable separately on the explanatory 

variables and to compute both the fitted and residual values of the regressions. The second 

step is to run a principal component analysis (PCA) of the matrix of fitted values of these 

regressions. The third one is to use the matrix of canonical eigenvectors to compute two 

sorts of ordinations (for response and explanatory variables). And the last one is to use 

the matrix of residuals from the multiple regressions to compute a principal component 

analysis ordination (Ruokolainen and Blanchet, 2014). 

 

5.3.5. Constrained Correspondence Analysis (CCA) 

The CCA is another canonical (constrained) ordination method, this one uses the 

χ2 distance among objects to ordinate (Legendre and Legendre, 1998). In CCA, χ2 

distance is calculated as follow: 

 

𝒙𝐢,𝐡
𝟐 = √∑

(𝒃𝒉𝒋 − 𝒃𝒊𝒋)𝟐

𝒂+𝒋
 

𝒑

𝒋=𝟏

 [15] 

 

Where 𝑥𝐢,𝐡
2  is the chi-square distance between two samples of p species/taxa with 

profiles i = [𝑖1, 𝑖2, … , 𝑖𝑝] and h = [ℎ1, ℎ2, … , ℎ𝑝] (Greenacre, 2017), 𝑏ℎ𝑗  and 𝑏𝑖𝑗 denotes 

the prerelativized sample units for 𝑎ℎ𝑗/𝑎ℎ+  and 𝑎𝑖𝑗/𝑎𝑖+, respectively, with 𝑎ℎ𝑗 

depicting a matrix with each of its elements being the abundance of species j in sample 

unit h and  𝑎+𝑗 being the total abundance of that species/taxa in all the samples. In this 

equation, the numerator is the square difference in relative abundance, expressed as the 

proportion of the species total and summed over all species. 

 Constrained ordination puts into relationship two matrices, one matrix of 

response variables (e.g. community matrix) and one matrix of explanatory variables. In 

CCA the ordination seeks the axes that are best explained by a linear combination of 

explanatory variables. In other words, CCA method seek the combination of explanatory 
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variables that best explain the variation of the response matrix. A constrained ordination 

produces as many canonical axes as there are explanatory variables, but each of these 

axes is a linear combination (a multiple regression model) of the explanatory variables. 

The canonical coefficients (i.e., the regression coefficients of the models) of the 

explanatory variables on each axis gives information about which variables are most 

important to explain the first, second,…k,  axis. CCA is the canonical version of 

correspondence analysis (Ruokolainen and Blanchet, 2014). According to R 

documentation, when no formula is specified for CCA in Phyloseq package in R, and 

only the community data matrix is given, data is analysed by ordinary correspondence 

analysis and an unconstrained correspondence analysis ordination is obtained (Legendre 

and Legendre, 2012)(Legendre and Legendre, 2012). 

 

5.3.6. Relevant characteristics regarding ordination methods   

Some relevant characteristics regarding ordination methods are summarized in 

Table 1. 

Table 1. Relevant metrics, procedures and miscellaneous characteristics regarding 

ordination methods1. 

 
1MDS = Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis. 

 

The analysed methods to ordinate MRM matrices were performed by Phyloseq 

package in R. 

 

5.4. Variance component analysis and effects estimation 

5.4.1. Meta-genomic BLUP  

This approach assumes independent effects of genotype and microbiome. Mixed 

models were used in a Bayesian framework, using the following independent effect model 

in linear notation: 
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𝐲 = 𝟏′𝛍 + 𝐙𝐮 + 𝐖𝐦 + 𝐞 

 

[16] 

Where: y = feed efficiency, µ = population mean, 1 = vector of ones of nx1 

dimensions, u = genetic background, m being the microbiota effect, Z and W the 

corresponding incidence matrices for the genetic and the microbiota effects, respectively, 

and e = residual error, with u ~N (0, GRM𝜎𝑢
2), m ~N (0, MRM𝜎𝑚

2 ) and e ~N (0,𝜎𝑒
2), 

where GRM is the genomic relationship matrix and MRM the microbiome relationship 

matrix between cows.  

 

5.4.2. Meta-genomic BLUP with host interaction 

Another model accounting for the interaction between the genetic and the 

microbiota effects was tested: 

 

𝐲 = 𝟏′𝛍 + 𝐙𝐮 + 𝐖𝐦 + 𝐓𝐮𝑥𝐦 + 𝐞 

 

[17] 

Where: y, µ, Zu, Wm and e are the same as in the previous model and uxm stands 

for the interaction between genetic background of the host and her microbiome, T 

represent the corresponding incidence matrix. 

Models were solved in a Bayesian framework using the BGLR package in R (De 

Los Campos and Perez Rodriguez, 2016). The means and standard error of 100 replicates 

for the parameters of interest were obtained. Real data was analysed using the same 

models. 

Six ordination methods were independently used to build the microbiota distance 

(or dissimilarity) matrices between cows. The six methods were: the one reported in (Ross 

et al., 2013) from now on identified as “Ross”, Metric Multidimensional Scaling (MDS), 

Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional Scaling 

(NMDS), Redundancy Analysis (RDA) and Constrained Correspondence Analysis 

(CCA). 
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6. RESULTS AND DISCUSION 

6.1. Simulated data  

6.1.1. Comparison between diagonal elements of distance matrices  

The correlation between diagonal elements of the microbiome distance (or 

dissimilarity) matrices obtained with the ordination methods of Ross, MDS, DCA, 

NMDS, RDA and CCA is depicted in Figure 7. This correlation represent the association 

between values for alpha diversity (within cow) obtained with different methods of 

ordination. Those associations can also be represented for each element of the diagonal 

in all matrices with a scatterplot (Figure 8). 

 

Figure 7. Pearson correlation between diagonal elements of 1000 x 1000 simulated 

microbiome distance (or dissimilarity) matrices according to ordination 

method of Ross et al. 2013 (Ross), Multidimensional Scaling (MDS), 

Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional 

Scaling (NMDS), Redundancy Analysis (RDA) and Constrained 

Correspondence Analysis (CCA). The strength of the correlation is also 

represented with the intensity of the colour. 

 

It can be inferred that all matrices had different grades of similitude between 

diagonal elements, ranging from mid to high associations. The highest correlation (ρ = 

0.84) was obtained between diagonal elements of CCA and RDA matrices, which are 

both canonical technics that use similar ordination processes and differ mainly in the 

distance used, where CCA uses χ2 distance while RDA uses Euclidean distance 
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(Legendre and Legendre, 1998).  The lowest Pearson correlation (ρ = 0.27) was obtained 

between diagonal elements of RDA and DCA matrices; this could be caused by both, the 

ordination process and the distance used. RDA and DCA use different ordination 

procedures and distances, as explained before.  

 

Figure 8. Association between diagonal elements of a 1000 x 1000 simulated matrix 

using ordination method of Ross et al. 2013 (Ross), Multidimensional Scaling 

(MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA) and 

Constrained Correspondence Analysis (CCA). 

 

6.1.2. Comparison between out-diagonal elements of the distance matrices 

The correlation between the out-diagonal elements of the microbiome distance (or 

dissimilarity) matrices obtained with the ordination methods of Ross, MDS, DCA, 

NMDS, RDA and CCA is depicted in Figure 9. This correlation represent the association 

between values for beta diversity (between cows) obtained with different methods of 
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ordination. Association for all out-diagonal elements can be depicted with scatterplots for 

all matrices (Figure 10).   

 

Figure 9. Pearson correlation between out-diagonal elements of 1000 x 1000 simulated 

microbiome distance (or dissimilarity) matrices according to ordination 

method of Ross et al. 2013 (Ross), Multidimensional Scaling (MDS), 

Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional 

Scaling (NMDS), Redundancy Analysis (RDA) and Constrained 

Correspondence Analysis (CCA). The strength of the correlation is also 

represented with the intensity of the colour. 

In general, out-diagonal elements had lower correlations between ordination 

methods than diagonal elements. There were correlations coefficients ranging from low 

to high between out-diagonal elements of microbiome similarity matrices, the highest 

correlation (ρ = 0.79) was again between CCA and RDA ordination methodologies. Both 

methodologies are canonical ordination technics (similarities and differences between 

those methods were mentioned before) which might partially explain its high correlation.  

The lowest correlation (ρ = 0.07) between out-diagonal elements of the microbiome 

similarity matrices was between NMDS and MDS technics. As mentioned before, the 

NMDS methodology uses Bray-Curtis distance in its estimation while MDS uses 

Euclidean distance for that propose, the ordination procedure also differs between those 

methods, with NMDS using a non-linear ranking between objects (Shepard, 1966), while 

MDS uses a linear mapping of its distances (Ramette, 2007), which could lead to such a 

low correlation between the out-diagonal elements of the matrices. Matrices obtained 



 

61 

 

with methods that use the same distance but different ordination processes had low 

correlations (i.e. MDS vs RDA, ρ = 0.22). 

In general, there were two main factors affecting the correlation between all 

elements: the ordination procedure and the distances used. The ordination procedure had 

a larger impact than the distances used (except for the methods that used Bray-Curtis 

distance), obtaining the highest correlations when similar ordination procedure and 

different distances were used (i.e. RDA vs CCA, ρ = 0.79). Lower correlations were 

observed when the ordination procedures were different and within distance metrics (i.e. 

MDS vs RDA, ρ = 0.22), yielding the lowest correlations when ordination procedure and 

distances used were completely different (i.e. MDS vs NMDS, ρ = 0.07). 

 

Figure 10. Association between out-diagonal elements of a 1000 x 1000 simulated matrix 

using ordination method of Ross et al. 2013 (Ross), Multidimensional Scaling 

(MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA) and 

Constrained Correspondence Analysis (CCA). 
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6.1.3. Estimation of variance components using the independent effects model 

Average genetic variance (𝜎𝑢
2), microbiome variance (𝜎𝑚

2 ) and residual variance 

(𝜎𝑒
2) for the genomic and microbiome independent effects model and its corresponding 

standard error for 100 replicates (SEM) are presented in Table 2.  

 

Table 2. Variance components for feed efficiency according to ordination method for the 

ruminal microbiota distance matrix, from a model independently including 

genomic and microbiome effects, using simulated data for 1000 cows and 100 

replicates1. 

 
1𝜎𝑢

2 = Genetic variance, 𝜎𝑚
2  = Microbiome variance, 𝜎𝑒

2 = Residual variance, SEM = Standard error of the 

means for 100 replicates, Ross = ordination method of Ross et al. 2013, MDS = Multidimensional Scaling, 

DCA = Detrended Correspondence Analysis, NMDS = Non-Metric Multidimensional Scaling, RDA = 

Redundancy Analysis, CCA = Constrained Correspondence Analysis. 

 

From Table 2 it can be inferred that all ordination methods achieved relatively 

good estimations of  𝜎𝑢
2; although all methods slightly overestimated it. On the other hand, 

𝜎𝑚
2  was underestimated by DCA and NMDS ordination methods, while 𝜎𝑒

2 was over 

estimated by the same two methods. DCA and NMDS methods are the only techniques 

evaluated in this analysis that use Bray-Curtis dissimilarity in the ordination procedure of 

the microbiota relationship matrix. 

A visual representation of these variance components estimation is shown in 

Figure 11. The 𝜎𝑢
2 was uniformly estimated by all methods (Figure 11A), while there was 

a larger accuracy for 𝜎𝑚
2  for Ross, MDS, RDA and CCA methods compared with DCA 

and NMDS; looking at the methods that yielded the most exact estimations for 

microbiome variance, a higher variability in the estimation of Ross method is observed 

when compared to MDS, RDA and CCA, indicating better precision of the latter methods 

(Figure 11B). Likewise, 𝜎𝑒
2 was best estimated by Ross, MDS, RDA and CCA than DCA 

and NMDS methods (Figure 11C). 
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Figure 11. Genetic variance (A), microbiome variance (B) and residual variance (C) for 

feed efficiency according to ordination method for the ruminal microbiota 

distance matrix, from genomic and microbiome independent effects model 

using simulated data for 1000 cows. Ross = ordination method of Ross et al. 

2013, MDS = Multidimensional Scaling, DCA = Detrended Correspondence 

Analysis, NMDS = Non-Metric Multidimensional Scaling, RDA = 

Redundancy Analysis, CCA = Constrained Correspondence Analysis. 

 

6.1.4. Heritability and microbiability using the independent effects model 

The corresponding average heritability and microbiability estimates for the 

independent effects model are shown in Table 3. As expected from variance components 

previously mentioned, estimated heritability was slightly higher than simulated by 

method of Ross, MDS, RDA and CCA while DCA and NMDS methods underestimated 

the simulated heritability (Figure 12A). Microbiability estimates showed the same pattern 

as microbiome variance estimation, with methods of Ross, MDS, RDA and CCA 
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performing better than DCA and NMDS; also MDS, RDA and CCA methods were more 

precise than Ross method (Figure 12B). 

 

Table 3. Heritability (h2) and microbiability (m2) estimates for feed efficiency according 

to ordination method for the ruminal microbiota distance matrix, from a model 

independently including genomic and microbiome effects using simulated data 

on 1000 cows and 100 replicates1. 

 
1SEM = Standard error of the means for 100 replicates, Ross = ordination method of Ross et al. 2013, MDS 

= Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis. 

 

 

 

Figure 12. Heritability (A) and microbiability (B) for feed efficiency according to 

ordination method for the ruminal microbiota distance matrix, from genomic 

and microbiome independent effects model using simulated data for 1000 

cows. Ross = ordination method of Ross et al. 2013, MDS = 

Multidimensional Scaling, DCA = Detrended Correspondence Analysis, 

NMDS = Non-Metric Multidimensional Scaling, RDA = Redundancy 

Analysis, CCA = Constrained Correspondence Analysis. 
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6.1.5. Correlation between GEBV and TBV using the independent effects model 

Correlations (standard error within brackets) between genomic estimated breeding 

values (GEBV) and true breeding values (TBV) were similar for all ordination methods 

and were: 0.633(±0.003), 0.592(±0.004), 0.598(±0.004), 0.557(±0.004), 0.624(±0.003) 

and 0.631(±0.003) for ordination procedures of Ross, MDS, DCA, NMDS, RDA and 

CCA, respectively. A scatter plot between GEBV and TBV is depicted in Figure 13. 

Showing a similar pattern for all ordination methods. 

 

Figure 13. Association between genomic estimated breeding values (GEBV) and true 

breeding values (TBV) according to method of ordination from genomic and 

microbiome independent effects model using simulated data for 1000 cows. 

Ordination method of Ross et al. 2013 (Ross), Multidimensional Scaling 

(MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA) and 

Constrained Correspondence Analysis (CCA). 

 

6.1.6. Correlation between EMV and TMV using the independent effects model  

Correlations (standard error within brackets) between estimated microbiome 

values (EMV) and true microbiome values (TMV) varied according to the ordination 

method and were: 0.975(±0.001), 0.845(±0.001), 0.807(±0.011), 0.517(±0.019), 
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0.949(±0.001) and 0.966(±0.001) for ordination procedures of Ross, MDS, DCA, NMDS, 

RDA and CCA, respectively. 

A scatter plot between EMV and TMV is depicted in Figure 14, showing different 

accuracies in the patterns of association according to the ordination method used. 

It must be point out that the simulated effect of the microbiome favoured the 

benchmark method of Ross, because a linear and independent effect was applied over the 

OTUs. In this sense, the similar results obtained from the RDA and CCA matrices.  

 

 

Figure 14. Association between estimated microbiome values (EMV) and true 

microbiome values (TMV) according to method of ordination from genomic 

and microbiome independent effects model using simulated data for 1000 

cows. Ordination method of Ross et al. 2013 (Ross), Multidimensional 

Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA) and 

Constrained Correspondence Analysis (CCA). 

 

6.1.7. Estimation of variance components using an interaction effect model 

Average genetic variance (𝜎𝑢
2), microbiome variance (𝜎𝑚

2 ) and residual variance 

(𝜎𝑒
2) for the genomic and microbiome interaction effects model and its corresponding 

standard error for 100 replicates (SEM) are presented in Table 4.  

 

 

 



 

67 

 

 

 

Table 4. Variance component estimation according to ordination method for the ruminal 

microbiota distance matrix, using a model that included the interaction between 

genomic and microbiome effects from simulated data for 1000 cows and 100 

replicates1. 

 
1𝜎𝑢

2 = Genetic variance, 𝜎𝑚
2  = Microbiome variance, 𝜎𝑢𝑥𝑚

2  = Genetic x Microbiome interaction variance, 

𝜎𝑒
2 = Residual variance, SEM = Standard error of the means for 100 replicates, Ross = ordination method 

of Ross et al. 2013, MDS = Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS 

= Non-Metric Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained 

Correspondence Analysis. 

 

As in the previous model, all methods achieved good estimation of 

𝜎𝑢
2, Whereas DCA and NMDS methods underestimated 𝜎𝑚

2  and Ross, MDS, RDA and 

CCA overestimated it. An underestimation of 𝜎𝑢𝑥𝑚
2  was observed for ordination matrices. 

Ross, MDS, RDA and CCA underestimated 𝜎𝑒
2 while DCA and NMDS overestimated it. 

The visual representation of these results is shown in Figure 15. 
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Figure 15. Genetic variance (A), microbiome variance (B), Interaction variance (C) and 

residual variance (D) for feed efficiency according to ordination method for 

the ruminal microbiota distance matrix, from genomic and microbiome 

interaction effects model using simulated data for 1000 cows. Ross = 

ordination method of Ross et al. 2013, MDS = Multidimensional Scaling, 

DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = 

Constrained Correspondence Analysis. 
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6.1.8. Estimation of heritability and microbiability using an interaction effect 

The corresponding average heritability and microbiability estimates for the 

interaction effects model are shown in Table 5. As expected from variance components 

previously mentioned, estimated heritability was larger with matrices of Ross, MDS, 

RDA and CCA than simulated heritability while DCA and NMDS methods 

underestimated the simulated heritability (Figure 16A). Microbiability estimates showed 

the same pattern than microbiome variance estimation, where matrices of Ross, MDS, 

RDA and CCA performed better than DCA and NMDS (Figure 16B). The Interaction 

model was less accurate at estimating the heritability and microbiability than the 

independent effects model, suggesting that part of this interaction is captured by the 

independent effects. 

 

Table 5. Heritability (h2) and microbiability (m2) estimates for feed efficiency according 

to ordination method for the ruminal microbiota distance matrix, using a model 

that included the interaction between genomic and microbiome effects from 

simulated data for 1000 cows and 100 replicates1. 

 
1SEM = Standard error of the means for 100 replicates, Ross = ordination method of Ross et al. 2013, MDS 

= Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis. 
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Figure 16. Heritability (A) and microbiability (B) for feed efficiency according to 

ordination method for the ruminal microbiota distance matrix, from genomic 

and microbiome interaction effect model using simulated data for 1000 cows. 

Ross = ordination method of Ross et al. 2013, MDS = Multidimensional 

Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = 

Constrained Correspondence Analysis. 

 

6.1.9. Correlation between GEBV and TBV using an interaction effect model  

Correlations (standard error within brackets) between GEBV and TBV were also 

similar for all ordination methods in the interaction effects model and were: 

0.629(±0.003), 0.594(±0.004), 0.582(±0.005), 0.560(±0.006), 0.623(±0.003) and 

0.627(±0.003) for ordination procedures of Ross, MDS, DCA, NMDS, RDA and CCA, 

respectively.  

 

6.1.10. Correlation between EMV and TMV using an interaction effect model  

As in the independent effects model, correlations (standard error within brackets) 

between EMV and TMV for the interaction effects model varied according to ordination 
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method and were: 0.893(±0.030), 0.753(±0.026), 0.739(±0.031), 0.609(±0.027), 

0.859(±0.028) and 0.880(±0.029) for ordination procedures of Ross, MDS, DCA, NMDS, 

RDA and CCA, respectively. 

 

6.1.11. Interaction effect 

The variance for simulated interaction effect (𝜎𝑢𝑥𝑚
2 = 353.2) was underestimated 

by all methods and were: 218.5(±5.2), 266.7(±4.7), 215.8(±7.1), 249.6(±12.2), 

262.1(±5.8) and 251.2(±6.1) for procedure of Ross, MDS, DCA, NMDS, RDA and CCA, 

respectively. Correlations between the estimated interaction effect and its corresponding 

simulated value were generally low: 0.177(±0.007), 0.172(±0.017), 0.242(±0.015), 

0.260(±0.020), 0.155(±0.009) and 0.158(±0.008) in the same order. From these results it 

can be inferred that interaction effects model performed poorly compared to independent 

effects model and that also was inefficient estimating the interaction effect.  

 

6.2. Real data 

6.2.1. Relative abundance of OTUs 

OTUs were classified to the genus level and their relative abundance was 

computed; however if genus was not possible to be determined, the previous classification 

(family) was set to the OTU, and so on for order, class, phylum and kingdom.  

The relative abundance of 92 OTUs for each sample (microbiome of each animal) 

is depicted in Figure 17. 
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Figure 17. Relative abundance of OTUs in microbiome sequenced using Illumina Miseq 

for the hypervariable region V3-V4 of the 16S rRNA amplicon from 70 

lactating Spanish Holstein cows according to sample. 

From Figure 17 it can be inferred that there is variation between animals for the 

relative abundance of the OTU, it is also evident that some specific OTU are more 

frequent than others within an animal; in general the most abundant genus was Prevotella 

with 32.32 % (SEM = 0.69) followed by a family of Lachnospiraceae with a mean 

frequency of 8.87 % (SEM = 0.27) and an uncultured microorganism from the phylum 

Bacteroidetes, with a mean relative abundance of 7.91 % (SEM = 0.26).  

Most of the OTUs were classified in the bacteria kingdom; however some cows 

presented a low proportion of archaea within their microbiome. Regarding relative 

abundance of phyla, there were an evident higher proportion of Bacteroidetes and 

Firmicutes than any other phylum (Figure 18). This is consistent with other studies 

regarding relative abundance of phylum in rumen microbiota, for instance: Gonzalez-
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Recio et al., (2017) found that Bacteroidetes and Firmicutes were the most abundant phyla 

in Brown Swiss cows, with a contribution of 48 and 32%, respectively. Likewise, Deusch 

et al., (2017) determined that overall bacterial composition was dominated by the 

Bacteroidetes phylum followed by Firmicutes when analysed microbiota of three rumen 

cannulated lactating Jersey cows. 

 

 

Figure 18. Relative abundance of taxonomic phyla according to microbiome sequenced 

using Illumina Miseq for the hypervariable region V3-V4 of the 16S rRNA 

amplicon according to sample for 70 lactating Spanish Holstein cows. 

 

6.2.2. Estimation of variance components from the independent effects model 

using real data.  

Genetic variance (𝜎𝑢
2), microbiome variance (𝜎𝑚

2 ) and residual variance (𝜎𝑒
2) for 

feed efficiency were estimated from model of independent genetic and microbiome 

effects using real data (Table 6). 
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Table 6. Variance components for feed efficiency according to ordination method for the 

ruminal microbiota distance matrix, from a model independently including 

genomic and microbiome independent effects using real data for 70 cows1. 

1Ross = ordination method of Ross et al. 2013, MDS = Multidimensional Scaling, DCA = Detrended Correspondence 

Analysis, NMDS = Non-Metric Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained 

Correspondence Analysis. 

 

 Similar values were obtained for 𝜎𝑢
2, 𝜎𝑚

2  and 𝜎𝑒
2 across the ordination methods 

that performed better in the simulation (Ross, MDS, RDA and CCA). Whereas DCA and 

NMDS methods estimated similar 𝜎𝑢
2 than the other methods, but lower 𝜎𝑒

2, which might 

be due to on overestimation of 𝜎𝑚
2 . 

 

6.2.3. Heritability, microbiability and correlations between GEBV and EMV 

with phenotype for the independent effects model 

Results of h2 estimates ranged from 0.077 (Ross and MDS) to 0.083 (NMDS), m2 

estimates ranged from 0.073 (MDS) to 0.103 (NMDS). Correlations between posterior 

means for GEBV and the phenotype ranged from 0.857 (DCA) to 0.912 (NMDS), while 

the correlation between the posterior means of the EMV and the phenotype ranged from 

0.210 (NMDS) to 0.910 (RDA) (Table 7). 

 

Table 7. Heritability, microbiability and correlations between GEBV and phenotype; and 

between EMV and phenotype for feed efficiency, estimated using a model 

independently including genomic and microbiome effects according to method 

of ordination for microbiota using real data from 70 cows1. 

1GEBV= Genomic Estimated Breeding Values, EMV= Estimated Microbiome Values, Ross = ordination method of 

Ross et al. 2013, MDS = Multidimensional Scaling, DCA = Detrended Correspondence Analysis, NMDS = Non-Metric 

Multidimensional Scaling, RDA = Redundancy Analysis, CCA = Constrained Correspondence Analysis. 
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Heritability estimates for feed efficiency from a meta-analysis of up to 11 

estimates revealed estimates for gross feed efficiency of 0.06 ± 0.010 (Berry and Crowley, 

2013) which are slightly lower than values found in the present study. Those estimates of 

heritability differ from the one reported in (Spurlock et al., 2012) which inform of higher 

values of h2  (0.32) for gross feed efficiency. 

 

6.2.4. Estimation of variance components including an interaction effect in the 

model 

As in the independent effects model, similar values were obtained for 𝜎𝑢
2 (0.09-0.11), 𝜎𝑚

2  

(0.08-0.10) and 𝜎𝑒
2 (1.26-1.30) across the ordination methods that performed better in the 

simulation (Ross, MDS, RDA and CCA). While as in the previous model, DCA and 

NMDS methods estimated similar 𝜎𝑢
2 than the other methods, but higher 𝜎𝑚

2  and lower 

𝜎𝑒
2 (Table 8). 

 

Table 8. Variance components for feed efficiency according to ordination method for the 

ruminal microbiota distance matrix, using a model with an interaction between 

genomic and microbiome effects from real data for 70 cows1. 

 
1Ross = ordination method of Ross et al. 2013, MDS = Multidimensional scaling, DCA = Detrended 

correspondence analysis, NMDS = Non-metric multidimensional scaling, RDA = Redundancy analysis, 

CCA = Constrained correspondence analysis. 

 

 

 

6.2.5. Heritability, microbiability and correlations between GEBV and feed 

efficiency, microbiome effect and feed efficiency in the model with an 

interaction effect. 

The h2 estimates ranged from 0.059 (DCA) to 0.078 (RDA), m2 estimates ranged 

from 0.056 (RDA) to 0.096 (NMDS). Correlations between the posterior means of GEBV 

and feed efficiency ranged from 0.799 (CCA) to 0.889 (Ross and MDS), while the 

correlation between the posterior means of EMV and the phenotype ranged from 0.211 

(NMDS) to 0.906 (CCA) for the interaction effects model (Table 9). 
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Table 9. Heritability, microbiability and correlations between GEBV and phenotype; and 

between EMV and phenotype for feed efficiency, estimated using a model with 

interaction between genomic and microbiome effects according to method of 

ordination for microbiota using real data from 70 cows1. 

1GEBV= Genomic estimated breeding values, EMV= Estimated microbiome values, Ross = ordination 

method of Ross et al. 2013, MDS = Multidimensional scaling, DCA = Detrended correspondence analysis, 

NMDS = Non-metric multidimensional scaling, RDA = Redundancy analysis, CCA = Constrained 

correspondence analysis. 

 

6.2.6. Model comparison  

Different criteria that could assist on selecting the best model can be obtained from 

the analysis: log-likelihood evaluated at posterior mean (logLikAtPostMean), the 

posterior mean of the Log-Likelihood (PostMeanLogLik), estimated effective number 

of parameters (pD), as well as the deviance information criteria (DIC). Results from those 

criteria were obtained for a model accounting for independent genetic and microbiome 

effects, for a model including an interaction between those effects, as well as for a model 

accounting only for the genomic effect (GBLUP), without microbiome effect (Table 10). 

Results regarding logLikAtPostMean, PostMeanLogLik and pD for the three 

models showed minor differences between them, with values for those criteria 

overlapping between methods of the independent effects model and the interaction effect 

model, as well as with the GBLUP model. 

Results obtained from the DIC were slightly lower for the GBLUP model, 

followed by the model of independent genetic and microbiome effects, while the model 

including the genetic-microbiome interaction effect showed higher values for these 

criteria. The DCA and NMDS methods had slightly lower DIC values than the other 

methods of ordination. 
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Table 10. Information criteria estimated for models with and without interaction between 

genetic and microbiome effect according to method of ordination for the 

microbiota relationship matrix for real data from 70 cows, a GBLUP model* is 

included as reference 1.  

1Ross = ordination method of Ross et al. 2013. MDS = Multidimensional scaling. DCA = Detrended 

correspondence analysis. NMDS = Non-metric multidimensional scaling. RDA = Redundancy analysis. 

CCA = Constrained correspondence analysis. logLikAtPostMean = log-likelihood evaluated at posterior 

mean. pD = estimated effective number of parameters. PostMeanLogLik = posterior mean of the Log-

Likelihood. DIC = deviance information criteria.* 𝐲 = 𝟏′𝛍 + 𝐙𝐮 + 𝐞 = GBLUP model accounting for the 

genomic effect, not including microbiome effect. 

 

The DIC is a hierarchical modelling generalization of the Akaike information 

criterion (AIC) and the Bayesian information criterion (BIC), which consists of two 

components, a term that measures goodness-of-fit and a penalty term for increasing model 

complexity, in which models with smaller DIC should be preferred to models with larger 

DIC, because this point to a better fit and a lower degree of model complexity; however, 

some authors (Sorensen and Gianola, 2002) make emphasis in consider DIC as a 

preliminary device for screening alternative models. DIC calculation is as follow: 

 

𝑫𝑰𝑪 = �̅� + 𝒑𝑫 [18] 

 

The first term (�̅�), is a Bayesian measure of model fit, defined as the posterior 

expectation of the deviance, while the second component (𝒑𝑫) measures the complexity 
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of the model by the effective number of parameters, also defined as the difference 

between the posterior mean of the deviance and the deviance evaluated at the posterior 

mean of the parameters (Berg et al., 2004) 

DIC is considered particularly useful for Bayesian model selection where the 

posterior distribution of the models have been obtained by Markov chain Monte Carlo 

(MCMC) simulation. When prior information is negligible, DIC result in an equivalent 

approximation to Akaike’s criterion (Spiegelhalter et al., 2002), but the DIC uses the 

posterior expectation of the log likelihood as a measure of model fit (Sorensen, 2004). 

The DIC can be used to decide adequacy of a model; however, the deference 

between DIC of two given models should be enough to make a good choice. There are 

values that roughly guide that decision, for instance Stevens (2004) indicate that it is 

difficult to affirm what is an important difference in DIC and suggests that 10 definitively 

exclude the model with the highest DIC, differences from 5 to 10 are still substantial, but 

to choose a model that differs only by a value below 5 in DIC could be misleading.  

Based on the obtained results, there is not enough difference between DIC to 

consider that the model without interaction should be chosen over model with interaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

80 

 

 

 

 

 

 

 

 

 

 

 

                                                         CONCLUSIONS  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

82 

 

7. CONCLUSIONS 

 

 

1. I inferred that microbiota relationship matrices obtained with MDS, RDA and 

CCA are as suitable as, or even better than the previously reported by Ross et al. 

(2013) in terms of the estimation of variance components, heritability and 

microbiability using simulation analysis. 

 

2. Matrices using Bray-Curtis distance (NMDS and DCA) underperformed 

regarding other methods with biased estimates of the simulated variance 

components, heritability and microbiability. 

 

3. The microbiome-genotype interaction is not properly accounted for using simple 

interaction methods, more sophisticated statistical methods must be developed.  

 

4. The genomic breeding values were accurately predicted when a microbiome effect 

was accounted for; however, the benchmark matrix and the canonical ordination 

methods of CCA and RDA showed higher accuracies than MDS, DCA and 

NMDS.  

 

5. The benchmark matrix and canonical ordination methods of CCA and RDA were 

preferred at estimating the microbiome effect in the simulations.  

 

6. Microbiability estimates for feed efficiency were low although consistent between 

ordination methods that performed better in the simulation of microbiability 

(Ross, MDS, RDA, CCA), indicating that it may be possible to include a 

microbiome effect in the statistical analysis of complex traits. 

 

7. Deviance information criteria (DIC), log-likelihood evaluated at posterior mean, 

and the estimated effective number of parameters was slightly lower for a model 

ignoring the microbiome-genotype interaction; however differences between both 

models were not substantial, consequently there is not enough evidence to 

recommend one of either models. 
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8. Microbiota relationship matrices obtained with CCA and RDA were suitable both 

for variance components estimation as well as for estimated breeding and 

microbiome values, hence based on results obtained from this master thesis, I 

recommend to use those canonical ordination methods to build the microbiota 

relationship matrix to predict complex traits. 
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