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I remember when I was 17 years old, where mathematics, physics and ma-
chines were so attractive to me, for this reason I decided to begging the Mas-
ter’s Degree in Industrial Engineering (electrical and mechanical fields) here
at the U.P.V. university. I have developed my professional profile into several
branches such as automotive, agri-food industry, aesthetic medicine, aquar-
iums, building sector and the last ten years within the hospital engineering
branch.

Motivated by educational maths due to, both my own children, I decided con-
tinue to learn advanced maths two years ago, I also took in mind embark into
a mathematical doctorate programme, so I enrolled and coursed the Master’s
Degree in Mathematical Research, INVESTMAT, at U.V. & U.P.V. located
in Valencia because of it I present the current work.

As we have told above, during the last ten years I have just dedicated my pro-
fessional adventure into the medical field. I participated as a MEP (Mechanical-
Electrical-Plumber) engineer manager in the construction of an Hospital near
Valencia. Over there, I had the opportunity to implant all different medical
equips including a 1,5T Magnetic Resonance, which was possibility the
most complicated and technological efforts so far taken in this regard. Phys-
ical, chemical and all engineering systems and installations take place in this
installation: electromagnetic homogeneity requirements, the magnetic shield of
the room for safety purposes, temperature and humidity specifications should
have high levels of accuracy and reliability, three different air cooling systems
for the room and a cryo-cooler compressor water cooling, for refrigerating the
superconductor magnet and gradients, the acoustic and vibration requirements
within the rooms in which the patients and technicians are impacted by the
noise of the MR system as the gradients are pulsed and the acoustic noise
transmitted to other spaces via airborne and structureborne paths, ventila-
tion and an exhaust fan set-up system for evacuating gas Helio from inside
the room, the slab stability for supporting the weight of the magnet (around
4.000 Kg/m2) and as well its composition to avoid external, internal magnetic
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interferences and other ones.

But after the commissioning of the Magnetic Resonance I observed at
the operator workspace several images related to brains and knees obtained
through the scanner and I asked myself: how is it possible to obtain these high
quality images only with a magnet or an electromagnetic field?, how does it
work?

The interest of these questions returned during this postgraduate, therefore
I took the decision to write a review and expose the maths significance in this
area and the recent researches, furthermore we introduce and solve the matrix
Bloch random equations system which govern this process computing the 1-
p.d.f. by using the Random Variable Transformation (R.V.T.) method.

I would like to thank my wife, Ana, for supporting me over this last years
on weekends, in the evenings, nights and holidays. Many thanks for the su-
pervisors Juan Cortés and Rafael Jacinto for all of their guidance through this
process.

I would also like to thank all academics, doctors and coordinators belong to
this Master’s Degree in Mathematical Research, INVESTMAT, which have
been motivating and encouraging me for these years in order to open me eyes
towards the mathematical research.



Chapter 1

Introduction.

The MRI (Magnetic Resonance Imaging) is a noninvasive diagnostic proce-
dure employed in the NMR (Nuclear Magnetic Resonance) scanner to obtain
detailed sectional images of the internal structure of the body. This technique
has played a major role in the revolution over the last 30 years. In this sense,
the influence and development of Mathematics are essential for making it pos-
sible understanding and eliminating the Artifacts of the images, quickly,
with accurate and efficiency. Thus, this is necessary for recovering as soon as
possible the investment of the medical equipments and make a diagnosis using
right and precise images.

In this work we will introduce the Bloch equation which govern the MRI
process and how the perturbation fields, inhomogeneities and dynamic flow
affect to the image results. We overview the tend researches to solve the non-
linear differential equation systems and some numerical, discretization and
convergence methods for modelling and resolving it [1], [2].

But the main purpose of this work is to introduce and solve the basic Bloch
equations model as a random differential equation systems and obtain conclu-
sions about of their possible applications.

Magnetic Resonance Imaging (MRI) is a method that generates exquisite
images of the soft tissue anatomy of the human body. The principle of MRI
is to record the variations of the nuclear magnetization of the biological tis-
sues by using different kinds of magnetic fields. A static magnetic field ~B0 is
used to generate a macroscopic nuclear magnetisation ~M in the body to be
imaged; typically ~B0 has a strength around 1,5 - 5 Tesla, but technology and
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8 CHAPTER 1. INTRODUCTION.

magnets are increasing quickly. To shift the magnetisation vector ~M from its
equilibrium position, a radio-frequency magnetic field (RF field) ~B1 is applied
at every characteristic pulsation determined by the Larmor frequency,

ω0 = γ‖ ~B0‖ (1.1)

where γ is a constant called the gyro-magnetic ratio (γ = 42.58 MHz by Tesla
for proton for the hydrogen atom), thus if we applied a magnetic field of 1 Tesla
(‖ ~B0‖ = 1 T), the Larmor frequency ω0 ' 42.58 MHz for proton. In MRI this
phenomenon is known as resonance process. The position of the magnetisation
vector at the end of the resonance process is determined by the duration of
the RF field ~B1. Typically this duration is chosen so that the angle between
the initial position and the resulting one is π

2 or π. When the RF field ~B1

is stopped, the magnetisation tends to return to its equilibrium position in a
process called the relaxation. During the relaxation process the magnetisation
creates an induced electric signal in an antenna set in a plane perpendicular
to ~B0. This signal is acquired for subsequent processing and gives rise to the
image. Moreover, magnetic field gradients (static magnetic field aligned with
~B0) are applied during the imaging process to set up a spatial correspondence
between position in the boy and position in the image through a frequency
encoding of the MRI signal.

Any perturbation of the magnetic fields involved in MRI can disturb the
imaging process. The result is a local deformation of the image (called arti-
fact) that may render the image inaccurate and useless for medical diagnostics.
Sources of perturbation of magnetic fields are various and can be classified
mainly in four groups: the one connected to the static magnetic field and the
gradients, the one connects to the RF field, the external one and those attached
to the dynamic of the fluids and tissues inside the body. Moreover one can
distinguish between defects that are properties of the MRI device (e.g. non
uniformity of the magnetic fields over the whole imaging area) and perturba-
tions of the magnetic fields due to the patient himself. Since they are fixed
properties of the MRI device, the first ones can handled with efficiency, either
by the use of additional components or by taking into account their effect in
the reconstruction of the algorithm. It is much more difficult to deal with the
other ones as they are no identical from one experiment to the other. Common
causes of such magnetic field perturbations are changes of magnetic properties
in the sample due to metallic implanted objects, such as dental prostheses,
hip prostheses, vascular clips, internal orthopaedic devices, metallic surgical
instruments used in interventional MRI, etc. On other hand the existing dy-
namic processes inside a body (vessels, heart, blood, angiographic techniques,
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etc.) require to introduce new phisical concepts for interpreting and reduce
the artifact images.

Artifacts produced by the magnetic susceptibility of metallic implants have
been widely studied in the literature using an experimental approach, as well
as using mathematical modelling and numerical simulation. In the last decade
attention has been paid to MRI artifacts caused by eddy currents in conduct-
ing metallic implants. Eddy currents may originate either from RF field ~B1,
from the field gradients or form external or electrical or magnetic field diver-
gences. However it has been found that artifacts due to eddy currents from
the magnetic field gradients are not significant.

For simple test objects (cylindersm spheres or ellipsoids) analytical expre-
sions for the RF perturbation are known. In general a precise calculation of the
RF field perturbation involves a boundary value problem with partial differ-
ential equation derived from Maxwell’s equations and requires the use of PDE
aproximations schemes. Among the classical methods are the finite element
method, the finite difference method and the boundary element method.

In chapter 2 we first explain and introduce the Bloch equation and the
processes involving MRI, in chapter 5 we expose an efficient and accurate
model for solving of RF artifacts due to eddy current [1] and at the end of this
chapter we will expose the well-possedness of the Bloch model for dinamical
flow and its associated semi-discrete equation [2].

1.1 The NMR history.

In 1946 nuclear magnetic resonance (NMR) in condensed matter was discov-
ered simultaneously by Edward Purcell at Harvard and Felix Bloch at
Stanford using different instrumentaton and techniques. Both groups, how-
ever, observed the response of magnetic nuclei, placed in an uniform magnetic
field, to a continuous wave (CW) radio frequency magnetic field as the field
was tuned through resonance. This discovery opened up a new form of spec-
troscopy which has become one of the most important tools for physicists,
chemists, geologists, and biologists.

In 1950 Erwin Hahn, a young postdoctoral fellow at the University of
Illinois, explored the response of magnetic nuclei in condensed matter to pulse
burst of these same radio frequency (RF) magnetic fields. Hahn was interested
in observing transient effects on the magnet nuclei after the RF burst. During
these experiments he observed a spin echo signal; that is, a signal from the
magnetic nuclei that occurred after a two pulse sequence at a time equal to
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the delay time between the two pulses. This discovery, and his brillant anal-
ysis of the experiments, gave birth to a new technique for studying magnetic
resonance. This pulse method originally had only a few practitioners, but now
it is the method of choise for most laboratories. For the first twenty years
after its discovery, continuous wave (CW) magnetic resonance apparatus was
used in almost every research chemistry laboratory, and no commercial pulsed
NMR instrument were available. However, since 1966 when Ernst and An-
derson showed that high resolution NMR spectroscopy can be achieved using
Fourier transforms of the transient response, and cheap fast computers made
this calculation practical, pulsed NMR has become the dominant commercial
instrumentation for most research applications.

This technology has also found its way into medicine, Paul C. Lauter-
bur (died in 2007) shared the Nobel Prize in Medicine in 2003 for developing
magnetic resonance imaging into a way to look inside living organisms.He was
a real pioneer in the study of the nucleus of the carbon atom. Dr. Lauterbur
became interested in possible biological applications of nuclear magnetic reso-
nance after reading a paper in 1971 by Raymond V. Damadian, who described
how some cancerous tissues responded differently to the magnetic fields than
normal tissue. Until then, most scientists placed the samples in a uniform
magnetic field, and the radio signals emanated from the entire sample. Dr.
Lauterbur realized that if a nonuniform magnetic field were used, then the
radio signals would come from just one slice of the sample, allowing a two-
dimensional image to be created. Dr. Lauterbur shared the Nobel Prize with
Sir Peter Mansfield of the University of Nottingham in England, who also
came up with the idea of using a non-uniform magnetic field and developed
mathematical techniques for analyzing the data. The images can be stacked
together to form a three-dimensional view.

When NMR imaging became common for medical uses, the name was
tweaked to magnetic resonance imaging (MRI), the nuclear dropped for fear
that patients might think radioactive elements are used. MRI (magnetic res-
onance imaging) scans are revolutionizing radiology. This imaging technique
seems to be completely noninvasive, produces remarkable three dimensional
imagens, and has the potential to give physicians detailed information about
the inner working of living systems. For example, preliminary work has al-
ready shown that blood flow patterns in both the brain and the heart can be
studied without dangerous catheterization or injection of radioactive isotopes.
Someday, MRI scans may be able to pinpoint malignant tissue without biop-
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sies. MRI is in its infancy, and we will see many more applications of this
diagnostic tool in the coming years [18].

1.2 The MR physical principle.

In clinical MRI the image is formed by the signals from protons in water and
lipid. At the atomic level, since a proton is a charged particle which spins
around an internal axis of rotation with a given value of angular momentum
~P , it also has a magnetic moment µ, and therefore can be thought of as a very
small magnet with a north and south pole.

Figure 1.1: proton acts as a
magnet.

The internal rotation of a proton creates
a magnetic moment, and so the proton acts
as a magnet with north and south pole as
shown in Figure 1.1.
The hydrogen nucleus with one proton
is the nucleus of choice in MRI because
it possesses the strongest magnetic mo-
ment and its abundance in organic tis-
sues.
The magnitude of the proton’s magnetic
moment is proportional to the magni-
tude of the angular momentum ‖~µ‖ =
γ‖~P‖.

As a result, the magnitude of the magnetic moment has a single, fixed value
and in absence of an external magnetic field (~B0), as shown in Figure 1.2, the
magnitude of the magnetic moment of every proton in our bodies is fixed,
but the orientation is completely random. Therefore, the net magnetization
(M0), i.e. the sum of all the individual magnetic moments in our bodies is zero.

The situation changes with the application of an external magnetic field
(~B0). From quantum mechanics, the component of the magnetic moment in
the direction of (~B0) can have only two possible discrete values, which results
in the magnetic moments being aligned with respect to (~B0) in the same di-
rection as we can see in Figure 1.3.

The relative number of protons in the parallel and anti-parallel configura-
tions depend upon the value of ~B0. Protons in the parallel configuration are
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Figure 1.2: orientation of pro-
tons in absence of B0.

Figure 1.3: orientation of pro-
tons when a strong magnetic field
B0 is applied.

preferred because it guarantees the lowest energy state (see Figure 1.4) and
the energy difference is given by

∆E =
γhB0

2π
with h ≡ Plank’s constant = 6.63 · 10−34Js. (1.2)

It is possible to calculate the relative number of protons in each of the two
configurations with the Boltzmann equation:

Nanti−parallel
Nparallel

= e−
∆E
kT , (1.3)

with k ≡ Boltzmann’s constant k = 1.38 · 10−23 J/K and T is temperature in
K, and we notice that the exponent ∆E

kT is very small→ e−x ≈ 1−x, therefore

Nanti−parallel
Nparallel

= 1− ∆E

kT
, (1.4)

thus

Nparallel −Nanti−parallel = Ntotal
∆E

kT
= Ntotal

γhB0

2πkT
, (1.5)

where Ntotal represent the total number of protons. Equation 1.5 shows that
the MRI signal depends upon the difference in populations between the two



1.3. THE LARMOR FREQUENCY. 13

Figure 1.4: orientation of protons in absence of B0.

energy levels. It is important to note that MRI can detect only the difference
in populations between Nparalllel and Nantiparallel, and not the total number of
protons.

By superimposing all proton magnetic moments we can represent the net
magnetization in a simple vector form, with slightly more protons in the par-
allel than anti-parallel state. The total magnetization can be calculated by
a simple vector sum of the individual components ~µi. The net magnetization
has only a z-component since the vector sum of the components has only a
z-component, since the vector sum of the components on the x- and y-axes is
zero.

Thus the net magnetization vector ~M0 for of the sample is defined as:

~M0 =
∑

V ol(V )

~µzn =
γh ~B0

4π
(Nparallel −Nanti−parallel) = Ntotal

γ2h2 ~B0

16π2kT
. (1.6)

1.3 The Larmor frequency.

We have determined that the proton magnetic moments are all aligned at an
angle θ with respect to the direction of ~B0. The motion of these magnetic mo-
ments can most easily be described using classical mechanics in a macroscopic
scope, so the ~B0 field attempts to align the macroscopic magnetic moment ~M
with itself, and this action create a torque, ~C, given by the cross product of
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the two magnetic fields:

~C = ~M × ~B0 = ‖ ~M‖ · ‖ ~B0‖ · sin θ ·~ıN , (1.7)

where~ıN is a unit vector normal to both ~M and ~B0.The direction of the torque

is tangential to the ~M direction and so causes the proton to ”precess” around
the axis of the magnetic field ~B0. See Figure 1.5.

To calculate how fast a proton precesses, we use the fact that the torque
is defined as the rate of change of the proton’s angular momentum, thus

~C =
∂ ~P

∂t
= ~M × ~B0.

Figure 1.5: precession motion.

From Figure 1.5, the magnitude of the
component of the angular momentum which
precesses in the plane perpendicular to ~B0

(plane xy) is given by ‖~P‖ · sin θ. In a short
time ∂t, ~M precesses through an angle ∂α
resulting in a change ∂ ~P in the angular mo-
mentum. By trigonometry in plane xy it is
possible to give the relationship that

sin(∂α) =
∂ ~P

‖~P‖sinθ
=

~C · ∂t
‖~P‖ sin θ

, (1.8)

thus, from equation (1.8) we use the approx-
imation sin(∂α) ≈ ∂α to obtain the angular
precession frequency ω0 = ∂α

∂t when a mag-

netic field ~B0 is applied.

ω =
∂α

∂t
=

~C

‖~P‖ sin θ
=

~M × ~B0

‖~P‖ sin θ
=
γ ~P × ~B0

‖~P‖ sin θ
=
γ‖~P‖| ~B0‖ sin θ

‖~P‖ sin θ
= γ‖ ~B0‖.

1.4 Bloch equation and the oscillator model.

As we will expose in chapter 2 the time evolution of the macroscopic magne-
tization, in presence of an external static magnetic field ~B0 can be obtained
from Bloch model (equation 2.1) by averaging the magnetic moments over a
continuum volume (1.6).
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∂ ~M

∂t
= γ ~M× ~B. (1.9)

Equation (1.9) is based on the implicit assumption that the protons are non-
interacting.

So if we apply a radio frequency magnetic field B1 to ”excite” a uni-
formly magnetized sample, the magnetization vectors tip over and experience
transversal precession at the know Larmor frequency.

The magnetization in the transverse plane is very often described using a
complex notation as

~Mxy(t) = Mx(t) + iMy(t) = ‖ ~Mxy(t)‖ei(ω+ψ) = Mxy(t)e
i(ω+ψ). (1.10)

To get a response from an object going through an NMR experiment, the
orientation of the longitudinal magnetization is altered by applying an oscillat-
ing magnetic field ~B1(t) = B1x(t)~ex+B1y(t)~ey from a nearby RF transmit coil.

If the resonance condition is fulfilled, the ~B1 field tilts the magnetization to-
wards the transverse plane (Figure 4.1).

The RF excitation field in the transverse plane is specified by the shape and
the duration τp of the envelope function ~B1(t), the excitation carrier frequency
ω1 and the initial phase ψ1 of the RF pulse, expressed in the complex notation
as

~B1(t) = B1x(t) + iB1y(t) = ‖ ~B1(t)‖ei(ω1+ψ1) = B1(t)ei(ω1+ψ1). (1.11)

B1(t) determines the flip angle θ of the magnetization due to the RF pulse by
the following relation

θ(τp) = γ

∫ τp

0
B1(t)dt. (1.12)

Immediately after ~M is tilted from its equilibrium position, the spins inside the
excited volume mutually interact among themselves and with the surrounding
to precess towards the equilibrium state again.

The precession of the spins towards the equilibrium position, as depicted in
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Figure 4.1, is characterized by two phenomenologically determined intrinsic
time constants called T1 and T2 times (see section 2.1) and initial Bloch equa-
tion (1.9) transforms into

∂ ~M

∂t
= γ ~M× ~B − Mx~ex +My~ey

T2
− (Mz + τ0)~ez

T1
. (1.13)

After the RF excitations time evolution of magnetizations are governed by the
relaxation and the presence of the static magnetic field. The time evolution
of transverse and longitudinal magnetizations can be expressed and solved as
we expose in chapter 3, taking initial condition as the magnetization result
finishing the RF process, where M0xy = Mxy(τp) and M0z = Mz(τp) (see
chapter 4).

1.5 The gradient fields.

The amount and direction of the rate of change in space of the magnetic field
strength. In the magnetic resonance system, gradient amplifiers generated by
coils are used to vary the magnetic field strength in the x, y, and z planes.
Figure 1.6 shows three different coils used in the MR.

Figure 1.6: Gradient coils in
the MR.

On top of that magnetic field gradients need
to be applied to obtain cross-sectional im-
ages. The location and thickness of the slice
is determined by applying a slice-selection
gradient Gz. After that, the object is spa-
tially encoded via the application of addi-
tional magnetic field gradients Gx, Gy in the
transversal directions. The magnitude and
time of application of magnetic gradients G
depend on the experimental requirements,
see [8] for the description of a typical pulse
sequence.

When we turn on a linear magnetic gra-
dient field, Gx, along the line segment at the instant we begin recording signal
in the current loop, thus a new magnetic field flux BGx = xGx appears. There-
fore, for a time τ we can measure this magnitude as

BGx(t) =

∫ t

0
xGxdτ. (1.14)



1.6. THE SIGNAL. 17

1.6 The signal.

Fundamentally, MRI is based on the following two steps:

(i) Manipulation of the equilibrium magnetization to create a detectable
signal from the object of interest.

(ii) The reconstruction of an image of the object from the detected signal
using a suitable reconstruction method.

When we exposed a tissue to ~B0; the sample becomes polarized at a rate
determined by T1. Once the sample is polarized, a ~B1 field, of the form given in
(indicar figura), is turned on for a finite time τ . This is called an RF-excitation
and is turned off, usually when the flip angle (θ(τ) = π/2).

Definition 1. Faraday’s law
Faraday’s law states that the electromotive force (ε) is also given by the rate
of change of the magnetic flow (in a loop of wire according to the relation):

ε = −∂ΦB

∂t
. (1.15)

Definition 2. Magnetic flux.
The magnetic flux through a surface is defined by

ΦB =

∫∫
Σ(t)

~B∂~S. (1.16)

where ~S is the hypothetical surface Σ(t) whose boundary is a wire loop and ~B
is the magnetic flux density into the surface.

The transverse components of ~M are a rapidly varying magnetic field,
which, according to Faraday’s law, induce a current in a loop of wire. Moreover,
the reciprocity law indicates that ”the detector hears what the source sends”
and since all the vectors are oscillating ar frequency ω by using several such
loops to form a receive coil, we can measure a signal of the form

sr(t) = M(t)e−iωt. (1.17)

Emitted energy due to the precession of the magnetizations is converted
into an electric signal in the receiver coil of an MRI system which is manipu-
lated further for image reconstruction. The received signal can be expressed
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as

sr(t) =

∫
Ω
Mxy(r, t)e

−iγB0te−iγ
∫ t
0 (xGx+yGy)dτdr. (1.18)

Let us suppose that we have a 2D sample in the xy plane which we would like
to image. We turn on the y-gradient Gy for a time ty and, we turn on the
x-gradient Gx for a time t, so that the signal sent by the position oscillator at
time t after ty be applied is

sr(t) = e−iγB0t

∫
Ω
Mxy(x, y, t)e

−2πi

(
γ
∫ t
0 (xGxd+yGy)dτ

2π

)
dxdy. (1.19)

Up to the carrier frequency e−iγB0t, this is just a 2D Fourier transform.

Fourier analysis assumes an important role in functional analysis and signal
processing.

Definition 3. Let f : R → C be integrable. The Fourier transform is defined
as:

F(f)(ξ) := f̂(ξ) :=

∫ +∞

−∞
f(x)e−2πixξdx, ξ ∈ R. (1.20)

If f̂ is also integrable, then f can by recovered by the inverse Fourier
transform according to the Fourier inversion theorem.

F−1(f̂)(x) := f(x) :=

∫ +∞

−∞
f̂(x)e2πixξdξ, x ∈ R. (1.21)

The pair of analytical function and its Fourier transform that is relevant to
this work are the top-hat function χ[−1/2,1/2] and the sinc function. We will
see them in section 1.7.

To obtain a sufficient collection of data for reconstruction, it is needed to
measure many values of this signal for several time (t). There are many pos-
sible ways to do this. These rectangular partition is called the k-space.

For conceptual advantages, the spatial encoding is often expressed in a k-space
formalism as

Definition 4. k-space.

kx :=
γ

2π

∫ t

0
Gxdτ, (1.22)

ky :=
γ

2π

∫ t

0
Gydτ. (1.23)
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Therefore the receiver signal shows as

sr(t) = e−iγB0t

∫
Ω
Mxy(x, y, t)e

−2πi(xkx+yky)dxdy. (1.24)

In principle, the k-space trajectories can be arbitrary. Figure 1.7 shows
only two popular k-space trajectories.

Figure 1.7: Schematic illustration of typical k-space trajectories in MRI. (Left)
Cartesian. (Right) Radial [10].

To achieve these trajectories it is necessary to turn on the gradients Gx and
Gy in different time sequences. In the real case, coils have physical character-
istics and it is needed to define the Cr(~r) as the detection sensitivity of the
receiver coil. Remember we coils in several axes, so we define the sensitibity
of these coils with the complex notation as

Cr,xy = Cr,x + iCr,y, (1.25)

sr(t) = e−iγB0t

∫
Ω
Cr,xyMxy(x, y, t)e

−2πi(xkx+yky)dxdy. (1.26)

Equation (1.26) shows that the received signal in k-space is the Fourier trans-
form of the dot product between transverse magnetizations and the coil sensi-
tivity map.

Numerically, this is a fantastic situation since FFT algorithm give an extremely
fast, stable method for computing the approximate inverse Fourier transform
and well known results from discrete Fourier theory can be applied to improve
reconstruction and signal quality.
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Figure 1.8 shows the MRI signal reconstruction process.

Figure 1.8: signal reconstruction process.

The received signals are typically demodulated in frequency by γB0 us-
ing phase-sensitive detection before being used for image reconstruction. The
resultant signal expression after demodulation is

sd(t) = sr(t)e
iγB0t. (1.27)

The demodulated signal corresponds to the solution of the Bloch equation in
a frame rotating clockwise about z-axis with an angular frequency ω0 = γ‖ ~B0‖.

We denoted the rotation frame with unitary vectors (~e1, ~e2, ~z) and the lab-
oratory frame with (~x, ~y, ~z) unitary vectors, see Definition 5.

1.7 The RF pulse. Slide selection.

An RF excitation pulse with limited bandwidth of ∆ωp will only excite spins
within a matching frequency range. For a slice selective excitation, a linear
field gradient is applied corresponding to the limited bandwidth of the RF
pulse as illustrated in Figure 1.9. The frequency bandwidth should be a rect-
angular function Π(ω) in order to get a perfectly rectangular slice profile so
that the excitation pulse will excite spins equally within the slice of the sample
leaving the surrounding spins in equilibrium state.

Although the RF excitation pulse B1(t) is accurately proportional to the
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Figure 1.9: Schematic diagram depicting the relations of slice selection gradi-
ent, RF sinc pulse and the slice thickness. Different gradient strengths (G1

and G2) create slices of different thickness at different positions (2Ls1 and
2Ls2) for same envelope B1(t) functions of a sinc pulse. F refers to the Fourier
transform [10].

Fourier transform of the frequency bandwidth for small flip angles (θ), the
same relation is acceptable to a very good approximation even for high flip

angles. The identity 1
aΠ(fa )

F−→ sinc(at) implies that a sinc function which has
an unlimited support is necessary to get a perfectly rectangular slice profile.

As only pulses with finite durations are feasible, a truncated sinc pulse is
used which results in a distorted slice profile. Windowing functions are very
often used with the truncated sinc pulse to reduce the distortion of the slice
profile. The explicit expression of the envelope function of the sinc pulse is
given by

B1(t) =

{
ω(t)B1sinc[π(t−Nt0)/Nt0] 0 ≤ t ≤ τp,
0 otherwise,

(1.28)

where ω(t) is a window function, N represents twice the zero-crossing of the
sinc-pulse and t0 one half the width. Depending on the shape of the ω(t)
function (see Table 1.1) we have several shapes as we show in Figure 1.10.



22 CHAPTER 1. INTRODUCTION.

Table 1.1: Window functions.
window function ω(t)

rectangular 1
Hamming 0.50 + 0.50 cos(π(t−Nt0)/Nt0)
Hanning 0.54 + 0.46 cos(π(t−Nt0)/Nt0)
Blackman 0.42 + 0.50 cos(π(t−Nt0)/Nt0)− 0.08 cos(2π(t−Nt0)/Nt0)

Figure 1.10: Envelope function of the sinc-pulses with different window func-
tions for RF pulse duration of 4 ms and 4 zero-crossings [10].

To create a slice profile of thickness 2Ls, the required slice selection gradient
Gz is given by

Gz =
π∆f

γLs
where ∆f =

∆ω

2π

1

t0
. (1.29)

1.8 MRI. Image sequence.

A generic spoiled GE sequence for 2D imaging is shown in Figure 1.11. A
slice selection gradient is applied along with a ω1 pulse and φ1 RF phase
for selective excitations. After that a rewinder gradient is applied in the slice
direction to avoid undesirable signal loss as a result of the phase shift caused by
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the application of the slice selection gradient. A phase encoding gradient and
a pre-phasing gradient are applied in the direction of phase encoding (y) and
readout (x) respectively to accelerate the FID signal decay.Then the dephased
spins are rephased by applying a gradient of opposite polarity in the direction
of readout.

Figure 1.11: Generic spoiled gradient echo sequence diagram. Gradients: (a)
slice selection (b) rewinder (c) phase encoding (d) prephasing in read direction
(e) readout. The colored line in the phase encoding direction corresponds to
the colored line in the k-space [10].

When the gradient moment of the readout gradient equals the gradient
moment of the prephasing gradient in the direction of readout gradient, the
spins are completely rephased and form an echo. The time between the center
of the RF pulse and the peak of the signal induced is known as echo time
(TE) and the time duration from RF pulse to the next RF pulse is defined as
repetition time (TR).

Each GE sequence consists of a train of excitation pulses separated by a TR
period. Between successive excitation pulses, the spatial encoding is performed
with switched gradients in read, phase and slice direction and one line in k-
space is acquired with each repetition of RF. Excitation pulse in the next TR
acts on the modified magnetization and the process of precession is repeated
again and again.

Figure 1.12 illustrates a GE sequence with radial trajectories. The funda-
mental diference of radial with Cartesian trajectory is that radial trajectory
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consists of a readout gradient in two directions unlike one phase encoding and
one readout as in Cartesian trajectory.

An other difference is that in case of Cartesian sampling, the inverse Fourier
transform is applied directly to the sampled k-space data to obtain an image,
but in radial trajectories, however the sampled k-space data are neither on
a Cartesian grid nor equidistant. Thus, the image reconstruction with radial
sampled data require advance techniques like non-uniform fast Fourier trans-
form (NUFFT) or interpolation of the data onto a Cartesian grid.

Figure 1.12: Generic spoiled gradient echo sequence with radial trajectory.
Gradients: (a) slice selection, (b) rewinder, (c) prephasing, (d) readout. The
colored line in the k-space corresponds to the current repetition [10].

Radial encoding scheme is gaining interest in last decade because of a
number of interesting advantages:

• radial encoding is relatively more resistant to undersampling than Carte-
sian encoding. Moreover, undersampling artifacts appear as streaks at
the edge of the image while the main structure of the object is main-
tained.

• the readout gradient in radial GE allows oversampling along both read-
out directions without additional measuring time. This oversampling
enlarges the circular-supported FOV and hence reduces undersampling
artifacts.
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• radial encoding is intrinsically robust against motion. Due to the absence
of phase encoding, motion-induced ghost artifacts are eliminated as seen
very often in Cartesian trajectory.

Note: section 1.6, section 1.7, section 1.8 are basically a resume available
in [10].

1.9 FOV. field of view.

To avoid aliasing artifacts, the sample spacings ∆kx and ∆ky must be cho-
sen so that the excited portion of the sample is contained in a region of size
∆k−1

x x∆k−1
y . This is called the field-of-view or FOV. Since we can only col-

lect the signal for a finite period of time, the Fourier transform is sampled at
frequencies lying in a rectangle with vertices (±∆k−1

x ,∆k−1
y ) where

kx,max =
nx∆k

2
, ky,max =

ny∆k

2
, (1.30)

The maximum frequencies sampled effectively determine the resolution avail-
able in the reconstructed image. Heuristically, this resolution limit equals half
the shortest measured wavelength:

∆x ≈ 1

2kmax
=
FOVx
nx

,∆y ≈ 1

2kmax
=
FOVy
ny

, (1.31)

where nx, ny represents the number of time sample points (base resolution) in
a single data acquisition, kmax the maximal sampling distance from the centre
in the k-space.

1.10 Contrast and resolution.

The single most distinctive feature of MRI is its extraordinarily large innate
contrast. For two soft tissues, it can be on the order of several hundred percent.
By comparison, contrast in X-ray imaging is a consequence of differences in the
attenuation coefficients for two adjacent structures or tissues and is typically
on the order of a few percent.The contrast between two regions, A and B, with
signals SA; SB respectively, could be defined as different options

fcontrast(x) = −|C1(x)− C2(x)|, (1.32)

or

fcontrast(x) = −|C1(x)− C2(x)|
|C1(x)|

, (1.33)
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where C1 and C2 are the contrast maps of the individual tissues and x is an
element of the set of relevant sequence parameters.

For practical purposes, it may be more interesting to investigate the contrast-
to-signal ratio as

fcontrast(x) = − |C1(x)− C2(x)|
|C1(x)|+ |C2(x)|

. (1.34)

This way, the relative distinguish ability is maximized. A tissue combination
that produces low signal with a high relative difference is easier to distinguish
in practice than a tissue combination that produces high signals with low rel-
ative difference.

Run time is a critical factor for the sequence, and parameters that are key
to the run time also often influence contrast. The desired trade-off can be
controlled through the weighting factors of the objective function and the op-
timization is still fast. In this case the objective function is

fcontrast(x) = −|C1(x)− C2(x)|+ g(t(x)), (1.35)

where t is the runtime and g is a function that applies a weighting.

See [11] for more information of this subject.
Figure 1.13 shows differences between two tissues depending on the RF process
used.

Figure 1.13: Contrast between tissues using different TE.
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Figure 1.14: Contrast with a
short TR and TE parameters,[16].

Figure 1.15: Contrast with a long TR
and TE parameters,[16].

1.11 SNR. Signal to noise ratio.

In detecting an NMR signal, our primary goal is to use the induced EMF with
minimal addition of noise. In other words, we aim to maximize the signal-to-
noise ratio.A secondary goal when we are receiving comparatively large signals,
such as are given by our example, is to minimize radiation damping without
sacrifice of signal-to-noise ratio.

At a given spatial resolution, image quality is largely determined by the signal-
to-noise ratio (SNR) and contrast between the different materials making up
the imaging object. SNR in MRI is defined as the voxel signal amplitude
divided by the noise standard deviation. The noise in the NMR signal, in gen-
eral, is Gaussian distributed with zero mean [14]. Ignoring contributions from
quantization, for example, due to limitations of the analog-to-digital converter,
the noise voltage of the signal can be ascribed to random thermal fluctuations
in the receive circuit and the variance is given by (see [17])

σ2
termal = 4kBTR∆ν, (1.36)

where kB is Boltzmann’s constant (1, 3806488(13)1023JK−1),T is the abso-
lute temperature measured in oK, R is the effective resistance resulting from
both receive coil Rc and object Ro (measured in Oms (Ω)). ∆ν is the receive

bandwidth. Both Rc and Ro are frequency dependent, with Rc ∝ ω
1
2 and

Ro ∝ ω. Their relative contributions to overall circuit resistance depend in
a complicated manner on coil geometry, and the imaging object’s shape, size
and conductivity. Hence, at high magnetic field, and for large objects, as in
most medical applications, the resistance from the object dominates and the
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noise scales linearly with frequency. Since the signal is proportional to ω2; in
MRI, the SNR increases in proportion to the field strength.

As the reconstructed image is complex valued, it is customary to display the
magnitude rather than the real component. Doing so, however, has some conse-
quences on the noise properties. In regions where the signal is much larger than
the noise, the Gaussian approximation is valid. However, in regions where the
signal is low, rectification causes the noise to assume a Raleigh distribution,
see [26]. Random complex numbers whose real and imaginary components
are independently and identically distributed Gaussian with equal variance
and zero mean. In that case, the absolute value of the complex number is
Rayleigh-distributed, which has the following probability density function

fX(x;σ) =
x

σ2
e
−(x2)

2σ2 , (1.37)

Let be Nr and Ni the noise in the real and imaginary channels, when the signal
is large compared to noise, one finds that the variance σ2

m = σ2, In the other
extreme of nearly zero signal, one obtains for the mean and variance,

µ(X) = σ

√
π

2
∼= 1.253σ, (1.38)

σ2(X) = σ2(4− π

2
) ∼= 0.655σ2, (1.39)

Of particular practical significance is the SNR dependence on the imaging
parameters. The voxel noise variance is reduced by the total number of samples
collected during the data acquisition process, i.e.

σ2
m =

σ2

N
, (1.40)

where N = NxNy in a 2d spin-warp experiment. Incorporating the contribu-
tions to thermal noise variance we obtain u = 4NkBTR∆,

σ2
m =

4kBTR∆ν

NxNyNavg
. (1.41)

Here Navg is the number of signal averages collected at each phase-encoding
step. We obtain a simple formula for SNR per voxel of volume ∆V = ∆x∆ydz,

SNR = Cρ∆x∆ydz

√
NxNyNavg

4kBTR∆ν
, (1.42)
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where ∆x; ∆y are defined in 1.31, dz is the thickness of the slab selected by
the sliceselective RF pulse, and ρ denotes the spin density weighted by effects
determined by the (spatially varying) relaxation times T1 and T2 and the pulse
sequence timing parameters.

For advanced researches about SNR see [11].
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Chapter 2

The Bloch equation model
and the MRI process.

Time dependence of the macroscopic nuclear magnetization ~M under the in-
fluence of a magnetic flux density ~B is modelled by the following differential
equation proposed in 1946 by F. Bloch:

∂ ~M

∂t
= γ ~M× ~B − Mx~ı+My~

T2
− (Mz + τ0)~k

T1
(2.1)

where ~M = (Mx,My,Mz) denotes the components of the magnetisation ~M we
want to solve, T1 is the named ”longitudinal relaxation time”, ”spin-lattice
relaxation time” or ”thermal relaxation time” and T2 is known as the ” trans-
verse relaxation time” or ”spin-spin relaxation time”. T1 is the time constant
for regrowth of longitudinal magnetization (Mz) and T2 is the time constant
for decay/dephasing of transverse magnetization (Mxy). ~τ0 is the strength of
the equilibrium magnetisation.

This equation is valid during the resonance process as well as during the
relaxation process, provided that the correct form for the total magnetic
flux density ~B is taken. Show that ~B = ~B0 + ~B1 during the resonance process
and ~B = ~B0 during the relaxation process when the RF field is stopped. As
well, Bloch equation (2.1) is valid for time dependent fields and for whatever

perturbation fields ( ~B′),

~B = ~B0 + ~BG + ~B1 + ~B′ . (2.2)

31
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We denote the vector components of ~B as (Bx, By, Bz) and we consider the

magnet field ~B0 has (0, 0, B0) direction.

In the ideal case where no disturbance of the RF field
−→
B1 occurs, the

Bloch equation reduces to a ordinary differential equation (O.D.E.) system
with constant coefficients. Therefore the position of the magnetisation at the
end of the resonance process can be determined in a straightforward quickly
and with accuracy.

The differential equation system for Bloch equation is:
∂Mx(t)
∂t = γ(My(t)Bz(t)−Mz(t)By(t))− Mx(t)

T2
,

∂My(t)
∂t = γ(Mz(t)Bx(t)−Mx(t)Bz(t))− My(t)

T2
,

∂Mz(t)
∂t = γ(Mx(t)By(t)−My(t)Bx(t))− Mz(t)−τ0

T1
.

(2.3)

Therefore, defining τ1 = 1
T1

and τ2 = 1
T2

as ”relaxation rates”, the matrix form
of the Bloch equation system can be expressed as

∂

∂t

 Mx(t)
My(t)
Mz(t)

 =

 −τ2 γBz(t) −γBy(t)
−γBz(t) −τ2 γBx(t)
γBy(t) −γBx(t) −τ1

 Mx(t)
My(t)
Mz(t)

+

 0
0
τ1τ0

 ,

Thus, in matrix form the Bloch equation reads

∂M(t)

∂t
= A(t)M(t) + b, (2.4)

M(0) = M0, (2.5)

with

M =

 Mx(t)
My(t)
Mz(t)

 , A =

 −τ2 γBz −γBy(t)
−γBz −τ2 γBx(t)
γBy(t) −γBx(t) −τ1

 ,

b =

 0
0
τ1τ0

 , M0 =

 M0x

M0y

M0z

 .
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2.1 Magnitudes and domain.

Before assuming several hypothesis it is required to know the range and domain
of each one.

• B0 ∈ [1, 10] T. Superconducting scanner magnets are more and more
powerful, nowadays 3-5 Tesla is a standard level value for a supercon-
ducting magnet.

• M0 ∈ [−10, 10] T.

• τ0 ∈ [−10, 10] T.

• G ∈ [−0.05, 0.05] T/m and BG ∈ [−0.025, 0.025] T. We are interested
in create high gradient strengths for increasing constrast imaging.

• B1 ∈ [0.0001, 0.01] T. Remember that B1 is the magnetic field created
by the RF coils, which produce the RF signal and also can receive the
response signal.

• T1 ∈ [0.1, 2] s → τ1 ∈ [0.5, 10]. For biologial tissues with B0 = 1 T,
T1 = 750 ms for muscle and T1 = 250 ms for fat. T1 experimental value
for B0 = 1.5T B0 = 3T can be showed in tables, see Table 2.2.

• T2 ∈ [0.05, 0.5] s.→ τ2 ∈ [2, 20]. For biologial tissues with B0 = 1 T,
T2 = 50 ms for muscle and T2 = 80 ms for fat).T2 experimental value for
B0 = 1.5T B0 = 3T can be showed in tables, see Table 2.2.

• γ (giroscopic constat for hidrogen) = 42.58 MHz/T, thus ω0 ∈ [42.575 ·
106, 212.875 · 106] Hz. Remember that ω0 depends of the B0 magnet
field, see equation 1.1.

2.2 Decay and recovery times. T1 and T2.

Longitudinal, T1, and transverse, T2, relaxation time measurements are rele-
vant in understanding water molecular dynamics in biologic systems. T1 and
T2 relaxation time depend on the chemical and physical environments of water
protons in tissue. Moreover T1 and T2 provide quantitative assessment of tissue
pathology, in particular, they offer additional information about the processes
demyelination and axonal loss, inflammation, infarction, white matter edema,
tumor malignancy and ischemia. Both tissue relaxation parameter estimates
are important in designing MRI pulse sequences thataim to accentuate con-
trast between normal and pathological tissue.
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In the relaxation process Mxy(t) = M0e
− t
T2 and Mz(t) = M0(1− e−

t
T1 ), there-

fore T1 can be viewed as the time required for the z-component of M , (Mz), to
reach (1− 1

e ) or about 63% of its maximum value, M0. T2 is the time required
for the transverse magnetization to fall to approximately 37% (1

e ) of its initial
value, M0.
Figure 2.1 shows T1 and T2 graphical interpretation.

Figure 2.1: T1 and T2 parameters interpretation.

To explain the experimental methods for measuring the relaxation and mag-
netization transfer we will refer to [13] where they used the Carr-Purcell-
Meiboom-Gill (CPMG) sequence for calculating T1 and T2 into a 1.5T and
3T magnetic resonance equipment. In this article they expose several exper-
imental results that we are going to bear in mind and applied into Random
Bloch equation assuming that T1 and T2 are random variables:

1. T2 relaxation time was found to be independent of magnetic field (see
Table 2.2).The measured values at 3 and 1.5T showed no significant
differences within experimental error.

2. Longitudinal T1 relaxation times increase with the strength of the mag-
netic field. Thus, T1 depend on the applied ~B.

Lars G. Hanson, [9], exposed clearly that the difference between T1 and
T2 is due to a difference in the causes of relaxation. For the protons in firm
matter, the spins will rapidly be dephased after excitation, meaning that they
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Table 2.1: T2 and T1 Relaxation Times at 3T and 1.5T Measured at 37C, [13].
TISSUE T1[ms]-3T T2[ms]-3T

Blood 1932±85 275±50

Gray matter 1820±114 99±7

Muscle 1412±13 50±4

Liver 812±64 42±3

TISSUE T1[ms]-1.5T T2[ms]-1.5T

Blood 1441±120 290±30

Gray matter 1124±50 95±8

Muscle 1008±20 44±6

Liver 576±30 46±6

will point in all directions perpendicular to the field (have all kinds of phases).
This is caused by the small local contributions to the magnetic field that the
individual spins are making, and that make the neighbouring nuclei precess
at altered frequencies. In firm matter, these interactions are constant in time,
while they vary in fluids, since nuclei are constantly experiencing new neigh-
bours. Thus, the spins can remain in phase for relatively long (seconds) in
fluids, while they loose their common orientation in a matter of milliseconds
or less in firm matter. We can therefore conclude that T2 is short in firm
matter.

The described process affects the individual spins Larmor frequency, but does
not give rise to a change of the longitudinal magnetization, since the interaction
of just two nuclei cannot alter the combined energy, which is proportional to the
longitudinal magnetization. Therefore this type of nuclear interaction does not
contribute T1-relaxation that requires more drastic nuclear interactions that
involve an exchange of energy with the surroundings. All processes that result
in T1-relaxation also result in T2-relaxation, ensuring that T1 is never smaller
than T2.

Generally T2 becomes smaller with increasing firmness of the matter, but this
does not apply to T1, which is long in very firm matter and very fluid matter
(e.g., several seconds), but is short for semi-firm matter.

2.3 Inhomogeneity as a source of signal loss, T ∗2 .

Interactions between nuclei in the ever changing environment of molecules is
the cause of radio signal loss on a timescale T2 and longitudinal magnetization
recovery on a longer timescale T1. However, a loss of transversal magnetization
is also observed because of inhomogeneity in the field, B′, meaning variation
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in B0. As expressed through the Larmor-equation, the nuclei precess at a fre-
quency depending on the magnetic field. If this varies over the investigated
area, the nuclei will after some time, point in all directions transversally, even
if they had some degree of alignment after excitation. This process is called
dephasing.

Since the measured signal is proportional to the transversal net magnetization,
inhomogeneity gives rise to a loss of signal. The larger the field inhomogeneity,
the faster the dephasing. How quickly this happens in denoted by the time con-
stant T ∗2 (pronounced T2-star). The degree of inhomogeneity depends partly
on the scanners ability to deliver a uniform field (called a good ”shim”).T1 and
T2, are tissue-dependent parameters for which normal values are published.
This does not apply to T ∗2 values, since they depend, for example, on the size
of the voxel since the inhomogeneity increases with this.

Loss of signal due to interactions of nuclei is irreversible, but through a sly
trick, signal lost due to inhomogeneity can be recovered. The inverse process of
dephasing is called refocusing, and it involves gradual re-alignment of nuclei in
the transversal plane. Refocusing is triggered by repeated use of radio waves.
The recovered signal is known as an echo.

Figure 2.2 shows the graphical interpretation of T ∗2 .

Figure 2.2: T ∗2 lost of signal.
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Bloch equation in the
relaxation process.

Remember the Bloch equation in matrix form:

∂ ~M(t)

∂t
= A(t) ~M(t) +~b, (3.1)

~M(0) = ~M0. (3.2)

Let us mention that during the relaxation process, the RF field ~B1 is
stopped ( ~B1 = 0) and observe that if no perturbation fields are present ( ~B′ = 0)
the matrix A(t) is reduced to the constant matrix A,

A =

 −τ2 γB0 0
−γB0 −τ2 0

0 0 −τ1

 , ~b =

 0
0
τ1τ0

 , (3.3)

with

~M =

 Mx(t)
My(t)
Mz(t)

 , ~M0 =

 M0x

M0y

M0z

 ,
τ1 = 1

T1
,

τ2 = 1
T2
.

37
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3.1 Analytical solution into the relaxation process.

The equation differential system (3.1 and 3.2) can be solved analytically using
standard results from differential equations theory [23]. Thus we obtain the
eigenvalues which result in one real and two complex:

λ0 = −τ1,
λ1 = −τ2 − iγB0,
λ2 = −τ2 + iγB0,

(3.4)

and the eigenvectors associated to the three eigenvalues λ0, λ1, λ2 are

~v0 =

0
0
1

 , ~v1 =

i1
0

 , ~v2 =

−i1
0

 .

The solution to the homogeneous differential system associated to (3.1) and
(3.2) is: ~Mh(t) = C0e

λ0t~v0 + C1e
λ1t~v1 + C2e

λ2t~v2 with (C0, C1, C2) ∈ C3.

The solution of the magnetization vector during the relaxation process is an
explicit and known solution and is given by

M =

 e−τ2t(C1 cos(ω0t) + C2 sin(ω0t))
e−τ2t(C2 cos(ω0t)− C1 sin(ω0t))

M0 − C3e
−τ1t

 , (3.5)

where the constants C1, C2 and C3 are determined by the value of the mag-
netization vector at the beginning of the relaxation process.

We take the following initial conditions,

~B =

 Bx(t)
By(t)
Bz(t)

 =

 0
0
B0

 , ~M0(0) =

 0
M0

0

 ,

and the analytical solution is:

Mx(t) = M0 exp−tτ2 sin (tγB0),
My(t) = M0 exp−tτ2 cos (tγB0),

Mz(t) = τ0(1− exp−tτ1).
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The strength of the transversal magnetization is defined as Mxy = ‖Mx(t) +
iMy(t)‖ and represent the decay process (transverse magnetization value) and
Mz(t) represent the recovery process (longitudinal magnetization),

Mxy(t) = M0 exp−tτ2 ,
Mz(t) = τ0(1− exp−tτ1).

(3.6)

As we show in Figures 3.2 and 3.1, the magnetisation field movement ~M(t) is
like an inverse spiral which has the origin on plane xy and the end aligned to
the magnetic field ~B0.

These equations predict that ~M will exhibit a spiraling precession around
~B0 at the Larmor frequency with decay of transverse components back to zero
and regrowth of the longitudinal component to its original maximum value
M0. Because T2 is always shorter than T1, the transverse components typi-
cally decay completely before the longitudinal magnetization is fully restored.

Thus, we solve the Bloch equation with Mathematica software for different
tissues. Defining the particular and real values for the relaxation process :

• B0 = 3 T.

• M0 = 3 T.

• τ0 = M0 T.

• γ (giroscopic constat for hidrogen) = 42.58 MHz/T.

Figure 3.1 shows graphical interpretation for the Mxy decay time T2 and Mz

recovery time T1 of the magnetization vector into the relaxation process.

Figure 3.2 shows graphical interpretation for the ~M magnetization vector and
Mxy decay movement located on xy-plane into the relaxation process.

Figure 3.3 shows graphical interpretation for the ~M for several tissues (with
different T1 and T2) of the magnetization vector into the relaxation process.

Figure 3.4 shows graphical interpretation for the transversal Mxy vector for
several tissues (with different T2) into the relaxation process.

And Figure 3.5 shows Mxy(t) and Mz(t) all together.
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(a) Mx(t),My(t),Mz(t).

(b) Mxy(t),Mz(t).

Figure 3.1: Mx, My, Mxy decay time T2 and Mz recovery time T1.
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(a) ~M(t).

(b) ~M(t) and Mxy(t).

Figure 3.2: Magnetization movement vector at relaxation process.
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(a) ~M(t) and Mxy(t)-muscle.

(b) ~M(t) and Mxy(t)-graymatter.

(c) ~M(t) and Mxy(t)-blood.

Figure 3.3: Magnetization movement vector at relaxation process for several
tissues.
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(a) Mxy(t)-muscle. (b) Mxy(t)-graymatter.

(c) Mxy(t)-blood. (d) Mxy(t) all together.

Figure 3.4: Transversal magnetization vector at relaxation process for several
tissues.

(a) Mxy(t) and My(t).

Figure 3.5: Transversal and longitudinal magnetization vector in the relaxation
process for several tissues.
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Chapter 4

Bloch equation in the
radio-frequency pulse process.

Remember the Bloch equation in matrix form:

∂ ~M(t)

∂t
= A(t) ~M(t) +~b, (4.1)

~M(0) = ~M0. (4.2)

During the RF pulse ~B1 is not a null value (‖ ~B1‖ 6= 0) and the main mag-
netic field of the magnet is activated ( ~B0). We observe that if no perturbation
fields and gradient are present the matrix A(t) is reduced to:

A =

 −τ2 γB0 −γBy(t)
−γB0 −τ2 γBx(t)
γBy(t) −γBx(t) −τ1

 , ~b =

 0
0
τ1τ0

 , (4.3)

with

~M =

 Mx(t)
My(t)
Mz(t)

 , ~M0 =

 M0x

M0y

M0z

 , ~B1 =

 B1 cos(ω1t)
−B1 sin(ω1t)

0

 .

45
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Thus, matrix A could be written as:

A =

 −τ2 γB0 γB1 sin(ω1t)
−γB0 −τ2 γB1 cos(ω1t)

−γB1 sin(ω1t) −γB1 cos(ω1t) −τ1

 . (4.4)

We are going to define the Ã matrix form. In this way we will introduce the
rotation frame and the laboratory frame.

Definition 5. Laboratory and rotation frame of reference.

We denote the laboratory frame of reference a coordinate frame whose ref-
erence point in a fixed Cartesian coordinate system. It is represented with the
orthonormal vectors (~x, ~y, ~z).

We denote the rotation frame of reference a coordinate frame of reference
that rotates with the magnetization vector whirling at a Larmor frequency, ω0.
It is represented with the orthonormal vectors (~e1, ~e2, ~z). A frequency rotating
clockwise correspond positive frequencies.

S. Balac and L. Chupin [1] proposed to split the A matrix into a product
of two different matrix’s. In this way the coefficients a12 = a21 = γB0 are of
magnitude ≈ 106 whereas the others are of magnitude ≈ 1 (see Section 2.1).

Definition 6. We define ~M(t) = R(t)~m(t), with R(t) the following orthonor-
mal and so on, invertible matrix rotation around axe z.

R =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 , (4.5)

then ~m = (m1,m2,m3)T satisfies the generalised differential system:

R(t)
∂ ~m

∂t
=

(
A(t)R(t)− ∂R

∂t

)
~m(t) +~b.

Since R−1~b = ~b, then
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∂ ~m

∂t
= Ã(t)~m(t) +~b, (4.6)

~m(0) = ~m0. (4.7)

Ã(t) =

(
A(t)R(t)− ∂R

∂t

)
=

 −τ2 0 −ωa(t)
0 −τ2 ωb(t)

ωa(t) −ωb(t) −τ1

 , (4.8)

with
ωa(t) = γBy(t) cos(ω0t) + γBx(t)sin(ω0t),
ωb(t) = γBx(t) cos(ω0t)− γBy(t)sin(ω0t).

(4.9)

As ωa and ωb are regular functions os time, by Cauchy-Lipschitz theorem (see
[23]) that the first order linear differential system (equations 4.6 and 4.7) has
unique solution under the initial condition ~m(0) = ~m0 = ~M0.

4.1 Analytical solution of Bloch equation in the RF
process.

Let us observe that without RF perturbation (‖ ~B′‖ = 0) and as a consequence
of the previous magnitude values, since B0 is greater than B1, it is possible
to assume that Bz ' B0. Then matrix’s A(t) and b reduce to the following
constant matrix’s

A =

 −τ2 γB0 −γBy(t)
γB0 −τ2 γBx(t)
γBy(t) −γBx(t) −τ1

 , (4.10)

Let us assume the RF pulse has the form

~B1(t) = B1 cos(ω0t)~x−B1 sin(ω0t)~y. (4.11)

The Larmor frequency ω0 is the frequency we want to send out into the scanner
with an RF pulse ( ~B1) so that the signal energy produced by the hydrogen
protons reaches its maximum value.
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Let us observe that without RF perturbation, the matrix Ã(t) reduces to
the following constant matrix

Ã =

 −τ2 0 0
0 −τ2 ω1

0 −ω1 −τ1

 , (4.12)

where ω1 = γB1, and the differential system (4.6) with initial condition (4.7)
can be solved analytically using standard results from differential equations
theory [23]. Thus we obtain the eigenvalues which result in one real and two
imaginaries: 

λ0 = −τ2,

λ1 = −1
2(τ1 + τ2) + 1

2 i
√

4ω2
1 − (τ1 − τ2)2,

λ2 = −1
2(τ1 + τ2)− 1

2 i
√

4ω2
1 − (τ1 − τ2)2.

(4.13)

We can show that 4ω2
1−(τ1−τ2)2 is always a positive value (ω1 >>> τ1, τ2)

and the eigenvectors associated to the three eigenvalues λ0, λ1, λ2 are

~v0 =

1
0
0

 , ~v1 =

 0
−τ1 + λ1

−ω1

 , ~v2 =

 0
−τ1 + λ2

−ω1

 .

The solution to the homogeneous differential system associated to equation
4.6 is: ~mh(t) = C0e

λ0t~v0 + C1e
λ1t~v1 + C2e

λ2t~v2 with (C0, C1, C2) ∈ C3;

whereas a particular solution (for t = 0) is

mp(t) =

 0
− ω1τ1
τ1τ2+ω2

1
M0

− τ1τ2
τ1τ2+ω2

1
M0

 .

The global solution to the differential system (4.6)-(4.7) is then m(t) = mh(t)+
mp(t) where the constants C0, C1 and C2 are determined through the initial
magnetization value M̃0. We supposed M̃0 = (0, 0, τ0), thus

C0 = 0,

C1 = 1
λ1−λ2

( ω1τ1τ0
τ1τ2+ω2

1
− τ1τ0τ2(τ1+λ2)

ω1(τ1τ2+ω2
1)

),

C2 = τ1τ0τ2(τ1+λ2)
ω1(τ1τ2+ω2

1)
− C1.

(4.14)
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If we compare the physical magnitude of τ1 given in (10), τ2 given in (50)
with ω1 magnitude value (106), we show that it is possible to neglect τ1 and
τ2, thus 

λ0 = −τ2,
λ1 = −1

2(τ1 + τ2) + iω1,
λ2 = −1

2(τ1 + τ2)− iω1,
(4.15)

and the ~m(t) solution for system of differential equations (4.6) for ~M0 =
(0, 0, τ0) can be expressed as

~m(t) =

 0
τ0 sin(ω1t)
τ0 cos(ω1t)

 . (4.16)

Figure 4.2 shows the error value between taking exact solution and approxi-
mation. This error was calculated as ~m(t)− ~map(t). m(t) solution can be in-
terpreted as a rotation around the x axis with an angular frequency ω1 = γB0.

The magnetization vector start to flip out of the z axis from its equilibrium
position M0 = τ0~z under the influence of the RF field (~B1). The angle between
the magnetization vector and the z axis is a function of time and is defined as
flip angle, θ = ω1t.

There are two flip angles commonly used in MRI θ = π
2 and θ = π both

can be obtained when we applied a RF magnetic field during TRF = π
2ω1

and
TRF = π

ω1
. Then, if we applied a high RF perturbation frequency ω1, which is

equal to γB0, we will reduce the time to take lecture of the RF signal and the
process become more efficient.

Consequently, we can calculate the global solution for the magnetisation
vector as M(t) = R(t)m(t) (see Definition 6), thus

M =

 cos(ω0t) sin(ω0t) 0
− sin(ω0t) cos(ω0t) 0

0 0 1

 0
τ0 sin(ω1t)
τ0 sin(ω1t)

 =

 τ0 sin(ω1t) sin(ω0t)
τ0 sin(ω1t)
τ0 sin(ω1t)

 ,

then

M =

 τ0 sin(ω1t) sin(ω0t)
τ0 sin(ω1t) cos(ω0t)

τ0 cos(ω1t)

 . (4.17)
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Figure 4.1 shows graphical interpretation for ~m vector into the RF process
for an angle of θ = π

2 and θ = π.



4.1. ANALYTICAL SOLUTIONOF BLOCH EQUATION IN THE RF PROCESS.51

(a) mz(t),me2(t)-muscle. (b) mz(t),me2(t)-muscle.

(c) mz(t),me1(t),me2(t)-muscle.

Figure 4.1: Magnetization vector into the RF process. θ = π
2 and θ = π.
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Figure 4.2 shows the ~m(t) vector into the RF process for a flip angle θ.

(a) mz(t),me2(t)-muscle. (b) mz(t),me2(t)-error.

Figure 4.2: Magnetization vector mz and me2 into the RF process. θ = π
2 and

θ = π.

Figure 4.3 shows ~m and error (~m(t)− ~map(t)) for θ = π
2 and θ = π.

(a) mz(t),me2(t)-muscle. (b) mz(t),me2(t)-muscle.

Figure 4.3: Magnetization mz(t) and me2(t) and error ~m − ~map into the RF
process.
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Figure 4.4 shows magnetization ~M approximation into the RF process for
an angle of θ = π

2 and θ = π for different B1 magnitudes.

(a) Mz(t),Me1(t),Me2(t). (b) Mz(t),Me1(t),Me2(t).

(c) Mz(t),Me1(t),Me2(t). (d) Mz(t),Me1(t),Me2(t).

Figure 4.4: Magnetization vector ~M for different B1 RF amplitude process.
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Chapter 5

Recent research trends.

For solving an ODE system such as equation (2.1), multiple numerical meth-
ods have been proposed and are widely available in the literature. If the RF
excitation field amplitude, phases and magnetic field gradients are constant
and smooth, and there are not eddy currents fields nor inhomogeneities which
are not present, the Bloch equations are a linear ODE system with constant
coefficients. In this conditions different analytical solutions are available for
solving Bloch equations for MR experiments [23, 24, 25].

In a previous studies several authors used explicit 4−5th order adaptive Runge-
Kutta (RK45) for Bloch equations simulations.

In contrast, non linear equations are complex problems and require much more
efforts. S. Balac and L. Chupin [1] published a method for solving non linear
differential Bloch equation with an analytical approach for non-homogeneous
fields due to eddy currents. We expose this method in section 5.1.

But one of the greatest problems is to solve the magnetization transport phe-
nomena. In order to study the effect of fluid flow in a MRI experiment, the
transport of magnetizations due to flow field u(t, ~r) must be taken into account
and is modelled by the modified and well-posed Bloch equation:

∂ ~M

∂t
+ (~u · ∇) ~M = γ ~M× ~B − Mx~x+My~y

T2
− (Mz + τ0)~z

T1
. (5.1)

The modified Bloch model was solved using multiple numerical strategies
previously e.g., Jou et al. [30], first solved the flow field in a computational
mesh using finite volume method (FVM) softwares and then studied the effect

55
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of flow on magnetization using finite difference method (FDM).

As A. Hazra exposed in its doctoral programme [10], multiple utilities of nu-
merical simulations have been combined to produce a few general purpose MRI
simulators. Accurate simulation of this initial-value problem is still challenging
for the following reasons: very tiny time steps, sufficiently fine spatial resolu-
tion, and non-smooth data (e.g. gradient field G). To overcome this difficulty,
the execution speeds were improved using parallelization with message passing
interface (MPI)[27] or graphic process unit (GPU) [28].

Jurczuk etal. [15] solved equation 5.1 by splitting the transport and the
MR terms [29]. In their work, the magnetization transport was calculated
using lattice-Boltzmann method (LBM) and the reaction part was calculated
using operator splitting techniques.

A semi-analytical technique based on operator splitting [29] has the follow-
ing advantages [10]:

• different numerical methods can be used to treat different sub-problems
with optimal numerical methods for the each subproblems.

• it is easy to change numerical algorithms for different sub-problems in
order to achieve improvements of the codes.

• different time-scales can be used to resolve different subproblems which
helps in reducing computational load. In many cases, the splitting pro-
cedure leads to better parallel implementation.

However, these initial studies lack a proper analysis of the Bloch model for
flowing objects. A. Hazra [10] proved the well-posedness of the modified Bloch
model and the spatial semi-discretization with Discontinuous Galerkin for-
mulation. The basic idea of this method is exposed in section 5.2.

5.1 Dealing with perturbation fields.

Under RF field perturbations the Bloch equation can not be reduced to a ODE
system with constant coefficients in an appropriate frame and neither it is not
possible to compute analytically. It means that for each voxel the Bloch equa-
tion needs to be solved using a numerical discretization scheme and it is then
enough costly to obtain a good resolution image.



5.1. DEALING WITH PERTURBATION FIELDS. 57

Therefore, under perturbations the matrix A is not constant and solving the
differential system becomes inefficient. We want to stand out the fact that the
more time we expend in solve the Bloch equation the more time we waste in
interpreting artifacts and recover the scanner investment.

As we show in equation (2.2), it is possible to express the total magnetic

field as ~B = ~B0 + ~BG + ~B1 + ~B′ and we can also split up perturbation fields,
~B
′
, in four different perturbation fields depending on their origin behaviour:

~B′ = ~B
′
0 + ~B

′
G + ~B

′
1+

−→
B′E , (5.2)

where notation is:

• ~B
′
0 = (B

′
0x, B

′
0y, B

′
0z), represents the magnetic field perturbations gen-

erated by the magnet, due to its physical inhomogeneities and depends
basically on the production processes and its precise installation require-
ments.

• ~BG
′

= (B
′
Gx, B

′
Gy, B

′
Gz), represents the magnetic field perturbations gen-

erated by the action of the coil gradients located inside the scanner.

• ~B1

′

= (B
′
1x, B

′
1y, B

′
1z), represents the magnetic field perturbations gen-

erated by the RF pulses.

• ~B
′
E = (B

′
Ex, B

′
Ey, B

′
Ez), represents the magnetic field perturbations gen-

erated by whatever external elements o physical phenomena located out-
side the magnet or the scan room. Usually, they are due to high variations
of intensity on wires (e.g. when a TAG is located near the MRI room)
or even with traffic of undergrounds or trains near the hospital.

Faraday’s law (equation 1.15) states that the electromotive force ε(t) is also
given by the rate of change of the magnetic flow.

Therefore, this ε(t) generates eddy currents which induce magnetic fields
associated to them and perturb the initial magnetic fields created by the MRI.
The conductive material in which eddy currents are induced may be any metal-
lic component of the MRI scanner (other coils, shields, tubes, and housing),
wires or devices within the patient.

Within the MRI scanner, eddy currents are induced any nearby conducting
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media, which include inside the gradient coils themselves, the main magnet
and shim coil windings, cryoshields, liquid helium vessel, and RF shields. Eddy
currents create new magnetic fields which caused two undesired phenomena:
unwanted time-varying gradients and shifts in the main magnetic field (~B0).

As per Faraday’s Law, the magnitude of eddy currents depends on the rate
of change of the inciting magnetic field. Thus fast imaging sequences (where
gradients are pulsed on and off quickly and where RF pulses are on-off repeat-
edly) produce the largest and most severe eddy current problems.

Several techniques are available to minimize the effects of eddy currents :

1. design methods that interrupt potential current loops (e.g. use of slotted
coils and shields into the scanner),

2. passive shields or coils installed into the scanner room to compensate
external perturbation (e.g to compensate traffic signals);

3. active shielding of gradients (secondary coils outside to constrain mag-
netic flux changes induced by primary gradients);

4. pre-emphasis (modifying the input current to the gradients to account
for expected eddy-current distortions); or

5. image post-processing (to correct for spatial non linearities and fre-
quency/phase shifts due to eddy currents).

The first four techniques could be physically made by modifying the magnet,
gradients or RF coils and the last one by solving the associated non-linear
differential Bloch equation system which corrects the artifacts and shows the
true images.

In this way S.Balac and L. Chupin [1] presented in 2007 an original method
to compute solution ~M to the Bloch equation under RF field inhomogeneities

(only for ~B
′
1 originated just by Eddy currents) at a given time T directly, with-

out any discretisation of the time interval [0, T ]. The method is based on a
series expansion of the solution. Through those transform, the Bloch equation
is changed of into an infinite ODE’s system with constant coefficients.

We are going to review this method.
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The RF field perturbation vector components generated by eddy currents
due to a ~B1 RF signal with ω1 = γ‖ ~B1‖ frequency is given in a general case
by

~B
′
1(r, t) = ((u1(r) cos(ω0t) + v1(r) sin(ω0t)) ~x +

((u2(r) cos(ω0t) + v2(r) sin(ω0t)) ~y +

((u3(r) cos(ω0t) + v3(r) sin(ω0t))~z,

(5.3)

where ui, vi i = 1, 2, 3 are unknown values and ω0 is the perturbation fre-
quency which is the same as ~B1 because the eddy current effects has the same
frequency as the magnetic field ~B1 has (see equations (4.11), (1.15), (1.16)).

According to Floquet theory [23], the fundamental solution X(t) for the
differential system (4.6) has the following expression:

X(t) = Q(t)etF , (5.4)

where Q(t) is a matrix with continuous and periodic (T0) coefficients and F is
a constant matrix. There are two ways of exploiting the Floquet structure of
X(t), the first one consist in performing a Fourier expansion of the fundamen-
tal solution, leading to an infinite system of linear differential equations with
constant coefficient. When the constant coefficients have adequate properties,
resolution of a truncated system furnishes an approximate solution. The sec-
ond approach is of perturbative nature and deals with the Floquet form by
expanding the two matrices Q and F as

Q(t) =

+∞∑
n=1

Qn(t), F =

+∞∑
n=1

Fn, (5.5)

where every term Fn is chosen in order to ensure the matrix Qn(t) is periodic
and in turn Qn(t) is fixed so as to guarantee the Floquet structure at any order
of truncation. S. Balac and L. Chupin [1] proposed approach not directly using
the Floquet form of a fundamental solution but exploiting some of the ideas of
them. First, let us observe that the matrix Ã(t) admits the following Fourier
decomposition:

Ã(t) =
Fourier

1∑
k=−1

e2ikω0t = A−2e
2iω0t +A0 +A2e

2iω0t,

with

A0 =

 −τ2 0 −ω(0)
a

0 −τ2 ω
(0)
b

−ω(0)
a ω

(0)
b −τ1

 ;A2 = Ā−2

 0 0 −ω(2)
a

0 0 ω
(2)
b

ω
(2)
a −ω(2)

b 0

 ;
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and

ω
(0)
a = 1

2γ(u2 + v1), ω
(2)
a = 1

4γ(v1 − u2 + i(u1 + v2)),

ω
(0)
b = 1

2γ(2B1 + u1 − v2), ω
(2)
b = 1

4γ(u1 + v2 + i(u2 + v1)),

and A2 = Ā−2 is the conjugate matrix of A2. As the solution m(t) of (3.1,3.2) is
not periodic it is not possible to compute it through its Fourier series expansion.
Thus, we look for a formal solution of the the following type:

m(t) =
∑
k∈Z

mk(t)e
2ikω0t (5.6)

which looks like a Fourier series expansion but with non constant coefficients
mk(t). This decomposition is not unique since no condition is imposed on the
functions mk. If we use the expansion (5.6) in the differential system (3.1,3.2)
we obtain ∑

k∈Z
rk(t)e

2ikω0t = 0,

rk(t) =
∂

∂t
mk(t)−

1∑
j=−1

A2jmk−j(t) + 2ikω0mk(t)− δkb,
(5.7)

with the sequence (δk)k given by δ0 = 1 and δk = 0 for k ∈ Z∗. Contrary to a
standard Fourier expansion, it can not be deduced that rk(t) = 0 for all k ∈ Z.
Nevertheless, if we can solve all equations rk(t) = 0 under appropiate initial
conditions so that the series

∑
k∈Z

mk(t)e
2ikω0t converges then the series expan-

sion m(t) as given by (5.6) will be solution of the differential system (3.1). If∑
k∈Z

mk(0) = M0 then m(t) will be the solution of the differential system (3.1)

under the initial condition m(0) = M0 (3.2).

S. Balac and L. Chupin [1] introduced a suitable mathematical framework
to proof theorem 1. Next, we will expose several theorem, lemma, corollary
and proposition. You are be able to show their proofs in [1].

Theorem 1. The following finite equation system

∀k ∈ Z


∂

∂t
mk(t) =

1∑
j=−1

A2jmk−j(t) + 2ikω0mk(t)− δkb,

mk(0) = M0,

(5.8)

admits a unique solution and that for a given time t the sequence (mk(t))k∈Z
converges very quickly towards zero when k tends to ±∞.
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The analysis of the behaviour of the solution to the sequence of differential
equations (5.8) will justify the fact that an approximation of the solution to
the Bloch equation can be computed by solving a truncated finite differential
system deduced from (5.8) by taking k ∈ {−N, ..., N}.

Definition 7. A given sequence (uk)k∈Z of vectors in C3 can be seen as an
infinite vector,denoted by U in the sequel, with the kth component given by
Uk = uk ∈ C3. It is denoted by `2(Z) the space summable series

`2(Z) = {U ∈ (C3)Z;
∑
k∈Z
|uk|2 < +∞}, (5.9)

and by `1(Z) denotes the corresponding space of absolute convergent series
where |uk| denotes the euclidean norm of uk in C3.

Definition 8. For any positive number p it is defined the following space of
weighted square summable series:

`2p(Z) = {U ∈ `2(Z);
∑
k∈Z

(k2p + 1)|uk|2 < +∞}.

This space is equipped with the scalar product <,>`2p(Z) and its associated norm

‖U‖`2p(Z) defined as follows: for U ,V ∈ `2p(Z)

〈U ,V〉`2p(Z) =
∑
k∈Z

(k2p + 1)(uk · vk) and ‖U‖2`2(Z) = 〈U ,U〉`2(Z).

Definition 9. It is also introduced the space of fast decreasing series
defined by

`2∞(Z) = ∩
p∈N

`2p(Z).

Lemma 1. The spaces `2p(Z) have the following properties

1. `20(Z) = `2(Z) and ‖U‖2`20(Z) =
√

2‖U‖2`2(Z) for all U ∈ `20(Z).

2. The inclusion `2p(Z) ⊂ `2q(Z) holds for all (p, q) ∈ (R+)2 with p ≥ q and

we have ‖U‖2`2q(Z) ≤ ‖U‖
2
`2p(Z) for all U ∈ `2p(Z).

3. The inclusion `2p(Z) ⊂ `1(Z) holds for all (p > 1) and we have ‖U‖2`1(Z) ≤√
1 + 2ζ(2p)‖U‖2`2p(Z) for all U ∈ `2p(Z) where ζ is the Riemann function.
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4. If S denote the shift operator on `2(Z) defined by (SU)k = uk−1 for all
k ∈ Z then for all p ∈ N we have

‖SU‖2`2p(Z) ≤ 2p‖U‖2`2p(Z) and ‖S−1U‖2`2p(Z) ≤ 2p‖U‖2`2p(Z).

Proposition 1. There exists a unique solution U ∈ C∞(Z+, `2∞(Z)) to the
differential system {

∂

∂t
U(t) = A(t)U(t) + B,

U(0) =M(0),
(5.10)

where linear operator A(t) is time dependant and defined using the shift oper-
ator S and the identity I in `2(Z) as follow

A(t) = A2e
2iω0tS +A0 +A−2e

2iω0tS−1.

Moreover, for all p ∈ N and for all t ∈ R+, the solution satisfies

‖U(t)‖`2p(Z)≤ eCp(t)|M0|+ (eCp(t) − 1) |b|Cp ,

where Cp = 2p+1‖A2‖+‖A0‖ is a constant.

Corollary 1. There exists a unique solution (mk)k∈Z to the system of
differential equations (5.8); it satisfies

∀t ∈ R+ + ∀p ∈ N (mk(t))k∈Z ∈ Z,

i.e. mk(t) tends towards zero as k tends to ±∞ faster than any power of 1/k.

Proposition 2. About the asymptotic behaviour: the sequence of functions
(E [N ])N∈N where E [N ] : t ∈ R+ 7→ U(t)−U [N ](t) belongs to L∞loc(R+; `2∞(N, `2∞(Z))).
This means that for any t ∈ R+, the sequence of complex vectors (E [N ](t))N∈N
tends towards zero faster than any power of 1/N . In other words, for all
t ∈ R+ the sequence U [N ](t) converges very quickly to U(t) as N tends to
infinity.

Corollary 2. We can see an overview of the accuracy and efficiency of the of
the method:

B0 = 1T,B1 = 10−3T,M0 = 1,
T1 = 750ms, T2 = 50ms and θ = π

2 .

WITHOUT PERTURBATIONS

Comparison of accuracy and CPU times for 163 executions [1].
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N=0 N=1 N=2 N=3 ode45
CPU seconds 3.82 9.17 17.56 29.53 69.21

Error % 0.0089 0.0089 0.0089 0.0089 0.01

WITH RF PERTURBATIONS

N=0 N=1 N=2
Seconds 4.36 12.1 25.97
Mx -0.24326287201152 -.24326289631217 -.24326289631192

My 0.96630713580637 0.96630713685089 0.96630713685049

Mz 0.07993334331631 0.07993336879906 0.07993336879932

Corollary 3. The evolution of the magnetization vector m under the assump-
tion that τ1 and τ2 can be neglected compared to ω1 and the solution m[0] to
(5.8) under the initial condition ~M0 = M0~z reads:

m[0] =

 −v1+u2
b M0 sin(αt)

2B1+u1−v2
b M0 sin(αt)
M0 sin(αt)

 , (5.11)

where b =
√

(2B1 + u1 − v2)2 + (v1 + u2)2, α = 1
2γb.

Figure 5.1 shows the comparison with and without considering the effect
of the RF perturbation magnetic field.

Figure 5.1: Comparison of the magnetisation vector evolution for a π/2 pulse
with and without RF perturbation [1].
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5.2 Well-posed Bloch equation under flow fields.

A. Hazra, G.Lube and H.G. Raumer [2] studied the modified Bloch problem as
a model of MRI for flowing spins in an incompressible flow field. They estab-
lished the well-posedness of the corresponding evolution problem and analyse
its spatial semi-discretization using discontinuous Galerkin methods.

Due to signal demodulation, see equation (1.27), the signal acquired from the
object in an MRI process is equivalent to an equation where magnetizations
M
′

and the magnetic field

~Beff (t) = Bx(t)~e1 +By(t)~e2 +Bz(t)~z,
~M
′
(t) = M ′x(t)~e1 +M ′y(t)~e2 +Mz(t)~z,

Bz(t) = G(t) · r,
(5.12)

are written in the rotation frame but with velocity ~u(t, r) kept in the laboratory
frame. In order to study the effect of fluid flow in MRI, the transport of the
magnetization due to flow field ~u(t, r) must be taken into account and equation
5.1 becomes:

∂ ~M ′

∂t
+ (~u · ∇) ~M

′
= γ ~M

′× ~Beff −
M
′
x~e1 +M

′
y~e2

T2
− (Mz + τ0)~z

T1
. (5.13)

For notational simplicity, authors usually omit the ’. Hereafter magnetization
~M will always be expressed in the rotating frame and the velocity, ~u rep-

resents the velocity of the magnetic flow field in the laboratory frame. This
equation assumes that no diffusion term exist as effect of diffusion is negligible.

A. Hazra, G. Lube and H.G. Raumer [2] define in their work the well-posedness
of the Bloch equation, therefore problem (5.13) can be rewritten with appro-
priate boundary and initial condition. Let show the main ideas of their work.

Proposition 3. Well-posedness of the Bloch model.
Let Ω ⊂ R3 be the flow domain with piecewise smooth Lipschitz boundary Γ
and outer normal n. The compressible flow field u(t, r) introduces the splitting
Γ = Γ− ∪ Γ+ ∪ Γ0 where Γ− = {r ∈ Γ|u · n < 0},Γ+ = {r ∈ Γ|u · n > 0}
and Γ0 = {r ∈ Γ|u · n = 0} represent the inflow boundary, outflow boundary
and solid wall, respectively. We assume that inflow and outflow are separated,
dist(Γ−,Γ+) := min(P,Q)∈Γ−×Γ+

|P−Q| > 0 ,see figure (5.2). Then differential
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system (5.13) can be written as
∂M

∂t
+ (u · ∇)M + γB×M +DM = f , (t, r) ∈ [0, T ]× Ω,

M = MΓ, (t, r) ∈ [0, T ]× Γ−,
M = M0, (t, r) ∈ {0} × Ω,

(5.14)
where Beff = B = (Bx, By, Bz)

T , D = diag(τ2, τ2, τ1) and the constant source
term f = (0, 0, τ1τ0)T .

Figure 5.2: Leipzig Boundary
condition assumptions [2].

Under this new variational model, A.
Hazra, G.Lube and H.G. Raumer [2] anal-
yse its spatial semi-discretization using dis-
continuous Galerkin methods and es-
tablished the error estimates. An explicit
Runge-Kutta method and an operator
splitting between advection and magneti-
zation can be applied. They made a nu-
merical experiment for validating this ap-
proximation and the computation can be
strongly accelerated via GPU comput-
ing.

Consider the space H := [L2(Ω)]3 with inner product (u,v)H :=
∫

Ω u · vdr,
norm ‖v‖H :=

√
(v, v) and defining the space

X = {N ∈ H : (u · ∇)N ∈ H}, (5.15)

with graph norm

‖N‖X :=
(
‖(u · ∇)N‖2H + ‖N‖2H

) 1
2 . (5.16)

Multiplying 5.14 by arbitrary test function N ∈ X, integrating over Ω and
imposing weakly it is possible to obtain

Definition 10. Variational form of the Bloch equation [2].
The variational formulation of the Bloch problem treat to find M : (0, T ]→ X

s.t. {
(∂tM,N)H + a(t; M,N) = l(N), ∀N ∈ X,

M|t=0 = M0,
. (5.17)
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where (5.17) is a Friedrichs system (see [31], section 7). Unfortunately,
theory is not applicable since some coefficients are time-dependent.Therefore
we set for 0 < ε� 1 Xε := [W 1,2(Ω)]3

Definition 11. Considering an elliptic regularization [2].
Then the variational formulation of the Bloch problem treat to find Mε :

(0, T ]→ Xε s.t.{
(∂tMε,N)H + aε(t; Mε,N) = l(N), ∀N ∈ Xε,

Mε|t=0 = M0,
(5.18)

with
aε(t; M,N) := a(t; M,N) + ε(∇M,∇N)H (5.19)

It’s noted that variational formulation of the regularized Bloch problem
incorporates do-nothing boundary conditions ε∇Mε · n = 0 on Γ0 ∪ Γ+.

Theorem 2. Well posed problem.
For all ε > 0, for given u ∈ [L∞(0, T ;W 1,∞(Ω))] with div u = 0 and B ∈

[L∞(0, T ;H)]3, there exists a unique solution Mε ∈ L∞(0, T ;H)∩L2(0, T ;Xε)
to problem (5.18). For t ∈ (0, T ] and with σ := τ1, the following a-priori
estimate is valid

1

2
‖Mε(t)‖2H +

∫ t

0
eσ(τ−t)

[
ε‖∇Mε(τ)‖2H +

1

2

∫
Γ
|(u · n)|(Mε ·Mε)(s, τ)ds

]
dτ

≤ 1

2
‖Mε(0)‖2He−σt +

1

2σ

∫ t

0
‖f(τ)‖2Heσ(τ−t)dτ.

Finally, it is possible to pass to the limit ε→ +0, i.e. to the Bloch model.

Theorem 3. Well posed problem. ε→ +0.
The variational Bloch model equation (5.17) admits a unique solution M ∈
L∞(0, T ;H) ∩ L2(0, T ;X). The kinetic energy of the magetic field is bounded
by:

1

2
‖M(t)‖2H +

∫ t

0
eσ(τ−t)

[∫
Γ
|(u · n)|(M ·M)(s, τ)ds

]
dτ

≤ 1

2
‖M(0)‖2He−σt +

1

2σ

∫ t

0
‖f(τ)‖2Heσ(τ−t)dτ.

the result of Theorem 2 and a-priori estimate of last Theorem 3 remains
valid for case u = 0, i.e. Bloch equations for spacially stationary objects.
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The next step authors suggest is the use of discontinuous Galerkin finite ele-
ment method (dG-FEM) for a spatial discretization of the problem. In this
way it’s necessary to formulate the problem.

Notation. Discontinuous Galerkin formulation.

• admissible mesh Th := {Ωi}Ii=1 into complex simplicial subdomains {Ωi}
(see figure (5.3)).

• discontinuous FE space:

[Pk(Th)]d :=
{
Nh ∈ H;Nh|Ωi ∈ [Pk(Ωi)]

d ∀Ωi, I = 1, 2, · · · , I
}
,

where Pk denotes the set of polynomials of degree k ∈ N

• Xh = [Pk(Th)]d ∩X

• for adjacent subdomains Ωi,Ωj with interface E = Γij = Ω̄i ∩ Ω̄j and
unit normal vector nij define the average and jump of Nh ∈ X across
Γij by

〈Nh〉Γij (r) := 1
2(Nh|Ωi(r) +Nh|Ωj (r)),

[Nh]Γij (r) := Nh|Ωi(r)−Nh|Ωj (r),
(5.20)

• Let F ih be the set of all the interior interfaces E ⊆ Ω and define the
upwind form

Sh(t;M,N) :=
∑
E∈Fih

∫
E

(
−(u · nE)[M ] · 〈N〉+

1

2
|u · nE |[M ] · [N ]

)
ds.

• gradient jumps over the interior faces are penalized

pε(M,N) := ε̃
∑
E∈Fih

h2
E

∫
E
|u · nE |[∇M ]E : [∇N ]E ds, ε̃ ≥ 0.

• all the involving terms together

aupwε (t; M,N) := pε(M,N) + a(t; M,N) + Sh(t; M,N). (5.21)
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Figure 5.3: Left: 2D-simplicial mesh. Right: 1D-example of average and jump
operators. [2].

Thus, the transformed equation (5.18) shows

Corollary 4. upwind dG-FEM.
Then the upwind dG-FEM reads: find Mh : (0, T ]→ Xh.

(∂tMh,Nh)H + aupwε (t; Mh,Nh) = l(Nh), ∀Nh ∈ Xh, (5.22)

Definition 12. Let us define the norm ‖Nh‖U via

‖Nh‖2U := ε̃
∑
E∈Fih

h2
E

∫
E
|u · nE |‖[∇Nh]E‖2L2(E) +

1

2

∫
Γ
|u · n||Nh|2ds+

1

2

∑
E∈Fih

∫
E
|u · nE |[Nh]2Eds. (5.23)

Theorem 4. The semi-discrete problem (Corollary (4)) is well-posed
and admits the a-priori estimate.

1

2
‖Mh(t)‖2H +

∫ t

0
eσ(τ−t)|||Mh(τ)|||2Udτ

≤ 1

2
‖Mh(0)‖2He−σt +

1

2σ

∫ t

0
eσ(τ−t)‖f(τ)‖2Hdτ. (5.24)

The existence and uniqueness proof follows the lines of the proof of Theo-
rem 3 and application of the Gronwall lemma yields the a-priori estimate. See
[2] for a complete guidance.
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Theorem 5. Spatial discretization error MH − πhM with L2-ortogonal
projection M → πhM ∈ X.

1

2
‖M −Mh(t)‖2H +

1

2

∫ t

0
eσ(τ−t)|||(M −Mh)(τ)|||2Udτ

≤ 1

2
‖(M −Mh)(0)‖2He−σt +

∫ t

0
eσ(τ−t)(|||(M − πhM)(τ)|||2U,b

+δ‖(M − πhM)(τ)‖H + pε(M,M)(τ))dτ (5.25)

with δ := γ‖B‖L∞ + ‖D‖L∞ and

|||Ih|||2U,b := max
{

1; ‖u‖L∞(0,T ;W 1,∞(Ω))

}
|||Ih|||2U +

∑
T∈τh

‖u‖L∞(δT )‖Ih‖2L2(∂T ).

For smooth solution M ∈ L∞(0, T ; [W k+1,2(Ω)]3), the last term is of order
O(h2k+1).

For finish the article, authors [2] alluded to a temporal discretization, so
the starting point is the spatially discretize and find Mh : (0, T ] → Vh s.t
∀Nh ∈ Xh {

(∂tMh(t), Nh)H + aupwε (t;Mh(t), Nh) = l(Nh),
Mh(0) = Mh0.

(5.26)

But equation 5.26 have still several problems to deal with:

a) Multiscale character: magnetization much faster than advection.

b) Restricted temporal smoothness of data, in particular ~G = Gx~x+Gy~y+Gz~z.

To solve these problems we can applied the fully coupled approximation or the
operator splitting approach.

Definition 13. Fully coupled approximation.
Define a discrete operator Aupwε : X + Xh → Xh via (Aupwε (t)v, w)H :=
aupwε (t; v;w).
Let L be a functional (constant in time) on Xh with L = l(w).
We denote Mn

h = Mh(tn), etc..
Low-order explicit Runge-Kutta sheme on 0 = t0 < t1 < t2 < . . . tN with
time steps τn := tn+1 − tn, n = 0, 1, . . . , N − 1. Therefore,

Mn,1
h = Mn

h − τnAupwε Mn
h + τnL, (5.27)

Mn+1,1
h =

1

2
(Mn

h +Mn,1
h )− 1

2
τnA

upw
ε Mn,1

h +
1

2
τnL. (5.28)
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RK2-analysis provides in case of smooth data in time, an error of order O(τ2
n+

hk+ 1
2 ) with polynomial degree k of spatial discretization.

Definition 14. Operator splitting.
We can write semi-discrete problem (equation (5.26)) formally as a ODE-
system

dMh(t)

dt
= Fadv(t,Mh(t)) + Fmag(t,Mh(t)), (5.29)

with

Fadv(t,M) := −∇ · (uM),

Fmag := γB ×M +DM − f.

The simplest sequential operator splitting on tn ≤ t ≤ tn+1 gives

dM∗h(t)

dt
= Fadv(t,M

∗
h(t)), M∗h(t) = Mh(tn), (5.30)

dM∗∗h (t)

dt
= Fmag(t,M

∗∗
h (t)), M∗∗h (t) = M∗h(tn). (5.31)

An inspection of 5.30 shows for the splitting error at t = tn

εS =
1

2
τ2
n[
∂Fadv
∂M

Fmag −
∂Fmag
∂M

Fadv] +O(τ3
n). (5.32)

The commutation error [Fadv, Fmag] = ∂Fadv
∂M Fmag− ∂Fmag

∂M Fadv can be written as

[Fadv, Fmag] = (∇·u)[Fmag(t,Mh(t))−∂Fmag
∂t

(t,Mh)Mh(t)]+(u·∇r)Fmag(t,Mh).

Error vanished if either Fmag is independent of r and div u = 0 or Fmag is
independent of r and linear in Mh (this is not our case).
See that it is possible to apply a symmetric or Strang-Marchuk splitting which
reduces the splitting error to O(τ2

n).



Chapter 6

Introducing R.D.E.s into
Bloch model.

The aim of this chapter and second part of this work is to introduce the uncer-
tainty into the basic Bloch model and into the MRI process (equation 2.1). As
we already know, Bloch model was created under physical processes, in special
inside the magnetic and chemical spin-interactions. On one hand, we have
seen longitudinal T1 and transverse T2 magnetization times (see section 2.2,)
which have a strong relationship into Bloch equation due to the interactions
between nuclei and the environment of molecules, thus these magnitudes have
certain randomness due to the collision and interactions existing inside tissues.
In fact, the existence of T2 − start (T∗2) (see 2.3) invites us to introduce an
uncertainty into the relaxation process to T2.

On the other hand magnetic magnitudes such as ~B0, ~B1, ~BG, ~B
′

not only de-
pend on a physical process but e.g. in the non-homogeneity constructions
of: room, magnets, gradients or coils, thus they have associated an internal
variability and it is possible to calculate mean and deviation in the manufac-
ture processes, after commissioning or at the end of the equip assembly process.

Magnetization vector ( ~M) and initial value problem (IVP) ( ~M0) is conse-
quently produced by randomized magnitudes.

Bloch equations in relaxation and RF-process have been exposed and solved
analytically in chapter 3 and chapter 4 respectively.

Therefore, we are able to transform Bloch equations into a system of ran-

71
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dom differential equation (RDEs).

Bloch equation in the relaxation process:

Mx(t) = M0e
(− t

T2
)
sin (γB0t), (6.1)

My(t) = M0e
(− t

T2
)
cos (γB0t), (6.2)

Mxy(t) = M0e
(− t

T2
)
, (6.3)

Mz(t) = τ0(1− e(− t
T1

)
). (6.4)

Bloch equation in the RF process. Rotation frame:

my(t) = τ0 sin(γB1t), (6.5)

mz(t) = τ0 cos(γB1t). (6.6)

Bloch equation in the RF process. Laboratory frame:

Mx(t) = τ0 sin(γB1t) sin(γB0t), (6.7)

My(t) = τ0 sin(γB1t) cos(γB0t), (6.8)

Mxy(t) = τ0 sin(γB1t), (6.9)

Mz(t) = τ0 cos(γB1t). (6.10)

From now on, the data M0, τ0 = M0, B0, T1, T2 and B1 are assumed to
be continuous random variables (RVs) defined on common probability space
(Ω,F ,P), whose domain are assumed to be:

DM0 = {m0 = M0(ω), ω ∈ Ω : m0,1 ≤ m0 ≤ m0,2, } ,m0,1,m0,2 ∈ R,
DB0 = {b0 = B0(ω), ω ∈ Ω : b0,1 ≤ b0 ≤ b0,2, } , b0,1, b0,2 ∈ R,
DB1 = {b1 = B1(ω), ω ∈ Ω : b1,1 ≤ b1 ≤ b1,2, } , b1,1, b1,2 ∈ R, (6.11)

DT1 = {t1 = T1(ω), ω ∈ Ω : t1,1 ≤ t1 ≤ t1,2, } , t1,1, t1,2 ∈ R+,

DT2 = {t2 = T2(ω), ω ∈ Ω : t2,1 ≤ t2 ≤ t2,2, } , t2,1, t2,2 ∈ R+.

Hereinafter, we will omit the ω sample dependence when written domains of
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continuous RVs. As we have shown in section 2.1 interval of domains are,

−∞ < m0,1 < m0,2 <∞,
−∞ < b0,1 < b0,2 <∞,
−∞ < b1,1 < b1,2 <∞,

0 < t1,1, t1,2 <∞,
0 < t2,1, t2,2 <∞.

Do not confuse m0 RV with my, mz magnetization values in the rotation time.

R.D.E. Notation:
We denote probabilistic density functions (PDFs) and random vectors as,

• fM0(m0), fB0(b0), fB1(b1), fT1(t1) and fT2(t2) the probabilistic density
function PDFs of the continuous RVsM0, B0, B1, T1 and T2, respectively.

• fM0,T2(m0, t2) and fM0,T1(m0, t1) will denote the joint PDFs of the ran-
dom vectors (M0, T2) and (M0, T1), respectively. Domains of these two
dimensional PDFs can be written directly as product of the sets DM0 ·DT2

and DM0 ·DT1 , respectively.

• fMx(mx), fMy(my), fMxy(mxy), fMz(mz), the 1-PDF of the unknown
solutions for Bloch equations (6.1)-(6.4) and (6.7)-(6.10) into the labo-
ratory frame.

• fmy(ny), fmz(nz), the 1-PDF of the unknown solutions for Bloch equa-
tions (6.5) and (6.6) into the rotational frame.

In order to simplify graphical notation in Mathematica software in plots we
will be denoted:

• Mxy(M0), as the 1-PDF of the stochastic process (SP ) defined by Mxy(t)
with M0 as a random variable (equation 6.3),

• My(T2), as the 1-PDF of the stochastic process (SP ) defined by My(t)
with T2 as a random variable (equation 6.2),

• mz(τ0) as the 1-PDF of the stochastic process (SP ) defined by mz(t) with
τ0 as a random variable (equation 6.6),

• Mxy(M0,T2), as the joint PDF of the stochastic process (SP ) defined by
Mxy(t) with (M0, T2) as a random vector (equation 6.3),
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• in general SPX(RV1) will be denoted the 1-PDF of the stochastic, process
SPX(t), with RV1 as a random variable.

• in general SPX(RV1,RV2) will be denoted the 1-PDF of the stochastic
process, SPX(t), with (RV1, RV2) as a random vector.

Note that obtaining the first probability density function (1-PDF) of the solu-
tions (equations 6.1 to 6.10) is more desirable since, from it, we can compute
the previous statistical functions as simple particular cases and it provides a
comprehensive probabilistic characterization of the solution for each fixed time
t∗.

To introduce and solve a system of differential equations in this work, we
are going to use the Random Variable Transformation (RVT) technique. This
method states as follows in its general form (see [19]). Thereafter we will cal-
culate and plot all 1-pdf random variables of Bloch equation and so on we
will obtain means and variability through theirs variances.

Theorem 6. Multidimensional RVT method.
Let us consider X = (X1, . . . , Xm) and Y = (Y1, . . . , Ym) two m-dimensional

absolutely continuous random vectors defined on a complete probability space
(Ω;A;P).
Let r : Rm → Rm be a one-to-one deterministic transformation of X into Y,
i.e., Y = r(X). Assume that r is continuous in X and has continuous partial
derivatives with respect to X. Then, if fX(x) denotes the joint probability den-
sity function of vector X, and s = r−1 = (s1(y1, . . . , ym), . . . , sm(y1, . . . , ym))
represents the inverse mapping of r = (r1(x1, . . . , xm), . . . , rm(x1, . . . , xm)),
the joint probability density function of vector Y is given by

fY (y) = fX(s(y)) |Jm| , DY = {y : y1 ≤ y ≤ y2} , (6.12)

where |Jm| , which is assumed to be different from zero, denotes the absolute
value of the Jacobian defined by the determinant

Jm = det


∂s1(y1,...,ym)

∂y1
. . . ∂sm(y1,...,ym)

∂y1

...
. . .

...
∂s1(y1,...,ym)

∂ym
. . . ∂sm(y1,...,ym)

∂ym

 , (6.13)

Therefore, RVT is a probability technique that allows us to calculate the
PDF fY (y) of a RV, Y , resulting after the transformation of another RV, say
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X, whose PDF, fX(x) is known.

We consider several cases of study in this work. Relaxation equations (6.1),
(6.2) are similar because of ω0 variable represents the magnetic rotating vector
around z-axe, thus we only solve for one of them. In the same way we operate
with RF process equations (6.7) and (6.8).

C. Casabán, J.C. Cortés, J.-V. Romero, and M.-D. Roselló ([20]) established
the first probability density function to the solution of several linear random
initial value problems of ODE. Equations (6.3) and (6.4) of relaxation process
can be solved using this result (see [20], Table 1: cases I.1, I.2 and I.3).

Theorem 7. RVT technique in the simplest scalar formulation.
If X is a continuous RV lying on the domain or support DX = {x : x1 ≤

x ≤ x2}, whose PDF is fX(x) > 0 and Y = r(X) being r : DX ⊆ R → R a
monotone mapping on DX , then

fY (y) = fX(s(y))

∣∣∣∣∂s(y)

∂y

∣∣∣∣ , DY = y : y1 ≤ y ≤ y2, (6.14)

where s(y) = x is the inverse function of r on DX , which is assumed to have a

continuous derivative on Dy and |ds(y)
dy | denotes the modulus of the derivative

of s(y). In the particular case that r increases (decreases) on DX , the domain
DY ofY = r(X) is determined by Dy = {y : y1 = r(x1) ≤ y ≤ r(x2) =
y2}(Dy = {y : y1 = r(x2) ≤ y ≤ r(x1) = y2}).

Theorem 8. RVT technique in the two-dimensional version.
Let X = (X1, X2) be a two-dimensional RV with joint PDF fX1,X,2.Let

y1 = r1(x1, x2), (6.15)

y2 = r2(x1, x2),

be a one-to-one deterministic map from R2 to R2; that is, there exists its
inverse transformation:

x1 = s1(y1, y2), (6.16)

x2 = s2(y1, y2),

on the range of the previous map (6.15). Let one assume that both maps
(r1, r2) and (s1, s2) are continuous. Let further assume that be following partial
derivatives

∂x1

∂y1
,

∂x1

∂y2
,

∂x2

∂y1
,

∂x2

∂y2
, (6.17)
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exist and are continuous and the Jacobian J2 of the inverse map satisfies

J2 = det

(
∂x1
∂y1

∂x2)
∂y1

∂x2
∂y1

∂x2)
∂y2

)
6= 0, (6.18)

on the range of the transformation 6.15. Then, the joint PDF fY1,Y2(y1, y2) of
the two-dimensional RV, Y = (Y1, Y2) = (r1(X1, X2), r2(X1, X2)) is given by

fY1,Y2(y1, y2) = fX1,X2(s1(y1, y2), s2(y1, y2))|J2|. (6.19)

If we applied Theorem 8 in the particular case that transformation r1 only
depends on variable x1 and r2 only depends on variable x2. As it will be seen
latter, this result can be applied to someone of Bloch equations (6.1)-(6.4).

Proposition 4. RVT technique in the two-dimensional version. Sin-
gle dependence.
Let X = (X1, X2) be a two-dimensional RV with joint PDF fX1,X2. Let

y1 = r1(x1), (6.20)

y2 = r2(x2),

be a one-to-one deterministic map from R2 to R2; that is, there exists its
inverse transformation:

x1 = s1(y1), (6.21)

x2 = s2(y2),

on the range of the previous map (6.20). Let one assume that both maps (r1, r2)
and (s1, s2) are continuous and satisfy

∂x1

∂y1
· ∂x2

∂y2
6= 0, (6.22)

on the range of the map (6.20) and (6.21). Then the joint PDF fY1,Y2(y1, y2)
of the two-dimensional RV, Y = (Y1, Y2) = (r1(X1), r2(X2)) is given by

fY1,Y2(y1, y2) = fX1,X2(s1(y1), s2(y2))

∣∣∣∣∂x1

∂y1
· ∂x2

∂y2

∣∣∣∣ . (6.23)

Proposition 5. RVT technique: product of two-continuous RVs.
Let (X1, X2) be a continuous random vector with joint PDF fX1,X2(x1, x2)



77

with respective domains DX1 = {x1 6= 0 : x1,1 ≤ x1 ≤ x1,2} and DX2 = {x2 : x2,1 ≤ x2 ≤ x2,2}.
Then the PDF fY1(y1) of their product Y1 = X1X2 is given by

fY1(y1) =

∫ x1,2

x1,1

fX1,X2

(
x1,

y1

x1

)
1

|x1|
dx1. (6.24)

Equivalently, if DX1 = {x1 : x1,1 ≤ x1 ≤ x1,2} and DX2 = {x2 6= 0 : x2,1 ≤ x2 ≤ x2,2}
then

fY1(y1) =

∫ x2,2

x2,1

fX1,X2

(
y1

x2
, x2

)
1

|x2|
dx2. (6.25)

If X1 and X2 are independent continuous RVs with PDF’s fX1(x1) and fx2(x2),
respectively, then (6.24) and (6.25) become

fY1(y1) =

∫ x1,2

x1,1

fX1(x1)fX2

(
y1

x1

)
1

|x1|
dx1, (6.26)

fY1(y1) =

∫ x1,2

x1,1

fX1

(
y1

x2

)
fX2(x2)

1

|x2|
dx2. (6.27)

Once we have calculated the 1-PDF of the solutions through a random
variable or a random vector, we are be able to characterize them by means,
variance and moments of higher order with respect to the origin.

Definition 15. Expectation, variance and moment of order n with respect to
the origin of a RV, respectively.

µX = E[X] =

∫
DX

xfX(x)dx, (6.28)

σ2
X = V[X] = E[(X − µX)2] =

∫
DX

(x− µX)2fX(x)dx, (6.29)

αn = E[Xn] =

∫
DX

xnfX(x)dx. (6.30)

E[X], E[Xn] and V[X] have been calculated and plotted in chapter 7 and
chapter 8 for each Bloch equation solutions (6.1) to (6.10) with Mathematica
software. In this way, the so-called König theorem V[X] = E[X2]−E[X]2, has
been applied to calculate V[X].
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Chapter 7

R.D.E.S. into relaxation
process.

This chapter shows the 1-PDF formulation for each equation involved in the
relaxation process. After that we show the results graphically the plots gen-
erated via Mathematica software. For some RVs it was necessary a numerical
integration to calculate the expectation and the variance. ’NIntegrate’ func-
tion with a high ’MinRecursion’ value option was applied and several specific
exclusions domains was required to avoid errors. As well it was required to
reduce the ’PlotPoints’ value below 30 units in some RVs. ’Method ’ option
was set in automatic state.

7.1 M0 r.v. initial condition.

Thus, we will assume M0 be a random variable and the system of Ordinary
Differential Equation (O.D.E.) (equation 4.1), becomes a system of Random
Ordinary Differential Equation (R.O.D.E.).

Let assume M0 ∼ N [µ0, σM0 ], (see chapter 6), therefore the probability density
function of M0 RV, is defined as:

fM0(m0) =
1√

2πσ2
M0

e
− 1

2

(
m0 − µM0

σM0

)2

.

In order to show and present the results achieved we will consider µM0 = M0

79



80 CHAPTER 7. R.D.E.S. INTO RELAXATION PROCESS.

as the deterministic value proposed in the initial value problem (IVP) and σM0

value as a dispersion of the mean µM0 value, thus σM0 = 0.1µM0 .

7.1.1 Calculating the 1-PDF Mx(mx).

We can calculate the Mx(mx) 1-PDF using Theorem 7, with X = M0, Y = Mx,

r(x) = Mx, s(y) = m0 =
mxe

τ2t

sin (γB0t)
,

fMx(mx) = fM0(s(mx))

∣∣∣∣∂m0

∂mx

∣∣∣∣ .

fMx(mx) =
1√

2πσ2
M0

e

− 1
2


mxetτ2

sin(γB0t)
− µM0

σM0


2

∣∣∣∣ etτ2

sin(γB0t)

∣∣∣∣ , (7.1)

E[Mx] =

∫
DMx

mxfMx(mx)dmx, (7.2)

V[Mx] =

∫
DMx

(mx − µMx)2fMx(mx)dmx. (7.3)
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(a) 1-PDF Mx(mx, t) with M0 RV Muscle.

(b) 1-PDF Mx(mx, t) with M0 RV Gray matter.

(c) 1-PDF Mx(mx, t) with M0 RV Blood.

Figure 7.1: 1-PDF Mx(mx) with M0 RV Relaxation process.
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7.1.2 Calculating the 1-PDF My(my).

We can calculate the My(my) 1-PDF using Theorem 7, with X = M0, Y = My,

r(x) = My, s(y) = m0 =
mye

τ2t

cos (γB0t)
, fMy(my) = fM0(s(my))

∣∣∣∣∂m0

∂my

∣∣∣∣.

fMy(my) =
1√

2πσ2
M0

e

− 1
2


myetτ2

cos(γB0t)
− µM0

σM0


2

∣∣∣∣ etτ2

cos(γB0t)

∣∣∣∣ , (7.4)

E[My] =

∫
DMy

myfMy(my)dmy, (7.5)

V[My] =

∫
DMy

(my − µMy)
2fMy(my)dmy. (7.6)

Note that fMy(my) are graphically equivalent to fMx(mx) with a π
2 phase

difference.

7.1.3 Calculating the 1-PDF Mxy(mxy).

We can calculate the Mxy(mxy) 1-PDF using Theorem 7, with X = M0, Y =
Mxy, r(x) = Mxy, s(y) = m0 = mxye

τ2t

fMxy(mxy) = fM0(m0 = s(mxy))

∣∣∣∣∂(m0)

∂mxy

∣∣∣∣ .

fMXY (mxy) =
1√

2πσ2
M0

e
− 1

2

mxye
tτ2 − µM0

σM0

2 ∣∣etτ2∣∣ , (7.7)

E[Mxy] =

∫
DMxy

mxyfMxy(mxy)dmxy, (7.8)

V[Mxy] =

∫
DMxy

(mxy − µMxy)
2fMxy(mxy)dmxy. (7.9)
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(a) 1-PDF Mxy(mxy, t) with M0 RV Muscle.

(b) 1-PDF Mxy(mxy, t) with M0 RV Gray matter.

(c) 1-PDF Mxy(mxy, t) with M0 RV Blood.

Figure 7.2: 1-PDF ofMxy transversal magnetization into the relaxation process
for several tissues.
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Figure 7.3: 1-PDF Mxy(mxy, t) transversal magnetization into the relaxation
process for muscle, gray matter and blood.

Figure 7.4: Mxy(mxy) RV mean and variance.
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7.1.4 Calculating the 1-PDF Mz(mz).

We can calculate the Mz(mz) 1-PDF using Theorem 7, with X = M0, Y = Mz,

r(x) = Mz, s(y) = m0 =
mz

1− e−τ1t
,

fMz(mz) = fM0(m0 = s(mz))

∣∣∣∣∂(m0)

∂mxy

∣∣∣∣ .

fMz(mz) =
1√

2πσ2
M0

e

− 1
2


mz

(1−e−τ1t) − µM0

σM0


2 ∣∣∣∣ 1

1− e−τ1t

∣∣∣∣ , (7.10)

E[Mz] =

∫
DMz

mzfMz(mz)dmz, (7.11)

V[Mz] =

∫
DMz

(mz − µMz)
2fMz(mz)dmz. (7.12)
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(a) 1-PDF Mz(mz, t) muscle.

(b) 1-PDF Mz(mz, t) gray matter.

Figure 7.5: 1-PDF Mz(mz, t) into the relaxation process.



7.1. M0 R.V. INITIAL CONDITION. 87

(a) 1-PDF Mz(mz, t) of blood.

Figure 7.6: 1-PDF for Mz(mz, t) into the relaxation process.

And we can calculate the mean and the variance. The results are shown in
Figure 7.7.
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(a) E[Mz(mz)] ±1.96σMz , muscle.

(b) E[Mz(mz)] ±1.96σMz , gray matter.

(c) E[Mz(mz)] ±1.96σMz , blood.

Figure 7.7: Mean and variance of Mz(mz, t) for different tissues.
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Figure 7.8: Mean and variance of Mz(mz, t) for all tissues.

7.1.5 1− PDFMxy(mxy) and Mz(mz).

Figure 7.9 shows the 1-PDF of the transversal and longitudinal magnetization
vector ~M altogether, into the relaxation process for different tissues.
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(a) 1-PDF Mz(mz, t) and 1-PDF Mxy(mxy, t) muscle.

(b) 1-PDF Mz(mz, t) and 1-PDF Mxy(mxy, t) gray matter.

(c) 1-PDF Mz(mz, t) and 1-PDF Mxy(mxy, t) blood.

Figure 7.9: 1-PDF Mxy(mxy, t) and Mz(mz, t) into the relaxation process.
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7.2 B0 r.v. magnetic flux density.

As in section 7.1 we will assume M0 be a random variable and the system of
Ordinary Differential Equation (O.D.E.) (equation 4.1), becomes a system of
Random Ordinary Differential Equation (R.O.D.E.).

Let assume B0 ∼ N [µB0 , σB0 ], (see chapter 6), therefore the probability den-
sity function of B0 RV, is defined as:

fB0(b0) =
1√

2πσ2
B0

e
− 1

2

(
b0 − µB0

σB0

)2

,

In order to show and present the results achieved we will consider µB0 = B0

as the deterministic value proposed in the initial value problem (IVP) and σB0

value as a dispersion of the mean µM0 value, thus σB0 = 0.1µB0 .

7.2.1 Calculating the 1-PDF Mx(mx).

We can calculate the Mx(mx) 1-PDF using Theorem 7, with X = B0, Y = Mx,

r(x) = Mx, s(y) = b0 =
arcsin(mxM0

eτ2t)

γt
,

fMx(mx) = fB0(s(mx))

∣∣∣∣ ∂b0∂mx

∣∣∣∣ .

fMx(mx) =
1√

2πσ2
B0

e

− 1
2


1
γt arcsin

(
mx
M0
etτ2)

)
− µB0

σB0


2 ∣∣∣∣∣∣∣∣

etτ2

γtM0

√
1−

(
mx
M0
etτ2
)2

∣∣∣∣∣∣∣∣ ,
E[Mx] =

∫
DMx

mxfMx(mx)dmx, (7.13)

V[Mx] =

∫
DMx

(mx − µMx)2fMx(mx)dmx.
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Figure 7.10: 1-PDF Mx(mx, t) muscle, during the first cycle.

Figure 7.11: 1-PDF Mx(mx, t) blood, during the first cycle.
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(a) E[Mx]± 1.96σMx muscle.

(b) E[Mx]± 1.96σMx gray matter.

(c) E[Mx(B0)(t)] ±1.96σMx(B0)(t)
blood.

Figure 7.12: 1-PDF Mx(mx, t) in the relaxation process.
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7.2.2 Calculating the My(my)(t) RV

We can calculate the My(my) 1-PDF using Theorem 7, with X = B0, Y = My,

r(x) = My, s(y) = b0 =
arccos(

my
M0
eτ2t)

γt
,

fMy(my) = fB0(s(my))

∣∣∣∣ ∂b0∂my

∣∣∣∣ .

fMy =
1√

2πσB0

e

−
1

2


1
γt arccos

(
my
M0
etτ2)

)
− µB0

σB0


2 ∣∣∣∣∣∣∣∣

−etτ2

γtM0

√
1−

(
my
M0
etτ2
)2

∣∣∣∣∣∣∣∣ ,
E[My] =

∫
DMy

mxfMy(my)dmy, (7.14)

V[My] =

∫
DMy

(my − µMy)
2fMy(my)dmy.
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Figure 7.13: E[Mx(mx, t)]± 1.96σMx ,E[My(my, t)]± 1.96σMy in the relaxation
process.

7.3 T1 and T2 r.v. times.

Thus, we will assume M0 be a random variable and the system of Ordinary
Differential Equation (O.D.E.) (4.1), becomes a systema of Random Ordinary
Differential Equation (R.O.D.E.).
Let assume T2 ∼ U [T2 − ε2, T2 + ε2], (see chapter 6), therefore the probability
density function of Mxy RV, is defined as:

fT2 =
1

2ε2
,

and let assume T1 ∼ U [T1 − ε1, T1 + ε1], (see chapter 6), therefore the proba-
bility density function of Mxy RV, is defined as:

fT1 =
1

2ε1
.

Thus, we will assume T1 and T2 be random variables and the system of
Ordinary Differential Equation (O.D.E.) (4.1), becomes a system of Random
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Ordinary Differential Equation (R.O.D.E.) and we are able to consider T1 ∼
U [T1 − ε1, T1 + ε1] RV in the analytical solution of Bloch equation.

7.3.1 Calculating the 1-PDF Mxy(mxy).

Let assume T2 ∼ U [T2 − ε2, T2 + ε2], therefore its PDF is defined as:

fT2 =
1

2ε2
,

where ε2 is and experimental value obtained for different B0 magnet values
and can be shown in Table 2.2. And we can calculate the 1-PDF as

fMxy(mxy) =
1

2ε2

∣∣∣∣∣ t

mxy log2 mxy
M0

∣∣∣∣∣ ,
E[Mxy] =

∫
DMxy

mxyfMxy(mxy)dmxy, (7.15)

V[Mxy] =

∫
DMxy

(mxy − µMxy)
2fMxy(mxy)dmy.
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(a) 1-PDF for Mxy(mxy) muscle.

(b) 1-PDF for Mxy(mxy) gray matter.

(c) 1-PDF for Mxy(mxy) blood.

Figure 7.14: 1-PDF Mxy(mxy, t) into the relaxation process.
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(a) E[Mxy]± 1.96 · σMxy muscle.

(b) E[Mxy]± 1.96 · σMxy gray matter.

(c) E[Mxy]± 1.96 · σMxy blood.

Figure 7.15: E[Mxy]± 1.96 · σMxy into the relaxation process.
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Figure 7.16: E[Mxy]±1.96·σMxy for different tissues into the relaxation process.

7.3.2 Calculating the 1-PDF Mz(mz).

Let assume T1 ∼ U [T1 − ε1, T1 + ε1], therefore its PDF is defined as:

fT1 =
1

2ε1
,

where ε1 is and experimental value obtained for different B0 magnet values
and it can be shown in Table 2.2. So we can calculate the 1-PDF as

fMz(mz) =
1

2ε1

∣∣∣∣∣ t

(τ0 −mz) log2 ( τ0−mzM0
)

∣∣∣∣∣ ,
E[Mz] =

∫
DMz

mzfMz(mz)dmz, (7.16)

V[Mz] =

∫
DMz

(mz − µMz)
2fMz(mz)dmz.
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(a) 1-PDF for Mz(mz) muscle. (b) 1-PDF for Mz(mz) gray matter.

(c) 1-PDF for Mz(mz) blood.

(d) 1-PDF for Mz(mz) all tissues.

Figure 7.17: 1-PDF Mz(mz, t) for longitudinal magnetization vector into the
relaxation process.
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(a) E[Mz]± 1.96 · σMz gray matter.

(b) E[Mxy]± 1.96 · σMxy blood.

Figure 7.18: E[Mz] ± 1.96 · σMz of the longitudinal magnetization vector into
the relaxation process.

Figure 7.19: E[Mz]±1.96 ·σMz for different tissues into the relaxation process.
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Chapter 8

Introducing R.D.E.s in the
RF process.

This section shows the 1-PDF formulation for each equations involved in the
radio-frequency process both in the rotation and laboratory frames. After that
we show the results graphically the plots generated via Mathematica software.
In some RVs it was necessary a numerical integration to calculate the expecta-
tion and the variance. ’NIntegrate’ function with a high ’MinRecursion’ value
option was applied and several specific exclusions domains was required to
avoid errors. As well it was required to reduce the ’PlotPoints’ value below 30
units in some RVs. ’Method ’ option was set in automatic state.

8.1 τ0 r.v. initial magnetization condition.

Thus, we will assume τ0 = M0 be a random variable and the system of differ-
ential equation (D.E.) (4.1), becomes a system of random differential equation
(R.D.E.).
Let τ0 = M0 ∼ N [µM0 , σM0 ], (see chapter 6), therefore the probability density
function (p.d.f.) of τ0 RV of the Bloch equation into the RF process is defined
as

fM0(m0) =
1√

2πσ2
M0

e
− 1

2

(
m0 − µM0

σM0

)2

,

In order to show and present the achieved results we will consider µM0 = M0

as the deterministic value proposed in the initial value problem (IVP) and σM0
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value as a dispersion of the mean µM0 value, thus σM0 = 0.1µM0 .

8.1.1 Calculating the 1-PDF my(ny).

We can calculate the my(ny) 1-PDF using Theorem 7, with X = M0, Y = my,

r(x) = my, s(y) = m0 =
ny

sin (γB1t)
,

fmy(ny) = fM0(s(ny))

∣∣∣∣∂m0

∂ny

∣∣∣∣ .

fmy(ny) =
1√

2πσ2
M0

e

− 1
2


ny

sin(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t)

∣∣∣∣ ,
E[my] =

∫
Dmy

nyfmy(ny)dny, (8.1)

V[my] =

∫
Dmy

(ny − µmy)2fmy(ny)dny.

Figure 8.1 shows 1-PDF fmy(ny) magnetization vector in the rotating frame
into the RF process for a flip angle of θ = π. Figures 8.2 and 8.3 show the
mean and the variability of my.

8.1.2 Calculating the 1-PDF mz(nz).

We can calculate the mz(nz) 1-PDF using Theorem 7, with X = M0, Y = mz,

r(x) = mz, s(y) = m0 =
nz

cos (γB1t)
,

fmz(nz) = fM0(s(nz))

∣∣∣∣∂m0

∂nz

∣∣∣∣ .

fmz(ny) =
1√

2πσ2
M0

e

− 1
2


nz

cos(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

cos(γB1t)

∣∣∣∣ ,
E[mz] =

∫
Dmz

nzfmz(nz)dnx, (8.2)

V[mz] =

∫
Dmz

(nz − µmz)2fmz(nz)dnz.
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Figure 8.1 shows 1-PDF magnetization vector in the rotating frame into the
RF process for a flip angle of θ = π.

(a) my(t),mz(t).

Figure 8.1: 1-PDF my(ny) and 1-PDF mz(nz) in the rotating frame τ0 ∼
N [µτ0 , στ0 ]. Flip angle (θ) = π.

Figures 8.2 and 8.3 show magnetization vector in the rotating frame into
the RF process for a flip angle of θ = π.
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(a) my(t),θ.

(b) mz(t),θ.

(c) mz(t),my(t),θ.

Figure 8.2: E[my]± 1.96 · σmy and E[mz]± 1.96 · σmz into the RF process.
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(a) mx(t),my(t),mz(t).

Figure 8.3: Mean and variability of the magnetization vector (0,E[my]± 1.96 ·
σmy ,E[mz]± 1.96 · σmz) in the rotating frame.

8.1.3 Calculating the 1-PDF Mx(mx).

We can calculate the Mx(mx) 1-PDF using Theorem 7, with X = M0, Y = Mx,

r(x) = mx, s(y) = m0 =
mx

sin (γB1t) sin (γB0t)
,

fMx(mx) = fM0(s(mx))

∣∣∣∣∂m0

∂mx

∣∣∣∣ .
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fMx(mx) =
1√

2πσ2
M0

e

− 1
2


mx

sin(γB1t) sin(γB0t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t) sin(γB0t)

∣∣∣∣ ,
E[Mx] =

∫
DMx

mxfMx(mx)dmx, (8.3)

V[Mx] =

∫
DMx

(mx − µMx)2fMx(mx)dmx.

Figure 8.4 shows 1-PDF Mx(mx) of the magnetization vector in the laboratory
frame into the RF process for a flip angle of θ = π.

Figure 8.4: 1-PDF Mx(mx, t) in the laboratory frame.
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8.1.4 Calculating the 1-PDF My(my).

We can calculate the My(my) 1-PDF using Theorem 7, with X = M0, Y = My,

r(x) = my, s(y) = m0 =
my

sin (γB1t) cos (γB0t)
,

fMy(my) = fM0(s(my))

∣∣∣∣∂m0

∂my

∣∣∣∣ .

fMy(my) =
1√

2πσ2
M0

e

− 1
2


my

sin(γB1t) cos(γB0t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t) cos(γB0t)

∣∣∣∣ ,
E[My] =

∫
DMy

myfMy(my)dmy, (8.4)

V[My] =

∫
DMy

(my − µMy)
2fMy(my)dmy.

Note that fMy(my) is graphically equivalent to fMx(mx) only with a π
2 phase

difference in ω0.
Figure 8.5 shows mean and variability Mx(mx),My(my) RVs in the labo-

ratory frame into the RF process for a flip angle of θ = π.

8.1.5 Calculating the 1-PDF Mz(mz).

We can calculate the Mz(mz) 1-PDF using Theorem 7, with X = M0, Y = Mz,

r(x) = mz, s(y) = m0 =
mz

cos (γB1t)
,

fMz(mz) = fM0(s(mz))

∣∣∣∣∂m0

∂mz

∣∣∣∣ .

fMz(mz) =
1√

2πσ2
M0

e

− 1
2


mz

cos(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

cos(γB1t)

∣∣∣∣ ,
E[Mz] =

∫
DMz

mzfMz(mz)dmz, (8.5)

V[Mz] =

∫
DMz

(mz − µMz)
2fMz(mz)dmz.
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(a) Mx(t),θ.

(b) My(t),θ.

(c) Mx(t),My(t),Mz(t),θ.

Figure 8.5: E[Mx(mx)] ±1.96σMx , E[My(my)] ±1.96σMy and E[Mz(mz)]
±1.96σMz in the laboratory frame for τ0 ∼ N [µτ0 , στ0 ].
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(a) E[Mx(mx)]± 1.96σMx , B1 = 10−3T .

(b) E[Mx(mx)]± 1.96σMx , B∗1 = 5 ·B1.

(c) E[Mx(mx)]± 1.96σMx , B∗∗1 = 10 ·B1.

Figure 8.6: E[Mx(mx)]± 1.96σMx in the laboratory frame for different B1 RF
pulse amplitude.
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8.2 B1 r.v. generated RF pulse.

Thus, we will assume B1 be a random variable and the system differential equa-
tion (D.E.) (4.1), becomes a system of random differential equation (R.D.E.).
Let B1 ∼ N [µB1 , σB1 ], (see chapter 6), therefore the probability density func-
tion (p.d.f.) of B1 RV of the Bloch equation into the RF process is defined
as,

fB1(b1) =
1√

2πσ2
B1

e
− 1

2

(
b1 − µB1

σB1

)2

,

In order to show and present the achieved results we will consider µB1 = B1

as the deterministic value proposed for the generated pulse and σB1 value as
a dispersion of the mean µB1 value, thus σB1 = 0.1µB1 .

8.2.1 Calculating the 1-PDF my(ny).

We can calculate the my(ny) 1-PDF using Theorem 7, with X = B1, Y = my,

r(x) = my, s(y) = b1 =
arcsin

ny
τ0

γt
,

fmy(ny) = fB1(s(ny))

∣∣∣∣ ∂b1∂ny

∣∣∣∣ .

fmy(ny) =
1√

2πσ2
B1

e

− 1
2

 arcsin
ny
τ0

γt −µB1
σB1


2 ∣∣∣∣∣∣ 1

γt
√
τ2

0 − n2
y

∣∣∣∣∣∣ ,
E[my] =

∫
Dmy

nyfmy(ny)dny, (8.6)

V[my] =

∫
Dmy

(ny − µmy)2fmy(ny)dny.

8.2.2 Calculating the 1-PDF mz(nz).

We can calculate the mz(nz) 1-PDF using Theorem 7, with X = B1, Y = mz,

r(x) = mz, s(y) = b1 =
arccos nzτ0

γt
,

fmz(nz) = fB1(s(ny))

∣∣∣∣ ∂b1∂nz

∣∣∣∣ .
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fmz(nz) =
1√

2πσ2
B1

e

− 1
2

 arccos
ny
τ0

γt −µB1
σB1


2 ∣∣∣∣∣∣ −1

γt
√
τ2

0 − n2
y

∣∣∣∣∣∣ ,
E[mz] =

∫
Dmz

nzfmz(nz)dnz, (8.7)

V[mz] =

∫
Dmz

(nz − µmz)2fmz(nz)dnz.

8.2.3 Calculating the 1-PDF Mx(mx).

We can calculate the Mx(mx) 1-PDF using Theorem 7, with X = B1, Y = Mx,

r(x) = mx, s(y) = b1 =
arcsin

(
mx

τ0 sin(ω0t)

)
γt

,

fMx(mx) = fB1(s(mx))

∣∣∣∣ ∂b1∂mx

∣∣∣∣ .

fMx(mx) =
1√

2πσ2
B1

e

− 1
2


arcsin

(
mx

τ0 sin(ω0t)

)
− γtµB1

γtσB1


2

∣∣∣∣∣ 1

γt
√
τ2

0 sinω0t2 −m2
x

∣∣∣∣∣ ,
E[Mx] =

∫
DMx

mxfMx(mx)dmx, (8.8)

V[Mx] =

∫
DMx

(mx − µMx)2fMx(mx)dmx.

Figure 8.7 shows magnetization RV, Mx(mx), in the laboratory frame into the
RF process for different B1 RF amplitude values an angle of θ = π.

8.2.4 Calculating the 1-PDF My(my).

We can calculate the My(my) 1-PDF using theorem 7, with X = B1, Y = My,

r(x) = my, s(y) = b1 =
arcsin

(
mx

τ0 cos(ω0t)

)
γt

,

fMy(my) = fB1(s(my))

∣∣∣∣ ∂b1∂my

∣∣∣∣ .
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fMy(my) =
1√

2πσ2
B1

e

− 1
2


arcsin

(
my

τ0 cos(ω0t)

)
− γtµB1

γtσB1


2 ∣∣∣∣∣∣ 1

γt
√
τ2

0 sinω0t2 −m2
y

∣∣∣∣∣∣ ,
E[My] =

∫
DMy

myfMy(my)dmy, (8.9)

V[My] =

∫
DMy

(my − µMy)
2fMy(my)dmy.

Figure 8.7 shows magnetization RV, My(my), in the laboratory frame into the
RF process for different B1 RF amplitude values an angle of θ = π.

8.2.5 Calculating the 1-PDF Mz(mz).

In the laboratory frame Mz(mz) is identical to mz(nz) in the rotation frame
by definition.

Figure 8.7 shows 1-PDF fMz(mz) magnetization vector in the rotating
frame into the RF process for a flip angle of θ = π.
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(a) 1-PDF Mx(mx, θ).

(b) My(my, θ).

(c) Mz(mz, θ).

Figure 8.7: 1 − PDF of Mx(mx),My(my),Mz(mz) in the RF process. Labo-
ratory frame.
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8.3 B0 r.v. magnetic flux density.

Thus, we will assume B0 be a random variable and the system of differen-
tial equation (D.E.) (4.1), becomes a system of random differential equation
(R.D.E.).

Let B0 ∼ N [µB0 , σB0 ], (see chapter 6), therefore the probability density
function (PDF) of B0 RV of the Bloch equation into the RF process is defined
as,

fB0(b0) =
1√

2πσ2
B0

e
− 1

2

(
b0 − µB0

σB0

)2

,

In order to show and present the achieved results we will consider µB0 = B0

as the deterministic value proposed for the generated pulse and σB0 value as
a dispersion of the mean µB0 value, thus σB0 = 0.1µB0 .

8.3.1 Calculating the 1-PDF Mx(mx).

We can calculate the Mx(mx) 1-PDF using Theorem 7, with X = B0, Y = Mx,

r(x) = mx, s(y) = b0 =
arcsin

(
mx

τ0 sin(ω1t)

)
γt

,

fMx(mx) = fB0(s(mx))

∣∣∣∣ ∂b0∂mx

∣∣∣∣ .

fMx(mx) =
1√

2πσ2
B0

e

− 1
2


arcsin

(
mx

τ0 sin(ω1t)

)
− γtµB0

γtσB0


2

∣∣∣∣∣ 1

γt
√
τ2

0 sinω1t2 −m2
x

∣∣∣∣∣ ,
E[Mx] =

∫
DMx

mxfMx(mx)dmx, (8.10)

V[Mx] =

∫
DMx

(mx − µMx)2fMx(mx)dmx.
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8.3.2 Calculating the 1-PDF My(my).

We can calculate the My(my) 1-PDF using Theorem 7, with X = B0, Y = My,

r(x) = my, s(y) = b0 =
arccos

(
my

τ0 sin(ω1t)

)
γt

,

fMy(my) = fB0(s(my))

∣∣∣∣ ∂b0∂my

∣∣∣∣ .

fMy(my) =
1√

2πσ2
B0

e

− 1
2


arccos

(
my

τ0 sin(ω1t)

)
− γtµB1

γtσB1


2 ∣∣∣∣∣∣ −1

γt
√
τ2

0 sinω1t2 −m2
y

∣∣∣∣∣∣ ,
E[My] =

∫
DMy

myfMy(my)dmy, (8.11)

V[My] =

∫
DMy

(my − µMy)
2fMy(my)dmy.
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Chapter 9

Conclusions

Bloch equation based on MRI simulators were developed for optimizing MR
sequences, artifact detection, testing image reconstruction techniques, design
of specialized RF pulses and also for educational purposes. The hardware
computational technologies have advanced during the last decades but despite
mathematical modelling are necessary to accelerate and make accurate
simulations and imaging processes.

MRI is nowadays a very rapid process which is done in real-time. Neverde-
less, there are still unsolved problems in understanding how the quantitative
o dynamic alteration of magnetic field are involved. Researchers carry
on with the aim of accelerate it, making more and more efficent the MRI pro-
cess. Numerical simulation for solving the Bloch model can help in a better
understanding of such dynamic processes are affected inside our body and
organism. As well it is necessary to know about artifacts in real-time and also
for improving the quality images.

Apart from the controlled experiments with precise input data, numerical sim-
ulators can also be used to simulate various limiting experimental conditions
which are either improbable or difficult to reproduce in experiments.

The cost of a MRI diagnostic test is around 150e and time-processes are be-
tween 10-20 minutes each one depending on the complexity of the test. There
are more and more medical request for these technology in order to interpret
and improve a diagnostic, therefore the time reduction process is a great value
for saving money. Do not forget the future perspectives around the MRI which
remains as a non-invasive technique.
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All thinks considered, mathematician have the opportunity to contribute and
research in this field for the following decades.

In this way we decided to introduce variability into the MRI and cal-
culate the 1-PDF of all Bloch equations, both into the relaxation time and
into the RF pulse process, thus we can contribute to design components such
as coils, pulses, gradients and other parts of the integrated MR based on pre-
dicting contrast, resolution or determining SNR.

Accurate simulation of the initial value problem (IVP) is a chal-
lenging due to the very tiny steps, the fine spatial resolution, the gradient
field shapes (non-smooth gradients) or the originated perturbations fields this
is a great reason to consider the IVP with uncertainties. Perturbations and
minor physical effects in a very short time increases randomness.

Furthermore, if we consider T2 as a random variable (see Sections 2.2 and
2.3), it could be considered as a mixture of tissues. Figure 9.1 shows variabil-
ity into Mxy considering T2 as random variable.

As we showed T1 and T2 relaxation times are experimental values (see sec-
tions 2.1, 2.2 and 2.3), which have internal variability for some physical and
chemical properties. Therefore, we can suppose to be random variables.

As well, it would be interesting to consider the variability of the random vari-
ables involving the Bloch model to achieve better results in the TE and TR
selection parameters, predicting the contrast, resolution and SNR. See Figure
9.3.

Introducing variability into the RF pulse process inform us about IVP of the
magnetization vector and its error position. In chapter 8 (remember figures 8.2
and 8.3 where we shown magnetization vector variability) we have introduced
this variability into the flip angle which determine the initial position of the
relaxation time. Bear in mind this is a very short process and impact directly
in the TR and TE times selection.
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(a) E(Mxy(mxy)± σT2) blood.

(b) E(Mxy(mxy)± σT2) blood.

Figure 9.1: Variation of contrast, T2 and spatially varying image.
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(a) |E(Mxy)−Mxy

Mxy
| error for M0 initial condition rv. Blood tissue.

(b) | E(Mxy)−Mxy

Mxy
| error for T2

Figure 9.2: Mxy(mxy) error for M0 and T2 rv.

As we show in Figure 9.2, the error between means and deterministic values
from Bloch equation can be neglected.
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(a) E(Mxy)± σxy, M0 rv. Blood tissue. Contrast affection.

(b) E(Mxy)± σxy, M0 rv. Blood tissue. TR, TE and spatially varia-
tion image.

Figure 9.3: Mxy(mxy) error for M0 rv.

Figure 9.4 shows the spin density weighted which affect to the SNR and
the selection of TR and TE times.
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(a) E(Mz)± σMz , M0 rv. Blood tissue. SNR and contrast affection.

(b) E(Mz)±σMz , M0 rv. Blood tissue. TR, TE and spatially variation
image.

Figure 9.4: E(Mz)± σMz , M0 rv. Blood tissue.

Dealing with the RF process we can show in Figures 8.2 and 8.3 that initial
condition M0 treated as a random variable will affect in the flip angle position,
θ, and so on into the consequent IVP, M0 of the relaxation process.
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Beyond this, Figure 8.6 shows the consequent persistent rise of variation if
we increase the B1 RF pulse amplitude.

To finish this work we attach all 1-PDF of random Bloch equations in order
to provide an easy location and understanding.

Table 9.1: fMx(mx). Relaxation process.

RV Mx(mx) 1-PDF Relaxation process

M0 fMx(mx) =
1√

2πσ2
M0

e

− 1
2


mxetτ2

sin(γB0t)
− µM0

σM0


2

∣∣∣∣ etτ2

sin(γB0t)

∣∣∣∣

B0 fMx(mx) =
1√

2πσ2
B0

e

− 1
2


1
γt arcsin

(
mx
M0
etτ2)

)
− µB0

σB0


2 ∣∣∣∣∣∣∣∣

etτ2

γtM0

√
1−

(
mx
M0
etτ2
)2

∣∣∣∣∣∣∣∣

Table 9.2: fMy(my). Relaxation process.

RV My(my) 1-PDF Relaxation process

M0 fMy(my) =
1√

2πσ2
M0

e

− 1
2


myetτ2

cos(γB0t)
− µM0

σM0


2

∣∣∣∣ etτ2

cos(γB0t)

∣∣∣∣

B0 fMy =
1√

2πσB0

e

−
1

2


1
γt arccos

(
my
M0
etτ2)

)
− µB0

σB0


2 ∣∣∣∣∣∣∣∣

−etτ2

γtM0

√
1−

(
my
M0
etτ2
)2

∣∣∣∣∣∣∣∣
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Table 9.3: fMxy(mxy). Relaxation process.

RV Mxy(mxy) 1-PDF Relaxation process

M0 fMXY (mxy) =
1√

2πσ2
M0

e
− 1

2

Mxye
tτ2 − µM0

σM0

2 ∣∣etτ2∣∣
T2∼ U [T2 − ε2, T2 + ε2] fMxy(mxy) =

1

2ε2

∣∣∣∣∣ t

mxy log2 mxy
M0

∣∣∣∣∣

Table 9.4: fMz(mz). Relaxation process.

RV Mz(mz) 1-PDF Relaxation process

τ0 fMz(mz) =
1√

2πσ2
M0

e

− 1
2


mz

(1−e−τ1t) − µM0

σM0


2 ∣∣∣∣ 1

1− e−τ1t

∣∣∣∣
T1∼ U [T1 − ε1, T1 + ε1] fMz(mz) =

1

2ε1

∣∣∣∣∣ t

(τ0 −mz) log2 ( τ0−mzM0
)

∣∣∣∣∣
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Table 9.5: fmy(ny). RF process. Rotation frame.

RV my(ny) 1-PDF RF process. Rotation frame

τ0 fmy(ny) =
1√

2πσ2
M0

e

− 1
2


ny

sin(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t)

∣∣∣∣

B1 fmy(ny) =
1√

2πσ2
B1

e

− 1
2

 arcsin
ny
τ0

γt −µB1
σB1


2 ∣∣∣∣∣∣ 1

γt
√
τ2

0 − n2
y

∣∣∣∣∣∣

Table 9.6: fmz(nz). RF process. Rotation frame.

RV mz(nz) 1-PDF RF process.Rotation frame

τ0 fmz(ny) =
1√

2πσ2
M0

e

− 1
2


nz

cos(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

cos(γB1t)

∣∣∣∣

B1 fmz(nz) =
1√

2πσ2
B1

e

− 1
2

 arccos
ny
τ0

γt −µB1
σB1


2 ∣∣∣∣∣∣ −1

γt
√
τ2

0 − n2
y

∣∣∣∣∣∣
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Table 9.7: fMx(mx). RF process. Laboratory frame.

RV Mx(mx) 1-PDF RF process. Laboratory frame

τ0 fMx(mx) =
1√

2πσ2
M0

e

− 1
2


mx

sin(γB1t) sin(γB0t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t) sin(γB0t)

∣∣∣∣

B0 fMx(mx) =
1√

2πσ2
B0

e

− 1
2


arcsin

(
mx

τ0 sin(ω1t)

)
− γtµB1

γtσB1


2

∣∣∣∣∣ 1

γt
√
τ2

0 sinω1t2 −m2
x

∣∣∣∣∣

B1 fMx(mx) =
1√

2πσ2
B1

e

− 1
2


arcsin

(
mx

τ0 sin(ω0t)

)
− γtµB1

γtσB1


2

∣∣∣∣∣ 1

γt
√
τ2

0 sinω0t2 −m2
x

∣∣∣∣∣
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Table 9.8: fMy(my). RF process. Laboratory frame.

RV My(my) 1-PDF RF process. Laboratory frame

τ0 fMy(my) =
1√

2πσ2
M0

e

− 1
2


my

sin(γB1t) cos(γB0t)
− µM0

σM0


2 ∣∣∣∣ 1

sin(γB1t) cos(γB0t)

∣∣∣∣

B0 fMy(my) =
1√

2πσ2
B0

e

− 1
2


arccos

(
my

τ0 sin(ω1t)

)
− γtµB0

γtσB0


2 ∣∣∣∣∣∣ −1

γt
√
τ2

0 sin2 ω1t2 −my

∣∣∣∣∣∣

B1 fMy(my) =
1√

2πσ2
B1

e

− 1
2


arcsin

(
my

τ0 cos(ω0t)

)
− γtµB1

γtσB1


2 ∣∣∣∣∣∣ 1

γt
√
τ2

0 cos2 ω0t−m2
y

∣∣∣∣∣∣

Table 9.9: fMxy(mxy). RF process. Laboratory frame.

RV Mxy(mxy) 1-PDF RF process. Laboratory frame

τ0 the same as fmy(ny)

B1 the same as fmy(ny)
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Table 9.10: fMz(mz). RF process. Laboratory frame.

RV Mz(mz) 1-PDF RF process. Laboratory frame

τ0 fMz(mz) =
1√

2πσ2
M0

e

− 1
2


mz

cos(γB1t)
− µM0

σM0


2 ∣∣∣∣ 1

cos(γB1t)

∣∣∣∣
B1 the same as fmz(nz)



Bibliography

[1] Balac, S. and Chupin, L. Fast approximate of Bloch equation for simu-
lation of RF artifacts in Magnetic Resonance Imagin. Mathematical and
Computer Modelling 48 1901–1913 (2008) 10.1016/j.mcm.2007.05.021

[2] Hazra, A. Lube, G. and Raumer, H.G. Numerical simulation of Bloch
equations for dynamic magnetic resonance imaging. Applied Numerical
Mathematics 123 241–255 (2018) 10.1016/j.apnum.2017.09.007

[3] Jurczuk, K. Computational modeling of MR flow imaging by the lattice
Boltzmann method and Bloch equation. Magnetic Resonance Imaging 31
1163–1173 (2013) 10.1016/j.mri.2013.01.005

[4] Wei, J. Wang, X. and Geng, X. Periodic and rational solutions of the
reduce d MaxwellBloch equations. Commun Nonlinear Sci Numer Simulat
59 1–14 (2018) 10.1016/j.cnsns.2017.10.017

[5] Balac and S. Caloz, G. Mathematical modelling and numerical simu-
lation of magnetic susceptibility artifacts in magnetic Resonance Imag-
ing. Comput Methods Biomech Biomed Engin 3(4) 335–349 (2000)
10.1080/10255840008915276

[6] Gafner, A. Construction of NMR Equipment to be used in the Physi-
cal Properties Measurement System (PPMS, Quantum Design). Zürich.
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the first probability density function of linear random initial value problems
by the Random Variable Transformation (R.V.T.) technique: A compre-
hensive study. Abstract and Applied Analysis, vol. 2014 art. ID248512
1–25. (2014) 10.1155/2014/248512

[21] Casabán, M.C. Cortés, J.C. Romero, J.V. and Roselló M.D. Probabilis-
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