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   Resumen 

RESUMEN 

 

La industria alimentaria, concretamente el sector poscosecha, necesita innovar 

en sus procesos productivos, optimizando los mismos para rentabilizar sus 

actividades, garantizando productos de calidad capaces de satisfacer las necesidades 

de los consumidores. En la actualidad, la mejora de los procesos de inspección 

poscosecha se centra principalmente en su optimización, aplicando nuevas técnicas 

alternativas que permitan reducir los tiempos de procesado, minimizar la generación 

de residuos y conseguir una mayor estandarización de sus productos.  

La presente tesis doctoral se centra en evaluar el potencial de la espectroscopia 

visible e infrarrojo cercano (VIS-NIR) para la caracterización e inspección de la 

calidad de la fruta tanto fuera de línea como a tiempo real en procesos automatizados. 

En un primer lugar, la viabilidad de la técnica se estudió a nivel de laboratorio 

en estado estático (off-line), con el fin de conocer y optimizar las condiciones de 

medición en función de las características de la materia prima. Posteriormente, se 

evaluó la calidad interna y externa de diferentes tipos de frutas como son caqui, 

nectarina y mango. En una segunda etapa, se llevó a cabo una automatización de los 

procesos de inspección mediante el desarrollo de nuevos prototipos in-line. Para este 

propósito, y con el objetivo de completar y corroborar los resultados obtenidos de 

manera estática, se estudió la integración de dos sondas VIS-NIR en una garra 

robótica capaz de manipular mangos fusionando mediciones no destructivas de la 

firmeza y de los espectros en el rango VIS-NIR obtenidos de forma simultánea. 

Finalmente, se estudió la integración de una sonda VIS-NIR a una cinta 

transportadora como herramienta de monitorización in-line del proceso de 

inspección de distintas variedades de manzana. 

Los resultados obtenidos a nivel estático han demostrado que la 

espectroscopia VIS-NIR es un método no destructivo muy prometedor para predecir 

la astringencia en caqui alcanzando un rendimiento de un R2
P de 0.904 utilizando el 

espectro completo y un R2
P de 0.915 seleccionando tan sólo las 41 bandas más 

importantes. Así mismo, ha demostrado ser una adecuada herramienta para clasificar 

al 100% entre variedades de nectarinas como “Big Top” y “Diamond Ray” con una 

apariencia externa e interna muy similar, pero con diferentes propiedades 

organolépticas. De manera similar, fue posible clasificar al 100% variedades como 
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“Big Top” y “Magique” de apariencia externa y composición similar pero distinto 

color de pulpa. Se desarrolló un índice de calidad interna (IQI) para evaluar la calidad 

de las nectarinas, el cuál puede predecirse a través de espectroscopia VIS-NIR. En 

el caso de la variedad “Big Top”, se obtuvieron valores de R2
P de 0.909 y para la 

variedad “Magique” valores de R2
P de 0.927. Por lo que respecta a los trabajos off-

line realizados con mangos de la variedad “Osteen”, fue posible predecir su calidad 

interna mediante los índices de madurez (RPI) y de calidad (IQI) con un gran 

rendimiento utilizando todo el rango espectral (R2
P = 0.833-0.879) así como las 

longitudes de onda más importantes (R2
P = 0.815-0.896). A su vez, los ensayos 

experimentales efectuados con estos mismos mangos bajo la manipulación no 

destructiva de una garra robótica, demostraron que los mejores modelos eran capaces 

de predecir tanto la firmeza mecánica (rp = 0.925), el contenido en sólidos solubles 

(rp = 0.892), la luminosidad de la pulpa (rp = 0.893) así como el índice RPI (rp = 

0.937) de las muestras en base a la información obtenida por los acelerómetros 

instalados en los dedos de la garra robótica.  

En cuanto a los ensayos realizados de manera in-line, el primer prototipo 

desarrollado se basó en la integración de dos sondas VIS-NIR en una garra robótica 

dispuesta con dos acelerómetros. El sistema desarrollado permitió alcanzar una 

buena estimación de la calidad del mango a través del índice RPI logrando un R2
P de 

0.832 fusionando la información tanto de los espectros VIS-NIR como del impacto 

no destructivo de los acelerómetros. De este modo quedó demostrado que era posible 

obtener una predicción similar trabajando de forma in-line como trabajando de 

manera off-line para la predicción del mismo índice de calidad en mangos. El 

segundo prototipo in-line desarrollado se basa en la integración de una sonda VIS-

NIR en una cinta transportadora para la identificación de distintas variedades y 

orígenes de manzanas, alcanzándose con el sistema un éxito de clasificación del 98 

%. El prototipo desarrollado permitió registrar resultados de clasificación tan buenos 

como los efectuados de manera off-line con, por ejemplo, nectarina. 

De este modo, se puede concluir que la espectroscopia VIS-NIR permite 

monitorear la calidad y clasificar fruta poscosecha tanto en modo off-line como in-

line, siendo una herramienta que permite mejorar y garantizar la correcta calidad y 

seguridad alimentaria. Los nuevos prototipos desarrollados aportan claras ventajas 

respecto a los procesos tradicionales realizados a mano, como son la reducción del 

tiempo de inspección, la disminución de la cantidad de residuos generados por los 
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análisis destructivos de calidad y la posibilidad de inspeccionar toda la producción, 

obteniendo así un análisis más estandarizado de la calidad de los productos. 
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RESUM 

 

La indústria alimentària, concretament el sector postcollita, necessita innovar 

en els seus processos productius, optimitzant els mateixos per a rendibilitzar les 

seues activitats, garantint productes de qualitat capaços de satisfer les necessitats dels 

consumidors. En l'actualitat, la millora dels processos d'inspecció postcollita es 

centra principalment en la seua optimització, aplicant noves tècniques alternatives 

que permeten reduir el temps de processat, minimitzar la generació de residus i 

aconseguir una major estandardització dels seus productes.  

La present tesi doctoral es centra en avaluar el potencial de l'espectroscòpia 

visible i infraroig pròxim (VIS-NIR) per a la caracterització i la inspecció de la 

qualitat de la fruita tant fora de línia com a temps real en processos automatitzats. 

En un primer lloc, la viabilitat de la tècnica es va estudiar a nivell de laboratori 

en estat estàtic (off-line), a fi de conéixer i optimitzar les condicions de mesurament 

en funció de les característiques de la matèria primera. Posteriorment, es va avaluar 

la qualitat interna i externa de diferents tipus de fruites com són caqui, nectarina i 

mango. En una segona etapa, es va dur a terme una automatització dels processos 

d'inspecció per mitjà del desenvolupament de nous prototips in-line. Per aquest 

propòsit, i amb l'objectiu de completar i corroborar els resultats obtinguts de manera 

estàtica, es va estudiar la integració de dos sondes VIS-NIR en una garra robòtica 

capaç de manipular mangos fusionant mesuraments no destructives de la fermesa i 

dels espectres en el rang VIS-NIR obtinguts de forma simultània. Finalment, es va 

estudiar la integració d'una sonda VIS-NIR a una cinta transportadora com a 

ferramenta de monitorització in-line del procés d'inspecció de distintes varietats de 

poma. 

Els resultats obtinguts a nivell estàtic han demostrat que l'espectroscòpia VIS-

NIR és un mètode no destructiu molt prometedor per a predir l'astringència en caqui 

aconseguint un rendiment d'un R2
P de 0.904 utilitzant l'espectre complet i un R2

P de 

0.915 seleccionant tan sols les 41 bandes més importants. Així mateix, ha demostrat 

ser una adequada ferramenta per a classificar al 100% entre varietats de nectarines 

com “Big Top” i “Diamond Ray” amb una aparença externa i interna molt semblant, 

però amb diferents propietats organolèptiques. De manera semblant, va ser possible 

classificar al 100% varietats com “Big Top” i “Magique” d'aparença externa i 
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composició semblant però distint color de polpa. Es va desenvolupar un índex de 

qualitat interna (IQI) per avaluar la qualitat de les nectarines, que pot predir-se 

mitjançant l'espectroscòpia VIS-NIR. En el cas de la varietat “Big Top”, es van 

obtindre valors de R2
P de 0.909 i per a la varietat “Magique” valors de R2

P de 0.927. 

Pel que fa als treballs off-line realitzats amb mangos de la varietat “Osteen” va ser 

possible predir la seua qualitat interna mitjançant els índexs de maduresa (RPI) i de 

qualitat (IQI) amb un gran rendiment utilitzant tot el rang espectral (R2
P = 0.833-

0.879) així com les longituds d'onda més importants (R2
P = 0.815-0.896). Al mateix 

temps, els assajos experimentals efectuats amb estos mateixos mangos baix la 

manipulació no destructiva d'una garra robòtica, van demostrar que els millors 

models eren capaços de predir tant la fermesa mecànica (rp = 0.925), el contingut en 

sòlids solubles (rp = 0.892), la lluminositat de la polpa (rp = 0.893) així com l'índex 

RPI (rp = 0.937) de les mostres basant-se en l’informació obtinguda pels 

acceleròmetres instal·lats en els dits de la garra robòtica. 

En quant als assajos realitzats de manera in-line, el primer prototip 

desenvolupat es va basar en la integració de dos sondes VIS-NIR en una garra 

robòtica disposada amb dos acceleròmetres. El sistema desenvolupat va permetre 

aconseguir una bona estimació de la qualitat del mango a través de l'índex RPI 

aconseguint un R2
P de 0.832 fusionant l’informació tant dels espectres VIS-NIR com 

de l'impacte no destructiu dels acceleròmetres. D'esta manera va quedar demostrat 

que era possible obtindre una predicció semblant treballant de forma in-line com off-

line per a la predicció del mateix índex de qualitat en mangos. El segon prototip in-

line desenvolupat es va basar en la integració d'una sonda VIS-NIR en una cinta 

transportadora per a l’identificació de distintes varietats i orígens de pomes, 

aconseguint-se amb el sistema un èxit de classificació del 98%. El prototip 

desenvolupat va permetre registrar resultats de classificació tan bons com els 

efectuats de manera off-line. 

D'aquesta manera, es pot concloure que l'espectroscòpia VIS-NIR permet 

monitorar la qualitat i classificar fruita postcollita tant en mode off-line com in-line, 

sent una ferramenta que permet millorar i garantir la correcta qualitat i seguretat 

alimentària. Els nous prototips desenvolupats aporten clars avantatges respecte als 

processos tradicionals realitzats a mà, com són la reducció del temps d'inspecció, la 

disminució de la quantitat de residus generats pels anàlisis destructives de qualitat i 
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la possibilitat d'inspeccionar tota la producció, obtenint així un anàlisi més 

estandarditzat de la qualitat dels productes. 

 





   Abstract 

ABSTRACT 

 

The food industry, concretely the post-harvest sector, needs to innovate in 

their production processes, optimizing them to make their activities profitable, 

guaranteeing quality products capable of satisfying the needs of consumers. 

Nowadays, the improvement of post-harvest inspection processes is mainly focused 

on their optimization, applying new alternative techniques, which reduce processing 

times, minimize waste generation and achieve greater standardization of their 

products. 

The present doctoral thesis focuses on evaluating the potential of visible and 

near infrared spectroscopy (VIS-NIR) for the characterization and inspection of fruit 

quality both off-line and in real time in automated processes. 

Firstly, the viability of the technique was studied at the laboratory level in a 

static mode (off-line), in order to know and optimise the measurement conditions 

according to the characteristics of the raw material. Subsequently, the internal and 

external quality of different types of fruits such as persimmon, nectarine and mango 

were evaluated. Secondly, an automation of the inspection processes was carried out 

through the development of new in-line prototypes. For this purpose, and with the 

aim of completing and corroborating the results obtained in a static mode, the 

integration of two VIS-NIR probes in a robotic gripper capable of manipulating 

mangoes was studied, fusionating non-destructive measurements of the firmness and 

the spectra in the VIS-NIR range obtained simultaneously. Finally, the integration 

of a VIS-NIR probe to a conveyor belt was studied as an in-line monitoring tool on 

the inspection process of different apple varieties. 

The results obtained in static mode have shown that VIS-NIR spectroscopy is 

a very promising non-destructive method to predict the astringency in persimmon 

reaching a performance of R2
P of 0.904 using the full spectrum and a R2

P of 0.915 

selecting only the 41 bands more important. Likewise, it has demonstrated to be an 

adequate tool to classify 100% between nectarine varieties such as 'Big Top' and 

'Diamond Ray' with very similar external and internal appearance, but with different 

organoleptic properties. Similarly, it was possible to classify 100% varieties such as 

'Big Top' and 'Magique' with external appearance and similar composition but 

different pulp colour. An internal quality index (IQI) was developed to evaluate the 
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quality of nectarines, which can be predicted through VIS-NIR spectroscopy. In case 

of the 'Big Top' variety, R2
P values of 0.909 were obtained and for the variety 

'Magique', R2
P values of 0.927 were obtained. Regarding the off-line work carried 

out with mangoes of 'Osteen' variety, it was possible to predict its internal quality 

through the indexes of maturity (RPI) and quality (IQI) with a high performance 

using the whole spectral range (R2
P = 0.833-0.879) as well as the most important 

wavelengths (R2
P = 0.815-0.896). Moreover, the experimental tests carried out with 

these same mangoes under the non-destructive manipulation of a robotic gripper, 

showed that the best models were able to predict both the mechanical firmness (rp = 

0.925), the soluble solids content (rp = 0.892), the brightness of the pulp (rp = 0.893) 

as well as the RPI index (rp = 0.937) of the samples based on the information obtained 

by the accelerometers installed on the fingers of the robotic gripper. 

Regarding the tests carried out in an in-line mode, the first developed 

prototype was based on the integration of two VIS-NIR probes in a robotic gripper 

fitted with two accelerometers. The developed system allowed reaching a good 

estimation of mango quality through the RPI index, achieving an R2
P of 0.832 

combining the information of both the VIS-NIR spectra and the non-destructive 

impact of the accelerometers. In this way, it was demonstrated that it was possible 

to obtain a similar prediction working in-line as off-line mode for the prediction of 

the same quality index in mangoes. The second developed in-line prototype is based 

on the integration of a VIS-NIR probe in a conveyor belt for the identification of 

different varieties and origins of apples, achieving a success rate of 98% with the 

system. The developed prototype allowed to register classification results as good as 

those carried out off-line with, for example, nectarine. 

In this way, it can be concluded that VIS-NIR spectroscopy allows monitoring 

the quality and classifying post-harvest fruit in both off-line and in-line mode, being 

a tool that allows improving and guaranteeing the correct quality and food safety. 

The new developed prototypes provide clear advantages over the traditional 

processes performed by hand, such as the reduction of inspection time, the reduction 

of the amount of waste generated by destructive quality analysis and the possibility 

of inspecting full production, obtaining a more standardised analysis of the quality 

of the products. 
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PREFACE 

 

This thesis forms part of the project ‘Nuevas técnicas de inspección basadas en 

visión por computador multiespectral para la estimación de propiedades y 

determinación automática de la calidad y sanidad de la producción agroalimentaria 

en líneas de inspección y manipulación (VIS-DACSA, RTA2012-00062-C04-03)’, 

funded by the 2013-2016 European Regional Development Fund (FEDER) of the 

European Commission, and is focused on the evaluation of the potential of visible 

(VIS) and near-infrared (NIR) spectroscopy for the characterization and inspection 

of fruit quality both off-line as in real time in automation processes.  

The thesis is structured in six sections: Introduction, objectives, scientific 

contribution, general discussion, conclusions and future perspectives.  

The INTRODUCTION section focuses on the possibilities of monitoring for 

fruit quality control by non-destructive techniques. Electromagnetic spectral 

techniques have proved to have a great potential for the assessment of quality 

parameters for different fruits. Concretely, visible and near-infrared spectroscopy 

has showed to be a promising tool to assess of attributes related to quality, which 

will influence on the acceptance of these fruits by final consumers. Hence, this 

technique is relatively rapid, simple, cost-effective, non-destructive, 

environmentally friendly, and moreover, its application in combination with 

chemometrics allows to obtain successful and robust results.  

The OBJETIVES section presents the general and specific objectives of the 

thesis.  

The SCIENTIFIC CONTRIBUTION section is divided in two sections: 

section 1, off-line inspection and section 2, processes automation.  

In section I the optimal quality of different fruits with a certain commercial 

interest based on non-destructive analysis were evaluated under laboratory 

conditions applying visible and near-infrared spectroscopy device. This section was 

divided in 4 chapters.  

The first chapter evaluate the feasibility of VIS and NIR spectroscopy 

combined with chemometrics as a non-destructive tool to determine the level of 

astringency in persimmons cv. ‘Rojo Brillante’.  

The second chapter evaluate the ability of VIS and NIR spectroscopy to 

discriminate between two varieties of nectarine (cv. 'Big Top' and cv. 'Diamond 
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Ray'), which, because there are similar in colour and appearance, are very difficult 

to differentiate visually on the production line but show important differences in 

taste, thereby affecting the acceptance by the final consumers. Two supervised 

methods such as linear discriminate analysis (LDA) and partial least squares 

discriminate analysis (PLS-DA) were used for this purpose.  

The chapter three evaluate the performance of VIS-NIR reflectance 

spectroscopy as a tool to predict the internal quality of nectarines, and the potential 

of the information obtained to differentiate among varieties with different 

commercial interest. To this end, two varieties with a similar composition, grown in 

the same period, but with different development, cv. ‘Big Top’ and cv. ‘Magique’, 

have been analysed.  

In chapter four a non-destructive method based on external visible and near-

infrared reflection spectroscopy for determining the internal quality of intact mango 

cv. ‘Osteen’ was investigated. First an internal quality index for the mangoes, based 

on their main biochemical (total soluble solids) and physical properties (firmness 

and flesh colour), avoiding the titratable acidity analysis, because it is a laborious 

and slow analysis that generates waste, were determined. The internal quality index 

was applied to the mango cv. ‘Osteen’, and statistical models based on Partial Least 

Squares (PLS) to predict the internal quality of the samples through the analysis of 

external VIS-NIR spectral data were developed. 

In section II, new strategies based on visible and near-infrared spectroscopy, 

and its adaption for the automatic inspection and manipulation of fruits were studied 

with the purpose of developing new fusion non-destructive systems for the automatic 

quality control of fruits. This section was divided in 3 chapters. 

In chapter five, the use of a robot gripper in the assessment of firmness of 

mango fruit, cv. ‘Osteen’ was evaluated and relationships between the non-

destructive robot gripper measurements with embedded accelerometers in the fingers 

and the mechanical properties, internal quality (soluble solids, pH and tritatable 

acidity), flesh colour and the ripening index of mango fruit were established. 

Chapter six, is focused on the development of a novel robotic gripper that 

incorporates accelerometers and fibre-optic probes coupled to a spectrometer to 

analyse the mango ripening state by simultaneously measuring firmness and visible 
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and near-infrared reflectance when the fruit is handled in the packing house during 

postharvest operations. 

Chapter seven, is focused in three objectives: a) the development of a 

prototype system, using VIS-NIR reflectance spectroscopy, to be used for the in-line 

non-destructive measurement of apples; b) the use of an automated system that 

ensures that the distance between the probe and the fruit is the same regardless of the 

size of the fruit; and c) the use of the data obtained by the in-line system to 

differentiate apple varieties using chemometric methods. 

The GENERAL DISCUSSION, CONCLUSIONS and FUTURE 

PERSPECTIVES sections presents a short general discussion and the main 

conclusions of the results obtained in this thesis and different proposals for further 

possible studies.
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ABSTRACT 

This review addresses the applicability of visible and near-infrared (VIS-

NIR) spectroscopy for the off/in-line monitoring of quality in fruit and vegetables 

postharvest. VIS-NIR spectroscopy represents an analytical technique widely used 

in the agriculture and food industry due to its low running cost, not require sample 

preparation, non-destructive, environmental friendly and rapid technique capable 

for in-line application. Quantitative analyses for prediction of physico-chemical 

constituents or different quality and maturity indexes of postharvest fruit and 

vegetable using this methodology are widespread. Moreover, a wide range of 

qualitative determinations, e.g. for authenticity control, varietal discrimination or 

identification of damages or infestations in the products have been reported. 

Sophisticated conditions for the in-line application comprise among others 

measurements on moving conveyor belts and cups on conveyor belts. For such 

purposes, different construction designs of VIS-NIR spectrometers, portable 

devices and fibre-optic have been developed. The different strategies of application 

of VIS-NIR spectroscopy reported in the present review highlight its enormous 

versatility. 

Keywords: VIS-NIR spectroscopy, in-line, off-line, chemometrics, quantification, 

qualification 
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1. INTRODUCTION 

Increasing demand for quality assurance in agro-food production requires 

sophisticated analytical methods for objective quality control (Porep et al., 2015). 

Traditional analytical methods are, however, labor-intensive, time-consuming, and 

expensive (Tümsavas et al., 2013). Vibrational techniques, such as VIS-NIR 

spectroscopy, offer a straightforward, rapid, convenient, simple, accurate, non-

destructive, and cost-effective alternative. Moreover, VIS-NIR techniques allow 

measurements without prior sample preparation, and the potential exists to develop 

instruments for in-line measurements. However, since it is based on indirect 

measurements, thus yielding highly convoluted and broad spectra that are virtually 

impossible to interpret with the unaided eye, VIS-NIR spectroscopy requires 

calibration with mathematical and statistical tools (chemometrics) to extract 

analytical information from the corresponding spectra (Porep et al., 2015; Huang et 

al., 2008; Siesler, 2008). 

The versatile applications of VIS-NIR spectroscopy for fruit quality 

evaluation have been reviewed by Cen and He (2007) and Kumaravelu and Gopal 

(2015), while, despite the amount of research conducted, there are few reports that 

carry out a detailed examination of the VIS-NIR in-line technique in the agro-food 

sector. Related to the off-line evaluation of the quality in fruits and vegetables 

using spectroscopy technology, Wang et al. (2015) and Nicolaï et al. (2007) 

reviewed a broad spectrum of applications of VIS-NIR analysis to measure the 

quality properties of fruits and vegetables and its chemometric possibilities. 
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Specifically, Cozzolino et al. (2011) surveyed the different steps, methods and 

issues to be considered when calibrations based on NIR spectra are developed for 

the measurement of chemical parameters in fruits. Additionally, the specific 

applications of VIS-NIR spectroscopy for certain agro-food products, such as citrus 

fruit or mango, have been reviewed by Magwaza et al. (2012) and Jha et al. (2010), 

respectively. However, very limited research work has been conducted on VIS-NIR 

in-line applications to assess, monitor, and predict quality in fruits and vegetables. 

Some previous research such as that carried out by Huang et al. (2008) was 

focused on NIR on/in-line applications for monitoring quality in food and 

beverages, but without going deeper into the agro-food sector and without making 

any comparisons between off/in-line applications for the same product. In 

particular, the comparison between off-line and in-line experiences with VIS-NIR 

spectroscopy of the same agro-food product has been performed in this review. 

However, in numerous cases, a closer look reveals that on-line application has not 

been performed at all in the corresponding studies, hence the scarcity of real in-line 

applications. Therefore, this review compares the main advantages and 

disadvantages, problems, solutions, and differences between the implementation of 

VIS-NIR spectroscopy for agro-food products under both laboratory and semi-

industrial conditions. 
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2. VIS-NIR TECHNOLOGY 

Infrared spectroscopy relies on the absorbance of radiation at molecular 

vibrational frequencies. These frequencies can occur for relatively light vibrating 

C-H, N-H, and O-H groups containing hydrogen as well as groups of “heavier” 

atoms C-O, C-N, N-O, C-C in organic materials (Soriano-Disla et al., 2014). 

Overtone and combination vibrations of the relatively light atoms involving 

hydrogen dominate the NIR (700–2,500 nm; 4,000–14,286 cm−1), while these, plus 

bonds from the heavier atomic groups, absorb in the mid-infrared  (MIR) (2,500–

25,000 nm; 400–4,000 cm−1). Electronic transitions absorb in the ultraviolet (250–

400 nm; 25,000–40,000 cm−1) and visible (400–700 nm; 14,286–25,000 cm−1) 

regions (Rossel et al., 2006; Coates, 2000). Figure 1 shows the electromagnetic 

spectrum, with the location of the different spectral regions. 

 

Figure 1. The electromagnetic spectrum with the location of the visible and 

infrared spectral regions. 
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Visible and near-infrared technology, as an instrumental analytical 

technique, has to be calibrated first using chemical reference methods, and it also 

requires reliable hardware systems and complicated mathematical techniques to 

interpret chemical information encoded in the spectral data (Cogdill et al., 2005). A 

wide selection of spectroscopic devices is available and there are around sixty NIR 

spectrometer manufacturers around the world (McClure & Tsuchikawa, 2007). A 

typical VIS-NIR spectrometer consists of a light source, a wavelength selection 

device (e.g., a monochromator), a sample holder, a detector for the measurement of 

the intensity of the detected light and conversion into electrical signals, and a 

computer system for spectral data acquisition and processing (Siesler et al., 2008). 

Figure 2 shows the schematic diagram of a VIS-NIR spectroscopy system based on 

diffused reflectance. The use of fibre-optic probes is often desirable, as many 

modern applications are based on their intensive use in order to facilitate data 

acquisition routines due to their capacity for multiplexing, allowing them to 

monitor many points (Pasquini, 2003). 
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Figure 2. Schematic of spectra detecting system. 

 

Different optical geometries are available for VIS-NIR spectroscopy. The 

predominant sample presentation modes that can be distinguished are 

‘transmission’, ‘reflection’, ‘transflection’ and ‘interaction’ (Herold et al., 2009; 

Tsuchikawa, 2007; Alander et al., 2013). Illustrations of these different optical 

geometries are shown in Figure 3. The location of the detectors with respect to the 

sample determines the mode of operation. These modes must be provided by the 

instrument after minimal and easy changes in its configuration. According to the 

reflection and transmission optical geometry used, light attenuation by the sample, 

relative to the reference, is referred to as reflectance (R) and transmittance (T), 

respectively. Most studies use log 1/T or log 1/R values to perform chemometric 

analyses (Herold et al. 2009). 
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Figure 3. Modes for the acquisition of spectra. L: light source, D: detector. 

 

3. CHEMOMETRICS 

 

The powerful VIS-NIR instruments currently available quickly provide vast 

amounts of data that require efficient pre-processing and useful evaluation. 

Chemometrics is a discipline developed for this purpose. It includes all kinds of 

processes that transform the spectral signals into relevant analytical information. 

Generally, it involves three steps, as follows: (1) spectral data pre-processing; (2) 

construction of calibration models for quantitative and qualitative analysis; and (3) 

model transfer.  
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A comprehensive description of chemometric techniques used in VIS-NIR 

spectroscopy would require an extensive treatise on chemometrics, so only the 

more frequently used chemometric methods are discussed in this article. 

 

3.1. Spectral data pre-processing 

In general, pre-processing methods are needed prior to the application of 

multivariate data analysis techniques. The main aim of spectra pre-treatment is to 

transform the data into more useful information capable of facilitating its 

subsequent multivariate analysis.  

Frequently, the VIS-NIR spectra are characterized by suffering variations, 

for instance, by the components of the instrumentation used to record the spectrum 

(instrumental noise), variations in temperature, humidity or other environmental 

conditions during registration (background noise), or the signal variations due to 

the nature of the sample. These variations can be corrected by various pre-

processing methods. Some of the more frequent pre-treatments for VIS-NIR 

spectra include: (i) smoothing methods (for example, moving average, Gaussian 

filter, median filter, and Savitzky-Golay smoothing) are used to reduce 

instrumental noise or background information; (ii) derivation methods (usually first 

and second derivative) are used to remove background noise and increase spectral 

resolution (Savitzky and Golay, 1964); (iii) MSC (Lorente et al., 2015), (iv) OSC, 

and (v) SNV to increase resolution and baseline correction by eliminating the 

multiplicative interferences of scatter in spectra, particle size, and the change of 
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light distance (Martens et al., 1983; Geladi et al., 1985; Barnes et al., 1989; Wold 

et al., 1998); (vi) wavelet transformation is often used for smoothing, filtering, and 

data compression (Liu et al., 2011); (vii) normalization and/or scaling to adjust the 

individual contributions of the characteristics measured and obtain a result on an 

equal basis (Berrueta et al., 2007); and (viii) de-trending to eliminate the baseline 

drift in the spectrum (Wang et al., 2015). Moreover, different combinations thereof 

applied simultaneously can also be used for signal processing (Brereton, 2003). 

 

3.2. Multivariate analysis methods  

After the spectral pre-processing, the calibration model can be built for 

qualitative and/or quantitative analysis of the samples. In order to do so, many 

multivariate methods are available. Figure 4 shows a schematic diagram of possible 

experimental approaches using VIS-NIR spectroscopy techniques. 

 

Figure 4. Schematic overview of the different chemometric approches using VIS-

NIR spectra.  
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The first step of the data analysis is often principal component analysis 

(PCA), in order to detect patterns and outliers (Cozzolino et al., 2011) in the 

measured data. Other unsupervised pattern recognition techniques can be CA (Næs 

et al., 2002). In CA, samples are grouped on the basis of similarities (which can be 

distances, correlations or some combination of the two) without taking into account 

the information about class membership.  

Subsequently, a qualitative or quantitative approach to the data will be 

decided on according to the objectives of the study. Qualitative analysis is about 

classifying the samples according to their VIS-NIR spectra based on pattern 

recognition methods (Roggo et al., 2007). The classification model is developed 

with a training set of samples with known categories, and subsequently this model 

is evaluated by a test set of unknown samples. In order to do this, many qualitative 

methods are used, such as LDA (Coomans et al., 1983; Baranowski et al., 2012), 

QDA, KNN (Cover & Hart, 1967; Derde et al., 1987), PLS-DA (Liu et al., 2011), 

SIMCA (Pontes et al., 2006), ANN (Mariey et al., 2001), and SVM (Chen et al., 

2007), among others. Of all the different qualitative methods that exist, PLS-DA is 

a method that is often commonly selected for optimal classification. An example of 

application of this method is the study by Amodio et al. (2017), in which the 

potential of NIR spectroscopy to discriminate between the three different classes of 

strawberries produced by different fertility management systems was assessed, a 

sensitivity and specificity higher than 0.97 being obtained for external samples. A 

similar result (an accuracy of around 96%) was obtained by Mosceti et al. (2016), 
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who applied NIR spectroscopy to discriminate hailstorm-damaged and undamaged 

olive fruit, but in this case by LDA and QDA methods. Hu et al. (2017) also used 

different chemometric methods (PCA-DA, SIMCA and LDA) to classify normal 

and mildewed chestnuts measured using an NIR diffuse reflectance spectroscopy 

device, accuracy rates of up to 100% being obtained. 

The other use of chemometrics is for quantitative analysis, which focuses on 

predicting some of the properties that, for example, can greatly influence fruit 

quality. Methods such as PLS, MLR, PCR, and ANN are extensively used for VIS-

NIR quantitative analysis. Among them, PLS is recommended as the best modeling 

method for most VIS-NIR spectra (Lin & Ying, 2009). As mentioned above, with a 

quantitative approach the calibration and evaluation sets must also contain 

representative samples of the total set. The accuracy of VIS-NIR models for fruit 

quality prediction is usually evaluated by means of the R2 or r, the RMSE, and the 

RPD (Bobelyn et al., 2010). Generally, a good model should achieve a low RMSE 

and a high R2 or r. In addition, an acceptable model should have an RPD value of 

more than 2.5, a value above 3.0 being very good (Kamruzzaman et al., 2016; 

Cortés et al., 2016). Other statistical parameters reflecting a good model are low 

average difference between predicted and measured values (Bias) and a small 

difference between RMSEC and RMSEP. Moreover, a good model should have as 

few LV as possible. In the literature, most of the applications of VIS-NIR in the 

food field follow a quantitative approach. For example, Escribano et al. (2017) 

tested the ability of a handheld NIR device to predict soluble solids content (R2
p 



Introduction 

 

14 

values ranged from 0.726 to 0.891; RPD from 1.64 to 2.75, and Bias from 0.130 to 

1.029) and dry matter content (R2 values ranged from 0.670 to 0.725; RPD from 

1.45 to 1.96, and Bias from 0.005 to 0.345) in sweet cherry variety ‘Chelan’ and 

‘Bing’ at two different temperatures (0 ºC and 23 ºC). Khodabakhshian et al. 

(2017) investigated the potential of VIS-NIR spectroscopy in transmittance mode 

to predict quality attributes such as SSC (rp = 0.92; RPD = 6.38 ºBrix and RMSEP 

= 0.23 ºBrix), pH (rp = 0.85; RPD = 4.94 and RMSEP = 0.064), and TA (rp = 0.93; 

RPD = 5.31 and RMSEP = 0.26), of pomegranate variety ‘Ashraf’ during four 

distinct stages of maturity. 

 

4. MONITORING STRATEGIES IN THE POSTHARVEST FIELD 

According to the implementation process used, off-line, at-line, on-line, and 

in-line measurements can be distinguished. The most commonly used definitions of 

these terms are as follows (Callis et al., 1987; Dickens, 2010; Koch, 1999):  

- off-line: analyzes the sample away from the production line, typically in a 

laboratory. 

- at-line: random samples are manually removed from the production line 

and analyzed by an instrument installed very close to the process line. 

- on-line: the samples are diverted from the production line to be analyzed 

directly in the recirculation loop (by-pass) and are returned to the production line 

after analysis. 

- in-line: analyzes the sample within the running production line (in situ). 
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In practice, the terms in-line and on-line are apparently used interchangeably 

and so, for the publications cited in this review, the term employed in the original 

article is used. A thorough review of the literature reveals that the VIS-NIR 

technique has been applied to a wide array of agro-food related applications. One 

of the major areas that have been impacted by this implementation is the 

postharvest handling of fruit and vegetables. This section summarizes the current 

status of research in the aforementioned area by highlighting recent investigative 

and exploratory studies about off-line and in-line applications. 

 

4.1. Overview of the off-line application  

During the off-line application, samples are taken from reaction mixtures or 

finished products and analyzed on a laboratory scale. The main disadvantages are 

that this type of analysis requires some time, and in the meanwhile the production 

of a product of unknown quality continues. Additionally, most commercially 

available VIS-NIR spectroscopy devices are limited to single point analysis, and 

therefore, if the sample is heterogeneous, such as fruit, a single value might not be 

able to characterize the bulk sample (Wold et al., 2011).  

Some solutions to these disadvantages are, on the one hand, to bring the 

spectrometer to the production line and to do the analysis at-line immediately after 

sampling. This is possible thanks to research innovations that are creating more 

compact and portable VIS-NIR devices (McClure et al., 2007). On the other hand, 

another solution is to use a multipoint NIR system capable of monitoring different 
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points simultaneously. Additionally, the system could use different standoff 

distances adapting to the shape and size of the product, or even different light 

sources for individual probes depending on the objectives. Other advantages that 

these multipoint probes offer are their flexibility and the fact that they can be 

coupled to different scenarios. 

 

4.2. Overview of the in-line application 

The off-line measurement methods are still time-consuming, therefore 

justifying the recent development of methods for in-line process control (Roggo et 

al., 2007). Furthermore, nowadays, processing lines increase the demand for strict 

quality controls and optimization of the product. A critical requirement is to 

acquire data from the intact product in real time. 

In-line monitoring of the food production process has been considered by 

using specific analytical methods and in situ sensors or probes, such as NIR 

spectroscopy (Zude, 2008), acoustics and vibration (Patist & Bates, 2008), 

microwave resonance technology (Kim et al., 1999), visible imaging (Cubero et 

al., 2011; Cubero et al., 2016), and hyperspectral imaging (Balasundaram et al., 

2009; Lorente et al., 2012). In particular, NIR spectroscopy has proven to be a 

rapid, non-invasive and effective tool in fruit quality analysis, and its in-line 

application may be used to replace slow and laborious conventional methods (Ait 

Kaddour & Cuq, 2009; Alcalà et al., 2010; Dowell & Maghirang, 2002). Therefore, 

the ability to routinely collect data about fruit quality using NIR on-line systems in 
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the line production could be valuable for companies. For example, its in-line 

application would allow the product to be labeled with nutritional/quality 

information, differentiating it from competitors, and thus such products could be 

sold at a premium price, thereby adding commercial value. 

The determination of the quality traits of intact fruit in motion with the use 

of VIS-NIR technology would be a great advantage for production lines such as 

conveyor belts, sample cups on a conveyor belt or hopper systems, and studies 

have been conducted in this regard.  

 

4.3. Comparison between in-line and off-line applications 

Although several reviews of VIS-NIR applications on intact harvest fruits 

and vegetables have been published (Blanco & Villarroya, 2002; Huang et al., 

2008; Cen & He, 2007; Su et al., 2017; Wang et al., 2017; López et al., 2013; Lin 

& Ying, 2009; Magwaza et al., 2012; Opara & Pathare, 2014; Wang et al., 2015; 

Wiesner et al., 2014; Porep et al., 2015; Wang et al., 2007; Jha et al., 2010; Nicolaï 

et al., 2007; Cozzolino et al., 2011; Ruiz-Altisent et al., 2010), only one of them 

(Porep et al., 2015) delves into the possible applications of NIR technology at a 

semi-industrial and industrial scale. Porep et al. (2015) based their review on NIR 

applications that follow an on-line strategy. In contrast, this paper makes the first 

comparative study between off- and in-line strategies followed by different authors 

for the same type of product. The implementations of VIS-NIR spectroscopy that 

have been reviewed are summarized in Table 1. 
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The bibliographic analysis that was performed showed that in-line 

application of NIR for the analysis of intact fruits has been mainly restricted to five 

types of samples, namely apples, watermelons, nectarines, olives, and pears. In 

most off-line applications with fruits, the acquisition mode used is reflectance, 

except for the study conducted by Khatiwada et al. (2016) and the two studies by 

McGlone et al. (2002 and 2003) carried out in transmittance mode with apples, as 

well as the studies by Abebe (2006) and Jie et al. (2013) with watermelons or Xu et 

al. (2014) with pears. In the case of in-line applications the situation is similar: the 

predominant acquisition modes are reflectance, used in all in-line applications with 

olives (Salguero-Chaparro et al., 2012, 2013 and 2014), and the transmittance 

mode in the case of pears (Xu et al., 2012; Sun et al., 2016). Examples of both 

acquisition modes were found in in-line applications with watermelon (Jie et al., 

2014; Tamburini et al., 2017) and apple (McGlone et al., 2005; Shenderey et al., 

2010; Ignat et al., 2014), but nectarines were the only example found that 

employed the interactance mode (Golic & Walsh, 2006). 

The application of VIS-NIR spectroscopy to the in-line analysis of intact 

apples has been analyzed by different researchers such as Shenderey et al. (2010), 

McGlone et al. (2005) and Ignat et al. (2014). In the study by Shenderey et al. 

(2010) moldy core in apples was detected by VIS-NIR mini-spectrometer (400–

1,000 nm) installed in-line. The system was fitted with four cells, and in each cell 

rubber rings at the top and bottom hold the fruit and the fiber-optic probe was 

installed below the fruit-cell positions. The fruits were scanned in transmittance 
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mode, with a whole scan time of 1 second per fruit. The accuracy of the 

classification results was high: 92% detection of healthy apples and 100% 

detection of decay at levels of damage above 30%. Similarly, and also in 

transmittance mode, but in this case with a higher analysis speed (approximately 5 

fruits per second), McGlone et al. (2005) developed two prototype on-line NIR 

systems to measure the percentage of internal tissue browning in apples in the 

wavelength range 650–950 nm. Both systems employed the same motor-driven 

fruit conveyor with 21 fruit cups. The best correlations for the measurement of the 

ITB in apples, comparing the two transmission systems that were designed, 

indicated that a conventional large aperture approach to the spectrometry (LAS) 

was more accurate as well as simpler and less prone to data losses than an 

alternative based on the recently developed TDIS. In reflectance mode but with the 

same speed as that employed by Shenderey et al. (2010) (1 sample per second), 

Ignat et al. (2014) assessed the feasibility of rapidly measuring the apple quality of 

three cultivars using two commercial spectrophotometers (VIS-NIR with a spectral 

region between 340–1014 nm and SWIR between 850–1888 nm). The advantage of 

this study is that they evaluated both instruments to measure the same product in a 

static mode (off-line) and on a moving conveyer (in-line). In this case, the 

conveyer had 24 cells of fruit and the light source illuminated the sample vertically 

with an optical fiber at an inclination of 45º. The results demonstrated that in-

motion measurement modes gave higher SWS than static measurements in some 

cases. During in-motion measurement modes, the scanned area of the samples is 
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greater and, therefore, it reflects the individual apples more accurately compared 

with the static mode, where the optical fiber observes a relatively smaller area.  

Additionally, comparing certain quality parameters, such as SSC, in both 

static and in-motion studies resulted in similar prediction models as regards the in-

motion and the static measurements. Moreover, a comparison of certain quality 

parameters in both off-line and in-line studies resulted in similar and, in some 

cases, even better models for in-line than for static measurements. For example, 

observing the prediction of the SSC in studies with similar spectral ranges and the 

same measurement mode, an R2=0.86 was obtained for the in-motion study by 

Ignat et al. (2014), which is a very similar result to that found in static studies by 

Nicolaï et al. (2007) with an R2=0.87, Xiaobo et al. (2007) with an R2=0.93, and 

the studies by Pissard et al. (2013) and Guo et al. (2016) with an R2=0.94. 

Watermelons were analyzed by Jie et al. (2014) using a prototype in-line 

detection system based on the VIS-NIR technique for predicting their soluble 

solids contents in a spectral range of 687–920 nm in transmittance mode. The on-

line measurements were conducted by trays moving on a conveyor belt at a speed 

of 0.3 m/s. According to the authors, a calibration model based on Monte-Carlo 

uninformative variable elimination (MC-UVE) combined with stepwise multiple 

linear regressions (SMLR) and baseline offset correction (BOC) spectra pre-

processing yielded optimal results (rp=0.66). Recently, Tamburini et al. (2017) 

developed an NIR in-line system to determine lycopene, β-carotene, and total 

soluble solids content in red-flesh watermelons in the selected wavelength range 
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from 900 to 1700 nm in reflectance mode. Watermelons were transported along a 

conveyor belt system at different speeds (2100, 2400 and 2700 rpm). Models were 

performed using partial least squares (PLS) on pre-treated spectra (derivate and 

standard normal variation) and the results confirmed a good predictive ability with 

R2
p higher than 0.70. 

On comparing the off- and in-line studies by Jie et al. (2013 and 2014) in 

transmittance mode, it is observed that off-line results are slightly better (R2
p=0.845 

for off-line and rp=0.66 for in-line) but with higher RMSEP (RMSEP=0.574 ºBrix 

for off-line and RMSEP=0.39 ºBrix for in-line). If this is compared with the other 

off-line study (Abebe et al., 2006) conducted in transmittance mode found for this 

type of product, a higher R2
p (0.81) is also obtained but with higher RMSEP (0.42 

%) than for the in-line system. 

In the case of nectarines, only one study has been found dealing with an in-

line application. In this case, Golic and Walsh (2006) employed an NIR 

spectrometer (735–930 nm). In contrast to the rest of the in-line systems, this 

prototype was designed to acquire the fruit spectra in interactance mode (or partial 

transmittance configuration). The SSC of nectarines were determined above the 

cup in the conveyor belt by passing each cup at approximately 0.7 m/s, or 6 cups 

per second. The prediction performance of the model was good in terms of R2>0.8. 

Comparing the prediction results of SSC of the in-line system (Golic and Walsh, 

2006) with the off-line studies, although the mode of data acquisition was different, 

it was shown how the in-line system achieved, with a smaller spectral range, results 
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as good as, or even better than, those developed by Pérez-Marín et al. (2009) with 

an R2=0.89 and Sánchez et al. (2011) with an r2=0.47–0.68. 

Intact olives were also assessed by VIS-NIR reflectance spectroscopy in 

both off-line and in-line applications by a research group of the University of 

Córdoba (Salguero-Chaparro et al., 2012, 2013 and 2014). Salguero-Chaparro et 

al. (2012) studied and optimized some parameters such as focal distance and 

integration time prior to implementation of the system at factory level. The 

spectrometer was installed on a structure designed specifically to support it and to 

perform on-line measurements on a conveyor belt in the spectral range of 380–

1690 nm. With the same semi-industrial scale process line on a conveyor belt, 

Salguero-Chaparro et al. (2013) determined the acidity, moisture, and fat content in 

intact olives. Depending on spectra pre-processing and validation strategies, the 

predictive performance achieved varied. However, the authors concluded that the 

in-line NIR prediction results were acceptable with R2>0.74 for the three 

parameters measured in samples in movement. Additionally, Salguero-Chaparro et 

al. (2014) compared on-line versus off-line NIR systems to analyze the same 

properties as in the previous study. The parameters used were described in 

Salguero-Chaparro et al. (2012) and were as follows: focal distance of 13 mm, 

speed of conveyor belt of 0.1 m/s and integration time of 5 s. The results obtained 

indicated that the accuracy of the on-line analysis in comparison to the traditional 

off-line approach for the determination of physicochemical composition in intact 

olives was similar.  
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More specifically, on comparing the prediction by the PLS method of certain 

quality parameters such as fat content, free acidity and moisture content for the 

same mode of acquisition (reflectance), it is observed how the predictions achieved 

in the in-line studies (Salguero-Chaparro et al., 2013 and 2014) were as good (R2
fat 

content = 0.79 and 0.86; R2
free acidity = 0.74 and 0.77; and R2

moisture content = 0.87 and 

0.89) as those analyzed off-line (R2
fat content = 0.87; R2

free acidity = 0.76 ; and R2
moisture 

content = 0.89). 

In the same way as in two studies dealing with apple and one with 

watermelon, the in-line systems developed for pears have been used in 

transmission mode. Xu et al. (2012) investigated an application for the on-line 

determination of sugar content in pears between 533–930 nm. The on-line 

measuring system included a tray conveyor device with a round hole at the bottom 

of the tray to install a collimating lens and an optical fiber used to connect the 

collimating lens and spectrometer. The halogen lamps were installed on two sides 

of the tray. The speed of the conveyor belt was 0.5 m/s and the integration time 100 

ms. Similarly, Sun et al. (2016) developed on-line VIS-NIR transmittance system 

to measure soluble solids content and also brown core in pears. Like Xu et al. 

(2012), VIS-NIR spectra were recorded at a moving speed of 5 samples per second 

and using a very similar wavelength range from 600 to 904 nm. Furthermore, the 

system also consisted of a transmission chain, light source, detector, sorting 

mechanism, and fruit cup.  
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A comparison of both systems in-line allowed very good results to be 

obtained for SSC predictions, with R2 between 0.82 and 0.99. In comparison with 

the SSC analysis off-line and also in transmission mode (Xu et al., 2014), the in-

line results are better than those performed off-line (rp=0.96). With respect to off-

line analyses but in reflectance mode (Li et al., 2013 and Nicolaï et al., 2008), in-

line results were still better than those developed off-line (rp=0.91 and R2=0.60, 

respectively). 
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Table 1. Off-line and in-line applications of VIS-NIR spectroscopy in assessment 

of quality in agricultural products. 
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Table 1. Continuation. 
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Table 1. Continuation. 
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Table 1. Continuation. 
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Table 1. Continuation. 
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Table 1. Continuation. 
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5. CONCLUSIONS AND FUTURE DIRECTIONS 

Visible and near-infrared spectroscopy techniques have become powerful 

tools for the non-destructive sensing of multiple quality and safety attributes of 

agricultural products. These techniques combined with chemometric methods have 

revealed great potential due to their fast detection speed, no need for sample 

disposal, and likelihood of simultaneous prediction of multiple quality parameters 

or discrimination of the products according to the objectives. 

Recent evidence of the relevance of off-line and in-line applications of VIS-

NIR spectroscopy may be found in the aforementioned reviews and the original 

papers cited therein. The possibility of automating processes by the in-line 

application of VIS-NIR spectroscopic methods is a great advantage compared to 

routine analyses that are performed off-line, mainly due to the savings achieved in 

time, material, and personnel. Nevertheless, prior studies on a laboratory scale are 

necessary in order to later extend the objective and transfer this technology to a 

semi-industrial scale and finally industrial scale. In this way, the advances of VIS-

NIR technology in the agriculture and food industries are promoting the creation of 

hardware systems that are smaller, faster and more robust, while spectral analysis 

software is becoming more intelligent.  

However, in-line application under industrial prototypes requires extensive 

research to overcome challenges such as the in-line moving of the products, 

moving due to speed, coupling the probe to the shape of the product, and 

inhomogeneity of the samples, among other factors. 
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Most of the studies published to date do not focus on in-line applications on 

the prototype scale (not a commercial or industrial level) but on laboratory 

research. However, recent demands from industries and consumers, together with 

the advances being made in the technology, more powerful processing units, and a 

reduction in the price of equipment makes VIS-NIR technology an analytical tool 

for routine and real-time food safety and quality controls that will become 

predominant in the next few years. To achieve this, it is necessary to continue to 

study in greater depth methods to: i) offset the negative influence of movement; ii) 

homogenize the measurement process regardless of the size or shape of the fruit; 

iii) measure on different points of the fruit; iv) reduce analysis time; v) speed up 

the process by measuring several fruits at the same time; and vi) combine 

manipulation and quality inspection of the fruit simultaneously. 

 

Abbreviations used 

ANN, artificial neural network; BC, background colour; CA, cluster analysis; 

CDA, canonical discriminant analysis; CR2, squared canonical correlation; IQI, 

internal quality index; ITB, internal tissue browning; KNN, K-nearest neighbors; 

LDA, linear discriminant analysis; LV, latent variables; MIR, med-infrared; MLR, 

multiple linear regression; MSC, multiplicative scatter correction; OSC, orthogonal 

signal correction; PCR, principal component regression; PLS, partial least square; 

PLS-DA, partial least squares-discriminant analysis; QDA, quadratic discriminant 

analysis; QS, quantitative starch; r, correlation coefficient; rp, correlation 
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coefficient for prediction; R2, coefficient of determination; RMSE, root mean 

square error; RMSECV, root mean square error of cross-validation; RMSEP, root 

mean square error of prediction; R2
P, determination coefficient for prediction; RPD, 

ratio of performance to deviation; SEP, square error of prediction; SIMCA, soft 

independent modeling of class analogy; SNV, standard normal variate; SPI, starch 

pattern index; SSC, soluble solids content; SVM, support vector machine; SWIR, 

short-wavelength near-infrared; SWS, standardized weighted sum; TA, titratable 

acidity; TDIS, time-delayed integration method; TPC, content of total phenolic 

compounds; VIS-NIR, visible and near-infrared. 
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2.1 General objective 

The main objective of this thesis was to contribute to the development of 

non-destructive inspection and handling systems for the estimation of the quality of 

some fruits according to their external and internal characteristics and for their 

correct classification according these properties, based on advanced automatic 

inspection and intelligent robotic manipulation systems. 

 

2.2. Specific objectives  

  Develop visible and near infrared predictive models for determining 

astringency in persimmon fruits. 

  Evaluate visible and near-infrared spectroscopy as classification tool for 

nectarine varieties with a very similar external appearance. 

  Find a suitable predictive method based on VIS-NIR spectroscopy for 

determining the internal quality of intact nectarines and mangoes.  

  Evaluate the possibility of predicting the firmness and ripeness of mango 

fruits using a non-destructive technique during robot handling operation with a 

robot gripper. 

 To design and integrate sensors with different nature in a robot gripper to 

determine the mechanical and optical quality properties of mango fruits. 

  To design and construct a novel prototype for the in-line identification of 

apple varieties based on VIS-NIR spectroscopy. 
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The thesis was divided into two different sections: 

a. Off-line inspection. It was addressed to evaluate the optimal quality 

of fruits with a certain commercial interest based on non-destructive 

analysis under laboratory conditions applying visible and near-

infrared spectroscopy device.  

This section is divided in 4 chapters: 

 CHAPTER I. Prediction of the level of astringency in 

persimmon using visible and near-infrared spectroscopy 

 CHAPTER II. Sweet and nonsweet taste discrimination of 

nectarines using visible and near- infrared spectroscopy 

 CHAPTER III. Visible and near-Infrared diffuse reflectance 

spectroscopy for fast qualitative and quantitative assessment 

of nectarine quality 

 CHAPTER IV. A new internal quality index for mango and 

its prediction by external visible and near-infrared reflection 

spectroscopy 

 

b. Processes automation. It was addressed to study and to develop new 

strategies based on visible and near-infrared spectroscopy, and its 

adaption for the automatic inspection and manipulation of fruits with 

the purpose of create new non-destructive systems based on fusion 

of sensors for the automatic quality estimation of fruits. 

This section is divided in 3 chapters: 

 CHAPTER V. Non-destructive assessment of mango 

firmness and ripeness using a robotic gripper 

 CHAPTER VI. Integration of simultaneous tactile sensing 

and visible and near-infrared reflectance spectroscopy in a 

robot gripper for mango quality assessment 

 CHAPTER VII. In-line application of visible and near 

infrared diffuse reflectance spectroscopy to identify apple 

varieties 
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3.1.1. Chapter I. 

 

 

Prediction of the level of astringency in persimmon 

using visible and near-infrared spectroscopy 
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ABSTRACT 

 

Early control of fruit quality requires reliable and rapid determination 

techniques. Therefore, the food industry has a growing interest in non-destructive 

methods such as spectroscopy. The aim of this study was to evaluate the feasibility 

of visible and near-infrared (NIR) spectroscopy, in combination with multivariate 

analysis techniques, to predict the level and changes of astringency in intact and in 

the flesh of half cut persimmon fruits. The fruits were harvested and exposed to 

different treatments with 95 % CO2 at 20 ºC for 0, 6, 12, 18 and 24 h to obtain 

samples with different levels of astringency. A set of 98 fruits was used to develop 

the predictive models based on their spectral data and another external set of 42 

fruit samples was used to validate the models. The models were created using the 

partial least squares regression (PLSR), support vector machine (SVM) and least 

squares support vector machine (LS-SVM). In general, the models with the best 

performance were those which included standard normal variate (SNV) in the pre-

processing. The best model was the PLSR developed with SNV along with the first 

derivative (1-Der) pre-processing, created using the data obtained at six 

measurement points of the intact fruits and all wavelengths (R2=0.904 and 

RPD=3.26). Later, a successive projection algorithm (SPA) was applied to select 

the most effective wavelengths (EWs). Using the six points of measurement of the 

intact fruit and SNV together with the direct orthogonal signal correction (DOSC) 

pre-processing in the NIR spectra, 41 EWs were selected, achieving a R2 of 0.915 

and a RPD of 3.46 for the PLSR model. These results suggest that this technology 

has potential for use as a feasible and cost-effective method for the non-destructive 

determination of astringency in persimmon fruits. 

 

Keywords: Diospyros kaki, fruit internal quality, soluble tannins, near-infrared 

spectroscopy, chemometrics 
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1. INTRODUCTION  

Persimmon (Diospyros kaki L.) is a fruit originally from China, but is now 

cultivated in warm regions around the world (Ashtiani et al., 2016). The climatic 

characteristics of the production are important factors that influence the quality and 

properties of the fruits. The main areas where this fruit is cultivated in Spain are 

Alicante, Andalucía, Castellón, Extremadura and Valencia, especially in Ribera del 

Xúquer, which was granted Protected Designation of Origin (PDO) status by the 

Spanish government in 1998 (Khanmohammadi et al., 2014). Several cultivars of 

persimmon are grown in Spain, such as the astringent type ‘Rojo Brillante’. 

Persimmon develops an astringent taste due to the presence of soluble tannins. 

Tannins are polyphenol compounds with a high molecular weight and their large 

hydroxyl phenolic groups cause astringency. As the fruit ripens, the soluble tannins 

gradually turn into insoluble tannins, making the fruit less astringent (Noypitak et 

al., 2015). However, several postharvest treatments can be applied to achieve the 

fast removal of the astringency of the fruits without affecting the firmness of the 

pulp (Khademi et al., 2010). Among them, the most widely used commercial 

technique is based on exposing the fruits to a high concentration of CO2 (95%–

98%). This method promotes anaerobic respiration in the fruit, resulting in an 

accumulation of acetaldehyde, which reacts with the soluble tannins. The tannins 

become insoluble with the treatment and the astringency is thus eliminated (Matsuo 

et al., 1991). If the treatment is too short, it can result in fruits with residual 

astringency (Besada et al., 2010), whereas if it is too long, it may lead to loss of 

fruit quality (Novillo et al., 2014). Therefore, it is important to investigate non-

destructive techniques to ensure the success of the treatments. 

Techniques based on the spectrum analysis, like hyperspectral imaging, have 

been widely used for the qualitative and quantitative determination of different 

properties in fruit (Lorente et al., 2012). Munera et al. (2017b & 2017a) analysed 

the astringency and the internal quality of persimmon using hyperspectral imaging, 

which has the advantage of obtaining both spectral and spatial information. 

However, one of the most common techniques currently used in food chemistry is 

near-infrared (NIR) spectroscopy, as it is non-destructive, inexpensive, rapid and 

reliable (Nicolaï et al., 2007; Vitale et al., 2013; López et al., 2013). This 

technique has been used for the quantitative determination of several internal 
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properties or compounds (Schmilovitch et al., 2000; Nagle et al., 2010; 

Theanjumpol et al., 2013), to determine maturity (Jha et al., 2012) and also to 

measure quality indices (Attila & János, 2011; Cortés et al., 2016).  

The combination of chemometrics and spectroscopy has been applied in the 

food industry, agriculture and horticulture to obtain information from spectra. 

Support vector machine (SVM) are learning algorithms used for classification and 

regression tasks widely used in the analysis of spectroscopic data (Devos et al., 

2009; Fernadez-Pierna et al., 2012). Chauchard et al. (2004) compared classical 

linear regression techniques with least square-support vector machine (LS-SVM) 

regression to predict the total acidity in fresh grapes using NIR spectroscopy. LS-

SVM in combination with Standard normal variate (SNV) pre-processing and 

partial least square regression (PLSR) latent variables increased the rate of 

prediction. Nicolaï et al. (2007) predicted sugar content using PLSR. The 

covariance, Gaussian and cubic polynomial kernel functions obtained similar 

results of about R2=0.87 and Q2=0.84 for all methods, concluding that kernel PLSR 

offered no advantages compared to ordinary PLSR. The identification of the 

spectral variables (wavelengths) can lead to better classification results and 

simplify the chemical interpretation of the results. Calvini et al. (2015) tested 

sparse principal component analysis (PCA) together with k-Nearest-Neighbours (k-

NN) and sparse PLS discriminant analysis (PLS-DA) to discriminate between 

Arabica and Robusta coffee, and compared the results with the classical approaches 

based on PCA+kNN and PLS-DA.  

Lorente et al. (2015) used NIR spectroscopy (650 to 1700 nm) to detect 

early invisible decay lesions in citrus fruit using MSC and SNV pre-processing, 

different methods to select the important bands, and linear discriminant analysis 

(LDA) to classify the fruit as being either sound or rotten with a rate of correct 

classification above 90 %. Folch-Fortuny et al. (2016) used N-way-PLS-DA to 

detect early invisible decay lesions in citrus fruit, achieving a prediction rate higher 

than 90 %. Mowat and Poole (1997) found this technology useful in determining 

persimmon quality. Ito et al. (1997) and Noypitak et al. (2015) investigated 

astringency in the persimmons ‘Nisimura-wase’ and in ‘Xichu’, respectively. The 

most common mode used in NIRS is diffuse reflectance, which acquires the 
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reflected light in the vicinity of the illuminating point and is preferable for the 

measurement of intact fruit (Shao et al., 2009; He et al., 2007).  

The aim of this study was to evaluate the feasibility of visible and NIR 

spectroscopy combined with chemometrics as a non-destructive tool to determine 

the level of astringency in persimmons cv. ‘Rojo Brillante’. 

 

2. PLANT MATERIAL AND EXPERIMENTAL DESIGN 

Persimmon cv. ‘Rojo Brillante’ fruits were harvested in L’Alcudia 

(Valencia, Spain) at two stages of commercial maturity (M1 and M2) 

corresponding to late November and mid-December. The maturity index used to 

select the fruits was a visual observation of the external colour of the fruit 

(Salvador et al., 2007). After each harvest, 70 fruits without external damage and 

of homogenous colour were selected (a total of 140 fruits). In order to characterise 

the fruit at harvest, the average colour index (CI=100a/Lb, Hunter parameters) was 

measured using a colorimeter (CR-300, Konica Minolta Inc, Tokyo, Japan) and the 

firmness of the flesh was measured by a universal testing machine (4301, Instron 

Engineering Corp., MA, USA) equipped with an 8 mm puncture probe. The 

crosshead speed during the firmness test was 10 mm/min. During the test, the force 

increased slowly until it decreased abruptly when the flesh broke, and then the 

maximum required force (in Newton) was recorded. 

The average CI resulted in 18.20 ± 3.32 for M1 and 21.6 ± 4.05 for M2, 

while firmness decreased along with maturity at harvest, with mean values being 

30.8 N ± 3.5 and 24.4 N ± 4.9 for M1 and M2, respectively. 

In order to obtain different levels of astringency, the fruits in each maturity 

stage were divided into five homogeneous lots. The fruit was then exposed to CO2 

treatments in closed containers (95 % CO2 at 20 ºC and 90 % RH) for 0, 6, 12, 18 

and 24 h. Spectroscopic measurements of the intact fruits and the flesh of half cut 

fruits were acquired in the 8 h after each treatment with CO2. Figure 1 shows the 

location of the selected points for the measurements. 
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Figure 1. Selected points for the spectroscopic measurements in: a) intact fruit; and 

b) the flesh of half cut fruit. 

 

The degree of astringency of each fruit was determined as follows. A flesh 

sample of each fruit was frozen at 20 ºC and the soluble tannin content was 

analysed using the Folin-Denis method (Taira, 1995). The results were expressed 

as relative soluble tannins by fresh weight. Prior to this process, each fruit was cut 

in half and pressed onto 10x10 cm filter paper soaked in a solution of 5 % FeCl3, 

which resulted in an impression whose quantity and intensity gave information 

about the content of soluble tannins and their distribution (Matsuo & Ito, 1982). 

This method of tannin printing is an alternative technique to the Folin-Denis 

method used in industry in random fruits to determine the level of astringency in 

fruit lots. 

 

3. VISIBLE AND NEAR-INFRARED SPECTRA COLLECTION 

The spectra were alternately collected in reflectance mode using a multi-

channel spectrometer platform (AVS-DESKTOP-USB2, Avantes BV, The 

Netherlands) equipped with two detectors (Fig. 2). The first detector (AvaSpec-

ULS2048 StarLine, Avantes BV, The Netherlands) included a 50 mm entrance slit 

and a 600 lines/mm diffraction grating covering the working visible and near-

infrared (VNIR) range from 650 nm to 1050 nm with a spectral FWHM (full width 

at half maximum) resolution of 1.15 nm. The spectral sampling interval was 0.255 

nm. The second detector (AvaSpec-NIR256-1.7 NIRLine, Avantes BV, The 

Netherlands) was equipped with a 256-pixel non-cooled InGaAs (Indium Gallium 

Arsenide) sensor (Hamamatsu 92xx, Hamamatsu Photonics K.K., Japan), a 100 
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mm entrance slit and a 200 lines/mm diffraction grating covering the working NIR 

range from 1000 nm to 1700 nm with a spectral FWHM resolution of 12 nm. The 

spectral sampling interval was 3.535 nm. A stabilised 10 W tungsten halogen light 

source (AvaLight-HAL-S, Avantes BV, The Netherlands) was used. The probe tip 

was designed to provide reflectance measurements at a 45º angle so as to minimise 

the specular reflectance of the fruit surface.  

Calibration was performed using a 99 % white reflective reference tile (WS-

2, Avantes BV, The Netherlands) so that the maximum reflectance of the reference 

measured over the entire spectral range was 90 % of the value of saturation. Before 

taking the spectral measurements, the temperature of the persimmons was 

stabilised at 24 ºC. Measurements were performed at the six different points on the 

surface of the intact persimmon and the flesh of half cut fruit (Fig. 1), and mean 

values of the spectra for both types of measurements were used for the analysis. A 

personal computer equipped with commercial software (AvaSoft version 7.2, 

Avantes, Inc.) was used to control both detectors and to acquire and pre-process the 

spectra. The integration time was set at 90 ms for the detector sensitive in the 

VNIR and 700 ms for the detector sensitive in the NIR region. For both detectors, 

each spectrum was obtained as the average of five scans in order to reduce the 

detector’s thermal noise (Nicolaï et al., 2007). The mean reflectance measurements 

of each sample (S) were then converted to relative reflectance (R) values with 

respect to the white reference using dark reflectance (D) values and the reflectance 

values of the white reference (W), as shown in (1):  

 

    𝑅 =
𝑆−𝐷

𝑊−𝐷
      (1) 

 

The dark spectrum was obtained by switching off the light source and 

covering the whole tip of the reflectance probe. 
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Figure 2. A labelled picture of the spectrometer. 

 

4. STATISTICAL ANALYSIS 

Spectral data and the tannin reference values were organised into matrices, 

where the rows represented the samples (the total of 140 persimmons) and the 

columns represented the variables. The X-variables, or predictors, were the 

wavelengths of the VNIR and NIR spectra for each persimmon. The Y-variable, or 

response, in the last column, represented the measured tannin value associated with 

each sample. 

A total of 28 matrices were generated corresponding to different 

combinations of the measurement points of the intact fruit and the flesh of the half 

cut fruit. The first two matrices corresponded to the mean values of reflectance of 

the measurements at the six points of the intact fruit shown in Figure 1. The third 

and fourth matrices contained mean values of the measurements at four points (2-5-

3-4), which corresponded to the lowest part of the intact persimmon in the VNIR 

and NIR detectors, respectively. The fifth to fourteenth matrices contained mean 

values for measurements of other combinations of points (1-6-2-5, 1-6-3-4, 1-6, 2-5 

and 3-4) in both VNIR and NIR. Other combinations of measured points have not 

been taken into account since the deastringency process normally progresses from 

the top to the bottom of the fruit (Fig. 5) and would not make sense. The remaining 

14 matrices corresponded to the mean values of the measurements of the same 

combinations of points, but from the flesh of the half cut fruit. 
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4.1. Spectral pre-processing 

To remove the influence of unwanted effects such as high-frequency noise, 

baseline shifts, light scattering, random noise and any other external effects due to 

instrumental or environmental factors, six methods of spectral pre-processing and 

their combinations were applied before the development of the prediction models. 

These methods included standard normal variate (SNV), multiplicative scatter 

correction (MSC), Savitzky-Golay smoothing (SG), first (1-Der) and second (2-

Der) derivatives, and direct orthogonal signal correction (DOSC). All spectral pre-

processing methods and the prediction models were carried out using MATLAB 

R2015b (The Mathworks Inc., Natick, MA, USA). 

SNV is commonly used to eliminate the multiplicative noise due to the 

influence of particle size or scatter interference (Rinnan et al., 2009). SNV 

subtracts the mean from an individual spectrum and divides it by its standard 

deviation (Feng & Sun, 2013). Similarly, MSC is used to compensate for the non-

uniform scattering effect induced by diverse particle sizes and other physical 

effects in the spectrum (Fearn et al., 2009; Vidal & Amigo, 2012). It linearises 

each spectrum to an average spectrum (derived from the calibration set) and adjusts 

it using the least squares method.  

Moreover, smoothing is an effective way to reduce high-frequency noise. 

There are several smoothing methods in the literature, but one of the most 

commonly applied is SG smoothing (Savitzky & Golay, 1964). This method has 

the advantage of preserving signal characteristics such as the maximum and 

minimum relative values or the width of the peaks, which usually disappear with 

other smoothing methods. In the present work, SG smoothing was calculated with 

two-degree polynomials and a window size of seven points. 

1-Der and 2-Der are well-accepted pre-processing methods to eliminate the 

shifting, the scattering and the background noise, as well as to distinguish 

overlapping peaks and to improve the spectral resolution (Sinija & Mishra, 2011). 

They were calculated using the SG algorithm with three-point smoothing filters 

and a two-degree polynomial (Liu et al., 2010).  

Finally, DOSC are novel methods used to remove information that has a 

poor correlation (orthogonal) with the response matrix (Zhu et al., 2008). DOSC 
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obtains components that are orthogonal to the response matrix and eliminates those 

that are considered irrelevant, thus improving the predictability. 

 

4.2. Modelling by different calibration methods 

Estimation of prediction error is required to evaluate the performance of 

fitted models. Cross-validation is widely used to estimate the prediction error 

(Fusiki, 2011). In this work, 70 % of the fruits in each maturity stage were 

randomly selected to build the models that were internally validated using a 10-fold 

cross-validation. The remaining  30 % of the samples were never used to build or 

train the model with the purpose of externally evaluating the performance of the 

regression techniques used to predict the tannin content. The regression techniques 

used in this work were PLSR, SVM and the LS-SVM regression. 

The PLSR multivariate method is widely used to evaluate the linear 

relationship between inputs (spectral data or X-variables) and the response variable 

(tannin content in this case or Y-variable) in spectroscopic analysis (Geladi & 

Kowalski, 1986). The procedure is based on the use of latent variables (LVs), 

instead of real variables (spectral data), depending on the covariance between the 

predictors, or X-variables, and the response, or Y-variable, leading to a 

parsimonious model with reliable predictive power (Lorber et al., 1987). SVM is a 

popular machine learning tool for regression (Vapnik, 2013) based on the Vapnik-

Chervonenkis (VC) dimension and on the principle of structural risk minimisation 

(Gunn, 1998). It is considered a non-parametric technique because the SVM 

models are based on a non-linear kernel function. In short, SVM assigns the 

calibration dataset to a high-dimensional feature space by means of a non-linear 

mapping, and then performs a linear regression. This technique has the advantage 

of being very efficient and robust during the training of the model. In this study, 

the Matlab statistical and machine learning toolbox was used to train the model 

with the spectral and tannin information, using a linear kernel and a 10-fold cross-

validation. 

Finally, LS-SVM is a learning algorithm which improves the generalisation 

ability of the machine learning procedure based on the principle of structural risk 

minimisation (Liu et al., 2008; Suykens & Vandewalle, 1999). It handles both 

linear and non-linear multivariate problems with less computational cost and with a 
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small sample database. This is achieved using linear equations instead of quadratic 

problems to reduce the complexity of the optimisation process (Liu & Sun, 2009). 

The LS-SVM has the advantage of limited over-fitting, high predictive reliability 

and a strong generalisation capability. The LS-SVMlab v1.8 toolbox (Suykens, 

Leuven, Belgium) was used to develop the calibration models. During the 

development of the model, the linear kernel and a 10-fold cross-validation were 

used to avoid problems of over-fitting. The linear kernel included a regularisation 

parameter that determined the trade-off between minimising the training error and 

minimising the model complexity. A large γ implies little regularisation, and 

therefore a more non-linear model (Sun et al., 2009). 

 

4.3. Variable selection 

Since the number of variables used as inputs (wavelengths) in the models is 

high (1570 variables for the VNIR and 198 for the NIR spectra), they may contain 

excessive collinearity and redundancy. Therefore, it was considered appropriate to 

find the most important wavelengths as effective wavelengths (EWs) for each 

model. This was performed with the purpose of reducing the high dimensionality 

of the spectral data and the computational cost, thus achieving an optimal model. 

The algorithm that was applied to select the EWs was a successive 

projection algorithm (SPA). SPA is a variable selection algorithm applied to solve 

collinearity problems and to select the wavelengths with fewer redundancies by 

means of a simple procedure of projection in a vectorial space, thereby allowing for 

the selection of the best subsets of wavelengths that conform to the minimum 

collinearity (Araújo et al., 2001; Galvao et al., 2008; Zhang et al., 2013). SPA was 

applied for each calibration set and the EWs obtained were used again as inputs of 

the PLSR, SVM and LS-SVM models. 

 

4.4. Model evaluation 

The accuracy and the predictive capability of the three different models were 

evaluated by means of the coefficient of determination (R2), the root mean square 

error (RMSE) and the ratio of performance to deviation (RPD) obtained on the 

external validation set. Generally, a good model must have high R2 with low 

RMSE. In addition, an acceptable model should have an RPD value of more than 
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2.5, a value above 3.0 being very good (Williams & Sobering, 1993; Viscarra 

Rossel et al., 2007; Kamruzzaman et al., 2016; Cortés et al., 2016). These 

parameters can be defined by equations 2 to 4. 

         𝑅2 = 1 −
∑ (�̂�𝑖−𝑦𝑖)2𝑁

𝑖=1

∑ (�̂�𝑖−�̅�𝑖)2𝑁
𝑖=1

       (2) 

 

       𝑅𝑀𝑆𝐸 =  √∑ (�̂�𝑖−𝑦𝑖)2𝑁
𝑖=1

𝑁
        (3) 

 

        𝑅𝑃𝐷 =  
𝑆𝐷(𝑦)

𝑅𝑀𝑆𝐸𝑃
     (4) 

where:  

 ŷi is the estimated value of the ith persimmon. 

 yi is the measured value of the ith persimmon. 

 N: is the number of observations. 

 SD: is the standard deviation of the measured values. 

 

5. RESULTS AND DISCUSSION 

The total number of persimmon samples was 140, with a mean tannin 

content of 0.250 % (STD=0.221). The statistical values of the persimmon tannin 

content in the calibration and external validation sets are shown in Table 1. 

Before applying the models, the raw reflectance spectra (Figure 3) of the 

samples were pre-processed using the described methods.  

 

 

Table 1. Statistical values of tannin content (%) of the studied persimmons. 

 

DATA SET Sample Nº Min Max Mean STD 

Calibration 98 0.023 0.735 0.243 0.210 

Prediction 42 0.023 0.752 0.266 0.245 
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Figure 3. Raw reflectance spectra (%) of the persimmons in the calibration set for: 

(a) the VNIR region; and (b) the NIR region. 

 

Thus, the PLSR, SVM and LS-SVM models were developed using both raw 

and pre-processed spectra. Samples in the external validation set were later used to 

evaluate the performance of the models. The results (R2, RMSE and RPD) of the 

models for the external validation set are shown in Table 2 and Table 3. Table 2 

shows the results using the average of the six measurement points for the intact 

fruit set, and Table 3 for the half cut fruit set. 
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Tables 2 and 3 show that, on average, the models with the best performance 

are those which included SNV in the pre-processing that was applied (SNV+1-Der, 

SNV+2-Der, SNV+DOSC). Figure 4 shows the results for the best PLSR model, 

which was obtained with the spectra measured at the six measurement points of the 

intact fruits and pre-processed using SNV+1-Der. 

Tables 4 and 5 show the results for the three selected methods and the above 

mentioned pre-processing combinations after applying SPA for wavelength 

selection. 

 

Figure 4. Normalised X-loading weights of the best PLSR model for the six 

measurement points (with SNV+1-Der pre-processing for the intact fruit set) for 

the (a) VNIR and (b) NIR detectors, respectively. Only the weights corresponding 

to the latent variables that explain 95 % of the Y-variable variance are shown (5 for 

VNIR and 16 for NIR detectors). 
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Table 2. Results of tannin content using the average of the six measurement points 

with all wavelengths by PLSR, SVM and LS-SVM models for the intact fruit set. 
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Table 2. Continuation. 
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Table 3. Results of tannin content using the average of the six measurement points 

with all wavelengths by PLSR, SVM and LS-SVM models for the half cut fruit set. 
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Table 3. Continuation. 
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Table 4. Results of tannin content using the average of the six measurement points 

with EWs for the models created by PLSR, SVM and LS-SVM for the intact fruits 

set. 
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Table 5. Results of tannin content using the average of the six measurement points 

with EWs for the models created by PLSR, SVM and LS-SVM for the half cut fruit 

set. 
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This analysis was performed for the different combinations of the six 

measurement points, obtaining the results in Table 6, which shows the best results 

for each combination of points and each model. Tables 7 and 8 show the results for 

the combination of measurement points 2-5-3-4 (average of the equator and bottom 

of the fruit) for the intact and half cut fruit sets, respectively, for the three models 

(PLSR, SVM, LS-SVM), and the best pre-processing combinations for the six 

measurement points (SNV+1-Der, SNV+2-Der and SNV+DOSC). The highest 

RPD achieved was always equal to or better than the highest RPD obtained with 

any other combination of points. This is reasonable, since from the tannin prints 

observed in Figure 5, which were obtained using the technique based on FeCl3, the 

highest differences are in the lower part of the fruit, the upper part being more 

similar in fruits with different CO2 treatments (Fig. 5b-e). 

 

 

Figure 5. Impressions of tannin content representing the evolution of the 

astringency distribution and intensity for persimmons after different CO2 

treatments: a) untreated; and b-e) treated with CO2 for 6, 12, 18 and 24h, 

respectively. 

 

As in the previous case, SPA was applied for wavelength selection. Tables 9 

and 10 show the results of these analyses for the three models and pre-processing 

combinations. 
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Table 6. Results of tannin content achieved using different combinations of 

measurement points and pre-processing methods with all wavelengths by PLSR, 

SVM and LS-SVM models. 
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Table 7. Results of tannin content achieved using the average of the four 

measurement points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM 

models for the intact fruit set. 
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Table 8. Results of tannin content achieved using the average of the four 

measurement points (2-5-3-4) with all wavelengths by PLSR, SVM and LS-SVM 

models for the half cut fruit set. 
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Table 9. Results of tannin content achieved using the average of the four 

measurement points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs 

selected by SPA for the intact fruit set. 
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Table 10. Results of tannin content achieved using the average of the four 

measurement points (2-5-3-4) by PLSR, SVM and LS-SVM models with EWs 

selected by SPA for the half cut fruit set. 
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In this work, different models were obtained to estimate the content of 

tannins in persimmon from their original and pre-processed reflectance spectra. 

The models were created for measurements of the skin (intact fruit) and the flesh 

(half cut fruit). For the intact fruit, good results were obtained for the three methods 

analysed (PLSR, SVM and LS-SVM), achieving a RPD>3 in the best cases, using 

the average of the six measurement points. The best results using the prediction set 

were obtained using PLSR and SNV+1-Der pre-processing, in the VNIR region 

(RPD=3.26, R2=0.904, RMSE=0.075). Using SVM, the best results were for the 

NIR spectra and the SNV+DOSC pre-processing. However, the analysis of the 

VNIR spectra using SVM gave similar results with some pre-processing such as 

SNV+2-Der. Finally, the best results with the LS-SVM method were obtained with 

the SNV+DOCS pre-processing in the NIR region. Regarding half cut fruit and the 

average of six measurement points, the results were poorer than in the case of 

intact fruit. 

The selection of the most important wavelengths using SPA generally 

improves the results, especially in the case of half cut fruit. A model with an RPD 

greater than 3 was obtained for the VNIR spectra with the SNV+2-Der pre-

processing and SVM method. In the case of the intact fruit, although the results did 

not always improve, the best result of the study was obtained using PLSR with 

SNV+DOSC in the NIR region, with a RPD of 3.46 (R2=0.915, RMSE=0.071). As 

shown in Figure 4a, the values of the loading weights were higher around the 

1000 nm band for the VNIR range, which corresponds to the information presented 

by Noypitak et al. (2015) in relation with the spectrum for the tannic acid powder. 

These loadings explained the better results obtained with the VNIR probe over 

those obtained in the NIR, and also the reduced number of EWs obtained in the 

VNIR range. 

For both the intact and the half cut fruit cases, the three methods analysed 

achieved poorer predictions using the average of the four measurement points 

(combination 2-5-3-4) than those obtained with the six measurement points. 

Regarding the selection of EWs with SPA (with this combination of points), this 

method also improved the results obtained for the half cut fruit, similarly to the 

results obtained with six measurement points. However, the SPA analysis showed 

no significant improvement in intact fruit (RPD<3).  
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6. CONCLUSIONS 

This study points to visible and NIR spectroscopy as a non-destructive 

method suitable for determining astringency in persimmon fruits in an easy and 

rapid way without expensive and tedious chemical analysis or the subjective 

evaluation of the tannin print method. Reflectance spectra at selected points in 

intact and half cut persimmons were acquired in the VIS and NIR regions. A total 

of seven signal pre-processing methods including SNV, SG, 1-Der, 2-Der, MSC, 

DOSC and combinations of them have been used in the measurements of the single 

point and the combination of selected points. The combinations considered were 

SNV+1-Der, SNV+2-Der and SNV+DOSC, since they showed the best 

performance from all the combinations evaluated. Astringency in persimmon fruits 

was predicted using three regression techniques, such as PLSR, SVM, and LS-

SVM. 

In addition, EWs were obtained using SPA. Depending on the method, the 

EWs varied from 1 to 30 when the VNIR spectra were used and from 17 to 57 

when using the NIR spectra. 

The best performance for intact fruits was obtained using PLSR on the full 

spectra of the six measurement points after pre-processing with SNV+1-Der, an 

R2=0.904 and RPD=3.26 being achieved. Moreover, the best prediction results 

obtained with the EWs (41 bands) were obtained for the PLSR model using the six 

measurement points of the intact fruit in the NIR spectra and SNV+DOSC pre-

processing (R2=0.915; RPD=3.46). 

Hence, this technology has proved itself to be a feasible non-destructive 

method to determine the astringency in persimmon fruits, since the best results 

were achieved in intact fruits. 
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ABSTRACT 

 

The feasibility of using visible and near-infrared spectroscopy technology 

combined with multivariate analysis to discriminate cv. ‘Big Top’ and cv. 

‘Diamond Ray’ nectarines has been studied. These varieties are very difficult to 

differentiate visually on the production line but show important differences in taste 

that affects the acceptance by final consumers. The relationship between the diffuse 

reflectance spectra and the two nectarine varieties was established. Five hundred 

nectarine samples (250 of each variety) were used for the study. Tests were 

performed by using a spectrometer capable of measuring in two different spectral 

ranges (600–1100 nm and 900–1700 nm). These spectral ranges were used to 

develop two accurate classification models based on linear discriminate analysis 

(LDA) and partial least squares discriminate analysis (PLS-DA). Later, selection 

techniques were applied to select the most effective wavelengths. The results 

showed that the PLS-DA model achieved better accuracy and less latent variables 

than LDA model, and specifically, good results with 100% classification accuracy 

were obtained using only the 600– 1100 nm spectral range for the two models and 

eight selected wavelengths. These results places visible and near-infrared 

spectroscopy as an accurate classification tool for nectarine varieties with a very 

similar appearance but different tastes that could be potentially used in an 

automated inspection system. 

 

Keywords: nectarine, sweet taste, nonsweet taste, visible and near-infrared 

spectroscopy, discrimination, chemometrics 
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1. INTRODUCTION 

Nectarine and peach fruit [Prunus persica (L.) Batch] are the second most 

important fruit crop in the European Union (EU) after apple (Iglesias and 

Echeverría, 2009). Recently, significant innovations have been made in the field of 

fruit varieties that seek improvements in colour and size, consistency of pulp, 

texture, taste and flavour (Jha et al., 2012, 2006, 2005; Picha, 2006; Jha & 

Matsuoka, 2004). New varieties obtained show an attractive range of colours, tastes 

and forms as well as having an extended maturity schedule, which have given rise 

to excellent acceptance by consumers in both national and international markets 

(Iglesias, 2013; Iglesias & Casals, 2014). The most appreciated attributes among 

fruit consumers have been described as being taste, food safety (absence of 

pesticides), ease of consumption and cost (Wandel & Bugge, 1997; Radman, 2005; 

Dragsted, 2008). Regarding taste consumers generally prefer sweet and balanced 

tastes, except in some countries like Germany or England, where there is 

preference for nonsweet tastes (Cembalo et al., 2009). In fact, the introduction of 

‘Big Top' nectarine variety intro the market represented a remarkable innovation 

for its sweet taste (< 6 g L-1 of malic acid) and excellent consistency, and has been 

widely accepted by national and international markets. Recently, new varieties of 

nectarines completing the collection period from late May to late September have 

been introduced into the market. This varietal range is complemented by new or 

existing varieties showing a similar appearance, but a balanced or nonsweet taste 

(> 6 g L-1 of malic acid), as occurs in the case of the ‘Diamond Ray' variety. In 

nectarine fruit, it is essential to differentiate the varieties from in processing line, 

which would allow the consumer to choose the ones that best adapt to their 

preferences. The application of visible and near-infrared spectroscopy for the 

analysis of fruit has allowed the prediction of chemical composition, notably sugar 

content (Li et al., 2013; Reita et al., 2008), and textural parameters (Lee et al., 

2012; Sánchez et al., 2011), as well as the identification of varieties (Li et al., 

2016; Guo et al., 2016) and the measurement of quality-related parameters (Pérez-

Marín et al., 2011). This technique is relatively rapid, simple, cost-effective, non-

destructive, and environmentally friendly. Its application in combination with 

chemometrics has been successfully used in non-destructive discrimination 

between varieties of agricultural products such as peach (Guo et al., 2016), 
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bayberry (Li et al., 2007), orange (Suphamitmongkol et al., 2013), and pummelos 

(Li et al., 2016). 

This study aimed to evaluate the ability of visible and near-infrared 

spectroscopy to discriminate between two varieties of nectarine (cv. 'Big Top' and 

cv. 'Diamond Ray'), which, because there are similar in colour and appearance, are 

very difficult to differentiate visually on the production line but show important 

differences in taste, thereby affecting the acceptance by the final consumers. Two 

supervised methods such as linear discriminate analysis (LDA) and partial least 

squares discriminate analysis (PLS-DA) were used for this purpose. 

 

2. MATERIALS AND METHODS 

2.1. Experimental procedure 

A total of 500 nectarines with commercial maturity and uniform size and the 

absence of any external damage were harvested in a commercial orchard in Lérida, 

Spain. They were then stored at 0.1 °C with 87 % relative humidity to prevent the 

evolution of maturity during the experiment and to extend their shelf-life (Gorny et 

al., 1998). Half of the total samples belonged to the variety ‘Big Top’ and the other 

half to the variety ‘Diamond Ray’. These varieties were selected because they are 

grown in the same period and have a similar evolution and physical appearance, 

although they differ critically in some of their organoleptic properties.  

On arrival at the laboratory, fruits were cleaned, individually numbered and 

each variety was randomly divided into five sets of 50 fruits. The visible and near-

infrared spectra of the fruits in each set were collected and their physicochemical 

properties (soluble solids, firmness and flesh and external colour) were analysed by 

standard destructive methods (Cortés et al., 2016; Martins et al., 2016; Li et al., 

2013; Hernández et al., 2006). 

 

2.2. Visible and near-infrared spectra acquisition 

Diffuse visible and near-infrared reflectance spectra of intact nectarines were 

collected using a multichannel spectrometer platform (AvaSpecAS-5216 USB2-

DT, Avantes BV, The Netherlands) equipped with two detectors. The first detector 

(AvaSpec-ULS2048 StarLine, Avantes BV, The Netherlands) included a 2048-

pixel charge-coupled device (CCD) sensor (SONY ILX554, SONY Corp., Japan), 
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50 μm entrance slit and a 600 line mm-1 diffraction grating covering the visible 

and near-infrared range from 600 nm to 1100 nm (VNIR) with a spectral FWHM 

(full width at half maximum) resolution of 1.15 nm and a spectral sampling interval 

of 0.255 nm. The second detector (AvaSpec-NIR256-1.7 NIRLine, Avantes BV, 

The Netherlands) was equipped with a 256 pixel non-cooled InGaAs (Indium 

Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu Photonics K.K., Japan), 

with a 100 μm entrance slit and a 200 line mm-1 diffraction grating covering the 

near-infrared range from 900 nm to 1700 nm (NIR) with a spectral FWHM 

resolution of 12 nm and a spectral sampling interval of 3.535 nm.  

The measurements were performed using a bi-directional fibre-optic 

reflectance probe (FCR-7IR200-2-45-ME, Avantes BV, The Netherlands). The 

probe was configured fitted with an illumination leg which connects to a stabilised 

10 W tungsten halogen light source (AvaLight-HAL-S, Avantes B0V, The 

Netherlands) and the other leg of the fibre-optic probe was connected to both 

detectors for simultaneous measurement. A personal computer equipped with 

software (AvaSoft version 7.2, Avantes, Inc.) was used to control both detectors 

and to acquire the spectra. The integration times were adjusted for each 

spectrophotometer using a 99 % reflective white reference tile (WS-2, Avantes BV, 

The Netherlands), so that the maximum reflectance value over each wavelength 

range was around 90 % of saturation (Lorente et al., 2015). The white reference tile 

for reflectance measurements was a 32 mm diameter and 10 mm thick block of 

white polytetrafluoroethylene (PTFE). The white reference tile was placed at a 

distance of 5 mm from the probe to make a reference measurement. The dark 

spectrum was obtained by turning off the light source and completely covering the 

tip of the reflectance probe. The integration time was set to 120 ms for the VNIR 

detector and 550 ms for the NIR detector due to the different features of the two 

detectors. For both detectors, each spectrum was obtained as the average of five 

scans to reduce the thermal noise of the detector (Nicolaï et al., 2007). The average 

reflectance measurements of each sample (S) were then converted into relative 

reflectance values (R) with respect to the white reference using dark reflectance 

values (D) and the reflectance values of the white reference (W), as shown in 

equation 1: 
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    𝑅 =
𝑆−𝐷

𝑊−𝐷
      (1) 

 

Prior to the spectral measurements, the temperature of the nectarines was 

stabilised at a room temperature of 22 ± 1 ºC. All the measurements were taken at 

two points on each side of the fruit and mean values of the spectra were used for 

the analysis.  

 

2.3. Determination of the quality attributes 

Destructive methods were performed immediately after the spectral 

acquisition to determine the quality attributes for use as reference values. Both the 

external and the flesh colours were measured using a spectrocolorimeter (CM-

700d, Minolta Co., Tokyo, Japan) every 10 nm between 400 and 700 nm. The 

colour was evaluated using the L*, a* and b* space proposed by the International 

Commission on Illumination (CIE). L*a*b* were determined from the reflectance 

spectra, considering standard illuminant D65 and standard observer 10 ̊. L* refers 

to the luminosity or lightness component, a* (intensity of red (+) and green (-)) and 

b* (intensity of yellow (+) and blue (-)) are the chromaticity coordinates. The total 

colour difference (ΔE) between the ’Big Top’ samples and the ‘Diamond Ray’ 

samples was calculated by equation 2.  

 

ΔE = √(𝐿∗
𝐵𝑇 − 𝐿∗

𝐷𝑅)2 + (𝑎∗
𝐵𝑇 − 𝑎∗

𝐷𝑅)2 + (𝑏∗
𝐵𝑇 − 𝑏∗

𝐷𝑅)2  (2) 

 

where subscript ‘BT’ refers to the colour reading of the ‘Big Top’ samples 

and ‘DR’ refers to the colour reading of the ‘Diamond Ray’ samples.  

Nectarine firmness was measured using a Universal Testing Machine 

(TextureAnalyser-XT2, Stable MicroSystems, Haslemere, England) to perform 

puncture tests using a 6 mm diameter cylindrical probe (P/15ANAMEsignature) to 

a relative deformation of 30 % at a speed of 1 mm s-1. Two measurements were 

performed for each fruit on opposite sides along the equator. The fracture strength 

(Fmax) was analysed for all samples as the maximum force applied to break up the 

sample, being expressed in Newtons.  

Immediately after firmness measurements, juice samples were extracted to 

estimate the total soluble solids content (TSS) and titratable acidity (TA). The TSS 
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was determined by refractometry (%) with a digital refractometer (set RFM330+, 

VWR International Eurolab S.L Barcelona, Spain) at 20 ºC with a sensitivity of ± 

0.1 %. Samples were analysed in triplicate and average values were calculated. The 

analysis of the TA was performed with an automatic titrator (CRISON, pH-burette 

24, Barcelona, Spain) with 0.5 N NaOH until a pH of 8.1 (UNE34211:1981), using 

15 g of crushed nectarine, which was diluted in 60 mL of distilled water. The TA 

was determined based on the percentage of citric acid, which was calculated using 

equation 3. 

 

      
 

𝑇𝐴 [𝑔 𝑐𝑖𝑡𝑟𝑖𝑐 𝑎𝑐𝑖𝑑 100⁄ 𝑔 𝑜𝑓𝑠𝑎𝑚𝑝𝑙𝑒] = (((𝐴 × 𝐵 × 𝐶)/𝐷) × 100)/𝐸           (3) 

 

where A is the volume of NaOH consumed in the titration (in L), B is the 

normality of NaOH (0.5 N), C is the molecular weight of citric acid (192.1 g mol-

1), D is the weight of the sample (15 g) and E is the valence of citric acid (E = 3). 

 

2.4. Spectral pre-processing 

The spectral data were organised in a matrix, where the rows represent the 

number of samples (#N = 500 samples) and the columns represent the variables (X-

variables and Y-variables). The X-variables, or predictors, were the spectral signals 

from the two detectors. The Y-variables, or responses, were the artificial (dummy) 

variables created by assigning different values or letters to the different classes to 

be discriminated. In the case of PLS-DA, assuming a discrete numerical value 

(zero for the cv. ‘Diamond Ray’ or one for the cv. ‘Big Top’), was used as Y-

variable. However, for LDA the Y-variable was a categorical value created by 

assigning different letter to the different cultivar (A for the cv. ‘Diamond Ray’ and 

B for the cv. ‘Big Top’). In addition, for LDA the number of samples in the 

training set must be larger than the number of variables included in the model 

(Kozak & Scaman, 2008; Sádecká et al., 2016), thus requiring a variable selection 

or variable reduction. This was performed using the principal component analysis 

(PCA) scores as input data, since the linear combinations of the original variables, 

called principal components, are uncorrelated (Rodríguez-Campos et al., 2011).  

The raw spectra were transformed to apparent absorbance (log (1/R)) values 

so as to be able to linearise the correlation with the concentration of the 
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constituents (Hernández et al., 2006; Shao et al., 2007; Liu et al., 2009) using The 

Unscrambler X software package (CAMO, Norway). Then, the raw spectra 

belonging to the two detectors were normalised (Bakeev, 2010) by dividing each 

variable by its standard deviation (Bouveresse et al., 1996). By so doing, the 

spectral intensities are rescaled to a common range, thus allowing the comparison 

of spectra acquired using two detectors with different resolutions. 

In addition, different pre-processing techniques were applied. Savitzky-

Golay smoothing with a gap of three data points (Carr et al., 2005) was applied to 

improve the signal-to-noise ratio in order to reduce the effects caused by the 

physiological variability of samples (Carr et al., 2005; Beghi et al., 2017). Due to 

the fresh light scattering in samples (Gelbukh et al., 2006), the light does not 

always travel the same distance in the sample before it is detected. A longer light 

traveling path corresponds to a lower relative reflectance value, since more light is 

absorbed. This causes a parallel translation of the spectra. This kind of variation 

interferes in the calibration models and need to be eliminated by the extend 

multiplicative scatter correction (EMSC) technique (He et al., 2007; Martens et al., 

2003; Bruun et al., 2007). In addition to those two pre-processing, the second 

derivate with Gap-Segment (2.3) were applied for the NIR spectra because it 

allowed the extraction of useful information (Cortés et al., 2016; Rodriguez-Saona 

et al., 2001).   

 

2.5. Multivariate data analysis of spectral data 

PCA (Naes et al., 2004), PLS-DA and LDA were used in this work by 

means of The Unscrambler X software package. PCA was selected as the method 

for outlier detection (through the analysis of Hotelling’s T2 and squared residual 

statistics) and to explore the data structure and the relationship between objects 

(Beghi et al., 2017; Beebe et al., 1998), in order to pinpoint the most relevant 

varietal groups and spectral features. So, the use of suitable projection, e.g., PCA 

or partial least square regression (PLS) (Balabin et al., 2007; Xiabo et al., 2010) 

may help to minimize the large number of spectral variables in the data sets and 

identify variables that contribute useful information (effective wavelengths, EWs). 

In this study, wavelengths with large loading weight values were selected as 

important for the varietal discrimination. EWs were selected as only those located 
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at the peaks or valleys of x-loading weights plots, and with an absolute x-loading 

weight higher than 0.1 (Liu et al., 2008). 

PLS-DA and LDA were used to classify the nectarines in terms of variety. 

These discriminant analyses seek to correlate spectral variations (X) with defined 

classes (Y), attempting to maximise the covariance between the two types of 

variables.  

A training set was used and consisted in randomly selecting 80 % of the 

samples that were studied to develop a calibration model. Each calibration model 

was internally validated using the leave-one-out cross-validation technique (Huang 

et al., 2008). In order to correct the relative influences of the different instrumental 

responses on a model, a standardization technique was used, where the weight of 

each X-variable was the standard deviation of the variable (Bouveresse et al., 

1996). An independent test set composed of the remaining 20 % of the samples 

was used for the evaluation and comparison of the classification models (Soares et 

al., 2013).  

 

2.6. Model performance evaluation 

The PLS-DA cut-off value for nectarine samples discrimination was fixed at 

0.5. If the predicted value of a sample was less than 0.5, the sample was assigned to 

the group of the 'Diamond Ray' samples, while if the predicted value was more 

than 0.5, the sample was assigned to the group of the 'Big Top' samples. The 

determination coefficient (R2), root mean square error (RMSE) and the number of 

latent variables (LVs) were used to evaluate the accuracy of the PLS-DA 

calibration model to predict new samples. In the case of LDA, the criterion for the 

selection of LVs is maximum differentiation between the categories and minimal 

variance within categories (Cardoso & Silva, 2016; Naes et al., 2002; Adams, 

1995). The method produces a number of orthogonal linear discriminant functions, 

equal to the number of categories minus one, that allow the samples to be classified 

in one category or another (Naes et al., 2002; Otto, 1999). 
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3. RESULTS AND DISCUSSION  

3.1. Analysis of the quality attributes 

Table 1 shows the minimum, maximum, mean and standard deviation of the 

physicochemical characteristics (fracture strength, total soluble solids, tritatable 

acidity, and flesh and external colour) analysed in the samples of both varieties of 

nectarines (#N = 250 samples for each variety).  

 

Table 1. Descriptive statistics for the physicochemical characteristics of nectarines 

during the storage period. 

 

 

No differences were observed between the two varieties, and among the 

different sets, in terms of soluble solids, firmness, and flesh and external colour.   

The TSS ranged from 8 to 17 % with an average value of 12 ± 2 % for cv. 

'Diamond Ray' and from 7 to 22 % with an average value of 13 ± 2 % for cv. ‘Big 

Top’. In all cases, the values of TSS were greater than 8 %, which is the minimum 

established by the European Union to market peaches and nectarines (R-CE No. 

1861/2004). Several authors have reported a linear relationship between TSS and 
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consumer acceptance (Crisosto & Crisosto, 2005), a TSS below 10 % generally 

being unacceptable to consumers (Clareton, 2000).  

The firmness of ‘Diamond Ray’ samples ranged from 5 to 57 N with an 

average value of 33 ± 10 N, and ‘Big Top’ samples ranged from 6 to 53 N with an 

average value of 35 ± 7 N. According to Crisosto (2002) and Valero et al. (2007), 

these firmness values are in the commercial range considered 'ready to buy'. 

For flesh colour, L*, a*, b*, C* and h* ranged from 52 to 76, -6 to 23, 23 to 

35, 28 to 36 and 46 to 100 for cv. ‘Diamond Ray’ and from 60 to 75, -8 to 4, 30 to 

36, 30 to 36 and 83 to 105 for cv. ‘Big Top’, with average values of 67 ± 4, 2 ± 4, 

31 ± 2, 32 ± 1, 86 ± 8 and 68 ± 3, -2 ± 2, 33 ± 1, 33 ± 1, 93 ± 3 respectively. These 

values indicated that the flesh of both varieties has a high luminosity, low chroma 

and yellow hue. No differences were observed in luminosity and chroma between 

sets and between varieties, whereas slight differences in hue were observed 

between varieties. Despite these differences, the overall perception of flesh colour 

would make it very difficult to discriminate both varieties, especially during any 

industrial process where fruits must be inspected quickly, as shown in the images 

in Figure 1 with examples of each of the sets analysed. According to ISO 12647-2, 

colour differences (ΔE) lower than ± 5 units make the human eye unable to 

discriminate two samples. In this case, the ΔE between both varieties measured 

with the colorimeter was ± 4.5. Furthermore, differentiating nectarine varieties by 

the flesh colour requires the destruction of the sample, and therefore this 

destructive analysis results in high costs and does not allow the whole production 

to be analysed (Torres et al., 2013).  

 

Figure 1. Example of the internal appearance of both cultivars on each day of 

analysis. 
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Regarding the external colour of the nectarines, no significant differences 

were found in the values of luminosity, chroma and hue for the sets and the 

varieties studied. The L*, a*, b*, C* and h* ranged from 25 to 59, 15 to 38, 4 to 28, 

18 to 42 and 10 to 60 for cv. ‘Diamond Ray’ and from 26 to 63, 8 to 34, 4 to 31, 21 

to 39 and 12 to 75 for cv. ‘Big Top’, with average values of 37 for luminosity, 31.3 

for chroma and 25.9º for hue, for both varieties. These values indicated that, 

externally, both varieties had low luminosity, low chroma and red-orange hue. The 

ΔE of external colour between varieties was 1.5, and therefore barely perceptible. 

Hence, this non-destructive analysis was not valid for varietal discrimination. 

The main difference between the two varieties of nectarine was TA, the 

‘Diamond Ray’ variety being more acid than the ‘Big Top’ variety or, according to 

the definition of Reig et al. (2013), the are a nonsweet and sweet variety, 

respectively.  All sets of the cv. 'Diamond Ray' had an average value of 0.65 ± 0.1 

g 100g-1, unlike the average value of the sets of the cv. 'Big Top' which was 0.37 ± 

0.1 g 100g-1. These results are in accordance with the sensorial profile performed 

by Iglesias (2012). The study concluded that the only difference between these two 

varieties is in the perception of acidity. Similarly, Reig et al. (2013) and Liverani et 

al. (2002) compared sweet cultivars (such as 'Big Top', ‘Gardeta’ and ‘Luciana’) 

with nonsweet cultivars (such as 'Diamond Ray', ‘Amiga’ and ‘Rose Diamond’), 

and determined that they differed mainly in their TA value and the perception of 

acidity, the rest of their physicochemical characteristics being similar among the 

cultivars. 

 

3.2. Visible and Near-infrared spectra of the two nectarine varieties 

Figure 2 represents the mean raw VNIR and NIR spectra for the ‘Diamond 

Ray’ and ‘Big Top’ samples at different sets of analysis. The trend and absorbance 

bands of the spectral curves were similar. Previous studies have documented 

similar values (Pérez-Marín et al., 2009; Pérez-Marín et al., 2011; Martins et al., 

2016). The varieties analysed showed the same absorbance bands around 670 nm, 

970 nm, 1160 nm and 1450 nm. Authors such as Tijskens et al. (2007) confirmed 

that the absorption at 670 nm allowed the maturity of nectarine to be evaluated 

because it is indicative of the presence of chlorophyll, with its characteristic green 

colour (Merzlyak et al., 2003; Hernández et al., 2006). The peak centred at 970 nm 



CHAPTER II 

110 

is present in the signal recorded by the two detectors. This peak and the one present 

at 1450 nm are related to pure water (Williams & Norris, 1987; McGlone & 

Kawano, 1998). A characteristic absorption band at around 1160 nm related to 

second overtone C-H stretching (Osborne et al., 1993; Walsh et al., 2004).  

 

 

Figure 2. Averaged raw VNIR and NIR spectra for the two varieties of nectarines 

at different sets of analysis.  

 

3.3. Varietal classification 

Classification models were built based on supervised PLS-DA and LDA 

with the full spectral range, with only the VNIR and NIR spectral ranges 

separately, and with the effective wavelengths selected (EWs) from the original 

ranges. Table 2 shows the predictive ability for each validation set for the twelve 

models developed. Similar results were obtained to PLS-DA models for each 

spectral ranges and with the most important EWs. However, the LDA models were 

less accurate with higher number of LV and EWs than PLS-DA models. The 

optimal number of LVs was chosen according to the lowest RMSE cross-validation 

(RMSECV) by internal validation using the leave-one-out cross validation 

technique, in combined analysis with the cumulative variance in the X and Y 
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blocks (Bachion de Santana et al., 2016). The x-loading weights obtained for the 

different spectral ranges with only the EWs selected are shown in Figure 3.  

 

Table 2. Varietal classification results for each methods, presented both as a 

percentage and an absolute number of correctly classified samples in the validation 

sets. 

 

Using all 2189 spectrum features, PLS-DA and LDA achieved external 

validation accuracies of 100 %. Selecting 12 wavelengths, PLS-DA and LDA 

achieved classification accuracy of 90% with four and ten LVs, respectively. PLS-

DA was able to correctly classify all samples in the validation set by using the 213 

wavelengths of NIR detector and with only seven EWs and four LVs attained 95 

%, although LDA achieved better results with only seven EWs and six LVs (97 % 

of accuracy) than with all wavelengths of the NIR detector (80 % of accuracy). 

However, selecting only eight EWs out 1838 available features of VNIR detector, 

PLS-DA and LDA model attained 100 % validation accuracies with five and seven 

LVs, respectively. These eight EWs were selected including 648, 883, 949, 1006, 

Methods 

   Classification accuracy 

 EWs LVs cv. 'Diamond Ray' cv. 'Big Top' Total samples 

PLS-DA Full 2189 5 100 % (50/50) 100 % (50/50) 100 %  

  12 4 94 % (47/50) 86 % (43/50) 90 %  

 VNIR 1838 6 100 % (50/50) 100 % (50/50) 100 %  

  8 5 100 % (50/50) 100 % (50/50) 100 %  

 NIR 213 8 100 % (50/50) 100 % (50/50) 100 %  

  7 4 92 % (46/50) 98 % (49/50) 95 %  

LDA Full 2189 14 100 % (50/50) 100 % (50/50) 100 %  

  12 10 94 % (47/50) 86 % (43/50) 90 %  

 VNIR 1838 12 98 % (49/50) 100 % (50/50) 99 %  

  8 7 100 % (50/50) 100 % (50/50) 100 %  

 NIR 213 5 84 % (42/50) 76 % (38/50) 80 %  

  7 6 98 % (49/50) 96 % (48/50) 97 %  
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1025, 1026, 1037, and 1054 nm. So, with only these eight EWs obtained by VNIR 

detector was possible achieved better accuracy classification results (100 %) than 

the other models developed with the other spectral ranges. An explanation for this 

result would be that visible spectroscopy is more suitable for the characterization of 

nectarine colours, which are very similar in both varieties, while near infrared 

spectra provides complementary information (Liu et al., 2003) related to the 

macronutrients and the interactions that they can develop with other constituents 

(Lucas et al., 2008).  

 

 

Figure 3. The X-loading weights for the EWs selected at different spectral ranges. 

 

Figure 4 shows that all the training set and validation samples were correctly 

classified by the best PLS-DA model obtained with eight EWs. In this situation, all 

'Big Top' samples have predictive values close to 1, thus classifying these as 

belonging to class ‘1’, and 'Diamond Ray' samples have predictive values close to 

0, thereby classifying these as belonging to class ‘0’. The values of the RMSE were 

0.179 and 0.183 for calibration and validation respectively, which exhibit good 

agreement, thus indicating that the calibration error is a good estimation of the 

standard error of prediction observed in samples of the test set. Moreover, the test 
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set yielded similar results to those of the calibration set, with R2 of 0.872 and 0.866 

respectively, which indicates a good performance of the model for varietal 

classification. 

 

 

Figure 4. Estimated class values for training and validation sets for varietal 

discrimination by the best PLS-DA model. 

 

Regarding LDA, Figure 5 shows the results of the external validation by test 

set (20 %) of each variety. Validation samples of the cv. 'Big Top' are displayed in 

blue while samples of the cv. 'Diamond Ray' are in red. There were not 

misclassified samples, so the classification accuracy was 100 % using only eight 

wavelengths of the VNIR spectral region. 
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Figure 5. Discrimination plot of the best LDA model for (a) the training samples 

and (b) the validation samples. 

 

Several authors (Balabin et al., 2010; Liu et al., 2006; Sinelli et al., 2007) 

have reported that the PLS-DA method is more effective than LDA. Indeed the 

LDA method suffers from several limitations, for example, the number of variables 

cannot exceed the number of samples (Roggo et al., 2003) and it is not able to cope 

with highly collinear data, which are quite common. To overcome some 
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limitations, over the years other techniques, in particular PLS-DA, have been 

devised (Marini, 2010). Similarly, to us, Long et al. (2015) combined near-infrared 

spectroscopy with PLS-DA for the discrimination of transgenic rice and they 

achieved a classification rate of 100 % in the validation test. Additionally, a 

considerable effort has been made in this work towards the development of models 

that objectively identify variables that provide useful information and eliminate 

those that contain unnecessary data. 

 

4. CONCLUSIONS 

Classification models were developed in order to discriminate two nectarine 

varieties (cv. ‘Big Top’ and cv. ‘Diamond Ray’) in different spectral ranges 

(VNIR, NIR, and the whole spectra combined). Two classification methods 

including PLS-DA and LDA were evaluated based on all wavelengths or the EWs 

selected for the spectral regions considered. The best models were obtained using 

only eight EWs out of the 1838 available features of the VNIR detector, identified 

from the x-loading weights as the most important ones. PLS-DA and LDA models 

attained an accuracy of 100 % for the validation set with five and seven LVs, 

respectively. Therefore, PLS-DA and LDA resulted as robust models for 

discriminating varieties of nectarine with a satisfactory level of accuracy. The 

comparison of the different analysis performed indicated that both detectors were 

able to achieve a good varietal classification, being the detector sensible in the 

VNIR range the one that achieved better results identifying the studied varieties of 

nectarines, almost identical in external and internal appearance but very different in 

taste and organoleptic properties. 
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ABSTRACT 

 

Visible and near-infrared spectroscopy has been widely used as a non-

invasive and rapid assessment technique for the quality control of agricultural 

products. In this study, 325 samples of nectarines representing two commercial 

varieties, cv. ‘Big Top’ and cv. ‘Magique’, were analysed by visible and near-

infrared diffuse reflectance spectroscopy (VIS-NIR). The spectral data were pre-

treated and analysed to predict the internal quality of the samples and to 

discriminate between the two varieties. Good prediction of the internal quality of 

the samples, using partial least squares regressions, was observed for both (R2
P of 

0.909 and 0.927 and RMSEP of 0.235 and 0.238 for cv. ‘Big Top’ and ‘Magique’, 

respectively). Discriminant models, using linear discriminant and partial least 

squares discriminant analyses were built to classify the nectarines. Both methods 

provided good results with rates of 97.44 % and 100 % of correctly classified 

samples. The results indicated that visible and near infrared techniques can be 

useful and simple methods for quality control and for the correct identification of 

nectarines in commercial lines as an alternative to the slower and less accurate 

manual classification. 

 

Keywords: fruit quality, spectroscopy, nectarine, chemometrics, prediction, 

discrimination 
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1. INTRODUCTION 

Nectarine (Prunus persica var. nucipersica), is one of the most dynamic 

species of fruit in terms of the emergence of new varieties on the market. This 

dynamism has contributed to the development of improved varieties that are better 

adapted to the growing conditions and market requirements. In terms of evolution 

and according to the type of fruit, nectarine is the most important fruit group with 

41 % of total production, followed by peaches (35 %) and clingstone peaches (24 

%) (Iglesias, 2013). The total estimated production of European nectarine was over 

1,508,288 tonnes in 2012, shared among Italy (53 %), Spain (32 %), France (10 

%), and Greece (5 %) (GenCat, 2013). This high productivity has triggered the 

necessity to verify nectarine varieties in the industrial fruit packing-line. For 

example, in Spain, in the region of Lérida the optimal harvesting time is in the 

summer season (between 1st June and 30th September). At the end of July more 

than 20 nectarine varieties are being picked simultaneously across the entire region. 

In the specific case of the village of Aitona (south of Lérida), in practice, the 

largest number of nectarine varieties that may be harvested simultaneously is six, 

all of which could reach the post-harvesting industry concurrently in average 

amounts of 500 tonnes/day, thus generating huge problems in the classification of 

varieties. In addition, it must be taken into account that nowadays, growers can 

choose between a large range of nectarine varieties adapted to the climate, different 

harvest periods and the agronomic characteristics of each particular area. The 

combination of a large number of small orchards and a wide range of varieties with 

different demand (Bonany et al., 2013) and market value, can become a source of 

potential problems for the local post-harvesting industry because of the involuntary 

or fraudulent mixing of different fruit varieties (Font et al., 2014). 

Additionally, the commercial-scale introduction of yellow flesh colour 

varieties with a strong colour and sweet flavour, as is the variety ‘Big Top’, 

represented a remarkable innovation for its sweet taste (<6 g/L of malic acid) and 

the excellent consistency of the fruit, being widely accepted by consumers. 

Satisfying consumers demands a key aspect, which is the selection of good 

indicators of quality. Previous works have shown the relationship between 

consumer acceptance and a high concentration of total soluble solids (TSS) or other 
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factors like the acidity, TSS/acidity relationship or phenolics and volatile 

substances (Crisosto et al., 1997; Crisosto et al., 2002; Crisosto et al., 2003).  

Nectarine is a climacteric fruit and therefore the physicochemical changes 

produced during postharvest will determine the final status of the product quality. 

Only the accurate control of these changes can ensure the customer enjoys good 

organoleptic and sensorial quality. Traditionally, the internal quality monitoring of 

the fruit has been performed using destructive methods, so that only a small 

number of pieces can be measured per set, but the observations may differ greatly 

from the real status of the whole of production (Valero et al., 2007). One of the 

aims of the postharvest sensing technologies, such as computer vision (Cubero et 

al., 2011) hyperspectral imaging (Lorente et al., 2012) or near-infrared (NIR) 

spectroscopy (Nicolaï et al., 2007), is to allow the analysis of the whole production 

in terms of quality and commercial organoleptic, nutritional and health 

characteristics, and varietal verification, while losses and process cost are 

minimised (Ferrer et al., 2001). The use of sensors based on NIR technology, along 

with chemometric data models, is one of the fastest and cleanest techniques to 

achieve this aim. The literature contains different studies on the applicability of 

NIR technology to the analysis and classification of nectarine varieties 

(Carlomagno et al., 2004; Pérez-Marín et al., 2011; Reita et al., 2008). For 

example, Pérez-Marín et al. (2011) evaluated the ability of different NIR 

instruments, to classify intact nectarines cv. 'Sweet Lady' according to internal 

quality in postharvest storage as a function of pre-harvest irrigation strategies. 

Sánchez et al. (2011) predicted of some quality parameters (weight, diameter, 

soluble solid content and flesh firmness), both on-side and in-line, in nectarines cv. 

'Sweet Lady' with different harvests and crop practices. Reita et al. (2008) 

developed different methods for ºBrix determination of nectarine cv. ‘Big Bang 

Maillar’, cv. ‘Sweet Red’ and cv. ‘Nectaross’. Peiris et al. (1998), Golic & Walsh 

(2006) and Ma et al. (2007), determined the sugar content of peaches, while Fang 

et al. (2013) determined sugar content, acidity and water content in yellow peach 

between 350 - 2500 nm and achieved R2 > 0.61 for all properties except acidity 

determination, which still needs to be improved. These previous works have 

conducted studies on the use of VIS-NIR technology to assess the internal quality 

of stone fruits but they focus only on certain properties. The use of quality indexes 
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can correlate these properties. For instance, the IQI index (Cortés et al., 2016) 

includes different analytical parameters, specifically three parameters typically 

employed in postharvest handling to evaluate the quality of this fruit. The study by 

Carlomagno et al. (2004) already assessed ripeness of peaches according to the 

combination of firmness and sugar content. The IQI, however, has the advantage of 

including the visual component (internal colour), which is a property of great 

importance to the consumer, in addition to the compositional aspects (firmness and 

soluble solids content), but avoiding the titratable acidity analysis because it is a 

laborious and slow process that generates waste. Indeed, one of the main benefits 

of the IQI is that all the required analyses are less time-consuming, with less pre-

treatment of the sample and lower costs, and can be assessed using VIS-NIR 

diffuse reflectance spectroscopy. 

This study aims to evaluate the performance of VIS-NIR reflectance 

spectroscopy as a tool to predict the internal quality of nectarines, and the potential 

of the information obtained to differentiate among varieties with different 

commercial interest. To this end, two varieties with a similar composition, grown 

in the same period, but with different development, cv. ‘Big Top’ and cv. 

‘Magique’, have been analysed. 

 

2. MATERIALS AND METHODS 

2.1. Experimental procedure 

The experimental part of this paper was carried out using 325 fruits of two 

commercial varieties of nectarines, cv. ‘Big Top’ and cv. ‘Magique’, harvested in a 

commercial orchard in Lérida, Spain. These varieties were chosen because they 

represent 36 % of the overall Spanish nectarine production (Font et al., 2014), are 

grown at the same time and have a similar composition and organoleptic 

properties. Both are classified as a melting (slow-melting) phenotype, but present a 

large degree of variability in terms of development and maturation speed, and must 

therefore be handled differently in postharvest. 

The samples were free from visual damage and with had a uniform size and 

colour. On arrival at the laboratory, fruits were cleaned, individually numbered and 

randomly divided into sets of 25 fruits each. All sets were stored at 15 °C to 

simulate the room conditions allowing the gradual maturation of the product. As 
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the ‘Magique’ variety ripens more slowly than ‘Big Top’, a total of six sets were 

analysed for the ‘Big Top’ variety on the 1st, 2nd, 3rd, 4th, 5th and 9th days, while 

a total of seven sets were analysed for the ‘Magique’ variety on the 1st, 3rd, 5th, 

8th, 11th, 15th and 17th days. The VIS and NIR spectra of the fruits in each set 

were collected and their physicochemical properties were analysed by standard 

destructive methods. 

 

2.2. Visible and near-infrared spectra acquisition 

The visible spectra of the fruits were collected using a conventional 

spectrocolorimeter (CM-700d, Minolta Co., Tokyo, Japan) every 10 nm between 

360 nm and 700 nm. The VNIR and NIR spectra were collected using a 

multichannel VIS-NIR spectrometer platform (AvaSpecAS-5216 USB2-DT, 

Avantes BV, The Netherlands) equipped with two detectors (Figure 1), one 

sensitive in the range from 595 nm to 1100 nm with a spectral FWHM (full width 

at half maximum) resolution of 1.15 nm and a spectral sampling interval of 0.255 

nm (AvaSpec-ULS2048 StarLine, Avantes BV, The Netherlands) and the other 

sensitive in the NIR range from 888 nm to 1795 nm with a spectral FWHM 

resolution of 12 nm and a spectral sampling interval of 3.535 nm (AvaSpec-

NIR256-1.7 NIRLine, Avantes BV, The Netherlands). The measurements were 

performed using a bi-directional fibre-optic reflectance probe (FCR-7IR200-2-45-

ME, Avantes BV, The Netherlands). The probe is configured with an illumination 

leg with six 200 μm fibre cables which connects to a fibre-coupled light source and 

a single 200 μm read fibre cable to measure the diffuse reflectance via connection 

to a spectrometer. A 10 W tungsten halogen light source (AvaLight-HAL-S, 

Avantes BV, The Netherlands) was used to ensure a constant light intensity over 

the whole measurement range. The probe tip is designed to enable diffuse 

reflectance measurements under an angle of 45 ° to prevent direct back reflection 

from the surface of the fruit. A personal computer equipped with commercial 

software (AvaSoft version 7.2, Avantes, Inc.) was used to control both the 

detectors and to acquire the spectra. The integration times were adjusted for each 

spectrophotometer using a 99 % reflective white reference (WS-2, Avantes BV, 

The Netherlands), so that the maximum reflectance value over each wavelength 

range was around 90 % of saturation (Lorente et al., 2015). They were set to 120 
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ms for the first detector and 500 ms for the second one. To reduce the thermal 

noise of the detector, each spectrum was obtained as the average of five scans 

(Nicolaï et al., 2007). The average reflectance measurements of each sample (S) 

were then converted into relative reflectance values (R) with respect to the white 

reference using dark reflectance values (D) and the reflectance values of the white 

reference (W), as shown in equation 1: 

 

    𝑅 =
𝑆−𝐷

𝑊−𝐷
      (1) 

 

The dark spectrum was obtained by turning off the light source and covering 

the tip of the reflectance probe.  

Prior to spectral measurements, the temperature of the nectarines was 

stabilised at a room temperature of 22 ± 1 ºC. All the measurements were 

performed by placing the skin of the fruit on the equipment. Measurements were 

taken at two points on each side of fruit and mean values of the spectra were used 

for the analysis.  

 

 

Figure 1. A labelled photograph of the VIS-NIR equipment. 

 

2.3. Determination of quality attributes 

Standard destructive quality testing methods were performed immediately 

after the acquisition of the spectral measurements to determine quality attributes 

for use as reference values. Flesh colour was determined with the 
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spectrocolorimeter using the standard illuminant D65 and the 10  ̊ observer for all 

colour measurements. Colour attributes such as luminosity (L*), chromaticity (𝐶∗) 

and hue angle (ℎ∗) were obtained from the CIELab colour space. L* was obtained 

directly by the spectrocolorimeter whereas 𝐶∗ and ℎ∗ were estimated by equations 

2 and 3, respectively.  

 

ℎ∗ = 𝑎𝑟𝑐𝑡𝑔
𝑏∗

𝑎∗     (2) 

 

𝐶∗ = √𝑎∗2
+ 𝑏∗2

     (3) 

 

𝑎∗ and 𝑏∗  being the CIELab attributes. 

 

Firmness of the nectarines was measured using a Universal Testing Machine 

(XT2 Texture Analyser, Stable MicroSystems, Haslemere, England) to perform 

puncture tests using a 6 mm diameter cylindrical probe (P/15ANAMEsignature) to 

a relative deformation of 30 % at a speed of 1 mm/s. Two measurements were 

performed for each fruit on opposite sides along the equator. The fracture strength 

(Fmax) was analysed for all samples, expressed the maximum force, in Newtons, 

applied to break the sample.  

Immediately after firmness measurements, samples of nectarine juice were 

extracted to estimate the TSS by refractometry (°Brix) with a digital refractometer 

(RFM330+ set, VWR International Eurolab S.L. Barcelona, Spain) at 20 ºC with a 

sensitivity of ± 0.1 ºBrix. Samples were analysed in triplicate and average values 

were calculated.  

Subsequently, the multi-parameter internal quality index (IQI, Cortés et al. 

(2016) was calculated by equation 4. 

 

𝐼𝑄𝐼 = ln(100 · 𝐹 · 𝐿∗ · ℎ𝑎𝑏
∗ · 𝑇𝑆𝑆−1 · 𝐶𝑎𝑏

∗−1)  (4) 

 

where 𝐹 is the fracture strength (Newton), 𝑇𝑆𝑆 is the total soluble solids 

(°Brix) and 𝐿∗, ℎ𝑎𝑏
∗ , 𝐶𝑎𝑏

∗  are the colour attributes of the colour of the flesh. 
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2.4. Spectral pre-processing 

The raw spectra from each of the three measuring devices were normalised 

(Bakeev, 2005) by dividing each variable by its standard deviation. In this way, the 

spectral intensities are rescaled to a common range, thus making it possible to 

compare the spectra acquired using different pieces of equipment with different 

resolutions. Then, the spectra were transformed to apparent absorbance (log (1/R)) 

values to linearise the correlation with the concentration of the constituents 

(Hernández et al., 2006) using The Unscrambler V10.3 software package (CAMO, 

Norway). In addition, two pre-processing techniques were applied: Savitzky-Golay 

smoothing with a gap of three data points (Carr et al., 2005) combined with 

extended multiplicative scatter correction (EMSC) (Martens et al., 2003; Bruun et 

al., 2007). Smoothing, which includes moving smoothing and Savitzky-Golay 

smoothing, is one of the methods that are most often used to eliminate noise 

(Gorry, 1990; Savitzky & Golay, 1964), and EMSC is a method that is well suited 

to the removal of physical effects from chemical information, i.e. it is particularly 

useful for minimising wavelength-dependent light scattering variation (Santos et 

al., 2013). Figure 2 shows raw VIS-NIR spectra and their correction after the 

application of the pre-processing methods.  
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Figure 2. VIS-NIR spectra of the 150 cv. ‘Big Top' samples; a) Raw and b) 

Smoothing Savitzky-Golay + EMSC transformed. 

 

2.5. Chemometric data treatment 

A one-way analysis of variance (ANOVA) was conducted to determine 

significant differences in the physicochemical properties (Fmax, TSS, L*, h*, C* 

and IQI) during the postharvest evolution of the fruit using the software 

Statgraphics Plus for Windows 5.1 (Manugistics Corp., Rockville, MD, USA). The 

multivariate analysis was performed through partial least squares discriminant 

analysis (PLS-DA) and linear discriminant analyses (LDA) were performed using 

the Unscrambler X software package. 
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‘Magique’) and the columns represented the variables (X-variables and Y-

variables). The X-variables, or predictors, were the different VIS-NIR spectra 

while the Y-variable, or response, was the IQI estimated for each sample. Before 

calibration, principal component analysis (PCA) was performed to extract the most 

important information about spectral data and to exclude samples considered 

outliers.  

Two regression models for each variety of nectarines were developed by 

partial least squares (PLS) to predict the IQI based on the spectral measurements. 

This method is often used in spectroscopy analysis to evaluate the quality 

characteristics of intact fruits, for example, mandarin (Hernández et al., 2006), 

tomato (Shao et al., 2007), orange (Cayuela & Weiland, 2010), mulberry (Huang et 

al., 2011) and banana (Jaiswal et al., 2012). Samples were randomly separated into 

two groups: 75 % of the samples were used for development and evaluation by a 

cross-validation model using the leave-one-out cross technique (Huang et al., 

2008), while the remaining samples (25 %) were used as the prediction set 

(Kamruzzaman et al., 2012). The root mean square error of calibration (RMSEC), 

root mean squared error of cross validation (RMSECV), root mean square error of 

prediction (RMSEP), coefficient of determination for calibration (R2
C), coefficient 

of determination for cross-validation (R2
CV) and for prediction (R2

P), and the 

required number of latent variables (LV) were used to judge the accuracy of the 

PLS model. 

 

2.5.2. Discriminant analysis for varietal differentiation 

Discriminant models, using LDA and PLS-DA were built to classify 

nectarines in terms of variety. A training set consisting of a random selection of 75 

% of the studied samples was used to develop a qualitative calibration model. Each 

model was validated using the leave-one-out cross-validation technique (Huang et 

al., 2008) and the weight of the spectral variables selected was 1/Sdev. A test set 

(25 % of remaining samples) was used for the evaluation and comparison of the 

classification models (Soares et al., 2013). These discriminant analyses seek to 

correlate spectral variations (X) with defined classes (Y), with attempts being made 

to maximise the covariance between the two types of variables. In this type of 

approach, the Y variables used are not continuous, as they are in quantitative 
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analysis, but rather categorical “dummy” variables created by assigning different 

values to the different classes to be discriminated. In the case of PLS-DA, the Y-

variable was a vector with zeroes (for the cv. ‘Big Top’) and ones (for the cv. 

‘Magique’). However, for LDA the number of samples in the training set must be 

larger than the number of variables included in the model (Kozak & Scaman, 2008; 

Sádecká et al., 2016), thus requiring a variable reduction. This was performed 

using the PCA scores as input data, since linear combinations of the original 

variables called principal components (PCs) are uncorrelated (Rodríguez-Campos 

et al., 2011). In this study, the first seven principal components were used to 

replace the original one data (He et al., 2006). The RMSEC, RMSECV, R2
C, R2

CV, 

LV and percentage of correctly classified samples were used to evaluate the 

discriminating capacity of the models. 

 

3. RESULTS AND DISCUSSION 

3.1. Analysis of the quality attributes 

The changes observed in the firmness and TSS of the two varieties of 

nectarines during postharvest storage are shown in Figure 3.  

 

 

Figure 3. Mean and standard deviation of a) firmness and b) TSS of nectarines at 

different sets of analysis. Discontinuous lines in the mechanical plot (left) indicate 

firmness thresholds. 
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As expected, the changes in both parameters during ripening are indicative 

of the physiological development of the fruit (Valero et al., 2007). In both cultivars 

a steady decrease was observed in fruit firmness over time from around 47 N to 9 

N for cv. ‘Magique’, and from 58 N to 6 N for cv. ‘Big Top’. These values 

coincide with those reported by Ghiani et al. (2011) for nectarine cv. ‘Big Top’. 

The textural changes that took place in the fruit during the postharvest period can 

be attributed to different factors, such as significant changes in the composition and 

structure of cell walls and, particularly, the degradation of the polysaccharides. As 

a result, the decrease in firmness during the process is due to a loss of neutral 

sugars, solubilisation and de-polymerisation of the polysaccharides of the cell wall, 

and the reorganisation of their interconnections (Singh et al., 2013). The firmness 

values cover all the commercial ranges proposed by Crisosto (2002) and Valero et 

al. (2007), which are less than 18 N (ready to eat), between 18 and 35 N (ready to 

buy) and over 35 N (immature). 

On the other hand, TSS increased continuously, from 10 ± 1 to 15 ± 3 during 

postharvest storage for cv. ‘Big Top’, which is nowadays the reference cultivar, 

known for quickly reaching its typical mature colour, sweet taste and optimum fruit 

size (Iglesias & Echeverría, 2009). This increment is due to the conversion of 

starch to glucose and fructose, which are used as substrates during fruit respiration 

(Eskin et al., 2013). However, the increase in TSS observed for cv. ‘Magique’ 

remained around 10-11 % probably because this variety has a different pattern of 

ripening. However, in all cases, the values were greater than 8 ºBrix, which is the 

minimum established by the European Union to market peaches and nectarines (R-

CE No. 1861/2004). Several authors have reported a linear relationship between 

TSS and consumer acceptance (Crisosto & Crisosto, 2005), a TSS of below 10 % 

generally being unacceptable to consumers (Clareton, 2000). 

Figure 4 shows the evolution of the flesh colour of the two varieties of 

nectarines during the postharvest storage. Flesh colour was taken as the evaluation 

parameter rather than external colour because for some nectarine varieties with 

early development of the external colour, such as cv. ‘Big Top’, their external 

colour should not be used as a maturity index (Ravaglia et al., 1996) because they 

reach the appearance of being mature before they are ready to eat (Della Cara, 

2005; Iglesias & Echeverría, 2009). In this sense, other authors such as Tijskens et 
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al. (2007) suggest that flesh colour is a good index to determine the development 

of the fruit. It can be observed that L* and h* decrease and C* increases during the 

storage for both varieties. Cv. ‘Big Top’ changes from L* = 72, h* = 79 and C* = 

42 in the unripe stage until L* = 62, h* = 74 and C* = 60 at the states of further 

development, and cv. ‘Magique’ changes from L* = 72, h* = 102 and C* = 24 to 

L* = 70, h* = 86 and C* = 29. Figure 4b shows an example of the internal 

appearance of both cultivars on each day of analysis. The flesh colour changed 

from whitish-yellow to orange-red for the cv. ‘Big Top’ and from whitish-green to 

yellow-orange during postharvest storage especially for the cv. ‘Magique’, similar 

to the findings of Padilla-Zakour (2009), who reported that the colour of peaches 

changed from yellow-greenish to yellow-orange or orange-reddish when fruits 

matured. 

Figure 5 shows the evolution of the IQI, which is represented by a sigmoidal 

curve for both varieties. The values of the indices clearly decreased during the 

storage period for cv. ‘Big Top’ (Figure 5a) and for cv. ‘Magique’ (Figure 5b), but 

three trends can be differentiated in the graph. Initially, the two IQI decline slowly 

until 17.5 because the maturation of the product has not yet been produced at the 

beginning of the IQI curve, and then drops sharply when the fruits ripen to achieve 

their optimum organoleptic properties, which are related to adequate firmness, 

content in TSS and flesh colour. Finally, fruit reach the stage of over-ripeness, 

where the curve follows a constant trend because the product reaches a maximum 

TSS content and a minimum firmness. It should be noted that, even though they 

have the same trends, the two varieties have different maturation speeds. Thus, 

while cv. ‘Big Top’ nectarines reach over-ripeness at day 5 (E in Figure 5a), cv. 

‘Magique’ nectarines do so at day 15 (F in Figure 5b). 
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Figure 4. a) b) and c) Flesh colour atributes (L*, h* and C*); and d) an example of 

internal colour appearance of nectarines cv. ‘Big Top’; and e) cv. ‘Magique’ during 

the storage period. 

 

 

Figure 5. Evolution of the IQI during the storage period of the a) nectarines cv. 

‘Big Top’ and b) nectarines cv. ‘Magique’. 
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3.2. Spectral analysis 

Figure 6 presents the VIS-NIR absorbance spectra of each day of storage for 

both varieties. Each spectrum represents an average of the measurements done. As 

can be seen, there was considerable spectral similarity between the varieties 

analysed, due to the existing features being very similar in their chemical 

structures. Even, the pattern of the absorption curves is similar to other fruits such 

as pear (Liu et al., 2008), açaí and juçara fruits (Cunha et al., 2016), peach 

(Martins et al., 2016) and mandarin (Magwaza et al., 2012), although the position 

and magnitude of the peaks are specific for each fruit.  

From the visible region (360 - 770 nm), a continuous decrease in 

absorbance, with the minimum at 680 nm, is observed.  The spectra show a broad 

absorbance band around 450 nm associated with carotenes and xanthophylls 

(Lichtenthaler & Buschamann, 2001). The high absorbance observed around 670 

nm is indicative of the presence of chlorophyll, which gives the fruit its 

characteristic green colour (Merzlyak et al., 2003; Gómez et al., 2006). 

Furthermore, Tijskens et al. (2007) concluded that absorption at 670 nm allowed 

the evaluation of the variation in maturity of individual nectarines. The peaks 

centred at 970 nm and 1400 nm that appear are probably due to the presence of 

water (Williams & Norris, 1987; McGlone & Kawano, 1998). A characteristic 

absorption band at around 1160 nm was sugar-related (Osborne et al., 1993; Walsh 

et al., 2004). Lu (2004) stated that the absorption of radiation increases as fruit 

firmness decreases, i.e. firmer fruit reflect more radiation than softer fruit. Fu et al. 

(2007) stated that this is also linked to water and pectin content.  
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Figure 6. Fruit samples absorbance spectra between 360 and 1795 nm for the two 

varieties of nectarines at different storage times. 

 

3.3. Analysis of internal quality 

Table 1 displays the results for the calibration and prediction models of the 

internal quality of intact nectarines.  

 

Table 1. Results of the PLS models for the prediction of the IQI in nectarines 

samples with different flesh colour. 
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error (RMSEP) and number of LV for an independent test set (Faber, 1999) while 

maximising the R2
P. In this case, when applied to an independent prediction set, the 

PLS models were capable of predicting IQI with R2
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shows a good prediction performance of the PLS models for IQI. These results 

suggest that the calibration models optimised with leave-one-out cross-validation 

are representative and the models can accurately predict unknown sample data. 

These results are similar to those obtained by Cortés et al. (2016), who have 

recently developed models to predict the internal quality of mangoes cv. ‘Osteen’ 

using the IQI (R2
p = 0.833). Thus, it is confirmed that the IQI can be applied to 

various types of fruits to ensure an adequate quality of the final product for the 

consumer. 

 

 

Figure 7. Predicted vs measured values of IQI in the examined samples of variety 

a) ‘Big Top’ and b) ‘Magique’. 

 

3.4. Varietal classification 

Before performing discriminant analysis, PCA decomposition was 

conducted to recognise any possible pattern of classification. The spectrum of each 

sample was represented as a point, with respect to these new axes (Downey, 1997). 

The samples of cv. ‘Magique’ were used to develop the PCA model used later and 

to project the samples of cv. ‘Big Top’. Figure 8 shows the two-dimensional scatter 

plot of scores for two principal components (PCs) from projection results. The two 

PCs explain over 70 % (53 % for the first PC and 18 % for the second PC) of the 

variation. This justifies the possibility of differentiating between varieties using the 

spectra measured in intact nectarines. 
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Figure 8. Projection of nectarines samples in the space defined by the two first 

PCs. 

 

After proving the performance of an unsupervised method such as PCA to 

classify samples belonging to different varieties, the next step consisted in building 

classification models based on supervised LDA and PLS-DA. The best models 

were chosen with seven LV for both cases. The optimal number of latent variables 

was chosen according to the lowest RMSECV by internal validation, i.e. ‘leave-

one-out’, in combined analysis with the cumulative variance in the X and Y blocks 

(Bachion de Santana et al., 2016). 

All the training set and validation samples were correctly classified by the 

PLS-DA model, as shown in Figure 9. In this situation, all cv. ‘Big Top’ samples 

have predictive values close to, 1 thus classifying these as belonging to class ‘1’, 

and cv. ‘Magique’ samples have predictive values close to 0, therefore classifying 

these as belonging to class ‘0’. The values of the RMSEC and RMSEP were 0.112 

and 0.133, respectively, which exhibit a good agreement, indicating that the 

calibration error is a good estimation of the standard error of prediction observed in 

samples in the test set. Moreover, the validation set gave a similar result to the 
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performance of the model for varietal classification. 
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Figure 9. Estimated class values for training and validation sets for varietal 

discrimination by PLS-DA model. 

 

Regarding LDA, Figure 10 shows the results of the external validation by 

test set (25 %) of each variety. Validation samples of the cv. ‘Big Top’ are 

displayed in blue, while samples of the cv. ‘Magique’ are in red. The classification 

accuracy was 97.44 %, all cv. ‘Magique’ samples being classified correctly and 

only two cv. ‘Big Top’ samples misclassified. 

 

Figure 10. Discrimination plot of the LDA results for the validation samples. 
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Table 2 shows the summary of the classification accuracy for each analysis, 

presented as both as percentage and absolute number of correctly classified 

samples. 

As both varieties have a similar composition, to develop a tool capable of 

differentiating them is challenging and could be possible to be applied to 

differentiate other varieties with greater difference. Based on these results, the 

ability of these VIS-NIR instruments to classify fruit as depending on its variety for 

compositionally similar samples has been demonstrated satisfactorily for nectarine. 

So, it is possible to explain the postharvest shelf-storage time using these 

techniques for varieties with different speeds of evolution because they are 

classified correctly from their origin.  

 

Table 2. Confusion matrix obtained in prediction for the PLS-DA and LDA 

analysis. 

 

 

4. CONCLUSIONS 

The quantitative and qualitative results of this study confirmed that VIS-NIR 

spectroscopy is a technique capable of determining the internal quality of intact 

nectarines with significant reliability. The partial least squares regression analysis 

showed strong performance in predicting the internal quality of the samples, with 

an R2
P and RMSEP of 0.909 and 0.235 for cv. ‘Big Top’, and 0.927 and 0.238 for 

‘Magique’. It has been possible to differentiate three trends of the IQI curve, where 

initially the maturation of the product has not yet been produced, followed by the 

development of the optimum organoleptic properties, and finally the fruit reaches 

the stage of over-ripeness. Despite being two varieties with a similar composition 

and grown in the same period, it was possible to separate the two with a perfect 
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classification rate of 100 % using PLS-DA and 97.44 % using the model developed 

by LDA models. This represents an advance in the creation of tools for monitoring 

the fruit quality for the postharvest industry compared to the present situation 

where the evaluation of the state of the fruit is mostly carried out based on the 

subjective experience of trained experts. Further studies are needed to improve the 

calibration specificity, accuracy and robustness, and to extend the discrimination to 

other nectarine varieties. 
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ABSTRACT 

 

A non-destructive method based on external visible and near-infrared 

reflection spectroscopy for determining the internal quality of intact mango cv. 

‘Osteen’ was investigated. An internal quality index, well correlated with the 

ripening index of the samples, was developed based on the combination of a 

biochemical property (total soluble solids) and physical properties (firmness and 

flesh colour) of mango samples. The diffuse reflectance spectra of the samples 

were recorded and used to predict the internal quality and the ripening index. These 

spectra were obtained using different spectroscopic external measurement sensors 

involving a spectrometer, capable of measuring in different spectral ranges (600-

1100 nm and 900-1750 nm), and also a spectrocolorimeter that measured in the 

visible range (400-700 nm). Three regression models were developed by partial 

least squares to establish the relationship between spectra and indices. Good results 

in the prediction of internal quality of the samples were obtained using the full 

spectral range (R2
p = 0.833-0.879, RMSEP = 0.403-0.507 and RPD = 2.341-2.826) 

and some selected wavelengths (R2
p = 0.815-0.896, RMSEP = 0.403-0.537 and 

RPD = 2.060-2.905). The results obtained from this study revealed that external 

visible and near-infrared reflection spectroscopy can be used as a non-destructive 

method to determine the internal quality of mango cv. ‘Osteen’. 

 

Keywords: reflection spectroscopy, fruit, quality, chemometrics, non-destructive 
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1. INTRODUCTION 

Spain is the main European producer of subtropical fruits, with 

approximately 1400 ha dedicated to mango (Galán & Farre, 2005). In particular, 

the south-west region has a large potential for the production of tropical and 

subtropical fruit, with a favourable year-round climate and infrequent frosts.  

Mango fruit is sold in the market in quality categories. In the past, skin 

colour, fruit size and shape, freedom from defects and the absence of decay were 

the most common quality determinants, but nowadays other organoleptic 

characteristics related with internal and nutritional quality play an important role in 

the consumer’s decision, as opposed to just appearance. The quality of mangoes 

changes almost daily and it is essential to correlate all the major quality parameters 

with one another in order to reveal the overall quality of the fruit (Jha et al., 2011). 

In a climacteric fruit, such as mango, the fruit is not considered to be of 

desired eating quality at the time it initially becomes mature. It requires a ripening 

period before it achieves the taste and texture desired at the time of consumption. 

The ripening process is regulated by genetic and biochemical events that result in 

biochemical changes such as the biosynthesis of carotenoids (Mercadante & 

Rodriguez-Amaya, 1998), loss of ascorbic acid (Hernández et al., 2006), increase 

in total soluble solids (Padda et al., 2011); physical changes such as weight, size, 

shape, firmness and colour (Ornelas-Paz et al., 2008; Kienzle et al., 2011); and 

changes in aroma, nutritional content and flavour of the fruit (Giovannoni, 2004). 

Traditional determination of the internal quality of mango requires a destructive 

methodology using specialised equipment, procedures and trained personnel, which 

results in high analysis costs and does not allow the whole production to be 

analysed (Torres et al., 2013). Nevertheless, new technologies to monitor fruit 

quality changes during the postharvest handling chain are rapidly being introduced, 

especially those based on non-destructive assessment methods, recently reviewed 

by Jha et al. (2010) and Nicolaï et al. (2014). These fast and non-destructive 

methods can help to provide decisive parameters with which to obtain better 

quality mango products and to promote consumption of mangoes with better health 

benefits (Ibarra-Garza et al., 2015). 

Several non-destructive technologies have been widely explored to predict 

the quality and maturity of mango, such as nuclear magnetic resonance (NMR) (Gil 
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et al., 2000), impact response (Padda et al., 2011; Wanitchang et al., 2011), 

electronic nose (Lebrun et al., 2008; Zakaria et al., 2012), hyperspectral analysis 

(Vélez-Rivera et al., 2014a), and near-infrared spectroscopy (Saranwong et al., 

2004). Conversely, some authors, such as Jha et al. (2005), have included in their 

studies the full visible spectrum using spectroscopy in intact mangoes, although 

studies using colour coordinates are more common, such as Jha et al. (2007), 

Subedi et al. (2007) or Rungpichayapichet et al. (2015).  

Schmilovitch et al. (2000) studied the feasibility of near-infrared 

spectroscopy (NIRS) to determine the total soluble solids, firmness and acidity of 

mangoes cv. ‘Tommy Atkins’ in relation to the maturity stage. Nagle et al. (2010) 

developed a method to measure total soluble solids, total acidity and dry matter in 

mango cv. ‘Chok Anan’ on the trees using NIRS. Theanjumpol et al. (2013) 

studied the possibility of predicting six main chemical substances found in mango 

fruit cv. ‘Keitt’ and cv. ‘Nam Dok Mai Si Thong’, which are important in Thailand, 

such as glucose, sucrose, citric acid, malic acid, starch and cellulose. They used 

VIS/NIR spectrometry but decided not to use the visible information to avoid the 

influence of colour pigments. Jha et al. (2013) studied the properties of different 

mangoes that are important for the Indian production using NIRS in the 1200–2200 

nm range to measure properties that make it possible to predict the maturity stage. 

They were able to predict the sweetness of the mangoes from measurements of 

total soluble solids and pH (Jha et al., 2012) or to determine a maturity index based 

on the estimations of total soluble solids, dry matter and total acidity that was 

compared with destructive analysis and sensory panels, and corrected using a 

constant that depended on the cultivar (Jha et al., 2014). Watanawan et al. (2014) 

studied the 700–1100 nm region in an attempt to correlate total soluble solids, total 

acidity and dry matter of mango cv. ‘Namdokmai’ with maturity in order to predict 

the optimum harvesting time. They found good correlations among NIRS values 

and firmness and dry matter content at harvest, and predicted TSS with very high 

accuracy, although they consider that their study needs to be revised in order to 

reduce the heterogeneity in fruit maturity and increase the outturn quality. 

The main problem of using NIRS to assess fruit quality is the robustness of 

the calibration model (Rungpichayapichet et al., 2016). Additionally, fruit cultivar, 

size, and harvest season also play an important role in the robustness of NIRS 
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models (Bobelyn et al., 2010). In this study, a non-destructive method based on 

visible and near-infrared spectroscopy was investigated to determine the internal 

quality of mango cv. ‘Osteen’ during ripening because this is the main variety of 

mango grown in Spain. This variety could be included in the group of late-ripening 

mangoes, with higher weights and prices than other varieties of the same fruit. For 

this reason, this variety is considered to be optimal for export owing to its late 

maturing characteristics and final relatively low weight loss (Siller-Cepeda et al., 

2009).  

Hence, the aims of this research were (a) to determine an internal quality 

index for mangoes, based on their main biochemical (total soluble solids) and 

physical properties (firmness and flesh colour), avoiding the titratable acidity 

analysis, because it is a laborious and slow analysis that generates waste, (b) to 

apply it to mango cv. ‘Osteen’, and (c) to develop statistical models based on 

Partial Least Squares (PLS) to predict the internal quality of the samples through 

the analysis of external VIS-NIR spectral data. 

 

2. MATERIALS AND METHODS 

2.1. Experimental procedure 

A batch of 140 unripe mangoes (Mangifera indica L., cv ‘Osteen’) were 

obtained from plantations in Málaga (Spain). The fruit selected were free of 

external damage or diseases, showing a uniform shape and size. All mangoes were 

washed and dried to completely remove any water from the surface and then were 

marked on each side. All sets were ripened in a storage chamber at 18.0 ± 2.1 ºC 

and 67.6 ± 3.3% RH. Sets of twenty mangoes were randomly collected and 

analysed every 2-3 days until reaching senescence (16 days). 

The visible and near-infrared spectra of the external skin of each mango 

were measured on the centre of one cheek and two points on the other cheek 

(Figure 1) on each day of storage. After the measurements, the physical and 

biochemical properties were analysed.  
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Figure 1. External reflection spectroscopy measurements in fruit slice AA’ (1: 

seed; 2: penetrometer firmness and flesh colour measurement locations). 

 

2.2. Visible and near-infrared spectra collection 

The spectral characteristics of the external skin of the intact mangoes were 

measured in the visible and in the short and medium near-infrared range using a 

conventional spectrocolorimeter and a VIS-NIR spectrometer.  

The external visible spectra of mango samples between 400 and 700 nm, 

every 10 nm, were measured using a spectrocolorimeter (CM-700d, Minolta Co., 

Tokyo, Japan). All the measurements were performed by placing the 

spectrocolorimeter directly onto the skin of the fruit. 

The visible-near infrared and near-infrared spectra of mango samples were 

collected alternately in reflectance mode using a multichannel spectrometer 

platform (AVS-DESKTOP-USB2, Avantes BV, The Netherlands) equipped with 

two detectors (Figure 2). The first detector (AvaSpec-ULS2048 StarLine, Avantes 

BV, The Netherlands) included a 2048-pixel charge-coupled device (CCD) sensor 

(SONY ILX554, SONY Corp., Japan), 50 µm entrance slit and a 600 lines/mm 

diffraction grating covering the VIS-NIR range from 600 nm to 1100 nm with a 
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spectral FWHM (full width at half maximum) resolution of 1.15 nm. The spectral 

sampling interval was 0.255 nm. The second detector (AvaSpec-NIR256-1.7 

NIRLine, Avantes BV, The Netherlands) was equipped with a 256 pixel non-

cooled InGaAs (Indium Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu 

Photonics K.K., Japan), a 100 µm entrance slit and a 200 lines/mm diffraction 

grating covering the NIR range of 900 nm to 1750 nm and a spectral FWHM 

resolution of 12 nm. The spectral sampling interval was 3.535 nm. A Y-shaped 

fibre-optic reflectance probe (FCR-7IR200-2-45-ME, Avantes BV, The 

Netherlands) was configured with an illumination leg which connects the fibre 

coupled to a stabilised 10 W tungsten halogen light source (AvaLight-HAL-S, 

Avantes BV, The Netherlands). The light source ensures a permanent light 

intensity over the whole measurement range. A holder was used to position the 

sample properly over the probe and the reflectance probe delivered the light to the 

sample and collected the reflectance from the sample, which was carried by the 

fibre cable to the spectrometer in use. The reflectance probe, consisting of seven 

fibres with a diameter of 200 µm, delivered the light to the sample through a 

bundle of six fibres. The probe tip was designed to provide reflectance 

measurements at an angle of 45° so as to minimise specular reflectance from the 

surface of the fruit. The calibration was performed using a 99% reflective white 

reference tile (WS-2, Avantes BV, The Netherlands) so that the maximum 

reflectance value over the range of wavelengths was around 90% of saturation.  

 

 

Figure 2. A labelled photograph of the VIS-NIR equipment. 
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Prior to spectral measurements, the temperature of the mangoes was 

stabilised at 24 ± 1 ºC. Measurements were taken at three longitudinal points over 

the surface of the fruit and mean values of the spectra were used for the analysis. A 

personal computer equipped with commercial software (AvaSoft version 7.2, 

Avantes, Inc.) was used to control both detectors and to acquire the spectra. The 

signals were pre-processed using AvaSoft software. The integration time was set to 

90 ms for the detector sensitive in the VIS-NIR region and to 700 ms for the 

detector sensitive in the NIR region. For both detectors, each spectrum was 

obtained as the average of five scans to reduce the thermal noise of the detector 

(Nicolaï et al., 2007). The average reflectance measurements of each sample (S) 

were then converted into relative reflectance values (R) with respect to the white 

reference using dark reflectance values (D) and the reflectance values of the white 

reference (W), as shown in equation 1: 

 

    𝑅 =
𝑆−𝐷

𝑊−𝐷
      (1) 

 

The dark spectrum was obtained by turning off the light source and 

completely covering the tip of the reflectance probe.  

 

2.3 Physical and biochemical analysis 

The physical properties analysed were firmness, peel colour and flesh colour 

of the mangoes. The firmness, in Newtons, was analysed through a puncture test by 

using a universal test machine (TextureAnalyser-XT2, Stable MicroSystems (SMS) 

Haslemere, England). The tests were performed in triplicate in the axial direction at 

three locations in the equatorial section (Figure 1 (b)) with a punch with a diameter 

of 6 mm (P/15ANAMEsignature) until a relative deformation of 30%, at a speed of 

1 mm/s. 

CIE (Internationale de l'éclairage) colour values of Luminosity (L*), 

chromaticity (Cab
*) and hue angle (hab

*) for each fruit on both peel (external colour) 

and flesh (internal colour) were determined using the spectrocolorimeter. The 

standard illuminant D65 and the 10º standard observer were used for all colour 

measurements in the study. The colour values were averaged from three different 

measurements taken at three points on the fruit in order to have representative 
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values. The biochemical properties analysed were the total soluble solids (TSS) and 

the titratable acidity (TA). TSS content was determined by refractometry (ºBrix) 

with a digital refractometer (set RFM330+, VWR International Eurolab S.L., 

Barcelona, Spain) at 20 °C and with a sensitivity of ±0.1 ºBrix. The analysis of TA 

was performed with an automatic titrator (CRISON, pH-burette 24, Barcelona, 

Spain) with 0.5 N NaOH until a pH of 8.1 (UNE34211:1981), using 15 g of 

crushed mango which was diluted in 60 mL of distilled water. The TA was 

determined based on the percentage of citric acid that was calculated using 

equation 2. 

 

TA [g citric acid/100g of the sample]=((A×B×C/D)×100))/E  (2) 

 

where A is the volume of NaOH consumed in the titration (in L), B is the 

normality of NaOH (0.5 N), C is the molecular weight of citric acid (192.1g/mol), 

D is the weight of the sample (15 g) and E is the valence of citric acid (E = 3). 

 

Two indices, a ripening index (RPI) and an internal quality index (IQI) were 

calculated by equations 3 and 4. The RPI was described previously by Vásquez-

Caicedo et al. (2005) and Vélez-Rivera et al. (2014b). However, titratable acidity 

analysis is complex, laborious, slow and generates waste. Furthermore, the colour 

has previously been proved to be a quality indicator of mango (Jha et al., 2006a 

and 2006b). In Jha et al. (2007) colour parameters were highly correlated with TSS 

through the creation of several models based on the CIELAB coordinates. From 

these studies, the IQI was calculated combining TSS, firmness, and flesh colour. 

These parameters have been used in packing houses to measure the quality of 

mangoes. They require less time, less pretreatment of the sample and lower costs. 

 

 

𝑅𝑃𝐼 = ln(100 · 𝐹 · 𝑇𝐴 · 𝑇𝑆𝑆−1)  (3) 

 

𝐼𝑄𝐼 = ln(100 · 𝐹 · 𝐿∗ · ℎ𝑎𝑏
∗ · 𝑇𝑆𝑆−1 · 𝐶𝑎𝑏

∗−1)  (4) 
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where 𝐹 is firmness (Newtons), 𝑇𝐴 is titratable acidity (g citric acid 

equivalent/100 g sample), 𝑇𝑆𝑆 is total soluble solids (°Brix) and 𝐿∗, ℎ𝑎𝑏
∗  and 𝐶𝑎𝑏

∗  

are the colour attributes of the flesh colour. 

 

2.4. Statistical analysis 

The spectroscopic data and both indices were organised into three different 

matrices: the first matrix for the visible spectra (400-700 nm), the second matrix 

for the VIS-NIR spectra (600-1100 nm) and the third matrix for the NIR spectra 

(900-1750 nm). In all the matrices, the rows represent the number of samples (#N = 

140 samples) and the columns represent the number of variables (X-variables and 

Y-variables). The X-variables, or predictors, were the different spectra and the Y-

variables, or responses, were the two variables provided by RPI and IQI. All the 

matrices were analysed using The Unscrambler Version 9.7 software package 

(CAMO Software AS, Oslo, Norway). First, all the spectral data were pre-

processed. The X-variables were transformed to apparent absorbance (log (1/R)) 

values to obtain linear correlations of the NIR values with the concentration of the 

estimated constituents (Shao et al., 2007; Liu et al., 2010) and centred by 

subtracting their averages in order to ensure that all results will be interpretable in 

terms of variation around the mean. Due to the high resolution causing an increased 

occurrence of signal noise by its spectral range measurement, the VIS-NIR spectra 

were reduced using a reduction factor of 7. In order to reduce the influence of light 

scattering (Santos et al., 2013) and the baseline drift various pre-processing 

methods were applied to the spectra. Savitzky-Golay smoothing with a gap of three 

data points combined with extended multiplicative scatter correction (EMSC) were 

considered the best results for the VIS-NIR spectra, and those two pretreatments 

and second derivative with Gap-Segment (2.3) were the best results for the NIR 

spectra. After the pre-processing steps, the X-variables in the matrices were 31, 

285 and 242 for the visible spectrum, VIS-NIR spectrum and NIR spectrum, 

respectively. 

Secondly, each set was divided randomly into two groups, a calibration set 

(75% of the samples) and a prediction set (25% of the samples). Partial least 

squares regression (PLS) was applied to the matrix to construct separate calibration 

models for each ripening index and each spectrum with segments of 20 objects 
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(Næs et al., 2004) and it was evaluated by means of a cross validation 

methodology. PLS defines the latent variables (principal components) based on the 

covariance between the independent and dependent variables, the advantage of 

PLS regression being its ability to analyse data with many, noisy, collinear, and 

even incomplete variables in both X and Y (Næs et al., 2004). This technique has 

usually been used in multivariate calibration in fruit applications (Liu et al., 2010) 

and allows obtaining the best results when linear relations between spectra and 

properties of samples exist (Li et al., 2010). Liu et al. (2008) used the MLR 

technique based on the regression of the discrete parts of the spectra and PLS based 

on the full spectrum; the results of the two techniques in their study appeared to be 

very similar. 

In order to reduce the high dimensionality of the spectral data, to avoid the 

presence of noise or information that is not related to the quality characteristics of 

the mango, and to make the PLS models more robust, the most important 

wavelengths to predict both indices were selected (ElMasry et al., 2007; Talens et 

al., 2013). For each calibration model, the weighted regression coefficients 

resulting from the PLS models were used to select the important wavelengths. 

Regression coefficients show the weight of the contribution of each wavelength to 

the calibration model and eliminate the spectral regions with less contribution. 

Standardised spectral data were used to develop the PLS models to obtain the 

weighted regression coefficients. 

The relative performance of the constructed models was assessed by the 

required number of latent variables (LVs), the coefficient of determination for 

calibration (RC
2), the root mean square error of calibration (RMSEC) and the root 

mean square error of leave-one-out cross-validation (RMSECV). A model can be 

considered good when a low number of LVs are required and it has a low RMSEC 

and RMSECV and high RC
2. The predictive ability of the models was evaluated 

using the coefficient of determination for prediction (RP
2), the root mean square 

error of prediction (RMSEP) and the ratio of prediction to deviation 

(RPD=SD/RMSEP), where the SD was the standard deviation of the Y-variable in 

the prediction set. A value below 1.5 for the RPD indicates that the calibration is 

not usable. A value between 1.5 and 2.0 for the RPD reveals a possibility to 

distinguish between high and low values, while a value between 2.0 and 2.5 makes 
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approximate quantitative predictions possible. For values between 2.5 and 3.0, and 

above 3.0, the prediction is considered to be good and excellent, respectively 

(Williams & Sobering, 1993; Saeys et al., 2005; Cozzolino et al., 2011). RC
2 

measured the performance of a multivariate calibration model and can be defined 

as the following equations 5 and 6 (Yahaya et al., 2015): 

 

𝑅𝑀𝑆𝐸𝐶 =  √
1

𝑛𝑣
∑ (�̂�𝑖 − 𝑦𝑖) 2

𝑛𝑐

𝑖=1    (5) 

 

𝑅𝑀𝑆𝐸𝐶𝑉, 𝑅𝑀𝑆𝐸𝑃 =  √
1

𝑛𝑝
∑ (�̂�𝑖 − 𝑦𝑖) 2

𝑛𝑝

𝑖=1
  (6) 

where: 

 �̂�𝑖 is the predicted value of the ith observation 

 𝑦𝑖 is the measured value of the ith observation 

 𝑛𝑐 is the number of observations in the calibration set 

 𝑛𝑝 is the number of observations in the validated set 

 

3. RESULTS AND DISCUSSION 

3.1. Changes in mango quality during ripening 

Table 1 shows the range (minimum and maximum values), mean and 

standard deviation of the quality parameters analysed in the mango samples (#N = 

140 samples).  

 

Table 1. Descriptive statistics for the quality parameters analysed in the mango 

samples. 

 

 

The firmness ranged from 124.3 to 11.8 N. The peel luminosity, peel chroma 

and peel hue ranged from 32, 34.5, 14 to 56.5, 65, 94.2, respectively, whereas flesh 

luminosity, flesh chroma and flesh hue ranged from 56.3, 8.6, 70.4 to 81.8, 46.8 

and 86.1, respectively. The ºBrix and the titratable acidity ranged from 5.85 to 

Mango Weight 

(g) 

Diameter 

(mm) 

Lenght 

(mm)  

TSS TA 

(g/100g) 

Firmness 

(N) 

L*ext C* ext h*ext L* int C*int h* int 

Min 402 78.2 113 5.8 0.07 11.8 32.0 34.5 14.0 56.3 8.6 70.4 

Max 506.4 87.4 141 20.7 0.98 124.3 56.5 65.0 94.2 81.8 46.8 86.1 

Mean 445.5 82.3 128.8 13.4 0.47 76.1 43.1 53.0 47.2 72.7 25.2 78.7 

Sdev 23.5 1.7 5.5 3.5 0.22 35.8 4.7 6.3 18.3 6.4 9.1 4.0 
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19.50 ºBrix and 0.97 to 0.07 g citric acid/100 g of sample, respectively. Similar 

values were observed by other authors during the ripening process of mangoes, 

working with other mango varieties such as ‘Alphonso’ (Yashoda et al., 2007), 

‘Tommy Atkins’ (Lucena et al., 2007), ‘Nam Dokmai’ and ‘Irwin’ (Fukuda et al., 

2014). 

 

Table 2 shows the Pearson correlation coefficients and was calculated to 

check for significant inter-correlations between the parameters analysed in mango 

samples. The results indicated that, in general, peel/external colour showed lower 

correlations with respect to the other physical and biochemical properties, whereas 

higher correlations were found between firmness, flesh/internal colour and the 

biochemical properties. Positive correlations were found between firmness and 

internal L* (0.93), internal hab
* (0.88) and TA (0.63), and negative correlations were 

found between firmness and internal Cab
* (-0.78) and TSS (0.79). 

 

Table 2. Pearson correlation coefficients between quality parameters analysed in 

mango samples. 

 

 

 

Figure 3 shows the changes in firmness, peel and flesh colour, TA and TSS 

of mangoes at different days of storage. As expected, firmness values of ‘Osteen’ 

mangoes decrease constantly during ripening. At the beginning of the process, the 

firmness remained fairly constant, although a pronounced decrease in the firmness 

values was observed from 11 to 16 days of storage, the loss of firmness on the last 

day of storage being around 75% of the firmness recorded at the beginning of the 

study. A similar behaviour has been reported for other mango varieties such as 

  Weight (g) Diameter (mm) Lenght (mm)  TSS TA (g/100g) Firmness (N) L*ext C* ext h*ext L* Int C*int h* Int RPI IQI 

Weight (g) 1               

Diameter (mm) 0.55 1              

Lenght (mm)  0.41 -0.11 1             

TSS -0.21 0.01 0.02 1            

TA (g/100g) 0.29 0.08 -0.01 -0.36 1           

Firmness (N) 0.30 0.01 -0.01 -0.79 0.63 1          

L*ext -0.05 -0.02 -0.02 0.16 -0.10 -0.23 1         

C* ext -0.33 -0.05 -0.12 0.64 -0.52 -0.78 0.15 1        

h*ext 0.08 0.01 0.11 -0.06 0.20 0.08 0.62 -0.21 1       

L* Int 0.29 -0.04 0.07 -0.83 0.55 0.93 -0.22 -0.77 0.09 1      

C*int -0.25 0.03 0.08 0.67 -0.59 -0.75 0.46 0.58 0.15 -0.72 1     

h* Int 0.30 0.00 0.09 -0.81 0.54 0.88 -0.16 -0.84 0.22 0.94 -0.67 1    

RPI 0.33 0.04 -0.01 -0.76 0.82 0.92 -0.19 -0.72 0.12 0.89 -0.77 0.83 1   

IQI 0.31 0.01 -0.03 -0.87 0.63 0.95 -0.29 -0.75 0.02 0.94 -0.87 0.89 0.94 1 
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‘Alphonso’ (Yashoda et al., 2005), ‘Ataulfo’ (Palafox-Carlos et al., 2012) or 

‘Keitt’ (Ibarra-Garza et al., 2015). These changes can be attributed to different 

factors, such as the enzymatic activity (Prasanna et al., 2007; Yashoda et al., 2007) 

and/or the solubilisation, de-esterification, and de-polymerisation of the middle 

lamella, accompanied by an extensive loss of neutral sugars and galacturonic acid 

(Singh et al., 2013), which modify the structural integrity of the cell wall and 

middle lamella. 

 

 

Figure 3. Firmness, peel colour, flesh colour, TSS and TA of mangoes at different 

days of analysis. 
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The changes in peel/external and flesh/internal colour observed during the 

ripening of mangoes cv. ‘Osteen’ are also shown in Figures 3 and 4. Whereas flesh 

luminosity and flesh hue values decreased from 79º to 63º and from 83º to 74º, 

respectively, and flesh chroma values increased from 16 to 36, no clear changes in 

peel luminosity and peel hue values and small differences in peel chroma values 

could be observed, which is logical since the colour of the peel is heterogeneous 

and varies from one sample to another. In general, the peel colour changes were not 

uniform, indicating that peel colour is not an adequate quality parameter for cv. 

‘Osteen’ mango cultivars.  

However, flesh colour changes were uniform when fruit advances in 

ripening and can serve as an adequate quality parameter (Figures 3 and 4). The 

increase in the yellow-orange intensity of mango flesh can be associated with an 

increase in carotenoid content of mango fruit, as has been reported previously by 

other authors (Ornelas-Paz et al., 2008; Ibarra-Garza et al., 2015). This change is 

accompanied by a decrease in the L* value, although, despite the correlation, there 

is no evidence that the changes in the luminosity of the flesh (L*) are actually due 

to the increase in carotenoids. 

 

 

Figure 4. External appearance and flesh colour of mango cv. ‘Osteen’ at different 

days of storage. 
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Loss of firmness and changes in flesh colour correlate with the increase of 

the TSS ratio and decrease of TA (Figure 3). During ripening the TSS increased 

due to the conversion of starch into glucose and fructose, which are used as 

substrates during fruit respiration (Eskin et al., 2013), while the TA tends to 

decrease due to the cell metabolisation of volatile organic acids and non-volatile 

constituents (Padda et al., 2011). 

Taking into account the strong correlation found between the biochemical 

properties (TSS and TA) and the firmness and flesh colour (Table 2), two indices 

were calculated. The ripening index, RPI, involves the most essential physical and 

biochemical properties of the fruit linked with the sensory perception of the 

ripeness of the mangoes. The internal quality index, IQI, was calculated because it 

is a good indicator to assess changes in the mesocarp during the ripening of 

mangoes. In fact, firmness, total soluble solids and flesh/internal colour are the 

three parameters used in mango packing-lines to assess mango quality and stage of 

ripeness (Brecht et al., 2010), whereas the TA is more difficult and laborious to 

determine. Table 2 shows the Pearson correlation coefficient between the two 

indices, with higher positive correlations (0.94). Figure 4 shows the changes in the 

RPI and IQI indices calculated for the mangoes at different days of storage. In both 

cases, it can be observed that the values of the indices decreased during ripening. 

Based on previous studies working with RPI in mango cv. ’Manila’ (Vélez-Rivera 

et al., 2014b) and comparing the values of this study, three ripeness phases were 

identified: unripe mangoes (values higher than 6, day 2), intermediate-ripe 

mangoes (values between 6 and 4, days 4 to 11) and over-ripe mangoes (values less 

than 4, days 14 to 16), the intermediate-ripe mangoes being the mangoes with the 

best quality. 
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Figure 5. RPI and IQI of mangoes at different days of storage. 

 

3.2. Analysis of visible and near-infrared spectra. 

When assessing ripening with a visible and/or near-infrared spectroscope, it 

is crucial to identify the spectral changes associated with pigment evolution and 

compositional changes. Typical apparent absorbance spectral of mangoes at 

different ripening stages for the visible region, the VIS-NIR and the NIR regions 

are shown in Figure 6.  

 

Figure 6. Apparent absorbance spectra of mangoes at different ripening stages for 

the (a) visible region, (b) the VIS-NIR region and (c) the NIR region after 

pretreatments. 
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All the spectra have a similar pattern with the main maxima located in the 

visible and near-infrared region, which showed the strong absorbance 

characteristics of the mangoes within the range of study. In the visible range, the 

light peaks around 400-500 nm are correlated with the carotenoid pigments 

(Lichtenthaler & Buschmann, 2001) and the peak around 640-700 nm illustrated 

the colour transition of mangoes correlated with the chlorophyll content that 

absorbs radiation in this region (Merzlyak et al., 2003). Similarly, Knee (1980) and 

Bodria et al. (2004) analysed apples and claimed that their reflectance minimum in 

the 670 nm to 680 nm range was strongly related to chlorophyll content. Therefore, 

the ripening process of the fruit, with changes in chlorophyll, carotenoid and 

anthocyanin contents, indicated the influence of pigment content and composition 

on the colouration of the entire spectral visible reflectance of the fruit (Yahaya et 

al., 2014; Omar, 2013). This view is supported by the study of Magwaza et al. 

(2012), who described the pattern of the absorption curves for Satsuma mandarin, 

which is similar to that for other fruit like mangoes and kiwis. On the other hand, 

the water peaks were recorded at around 950-1050 nm and 1350-1550 nm due to 

the second overtone of the OH stretching band (Büning-Pfaue, 2003), and the 

variations at 1100-1250 nm are correlated with the sugar content (Osborne et al., 

1993; Walsh et al., 2004). Figure 5a and 5b shows an increase in absorbance within 

the blue region during ripening, mainly linked to an increase in the carotenoids 

content, and a decreased absorbance in the red region, mainly linked to a decrease 

in the chlorophyll content. Merzlyak et al. (2003) suggested that carotenoid 

synthesis is induced when chlorophyll degradation occurs during fruit ripening and 

senescence. Also during ripening, an increase in TSS is produced and could be 

mainly due to hydrolysis of starch into soluble sugars such as sucrose, glucose and 

fructose (Agravante et al., 1990; Cordenunsi & Lajolo, 1995). 

 

3.3. Non-destructive prediction of mango quality 

Multivariate analysis was performed in order to establish the quantitative 

relationship between the absorbance spectra and the internal quality of mango. The 

full range spectra for the three regions studied were used to establish calibration 

models based on PLS to explain RPI and IQI. The performance of the calibration 
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models was optimised by internal cross-validation and then validated by external 

validation in an independent validation set.  

Table 3 and Table 4 show the results obtained for the calibration and cross-

validation sets for the three models developed. Similar results on the calibration 

and cross-validation sets were obtained to predict RPI and IQI using the VIS, VIS-

NIR or NIR detector. The models were very accurate with high RC
2 (0.902-0.934) 

and RCV
2 (0.831-0.903), while RMSEC (0.335-0.509) and RMSECV (0.395-0.546) 

were low. The models applied to the independent validation set were capable of 

predicting RPI with RP
2 of 0.871, 0.902 and 0.845, and RMSEP of 0.520, 0.470 and 

0.592, respectively, for the three spectral regions. On the other hand, the results 

achieved for the IQI were RP
2 of 0.879, 0.877 and 0.833, and RMSEP of 0.464, 

0.435 and 0.507, respectively, for the VIS, VIS-NIR and NIR detector. Although 

better results were obtained when visible information was used, the models 

developed using the VIS/NIR and NIR spectra also presented high values of RP
2 

and low values of RMSEP.  

 

Table 3. Results of the PLS models for the calibration and prediction of RPI in 

mango samples by using the full spectral range and the important wavelengths. 

 

 

 

 

 

 

 

 

DETECTOR #W #LV CALIBRATION CROSS 

VALIDATION 

PREDICTION 

RC
2 RMSEC RCV

2 RMSECV RP
2 RMSEP RPD 

VIS 
31 6 0.907 0.415 0.886 0.463 0.871 0.520 2.916 

5 4 0.893 0.445 0.882 0.471 0.871 0.520 2.827 

VIS-NIR 
285 8 0.934 0.335 0.902 0.412 0.902 0.470 2.767 

6 6 0.847 0.509 0.827 0.546 0.795 0.548 2.373 

NIR 
242 10 0.922 0.364 0.868 0.478 0.845 0.592 2.340 

9 5 0.853 0.499 0.830 0.542 0.831 0.613 2.259 
 



CHAPTER IV 

175 

Table 4. Results of the PLS models for the calibration and prediction of IQI in 

mango samples by using the full spectral range and the important wavelengths. 

 

 

The RPD values of the resulting models gave the relative predictive 

performance of the model more directly in comparison to either R2 or RMSEP used 

alone. In this study, the RPD values obtained were 2.916, 2.767 and 2.340 for RPI 

and 2.826, 2.691 and 2.341 for IQI for the VIS, VIS-NIR and NIR detectors, 

respectively. In all cases they are high values indicating a greater ability of the 

models to accurately predict the internal ripeness of the mango in new samples. 

Figure 7 shows the regression coefficient plots with the important 

wavelengths for RPI and IQI for each spectral range. These wavelengths 

corresponded to -H and -OH functional groups, which are related to carbohydrates 

(namely sugars and starches), organic acids and water (Rungpichayapichet et al., 

2016). 

 

 

 

 

DETECTOR #W #LV CALIBRATION CROSS 

VALIDATION 

PREDICTION 

RC
2 RMSEC RCV

2 RMSECV RP
2 RMSEP RPD 

VIS 31 6 0.916 0.363 0.903 0.395 0.879 0.464 2.826 

5 4 0.881 0.433 0.871 0.455 0.838 0.537 2.522 

VIS-NIR 285 4 0.905 0.389 0.891 0.421 0.877 0.435 2.691 

5 5 0.827 0.525 0.796 0.575 0.896 0.403 2.905 

NIR 242 10 0.902 0.394 0.831 0.523 0.833 0.507 2.341 

7 5 0.841 0.503 0.820 0.540 0.815 0.531 2.060 
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Figure 7. Regression coefficient plot of PLS calibration models developed from 

overall data for RPI (a, b and c) and IQI (d, e and f) for each spectral range. 

 

After identifying the optimal wavelengths, the reduced sets of bands were 

used to build new PLS models using the absorbance at these particular wavelengths 

as independent variables, and the measured values of RPI and IQI as dependent 

variables. Figure 8 shows the efficiency of PLS models for this prediction, 

indicating that it is possible to use a reduced number of bands in the visible and 

near-infrared region to predict the internal quality of mango 'Osteen'. 
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Figure 8. Predicted versus measured values of RPI and IQI for the visible region 

(a), the visible-near infrared region (b) and near-infrared region (c). 

 

The feasibility of VIS-NIR to predict RPI of mango was indicated by an Rp2 

between 0.795-0.871, RMSEP of 0.520-.613 and RPD of 2.259-2.827 (Figure 8). 

The results corroborated other studies on the use of spectroscopy techniques to 

predict RPI, such as Mahayothee (2005), with R2 of 0.8 and SEP of 0.9, or 
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shown in Table 3 and Table 4, the PLS models created from the selected 
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performance to PLS models created with the full spectrum. Likewise, their 

calibration and prediction errors do not worsen and both indices remain the same 

range in mango samples. 

 

4. CONCLUSIONS 

The internal quality of intact mango ‘Osteen’ fruit has been assessed using 

external visible and near-infrared reflection spectroscopy. In order to assess the 

internal quality of the fruit, two indices have been used, the ripening index (RPI) 

and the internal quality index (IQI). Different spectroscopy systems were used to 

measure different spectral ranges (VIS, VIS-NIR and NIR) externally in 

reflectance mode. The partial least squares regression analysis showed a strong 

performance in predicting RPI and IQI for the VIS, VIS-NIR and NIR detectors 

using the full spectral range and the most important wavelengths. However, 

accuracy may be compromised when the measuring is being implemented on 

samples with different external geometry by two spectroscopy systems that are 

structured differently in terms of their optical-electronics configuration within the 

spectrometer or in their interfacing with the sample. Nevertheless, the results 

obtained from this study clearly reveal that external visible and near-infrared 

spectroscopy combined with chemometrics can be used for the non-destructive 

prediction of the internal quality of mango ‘Osteen’. This technological 

development could even be integrated in continuous fruit packing lines as part of 

the quality assurance system. 
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ABSTRACT 

 

The objective of the study was to evaluate the use of a robot gripper in the 

assessment of mango (cv. ‘Osteen’) firmness as well as to establish relationships 

between the non-destructive robot gripper measurements with embedded 

accelerometers in the fingers and the ripeness of mango fruit. Intact mango fruit 

was handled and manipulated by the robot gripper and the major physicochemical 

properties related with their ripening index were analyzed. Partial least square 

regression models (PLS) were developed to explain these properties according to 

the variables extracted from the accelerometer signals. Correlation coefficients of 

0.925, 0.892, 0.893 and 0.937 with a root-mean-square error of prediction of 2.524 

N/mm, 1.579 ºBrix, 3.187 and 0.517, were obtained for the prediction of fruit 

mechanical firmness, total soluble solids, flesh luminosity and ripening index, 

respectively. This research showed that it is possible to assess mango firmness and 

ripeness during handling with a robot gripper.  

 

Keywords: robot gripper, non-destructive, firmness, ripening index, mango 
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1. INTRODUCTION 

Mango (Mangifera indica L.) is a tropical fruit with high added-value and 

among the most widely cultivated and consumed fruit in tropical regions. It is the 

fifth fruit in global consumption and third among tropical fruits, immediately 

behind banana and pineapple. It has been cultivated in India for more than 4000 

years, but the increasing demand has stimulated production of mango and 

nowadays is being grown in more than 80 countries. The major producers of 

mango in terms of volume are India, China and Thailand (FAOSTAT, 2014). In 

Spain, cultivation of mango is centered in two regions, Andalucía and the Islas 

Canarias. Due to its good climatic adaptation, the absence of pests and the 

increment in inside market, Málaga region (Andalucía) has shown a significant 

increase during last years. Therefore, all future predictions point to an increase in 

the expansion of the mango market, thus extending their growing areas, 

productions and markets. 

Mangoes are climacteric fruits, and their ripening process takes place rapidly 

during post-harvest time after being picked. During the ripening process, several 

physiological and biochemical pathways are activated simultaneously bringing 

changes in the fruit (Bouzayen et al., 2010), which are initiated by autocatalytic 

production of ethylene and increase in respiration. The changes observed generally 

include textural softening (Yashoda et al., 2007; Jha et al., 2010), changes in color 

due to the disappearance of chlorophyll and appearance of other pigments as 

carotenoids (Gouado et al., 2007; Zaharah et al., 2012; Rungpichayapichet et al., 

2015), loss of organics acids, increase of soluble solid content, decrease of 

tritatable acidity and in general changes in taste, aroma and flavor (Singh et al., 

2013). Accurate determination of fruit ripening stage is important to determine the 

packing procedure in the postharvest handling (Hahn, 2004) and to provide a 

consistent supply of good quality fruit (Saranwong et al., 2004). The measurement 

of total soluble solids, starch content, acidity, or firmness, are used as maturity 

index, but not always these parameters are correlated with optimal fruit quality. 

Among these parameters, firmness has been considered a reliable indicator of 

mango maturity at harvest and ripeness stages during commercial mango handling, 

as well as an important tool for growers, importers, retailers and consumers (Padda 

et al., 2011). Firmness can be measured manually by a trained person with a hand 
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held penetrometer but this technique shows many disadvantages in terms of poor 

repeatability, subjectivity and is limited at certain stages of maturity (Peacock et 

al., 1986). The use of automated penetrometers is another alternative to measure 

the firmness of mango fruit but shows the disadvantage that is a destructive method 

which can be applied only to one sample of a fruit batch. The development of a 

reliable non-destructive method to assess the mango ripeness at the packing site is 

critical to the success of the mango industry.  

Mango fruit primary packaging operations are usually done by hand. Human 

manipulation is able of handling mangoes with care at high speed and, at the same 

time, sorting the mangoes by certain quality attributes. This manual operation 

could spread foodborne diseases and operators can suffer musculoskeletal disorders 

for repetitive movements. In the automation of primary packaging lines in food 

industry, robotics has clear opportunities (Wilson, 2010). To achieve the objective, 

robot grippers need to improve their ability for handling irregular and sensitive 

products like mango fruit, and incorporate tactile sensing. Different solutions 

regarding the development of robot grippers for handling fruits and vegetables 

have been proposed by Blanes et al., 2011. In this study, gripper finger should be 

adapted to the product for achieving an adequate manipulation by means of the 

actuation on the gripper mechanisms (Meijneke et al., 2011). Some developments 

related to the use of this technology can be found in industrial applications 

(Lacquey, www.lacquey.nl). Jamming grippers have a tremendous potential in 

robotics (Jaeger et al., 2014). By using the jamming of granular material it is 

possible to adapt product shapes and, at the same time, manipulate irregular 

products (Brown et al., 2010). Despite of the developments made in the tactile 

sensors for robotic applications, the entry in the industrial automation is extremely 

low especially due to the lack of reliable and simple solutions (Girao et al., 2013). 

Some developments can be found for vegetable grading using tactile sensing in 

robot grippers. Naghdy and Esmaili, 1996 use the measurement of the current of 

the gripper actuator. Bandyopadhyaya et al., 2014 employ piezo resistive force 

sensors, and Blanes et al., 2015 use accelerometers attached to the gripper fingers. 

The aim of this paper was to evaluate the use of a robot gripper in the 

assessment of firmness of mango fruit, cv. ‘Osteen’ and to establish relationships 

between the non-destructive robot gripper measurements with embedded 
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accelerometers in the fingers and the mechanical properties, internal quality 

(soluble solids, pH and tritatable acidity), flesh color and the ripening index of 

mango fruit.  

 

2. MATERIALS AND METHODS 

2.1. Experimental procedure 

A batch of 350 mangoes (Mangifera indica L., cv. ‘Osteen’) manually 

harvested in Malaga (Spain) were selected showing uniform size and color and free 

of external blemishes or infections.  

All mangoes were washed with a soap solution prepared with two drops of 

dishwasher with water and dried with disposable paper to completely remove water 

from the surface. Mangoes were individually numbered and randomly divided into 

7 sets of fifty mangoes (A, B, C, D, E, F and G). All sets were stored during one 

day in a cold chamber (11.9 ± 0.4 ºC and 84.3 ± 1.7% RH) until gripper tests 

started. Thus, fruits of set A were analyzed one day after reception and the 

remaining groups were placed in the storage chamber at 18.0 ± 2.1 ºC and 67.6 ± 

3.3% RH. Every 2-3 days, the next set was removed from the storage chamber and 

fruits were analyzed. From each set, all the mangoes were handled by the robotic 

gripper. Twenty fruits were used to evaluate the mechanical properties, the internal 

composition (ºBrix, pH and titratable acidity) and the flesh color. The other thirty 

fruits were used to evaluate the damage caused by the robotic gripper. These fruits 

were maintained in the storage chamber during two weeks after handling in order 

to detect fruit bruises. 

 

2.2. Robotic gripper 

Based on the experiences and results of previous tests (Blanes et al., 2014), a 

specific robot gripper was designed and manufactured for the handling and the 

assessment of mangoes (figure 1). The gripper has parallel action and is actuated 

by one pneumatic cylinder. It has three fingers (A, B and C) and one suction cup 

located between the fingers B and C. To ensure the manipulation of mango fruits 

without damaging, the fingers of the robotic gripper adapt to the irregular shapes of 

the mangoes. The adaptability of the fingers B and C was achieved by means of 

their three free rotations while the adaptability of finger A is based on the use of 
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jamming transition of its internal granular fluid. The pad of finger A is a latex 

membrane filled with sesame seeds. This pad is soft when its internal pressure is 

atmospheric or slightly positive because the sesame seeds are loose and the friction 

forces between them are low. On the other hand, the pad is hard when its internal 

pressure is negative and the sesame seeds are in contact and for hence there are 

friction forces between them. Every finger has at its rear side an analog 

accelerometer ADXL278 connected to a data acquisition USB NI-6210 device. The 

gripper is attached to an ABB IRB 340 FlexPicker robot. The gripper open-close 

operation is controlled by an electro-valve, the suction cup by a vacuum generator 

electrically piloted and the state soft or hard of the pad of finger A with another 

vacuum generator electrically piloted with blow action function. A robot program 

controls the gripper movements and all its devices for the good performance of the 

gripper.  

 

 

Figure 1. Robot gripper model denomination, the black arrows are the degrees of 

freedom of fingers B and C 

 

2.3. Physicochemical analysis 

In order to assess the firmness and ripeness of mango fruits, mechanical 

properties, internal composition, and flesh color of mangoes were analyzed. All of 

these analyzes were performed immediately after robotic gripper measurements. A 

total of 140 samples were evaluated (20 fruits per set). 

A

B

C

Suction cup

Pneumatic

cylinder
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The mechanical properties were analyzed through a puncture test by using a 

universal test machine (TextureAnalyser-XT2, Stable MicroSystems (SMS) 

Haslemere, England). The test was performed with a punch of 6mm diameter 

(P/15ANAMEsignature) to a relative deformation of 30%, at a speed of 1 mm/s by 

triplicate. Sample dimensions were measured with calipers before the analysis and 

force-true stress data were estimated from the force-distance data (Dobraszczyk & 

Vincent, 1999). Different parameters were analyzed for all samples. The fracture 

strength (FS) expressed by the maximum force applied to break up the sample (N), 

the fruit deformation (DF) expressed by the deformation until the fracture point 

(mm) and the fruit mechanical firmness (FF) expressed by the slope of the force-

true stress curve until the fracture point (N/mm). 

The internal composition was analyzed through the total soluble solids 

(TSS), pH and the titratable acidity (TA) of the samples. TSS content was 

determined by refractometry (ºBrix) with a digital refractometer (set RFM330+, 

VWR International Eurolab S.L Barcelona, Spain) at 20°C and with a sensitivity of 

±0.1 ºBrix. The analysis of TA were performed with an automatic titrator 

(CRISON, pH-burette 24, Barcelona, Spain) with 0.5N NaOH until a pH of 8.1 

(UNE34211:1981) using 15g of crushed mango and diluting it in 60 mL of distilled 

water. The pH and TA was determined based on the percentage of citric acid that it 

was calculated using the equation 1. 

 

TA [g citric acid/100g of the sample]=((A×B×C/D)×100))/E  (1) 

 

where A is the volume of NaOH consumed in the titration (in L), B is the 

normality of NaOH (0.5N), C is the molecular weight of citric acid (192,1g/mol), D 

is the weight of the sample (15g) and E is the valence of citric acid (3). 

 

The flesh color was measured using a MINOLTACM-700d 

spectrocolorimeter (Minolta CO. Tokyo, Japan). The reflectance spectra between 

400-700 nm were measured in different points of the flesh and the color 

coordinates L*, a* and b* for D65 illuminant and 10° observer in the CIELab 

space were obtained. Hue (ℎ∗) and chroma (𝐶∗) were estimated by the equations 2 

and 3, respectively.  
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ℎ∗ = 𝑎𝑟𝑐𝑡𝑔
𝑏∗

𝑎∗     (2) 

 

𝐶∗ = √𝑎∗2
+ 𝑏∗2

     (3) 

 

𝑎∗ and 𝑏∗ being the CIELab attributes. 

 

A ripening index (RPI) was calculated, as described Vélez-Rivera et al., 

2014, by equation 4.  

 

𝑅𝑃𝐼 = ln(100 · 𝐹𝑆 · 𝑇𝐴 · 𝑇𝑆𝑆−1)  (4) 

 

where 𝐹𝑆 is fracture strength (Newton), 𝑇𝐴 is titratable acidity (g citric acid 

equivalent/100 g sample), and 𝑇𝑆𝑆 is total soluble solids (ºBrix). 

 

2.4. Robot operation 

Previously to the physicochemical analysis, mangoes were placed manually 

over a cradle where the gripper picks them up. Robot moves down till locate the 

gripper center tool in the mango position. During 0.03 seconds the finger A pad is 

blown to ensure a soft behavior before the mangoes are grasped. Then the gripper 

starts to close their fingers. The pad of the finger A is soft and can adapt to the 

mango shape during the first contact between the mango and the pad. During this 

first contact the fingers B and C rotate till find the parallel orientation to the shape 

of the mango and for hence their accelerometers are then oriented perpendicular to 

the mango surface. After a stabilization period of time, a negative pressure changes 

the pad state from soft to hard and the vacuum of the suction cup starts. The hard 

state was used during robot displacements and impacts for sensing the mangoes. 

Robot moves up the gripper and mango fruit and starts a cycle loop of five quick 

opening and closing impacts while the mango was maintained attached to B and C 

fingers due to the action of the suction cup. During the first impact the pad changed 

again from soft to hard, soft when was open and hard after the closing action when 

the pad was in contact with the mango fruit. Mangoes were grasped from a cradle 

and the fingers adapt their orientations and shapes while mangoes are contacting 

the cradle. When the gripper is in the up position and mango is not contacting the 
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cradle some relative motion between mango and fingers B and C can occur. This 

process ensures that finger surfaces were hard and parallel to the surface of the 

mango. During this cycle loop deceleration signals are collected and recorded in a 

computer.  

Figure 2 shows the flow chart of the operational process of robot gripper and 

its control. 

 

 

Figure 2. Flow chart of the operational process of robot gripper and its control. 

 

2.5. Robotic gripper damage 

A total of 210 samples (7 sets, from A to G, of 30 mangoes fruits) were 

analyzed in order to evaluate possible damages onto the mango caused by the 

robotic gripper during handling. The samples were visually evaluated every day 
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during the two weeks storage period using a lighter magnifying glass. After two 

week storage period, the inner part of each fruit was also evaluated.  

 

2.6. Processing and data analysis 

2.6.1. Robot gripper data analysis 

A data acquisition module USB NI-6210 collected the signals of the 

accelerometers ADXL278 that were attached to every finger of the robot gripper. 

Signals were sampled at 30 KHz, filtered with a low cut-pass at 1500 Hz and, 

recorded during 8 Kbs for every finger A, B and C. A LabVIEW program 

processed every signal to obtain 12 parameters. Signals were cut for analyzing only 

the period of time where fingers were impacting against the mango (Figure 3).  

These signals were used with the equation 5 to extract the independent 

values VA, VB and VC. Those parameters were extracted from a fixed period of 

time in which the fingers hit against the mango. Max A, Max B and Max C are the 

maximum decelerations for each finger during the contact with the mango.  

 

𝑉𝐴 = ∫ 𝐴2𝑑𝑡 ;
𝑡1

𝑡0
         𝑉𝐵 = ∫ 𝐵2𝑑𝑡 ;

𝑡1

𝑡0
         𝑉𝐶 = ∫ 𝐶2𝑑𝑡

𝑡1

𝑡0
 (5) 

 

The deceleration severity that happens after the first contact between the 

finger and the fruit was calculated using the smoothed signals, as the slope of the 

line from the first contact till the maximum value. In the figure 3 the deceleration 

signal of the Finger A, in this case and mostly, had two peaks because the finger A 

rebounded during the impact. This peak created interferences for calculating this 

slope. To avoid several peaks signals were smoothed and processed to get the slope 

of every finger. With the derivative function of the signals smoothed is possible to 

obtained the maximum values of the line slopes; MaxSlp A, MaxSlp B and MaxSlp 

C, and the slope average; AvgSlp A, AvgSlp B and AvgSlp C. 
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Figure 3. An example of the decelerations of the gripper fingers A, B and C during 

the contact of the finger against the mango. 

 

2.6.2. Physicochemical data analysis 

Ten physicochemical parameters were analyzed (fracture strength, fruit 

deformation, fruit mechanical firmness, total soluble solids, pH, tritatable acidity, 

flesh luminosity, flesh hue, flesh chroma and the ripening index).  

Analysis of variance (ANOVA) was conducted to determine significant 

differences in the physicochemical and robot gripper parameters using the software 

Statgraphics Plus for Windows 5.1 (Manugistics Corp., Rockville, Md.). Fisher´s 

least significant difference (LSD) procedure was used at the 95% confidence level. 

 

2.6.3. Multivariate data analysis 

The extracted parameters provided by the robot gripper (VA, VB, VC, Max 

A, Max B, Max C, MaxSlp A, MaxSlp B, MaxSlp C, AvgSlp A, AvgSlp B and 

AvgSlp C) and the data obtained from the physicochemical analysis (FF, DF, FS, 

TSS, pH, TA, L*, C*, H* and RPI) were then arranged in a matrix where the rows 

represent the number of samples (#N = 140 samples) and the columns represent the 

number of variables (#V = 22 variables). The X-variables or predictors were the 12 

variables provided by the robot gripper and the Y-variables or responses were the 

10 variables provided by the physicochemical analysis. The data set was separated 

randomly into two groups, one group (105 samples) was used as calibration set and 
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the other group composed by the remaining samples (35 mangoes) was used to 

prediction set.  

Partial least squares regression (PLS) was applied to the matrix for 

constructing separate calibration models for each physicochemical property. PLS 

technique is particularly useful when it is necessary to predict a set of response 

variables from a set of predictor variables (Abdi, 2010). In PLS, prediction is 

achieved by transferring the inter-correlated variables to a set of independent 

factors called latent variables (LVs) which describe the maximum covariance 

between the robot gripper information and the response variable (i.e. fruit 

mechanical firmness, total soluble solids, flesh luminosity or ripening index in our 

case). The LVs of each PLS model are uncorrelated and carry all relevant 

information to realize more stable predictions. The number of LVs used in each 

model was determined at the minimum value of predicted residual error sum of 

squares (PRESS) (Esquerre et al., 2009; Talens et al., 2013). When the number of 

latent factors in the model increased, the value of PRESS decreased until its lowest 

value corresponding to the ideal number of latent factors. The calibration models 

were strictly built using the calibration dataset and optimized by internal cross-

validation (leave-one-out). The performances of the developed calibration models 

were further validated to predict the physicochemical parameters in an independent 

testing set (prediction dataset).  

Before the PLS analysis, the predictors were transformed to make their 

distributions be fairly symmetrical in order to giving each variable the same prior 

importance in the analysis. Each variable was centered by subtracting their 

averages and scaled to unit variance by dividing them by their standard deviation. 

The centering ensures that all results will be interpretable in terms of variation 

around the mean and the scaling gives all X-variables the same chance to influence 

the estimation of the physicochemical property. 

Performance of the models was evaluated using the standard error of 

calibration (SEC), the standard error of cross-validation (SECV), the root-mean-

square error of calibration (RMSEC), the root-mean square error of cross-

validation (RMSECV) and the correlation coefficient (r). 

The software used for the multivariate analysis was The Unscrambler v9.7 

(CAMO Software AS, OSLO, Norway). 
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3. RESULTS AND DISCUSSION 

3.1. Physicochemical analysis 

The physicochemical characteristics (mechanical properties, total soluble 

solids, pH, tritatable acidity and flesh color) of mangoes during the storage period 

are presented in Table 1. As expected, during the ripening process a textural 

alteration (loss of fracture strength and fruit mechanical firmness and increase of 

fruit deformation) of mango samples was observed. The fracture strength and the 

slope of the linear range until the fracture point decreased whereas the deformation 

in the fracture point increased during the storage period. These changes may be due 

to an increase in the enzymatic activity on the fruit that provokes changes in the 

structural integrity of the cell wall and middle lamella as was described previously 

by Yashoda et al., 2007. During fruit softening, cell walls were modified by 

solubilisation, de-esterification, and de-polymerization, accompanied by an 

extensive loss of neutral sugars and galacturonic acid (Singh et al., 2013). Other 

internal compositional changes were observed during the storage time. Total 

soluble solids and pH increase, whereas tritatable acidity decreases (table 1). 

Generally, soluble solid content in mango range from 7.0 to 17.4 ºBrix, depending 

on the variety, the production place and maturity stage (Lucena et al., 2007). For 

‘Osteen’ variety the mature stage where the fruit attains the stage of maximum 

consumer acceptability is reached when the mangoes has around 14-15 ºBrix 

(Vilela et al., 2013). The mango fruit tested in the present experiment range from 

5.85 to 19.50 ºBrix. According to these values, A set samples are unripe mangoes, 

G set samples are over-ripe samples, whereas B, C, D, E and F set samples are 

intermediate-ripe mangoes. 

The pH and the tritatable acidity of the mango tested in the present 

experiment range from 3.35 to 6.62 and from 0.97 to 0.07, respectively. Similar 

values were observed by Yashoda et al., 2007 working with Alphonso variety. The 

increase in pH and the decrease in the tritatable acidity during the ripening process 

can be explained by the cell metabolization of volatile organic acids and non-

volatile constituents. 

Regarding color measurements, a clear tendency was observed in the 

changes of flesh color of the mangoes during the ripening process. Among the 
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three elements of flesh color evaluated: luminosity, hue and chroma; the luminosity 

seems to be the best parameter to assess the maturity of mangoes.  

 

Table 1. Physicochemical characteristics of Mangoes during the storage period. 
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In general, the physicochemical analysis showed that the best parameters to 

assess the maturity of ‘Osteen’ mangoes are the firmness, the soluble solid content 

and the flesh color. These results agree with the studies done by Padda et al., 2011 

where described that the best tools to assess changes in mangoes during ripening 

process are the penetrometer, followed by flesh color and total soluble solids 

content. In fact, these parameters are used in the mango packing-lines to assess 

ripeness stage (Brecht, 2010). 

 

3.2. Robot gripper analysis 

The robot gripper was capable of grasping 100% of the mangoes from sets A 

to F without any damage. In the case of the extremely over-ripe mangoes from the 

set G, 10% of the fruits were severely damaged during the robot handling. 

Table 2 shows the range (minimum and maximum values), mean and 

standard deviation of the extracted parameters provided by the robot gripper 

analysis. All parameters were measured along the X axis because no clear 

correlation was found between the sample hardness and acceleration measured 

along the Y axis. The same effect was previously observed by Blanes et al., 2015 

working with eggplants.  

 

Table 2.Range, mean and standard deviation of the 12 extracted parameters 

provided by the robot gripper analysis for the mangoes studied. 

 

 

 

Parameters Minimum value Maximum value Mean Sdev 

VA (m2/s2) 95.76 260.27 173.09 30.52 

VB (m2/s2) 14.45 45.49 27.69 6.79 

VC (m2/s2) 10.97 87.61 45.10 11.55 

Max A (m/s2) 205.36 441.58 330.73 41.34 

Max B (m/s2) 74.19 198.41 132.37 26.82 

Max C (m/s2) 64.76 236.35 154.72 29.18 

MaxSlp A 2.12 6.98 4.71 1.03 

MaxSlp B 1.00 3.38 2.22 0.45 

MaxSlp C -0.24 3.86 2.50 0.76 

AvgSlop A 1.15 2.98 2.34 0.31 

AvgSlop B 0.30 1.14 0.79 0.17 

AvgSlop C 0.42 2.27 1.16 0.28 
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During the robot gripper analysis it was observed that gripper fingers 

suffered the most violent deceleration when the ripening stage of mango was low 

whereas deceleration decreased when the ripening stage of mango was high. The 

best parameters that showed this behavior were Max A, Max B, Max C and 

MaxSlp A, MaxSlp B, MaxSlp C. Figure 4 shows median plots with 95% 

confidence intervals of average of maximum deceleration parameters during the 

contact between fingers and fruits (figure 4a), and average of deceleration severity 

parameters after this contact (figure 4b) during the storage period of samples where 

clearly this behavior was observed. 

 

 

Figure 4. Median plots with 95% confidence intervals of average of maximum 

deceleration parameters (a) and average of deceleration severity parameters (b) 

during the storage period of samples. 
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3.3. Correlation between robot gripper measurements and mango 

physicochemical characteristics 

In order to see if the robot gripper can assess the mango firmness and 

ripeness partial least square regression models (PLS) were developed to explain the 

physicochemical characteristics according to the variables extracted from the 

accelerometer signals. The mango samples (#N = 140) were separated randomly 

into a calibration set (105 samples) and a validation set (35 mangoes). The critical 

step for an accurate PLS calibration model is to select the correct number of LVs 

needed to obtain the best prediction. If fewer latent variables are selected, the 

model will easily result in under-fitting, while the selection of many latent 

variables will cause over-fitting. The ideal number of latent factors for predicting 

fruit mechanical firmness, soluble solid content and flesh luminosity identified 

from PRESS plot shown in figure 5a was 4, 3 and 3, respectively. At these latent 

factors, the PRESS had the lowest value and the models had a good predictive 

power. The performance of the calibration models for each constituent was 

optimized by internal cross-validation and then validated by external validation in 

an independent validation set. 

Table 3 shows the standard error of calibration (SEC), the standard error of 

cross-validation (SECV), the standard error of prediction (SEP), the root-mean-

square error of calibration (RMSEC), the root-mean-square error of cross-

validation (RMSECV), the root-mean-square error of prediction (RMSEP), the 

correlation coefficient (r), and the numbers of the latent variables required (#LVs) 

for fruit mechanical firmness (slope of the linear range until the fracture point), 

soluble solid content, and flesh luminosity for the calibration and prediction sets. 

The results indicated that the PLS calibration models for these parameters 

exhibited low values of SEC, SECV, RMSEC and RMSECV, and high values of r, 

indicating good performance of the models. 

When the models were used to predict the new 35 samples of mango, 

predictions were also high. The best results were obtained for the mango fruit 

mechanical firmness. The correlation coefficient between robot gripper values and 

the slope of the linear range until the fracture point was 0.925, with a standard error 

of prediction of 2.524 N/mm, root-mean-square error of prediction of 2.517 and a 
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BIAS of -0.380 N/mm. This result indicates that there are good relationships 

between robot gripper measurements and mango firmness.  

In the case of total soluble solids, the correlation coefficient between robot 

gripper values and TSS was 0.892, with a standard error of prediction of 1.579 

ºBrix, the root-mean-square error of prediction of 1.574 ºBrix and the systematic 

difference between predicted and measured values (BIAS) of -0.228 ºBrix. For 

flesh luminosity, the correlation coefficient between robot gripper values and flesh 

luminosity was 0.893, with a standard error of prediction of 3.187, root-mean-

square error of prediction of 3.166 and a BIAS of 0.396. 

The scatter plots of figure 5 shows the efficiency of the PLS models for 

predicting fruit mechanical firmness (figure 5b), soluble solid content (figure 5c) 

and flesh luminosity (figure 5d). In all figures, the ordinate and abscissa axes 

represent the predicted and measured fitted values of the appropriate parameters, 

respectively. The correlation between the measured and predicted values for each 

parameter showed a good prediction performance. 

 

Figure 5. Prediction of fruit mechanical firmness, soluble solids and flesh 

luminosity using the PLS models. (a) PRESS plot for identifying the optimum 

number of LVs. Predicted vs measured values of (b) fruit mechanical firmness, (c) 

soluble solids, and (d) flesh luminosity. 
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Table 3. Results of the PLS models for the prediction of soluble solid content, fruit 

mechanical firmness and flesh luminosity in mango samples. 
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The most essential physical and chemical properties of mangoes linked with 

the sensory perception of the ripeness of the fruits can be described by the ripening 

index (RPI). This RPI combined the values of fracture strength, titratable acidity 

and total soluble solids. Table 4 shows the results of the PLS models for the 

prediction of fracture strength, titratable acidity, total soluble solids and RPI. The 

RPI model showed the best prediction coefficient and the best performance of the 

models. This result indicate that the non-destructive information obtained from the 

robot gripper could be used to predict the combination of parameters related to the 

ripeness stage and the RPI index more accurately than any of the parameters 

individually. Figure 6a shows the median plot with 95% confidence intervals of the 

RPI during the storage of the samples. Similarly, to the results observed by Vélez-

Rivera et al., 2014 working with ‘Manila’ mango the RPI values decrease during 

the storage. Three ripeness phases were identified based on the RPI parameter: 

unripe mangoes (A set samples), intermediate-ripe mangoes (B, C, D, E and F set 

samples) and over-ripe mangoes (G set samples). A PLS calibration model was 

developed to explain the RPI according to the variables extracted from the robot 

gripper. The correlation of calibration between the variables extracted from the 

accelerometer signals and the RPI was 0.887, with SEC and RMSEC of 0.617 and 

0.614 respectively. When the model was used to predict the new mango samples, it 

showed a better correlation coefficient (r = 0.937), with a standard error of 

prediction of 0.517, root-mean-square error of prediction of 0.518 and a BIAS of -

0.089. Figure 6b shows the good prediction performance of the PLS model for RPI.  

 

 

Figure 6. (a) Evolution of the ripening index during the storage period of the 

samples and (b) predicted vs measured values of RPI. 
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Table 4. Results of the PLS models for the prediction of fracture strength, titratable 

acidity, total soluble solids and RPI in mango samples. 
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4. CONCLUSIONS 

The physicochemical analysis showed that the best parameters to assess the 

ripeness of cv. ‘Osteen’ mangoes are fruit mechanical firmness, soluble solid 

content, and flesh luminosity. These variables are the parameters used in the mango 

packaging -lines to assess fruit ripeness and to take decisions according to their 

values. The prediction models, developed by partial least square regression, have 

the potential to estimate the described parameters and also the ripening index of the 

samples based on the information obtained from the robot gripper accelerometers. 

This research showed that it is possible to assess the firmness and ripeness of 

mango fruits using a non-destructive technique during robot handling operation 

with a robot gripper.  
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ABSTRACT 

 

Development of non-destructive tools for determining mango ripeness would 

improve the quality of industrial production postharvest processes This study 

addresses the creation of a new sensor that combines the capability of obtaining 

mechanical and optical properties of the fruit simultaneously. It has been integrated 

in a robot gripper that can handle the fruit obtaining non-destructive measurements 

of firmness, incorporating two spectrometer probes to simultaneously obtain 

reflectance properties of the visible and near infrared and two accelerometers 

attached to the rear side of two fingers. Partial least square regression was applied 

to different combinations of the spectra data obtained from the different sensors to 

determine the combination that provides the best results. Best prediction of 

ripening index was achieved using both spectral measurements and two finger 

accelerometers signals, with R2
p = 0.832 and RMSEP of 0.520. These results 

demonstrate that simultaneous measurement and analysis of the data fusion set 

improves the robot gripper features, allowing assessment the quality of the 

mangoes during pick and place operations.  

 

Keywords: spectrometry, chemometrics, non-destructive sensor, tactile sensor, 

accelerometer 
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1. INTRODUCTION 

Mango (Mangifera indica L.) is a tropical fruit marketed throughout the 

world with a very high economic importance (Calatrava, 2014; Luke, 2013) and is 

generally harvested a little before the fully mature stage to avoid the onset of 

climacteric respiration during transportation to distant markets (Jha et al., 2007). 

Therefore, mango requires a ripening period before it achieves the taste and texture 

desired at the time of consumption (Cortés et al., 2016). The ripening process, and 

hence the organoleptic quality, is regulated by genetic and biochemical events that 

result in biochemical changes such as the biosynthesis of carotenoids (Mercadante 

& Rodriguez-Amaya, 1998), loss of ascorbic acid (Hernández et al., 2006), 

increase in total soluble solids (Padda et al., 2011); physical changes in mass, size, 

shape, firmness and colour etc. (Kienzle et al., 2011; Ornelas-Paz et al., 2008), and 

changes in aroma, nutritional content and flavour of the fruit (Giovannoni, 2004). 

The evaluation of these changes plays an important role for determining the 

ripening level at harvest, which will decide the market (i.e. domestic, exportation) 

and/or price of the product. Traditional determination of these changes has required 

a destructive methodology using specialised equipment, procedures and trained 

personnel, which results in high analysis costs (Torres et al., 2013). In addition, 

destructive methods allow only a small set of samples to be analysed to represent 

the variability of the whole production, though the ideal situation could be only 

achieved if all fruits are inspected in automated lines (Kondo, 2010). Traditionally, 

electronic sorters based on computer vision, used in postharvest to inspect the 

quality of the fruit, work at a very high speed, analysing the surface of the fruits but 

not providing any internal inspection. The most advanced and innovative sorters 

can incorporate NIR technology for testing the internal properties of produce e.g. 

Vélez-Rivera et al. (2014a) and Vélez-Rivera et al. (2014b) developed computer 

vision techniques to determine damages and ripeness of mango ‘Manila’ through 

colour measurements. However light is projected on to the fruit from a fixed 

distance and the reflected or transmitted light is also measured at a certain fixed 

distance from the fruit. As the fruits have different sizes and shapes, the 

measurements can be strongly influenced by these features. 

Robots have enormous potential to automate production in the food sector 

(Blasco et al., 2003; Wilson, 2010). Their main current function is to transport and 
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manipulate objects but they have clear difficulties when handling soft and variable 

products (Bogue, 2009). Advances in new robot grippers are allowing their 

introduction in industrial and manufacturing systems for monitoring and 

controlling production (Tai et al., 2016). Automation with robots, in primary 

packaging operations, makes possible to incorporate different sensors that can be 

used to assess fruits quality. Tactile sensors added to gripper fingers provide the 

capability to evaluate a product through physical contact (Lee, 1999) and have 

been used for classifying aubergine (Blanes et al., 2015a) and to assess the 

firmness of mangoes cv. 'Osteen' (Blanes et al., 2015b) with a good prediction 

performance of the PLS model (R2
P = 0.760 and RMSEP = 17.989).  

Visible and near-infrared spectroscopy combined with multivariate analysis 

has been widely used for quantitative determination of several internal properties 

or compounds, to determine ripeness, and to measure quality indices in fruits in 

general and in mango in particular (Schmilovitch et al., 2000; Theanjumpol et al., 

2013; Jha et al., 2013; Cortés et al., 2016). Cortés et al. (2016) predicted, in a 

laboratory, the internal quality index for cv. ‘Osteen’ mangoes using visible and 

near-infrared spectrometry (VIS-NIR) obtaining good results with the full spectral 

range and some selected wavelengths (R2
P = 0.833 and R2

P = 0.815, respectively). 

Thus, incorporating the capability of performing spectral measurements to gripper 

fingers in combination with other sensors would multiply the possibilities of 

measuring internal fruit quality when the fruit is handled. However, this would 

require development of sensor fusion techniques to obtain the maximum value 

from the combined information of all the sensors, and avoid redundancy (Cimander 

et al., 2002). 

Furthermore, sensor fusion enables rapid and economical in-line 

implementation for fruit quality assessment (Ignat et al., 2015). Multiple sensors 

have been widely used in a variety of fields. Steintmetz et al., (1999) developed a 

robotic quality inspection system for apples that included a colour camera and NIR 

spectroscopy to predict sugar content using sensor fusion techniques. Since then, 

significant advances in the field of sensor fusion for food products have been 

developed, for example in computer vision and near-infrared spectroscopy to 

assess fish freshness (Huang et al., 2016), fusion of impedance e-tongue and 

optical spectroscopy to determine the botanical origin of honey (Ulloa et al., 2013), 
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sensor fusion of electronic nose and acoustic sensor to improve mango ripeness 

classification (Zakaria et al., 2012) and fusion of electronic nose, near-infrared 

spectrometer and standard bioreactor probes to monitor yoghurt fermentation 

(Cimander et al., 2002). Hitherto, examples of combination of visible and near-

infrared spectroscopy spectral data and tactile sensors in a robot gripper are non-

existent. Therefore, getting a sensor fusion system integrating tactile and spectral 

properties of the fruit would be a key advance for the post-harvest industry.  

Thus, the aim of this study is to develop a novel robotic gripper that 

incorporates accelerometers and fibre-optic probes coupled to a spectrometer to 

analyse the mango ripening state by simultaneously measuring firmness and visible 

and near-infrared reflectance when the fruit is handled in the packing house during 

postharvest operations. 

 

2. MATERIALS AND METHODS 

2.1. Experimental procedure 

A batch of 275 unripe mangoes (M. indica L., cv. ‘Tommy Atkins’) were 

selected with similar size and colour and free of external damage. During the 

experiments, fruits were ripened in a storage chamber at 20.0 ± 2.1 ºC and 67.6 ± 

3.3% RH and fruits were divided into sets of 45 fruits each (sets marked as M1, 

M2, M3, M4, M5 and M6). Every 2-3 days one set was analysed, starting with set 

M1, until the last set M6 reached senescence (18 days). All the mangoes in each set 

were handled by the robotic gripper to obtain non-destructive measurements and 

later their physicochemical properties (total soluble solids, titratable acidity and 

destructive firmness) were evaluated. Prior to the measurements, the temperature of 

the mangoes was stabilised at 24 ± 1 ºC.  

 

2.2. Reference analysis  

Routine methods were used to determine the quality attributes of the 

mangoes. Mango firmness was measured using a Universal Testing Machine 

(TextureAnalyser-XT2, Stable MicroSystems (SMS), Haslemere, England) through 

puncture tests using a 6 mm diameter cylindrical probe (P/15ANAMEsignature) 

until a relative deformation of 30% of fruit size, at a speed of 1 mm/s. Two 
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measurements were performed per fruit, on opposite sides of the equator. The 

fracture strength (Fmax, N) was also obtained for all samples.  

The total soluble solids (TSS) content was determined by refractometry (%) 

with a digital refractometer (set RFM330+, VWR International Eurolab S.L 

Barcelona, Spain) at 20 ºC with a sensitivity of ±0.1 ºBrix. Samples were analysed 

in triplicate. 

The analysis of the titratable acidity (TA) was performed with an automatic 

titrator (CRISON, pH-burette 24, Barcelona, Spain) with 0.5 N NaOH until a pH of 

8.1 (UNE34211:1981), using 15 g of crushed mango which was diluted in 60 mL 

of  distilled water. The TA was determined based on the percentage of citric acid 

that was calculated using equation 1. 

 

TA [g citric acid/100g of the sample]=((A×B×C/D)×100))/E  (1) 

 

where A is the volume of NaOH consumed in the titration (in L), B is the 

normality of NaOH (0.5 N), C is the molecular weight of citric acid (192.1g/mol), 

D is the weight of the sample (15 g) and E is the valence of citric acid (E = 3). 

A multi-parameter ripening index (RPI) was calculated using equation 2, 

described previously by Vásquez-Caicedo, et al. (2005) and Vélez-Rivera, et al. 

(2014b): 

 

𝑅𝑃𝐼 = ln(100 · 𝐹𝑚𝑎𝑥 · 𝑇𝐴 · 𝑇𝑆𝑆−1)  (2) 

 

where 𝐹𝑚𝑎𝑥  is the fracture strength (N), 𝑇𝑆𝑆 is the total soluble solids (g 

soluble solids per 100 g of sample) and 𝑇𝐴 is the titratable acidity (g citric acid 

equivalent per 100 g of sample).  

This index was then used as reference to test the measurements obtained by 

the robot gripper. 

 

2.3. Robot gripper 

A robot gripper has been specifically developed to handle quasi-spherical 

fruit and was programmed in these experiments to work with mango fruits. The 

gripper has four fingers: FA1, FA2, FB1 and FB2 (Figure 1). The design of the 
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gripper fingers and its mechanical configuration can adapt to a wide range of 

varied shapes during handling, and provides a good performance of the 

accelerometers as intrinsic tactile sensors (Blanes et al., 2016). The FA2, which has 

a hemispherical concave shape, is attached to the chassis of the gripper and linked 

by a ball joint. The FA1 is linked to a pneumatic cylinder (DSN 10-80P, Festo, 

Germany) with a float joint and has straight motion aligned with FA2. The FB1 and 

FB2 are linked to their respective pneumatic cylinders (CD85N10-50B, SMC, 

Japan) with two float joints and move on parallel paths. FA1, FB1 and FB2 have 

pads of a latex membrane filled with sesame seeds. Each pad is soft when its 

internal pressure is atmospheric or slightly higher and hard when its internal 

pressure is lower than atmospheric. The design of these fingers allows the gripper 

to adapt to every mango shape while it is grasped. The gripper was attached to a 

delta robot (IRB 340, Flexpicker, ABB, Switzerland).  

 

 

Figure 1. Robot gripper with the accelerometers (ACC1 and ACC2) and the VIS-

NIR spectrometer probes (P1 and P2). 

 

In addition, the gripper was equipped with two types of sensors, two 

accelerometers (ACC1 and ACC2) and two reflectance probes (P1 and P2). The 

signals captured by the sensors were recorded in a laptop by means of a data 

acquisition module (USB 6210, National Instruments, USA) in the case of 

accelerometers, and a multichannel VIS-NIR spectrometer platform (AVS-
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DESKTOP-USB2, Avantes BV, The Netherlands) for the reflectance probes 

(Figure 2). 

 

 

Figure 2. Diagram of the robot gripper, the sensors and the devices used to connect 

the sensors to the laptop. 

 

Accelerometers ACC1 and ACC2 were joined to the rear side of the FA1 and 

FA2 respectively. They are intrinsic tactile sensors because they are not in direct 

contact to every manipulated mango. P2 was attached to the FA2 through a hole 

made in this finger. It was able to collect data as soon as both FA1 and FA2 were 

closed. Once FA1 and FA2 grasp a mango, P1 approximates by means of the 

pneumatic cylinder action (C85E10-40, SMC, Japan). This probe was linked to the 

pneumatic cylinder rod by means of a ball joint. Ball joints allowed the probes to 

adapt to the shape of every different mango since they can rotate freely around 
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three rotation axes. Due to the mechanical configuration of the gripper, the sensors 

took measurements at different points over the surface of every mango (Figure 3). 

 

 

Figure 3. Non-destructive measurements in fruit by sensor fusion side view a) and 

b) (0: acquisition point of VIS-NIR spectrum with P1; 1: acquisition point of VIS-

NIR spectrum with P2 and the accelerometer ACC2; 2: acquisition point of the 

accelerometer ACC1. 

 

2.3.1. VIS-NIR reflectance signals 

Each reflectance probe, consisting of seven fibres with a diameter of 200 

mm, delivered light to the sample through a bundle of six fibres, and collected the 

reflected light through the seventh one. The probe tip was designed to provide 

reflectance measurements at an angle of 45º so as to avoid specular reflectance 

from the surface of the fruit. 

The spectra of mango samples were collected in reflectance mode using the 

multichannel spectrometer platform equipped with two detectors and a quartz beam 

splitter (BSC-DA, Avantes BV, The Netherlands). The first detector (AvaSpec-

ULS2048 StarLine, Avantes BV, The Netherlands) included a 2048-pixel charge-

coupled device (CCD) sensor (SONY ILX554, SONY Corp., Japan), 50 mm 

entrance slit and a 600 lines mm-1 diffraction grating covering the working visible 

and near-infrared (VNIR) range from 600 nm to 1100 nm with a spectral 

FWHM(full width at half maximum) resolution of 1.15nm. The spectral sampling 

interval was 0.255 nm. The second detector (AvaSpec-NIR256e1.7 NIRLine, 

Avantes BV, The Netherlands) was equipped with a 256 pixel non-cooled InGaAs 

(Indium Gallium Arsenide) sensor (Hamamatsu 92xx, Hamamatsu Photonics K.K., 

Japan), a 100 mm entrance slit and a 200 lines mm-1 diffraction grating covering 

01

a) b)
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the working NIR range from 900 nm to 1750 nm and a spectral FWHM resolution 

of 12 nm. The spectral sampling interval was 3.535 nm. Two Y shaped fibre-optic 

reflectance probes (P1 and P2) (FCR-7IR200-2-45-ME, Avantes BV, The 

Netherlands) were configured each with an illumination leg which connects the 

fibre-optic probe to stabilised 10Wtungsten halogen light sources (AvaLight-

HALS, Avantes BV, The Netherlands). The light sources ensure a permanent light 

intensity over the whole measurement range. The other leg of the Y-fibre-optic 

probe was connected to a beam combiner (BSC-DA, Avantes BV, The 

Netherlands) which converted the two light beams into one light beam. Only this 

light beam was transmitted through another Y-shaped fibre optic probe to both 

detectors for simultaneous measurement. 

The calibration was performed using a 99 % reflective white reference tile 

(WS-2, Avantes BV, The Netherlands) so that the maximum reflectance value over 

the range of wavelengths was around 90 % of saturation. The integration time was 

set to 240 ms for the VNIR detector and to 4200 ms for the NIR detector due the 

different features of both detectors. For both detectors, each spectrum was obtained 

as the average of five scans to reduce the thermal noise of the detector (Nicolaï et 

al., 2007). The average reflectance measurements of each sample (S) were then 

converted into relative reflectance values (R) with respect to the white reference 

using dark reflectance values (D) and the reflectance values of the white reference 

(W), as shown in equation 3: 

 

    𝑅 =
𝑆−𝐷

𝑊−𝐷
      (3) 

 

The dark spectrum was obtained by turning off the light source and 

completely covering the tip of the reflectance probe. 

 

2.3.2. Accelerometer signals 

The accelerometers used (ADXL278, Analog Devices, USA) have a 

measurement range of ±50 g. They are capable of sensing collisions and, motoring 

and control vibration. Only the deceleration signals of the axes normal to the 

fingers were collected. They were sampled during approximately 0.27 s at 30 kHz 

and low-pass filtered (Figure 4a), but only less than 0.1 s of signal was used for 
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analysing the tactile sensor responses. These signals were only processed between 

t0 (0.0366 s) and t1 (0.08 s) (Figure 4b) to capture the first contacts of the gripper 

fingers with every mango. Signals were rearranged using the maximum values as 

reference, for in this way maximum values will always be at 0.0125 s. Signals were 

also cut to collect 0.0315 s (Figure 4c) and were transformed by Fast Fourier 

Transform using LabVIEW 11.0 (National Instruments, USA), using the option 

measurement magnitude root main square with Hanning window, in order to obtain 

the frequency distribution of energy (Figure 4d). 

 

 

Figure 4. An example of the process done for processing deceleration signals as 

tactile sensors. (a) Original collected signals for decelerations of FA1 for mangoes 

with different ripeness state, (b) cut signal between t0 and t1 and (c) signals 

reordered around the maximum values and (d) the spectra of the signals. 

 

2.4. Robot gripper process and signal acquisition 

A robot program controls every grasping and sensing operation of the 

gripper. Three electrovalves (SY3120, SMC, Japan) were used, one for the motion 

of FA1, one the motion of FB1 and FB2 and the last for moving the P2. Two 
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adjustable flowmeter control valves (AS2201F-01-04S, SMC, Japan) were used to 

adjust the speed of FA1 and P2. A vacuum generator with blow function (VN-07-

H-T3-PQ2-VQ2-RO1-B, Festo, Germany) provides the possibility of controlling 

the hardness of FA1 by means of its internal valves 2 and 4. The data acquisition 

device used to collect the accelerometer signals starts to collect data when the robot 

sends the signal to close FA1.  

When the gripper is at the approach position to grasp a mango, valve 1 is 

activated for closing FA1. After 0.3 s, valve 2 is activated for 0.05 s to change the 

pad of FA1 to a softer state. During this time, valve 1 is deactivated to open FA1. 

Then, the signals of the valves 1 and 3 are activated to close FA1, FB1 and FB2 

during 0.3 s and the pad of FA1 changes to a harder state (valve 4 activated) and 

waits for 0.5 s. This process adapts the pad of FA1 to every mango shape. The P2 

starts to collect data. The robot moves the gripper up. The pad of the FA1 is in the 

hard state and starts an open/close loop (open during 0.05 s, close for 1 s). During 

this loop, the signals of ACC1 and ACC2 are collected. Then, valve 5 is activated, 

P1 approaches the mango surface and starts to collect data. The whole process is 

shown in Figure 5. 
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Figure 5. Diagram of the robot control operation the signals over gripper control 

devices, the gripper action and the collecting data of the sensors. 

 

2.5. Signal pre-processing and statistical analysis 

The raw spectra from the spectrometer were transformed to apparent 

absorbance (log(1/R)) values using The Unscrambler Version 10.2 software 

package (CAMO Software AS, Oslo, Norway) to obtain linear correlations of the 

NIR values with the concentration of the estimated constituents (Liu et al., 2009; 

Shao et al., 2007) and centred by subtracting their averages in order to ensure that 

all results will be interpretable in terms of variation around the mean. 

Figure 6 shows raw VNIR and NIR spectra and its correction after the 

application of the pre-processing methods. Savitzky-Golay smoothing (with 

segment size 15) was applied to improve the signal-to-noise ratio in order to reduce 

the effects caused by the physiological variability of samples (Beghi et al., 2017; 

Carr et al., 2005). Due to the fresh fruit light scattering (Santos et al., 2013), the 

light does not always travel the same distance into the sample before it is detected. 

Start collecting

data from

accelerometers

DAQ 

USB 

NI6210

Grippercontrol 

devices
Robot control

CloseFA1

CloseFA1, FB1 and 

FB2

Accelerometers

Open FA1

Pad FA1 hard

Digital I/O Pneumatic

connections
Communications

Gripperaction Collect and laptop

Open/closeFA1

Go to grasp possition

CloseFA1 + wait 0.3s 

Open FA1 + wait 0.05s

CloseFA1, FB1 y FB2

Wait0.3 + A1 hard + 

wait0.5

Moveup + wait0.3s

Loopopen/close3 times

Gripperto releaseplace

FA1 soft

Leave Mango

MoveP1 + wait 2s

ON valve 1

OFF valve 1

OFF valve 2

ON valves 1 y 3

ON/OFF valve 1

OFF valves

1, 3, 4 y 5

ON valve 2

ON valve 4

Pad FA1 soft

ON valve 5 MoveP1

Start collectingdata 

fromP2

Start collectingdata 

fromP1



CHAPTER VI 

231 

A longer light travelling path corresponds to a lower relative reflectance value, 

since more light is absorbed. This causes a parallel translation of the spectra. This 

kind of variation is not useful for the calibration models and needs to be eliminated 

by the EMSC technique (Bruun et al., 2007; He  et al., 2007; Martens et al., 2003). 

In addition to these pre-processing steps, the second derivate with Gap-Segment 

(2.3) gave the best results for the NIR spectra because it allowed the extraction of 

useful information (Rodriguez-Saona et al., 2001). The different pre-treatments 

were applied in the sequence explained, specifying that the first two pre-treatments 

(smoothing and EMSC) were only applied to the VNIR spectra and those two with 

the third (second derivate) applied to the NIR spectra (Cortés et al., 2016). Finally, 

the adjustment to the spectral intensities from each sensor ACC1, ACC2, P1 and P2 

was range-normalised so the data from all samples were directly comparable to 

each other (Andrés & Bona, 2005; Blanco et al., 2006).  

The different sensor signals were combined through a ‘low-level’ fusion 

procedure (Roussel et al., 2003a,b) by concatenating the pre-processed sensor 

signals e appending one to another e to create a single matrix with a total of 5516 

variables, which was processed using The Unscrambler. Data were organised in a 

matrix where the rows represent the number of samples (#N = 275 samples) and 

the columns represent the variables (X-variables and Y-variables). The X-

variables, or predictors, were the signals obtained by fusion of the data from the 

two fibre-optic probes of the spectrometer and the accelerometers. The Y-variable, 

or response, was the RPI of each sample. In order to correct the relative influences 

of the different instrumental responses on the model, a standardisation technique 

was used, where the weight of each X-variable was the standard deviation of the 

variable (Bouveresse et al., 1996). Then, fifteen regression models for each 

combination of the spectra data from the different sensors were developed by 

partial least squares (PLS) to predict RPI. Samples were randomly separated into 

two groups, and 75% of the samples were used to develop the model that was 

validated by cross validation, while the remaining samples (25%) were used as the 

prediction set. The root mean square error of calibration (RMSEC), root mean 

squared error of cross validation (RMSECV), the root mean square error of 

prediction (RMSEP), the coefficient of determination for calibration (RC
2), for 
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prediction (RP2) and for cross validation (RCV
2), and the required number of latent 

variables (LV) were used to judge the accuracy of the PLS model. 

 

 

Figure 6. Averaged raw spectra (left) and averaged final spectra obtained with the 

pre-treatment and transformed signals (right) of the each set for (a,c) the VNIR 

region; and (b,d) the NIR region. 

 

3. RESULTS AND DISCUSSION  

3.1. Changes in mango quality during ripening 

The changes observed in the physicochemical characteristics (Fmax, TSS and 

TA) of mangoes during postharvest storage are shown in Table 1.  

For all sets of mangoes there was a steady decrease in fruit firmness over time 

starting of around 137 N to fell to 28 N. These changes are due to significant 

changes in the composition and structure of cell walls and middle lamella due the 

solubilisation, de-esterification and de-polymerisation of the middle lamella (Singh 

et al., 2013), and the enzymatic activity (Prasanna et al., 2007; Yashoda et al., 

2007). A similar behaviour has been reported for other mango varieties such as 

‘Alphonso’ (Yashoda et al., 2005), ‘Ataulfo’ (Palafox-Carlos et al., 2012), ‘Keitt’ 

(Ibarra-Garza et al., 2015) or ‘Osteen’ (Cortés et al., 2016). Similarly, the TA tends 
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to decrease due to the cell metabolisation of volatile organic acids and non-volatile 

constituents (Padda et al., 2011) and in addition acids can be used as substrates for 

respiration when sugars have been consumed or participated in the synthesis of 

phenolic compounds, lipids and volatile aromas (Abu-Goukh et al., 2010). In 

contrast, the TSS increased continuously during postharvest storage due to the 

conversion of starch to glucose and fructose, which are used as substrates during 

fruit respiration (Eskin et al., 2013). Similar results have been observed by 

Quintana et al. (1984) who reported that TSS of mango increased gradually up to 

full ripeness.  

RPI was calculated for every day of storage. Figure 7 shows the evolution of the 

RPI through median plots with 95 % confidence intervals during the storage. It can 

be observed that the values of the index clearly decreased during ripening. Initially, 

the RPI decline sharply when the fruits ripen to achieve their optimum organoleptic 

properties, and then, fruit reach the stage of over ripeness where the curve follows 

a constant trend because the product reaches a maximum content of TSS and 

minimum firmness and TA. 

 

Table 1. Descriptive statistics for the quality parameters analysed in mango 

samples during the storage period. 

 

 



CHAPTER VI 

 

234 

 

Figure 7. Evolution of the RPI during storage period of the mango samples. 

 

3.2. Non-destructive prediction of mango ripening 

The data were concatenated (accelerometers and VIS-NIR spectra) 

(Decruyenaere et al., 2009; Roussel et al., 2003a,b) to form a representative 

complex spectrum with a total of 5516 variables. Table 2 shows the results of the 

validation and prediction results of the PLS models built for the data obtained by 

every single sensor and for the data fusion performed among all possible 

combination of spectra data.  

The best PLS model for prediction of RPI is presented in the Figure 8. 

Figure 9 shows the regression coefficients of the best developed model and the 

PRESS plot for identifying the optimum number of LVs. The results for this model 

were obtained using VIS-NIR fibre-optic probes and the two accelerometer signals. 

The calibration model for predicting RPI has an R2
C = 0.945 and RMSEC = 0.235, 

and the validation of the calibration model has an R2
CV = 0.804 and RMSECV = 

0.447. The prediction model indicates a good prediction performance, with R2
p = 

0.832 and RMSEP = 0.520.  
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Table 2. Comparison of the prediction of mango ripening provided by different 

possible combination of sensor fusion to the two fibre-optic probes of VIS-NIR 

spectrometer and two accelerometers located at the fingers of the robot gripper. 

 

 

 

  Calibration set  Prediction set 

Sensors #LV R2
C RMSEC R2

CV RMECV  R2
P RMSEP 

P2 1 0.769 0.506 0.742 0.537  0.732 0.663 

P1 3 0.895 0.323 0.739 0.512  0.632 0.727 

P2+ P1 3 0.933 0.268 0.782 0.487  0.802 0.554 

ACC1 6 0.677 0.574 0.575 0.663  0.444 0.871 

ACC2 4 0.611 0.626 0.48 0.727  0.300 1.020 

ACC1 + ACC2 4 0.758 0.758 0.595 0.595  0.655 0.737 

P2+ ACC1 2 0.854 0.373 0.77 0.471  0.778 0.613 

P2+ ACC2 1 0.695 0.586 0.649 0.632  0.733 0.665 

P1 + ACC1 4 0.940 0.251 0.753 0.513  0.662 0.698 

P1 + ACC2 5 0.971 0.175 0.776 0.493  0.662 0.742 

P2 + P1 + ACC1 4 0.973 0.166 0.786 0.467  0.797 0.550 

P2 + P1 + ACC2 2 0.867 0.379 0.777 0.494  0.784 0.595 

P2 + ACC1 + ACC2 2 0.813 0.460 0.705 0.580  0.813 0.567 

P1 + ACC1 + ACC2 5 0.971 0.176 0.779 0.490  0.733 0.642 

P2 + P1 + ACC1 + ACC2 3 0.945 0.235 0.804 0.447  0.832 0.520 
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Figure 8. Performance of the PLS model (a) cross validation, respectively: 

calibration samples (blue) and validation samples (red), and (b) prediction of the 

RPI in mango cv. ‘Tommy Atkins’, built using the data from all the probes and 

accelerometers four sensors which resulted the best combination. 

 

 

Figure 9. (a) Regression coefficients of three-components PLS model containing 

the fused individual matrices of the calibration set as X-variables and the RPI as 

the Y-variables. (b) The number of latent variables of the same model. 

 

3.3. Integration of tactile sensing and reflectance data in the robot gripper 

This novel gripper presents an important evolution from previous grippers 

for sensing and handling the firmness of aubergines and mangoes by using 

accelerometers as tactile sensors (Blanes, Ortiz, et al., 2015; Blanes, Cortés, et al., 

2015). Unlike these previous grippers, which caused damage in some over-ripe 

mangoes due to the action of a suction cup needed for holding the fruits, this new 
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gripper incorporates four fingers and intrinsic sensors that avoid the need of a 

suction cup when holding the fruit for measurement and placing. 

Besides, the combination of the two probes achieved better results than P2 or 

P1 alone, having a R2
p of 0.802 compared to 0.732 and 0.632 respectively. In the 

same way, ACC1 together with ACC2 had better result than ACC1 or ACC2 alone 

with R2
p of 0.655 compared to 0.444 and 0.300 respectively. It is important to 

remark that the composition of a fruit is not uniform and hence some parts of the 

mango may have different ripeness than others. Therefore, it is necessary to take 

simultaneous measurements at least for the three points studied to obtain reliable 

and robust results. Blanes et al. (2015b) developed gripper with three 

accelerometers to estimate the ripeness of mangoes cv. ‘Osteen’ achieving a R2
p = 

0.760 which is lower than the current robot gripper (R2
p = 0.832). This highlights 

the important contribution of the integration of both tactile sensors and VNIR 

reflectance measurements in the robotic gripper to assess the quality of the 

mangoes during fruit handling.  

A handicap of this system in the current version is the long time needed to 

process every mango. The incorporation of two spectrometer probes increases the 

processing time of every mango up to 9 s. However, experiments have been done 

in a first prototype for testing, where the algorithms, hardware and processes were 

not optimised for working at high speed. With improved integration of the 

hardware, optimising algorithms and parallelising some processes, the whole 

process could experience a dramatic reduction of the operation time. On the other 

hand, the combination of sensors of different nature provides the capability of 

obtaining simultaneously both mechanical and optical properties of the fruit. This 

innovative approach is highly interesting in the emerging competitive food sector 

where monitoring of product quality, reproducibility and traceability is decisive in 

manufacturing (Kondo, 2010). 

 

4. CONCLUSIONS 

A novel robot gripper equipped with sensors, i.e. with two accelerometers 

and two VIS-NIR reflectance probes, has been developed and tested for fruit 

handling. The design uses sensors that do not need direct contact, are intrinsic 

tactile sensors, and can take the measurements simultaneously during the mango 
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handling, which is an important advantage over the state of the art. The results 

show good prediction of the quality of the fruit, using a ripening index based on the 

information from VIS-NIR spectra and non-destructive impact measured during 

handling, achieving an R2
p of 0.832 and RMSEP of 0.520. This innovative 

prototype integrates sensors of different nature, whose data information is 

combined to obtain better prediction. The fusion of different types of sensors like 

spectrometry (electromagnetic) and accelerometers (vibrational) achieved better 

results than using only the accelerometers, or similar results to using spectroscopy, 

but in this case, the measurements were made while the fruit was handled. In this 

way, results show the potential and advantages of performing simultaneous 

operations with sensors of different nature integrated on a robot gripper that can 

inspect and classify the mangoes by their ripeness during a pick and place robot 

process. 
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ABSTRACT 

 

One of the most studied techniques for the non-destructive determination of 

the internal quality of fruits has been visible and near-infrared (VIS-NIR) 

reflectance spectroscopy. In the case of apples, it has been applied mostly for 

internal quality assessment and variety distinction. However, this technique has 

traditionally been used in laboratory setups for individual fruit inspection. This 

work evaluates a new non-destructive in-line VIS-NIR spectroscopy prototype to 

identify five apple varieties, with the advantage that it allows the spectra to be 

captured with the probe at the same distance from all the fruits regardless of their 

size. The prototype was tested using varieties with a similar appearance by 

acquiring the diffuse reflectance spectrum of the samples travelling at a speed of 1 

fruit/s. Principal component analysis (PCA) was used to determine the variables 

that explain the most variance in the spectra. Seven principal components were 

then used to perform linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA). QDA was found to be the best in-line classification method, 

achieving 98% and 85% success rates for red and yellow apple varieties, 

respectively. The results indicated that the in-line application of VIS-NIR 

spectroscopy that was developed is potentially feasible for the detection of apple 

varieties with an accuracy that is similar to or better than a laboratory system. 

 

Keywords: apple, in-line, varietal discrimination, visible and near-infrared 

spectroscopy, non-destructive  
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1. INTRODUCTION 

More than 7500 apple (malus sp., Rosaceae) varieties are currently 

cultivated (Wu et al., 2017) with significant differences in qualities, which makes 

this one of the most consumed fruits in the world (Ronald & Evans, 2016). 

Consumers have different tastes and preferences from one country or region to 

another. However, there are trends that are common to all of them, such as an 

increasing demand for higher quality, both external and internal. The external 

properties (presentation, appearance, uniformity, maturity, freshness, etc.) are the 

main reason governing the purchase decision of fruits, which is normally taken 

when the consumer sees the products exhibited on the shelves. The internal quality 

(flavour, aroma, texture, firmness, acidity, sugar content, absence of contaminants, 

etc.) (Wojdyło et al., 2008) is linked to aspects that are generally not perceptible at 

first sight, although future purchasing decisions may depend on them. Indeed, 

because of the variety of consumers, it is difficult to establish a specific definition 

of quality, but generally a fruit has better quality when it is superior in one or 

several attributes that meet consumer expectations (Kader et al., 1985). However, 

no matter how much effort is put into obtaining products with excellent quality, 

this consumer satisfaction will be defrauded when, either by mistake or by fraud, 

fruits, like apples, of similar appearance (external quality) but different internal 

quality are mixed in the market place (López, 2003).  

Generally, several varieties of apples can be grown simultaneously in a 

single apple orchard, and they can be sold at the same time. Therefore, different 

apple varieties can easily be mixed during harvesting and marketing when they 

have a similar appearance. Proper identification of fruits has to be done by workers 

in a subjective and manual way because physical or chemical analytical methods 

for apple evaluation are expensive and time-consuming. This sorting results in high 

costs, tediousness and inconsistency associated with human beings (Ronald & 

Evans, 2016). Therefore, apple sellers need new electronic non-destructive 

techniques to distinguish apple varieties (Shang et al., 2015). Several non-

destructive techniques to discriminate among apple varieties have already been 

attempted. Visible and near-infrared (VIS-NIR) spectroscopy has been used by 

different researchers such as He et al. (2007), Wu et al. (2016), Luo et al. (2011), 

Wu et al. (2017) and Song et al. (2016). All of these studies only extract 
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information from the VIS-NIR spectra, or even only from the NIR spectra, of the 

apples for off-line discrimination among varieties; however, none of them develop 

in-line applications to classify apple varieties. Such an application is developed in 

this study through a preliminary in-line prototype. Other non-destructive 

techniques used to classify apple varieties have been dielectric properties, solid-

state sensors (ISFET), digital image analysis or electronic nose. Shang et al. (2015) 

used 160 apples of three varieties in an attempt to discriminate them according to 

the dielectric spectra measured at laboratory scale. Alonso et al. (2003) analysed 

the ISFET by ions such as calcium, potassium and nitrates, both in apple juice and 

in in situ apple fruit. Regarding digital image analysis, Sabanci & Ünlersen (2016) 

and Ronald & Evans (2016) captured apple images and obtained a good 

classification using the measurement of different properties (colour and size). 

Finally, an electronic nose was developed by Marrazzo et al. (2005), who tested the 

feasibility of detecting the difference among volatile gases emitted from different 

intact apple varieties, but good results in terms of the classification of the three 

varieties was only obtained for day 1. Among these non-destructive methods, the 

most widely used is VIS-NIR spectroscopy, because it is extremely fast, chemical-

free and suitable for in-line use (Wu et al., 2017). The literature contains different 

studies on the applicability of in-line VIS-NIR spectroscopy. For example, Jie et al. 

(2014) developed an in-line prototype based on the VIS-NIR technology in the 

range of 687-920 nm for the prediction of the soluble solid content (SSC) of 

watermelon and achieved rpre of 0.70 and RMSEP of 0.33 ºBrix. Brunt et al. 

(2010) measured the chemical composition of potatoes by an automated semi-

industrial system with in-line NIR reflectance. The system was only able to process 

12 potato samples per hour, but the starch and the coagulating protein 

concentrations showed a good NIR prediction. Sun et al. (2016) determined the 

SSC and identified brown core pears simultaneously in-line by VIS-NIR 

transmittance spectroscopy. The spectra between 600-904 nm were recorded at a 

moving speed of five samples per second. The classification accuracy of brown 

core pears was 98.3% and the predictive precision of SSC was around 98%. 

Similarly, Shenderey et al. (2010) evaluated the ability of VIS-NIR mini-

spectrometers (400-1000 nm) to detect mouldy core in 'Red Delicious' apples using 

an in-line development. The accuracy of the classification was higher than 92% 
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but, in this case, although the apples were in movement, both the probe and the 

apples were always at fixed positions during the measurements. Salguero-Chaparro 

et al. (2012) evaluated the effect of some parameters, such as focal distance and 

integration time, on the spectral repeatability for the analysis of intact olive fruits 

on a conveyor belt in the spectral range of 380-1690 nm using a diode array 

spectrometer. Regarding this last research, it should be pointed out that one of the 

major drawbacks hindering the incorporation of technology based on spectroscopy 

into automated in-line sorters is the large differences in size and shape that can be 

found from one fruit to another. Since the probe is located at a fixed point, the 

distance between the probe and the fruit will vary depending on the size of the 

fruit. However, it is important to ensure that the distance between the probe and the 

fruit is close enough to obtain a good spectrum, but not so near that it saturates the 

signal, and this distance must be constant for all objects. If the fruit is very close, 

the signal saturates even with very low integration times. This is because light 

practically does not penetrate inside the object and is only reflected on its surface 

towards the detector. Conversely, a distance of more than 13 mm (Salguero-

Chaparro et al., 2012) causes the detector to receive hardly any of the light 

reflected on the object. In addition, the optical configuration, the intensity of the 

light and the distance between the probe and the fruit are parameters that greatly 

influence the depth of penetration of light (Lammertyn et al., 2000). Therefore, to 

avoid a negative influence on the measurements, it is very important to develop 

mechanisms to ensure that the distance between the fruit and the probe remains 

stable for any fruit in the inspection line, regardless of its size or shape. Since there 

is no previous research about the in-line application of VIS-NIR diffuse reflectance 

spectroscopy to classify apple varieties, the objectives of this work are (1) to 

develop a prototype system, using VIS-NIR reflectance spectroscopy, to be used 

for the in-line non-destructive measurement of apples, (2) to use an automated 

system that ensures that the distance between the probe and the fruit is the same 

regardless of the size of the fruit, and (3) to use the data obtained by the in-line 

system to differentiate apple varieties using chemometric methods. 
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2. MATERIALS AND METHODS 

2.1. Apple samples 

With the aim of carrying out the study using fruits with different internal and 

external properties, a total of 500 apples of five different varieties and origins were 

purchased from a local market (Figure 1). The set of fruits used in the experiments 

consisted of 100 pieces of each of the following varieties: Fuji (FU) from the 

region of Aquitaine (France), Red Delicious (RD) and Royal Gala (GA) from L’Alt 

Empordà (Spain), Golden Delicious (GD) from the Protected Geographical 

Indication of ‘Alto Adige’ (Italy) and Golden Delicious from the Protected 

Designation of Origin ‘Pomme du Limousin’ (France), known as Golden Rosé 

(GR). The reason for using Golden Delicious apples coming from two different 

origins was to know whether the system could also recognise fruits of the same 

variety but cultivated under different conditions and therefore with different 

properties. 

The average diameter of each apple was measured by using a digital calliper 

in the equatorial and polar sections. The weight of each apple was measured using 

an electronic scale (Entris2202-1S, Sartorius Lab Instruments GmbH & Co. KG, 

Goettingen, Germany). The characteristic features of the fruits used in this study 

are summarised in Table 1. 

 

Table 1. Characteristics of the five apple varieties studied. 

 

Variety Golden Delicious 
Golden Delicious 

‘Rosé’ 
Fuji Red Delicious Royal Gala 

Appearance 
Green-yellow 

colour 

Green-yellow 

colour with a 

coloured cheek 

Red colour on 

a yellow 

background. 

Spherical 
shape 

Dark red colour. 
Truncated cone shape 

Red colour on a yellow 
background 

Pulp 
White colour, firm, 

sweet and not acidic  
White colour 

Cream sweet, 

juicy and 

crunchy 

White colour, sweet 

and juicy 

White colour, crunchy, sweet 

and slightly acidic  

Eq. Diam. 

(mm) 

(min – max) 

8.32 
(7.60 – 8.80) 

8.20 
(7.70 - 8.90) 

7.42 
(6.60 – 8.40) 

7.86 
(7.00 – 8.70) 

7.82 
(7.30 – 8.30) 

Polar 

Diam. (mm) 

(min – max) 

8.02 

(7.10-8.80) 

8.47 

(7.70-9.30) 

8.16 

(7.80-8.70) 

7.85 

(7.10-8.30) 

7.48 

(6.70-8.40) 

Weight (g) 

(min – max) 

257.81 

(230.70-299.19) 

273.83 

(242.95-315.12) 

263.96 

(242.35-
284.15) 

237.10 

(219.99-243.38) 

228.76 

(195.56-243.81) 
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Figure 1. Visual appearance of the apple varieties used in this work. 

 

2.2. VIS-NIR instrumentation 

Diffuse reflectance of the apples was measured using a multichannel 

spectrometer platform (AvaSpecAS-5216 USB2-DT, Avantes BV, The 

Netherlands) equipped with two detectors. The first detector (AvaSpec-ULS2048 

StarLine, Avantes BV, The Netherlands) included a 2048-pixel charge-coupled 

device (CCD) sensor (SONY ILX554, SONY Corp., Japan), 50 μm entrance slit 

and a 600-line mm-1 diffraction grating covering the visible and near-infrared 

range from 600 nm to 1100 nm (VNIR) with a spectral FWHM (full width at half 

maximum) resolution of 1.15 nm and a spectral sampling interval of 0.255 nm. The 

second detector (AvaSpec-NIR256-1.7 NIRLine, Avantes BV, The Netherlands) 

was equipped with a 256-pixel non-cooled InGaAs (Indium Gallium Arsenide) 

sensor (Hamamatsu 92xx, Hamamatsu Photonics K.K., Japan), 100 μm entrance 

slit and a 200-line mm-1 diffraction grating covering the near-infrared range from 

900 nm to 1700 nm (NIR) with a spectral FWHM resolution of 12 nm and a 

spectral sampling interval of 3.535 nm.  

The measurements were performed using a bi-directional fibre-optic 

reflectance probe (FCR-7IR200-2-45-ME, Avantes BV, The Netherlands). The 

probe is fitted with an illumination leg, composed of six 200 µm diameter fibres, 

which connects to a stabilised 10 W tungsten halogen light source (AvaLight-

Fuji (F) Red Delicious (RD) Royal Gala (GA) 

Golden Delicious (G) Golden Rosé (R) 
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HAL-S, Avantes B0V, The Netherlands) and the other leg of the fibre-optic probe, 

with a 200 µm diameter fibre, was connected to both detectors for simultaneous 

measurement using another Y-shaped fibre-optic probe (FCB-IR200-2-ME, 

Avantes BV, The Netherlands). The probe tip was designed to provide reflectance 

measurements at an angle of 45° so as to minimise specular reflectance from the 

surface of the fruit. To control the detectors and to acquire the spectra, a personal 

computer equipped with a commercial software package (AvaSoft version 7.2, 

Avantes, Inc.) was used.  

A 99 % reflective white tile (WS-2, Avantes BV, The Netherlands) was used 

to calibrate the system so that the maximum reflectance value over each range of 

wavelengths was around 90 % of saturation (Lorente et al., 2015). 

 

2.3. VIS-NIR in-line system and spectra acquisitions 

All the samples were equilibrated to room temperature (25 °C) before 

obtaining the spectral measurements. During the in-line test, the fruits were 

transported continuously using a conveyor belt composed of bi-conical rollers 

while they were being measured. Fruits were placed manually on the conveyor belt 

with the stem at the top to capture measurements of the equatorial part. To achieve 

a uniform distance between the probe and the fruits, a programmable electronic 

device (Raspberry Pi3, Raspberry Pi Foundation, United Kingdom) together with a 

small high-resolution IR camera (Raspberry Pi NIR Camera v2, Raspberry Pi 

Foundation, United Kingdom) were placed at a height of 25 cm above the conveyor 

belt and exactly perpendicular to the centre of the rollers. Illumination of the scene 

was achieved using two IR LED-based light sources synchronised with the camera 

module. A computer vision application captured an image of each fruit, detecting 

its exact location and estimating the diameter across the width of the rollers. The 

distance between the centre of the rollers and the end of the fruit on the measuring 

side are used to enable the probe to approach the fruit. Figure 2 shows all the 

parameters and components of the system. 
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Figure 2. VIS-NIR in-line design composed by camera, illumination and lineal 

actuator with reflection probe. 

 

To synchronise the acquisition of images and the movement of the probe 

with the advance of the apples, an optical encoder (WDG 40S-500-ABN-G05-K1, 

Wachendorff Elektronik, Germany) was coupled to the traction roller of the 

machine.  

Using the distance between the fruit and the probe estimated by the image 

analysis system, and the position of the fruit on the conveyor belt estimated from 

the pulses given by the encoder, the electronic device activated a linear actuator 

composed of a stepper motor and an endless screw to bring the probe accurately 

towards the fruit. To calculate the displacement of the probe (d0), the distance 

between the centre of the rollers and the resting position of the probe (d1), the 

known distance between the centre of the rollers and the perimeter of the fruit on 

the measuring side given by the image analysis system (d2), and the distance 

between the probe and the fruit (d3) were used according to the distances shown in 

Figure 2 and Equation 1. All values were calculated in millimetres. 

 

d0 = d1 - d2 - d3     (1) 

 

Camera

IR LED
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motor

Endless
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The process of bringing the probe closer to the fruit is shown in Figure 3. 

Different integration times were tested in preliminary tests at different distances 

between the fruits and the probe, with the aim of setting the minimum integration 

time that gives a good signal for the in-line application. Subsequently, the 

integration time was set to 150 ms for the VNIR detector and to 500 ms for the 

NIR detector. Each fruit was passed twice in the line to obtain two measurements 

of the diffuse reflectance spectrum. Due to the limitation of the integration time of 

the NIR detector, the speed of the conveyor belt had to be limited to 0.81 m/s. 

 

 

Figure 3. Lineal actuator with reflection probe in (a) resting position, and (b) 

measuring the fruit, a segmented image of the fruit (Figure 3a right) and VIS-NIR 

spectra obtained (Figure 3b right). 

 

 

 

 

 

(a)

(b)
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2.4. Data analysis 

2.4.1. Chemometric analyses 

The chemometric analyses of the collected spectra were performed using the 

Unscrambler V10.4 software package (CAMO ASA, Oslo, Norway). A matrix, 

where the rows represent the number of samples (N = 500 samples) and the 

columns represent the variables (X-variables and Y-variable), was produced with 

the spectral data. The spectral signals from the two detectors were the predictors, or 

X-variables. The categorical ‘dummy’ variable created by assigning different 

letters to the different apple varieties was the response, or the Y-variable.  

The raw spectra were transformed to apparent absorbance (log (1/R)) values 

to linearise the correlation with the concentration of the constituents (Hernández et 

al., 2006; Shao et al., 2007; Liu et al., 2009). To prevent a low signal-noise ratio 

occurring at the limits of the spectral sensitivity of the equipment used, only 

wavelengths ranging from 600 to 1700 nm were included in this study. 

Because the high resolution captured in the VNIR range introduced 

increased noise in the signal (Cortés et al., 2016), the VNIR spectra were pre-

processed using a reduction factor of 10. Savitzky-Golay smoothing (the segment 

size is 3) was applied to reduce the effects caused by the physiological variability 

of samples (Carr et al., 2005; Beghi et al., 2017). Due to scattering effects, the light 

does not always travel the same distance inside the sample before it is collected by 

the probe (Santos et al., 2013). A longer path travelled by the light results in a 

lower relative reflectance value, since more light is absorbed. This effect causes a 

parallel translation of the spectra that needs to be corrected to avoid a negative 

influence in the calibration models. A typical method to perform this correction, 

and the one used in this work, is the EMSC technique (He et al., 2007; Martens et 

al., 2003; Bruun et al., 2007). Those two pre-treatments were considered the best 

results for the VNIR spectra, and those two pre-processing methods and the second 

derivate with Gap-Segment (2.3) were the best results for the NIR spectra (Cortés 

et al., 2016). 

After the pre-processing, principal component analysis (PCA) (Næs et al., 

2002) was applied to explore a possible clustering of the sample spectra that could 

be associated to the different apple varieties. This technique is a linear and 

unsupervised procedure that allows useful information to be extracted from the 
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data and to explore the data structure and the relationship between objects as well 

as the global correlation of the variables (Beebe et al., 1998). 

In addition, the linear discriminant analysis (LDA) and quadratic 

discriminant analysis (QDA) classification methods were applied on the spectra of 

the apples in order to classify the samples as belonging to one of the five varieties. 

The objective of these methods is to find models that allow the maximum 

separation among different classes in a set of objects. The difference between LDA 

and QDA is that LDA uses pooled covariance to assign an unknown sample to one 

of the pre-defined groups, while QDA uses the covariance of each of the groups 

instead of pooling them (Næs et al., 2002). In both cases, the number of samples in 

the training set must be larger than the number of variables included in the model 

(Kozak & Scaman, 2008; Sádecká et al., 2016), thus a reduction of the 

dimensionality is necessary. This was achieved by using the PCA scores as input 

data in the model instead of the raw variables, since the linear combinations of the 

original variables given by the PCA, called principal components (PCs), are 

uncorrelated (Rodríguez-Campos et al., 2011).  

To develop the discriminant model, a training set composed of 80% of the 

samples selected at random was used. The model was internally validated using 

full cross-validation (CV; leave-one-out method) (Casale et al., 2008; Huang et al., 

2008). Predictions were carried out using the evaluation set composed of the 

remaining 20% of the samples (Soares et al., 2013). The performance of the model 

was evaluated by accuracy, which is defined using the ratio of samples in the test 

set correctly assigned to their respective classes presented using confusion 

matrices. 

 

3. RESULTS AND DISCUSSION 

3.1. Features of VIS-NIR spectra 

Preliminary tests were carried out on both red and yellow apples to 

determine the correct measuring distance between the probe and the fruit for each 

type of fruit. To do so, distances of 1, 5 and 10 mm were tested with the fruits 

travelling on the conveyor belt at the same speed (one fruit per second). The 

average spectra of yellow and red apples captured using different distances 

between the light source/detection probe and the fruit are shown in Figure 4. When 
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the probe was very close to the fruit (1 mm), it was observed that the signal 

saturated in some samples even with very low integration times. This is because 

practically no light penetrates inside the object and is only reflected on its surface 

towards the detector. Conversely, using a distance of 10 mm, the detector receives 

very little reflection, which is in accordance with Salguero-Chaparro et al., (2012). 

Therefore, for this study, the diffuse reflectance spectrum of all fruits was acquired 

at 5 mm from the fruit, regardless of their size. In Equation 1, parameter d3 has a 

value of 5 mm. 

 

Figure 4. Average Log (1/R) of the 50 yellow and red apples at different testing 

distances. 

 

Once the measurement distance had been determined, VIS-NIR spectra were 

measured for all apples. Figure 5 shows the raw spectra of all samples. The 

differences in colour among the apple varieties were detected in the VIS 

wavelength range (i.e. 600-700 nm). However, the acquired spectra exhibit similar 

profiles across the spectral range that was studied, and even overlapped heavily, 

especially the spectra between 730-1700 nm. According to Fernández-Ahumada et 

al. (2006), the use of the VIS and NIR wavelength range offers great expectations 

for NIR characterisation in some products such as potatoes. Because it was difficult 
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to discriminate the five kinds of apples just from the overlapping spectra, it was 

necessary to use feature extraction methods, such as PCA, LDA and QDA, to 

distinguish the apple varieties. 

 

Figure 5. Raw VNIR and NIR spectra of five different varieties of apple. 

 

3.2. Clustering analyses based on PCA 

The PCA model, as previously mentioned, was first constructed in order to 

explore a possible clustering of the spectra of the samples that could be associated 

to the different apple varieties. Figure 6 shows the training spectra set plotted 

according to the values of the PCA scores. Each variety is shown with a different 

colour and shape for a better visualisation. As shown in this figure, red and yellow 

varieties can be separated easily due to the different spectral reflectance 

represented in the visible spectrum. However, colour and appearance are not 

always useful for discriminating apple varieties. There are some varieties that are 

very difficult to differentiate visually on the production line but show important 

compositional differences that are represented in the NIR spectrum, thereby 

affecting the taste and consequently their acceptance by the final consumers. 
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Figure 6. PCA analysis of apple varieties of the training samples.  

 

Additionally, the PCA model was used to reduce the original variables for 

constructing the LDA and QDA models. The cumulated reliability of the seven 

PCs reaches 95.57% (Table 2). Hence the first seven PCs were adopted as the 

inputs in the LDA and QDA models. 

 

Table 2. The contribution rates and accumulative contribution rates of the first 

seven PCs. 

 

3.3. Classification by LDA and QDA models 

PCA can analyse the varieties of apples qualitatively, but it cannot 

discriminate these varieties quantitatively. In this study, LDA and QDA were used 

to build a quantitative analysis model to discriminate apple varieties, shown below. 

Number of principal components PC1 PC2 PC3 PC4 PC5 PC6 PC7 

Contribution rate (%) 53.54 17.69 10.85 6.53 3.56 1.89 1.52 

Accumulative contribution rate (%) 53.54 71.23 82.07 88.60 92.16 94.05 95.57 
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Table 3 provides the confusion matrices that summarise the classification results 

using LDA and QDA techniques. From these matrices, it can be concluded that no 

red apple was classified as a yellow variety and vice versa. This expected correct 

classification is mainly due to the contribution of the visible spectrum mentioned 

previously. In general, QDA achieved better results than LDA for both types of 

samples, probably because LDA can only learn linear boundaries, while QDA can 

learn quadratic boundaries, LDA being a much less flexible classifier than QDA 

(James et al., 2014). The results show that classification accuracy for LDA model 

was 82.5% and for the QDA model it was 85% for the same test set of yellow 

varieties that was used. Similarly, the red varieties obtained a classification 

accuracy for the LDA model of 75% and of 98.3% for the QDA model. The 

differences were observed mainly in the high classification accuracy achieved by 

the QDA model in red apples. However, it is important to note that the red apples 

were of different varieties, while the yellow ones both belonged to the same variety 

but different origins, thus demonstrating that this method can not only discriminate 

between varieties but also by the origin of the apple. 

 

Table 3. LDA and QDA confusion matrices, both presented as as percentage of 

correctly classified samples in the test data set. 

Method   Classification accuracies (%) 

Overall 

accuracy 

(%) 

    Golden 
Golden 

Rosé 
Fuji 

Royal 

Gala 

Red 

Delicious  

L
D

A
 

Golden 95 5  0  0  0  
82.5 

Golden Rosé 30  70  0 0  0  

Fuji 0  0  65  35  0  

75.0 Royal Gala 0  0  25  75  0  

Red Delicious 0  0 5  10  85  

Q
D

A
 

Golden 100  0  0  0  0  
85.0 

Golden Rosé 30  70  0  0  0 

Fuji 0  0  95  5 0  

98.3 Royal Gala 0 0  0  100  0 

Red Delicious 0  0 0 0  100  
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He et al. (2007) already used PCA and an artificial neural network (ANN) 

coupled with VIS-NIR (400-960 nm) to classify three red apple varieties (‘Fuji’ 

from China, ‘Red Delicious’ from USA and ‘Copefrut Royal Gala’ from USA). 

They used only 30 apples of each variety, obtaining an accuracy of 100% but using 

a static arrangement. Wu et al. (2016) applied four kinds of feature extraction 

methods, namely PCA, PCA+LDA, discriminant partial least squares (DPLS) and 

sorting discriminant analysis (SDA), on the NIR spectra (1000-2500 nm) of two 

varieties of apples with a red external colour (‘Huaniu’ and ‘Fuji’ from China). In 

their research, the SDA model was the best one with a classification accuracy of 

96.67% for discriminating apple varieties. In these previous studies, He et al. 

(2007) and Wu et al. (2016) only classified red apple varieties on a laboratory scale 

using static measurements. In contrast, the new in-line detection prototype has been 

developed for spectral analysis while the fruit is transported by a conveyor belt in 

the processing line. The in-line system developed here allowed us to obtain as good 

or better results than previous studies involving laboratory systems. The speed of 

advance of the fruits when the spectra were measured was one fruit per second. 

This was the same speed as that used by Shenderey et al. (2010) in their 

experiments when they measured the spectra of apples in movement to detect those 

affected by mouldy core. In their work, the measuring device was placed on a 

rotating table that served as a laboratory device to test the spectrometry in moving 

fruits, thus demonstrating that it is possible to perform spectrometry on apples in-

line. However, in this work, the practical implementation was performed in an 

industrial prototype with what was similar to a commercial conveyor belt and 

presents certain novel advantages such as ensuring the same measuring distance for 

all fruits.  

 

4. CONCLUSIONS 

A novel prototype for the in-line identification of apple varieties based on 

VIS-NIR spectroscopy has been developed and tested. One of the main 

disadvantages of the in-line system when fruits are travelling on a conveyor belt is 

that the diversity of fruit sizes causes the spectra to be taken at different distances, 

since the position of the probe is fixed. This has a negative effect on the robustness 

of the results obtained. This work proposes a new device that allows the 
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measurements to be captured at always the same distance from the fruit, thus 

ensuring that they are all taken in the same conditions. Two classification methods 

were used to determine the variety of the apples and, in the case of Golden 

Delicious, to detect fruits of different origins. QDA yielded better results than LDA 

reaching a 98% and 85% rate of success for red and yellow varieties, respectively. 

The proposed prototype may contribute to improve the control of production as a 

tool for detecting fraud in a non-destructive and highly accurate manner. However, 

in order to effectively transfer this system to industry, the speed of one fruit per 

second needs to be improved. 
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In the present PhD, different strategies were studied in order to evaluate the 

potential and the advantages of VIS-NIR spectroscopy as an analysis tool for the 

characterization and inspection of fruit quality both off-line in laboratory scale as 

in real time through simultaneous operations using different sensors in automation 

processes. This work arises in response to the current needs of the fruit sector, 

which demand non-destructive analysis of all production in terms of quality to 

minimize costs and satisfy final consumers. 

Firstly, the viability of VIS-NIR spectroscopy was evaluated in static mode 

(off-line) in combination with the multivariate analysis techniques developing 

different experiments in order to characterise and inspect the fruit quality. The 

level and changes of astringency were predicted in intact and in the flesh of half cut 

persimmons cv. 'Rojo Brillante' harvested in L’Alcudia (Valencia, Spain) which 

were exposed to different treatments with 95% CO2 at 20 ºC for a period of 0, 6, 

12, 18 and 24 h to obtain samples with different levels of astringency. The 

prediction models (PLSR, SVM and LS-SVM) were created combined their VIS-

NIR spectra and their soluble tannins content, obtaining the best performance in the 

models, which included SNV in the pre-processing, and using the six measurement 

points of the intact fruit. Other off-line experiment consisted in discriminate 

between two varieties of nectarine (cv. ‘Big Top’ and cv. ‘Diamond Ray’) grown 

in the same period and with similar appearance although different taste. Accurate 

classification models (LDA and PLS-DA) were obtained for the full spectral and 

with the most EWs, especially for the PLS-DA model. Similarly, the VIS-NIR 

reflectance spectroscopy were used to differentiate between two nectarine varieties 

(cv. ‘Big Top’ and cv. ‘Magique’) and to predict their internal quality by a new 

developed index (IQI). The prediction (PLS) and classifications (LDA and PLS-

DA) models showed also good performance. Finally, the internal quality of intact 

mango cv. 'Osteen' was analysed based on the IQI and the ripening index (RPI). 

PLS models established the relationship between VIS-NIR spectra and indices 

which reached good performance in predicting the internal quality of the samples 

using the full spectra range and the most important wavelengths. 

Secondly, an automation of the inspection processes was carried out through 

the development of new in-line prototypes. The first prototype consisted of a 

robotic gripper capable to measure the firmness of mangoes in a non-destructive 

mode during their manipulation. The developed PLS models obtained high 
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correlations between the information obtained from the accelerometers (non-

destructive firmness) of the robotic grip and the physicochemical properties 

analysed (mechanical properties, flesh color, TSS, pH and TA) as well as the 

ripening index (RPI). Additionally, the same robotic gripper for mangoes was 

modified based on the integration of two VIS-NIR spectral probes and two 

accelerometers in the robotic gripper. This non-destructive tool combined the 

capability of obtaining mechanical and optical properties of the fruit 

simultaneously when the fruit is manipulated in the packinghouse during 

postharvest operations. Best prediction of RPI was achieved when combined the 

information of the two spectral probes and the signals of the two finger 

accelerometers. Finally, other in-line prototype was developed based on the 

integration of one spectral fibre-probe in a conveyor belt for spectral analysis while 

apples were transported in the processing line. The main advantage of this 

prototype was that it allowed the spectra to be captured with the VIS-NIR probe at 

the same distance from all the fruits regardless of their size something that does not 

happen with current commercial systems. LDA and QDA models achieved the best 

in-line classification of apple variety and, in the case of Golden Delicious, the best 

detection of apple origins. 

In summary, it can be concluded that according with the quantitative and 

qualitative results of this off-line and in-line studies, external VIS-NIR reflection 

spectroscopy combined with chemometrics, demonstrated to be an excellent non-

destructive technique capable of monitor the fruit quality for the post-harvest 

industry assuming a technological breakthrough compared to the present situation 

where the evaluation of the state of the fruits is mostly subjective and not accurate. 
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This point summarizes the main conclusions of this thesis and draws out 

their implications for fruit quality control. Seven main general conclusions can be 

drawn from the results of this work: 

 

1. Visible and near-infrared spectroscopy is a rapid and non-destructive 

method for determining astringency in persimmon fruits. It results in a 

valid alternative to avoid costly and and tedious chemical analysis or the 

subjective evaluation of the tannin printing method. The best performance 

for intact fruits was obtained using PLSR on the full spectra of the six 

measurement points after pre-processing with SNV+1-Der, an R2=0.904 

and RPD=3.26 being achieved. Moreover, the best prediction results 

obtained with the EWs (41 bands) were obtained for the PLSR model using 

the six measurement points of the intact fruit in the NIR spectra and 

SNV+DOSC pre-processing (R2=0.915; RPD=3.46).  

 

2. Visible and near-infrared spectroscopy is an accurate classification tool for 

nectarine varieties with a very similar external and internal appearance but 

different tastes and organoleptic properties. PLS-DA model achieved better 

accuracy and less latent variables than LDA model, and specifically, good 

results with 100% classification accuracy were obtained using only the 

VNIR detector for the two models and eight selected wavelengths out of 

the 1838 available features. Therefore, PLS-DA and LDA resulted as 

robust models for discriminating varieties of nectarine with a satisfactory 

level of accuracy placing the visible and near-infrared spectroscopy as an 

accurate classification tool for nectarine varieties with a very similar 

appearance but different tastes that could be potentially used in an 

automated inspection system. 

 

3. Visible and near-infrared spectroscopy is a technique capable of 

determining the internal quality of intact nectarines with significant 

reliability. The PLS analysis showed strong performance in predicting the 

internal quality of the samples, with an R2
P and RMSEP of 0.909 and 0.235 

for cv. ‘Big Top’, and 0.927 and 0.238 for ‘Magique’. Despite being two 
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varieties with a similar composition and grown in the same period, it was 

possible to separate the two with a perfect classification rate of 100 % 

using PLS-DA and 97.44 % using the model developed by LDA models. 

This represents an advance in the creation of tools for monitoring the 

quality of these fruits in postharvest compared to the present situation 

where the evaluation of the fruit quality is mostly carried out based on the 

subjective experience of trained workers. 

 

4. External visible and near-infrared spectroscopy combined with 

chemometrics could be used for the non-destructive prediction of the 

internal quality of mango ‘Osteen’ using indices as the ripening index 

(RPI) and the internal quality index (IQI). The PLS analysis showed a 

strong performance in predicting RPI and IQI for the VIS, VIS-NIR and 

NIR detectors using the full spectral range (R2
p=0.833-0.879, 

RMSEP=0.403-0.507 and RPD=2.341-2.826) and the most important 

wavelengths (R2
p=0.815-0.896, RMSEP=0.403-0.537 and RPD=2.060-

2.905). VIS-NIR spectroscopy has a great potential for its application to 

the evaluation of the quality of these fruits and therefore this technological 

achievement could even be integrated into fruit packing lines as part of the 

quality assurance system. 

 

5. The physico-chemical analysis showed that the best parameters to assess 

the ripeness of cv. ‘Osteen’ mangoes were mechanical firmness, soluble 

solid content, and flesh luminosity. The prediction models, developed by 

PLS estimated correctly these parameters and also the RPI of the samples 

based on the information obtained from the robot gripper accelerometers. 

This research showed that it is possible to assess the firmness and ripeness 

of mango fruits using a non-destructive technique during robot handling 

operation with a robot gripper. 

 

6. The integration of simultaneous tactile sensing using two accelerometers 

and two VIS-NIR reflectance probes in a robot gripper showed to have the 

potential to good estimate mango (cv. ‘Osteen’) quality through the RPI. 
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The intrinsic tactile sensors used do not need contact with the fruit and 

could take the measurements simultaneously during the mango handling, 

which is an important advantage over the current state of the technology 

for fruit quality assessment. PLS models were developed to predict the 

RPI, and the best model was created by combining the information from 

VIS-NIR spectra and non-destructive impact measured during handling, 

achieving an R2
p of 0.832 and RMSEP of 0.520. This innovative prototype 

integrated sensors of different nature, whose data information was 

combined to obtain better prediction. The fusion of different types of 

sensors like spectrometry (electromagnetic) and accelerometers 

(vibrational) achieved better results than using only the accelerometers, or 

similar results to using spectroscopy, but in this case, the measurements 

were made while the fruit was handled. In this way, results show the 

potential and advantages of performing simultaneous operations with 

sensors of different nature integrated on a robot gripper that can inspect 

and classify the mangoes by their ripeness during a pick and place robot 

process. 

 

7. A novel prototype for the in-line identification of apple varieties based on 

VIS-NIR spectroscopy has been developed and tested. The solution 

developed avoids one of the main disadvantages of the in-line system when 

fruits are travelling on a conveyor belt which is the errors in the 

measurements due the diversity of fruit sizes. Normally this diversity 

causes the spectra to be taken at different distances, since the position of 

the probe is fixed while in this contribution the probe always makes the 

measurement at the same distance of any fruit. Two classification methods 

were used to determine the variety of the apples and, in the case of cv. 

‘Golden Delicious’, to detect fruits of different origins. QDA gave better 

results than LDA reaching a 98 % and 85 % of success for red and yellow 

varieties respectively. The proposed prototype may contribute to improve 

the control of the production as a tool for the detection of frauds non-

destructively and highly-accurate and the patent of this systems is currently 
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being processed. However, in order to effectively transfer this system to 

the industry, the speed of one fruit per second needs to be improved. 
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In the view of the results and conclusions of the present thesis, the following 

proposals for further work are expounded: 

 

- Application of the proposed optical non-destructive measurements 

and analyses procedures to other climacteric fruits and varieties.  

 

- Test the ability of the proposed indexes along a ripening treatment 

of non-climateric fruits and vegetables. 

 

- Test the potential of classification and prediction proposed 

procedures to other postharvest origins. 

 

- Adapt the proposed models for the fruit harvested at other different 

harvest times to ensure that can consistently reflect the quality of 

the harvested product. 

 

- Implementation of and in-line prototype of conveyor belt using 

more probes to measurement at different points of the fruit 

obtaining more accurate quality information under real-time 

conditions. 

 

- Improve in-line prototypes to reduce their analysis time adapting to 

a real industrial scale and offering the possibility to inspect the 

entire production. 
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