UNIVERSITAT

POLITECNICA . EEERESR .

DE VALENCIA Escuela Tecnica Superior de Ingenieria del Diseno

A graphic tool for air traffic control

Flight simulation of historic traffic

Corina Yanes Yanes

Grado en Ingenieria Aeroespacial
Escuela Técnica Superior de Ingenieria de Diseno

Universidad Politécnica de Valencia
Tutor: Joan Vila Carbé

Julio 2018

PAGE INTENTIONALLY LEFT IN BLANK

Abstract

The aim of the present project is to provide a graphical representation tool for
traffic simulation. This tool is supposed to be able to simulate historic traffics from
.506 files provided by Eurocontrol. The purpose is to visualize and analyze Merge
Point approaches and to provide the basis of a future tool for air traffic controllers
which includes a relative position indicator. In the first part of this work, the
objectives and program requirements for the tool to develop are specified. The
second part gives the theoretical background of the Merge Point approaches and
lists its advantages based on recent studies. For the total understanding of Merge
Point and to provide some background knowledge, the concept of air space
management is introduced and airspace structure and the kind of holdings that
exist depending on the navigation method used (traditional or RNAV) are
explained. To give an example, the Merge Point approach of Dublin Airport for
runway 28 is described in more detail, as the same example is used as well for
the use case in the third part of this work. All the tools and sources used for the
development of the program are also introduced in this second part, including a
short introduction in object oriented programming since the language used for the
development of the program is Java 8. Finally, in the third part, the developed
tool is explained and class interaction visualized by UMLs. A use case of Dublin
Airport runway 28 was carried out and is included at the end of the program

illustration in order to demonstrate its functioning.

TABLE OF CONTENTS

PART 1 - INTRODUCTIONcucuiiiiiiiiiiennnniieiiiiiisensssssssisnsimsssssssssssssssssssssssssssssssssssssnssssssns 1
1. INtrOdUCHION . ..ciiiieiiiiciiiiiirrieseenrrrrreesassee st resssssssseesseseessnssssssssssessssnsnssssssssanes 1
2. ObjJECHIVES ..eiireeneeiiiiiiiiiiiiniiiieeitieerennssseeettreesasassssessseeessnssssssssssssessnnsssssssssssssnnnns 3
3. Program REQUIremMENTSccceuuiiiieuiiiiiiiiiiiiiiisiriess s e s senesssssenssssssenssssssens 5
PART 2 — BACKGROUND AND TOOLScccciiiiiimimnnniiiiiiiiineemsssssissiissssssssssssssssssssssssssssns 8
4. Air Traffic Management, ATMcoiceeiiiiieeiiiiiieniennennceenennsieesensssessenssssssensssessennnns 8
4.1. Airspace MANAGEMENTeeviieeiiiieeeieeiiiee e e eetse e s e e e tttsse e s s e e taties e s s s aeaaaaeesaes 9
4.2. Air Traffic FIoOw Management............cccccueeuuivveeeeiaaeeeeeeesiiiiiisieaaaaeeeeessssesisssenes 10
4.3. YN T N o] (o =1 4/ ol -2 EUUUU R 10

5. AIrspace STrUCTUNEiieeuiiiiiiiiiiir s s s s s sae s s s e sasssssennes 11
5.1. Worldwide Air Navigation REGIONS...........ccceeeeceeiuiieeiiaeeeeeeeeiscciiisiseesaaaaeeessasinns 11
5.2. Lower and UPPEr AirSPUCEueuueeeeeeeeeececiiieeieeaaeeeeesceseiiisssaaaaaaeeesessesassseees 13
5.3. Flight Information Regions and Upper Information Regions............................ 13
5.4. ICAOQ QirSPACE CIASSES ..ottt e ettt a e e e e e e e ee s easaseees 14
5.4.1. CoNtrolled AIrSPace.....cccuuiiiiiiiee e e eeeccciitieeee e e e e e e e e eecbrrrae e e e e e e e e s e e saabearaaeeeeas 16

6. HOIdING PAtterNS .c...uuiiiiiiiiiininiiiiiiiiiiinenneiseenititsesssssssssnsseessssssssssssssssssnsssssssssses 20
6.1. HOIING PAEEEIT IFR .ocooooeeeeeeeeeee ettt e e ettt e e e e e e e e e e esassseees 20
6.2. Linear RNAV HoIldiNG POTTEINS.........cccceeeeeeiieeiieeaaeeeeeeecccivveaaaaaaeeeeessceissseees 21
6.2.1. Trombone HOIINGeuuiiiiiiiiiee et 22
6.2.2. Merge PoiNt HOIINGuvviieiiiieii ittt 23

7. Merge Point Pattern ..o s 24
7.1. Studies of Point Merge OPErations.............uueueeeeeeeeeeiiiireeereaaeeeeesissiiissssssssaaaenns 25
7.1.1. (0o T2) 4 o] | 1T B Lo =T PP 25
7.1.2. Controller Activity and Workloadccceeeeeieiiiiiiiciiiiiieeeee e, 26
% 0 TR O | o ¥- [ol | AV 2SSO PPPPUPRRPPRRt 27
7.1.4. Descent Profiles - Continuous Descent Operation.........ccccceeeeeeeeeccnviniennennn. 28
7% R TR =Te [0 Tl =To J = T] o 11 Y- SRR 28
7.1.1. Fuel saving and NOISEuueeiiieeeiiiiecciiiieie e e e e e e eccrrre e e e e e e e e e s e aaaeeeeeas 29

2 O Y- Y =1 Y TR P 29

7.2. Airports with Point Merge arrivalscccueeeeeieeeeeeeeeccciiiieeeeeeeeeeeeesescsasssens 29

8. Relative PoSition INAICAtOrcvuiieiieiiiiieiereireireereeenteetreesrasernssenssassrnsesnsesnssennes 30

8.1. Ly o I (o To) U UUUUP 30

9. EUROCONTROL Network Managercccceeeeeeeiiiiinennnnisseiiininsenssssssesnsensssssssssssssnes 31
9.1. NEST (Network Strateqic TOO!)uuueeeeeeeiiieeeeie et e e e 33
9.2. DDR2 (Demand Dat@ REPOSIOIY)ccoeeeeeeiieeiiiiaaeeeeeeecciieiieeaaaaeeeeessccisasees 34
9.3. RY =00 [0V L (X] (=X TS UU PP 36
PART 3 = PROGRAMMING TOOL....cccceuuueiieiiriiimmennnnssssisssnmsssnsssssssssssssssssssssssssssssssssssnsses 40
10. Object Oriented Programmingcccoiiiiieeemeeniiiiiiiiiieensessiinniiieessssssssssssmssssssssses 40
10.1. Advantages of Object Oriented Programmingccccceceeeevvviuveveeeeaaeeeeseesinns 40
10.2. Basics of Object Oriented Programmingcccceeeeeeeeeeeecsiiiivevesesaseeessassinns 40
10.2.1. FAY o1 o - [o1 1 (o o TR PUPURRROt 41
10.2.2. 0] oY= g =Yg Vol U USUPPRN 42
10.2.3. o] 1V 8 VoY o] o 11y s o U URURPRN 42
10.2.4. a1 =] o 7= Yol T U URUPPRN 42
10.2.5. (@ 1V7=Y T 1 o V- URU 43

O T U o] =T [U UUUPRP 43
0.4, COHECHIONS ..ot e e ettt e e e e e e e e e s sssssssaaaaaaaeesasssaes 43
11. NetBeans IDE ...ttt rea e s sae s raes s rsasssensessnssssnssnes 44
11,1, SWING GUI BUIIAELueeeeeeeeeeeeeeteeee ettt a e e e e e et ttavaaaaa e e e e e saesans 44
PART 4 - DESIGN......uiiiiiiiiiennniiiiiiiiiieensesssiiniiieesssssssssssssissnsses 45
12. DESISN OVEIVIEW....uiiiieeiiiiineiiiiineiiiienesisiienesisiiensssirensssstrsssssssrsnsssssrsnsssssssnsssssses 45
R T I i Lol Y=Y [Tt 4 o T P PTPTP 46
14. Parameter definition.......cciiiiieeeiiiiiiiiiiiicirce s s s s seasses 46
14.1. BULLONS QUAIIADIE........covveeaeeeeeeeeee ettt e et araa e e e e e e e e eeesans 47
14.2. ErTOr ME@SSAQES .cevvveeeeeeeeeee ettt e ettt tee e e e et te e s e e e et as e e s e e e tabaee s 47
15. Traffic SIMUIAtioON cccceeeeiiiiiiiiirr e ssssseesssssssssssssnnnsses 49
15.1. 1 Lo] TP PPPTITP 50
15.2. RPIiIimMPIEMENTALIONccccceeeeeieiieeeeeae e eeeeee ettt ta e e e e e e e e e st tsaaaaaaaaeeeesaesans 50
15.3. AIrcraft INfOrMQLIONccccceeeeeieeeeeee ettt e e e e e e e e et ataaaaaaaaaeeeeaesans 50
15.4. BULLONS QUAIIADIE........ceeveeaeeeeeeeeeee ettt e e e e e ettt a e e e e e e e e s 51

16. Use case DUBLIN RWY 28.....ccciiieiiiieitireieiitereereceerececerecassesasessesassessssssasassesassnses 53

16.1. DUDBIIN POINt MEIGE .coveeeeeeeeeeeeeeeteee ettt a e e e e e e e e e s saaaaaaaeeesansaes 53

16.1.1. Dublin Merge Point RUNWAY 28ccoceeieiiiiciiiiiiiieeee e eciirree e e e e 54

6.2, INPUL fIlES.ceiiaaaeeeeeeee ettt ettt e e e e e e e e e s ettt aaaaaaeeeaaaaaas 57
16.3. Program @XECULIONcuuuceeeiieiiiiiieesieeeiiiee e e e e e tittee e e e e eetee e e e e eetiee e s e e aaasaee s 59
16.4. CoNClUSiON Of the USE CASE..........uuuveeereeieeeeeeeeeecciitieeaaaaeeeeeesssstssssaaaaaaaeeesansians 62
PART 5 — PROGRAM IMPLEMENTATIONcceuiitiiiiiiiiiiieeiieciaiieniiesiiessrassrssisesmsesssssnns 63
17, PACKABES ceuvuriieiiiiiiirinnniiiiiiiiteennenssssisiiiressssssssssssssessssssssssssssssssssssssssssssssssssnnnnsses 64
V2 W = (o1 (o [=0 1111 g Lot [¢ IO U UUUURR 65
T 111 =T o £ Vol TP TTPRP 68
18.1. ISIMUIGLIONDATA.eveeeeieeeeeeeeeeteeeteee e e e e ettt e e e e e e e e e e sssesssaaaaaaaeeeaaasaes 68
18.2. IPOSITIONDAEAcccevvveeeeieeeeee ettt e et tee e e e ettt e e e e e e et ae e s e e e tabaee s 68
T T | o T | o T ST PPR 69
S T U U o) j o] W Y (=1 1] (USSP UUUUUR 69
18.5. JAIrCraftDAtALISTENETccccceeeeeieeeteea ettt ta e e e e e e e e e st sassraaaaaaaeeeaaesaes 70
19. Java Class DOCUMENTAtioN.....ccccueeiiiiiiiiiieeineiiiiiiiiineesseessisssnsessssssssssssssssssssnnsses 71
S DY 1 0 17 (o | 1 o] B UUPUURR 71
19.2. TIMETRAFEAU ...ttt ettt e e e e e e e e e e sttt aaaaaaaeeeaaasaes 75
IS TV o [o 2o 11 1= USSR UUUURP 80
N R 1] o | o 1 T=J U UPUUUP 86
PART 6 — PROJECT FINALIZATIONcceuuuiiiiiiiiiinennnnsisiiiiiiseessssssssssssssssssssssssssssssssssssnsses 93
20. Budget calculationcciiieeeeiiiiiiiiiiiiecniireee i rersssssssesssssesssassssssssnes 93
21, CONCIUSION ..iiiiiiieenniiieiiiiiinensnsssseesiineesanssssssssssteessnssssssssssssesssssssssssssssssssnnssssssssses 96
21,0, FULUI® WOIK c.oevveeieeeeeeeeetttte e ettt e e e e e e e ettt e e e e e e e e essssatsasasaaaaaees 96
21.2. Personal CONCIUSIONuuveeieeeeeeeeessciieeeieeee e e e e ettt e e e e e e e e e e ssscaasaaaaaaaees 97
22. BIBLIOGRAPHYcuueiiiiiiiiiiiiinnneiieiiiiiiissnssssssesisiitsssssssssssssssssssssssssssssssssssnsssssssssses 98
APPENDIX ...iiiiiiiinnneiieiiiiiiiienmsssieeiiitemesmssssssssstsssssssssssssssssstsssssssssssssssssssnssssssssssssssnnns 102
Appendix 1. AIP IRELAND EIDW AD 2.24-17.1 ...cuuueeceeereeeeiiieaeeeiiieaeessiieaeeesiiienaessssens 102

Appendix 2. Excel File — Routes for Approach Dublin Runway 28..............ccceeeeeevvvnnnn. 106

PAGE INTENTIONALLY LEFT IN BLANK

LIST OF FIGURES

Figure 1. Air Navigation ServiCes. ... 8
Figure 2. Worldwide Air Navigation Regions.ccccuuuiiiiiiiiiiiiiis 12
Figure 3. Worldwide Air Navigation Regions ICAO.ceiiiiiiiiiiii, 12
Figure 4. FIR/UIR LOWEr AIrSPace.ccooiiiiiiiiiiiiiiiiiiit ettt 14
Figure 5. FIR/UIR Upper AIrSPaACE.uuuuiiiieaee e 14
Figure 6. Air traffic control UNItS. ... 18
Figure 7. Control centres related to flight phases............cccooiiiiiiii 19
Figure 8. Control areas with classes and altitudes. ..., 19
Figure 9. Holding pattern right turn............oooii s 20
Figure 10. Holding stacks in South East England Airspacecccccoiin. 21
Figure 11. Linear holdings, Trombone and Point Merge.ccccccccciiiniinnnn, 22
Figure 12. Point Merge CONCEPL.oooiiiiiiiii i 23
Figure 13. Point Merge located inside the TMA.ccooiiiiiis 24
Figure 14. Instructions per aircraft.............ooooiiiiiiiii s 27
Figure 15. AP - Evolution of mean ISA value for Vectors and Point Merge.27
Figure 16. Descent profile for Baseline and Point Merge.ccccccciiiinnis 28
Figure 17. DUBLIN - Total Number of holds in 1 measured hour. 28
Figure 18. Point Merge Deployment Status.ccccuviiiiiiiis 30
Figure 19. RPIDASIC id@a.oeeiiiiiiiiiiiiiiiii e 31
Figure 20. NEST tool showing traffics flying through LAPMO. 34
Figure 21. Overview DDR2 SEerviCe.cooiiiiiiiiiiiiiiie e 35
Figure 22. SOG file @XIracCt..........coooiiiiiiiiiiiii e 39
Figure 23. OOP class and interface relations.ccccuveiiieiis 41

Figure 24. Program design OVEIVIEW.ooiiiiiiiiiiiiiiiiiiiee et 45

Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 32.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.

Figure 45.

Window one - chose traffic to simulate.ccccooiiiiiin. 46
Window 2 - Parameter Definition.ccccooiiiiiiiiiee 47
BUttons WINdOW 2. ... 47
Window 3 - Simulation.coeeiiiiii e 49
MAP PANEL. ... 50
RPIPANEL. ... 50
Aircraft information panel. ... 51
BUttons Window 3. ... 52
Point Merge in Dublin — runway 10 (left) and runway 28 (right). 53
AIP IRELAND AC 2.24 - 17.1 DUBLIN RWY 28.ccoiiieeieeenne 56
Chosing historic traffiC. ... 59
Example wrong parameter input. ... 60
Parameter iNput....... ..o 60
Traffic simulation with a chosen aircraft.ccccoiiiiiiin. 61
Package structure. ... 63
Package interaction and interfaces.ccccoooiiiiiii 66
Class INtEracCtioNS.uueeiiiiiiiiiii e 67
ISimulationData. ... 68
IPOSItIONData.oooeiiiie e 68
1o o PSR 69
ITrafficListener and lAircraftDataListener...............ccooooiiiiiiiiiinnee 69

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Table 7.

LIST OF TABLES

ICAO airspace ClasSSes.ccooiieeiieeieieeeeeeee e 16
Controlled airspaces and their ATC requirements.cccceeeeeeeeee. 17
Activities Network Manager.oooo i 33
SOG traffic file structure. ... 37
Error MESSAgES. ... 48
Route definition in the AlP. ... 55
File Structures and 10Cation. ... 58

PAGE INTENTIONALLY LEFT IN BLANK

A graphic tool for air traffic control |1

PART 1 - INTRODUCTION

1. Introduction

A current discussion about the increment of take-offs and landings during
night hours in Germany reveals that in 2017 a new record of night flights was
established with a total of 215.843 starts and landings. “On the one hand, the
reason for the increase in night flights is the overall increase in air traffic. On the
other hand, it is due to the inactivity of authorities who fail to do enough against
increasing delays and early arrivals” [1].

Certainly, there is not one single approach for solving this kind of problems.
Interventions need to be implemented at different levels and in collaboration with
all affected entities. The Point Merge Approach can definitely contribute to the
solution of problems caused by an increase of air traffic by absorbing a higher
volume of traffic. This new procedure for sequencing arrival flows was developed
by Eurocontrol in 2006 and first implemented in 2011 at Oslo airport. There are
several studies which show the advantages of Point Merge. And moreover, the
advantages are not reduced to higher traffic capacity but also allow continuous
descent, reduced holding, fuel saving and noise reduction. Studies have also
shown that safety can be increased with Point Merge procedures. Furthermore,

it has various advantages from the controllers’ point of view.

The present work is composed of two main parts. A theoretical part with a
revision of Point Merge, introducing all relevant concepts, and a practical part.
The practical part focuses on the controller's point of view. A graphical tool has
been developed to simulate historic traffic from Eurocontrol, a first approach to
optimize the controller's monitor. Since controllers play a crucial role as far as
safe and efficient operations are concerned, it is important to provide effective
tools that help to improve the controllers’ performance. That is why in the traffic
simulation tool a visual aid called relative position indicator (RPI) has been
implemented. It indicates the time left for each aircraft to reach the Merge Point
and so take the full advantage of Point Merge operations.

A graphic tool for air traffic control |2

The project includes a use case to visualize the tool developed and to show
its correct functioning as well as the possibility to make any suggestions in order

to improve the RPI representation and the arrangement of the monitor.

A graphic tool for air traffic control |3

2. Objectives

The objective of this project is to develop a graphical tool for traffic

representation which can be used by air traffic controllers in the terminal area
(TMA). The tool is mainly intended for use at TMAs with Merge Point approaches,
in addition to the routes over which the aircrafts are represented. The tool is

intended for providing a platform, open to introduce and test innovations in

console of ATC.
This objective comprises some additional partial objectives:
Objective 1

A revision of holding patterns, with special emphasis in the simulation of the

Merge Point approach. The objective is to carve out the advantages of the Merge

Point pattern and to find approaches to tap the full potential of this procedure.
Objective 2

The decoding and simulation of historical traffic from .so6 files provided by

Eurocontrol data repository. It can be used for traffic analysation and serves as a
first approach to the final design.

Objective 3

A graphical environment for the simulation of traffics where new features for

helping the air traffic controller can be tested. In this project, a Relative Position

Indicator (RP1) is included on the controller’s console, indicating for each aircraft

the time left until reaching the specified Merge Point.

The project includes the presentation of a use case. The objective of this use
case is not only to show the correct functioning of the program but also to
demonstrate the design of the GUI and the way information is represented. This
allows to comment requests concerning design changes or remarks about any

missing information. For the use case Dublin Runway 28 was chosen.

As the development of such a tool needs to undergo various validation and

verification processes and due to the critical environment of implementation, such

A graphic tool for air traffic control |4

a tool cannot be developed in one single step. Therefore, in this project only the
first part of the whole project is developed and presented.

A graphic tool for air traffic control |5

3. Program Requirements

The global requirement of the project is providing a tool that provides:

e Time simulation of historical traffic provided by Eurocontrol: at each instant
of time it should provide a list of flights with their positions and the time left
to reach a specified point. It can provide additional information of interest.

o Traffic position will be expressed as a 4D point with longitude and latitude

in degree decimal, flight level expressed in feet and time in seconds.

These global requirements convey the following partial requirements.
File Decoding and Information Input

e The tool should decode .so6 files from Eurocontrol to get the data of real

historic traffic.
o It should filter the traffics in the .so6 file and only store the
information after certain (indicated) waypoints.

e The information about the routes to simulate that is given in the AIP of the
RNAYV standard arrival chart should be provided to the program.

¢ Information about Initial Fix and Merge Point for different approaches can
be provided to the tool to facilitate simulation parameter input.

e Documents with relevant information should be stored in a way easy to

access in order to facilitate file addition and modification.
User Interface (GUI)

e The user interface should be designed to process historic traffic, simulated
as well as real traffic.

e The program should show the routes of the approach (defined in the AIP).

e Over the routes, the program should provide a graphical representation of
the position of all flights in the air at the time simulated.

e The flights should be identified by their callsigns.

e The graphic interface should include a Relative Position Indicator (RPI).

e The time of simulations should be shown to the user.

A graphic tool for air traffic control |6

e The program should provide detailed information of the flights simulated if

required.
Simulation parameter input

e The following data should be provided / selected by the user:
o name of .so6 file from Eurocontrol with the historic traffic of one day
o list of waypoints to filter the traffics
o name of Merge Point to make the time reference
o timeframe to simulate
o desired simulation speed
o the name of an excel file with the desired route data
e The tool should inform the user about the following errors in the input data:
o no .sob6 file chosen for simulation
o no Merge Point indicated
o the indicated Merge Point does not correspond to the .so6 file
chosen (it is not included in the file)
o no waypoints to filter indicated
o none of the waypoints is included in the .so6 file
o simulation start time is set after end time
e The program should not start if there is any error in the simulation

parameters.
Communication Protocols and Interfaces

e The program should implement two types of interfaces: a programmatic
interface and a graphical interface. The interfaces are important to
implement for future usage and development of the program.

o Programmatic interface
e The following attributes of traffic will be provided by the
programmatic interface:
e 4D Point
e velocity

e status (climb, descent or levelled)

A graphic tool for air traffic control |7

e time left to reach Merge Point
o Graphical interface
e A graphical interface should be implemented in the program
which provides all the simulation parameters and traffics for

simulation in each instant.
Constrains and Limitations

e The traffic that can be simulated is reduced to approaches.

e The simulation is reduced to one approach (one Merge Point).

A graphic tool for air traffic control |8

PART 2 - BACKGROUND AND TOOLS

4. Air Traffic Management, ATM

Air Traffic Management can be defined as “...the dynamic and integrated
management of air traffic and airspace, safely, economically and efficiently,
through the provision of facilities and seamless services, in collaboration with all
partners.” (ICAO) [2]. ATM, along with the aeronautic information service and
meteorological service, forms part of the air navigation services. ATM activities
are targeted to ensure save and orderly flow of traffic to guide aircrafts safely
through the sky and on the ground and to manage airspace in a way it can easily
adapt to changing needs of air traffic [3]. These objectives are achieved in
collaboration with partners like airlines or airport operators.

AIR NAVIGATION SERVICES
|
AERONAUTIC METEOROLOGICAL AIR TRAFFIC
INFORMATION SERVICE SERVICES (MET) MANAGEMENT (ATM)
Air transit
services

Flight Information
Service (FIS)

Air space management (ASM)

Air traffic flow and capacity

Alert Service (ALS)
management (ATFCM)

Air traffic
control (ATC)

\ 4

Years before Months before Hours before Instant of

ration ration ration -
operatio operatio operatio operation

Figure 1. Air Navigation Services.

A graphic tool for air traffic control |9

Activities can be divided into three main services covering different time
phases: Airspace Management (ASM), Air Traffic Flow Management (ATFM) and
Air Traffic Services (ATS) including Air Traffic Control (ATC) [4]. In figure 1 the
time phases with the corresponding services are illustrates.

41. Airspace Management

Airspace Management is “the coordination, integration, and regulation of the
use of airspace of defined dimensions” [5]. It solves traffic capacity problems
based on long-term planning where the structure of airspace is modified. It is
performed at national and international level and can be divided into three
different stages: Strategic, Pre-Tactical and Tactical. The Strategic level includes
airspace design and airspace structure assignation to maximize efficient airspace
use. In order to achieve this maximization during the strategic level the following
activities are carried out [6]:

o the airspace structures including airport control zones and terminal
areas, sectors and sector configurations for en-route services,
proposals for airspace classifications, etc .

o standard arrivals, standard departures and instrument approach
procedures to/from the airports

o high performance procedures to achieve higher traffic densities,
RNAV, RVSM Reduced Vertical Separation

o air traffic services routes

o areas and zones with restricted air traffic, restricted areas, danger
areas, prohibited areas, temporary segregated/reserved areas

o definition of restrictions and conditions for the use of the route network

o flexible use of airspace

In the Pre-Tactical stage, the established designs are planned and assigned
in accordance to the users’ needs. An Airspace Use Plan is developed, by which
the planning and occupancy of airspace is defined.

A graphic tool for air traffic control 110

Finally, at the Tactical level, the airspace structures are dynamically
managed based on real-time usage as well as the Airspace Use Plan, making

use of the Flexible Use of Airspace.

4.2. Air Traffic Flow Management

The purpose of ATFM is to balance traffic demand and available capacity to
ensure safe densities of traffic by minimizing traffic surges. It is based on the clear
definition of capacities and the analysis of predicted traffic flows. Therefore, an
efficient exchange of information including flight plans, airspace availability and
capacity is essential [7]. Air Traffic Flow management similar to ASM is divided in
three phases. During the Strategic phase, taking place up to two days before the
operation, traffic forecasts are made based on the flight plans obtained, statistics
and simulations. Together with capacity information of each sector, systematic
capacity deficits can be detected as well as those able to receive additional traffic.
In the Pre-Tactical phase, during the two days before the operation takes place,
capacities and demand are studied and those areas are identified where demand
is likely to exceed capacity. Operators and ATS are informed about possible
regulations for the following day. Finally, in the Tactical phase - which is the same
day of operation - ATFM calculates where an aircraft will be at any given moment
during its operation and checks that the controllers in that airspace can safely
cope with the flight and there will be no overload. If they cannot cope with the
flight, the aircraft has to wait on the ground until it is safe to take off [8], pp GEAII.

4.3. Air Traffic Service

This service is provided hours before and during the operation. It requires
radiotelephony and/ or data link of RCP type, assuring continuity, availability and
integrity. Included in ATS are [9]:

o Air Traffic Control: During the flight and on ground ATC takes care of

a save separation between aircrafts, including Tower Control at
airports and Air Traffic Control Centres. The objective is to prevent

collisions between aircrafts and to maintain an orderly flow of air traffic.

A graphic tool for air traffic control 111

o Flight Information Service: The objective is to provide advice and

information useful for the performance of a safe an efficient operation.
The FIS provides information and updates related to safety,
navigation, technical, administrative or legal topics aimed to improve
safety, regularity and efficiency. It also informs about meteorological
and atmospheric conditions which may affect safety. This information
can be distributed in different ways, for example via maps, notices or
publications.

o Alert Service: The ALS objective is to inform authorities about aircraft
in need of search and rescue and to support the responsible
organisation as required. It informs about aircraft emergencies or
unlawful interferences, differentiating the actuation required in

Uncertainty, Alert and Distress.

5. Airspace Structure

Eurocontrol defines airspace as “a defined three dimensional region of space
relevant to air traffic” [10]. Due to the continuously increasing volume of air traffic,
this airspace needs to be structured and classified. The existing classifications
by ICAO structure airspace relative to sovereignty, responsibility and information

service as well as control service.

5.1. Worldwide Air Navigation Regions

The need for a division in Worldwide Air Navigation Regions goes back to the
40’s of last century, where standards and procedures for safe and efficient
operations of international air services were not shared by all areas of the world.
That is why in 1945 |ICAOQO established ten air navigation regions with equivalent
aerial development, infrastructures and traffic problems. These regions were
reduced to a number of eight in 1954 [11].

Over time, the regional character of operational and technical problems was
lost. Today, the regional division of airspace serves for the planning of facilities
and services needed for the international air routes network. It provides a starting

A graphic tool for air traffic control 112

point for regional air navigation meetings and the basis for facilities and service
distribution. Summarizing, its goal is supporting the provision of air services and
planning the implementation of essential ground facilities for international air

transport [11].

The air navigation regions are visualized in figure 2 and an official map from
ICAO is represented in figure 3. The eight regions with their corresponding
identification are the following:

e Africa-Indian Ocean (AFI) Region
e Asia (ASIA) Region
e Caribbean (CAR) Region

e European (EUR) Region

¢ Middle East (MID) Region

e North American (NAM) Region
¢ North Atlantic (NAT) Region

. Pacific (p AC) Region Figure 2. Worldwide Air Navigation Regions.

e South American (SAM) Region

)

<~
. i - ¥
50T 79 CAG HGAL SuPP EmENT ARY PROCEBRES PROCTOURTS Comr LmtnT ARES SGOmALES OF L0 or Lo

Figure 3. Worldwide Air Navigation Regions ICAQ. Source: ICAO

A graphic tool for air traffic control 113

5.2. Lower and Upper Airspace

The separation between lower and upper airspace was performed after the
appearance of jets. In contrast to internal combustion engines, these are more

effective when flying above FL245.

The lower airspace is arranged below a variable vertical limit. In most
countries - including Spain - it is from ground level to FL245 (7300m). The
airspace is controlled and includes airways linking the airport with upper airspace
but excluding terminal or airport airspace [12], [9].

The upper part of the airspace is defined above a variable vertical limit. Its
lower limit is the lower airspace and it is formed by upper airspace airways. It is

a controlled airspace used mainly by jets in the cruise flight phase [13], [9].

5.3. Flight Information Regions and Upper Information

Regions

ICAQ divides all airspace around the world into areas of responsibility for
providing Flight Information Services. These areas are called Flight Information
Regions (FIR). The controlling authority in each region has the responsibility to

ensure that air traffic services are provided to the aircraft flying within it [14].
FIRs may be splitted vertically into lower and upper sections.

e The lower section remains referred to as a FIR. In this region, Flight
Information Services (FIS) and Alerting Service (ALS) are provided.

e The upper section is called Upper Information Region (UIR). In the
UIR Flight Information Services are provided.

In the following two cards (graph 4 and 5), the FIR/UIR above the Eurocontrol
Member States are shown. When comparing both maps, you can observe that
the Upper- and Lower Airspace over Spain and Ireland are exactly the same,
meaning that the FIR and UIR regions coincide, whereas the ones over France

for example are different.

A graphic tool for air traffic control

[FIRUR Lower s

] EUROCONTROL Member States

Source: EAD
Effective: 04 January 2013

Figure 4. FIR/UIR Lower
http://www.eurocontrol.int/sites/default/files/content/documents/nm/cartography/04012018-firuir-lower-airspace-ectl.pdf

[FIRUR Upper irspace
[EUROCONTROL Member States

Figure 5. FIR/UIR Upper Airspace. Source:
http://www.eurocontrol.int/sites/default/files/content/documents/nm/cartography/04012018-firuir-upper-airspace-ectl.pdf

5.4. ICAO airspace classes

Airspace within a FIR/UIR is divided into areas that vary in function, size and
classification. Depending on the classification, the rules for flying within the

specified airspace and whether it is ‘controlled’ or ‘uncontrolled’ vary. Information

Airspace.Source:

114

A graphic tool for air traffic control 115

Regions are uncontrolled airspaces, where FIS and ALS services are provided.
In controlled airspace, in addition to FIS and ALS, air traffic control services are
provided and aircraft flying in controlled airspace must follow instructions from air

traffic controllers.

The airspace classes defined by ICAO (Annex 11, [15]) are resumed in table
1. Only in classes A and B separation for all flights (IFR and VFR) is provided by
air traffic control service. Class C separates IFR from other IFR flights and VFR
flights and VFR from IFR flights. In class D and E only IFR flights are separated
from IFR flights. In class F and G air traffic control services are not available for
any flight. In class F, air traffic advisory service is provided for IFR flights and in

class F and G flight information service is available for all flights.

A graphic tool for air traffic control

|16

Subject
toan
Type Separation Radio communication ATC
Class of flight provided Service provided Speed limitation* requirement clearance
A IFRonly Al aircraft Air traffic control service Not applicable Continuous two-way Yes
IFR All aircraft Air traffic control service Not applicable Continuous two-way Yes
B
VFR All aircraft Air traffic control service Not applicable Continuous two-way Yes
IFR IFR from IFR Air traffic control service Not applicable Continuous two-way Yes
IFR from VFR
c VFR VFR from IFR 1) Air traffic control 250 kt IAS below Continuous two-way Yes
service for separation from IFR; 3050 m (10 000 ft) AMSL
2) VFRIVFR traffic information
(and traffic avoidance advice on
request)
IFR IFR from IFR Air traffic control service, traffic 250 kt IAS below Continuous two-way Yes
information about VFR flights 3050 m (10 000 ft) AMSL
(and traffic avoidance advice on
D request)
VFR Nil IFRVFR and VFRVFR traffic 250 kt IAS below Continuous two-way Yes
information (and traffic avoidance 3 050 m (10 000 ft) AMSL
advice on request)
IFR IFR from IFR Air traffic control service and, 250 kt IAS below Continuous two-way Yes
as far as practical, traffic 3050 m (10 000 ft) AMSL
£ information about VFR flights
VFR Nil Traffic information as far 250 kt IAS below No No
as practical 3050 m (10 000 ft) AMSL
IFR IFR from IFR as Air traffic advisory service; flight 250 kt IAS below Continuous two-way No
far as practical information service 3 050 m (10 000 ft) AMSL
F
VFR Nil Flight information service 250 kt IAS below No No
3050 m (10 000 ft) AMSL
IFR Nil Flight information service 250 kt IAS below Continuous two-way No
3050 m (10 000 ft) AMSL
G
VFR Nil Flight information service 250 kt IAS below No No
3050 m (10 000 ft) AMSL
* When the height of the transition altitude is lower than 3 050 m (10 000 ft) AMSL, FL 100 should be used in lieu of 10 000 ft.

Table 1. ICAQO airspace classes.

5.4.1. Controlled Airspace

Controlled airspace covers ATS airspace classes A, B, C, D and E and is

divided into different areas with specific ATC requirements. It is differentiated

between Controlled Area (CTA) — an area which does not touch the ground - and

Controlled Airports, areas which touch the ground. Both are again divided into

different areas and zones, as resumed in table 2:

A graphic tool for air traffic control |17

Oceanic OCA UTA: Upper Terminal Area.

Control Area [UTA Controlled area in upper airspace.

X AWY: Route in the air in the form of
Airways T corridor defined with segments or legs

In route airspace

between fixes.

CTA: It usually spans over several
close airports whose dimensions or
traffic volume do not justify separate

Terminal TMA TMA.

Maneuvering Area | / CTA
TMA: junction of several airways;

the ones in the lower airspace are inside
the TMA .

Controlled Traffic Area

Associated to an aerodrome
intended to protect the arrival and
departure paths of controlled IFR flights
and holding patterns. It includes the
Controlled _
_ _ CTR | departures and final approach areas.
Traffic Region
They contain some corridors for VFR
flights in their final approach to the
aerodrome traffic circuit and corridors

for overflights (of class G).

It is contained in the CTR and

delimits the airspace where the tower is
Aerodrome) o
ATZ | in control of the aircraft flying in the
Traffic Zone
aerodrome traffic circuit. Used when

Controlled Airports
Terminal area

VFR air traffic is intense.

Table 2. Controlled airspaces and their ATC requirements.

Each of the previously defined areas and zones is controlled by a specific air
traffic control unit. The en route airspace which includes all the airways is
controlled by Area Control Centers (ACC). The Approach control service for
TMAs is provided by the Approach and Terminal Area Control Center if available.
Otherwise ACC or the Aerodrome Tower (TWR) which also controls the CTR,

A graphic tool for air traffic control 118

offer control in the TMA. Once the aircraft is on the ground, Ground Movement
Control (GMC) is responsible for aircraft guidance (see graph 6).

En route contLo =

route airspace

(airways)

-
-
-
-
-
-
-
-
-
-
-

Aerodrome control CTR/IATZ

Groun
Ground control

Figure 6. Air traffic control units.

Graph 7 shows once more the different control centers related to the
corresponding flight phase they are responsible for. Graph 8 places the different
control areas in space, indicates the corresponding class as well as the altitudes

for each.

A graphic tool for air traffic control 119

En-route / Cruise ~ Arrival / Descent Tower / Landing,
10 T;M Ground / Taxi In
N -ﬂww&w
— ETMA | TMA |——
IAF

e] B e | B

Figure 7. Control centres related to flight phases.

FL 600 g
18,000 MSL CLASSA
14,500 MSL CLASSE
—
CLASS B

Nontowered 700 AGL 1,200AGl CHASS D

Figure 8. Control areas with classes and altitudes.

A graphic tool for air traffic control

6. Holding Patterns

Holding patterns are used to delay an aircraft by flying a predetermined
manoeuver keeping it within a specified airspace. They can be requested by the
pilots or used when ATC needs to delay the progress of a flight due to different
reasons which can be an emergency at the airport, weather conditions or runway
unavailability preventing aircrafts from landing. The most common reason for
holding is caused by too much traffic when an airport has attained its traffic
capacity and aircrafts are required to hold in order to maintain a safe and orderly
flow of traffic. Hence, holding is especially important for arrivals at congested
airports.

6.1. Holding Pattern IFR

For instrumental flight rules (IFR) the standard holding pattern is performed
with right turns, left turns in non-standard holding patterns. Each holding pattern
begins and ends at a holding fix. Additionally, it is defined by a direction to hold
from the fix defined by a bearing, course or radial. The distance to fly can be
measured by timing or with a DME. Figure 9 shows the structure and elements
of a standard holding pattern with right turn [16].

A. Holding pattern (right turns)

Abeam
|
I

|
|
E Outbound —»
|
|
|

\ <— Inbound

120

1 Outbound end
A

, Holding side

1

Holding fix ~ 7 T

Non-holding side

.

Figure 9. Holding pattern right turn.

Source: OACI 8168 Vol. Il

If there is more than one aircraft flying the same holding pattern, they are
separated vertically by at least 1000 feet. This is called a vertical holding stack,
where new arriving aircraft are added at the top and then spiraled down to be
vectored into final approach [17]. Depending on the configuration of the airport

A graphic tool for air traffic control |21

and the runway on use, one airport can have more than one holding pattern. That
can be seen in figure 10 where two vertical holding stacks can be observed in

white color.

Figure 10. Holding stacks in South East England Airspace. Source: NATS [17]

In figure 10, additionally to the vertical holding stacks, a different kind of
holding can be detected. This is a type of linear holding performed with RNAV
(aRea NAVigation) which will be illustrated in the next section.

6.2. Linear RNAV Holding Patterns

Area navigation is a method allowing aircrafts to operate on any flight path
without the need of a track directly to or from any specific radio navigation aid
and that way optimizing air routes. They have been made possible by the huge
variety of high performance RNAV systems based on ground- / space navigation
aids, self-contained aids, or a combination of these. RNAV approaches,
containing the analyzed holding patterns, are described by waypoints (3D
artificial reference points), legs, speed and altitude constrains. These data are all
stored on the onboard navigation database [18], [19]. Because of the lack of
accuracy for terminal areas, Basic Area Navigation (B-RNAV), introduced for en
route airspace, could not be used in the more complex terminal areas. The
development of Precision Area Navigation (P-RNAV) with a track-keeping
accuracy of £ 1nm made a re-design of terminal area airspace possible, changing
terminal operation procedures [20]. During the past years, more and more
terminal P-RNAV arrival routes have been defined, replacing Standard Terminal

A graphic tool for air traffic control |22

Arrival Routes (STAR) with given vectors to guide aircraft to the runway when
leaving the STAR and entering the terminal area [21]. The change of arrival
procedures implicated the modification of holding patterns. The traditional vertical
holding stacks were replaced by linear holdings. There are two different types of
linear hold, trombone and Point Merge. In both procedures, all arriving aircrafts
are kept on the same level. The separation occurs on the horizontal plane using
satellite navigation tracks. The aircraft stays on the linear hold until it is vectored
to the final approach. The traditional holding stacks still remain for use but only
in exceptional circumstances. In figure 11 , the two linear holdings are
represented [17]. In the following paragraphs, the two holding patterns are

amplified, going into more detail and focusing on the Point Merge Holding.

Linear hold Trombone Linear hold Point Merge

Figure 11. Linear holdings, Trombone and Point Merge. Source: [17]

6.2.1. Trombone Holding

In this holding pattern “Aircraft [are] sequenced by the timing of the turn into
the final approach” [17]. The design of Trombone procedures includes an
outbound leg, parallel and opposed to the final approach. The aircraft fly the
outbound leg, then performing a turn to the inbound leg to reach the final
approach. The instruction to turn is given by the air traffic controller. It can extend
the outbound leg until there is enough spacing, incrementing the turn to base in

A graphic tool for air traffic control |23

half mile steps. That way, spacing conflicts can be solved in combination with
speed reductions. As this procedure can extend the outbound leg for various

nautical miles, it has the capability of absorbing large amounts of delay.

Examples of airports with Trombone holding patterns are for instance
Hartsfield-Jackson Atlanta International Airport or Paris Charles De Gaulle
Airport.

6.2.2. Merge Point Holding

This holding pattern can be designed in many different ways. Considering its
configuration factors like airspace and ground configuration, capacity and
efficiency need to be taken into account. All designs are composed of one Merge
Point, that is the point where all possible routes encounter and which is the last
waypoint before being guided to the IAF. Around this Merge Point, placed at iso-
distance from the same, are sequencing legs forming an envelope of possible
paths to the Merge Point (figure 12). Merging is achieved by a “direct to”
instruction, given to the pilot, and telling him to fly directly to the Merge Point.

Integrated sequence
Merge point ——*
€ - Envelope of
[possible paths

Arrival flow

Sequencing legs
(at iso-distance from
the merge point)

Figure 12. Point Merge Concept. Source: Eurocontrol [22]

A graphic tool for air traffic control |24

Transfer point TMA Boundary

>
o 4

Holding stack
Sequencing legs (arcs) T — e
B3 -
~ N &
y W Transfer point
“Diract to” zone ~ m

&
- ®

Merge points

rar
runways !

Figure 13. Point Merge located inside the TMA.

Graph 13 shows how the Merge Point is embedded in the TMA. It can also
be observed that traditional holding stacks are placed at the IAF, whose usage
should be kept as low as possible.

Point Merge arrivals are of special interest for this work, as they will be
analyzed in detail and furthermore they are object of the use case in part 4 of this
work. In the next chapter, the Point Merge arrivals will be described in more detail
and studies of this recent arriving method will be analyzed.

7. Merge Point Pattern

The Merge Point procedure was developed by the Eurocontrol Experimental
Centre (EEC). Its aim is to merge aircraft arrival flows improving arrival operations
based on P-RNAV. Point Merge operations allow continuous descent
approaches, contributing to a fuel saving procedure in the terminal area [22]. It
also allows to reduce holdings and controller workload. All these advantages of

Merge Point will be analyzed and proven in more detail in the subsequent section.

A graphic tool for air traffic control |25

71. Studies of Point Merge Operations

Many studies have been carried out based on real scenario simulations to
show the advantages and disadvantages of Point Merge procedures. In the
following subchapters, the results of the here presented studies will be

summarized.

- Merging arrival flows without heading instructions [23]

This paper, presented at the 7th USA/Europe Air Traffic Management R&D
Seminar in 2007, summarizes the results of a series of small-scale experiments
to get an initial overview of its benefits and limits. Three experiments were
performed with the purpose of improving the method and another one to collect

data and compare to the traditional procedure.

- Real Time Simulation Dublin TMA2012 Phase 2 [24]

This study was carried out in March 2010 at the EUROCONTROL
Experimental Centre. It is a real-time simulation (RTS) based on the
implementation of a Point Merge System in Dublin TMA. A total of 10 controllers
participated in this study, performing scenario based exercises and reporting their
experience in form of questionnaires. The study was based on the framework of
the Dublin TMAZ2012 carried out by the Irish Aviation Authority.

- PMS-TE simulations joint study DSNA and EUROCONTROL [25]

The study, a series of real time simulations, was conducted jointly by DSNA
(Operations Directorate and Paris ACC) and EUROCONTROL (Network
Development Pillar and Experimental Centre) in the period between 2009 and
2010. The aim of this study was to investigate the potential applicability, benefits
and limitations of Point Merge for ACC arrival sectors.

7.1.1. Controller side

After the simulation, controllers indicated a higher perception of awareness
of the traffic situation in their sector under Point Merge Operations attributed to
the predictability of traffic flows. All controllers coincided, that Point Merge

A graphic tool for air traffic control |26

Operations allowed a more structured way of working coming along with low work
load. Nevertheless, some of them expressed concern about the loss of vectoring

skills when working with Point Merge approach [24].
In the third study presented, controllers reported as main benefits [25]:

e easiness and robustness of the procedure

e better and clearer division of tasks and roles
e reduction of workload and communication

e enhanced safety and capacity

e Dbetter delivery to approach and a better view of the arrival sequence
Limitations identified were:

e sensitivity to vertical aspects with the need to strictly respect levels on the
legs (analogy with holding patterns often highlighted) and compatibility with
existing receiving conditions (aircraft sometimes transferred late and at high
altitude)

e sequencing of the secondary arrival flow not always intuitive or optimized
From a service provider perspective, other benefits were identified:

e Dbetter airspace management (best use of available airspace, clear
determination of airspace capacity)
e continuous initial descent (although level-offs along the legs)

¢ no need for any system modification or new technology

7.1.2. Controller Activity and Workload

All studies came to the conclusion that workload was reduced with Point
Merge Operations. Coordination between sectors was reduced and simplified as

traffic flows became more predictable. Fewer messages, clearer and better task

A graphic tool for air traffic control

distribution and less instructions were

reported. Figure 14 compares
instructions between Baseline and Point
Merge operations. While Heading Direct
and Level instructions decrease with
Point Merge, speed instructions are
slightly higher as the task of the APC
achieving

essentially consisted in

homogeneous speeds when aircraft join

the sequencing legs. There were also

|27

™ Baseline
Point merge

g0
g -
g
&
a
S
: I
g 5
. 1

: L

0

Heading Speed Level All

Direct

Figure 14. Instructions per aircraft.

differences between the
)) AP - Evolution of mean ISA value for Vectors and Point Merge
operational designs [23], [24],
[25]. very hign [;
§ J'Z PR ——— ——t

In post-simulation self- R e e e e—
assessment rations’ ContrO"erS Dv: 12 3456 78 91011121314151617 181920212223 24252627 282930
. . ISA ‘press’ number
indicated that workload was rated)

| Vectors —=— > PoimMevge‘

significantly higher in Vectoring

conditions in Approach, as shown

Figure 15. AP - Evolution of mean ISA value for Vectors and

Point Merge.

in figure 15 [26].

7.1.3. Capacity

The simulation analysis indicated an increase in the sector’s capacity limit of

40%. This increase could be observed on both sides, the controllers’ and the

system’s. Up to 50 movements per hour could be achieved and still the

controllers’ workload was reported to be low [24]. In a final post-simulation

questionnaire controllers saw a potential for capacity increase due to the gain in

comfort and frequency load [25].

A graphic tool for air traffic control

128

7.1.4. Descent Profiles - Continuous Descent Operation

A posterior analysis of descent
profiles (figure 16) for both methods
(Point Merge (green) and traditional
(blue)) shows a difference between
both. the

predictability of aircraft trajectories for

Due to increased
Point Merge, aircraft are able to

remain somewhat higher when flying

=)
=]

Point merge
- Mean
Std dev

y feet (+100)
O‘ o

Altitude in feet
o

Baseline
— Mean

Std dev
20+

Figure 16. Descent profile for Baseline and Point
Merge.

from the legs to the final approach fix (FAF). In this study (in 2007) controllers

commented that descent could be better managed if the flight crew knew the

distance left and that the structure could be improved by placing the legs at higher

altitudes (FL100 or FL120) to allow aircraft to perform a continuous descent until

the ILS [23].

Step descents were no longer necessary to space and sequence the traffic.

Besides, in later designs with sequencing legs at FL100-FL120, the performance

of Continuous Descent Operation (CDO) from the level flown along the

sequencing legs towards the ILS localiser could be achieved [24].

7.1.5. Reduced Holding

The study concerning the

8

DUBLIN- Total Number of holds per arganisation
Aggregetion of 5 runs per organisetion - 1 measured hour

Point Merge System in Dublin

revealed a significant decrease

)

of holding aircraft in Point Merge

8

Operations (figure 17).

Number of aircraft in hold
8 a8

-]

3

0

8 VECTORS s VECTORSMetered VB -Pusm-u]

TOTALNBHOLD

Figure 17. DUBLIN - Total Number of holds in 1 measured hour.

A graphic tool for air traffic control 129

7.1.1. Fuel saving and noise

Regarding the potential of fuel saving and noise issues, David Curtis, Head
of future ATM and Policy of NATS, comments that “the big difference is that these
linear holds can be much higher than a traditional stack, potentially up to 20,000
feet, and are therefore quieter for people living underneath and more fuel efficient
for the airlines” [27].

7.1.2. Safety

Safety could be improved with the Merge Point Procedure due to more
anticipation, less workload and the reduced risks of misunderstandings as less
communication is needed. This provides more time for conflict detection and
resolution. From a controller’s point of view an improvement can be obtained, as
trajectories were more structured and less dispersive reducing the probability of
conflicts and that way increasing situational awareness and predictability [24].
Also, the objective perception of safety under Point Merge was rated as equal or
increased by the controllers. They reported the capacity of safely and efficiently
handling more traffic under Point Merge condition [24].

7.2. Airports with Point Merge arrivals

The first airport in implementing Point Merge Approaches was Oslo airport in
2011. Since then various airports followed, see figure 18. Today, Point Merge
operations are implemented at three Norwegian regional airports (2014), Dublin
(2012), Seoul (2012), Paris ACC (2013), Kuala Lumpur (2014), Lagos (2014),
Canary Islands (2014), Hannover (2014), Leipzig (2015) as well as London City
and Biggin Hill (2016) [28].

A graphic tool for air traffic control 130

Figure 18. Point Merge Deployment Status. Source: Eurocontrol [28]

8. Relative Position Indicator

The benefits of Point Merge Operations can be restricted by wind conditions
and speed variation during the approach and between aircraft. Different
geometries of the routes to the Merge Point also contribute to the difficulty for
controllers to identify possible merge problems on time. That inhibits early
intervention and avoidance of vectoring an aircraft off the RNAV procedure. If
controllers were able to identify potential merge problems with anticipation, they
could intervene with speed control and let aircraft get to the Merge Point with the
required separation. The MITRE Corporation has been developing a tool called
Relative Position Indicator (RPI), a near term tactical tool to assist managing
traffic flows in the TMA. This tool does not need any special equipment to be
installed on the aircraft nor does it require procedural changes for ATC.

8.1. RPI tool

The RPI is shown on the controller’'s monitor indicating the position of aircraft
relative to a Merging Point as if all aircraft were flying in one line or on one route.
To identify the relative position of all aircraft to each other, the flight path distance

A graphic tool for air traffic control 131

to the Merge Point is calculated, taking into account all the non-linear segments
and the exact distances flown by turns.

The expected benefits are first of all the application of speed control on an
early stage of approach to build gaps more precisely and in consequence, when
arriving at the Merge Point, aircraft have the necessary separation. That would
lead to a reduction of vectoring for delaying aircraft.

(-
A
All Aircraft
Represented on

Single Flow

Figure 19. RPI basic idea.

9. EUROCONTROL Network Manager

Eurocontrol is an intergovernmental organization founded in 1960 with 41
member states, including Ireland and therefore offering relevant information and
data for Dublin Airport. Its commitment is to build a Single European Sky (SES),
a project launched by the European Commission in 1999, by reforming the

architecture of European air traffic management (ATM). Eurocontrol also takes

A graphic tool for air traffic control |32

the role of Network Manager, bringing together the different aviation and air traffic
management protagonists involved in the design, planning and management of
the European ATM network. The services provided by Eurocontrol include
strategic and tactical flow management, regional control of airspace, controller
training, safety-proofed technologies and procedures, collection of air navigation
charges, Airspace Management (ASM) processes, aeronautical information
management (AIM), the collection, analysis and publication of data and statistics

and much more.

The Network Manager (NM) manages air traffic management network
functions (developing and creating Route Network Design, providing a central
function for Frequency Allocation, coordinating improvements to SSR Code
Allocation, carrying out the Air Traffic Flow management function) [29] and
supports the global performance of the European aviation network by monitoring
traffic and providing delay forecasts and analysis. These offer an approach for
planning and operational activities. The three activities realized by NM in order to
support global performance of European aviation network are listed in detail in
table 3.

Statistics and
Forecast Service
(STATFOR)

The STATFOR forecasts are used as direct inputs into the NSP, NOP
and the Network and local Performance Plans as required by the NMF
IR. These forecasts are also a prerequisite for the establishment of the
unit rates used to calculate the route and terminal charges. Traffic
forecasts are also used by an extensive number of planning
departments of airlines, ANSPs, airports, government authorities, etc.

for general planning.

The Operational
Analysis and
Reporting (OAR)

The Network Manager annual report describes the implementation of
the Network Strategy Plan and the Network Operations Plan, as well as
the performance of all aspects of the network compared to the
performance targets and performance plans. A comprehensive set of
more detailed reports - covering all operations and aspects of
performance and compliance concerning the network - is also

published.

A graphic tool for air traffic control 133

In addition to monitoring and reporting on the performance of the ATM

network in terms of delays from flow management regulations, the
The Central y 9 g

Office for Delay
Analysis (CODA)

Network Manager provides a monitoring and analysis function for all
delay reasons (ATFM, airline, airport, etc.). This enables correlation
between airline and network reported delays, and is used in schedule

and turnaround planning, enabling better punctuality.

Table 3. Activities Network Manager. Source: [30]

For the airspace and network design NM makes use of tools and data to
perform modelling and simulation. These tools allow operational analysis of
airspace structures and traffic distribution. Data used for these analysis are
stored in a database of past, present and future airspace and demand data, DDR
(Demand Data Repository) [30].

9.1. NEST (Network Strategic Tool)

The desktop application NEST (Network Strategic Tool), see figure 20, is a
scenario based modelling tool used for airspace structure design and
development, capacity planning and post-operations analysis, the organization of
traffic flows and the preparation of scenarios for fast time simulations. It is used
by the Eurocontrol NM to optimize the available resources and improve
performance at network level but also by Area Control Centres or Airports [30],
[31].

The simulation algorithm of the program provides future traffic samples and
delay simulations as well as 4D traffic distribution, configuration optimizer and
regulation builder. The tool allows a wide range of analysis and traffic
visualization. With NEST the different scenarios can not only be simulated. The
data representing a chosen scenario, for example, show all the traffics flying over
a certain way point and can also be exported in different formats [31].

The traffic data and other datasets to be used for planning and analysis with
NEST- including future and historic traffic - can be downloaded from the DDR2

web portal, described in more detail in the next section.

A graphic tool for air traffic control 134

File Edit View Scenario Processing Analysis Transform Tools Map Help

aw BE[eox<¢By/Petisdo0ssduks| 0o@? aO6)
Data Browser & x |[EUROCONTROL.NEST Ef 5y
@ Original ,/
/
>

Airspace | Network | Traffic
» Filter
I
(Load Flights) 110 (&
Group by:| ' Flight ~| show: @ Al () selected
[Filter]

Flight ID Call Sign City Pair A
T EBETISTETHS00 HARE EiDW |
7 218218337 ETHS04 HARB_EIDW |
;7 218218754 EINTMN CYYZ_EIDW U
7 218218982 ETDT2E OMAA_EIDW
(218219156 AAL290 KJFK_EIDW
;7 218219339 UAL23 KEWR_EIDW
;7 218219587 EIN146 KSFO_EIDW
;7 218219728 IBK1762 KSWF_EIDW
;7 218219881 EIN13) KBOS_EIDW
;7 218220007 SRR6528 EDDK_EIDW
;7 218220009 DAL44 KJFK_EIDW
;7 218220068 UAL126 KIAD_EIDW
(218220070 EIN992 KBOS_EIDW
;7 218220083 UAL152 KORD_EIDW
(218220592 ACA842 CYVZ_EIDW 4
TrafficType: | ® _nitial kY]

7
Custom Dataset _ (16/05/2013’
2)BEE

- mi. 16 may. 2018) 00:00 ‘) 24:00

Figure 20. NEST tool showing traffics flying through LAPMO.

9.2 DDR2 (Demand Data Repository)

The source for data and tools of EUROCONTROL is DDR2 - standing for
phase 2 of Demand Data Repository — which is promoted as DDR service. It is a
web portal interface for generating and downloading traffic. Depending on their
license, users can download future traffic samples for planning purposes or/and
past traffic samples for post-operations traffic trend analysis and for identifying
best practices for future operations [30]. Historic traffic is available from July 2011
and future traffic can be consulted from the day of operation until up to 5 to 7
years in advance. But the DDR service not only offers traffic data, it also produces
datasets describing the European Route Network structure environment
including ATS route network, RAD restrictions, Free Route Airspace
implementation, Airspace Closure, Flight level constraints and more in order to
be used for generating 4D flight trajectories for future traffic demand [30]. In figure
21 the structure of DDR service and its connection to NEST are illustrated.

A graphic tool for air traffic control 135

inputs

historical STATFOR airport capacity | [l ll
traffic samples forecast threshold values environment
(sectors and routings)

Facility to download NEST and Facility to download historical
SAAM tools to analyse and traffic samples and past/future

main
services

simulate traffic samples. airspace environment datasets

| S—
internet

Traffic forecasts are available from 5 to 7 years I D_
in advance up to and including the day before operatid user access to DDR2 Web Portal

Use NEST to generate sector counts, airport demand,
number of flights between airport pairs, etc. from a DDR2 traffic forecast

Figure 21. Overview DDR?2 service. Source: [33]

The wide range of data and tooling options makes this web portal interesting
for a many users. The NM develops the Network Operation Plan including route
and airspace design, demand and capacity balancing for different situations.
ANSPs use the portal to prepare and optimise their capacity plans, Airlines to
detect flight efficiency improvements based on past operations. ASM actors are
able to manage and coordinate airspace processes with this service and airports
integrate their local plans with the Network Operational Plan [32].

In in this work historical traffic is analyzed. It is important to outline that in the
DDR?2 version the traffic sample for one day includes all flights flying within ECAC
during that day. This means that flights overflying the ECAC area over midnight
will be counted twice. Although there will be some duplicated flight from one day
to the other, accurate airspace load will be achieved with these data.
Furthermore, the number of flights is based on all flights with a last filed and

accepted flight plan. Leading to the inclusion of some cancelled flights [32].

Historical traffic is available in different file types, users can choose between
NEST official, SO6 Model1, SO6 Model3, EXP2, ALLFT and ALLFT+. The

A graphic tool for air traffic control 136

files are available after two to four days on the DDR2 Web Portal. The
architecture of the SegOut6 files is explained in more detail in the following

segment.

9.3. SegOut6 files

The SegOut6 files, whose extension is so6, describe flight 4D trajectories
segment by segment, sorted by flight segment sequence from origin to

destination. The described trajectories can have different sources [33]:

e SAAM, calculating vertical profiles possible from operational
constrains and mixing information from BADA and CFMU aircraft
performance

e CFMU, distinguishing between m1 and m3; M1 is based on the last
filed flight plan and m3 on the flight plan enriched with radar data

e Pure Radar Data (CPR data)

e Other sources

As already mentioned, there exist two different models of SegOut6 files
available containing different information. Users can choose between historical
traffic based on last filed flight plan data, model 1, or actual trajectories, model3,
[34]:

e Enhanced Tactical Flow Management System (ETFMS) Model 1 flight
information: This information is the information captured in ETFMS based
on the last filed flight plan from the airline (FTFM).

e ETFMS Model 3 flight information: It is the information captured in ETFMS
after the flight has been operated. It is based on the last filed flight plan,

whenever a flight deviates from its filed flight plan by more than one of the
pre-determined NMOC thresholds of 5 minutes, 7FL or 20NM these data
are updated with available CPR information. The trajectory stored in the
file is not equivalent to the one indicated in the flight plan, but converges
with the 4D trajectory actually flown.

A graphic tool for air traffic control |37

The following table, table 4, explains the information contained in one line of
the sob file.

Field Type Size Comment

1 segment identifier char first point name ”_” last point name
2 origin of flight char 4 ICAO code
3 destination of flight char 4 ICAO code
4 aircraft type char 4
5 time begin segment num 6 HHMMSS padded with 0’s
6 time end segment num 6 HHMMSS padded with 0’s
7 FL begin segment num 1-3
8 FL end segment num 1-3
9 status char 1 O=climb, 1=descent, 2=cruise
10 callsign char
11 date begin segment num 6 YYNNDD padded with O’s
12 date end segment num 6 YYNNDD padded with O’s
13 lat begin segment float in minute decimals
14 lon begin segment float in minute decimals
15 lat end segment float in minute decimals
16 lon end segment float in minute decimals
same as the one provided in expand
17 flight identifier num file (must be uniq). in case of flight

option, it is >=1000000000)
start at 1 for every new flight,

18 sequence num incremented at each line.
IMPORTANT!
19 segment length float in nautical miles

0=NO (grey, R=102, G=102, B=102),
1=0DD (green, R=60, G=255, B=60),
2=EVEN (blue, R=100, G=100, B=255),
3=0DD_LOW (dark green, R=0, G=200, B=0),
59 Segment num 4=EVEN_LOW (light blue, R=160,G=160,B=255),
party/colour 5=0DD_HIGH(light green, R=160, G=255, B=160),
6=EVEN_HIGH (dark blue, R=0, G=0, B=200),
7=General Purpose Red Color (R=255, G=0, B=0),
8=General Purpose Orange Color (R=255, G=128, B=0),
9=General Purpose Yellow Color (R=255, G=255, B=0)
Table 4. SO6 traffic file structure. Source: [34]

A graphic tool for air traffic control 138

In figure 22 an extract of a real .so6 file is shown. There are two different
flights represented in this extract. The information of the indicated line is the

following:

The flight, with identifier 217186613, was performed on 19" April, 2018, and
the actual line is the 81% line recorded of this flight. The aircraft, an A320 with
callsign EING63PT, enters the segment over waypoint LAPMO at 11:38:11 and
exits it at point SUNTM at 11:38:54. The origin of the flight is Barcelona—EI Prat
Airport and the destination Dublin airport. The aircraft is actually descending,
starting from FL35 when entering the segment, and leaving the segment at FL26.

The exact position of the entering point is:

e latitude = 3204.183333 and longitude = -356.733333
And the position of the exit point is:

e latitude = 3204.45 and longitude = -361.516667

The position are given in minute decimals and the distance between the two
points are 2.864030 nautical miles.

|39

A graphic tool for air traffic control

@ S@96TL'6 6 9TLI9LTLIZ L9991V Z6CE 00000O6°ZZST L999TL"ZOEE 000OOT OZST 6Tv08T 6TVPOBT T9T3VN @ OST OTT
@ Z8v¥89S"L 8 9TL9LTLTITZ L999TL ZOEE Q0OOOT"OTST EEEEEL"OTEE L999T6°LTIST 6TV08BT 6Tv08T T9T3IVN @ OTT

@ 9ZSTPZ €
@ 7TS96ST°C
@ 6GET80°T
0 87LZL0°T
0 T8TL80°T

L
9
S
14
€

9TL9LTLTIZ
9TL9LTLIZ
9TL9LTLIZ
9TL9LTLTT
9TL9LTLTIZ

EEEEELTOTEE L999T6°LTIST
L9999T"PTIEE EEEEB69TST
0000SP"9TEE 000OSE"9TST
000009 LTEE 0000S0O"9TST
EEEEEL"BTEE EEEEEL"GIST

£9999T"PIEE
0000SP "9TEE
000009 LTEE
EEEEEL"BTIEE
EEEEBBBTEE

EEEEB6"9TST
0000SE"9TST
0000S0"9TST
EEEEELSTIST
£999TH"SIST

6TV08T
6TV08T
6TV08T
6Tv08T
6TV08T

6TV0O8T
6TV0O8T
6TV0O8T
6TV0O8T
6Tv0O8T

T913vVNn @
T913vNn @
T913vNn @
T913vVNn 0
T913vNn @

oL
oS
SE
S¢
0z

oL
oS
GE
14
/14
ot

@ STZLBO'T T 9TL9LTLTIZ EEEEBB'6TEE L999TP "GTIST EEEEEQ TZEE Q00T STIST 6TVO8BT 6TVO8T T9T3IVN @ OT S

0 TZOVES'@ T 9TL9LTLTIZ EEEEEQ TZEE 000OOT"STST 00009 TZEE 0000S6 YIST 6T¥O8T 6TYOBT TITIVN @ S @ 8ZIYEQ QOZEEQ MLL8 MAII 9AWO ZIDMS™ 9aWO
0 06.986°S ¥8 E€T998TLTZ 0000OT 9LE~ EEEEBT'SOZE 000OOT"99€~ L999TL"POZE 6TVOBT 6TVO8T LJEINII
868GET"T €8 ET998TLIZ
TTCQAC'A 72 €TQQQT/T7Z
QE0VY98°C T8 ET998TLIZ
SSSOVU L UB tLYYBLLLC
L8SG9Z"E 6L ET998TLIZ

000007 "99€~ L999TL"vOZE
710000+ 705~ AAAAAC " HAZE
£999TS"T9€~ 0000SY"vOTlE
TTrrrL YStT rrresl vece
000000 "SSE- 000000 VOZE

£9999% "Z9€~
/00QTC " TAS—
EEEEEL"9GE~
VUYYYY SSee
EEEEBY "TGE~

00000S"VOZE
DABACH " HAZE
EEEEBT "VOTZE
YuYYYY Vuct
00000T "TOZE

6TV08T
ATHhOAQT
6TV08T
oLVUBL

6TV08T

6TV08T
AThAQT
6TV08T
oLVUBL

6T708T

1dE9NI3 T
14CQNTI T
1d€EONI3 T
Larynis ¢
1dE9NI3 T

80LVED
EESPED
vovvee
TZeveD
JAZAZY]
£TTVED
QTZrED
rivee

EESPED MLL8
vovveQ® MLLD
TZEvED MLL9
LYTYED MLLS
€TTYED MLLS
QTZPED MLLSY
ZPIvED MLLS
87TvED MLLS

MaI3
MaI3
MaI3
MaI3
MaI3
MaI3
MaI3
MaI3

9aKWo
aanwo
9aKWo
9aKWo
9aKWo
aanwo
9aKWo
9aKWo

YyIdms bIdMS
BIIMSTLIOMS
JIIMSTRIDMS
9IDM$ PIDMS
PIDM$S 2IDMS
JIDM$ qIDMS
qIDM$ eIDMS
BIDM$S ZIDMS

T Z 0Z LbZPIT PP6ETT OZEY MAII 1937 MAII OIXYS

0z
cz
9z
St

GE

14
a7z
GE
13

SE

PPEETT
ACOCTT
PSBETT
LBt

VSLETT

6S8ETT QZEV
hCACTT Q7Y
TIBETT 0CZev
VsSLellL wvcev

ZOLETT OZEV

MaI3
MaTa
MaI3
muLs

MaI3

1931
1a3n
14931

CER

1931

oIXY$ aAINS
a1Ing iung
WLUNS™OWdYT
UWav i 91291

qIZ9i d3d0S

Figure 22. SOG6 file extract.

A graphic tool for air traffic control 140

PART 3 - PROGRAMMING TOOL

10. Object Oriented Programming

Object oriented programming (OOP) models objects and their interactions in
the production of a system. Since the real-world problem domain is characterized
by objects and their interactions, a software application developed using the
object-oriented programming approach will have a closer representation of the
real-world problem domain than any other programming approach [35].

10.1. Advantages of Object Oriented Programming

The reasons for choosing OOP for the development of this project are the
following:

e |tis suitable for large and complex projects with more than one developer
working on it.

¢ |t has a modular structure, meaning the complexity is reduced by assigning
the tasks to different classes which communicate among each other.

e The creation and interaction of classes allows to model real world
scenarios in an easy way.

e Multiplatform — The source code only has to be written once and can be
used in different platforms.

e The use of design patterns simplifies the programing of a GUl. SWING,
the graphical Java tool, uses the Model-View-Controller pattern.

10.2. Basics of Object Oriented Programming

The basics of object oriented programming are classes and objects, with the
focus on data implied in the objects and not on the code that manipulates the
data. A class is defined by instance variables, constructors and methods. An
object is created by calling the constructors. Each object created from a class
has a copy of the instance variables and can assign them its individual values
and manipulate them independently using the methods of the class. While

A graphic tool for air traffic control

|41

variables represent an object, the methods are used to modify and work with

these variables and to accomplish different type of tasks [36].

There are three principles of object oriented programming: abstraction,

inheritance and polymorphism [36].

10.2.1.

Abstraction

Abstraction is the process of representing the essential features of a system

without getting involved with its complexities. Once a class is defined, it can be

created and its methods can be called without going into detail on how they are

implemented. By that way, complexities are hidden and only the essential is

exposed and necessary to know in order to create and work with an object.

Superclass
- methodSC1()
- methodSC2()
Interface 2 Interface 1
- method1() - methodA()
- methodB()
& 5
v
Subclass 1 Subclass 2
- methodSC1()
- methodSubC() methodSubC1()

mehodSubC2()

Observations:

- The Superclass can have

various Subclasses

Each Subclass extends

from only one Superclass.

A Subclass can implement

more than one Interface.

The methods defined in an

Interface need to be

implemented in the Class

that implements it.

- Subclasses will inherit the
methods of its Superclass
and all its attributes.

- The subclass can override
the method of the
superclass.

- The subclass can have
additionally to the
attributes and methods
inherited from the
Superclass and the
methods required due to
the Interface
implementation its specific
attributes and methods.

Figure 23. OOP class and interface relations.

A graphic tool for air traffic control |42

10.2.2. Inheritance

Inheritance is the capability of a class to inherit the variables and methods of
other classes, called super-classes. The new class can define its own variables
and methods additionally to what has been inherited. -> Representation diagram

10.2.3. Polymorphism

Polymorphism describes the property of different objects being able to react
to the same method call. Subclasses can define their own unique behaviors and
yet share some of the same functionality of the parent class. To make
polymorphism possible, interfaces and overriding are important concepts to

introduce.

10.2.4. Interfaces

Interfaces are kind of contracts between the class and the outside world.
They can only be implemented by classes or extended by other interfaces, never
instantiated. In an interface, the methods a class implementing this interface must
provide, are specified. These methods have to appear in the source code of the
class to be compiled successfully. In this way, it allows a class to become more
formal about the behavior it provides. The interface only contains the signature
of the methods, never its implementation because an interface specifies what a
class must do, but not how it has to be done. It can also contain variables, these
need to be public, static and final.

As already mentioned, interfaces allow polymorphism and full abstraction.
One class can implement more than one interface, unlike the concept of
inheritance where a class can only have one super-class not allowing multiple
inheritance. The relation between subclasses, super-classes and interfaces is
visualized in figure 23.

A graphic tool for air traffic control 143

10.2.5. Overriding

The concept of overriding allows a subclass to modify the implementation of
a method provided by its super-class. Name, parameters and return type need to
be the same, only the way the return value is obtained or calculated will be
modified. To determine which version of an overridden method will be executed,
it will be checked first if the method is defined in the object’s class. If there is no

such method, the one of the super-class will be used, see figure 23.

10.3. Threads

OOP features thread objects that can be executed in parallel with other
threads. That allows the handling of concurrent work processes. Every process
has at least one thread and the creation of a new thread requires fewer resources
compared to the creation of a new process [37].

The present project has two classes extending from a thread. “timeThread”
is the class which takes charge of the simulation time representation depending
on the indicated simulation speed. The other class extending from a thread is the
“simulation” class. This thread prepares a list of all aircraft flying at each instant
of simulation and passes it to the listener for representation.

10.4. Collections

A collection can be defined as an object that represents a group of objects,
called “the collection’s elements”. In Java, there are three different kinds of
collections: Lists, Maps and Iterators.

In this project, Lists and Maps are of special interest and created in the

following way:

e List: List<E> E stays for element and is the class indicating the kind of
objects contained in the list. It is an ordered collection, elements can
be placed at a certain position and they can be accessed by their
index. An example of a list in the developed program is:
List<TrafficFlight>.

A graphic tool for air traffic control |44

e Map: Map<K, V> is a key-value mapping. Values can be accessed
indicating the corresponding key provided that no key is duplicated.
An example of a map in the developed program is: Map<Integer,
TrafficPoint> or Map< String, List<Traffic>> where the value is a list
containing Traffics.

11. NetBeans IDE

NetBeans is a free, open-source integrated development environment (IDE)
for Java programming language. The latest version is NetBeans IDE 8.2, which
was released on October 3, 2016 [38].

All the IDE’s functions are provided by modules. The modules are defined to
provide one specific function, such as support for the Java language or editing
[39]. The GUI design tool is one of the included modules to design Swing GUIs
and it is of special interest for the development of the present project.

11.1. Swing GUI Builder

NetBeans IDE includes a GUI (Graphical User Interface) builder. The feature
for automatic code generation simplifies the GUI development process.
Additionally, the newer versions (starting from NetBeans 7.4) include a Swing
GUI Builder. In the Design window, the class can be edited in the Swing GUI
Builder, where buttons, labels, test fields, panels and other objects can be chosen
and dragged from palette onto the frame. Code is automatically generated for the
objects and designs made in the Design window and saves writing the user
interface entirely by hand. Where the Builder cannot automatically generate code,
for example when creating an event, it provides empty methods that can be
completed to implement the desired logic [38].

A graphic tool for air traffic control |45

PART 4 - DESIGN

12. Design overview

Figure 24 is a schematic representation of the general process of the
program. The user starts choosing the kind of traffic to simulate. In this project
only the historical traffic was implemented. In the second window, the parameters
for simulation and the input files are chosen. The program engine treats all the
data so they can be used for simulation and then - if all the inputs are consistent
— it passes to the third window where the simulation can be started.

The different windows are explained in more detail in the following sections.

GUI

traffic simulation

traffic to simulate parameter definition
5 e s

stk Traffic Smulation - Prameter Definition

PROGRAM ENGINE

i) i)

Lchoose »| -SO6 file Xlsx file
(historic traffic) (routes)

Figure 24. Program design overview.

A graphic tool for air traffic control |46

13. Traffic selection

In the first window visible when starting the application (see figure 25), the
program asks to choose the kind of traffic that you would like to simulate. By now,
only Historic Traffic can be selected. The tool is not yet developed for Simulated
or Real Traffic. By clicking on the Historic Traffic button the program changes to

the parameter selection window.

Please select the traffic you would like to Simulate.

Historic traffic will be simulated based on .so6 files.

i X - Make sure, the .so6 file you want to simulate is in the corresponding file.
Historic Traffic - Make sure the excel with the information of the Approximation you want to
simulate is in the corresponding file.

l Simulated Traffic ‘

\ Real Traffic ‘

Figure 25. Window one - chose traffic to simulate.

14. Parameter definition

In this window, figure 26, all parameters for the simulation are introduced.
The .so6 file with the historic traffic information and the excel file containing the
different routes for the approach are directly read from the folders containing
them. So, if you want to add an additional file, it needs to be placed in the
corresponding folder before starting the program. The waypoints to filter the traffic
and the Merge Point of the approach can be chosen from the combo Box,
alternatively they can also be introduced manually. In case, an approach is going
to be used frequently, the corresponding waypoints and the Merge Point can be
added to the text file the program is reading the data for the combo Boxes from.
Simulation speed can be chosen with the slider from a range between 1 and 60.
If the start and end time of the simulation are not modified, the whole day/file will
be simulated.

A graphic tool for air traffic control |47

Historic Traffic Simulation - Parameter Definition

506 file name: [3

Waypoints to filter: v

Merge Point: v

Simulation Speed: 1 O

Simulation start time: 0 E 0 Ej 0 @
Simulation end time: 23 @ 59 E 59 @

Excel with approximation definition: | vJ

| Cancel | | Clear | | StartSimulation |

Figure 26. Window 2 - Parameter Definition.

14.1. Buttons available

The following three buttons (see figure 27) are available in the parameter

selection window:

e Cancel: All inputs are deleted and the program redirects to the traffic
selection window.

e Clear: All inputs are deleted.

e Start Simulation: After confirming the correctness of the parameters,

the program passes to the traffic simulation window.

LCanceI J [CIearJ [Start Simulation J

Figure 27. Buttons window 2.

14.2. Error messages

Once the parameters for the simulation are introduced and the start button is
pressed, the program verifies that all parameter are chosen and that they are
consistent. If any error is detected, the program will inform about the error and it
will not continue until it is corrected. All the possible errors, their signification and

the required actions are resumed in table 5.

A graphic tool for air traffic control

148

ERROR MESSAGE

MEANING

CORRECTIVE ACTION

No file name entered

There was no file name
selected from the combo Box.

Choose a file name from the
combo Box.

No Merge Point

selected

There was no Merge Point
selected from the combo Box or
introduced manually.

Choose a Merge Point from
the combo Box or introduce
one manually. If manually
introduced make sure the
spelling is right.

No waypoints selected
to be filtered

There were no waypoints
selected from the combo Box or
introduced manually.

Choose an approach from
the combo Box or introduce
the waypoints manually. If
manually introduced make
sure the spelling is right.

Start time needs to be
before End time

The indicated start time for
simulation is later than the
indicated end time. Simulation
is only working forward, not
backward.

Change start and/or end
time so that start time is
chronologically before end
time.

Merge Point is not in
the selected file and/or
none of the waypoints

In this case, the chosen .so6 file
does not match with the
selected waypoints. The

Choose another .so6 file
and make sure, this file
contains flights performing

to filter is in the | indicated Merge Point is not | the approach matching with
selected file contained in the chosen .so6 | the entered waypoints. Or
file and/or none of the indicated | change the waypoints so
waypoints for which the traffics | they match the chosen file.
should be filtered are contained | T Manually introduced make
in the .06 file. sure the spelling is right.
The routes for the | In this case, the chosen excel | Choose another .so6 file
approach selected | file with the routes information | and make sure, this file

does not correspond
to the Merge Point
and/or the waypoints
to filter.

does not match with the
selected waypoints. Either the
indicated Merge Point is not
contained in it and/or none of
the indicated waypoints for
which the traffics should be
filtered.

contains flights performing
the approach matching with
the entered waypoints. Or
change the waypoints so
they match the chosen file.
If manually introduced make
sure the spelling is right.

Table 5. Error messages.

A graphic tool for air traffic control 149

15. Traffic simulation

This last window is the main one and presents the simulation. It consists of
three panels, one with the map of the approach, another one with the RPI and
one with information about the chosen aircraft. In the upper part of the window
on the left side, the actual simulation time and the simulation period are shown
and on the right side, there are four buttons available. In figure 28, there is one
aircraft over the map and on the RPI that is represented in yellow. This is called
the chosen aircraft and it is the one whose information is shown on the aircraft
information panel. The aircraft can be chosen with the mouse on the map or on
the RPI. By clicking on the chosen aircraft or on a point of the map or RPI where
no aircraft is placed, the chosen aircraft is set to null and no information is shown

on the aircraft information panel.

Simulation time: 15:05:01 Simulation Period: 15:00:00-17:59:59 [Pause J | Stop J | Return J 1 Cancel J

RYR576E
L

00:34

Callsign: RYRS76E

Aircraft: B738

Origin: EGCC

Destination: EIDW
MABIA

Latitude: 53,42

Longitude: -5,90

Flight level: 41

Ground speed: 210,51

Status: descending

Figure 28. Window 3 - Simulation.

A graphic tool for air traffic control 150

15.1. Map

The map shows the routes given to
the program through the excel file (see
figure 29). Over these routes the
historic traffic of the so6 file is
represented.

Figure 29. Map panel.

15.2. RPI implementation

In this work, the RPI will be shown on the controller’s display on the left of the
map. Each aircraft will be represented on one line moving from left to the right.
Once the aircraft arrives at the end of the line, it has reached the Merge Point.
Additionally, at the right end of the line, the time left to reach the Merge Point is
indicated (see figure 30).

As the simulation is based on
historic traffic, the time left to
reach the Merge Point can be
easily calculated. The time shown
on the RPI is simply the

subtraction of the actual time Figure 30. RPI panel.
minus the time when the Merge

Point is overflown.

15.3. Aircraft Information

This panel contains information only if an aircraft is chosen (it is represented
in yellow over the map and the RPI). The information can be divided into two (see

A graphic tool for air traffic control

|51

figure 31). At the top, the fix information is shown (Callsign, Aircraft type, Origin

and Destination). The airport of origin and destination are given in ICAO code.

At the lower part, variable information
about the actual state of the aircraft is
given. Latitude and Longitude are shown
in degree decimal, the flight level is given
as FL (= feet*100) and the ground speed
in knots. The status can be climbing,

descending or cruise.

Callsign: STK29GL
Aircraft: AT76
Origin: EGPF

Destination: EIDW

Latitude: 53,75
Longitude: -5,76
Flight level: 110
Ground speed: 218,66

Status: descending

Figure 31. Aircraft information panel.

When the chosen aircraft has landed and is no longer shown on the map, the

information from this panel also disappears.

15.4. Buttons available

When the traffic simulation window opens, the following four buttons are

available:

Start: It starts the simulation; the two threads are started (timeThread and
simulation).

Stop: The simulation is stopped, as well as the threads. The time shown
at simulation time coincides with the start time. The RPI and aircraft
information panels are shown in blank and the map contains the routes
only.

Return: The simulation is stopped and the program is redirected to the
parameter input window. The last parameters introduced are still shown.
This is to make the change of only one parameter easier - for example
simulation speed in case it was chosen incorrectly — and it saves a new
input of all parameter.

Cancel: The simulation is stopped and the program is redirected to the
first window. If now historic traffic is chosen, the parameter input window

does not show the last inputs, they all need to be chosen again.

A graphic tool for air traffic control |52

As you can see in figure 32, the Start button can convert into a Pause and
Continue button. Once the simulation is started, the Start button converts into a
Pause button. If the user clicks this button, the two threads are paused and the
button converts into a Continue button. Map, RPI and aircraft information panels
are not cleared like with the Stop button but show the information from the
moment the Pause button was clicked. By clicking Continue, the threads start
running again, the button converts into a Pause button and the aircraft start
moving over the map and on the RPI. After clicking the Stop button, the Start

button is shown again.

| Sart | [Stop J | Return | | Cancel |

[Pause J | Stop | | Return | | Cancel |

[Continue J [Stop J L Return J [Cancel J

Figure 32. Buttons window 3.

A graphic tool for air traffic control |53

16. Use case DUBLIN RWY 28

The main objective of this use case is to confirm and demonstrate the right
functioning of the developed tool. The present use case aims to simulate historic

traffic over the Point Merge approach procedure of runway 28 at Dublin airport.

16.1. Dublin Point Merge

The ICAO identification for Dublin Airport is EIDW. The airport has two Merge
Point procedures. In December 2012, the Irish Aviation Authority (IAA) introduced
Point Merge on Runway 28 supported by Eurocontrol and in April 2015 on
Runway 10. In figure 32 the STAR for both Point Merges are illustrated.

AIRCRAFT DCT TO EQUIDISTANT
LAPMO | SEQUENCING
SPACING FINE-TUNED Al ARCS
BY ATC-INITIATED
/| SPEED ADJUSTMENTS _
AN ’

C P

\

P MERGE POINT X [
((LAPMO) N
N ¢ i

=N
g / \, P
/] | CONTINUOUS N/

/| | DESCENT TO FINAL

7 | APPROACH \

Figure 33. Point Merge in Dublin — runway 10 (left) and runway 28 (right).

Focusing on Runway 28, rather than using traditional holding stacks the
system involves the placing of arriving aircraft onto defined equidistant arcs or
tracks, from which they can make a continuous descent to the runway. The
northern sequence legs need to be flown at FL80 and the southern at FL70. For
both, IAS is fixed at 230 knots. The Merge Point (LAPMO) should not be
overflown under 3000 feet. As the Point Merge Concept had originally been
designed to increase ATC capacity and improved sequencing, sequence leg
length was optimised for ATC use rather than flight and fuel efficiency.

A graphic tool for air traffic control |54

Nevertheless, Point Merge and CDO make both possible: overall track miles
flown by the aircraft and associated CO2 emissions reduction.

After the implementation of Point Merge for Runway 28 positive feedback
from airlines and controllers were received. Even during the peak arrival flows
controllers had been able to offer more aircraft direct routes and continuous
descent approaches. The previously reported results of simulation studies for
Dublin Point Merge, like enhanced situational awareness and reduced radio
frequency transmissions, could be confirmed and allowed an increasing

availability for tactical instructions [40], [41].

Despite an extensive awareness campaign for airlines informing about the
flight planning and fueling, some problems arose. While the concept of Point
Merge is easy to understand, fuel planning issues are more complicated. There
were crews uplifting up to 400 kg of fuel per arrival in order to avoid any FMGC
(Flight Management Guidance Computer) messages. As a consequence, fuel
benefits of Point Merge were not achieved by all airlines, but would have, if the

uncalled-for extra fuel had not been carried [41].

16.1.1. Dublin Merge Point Runway 28

The cart contained in the AIP of the approach can be seen in figure 34 (The

whole AIP is available in appendix 1).

The waypoint name of the Merge Point is LAPMO and there are ten arrival
routes available with the following initial fixes (IF): BAGSO, BAMLI, BOYNE,
BUNED, ABLIN, NIMAT, OLAPO, OLAPO, SUTEX and VATRY.

An example of how the routes are defined in the AIP is given in table 6. where
in each line a waypoint of the route is specified.

A graphic tool for air traffic control |55
BAGSOIL CAT A/B/C/D STAR RWY28
BAGSIL
Perormance | Temmitor | WPTNume | Latiode 00, Longinude W) | S | PR | \merietrock | Lowertimt | gy | Rewss
RNAVI IF BAGSO 534048.0 /0053000.0 Fly-By - - -FL100 250 -
RNAVI] TF ADSIS 534103.1/0053934.0 Fly-By 5.7 272.6/276 - - -
RNAVI] TF KERAV 533742.7/0054557.3 Fly-By 5.1 228.7/232 @ FL80 230 -
RNAV] TF KOGAX 533418.6/0053814.1 Fly-By 5.7 126.5/130 @ FL80 230 L
RNAVI TF KUDOM 532925.8/0053314.3 Fly-By 5.7 148.6 /152 @ FL80 230 -
RNAVI TF DW814 /0053141.1 Fly-By 5.7 170.6 / 174 @ FL80 230 -
RNAV] TF DW8I1S 0053346.6 Fly-By 5.7 192.7/ @ FL80 230 -
RNAV] TF DWS16 531346.9 /0053844.4 Fly-By 5.3 213.9/ @ FL80 230 -
RNAVI TF NARMU 532643.2/0055134.3 Fly-By 15.1 3294/ - - R
RNAVI CF LAPMO 532411.0/0055644.1 Fly-By 4.0 230.6 /23 + 30001t 180 -

Table 6. Route definition in the AIP.

It can be observed on the cart, that additionally to the merge holding, there

are two traditional holding patterns whose holding fixes are over waypoint KERAV

and SORIN.

A graphic tool for air traffic control

54 [
05 [
54° |
00 [
53
55 [7
g :
” =
53
50 [
[loz2
- In New
&7

53° 53'45'49° N RONON
40 AW 53°42°34°N
o8 o
30007/ 381 [
319/ 203

T T
o
A
n
i
LA
25

88

88

Il‘llllllllllll

Figure 34. AIP IRELAND AC 2.24 - 17.1 DUBLIN RWY 28.

s

EP1 SR,
e @@ A /-

|56

53°
15

53°
10

52°
35

A graphic tool for air traffic control |57

16.2. Input files

The following files contain relevant information used by the tool for simulation
of the desired approach. They can be divided into obligatory and recommended

information:
Obligatory:

e .s06 file from Eurocontrol containing historic traffic which is filtered by the
waypoint LAPMO, meaning they contain flights which performed the STAR
of the use case

e xIsx file with the routes information from the AIP: the information of the
AIP

Recommended:

e .txt file with IFs information
e .txt file with Merge Point information

o .ixt file with max time for RPI representation

The files are stored in the directory “Files”. In the following table (table 7), the
way information is stored in the different files, as well as the exact location of
each file inside the “Files” carpet, is shown.

HistoricTrafficFiles / 20180419_20180419_0000_2359_LAPMO_m3.s06

The name of the file indicates the following: the traffic is from 19" April, 2018, from 00:00 until
23:59. It contains all the traffics of this day which passed over the waypoint LAPMO and the file

contains traffics obtained by method 3.

SOPEP_!bZIb LEBL EIDW A320 113702 113754 35 35 2 EING63PT 180419 180419 3201.100000 -352.483333 3204.000000 -355.000000 217186613 79 3.265587 @
!bZIb_LAPMO LEBL EIDW A320 113754 113811 35 35 2 EIN63PT 180419 180419 3204.000000 -355.000000 3204.183333 -356.733333 217186613 80 1.049555 0
LAPMO_sUnTM LEBL EIDW A320 113811 113854 35 26 1 EIN63PT 180419 180419 3204.183333 -356.733333 3204.450000 -361.516667 217186613 81 2.864030 0
SUnTM_SULYD LEBL EIDW A320 113854 113859 26 25 1 EIN63PT 180419 180419 3204.450000 -361.516667 3204.500000 -362.466667 217186613 82 0.568511 @
SULYD_SAxIo LEBL EIDW A320 113859 113944 25 20 1 EIN63PT 180419 180419 3204.500000 -362.466667 3204.716667 -366.200000 217186613 83 2.235898 0
$AxIo_EIDW LEBL EIDW A320 113944 114247 20 2 1 EIN63PT 180419 180419 3204.716667 -366.200000 3205.283333 -376.200000 217186613 84 5.986790 0
OMDB_SWCIZ OMDB EIDW B77W 033200 034128 © 5 @0 UAE161 180419 180419 1514.950000 3321.600000 1515.100000 3321.033333 217176716 1 0.534022 0
SWCIZ_sWCIa OMDB EIDW B77W 034128 034142 5 10 © UAE161 180419 180419 1515.100000 3321.033333 1515.416667 3319.883333 217176716 2 1.087225 @
SWCIa_sWCIb OMDB EIDW B77W 034142 034210 10 20 0 UAE161 180419 180419 1515.416667 3319.883333 1515.733333 3318.733333 217176716 3 1.087181 0
SWCIb_sWCIc OMDB EIDW B77W 034210 034223 20 25 0 UAE161 180419 180419 1515.733333 3318.733333 1516.050000 3317.600000 217176716 4 1.072728 0
SWCIc_sWCId OMDB EIDW B77W 034223 034247 25 35 @ UAE161 180419 180419 1516.050000 3317.600000 1516.350000 3316.450000 217176716 5 1.082359 0
SWCId_sWCIe OMDB EIDW B77W 034247 034321 35 50 @ UAE161 180419 180419 1516.350000 3316.450000 1516.983333 3314.166667 217176716 6 2.159652 0
SWCIe_sWCIf OMDB EIDW B77W 034321 034404 50 70 @ UAE161 180419 180419 1516.983333 3314.166667 1517.916667 3310.733333 217176716 7 3.241526 0
SWCIf_sWCIg OMDB EIDW B77W 034404 034533 70 110 © UAE161 180419 180419 1517.916667 3310.733333 1520.100000 3302.716667 217176716 8 7.568482 0
SWCIg_sWCIh OMDB EIDW B77W 034533 034708 110 150 @ UAE161 180419 180419 1520.100000 3302.716667 1522.900000 3292.416667 217176716 9 9.719605 @

A graphic tool for air traffic control

|58

Routes / Dublin RWY 28.xIsx

The whole file is to be seen in Appendix 2.

A B C D E F G H | J K L M N
1 Aproximations :ear‘;frar::r’\‘ce Path Terminator WPT Name Latitude (N) Longitude (W) Ez:gt:: ::‘iMa)noe True Track Magnetic Track Upper Limit Lower Limit Sxed it Remarks
2 |BAGSIL RNAV1 IF BAGSO 534048.00N 0053000.00W Fly-By FL100 250,00
3 |BAGSIL RNAV1 TF ADSIS 534103.10N 0053934.00W Fly-By 57 272,60 276,00
4 |BAGSIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 51 228,70 232,00 FL80 FL8O 230,00
5 |BAGSIL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00 L
6 |BAGSIL RNAV1 TF KuUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
7 |BAGSIL RNAV1 TF Dwsai4 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
8 |BAGSIL RNAV1 TF Dws1s 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
9 |BAGSIL RNAV1 TF DwW816 531346.90N 0053844.40W Fly-By 53 213,50 217,00 FL80 FL8O 230,00
10 |BAGSIL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
11 |BAGSIL RNAV1 CF LAPMO 532411.00N 0055644.10W _ Fly-By 4 230,00 234,00 3000ft 180,00
12 |BAMLIL RNAV1 IF BAMLI 540828.50N 0063904.00W Fly-By
13 |BAMLIL RNAV1 TF RONON 534233.90N 0063619.20W Fly-By 26 176,40 180,00
14 |BAMLIL RNAV1 TF ORVEN 533953.50N 0061129.80W Fly-By 15 100,10 104,00
15 |BAMLIL RNAV1 TF GIRAS 533821.00N 0055733.20W Fly-By 84 100,40 104,00
16 |BAMLIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 6,9 95,20 99,00 FL8O FL8O 230,00
17 |BAMLIL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00
18 |BAMLIL RNAV1 TF KuUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
19 |BAMLIL RNAV1 TF Dwsai4 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
20 |BAMLIL RNAV1 TF Dws1s 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
21 |BAMLIL RNAV1 TF DwW816 531346.90N 0053844.40W Fly-By 53 213,50 217,00 FL80 FL8O 230,00
22 |BAMLIL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
23 [BAMLIL RNAV1 CF LAPMO 532411.00N 0055644.10W _ Fly-By 4 230,60 234,00 3000ft 180,00
24 |BOYNIL RNAV1 IF BOYNE 534601.60N 0053000.00W Fly-By
25 |BOYNIL RNAV1 TF ADSIS 534103.10N 0053934.00W Fly-By 7,6 228,80 232,00
26 [BOYNIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 51 228,70 232,00 FL80 FL8O 230,00

Data / mergePoints.txt

LAPMO;
DUBLIN
DUBLIN

LAPMO
RWY 28; LAPMO
RWY 08

Data / RPI_times.txt

Dublin RWY 28.xlsx: 720

Data / waypointsIF.txt

DUBLIN RWY 28;

NIMAT, OLAPO, OSGAR, SUTEX, VATRY, ABLIN, BUNED, BOYNE, BAMLI, BAGSOZUM

Table 7. File Structures and location.

Once it is confirmed that all the files contain the correct information,

introduced in the required format and stored in the right carpet, the program

execution can be started.

A graphic tool for air traffic control 159

16.3. Program execution

After starting the program, in the first window shown “Historic Traffic” is
chosen, as it is the kind of traffic to be simulated in this use case (figure 35).

[
-

Please select the traffic you would like to Simulate.

Historic traffic will be simulated based on .s06 files.

- Make sure, the .so6 file you want to simulate is in the corresponding file.
- Make sure the excel with the information of the Approximation you want to

Historic Traffic
simulate is in the corresponding file.

[Simulated Traffic ‘

[Real Traffic J

Figure 35. Chosing historic traffic.

This leads to a second window asking to specify the simulation parameters.
It can be observed, that in the combo boxes Waypoints to filter and Merge Point
the information contained in the files about IFs and Merge Points is shown. In the
combo boxes, we can chooseSO6 file name and Excel with routes definition
among all the files available in the corresponding carpet. As for confirmation of
the right functioning of the program, in a first step an erroneous parameter is

chosen for simulation: The IFs do not correspond to the chosen so6 file.

A graphic tool for air traffic control 160

LK
) istoric Traffic Simulation - F Definiti

056 file name: [20180419_20180419_0000_2359_LAPMO_m3.... |¥]

Waypoints to filter: v WRONG
Merge Point: DUBLIN RWY 28 ||

Simulation Speed: 42

Simulation start time: 11 E 0 E 0 E
Simulation end time: ‘12 @ 15 @ 0 E

Excel with approximation definition: [ﬂ

| Cancel | | Clear | [Start Simulation J

Merge point is not in the selected file
and / or non of the waypoints to filter is in the selected file

Figure 36. Example wrong parameter input.

The error is indicated in the test area and parameters to be modified are
marked in red (figure 36). The right functioning of the input error identification and
notification can be confirmed. The input is cleared, correct parameters are
introduced (figure 37) and simulation started.

[] []
2 Historic Traffic Simulation - F Definiti
056 file name: (20180419_20180419_0000_2359_LAPMO_m3.... |¥]
Waypoints to filter: | DUBLIN RWY 28 | v
Merge Point: Y] LAPMO
Simulation Speed: [42]

Simulation start time: 11 @ —0@ 0 E
Simulation end time: 12 @ T@ 0 E

Excel with approximation definition: [Dublin RWY 28.xlsx q

| Cancel | | Clear | | StartSimulation |

Figure 37. Parameter input.

A graphic tool for air traffic control |61

This leads to the main window where the simulation is shown. The simulation
does not start until the button “Start” is pressed. That is when aircraft, identified
by their callsign, start moving and can be observed over the defined approach
(the left side of the window) and the RPI (right upper part of the window). Also,
the simulation time starts running (upper left position). If an aircraft is chosen by
a mouse click over the map or the RPI during the simulation, the colour of the
corresponding aircraft over the map and the RPI as well as the time left to reach
the Merge Point LAPMO are changed to yellow. Additionally, in the lower right
part, more information about the flight chosen is shown (see figure 38). During
the program execution, the right functioning of all the buttons (Start, Pause,

Continue, Stop, Return, and Cancel) could be confirmed.

[]
a Historic Traffic simulation - Dublin RWY 28
Simulation time: 11:17:32 Simulation Period: 11:00:00-12:15:00 [Pause J | Stop J | Rewrn | | Cancel |

EIN573
L

Callsign: EINS73
Aircraft: A320
Origin: LEAL
Destination: EIDW
Latitude: 53,20
Longitude: -5,63
Flight level: 70
___.EII-I4E:R' Ground speed: 274,39
Status: cruise

Figure 38. Traffic simulation with a chosen aircratft.

A graphic tool for air traffic control |62

16.4. Conclusion of the Use Case

The present use case helped to confirm the right functioning of the developed

tool. It could be checked, that:

all buttons work the way they should

simulation and time threads run properly and can be paused and stopped
the routes of the approach are represented correctly

among the simulated aircraft, you can choose one to obtain further

information

A graphic tool for air traffic control |63

PART 5 - PROGRAM IMPLEMENTATION

In this section, the internal functioning of the program will be explained. After
explaining the packages, their main function and important classes, the interfaces
created for the program will be presented briefly and finally all the classes with
their methods will be expounded.

v |1 Source Packages
v [historicTraffic

|# ApproximationRoute.java

[# Trafficjava

[# TrafficMapS06.java

[#] waypointData.java

v [historicTraffic.GUI

ACPositionOnMap.java
ACPositionOnRPI.java
AConMapAdministrator.java
AConRPIAdministrator.java
AircraftinfoPanel.java
FlexibleTrafficComparator.java
Map.java
MapPanel.java
RPIPanel.java
SimulationFrame.java
TimeThread.java
v [historicTraffic.flight
FlightPositionData.java
Point4D.java
TrafficFlight.java
TrafficPoint.java
v [historicTraffic.flight.interf
lAircraftDataListener.java
IFlight.java
IPositionData.java
ISimulationData.java
ITrafficListener.java
istoricTraffic.reader
Reader.java
RoutesReader.java
SOG6File.java
v [historicTraffic.simulation
FlightSimulationData.java
FlightSimulationDataList.java
HistoricSimulationData.java
Simulation.java
v [historicTraffic. util
|# OrtoDistance.java
@] StringFunctions.java
[# velocity.java
Figure 39. Package structure.

EOOEEDE R EE

EBIEEI[E

v 6

EBRIE = EIEIEIEIE

EBEEI[E

A graphic tool for air traffic control |64

17. Packages

The classes are grouped in seven packages (see figure 39):
historicTraffic

This package contains the decoded information provided by the input files
(.s06 and .xlsx).

historiTraffic.GUI

The classes in this package are those necessary for the graphic
representation. This package contains the main method which is inside the
SimulationFrame class, also containing the three windows (traffic to simulate,

parameter definition and traffic simulation).

The classes MapPanel, RPIPanel and AircraftinfoPanel are placed over the
traffic simulation window and have been explained in detail in the previous

section.
TimeThread shows the simulation time running from start to end time.
historicTraffic.flight

It is composed by the classes necessary to define an airplane containing all
the important information needed for the simulation and representation in the
GUL.

historicTraffic.flight.interf

This package contains all the interfaces of the program. The interfaces are
explained in detail in a posterior section.

historicTraffic.reader

The classes in this package have methods to decode different files. Reader
has methods to read all the text files with the Merge Point, maxRPlItime and
waypoint information. RoutesReader can read the excel file with the routes
information and SO6File has a method to decode .so6 files.

A graphic tool for air traffic control |65

historicTraffic.simulation

The simulation package contains all the information necessary for the
simulation. The class Simulation is a thread that provides for each simulation
instant the information about all aircraft and sends through the
ITrafficListener the information to the GUI.

historicTraffic.util

It contains auxiliary functions to work with strings and calculate velocities or

distances.

17.1. Package interaction

The following graph represents the interaction between the different
packages indicating which is the method they use for interaction (figure 40). It
can also be read from the figure, which interface is used in which package. Figure
41 goes more into detail, showing the interaction between the classes and the
methods they are using.

A graphic tool for air traffic control |66

historicTraffic.interf

I : IPositionData
| L IFlight

ISimulationData - ; !
ITrafficListener
|AircraftDataListener

1
1
1
! 1 1
1
1
1

setter methods

calculateGroundSpeed() historicTraffic.flight

A

1
1
1
1
1
1
1
1
1
1
1

historicTraffic decodeS06) _ .+ historicTraffic.GUI
getter methods |
readRPImaxTime()
; readMergePoints()
' getter methods readWayPointFilters()
© setter methods getter methods
updateList()
add() | start()

. stopSimulatio()
. pauseSimulatio()
. stopRunning()

historicTraffic.reader

historicTraffic.simulation

Figure 40. Package interaction and interfaces.

|67

A graphic tool for air traffic control

—(paadgpunoinayeinojeo——— > Julodoljell

»yBIdoeIL

» Qapiulod

erequonIsodiybil4

W61y d1yeILdU0ISIY

|auBdojuRIDIY
spoyiaw Janas

|3uedidy

erequuiodAem Aﬂmuo%m& JENETS |auedden

» 90sdendyel) [«———()90sapooap peaiyLowiL

dijel] aweijuone|nwis |_
anoyuonewixoiddy NSO el du0IsIy spoyiaw anas
()Buluunydols
olyjel] duoIsIy (Juonenwisasned
(Juoneinwisdoys
Oppe Quels
spoyiaw lanes spoyiaw Janab
()apooap
()seinoy1eb uonejnwis
9I490S
» Elequone|nwisouoISiH
1apeaysainoy |« T
sp 1siTelrequone|nwisiybi
sopeay | Osiuhuiodtempea: HAIQUORRINEISIION |« Orsrrarepan-
(swuodabianpea erequonenwiSIybIS |
Japeal alel | 21oiIsIy Oawiixewidypes:
_ —_ uoie|nwiIs olyel | dLI0ISIY

Figure 41. Class interactions.

A graphic tool for air traffic control

18. Interfaces

|68

In this section, all the interfaces created for the program are described. The

attached graphs show all the methods of the corresponding interface and the

classes implementing it.

18.1. ISimulationData

The interface ISimulationData is implemented
by the class HistoricSimulationData, figure 42.
This interface was created to be used by the
three kinds of traffics to simulate, historic-,
simulated- and real traffic. It defines the

minimum methods required for the simulation.

18.2. IPositionData

The interface IPositionData is
implemented by the FlightPositionData class,
figure 43. It describes the necessary
information the simulation requires to define a
traffic in one point flying a Point Merge

approach.

<<|SimulationData>>

+ getStartTime(): int

+ getEndTime(): int

+ getSimulationSpeed(): int

+ getTrafficFlightList(): List<TrafficFlight>

A

HistoricSimulationData

- flightList: List<TrafficFlight>

+ setFlightList()
+ setStartTime()
+ setEndTime()
+ setSimulationSpeed()

Figure 42. ISimulationData.

<<|PositionData>>

+ getPosition(): Point4D
+ getStatus(): int

+ getVelocity(): double
+ getTimeToCF(): int

)

FlightPositionData

- point4D: Point4D
- status: int
- groundSpeed: double

+ setPoint4D()

+ setStatus()

+ setGroundSpeed()
+ setTimeToCF()

Figure 43. IPositionData.

A graphic tool for air traffic control 169

18.3. IFlight

<<IFlight>>

The interface IFlight is implemented by the class

+ getPositionDataAt(int time): IPositionData

TrafficFlight, figure 44. It describes the aircraft

position at the specified time. ‘?

TrafficFlight

- callsign: String

- aircraftType: String

- origin: String

- destination: String

- trafficPointMap: Map<integer, TrafficPoint>

+ getAircraftType()
+ getOrigin()

+ getDestination()
+ getTimeMin()

+ getTimeMax()

+ getTimeCF()

+ setAircraftType()
+ setOrigin()

+ setDestination()
+ setTimeMin()

+ setTimeMax()

Figure 44. IFlight.

18.4. ITrafficListener

The RPIPanel and the MapPanel implement the interface ITrafficListener.
The implemented method, to listen and receive the actual List with all the
FlightSimulationData, figure 45.

<<|TrafficListener>>

<<|AircraftDataListener>>

+ updatePositions(List<FlightSimulationData> list): void + updateFlightData(FlightSimulationData): void
A A A A A
1 1 1 1 1
1 1 1 1 1
1 L e T 1 1 1
! | 1 1 1
1 1 1 1 1
1 | R —— 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
RPIPanel MapPanel AircraftinfoPanel
- flightSimDataRP!I: FlightSimulationDataList - routes: Collection<ApproximationRoute>
- admin: AConRPIAdministrator - flightSimDataListMAP:
- acListenerList: List<lAircraftDataListener> FlightSimulationDataList
. : - admin: AConMapAdministrator
* setpiemiDatiskene) - acListenerList: List<lAircraftDataListener>
+ setLinesRPI()

+ paintLinesRPI
o ‘s)etRPIm axTimOe() + setlAircraftDataL istener()

+ clearRPI() + setRoutes()
+ clearMap()

Figure 45. ITrafficListener and IAircraftDataListener.

A graphic tool for air traffic control |70

18.5. |AircraftDataListener

The interface lAircraftDataListener is implemented by the three classes
RPIPanel, MapPanel and AircraftinfoPanel. The implemented method is used to

listen and receive the updated information of one aircraft.

In this program, the interface is used to update all classes implementing this
interface about the chosen aircraft, so it can be represented in yellow or it can

show the aircraft information.

A graphic tool for air traffic control |71

19. Java Class Documentation

In this section, the javadocs for some of the most important classes is
documented. The documentation for all classes can be accessed through the

following link: Traffic Simulation Tool/javadoc/index.html .

19.1. Simulation

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

historicTraffic.simulation

Class Simulation

java.lang.Object
java.lang.Thread
historicTraffic.simulation. Simulation

All Implemented Interfaces:

java.lang.Runnable

public class Simulation
extends java.lang.Thread

Simulation is a thread which provides the SimulationData for each simulation instant to all IT rafficListeners. This information is passed as a List
containing FlightSimulationData. The information about all Traffics are contained in the flightList. For each time, those are put in the List who are
in the air.

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread

java.lang.Thread.State, java.lang.Thread.UncaughtExceptionHandler

Field Summary

Fioids
Modifier and Type Field and Description
private java.util.List<TrafficFlight> flightList
private boolean isPause
private boolean isRunning
private java.util.List<ITrafficlLi > lis List
private java.lang.String message
private int simulationSpeed
private boolean stopSimulation

nrivate int timaEnd

A graphic tool for air traffic control |72

private int timeStart

Fields inherited from class java.lang.Thread

MAX_PRIORITY, MIN PRIORITY, NORM_PRIORITY

Constructor Summary

Constructor and Description

Simulation ()
The constructor creates a new listenerList, sets the stopSimulation to false and is Running to true.

Method Summary
EET e tnos | conen ot |
Modifier and Type Method and Description
private boolean checkPause ()
checks the pause state of the simulation, in a synchronized way
private boolean checkRunning ()
checks if the \f is running, in a synchronized way
private boolean checkStopSimulation ()
checks the value of stopSimulation, in a synchronized way
private void execute ()

is the methos to be executed during run().

private java.util.List<FlightSimulationData> getFlightSimulationlList (int simulationTime)
Takes information from flight and fills data for a given time in a list with the FlightSimulati

for each flight
java.lang.String getMessage ()
void pauseSimulation (boolean pause)

to pause or unpause the simulation.
void run()

private void sendDataToListeners (java.util.List<Fl lationData> flightSimulat
method to send the flightSimulationList to all listeners

veid SOETY S GheTS ak (ases. 283 Ll ak Mra B AW S gt 5 et Lan)
void setSimulationData (ISimulationData simulationData)
It assigns timeStart, timeEnd, simulationSpeed and the flightList to Simulation, informatio
contained in simulationData.
void setTrafficListener (ITrafficListener trafficlistener)

it adds trafficlistener to the listenerList

void stopRunning ()

method to stops the simulation, in a synchronized way
void stopSimulation (boolean stop)

method to stop the simulation.

Methods inherited from class java.lang.Thread

activeCount, checkAccess, clone, countStackFrames, currentThread, destroy, dumpStack, enumerate,
getAllStackTraces, getContextClassloader, getDefaultUncaughtExceptionHandler, getld, getName, getPriority,
getStackTrace, getState, getThreadGroup, getUncaughtExceptionHandler, holdslock, interrupt, interrupted,
isAlive, isDaemon, isInterrupted, join, join, join, resume, setContextClassloader, setDaemon,
setDefaultUncaughtExceptionHandler, setName, setPriority, setUncaughtExceptionHandler, sleep, sleep, start,
stop, stop, suspend, toString, yield

Methods inherited from class java.lang.Object

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail
timeStart

private int timeStart

private int timeEnd

simulationSpeed

private int simulationSpeed

flightList

Arivara daws wki) TiarsMeafEiART inhen £1inheT ian

A graphic tool for air traffic control |73

P ATHLE S ULe MG LN ALML LA LAY & AAygeAS

stopSimulation

private boolean stopSimulation

private boolean isRunning

private boolean isPause

listenerList

private final java.util.List<ITrafficlistener> listenerlist

private java.lang.String message

Constructor Detail
Simulation

public Simulation()

The constructor creates a new listenerList, sets the stopSimulation to false and is Running to true.

Method Detail
sotTrafficListener

public void setTrafficListener(ITrafficListener trafficlistener)

it adds trafficlistener to the listenerList

Parameters:
trafficlistener - to be added to the list

sotSimulationData

public void setSimulationData(ISimulationData simulationData)

It assigns timeStart, timeEnd, simulationSpeed and the flightList to Simul. i ined in simulationData.

Parameters:

simulationData - containing the information to set

public void setFlightList (java.util.List<TrafficFlight> flightList)

Paramoters:
flightList - to be set. This flightList contains the information about all TrafficFlights.

public void run()

Specifiod by:

run in interface java.lang.Runnable
Overrides:

run in class java.lang.Thread

execute

private void execute()

is the methos to be executed during run(). It checks the state of the simulation (running, stop, pause), gets the flightSimulationList for the
actual simulation time and sends it to the IT raffic Listeners. The time simulation will run from the timeStart until the timeEnd and the
it is used to calculate the sleep Time of the thread.

stopSimulation

public void stopSimulation(boolean stop)

method to stop the simulation. Assigns the value of stop to stopSimulation in a synchronized way

Paramoters:
stop - boolean whi

h is true if the simulation is stopped.

A graphic tool for air traffic control |74

private boolean checkStopSimulation()

checks the value of stopSimulation, in a synchronized way

Roturns:

stopSimulation

stopRunning
public void stopRunning()

method to stops the simulation, in a synchronized way

checkRunning
private boolean checkRunning()

checks if the simulation is running, in a synchronized way

Roturns:
value of isRunning

gotFlightSimulationList

private java.util.List<FlightSimulationData> getFlightSimulationList(int simulationTime)

Takes information from flight and fills data for a given time in a list with the FlightSimulationData for each flight
Paramoters:

simulationTime - for which the list should be created

Roturns:

List with FlightSimulationData

getMessage

public java.lang.String getMessage()

sendDataToListeners

private void sendDataToListeners(java.util.List<FlightSimulationData> flightSimulationlist)

method to send the flightSimulationList to all listeners

Paramoters:
flightSimulationList - to be send to listeners

public void pauseSimulation(boolean pause)

to pause or unpause the simulation. Assigns the value of pause to isPause, in a synchronized way

Parameoters:

pause - state of simulation

checkPause

private boolean checkPause()

checks the pause state of the simulation, in a synchronized way

Returns:
value of isPause, ture if the simulation is paused

A graphic tool for air traffic control

19.2.

TimeThread

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD ~ DETAIL:FIELD | CONSTR | METHOD
historicTraffic.GUI
Class TimeThread

java.lang.Object
java.lang.Thread
historicTraffic.GUI.TimeThread

All Implemented Interfaces:

java.lang.Runnable

public class TimeThread
extends java.lang.Thread

The TimeThread is a Thread that indicated the actual time of simulated based on the simulation
period and the simulation speed.

Nested Class Summary

Nested classes/interfaces inherited from class java.lang.Thread

java.lang.Thread.State, java.lang.Thread.UncaughtExceptionHandler

Field Summary
Fiolds
Modifier and Type Field and Description
private int endTime
private boolean isPause
private boolean isRunning
private int simulationSpeed
private javax.swing.JButton startButton
private int startTime
private boolean stopTimer

private javax.swing.JTextField textFieldTime

Fields inherited from class java.lang.Thread

MAX PRIORITY, MIN PRIORITY, NORM PRIORITY

Constructor Summary

Constructor and Description

TimeThread()

Method Summary

|75

A graphic tool for air traffic control

Modifier and Type Method and Description

private boolean checkPause ()
checks if timer is paused

private boolean checkRunning()
it checks is the timer is running

private boolean checkStopTimer ()
it checks if timer is stopped or not

void pauseTimer (boolean pause)
assigns the value of pause to isPause

void run()

assigns stopTimer the value of stop

Methods inherited from class java.lang.Thread

destroy, dumpStack, enumerate, getAllStackTraces,

stop, stop, suspend, toString, yield

Methods inherited from class java.lang.Object

wait

Field Detail
textFieldTime

private javax.swing.JTextField textFieldTime

startButton

private javax.swing.JButton startButton

Runs simulation time, pauses it or stops it.

activeCount, checkAccess, clone, countStackFrames,

_ Instance Methods Concrete Methods

void setEndTime (int endTime)
sets the endTime
void setSimulationSpeed (int simulationSpeed)
sets the simulationSpeed
void setStartButtonFrame2 (javax.swing.JButton button)
void setStartTime (int startTime)
sets teh startTime
void setTimeField(javax.swing.JTextField textFieldTime)
void stopRunning ()
stops the timer from running by setting stopTimer true and
isRunning false
void stopTimer (boolean stop)

currentThread,

getContextClassLoader, getDefaultUncaughtExceptionHandler, getId,
getName, getPriority, getStackTrace, getState, getThreadGroup,
getUncaughtExceptionHandler, holdsLock, interrupt, interrupted,
isAlive, isDaemon, isInterrupted, join, join, join, resume,
setContextClassLoader, setDaemon, setDefaultUncaughtExceptionHandler,
setName, setPriority, setUncaughtExceptionHandler, sleep, sleep, start,

equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait,

|76

A graphic tool for air traffic control |77

simulationSpeed

private int simulationSpeed

startTime

private int startTime

endTime

private int endTime

private boolean isRunning

stopTimer

private boolean stopTimer

isPause

private boolean isPause

Constructor Detail
TimeThread

public TimeThread()

Method Detail
run

public void run()

Runs simulation time, pauses it or stops it.

Specified by:
run in interface java.lang.Runnable
Overrides:

run in class java.lang.Thread

stopTimer

public void stopTimer (boolean stop)

assigns stopTimer the value of stop

Parameters:

stop - indicates if timer was stopped

A graphic tool for air traffic control |78

checkStopTimer

private boolean checkStopTimer()

it checks if timer is stopped or not

Returns:

stopTimer

stopRunning

public void stopRunning()

stops the timer from running by setting stopTimer true and isRunning false

checkRunning

private boolean checkRunning ()

it checks is the timer is running

Returns:

true if timmer is running, false if it is not

setTimeField

public void setTimeField (javax.swing.JTextField textFieldTime)

setStartButtonFrame2

public void setStartButtonFrame2 (javax.swing.JButton button)

setSimulationSpeed

public void setSimulationSpeed(int simulationSpeed)

sets the simulationSpeed

Parameters:

simulationSpeed - defines the speed of simulation an is used to
calculate the sleep time of the thread.

setStartTime

public void setStartTime (int startTime)

sets teh startTime

Parameters:

startTime - the time, at which the simulation starts

setEndTime

public void setEndTime (int endTime)

sets the endTime

Parameters:

endTime - the time, at which the simulation stops

A graphic tool for air traffic control |79

pauseTimer

public void pauseTimer (boolean pause)

assigns the value of pause to isPause

Parameters:

pause - ture if simulation is paused

checkPause

private boolean checkPause ()

checks if timer is paused

Returns:

isPause, true if simulation is paused

A graphic tool for air traffic control 180

19.3. MapPanel

historicTraffic.GUI
Class MapPanel

java.lang.Object
java.awt.Component
java.awt.Container
javax.swing.JComponent
javax.swing.JPanel
historicTraffic. GUl.MapPanel

All Implemented Interfaces:
IAircraftDatalistener, ITrafficListener, java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable, javax.accessibility.Accessible

public class MapPanel
extends javax.swing.JPanel
implements ITrafficListener, IAircraftDatalistener

Over the MapPanel the approximation routes and the aircraft in the air are represented.

See Also:

Serialized Form

Nested Class Summary

Nested classes/interfaces inherited from class javax.swing.JPanel

javax.swing.JPanel.AccessibleJPanel

Nested classes/interfaces inherited from class javax.swing.JComponent
javax.swing.JComponent.AccessibleJComponent

Nested classes/interfaces inherited from class java.awt.Container
java.awt.Container.AccessibleAWTContainer

Nested classes/interfaces inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BaselineResizeBehavior,
java.awt.Component.BltBufferStrategy, java.awt.Component.FlipBufferStrategy

Field Summary

Modifier and Type Field and Description

private java.util.List<IAircraftDatalListener> acListenerList

private AConMapAdministrator admin

private FlightSimulationDataList flightSimDataListMAP
private java.lang.Double latmax

private java.lang.Double latmin

private java.lang.Double lonmax

private java.lang.Double lonmin

private Map map

private java.awt.geom.Rectangle2D mapArea

A graphic tool for air traffic control

private boolean onlyMap

private java.util.Collection<ApproximationRoute> routes

Fields inherited from class javax.swing.JComponent

listenerList, TOOL TIP_TEXT KEY, ui, UNDEFINED CONDITION,
WHEN_ANCESTOR_OF FOCUSED_COMPONENT, WHEN_ FOCUSED, WHEN_IN FOCUSED_ WINDOW

Fields inherited from class java.awt.Component

accessibleContext, BOTTOM ALIGNMENT, CENTER ALIGNMENT, LEFT ALIGNMENT, RIGHT ALIGNMENT,
TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary
c and Descripti
MapPanel ()

the constructor creates theFligthSimulationDataListMap, the admin (an AConMapAdministrator) and the
acListenerList.

Method Summary
_ Instance Methods Concrete Methods
Modifier and Type Method and Description
void clearMap ()
the map is cleared, only the approximation routes are shown on the Map, no
aircraft and the chosenAC is set to null.
private void createPolygonMapForPlot ()
starting from the wpData, the polygons are created to represent the map
private void formMouseClicked (java.awt.event.MouseEvent evt)

It assigns a new chosenAC afte the mouse was clicked over the map and sends

it to the AcDataListeners

private FlightSimulationData getSelectedACdata ()

It gets from the List with all FlightSimulationData the data of the actual chosen

aircraft

private void initComponents ()
This method is called from within the constructor to initialize the form.

private void paintAircraft(java.awt.Graphics2D g)
it paints all the Aircraft from the acList over the map

private void paintApproximation(java.awt.Graphics2D g)
protected void paintComponent (java.awt.Graphics g)

protected void paintMap (java.awt.Graphics g)

private void sendToAcDataListener (FlightSimulationData fsd)

It sends the fsd, FlightSimulationData, to all the AcDataListeners

void setIAircraftDatalistener (IAircraftDatalistener acDatalistener)

adds and acDatalistener to the acListenerList
void setRoutes (java.util.Collection<ApproximationRoute> routes)

void updateFlightData (FlightSimulationData fsd)

|81

A graphic tool for air traffic control |82

it sets the chosenAC to the admin

void updatePositions (java.util.List<F1li lati list)
it updates the position of all aircraft flying at the time of simulation

Methods inherited from class javax.swing.JPanel

getAccessibleContext, getUI, getUIClassID, paramString, setUI, updateUI

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addVetoableChangeListener, computeVisibleRect, contains,
createToolTip, disable, enable, firePropertyChange, firePropertyChange,
firePropertyChange, fireVetoableChange, getActionForKeyStroke, getActionMap,
getAlignmentX, getAlignmentY, getAncestorListeners, getAutoscrolls, getBaseline,
getBaselineResizeBehavior, getBorder, getBounds, getClientProperty,
getComponentGraphics, getComponentPopupMenu, getConditionForKeyStroke,
getDebugGraphicsOptions, getDefaultLocale, getFontMetrics, getGraphics, getHeight,
getInheritsPopupMenu, getInputMap, getInputMap, getInputVerifier, getInsets, getInsets,
getListeners, getLocation, getMaximumSize, getMinimumSize, getNextFocusableComponent,
getPopuplocation, getPreferredSize, getRegisteredKeyStrokes, getRootPane, getSize,
getToolTipLocation, getToolTipText, getToolTipText, getTopLevelAncestor,
getTransferHandler, getVerifyInputWhenFocusTarget, getVetoableChangeListeners,
getVisibleRect, getWidth, getX, getY, grabFocus, hide, isDoubleBuffered,
isLightweightComponent, isManagingFocus, isOpaque, isOptimizedDrawingEnabled,
isPaintingForPrint, isPaintingOrigin, isPaintingTile, isRequestFocusEnabled,
isvValidateRoot, paint, paintBorder, paintChildren, paintImmediately, paintImmediately,
print, printAll, printBorder, printChildren, printComponent, processComponentKeyEvent,
processKeyBinding, processKeyEvent, proc vent, pr useMotionEvent,
putClientProperty, registerKeyboardAction, registerKeyboardAction,
removeAncestorListener, removeNotify, removeVetoableChangeListener, repaint, repaint,
requestDefaultFocus, requestFocus, requestFocus, requestFocusInWindow,
requestFocusInWindow, resetKeyboardActions, reshape, revalidate, scrollRectToVisible,
setActionMap, setAlignmentX, setAlignmentY, setAutoscrolls, setBackground, setBorder,
setComponentPopupMenu, setDebugGraphicsOptions, setDefaultLocale, setDoubleBuffered,
setEnabled, setFocusTraversalKeys, setFont, setForeground, setInheritsPopupMenu,
setInputMap, setInputVerifier, setMaximumSize, setMinimumSize,
setNextFocusableComponent, setOpaque, setPreferredSize, setRequestFocusEnabled,
setToolTipText, setTransferHandler, setUI, setVerifyInputWhenFocusTarget, setVisible,
unregisterKeyboardAction, update

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, addPropertyChangelListener,
addPropertyChangeListener, applyComponentOrientation, areFocusTraversalKeysSet,
countComponents, deliverEvent, doLayout, findComponentAt, findComponentAt, getComponent,
getComponentAt, getComponentAt, getComponentCount, getComponents, getComponentZOrder,
getContainerListeners, getFocusTraversalKeys, getFocusTraversalPolicy, getlLayout,
getMousePosition, insets, invalidate, isAncestorOf, isFocusCycleRoot, isFocusCycleRoot,
isFocusTraversalPolicyProvider, isFocusTraversalPolicySet, layout, list, list, locate,
minimumSize, paintComponents, preferredSize, printComponents, processContainerEvent,
processEvent, remove, remove, removeAll, removeContainerListener, setComponentZOrder,
setFocusCycleRoot, setFocusTraversalPolicy, setFocusTraversalPolicyProvider, setlLayout,
transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,
addHierarchyListener, addInputMethodListener, addKeyListener, addMouselistener,
addMouseMotionListener, addMouseWheellListener, bounds, checkImage, checkImage,
coalesceEvents, contains, createImage, createImage, createVolatileImage,
createVolatileImage, disableEvents, dispatchEvent, enable, enableEvents,
enableInputMethods, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, getBackground, getBounds,
getColorModel, getComponentListeners, getComponentOrientation, getCursor, getDropTarget,
getFocusCycleRootAncestor, getFocusListeners, getFocusTraversalKeysEnabled, getFont,
getForeground, getGraphicsConfiguration, getHierarchyBoundsListeners,
getHierarchyListeners, getIgnoreRepaint, getInputContext, getInputMethodListeners,
getInputMethodRequests, getKeyListeners, getLocale, getLocation, getLocationOnScreen,
getMouseListeners, getMouseMotionListeners, getMousePosition, getMouseWheellisteners,
getName, getParent, getPeer, getPropertyChangelListeners, getPropertyChangelisteners,

A graphic tool for air traffic control 183

getSize, getToolkit, getTreeLock, gotFocus, handleEvent, hasFocus, imageUpdate, inside,
isBackgroundSet, isCursorSet, isDisplayable, isEnabled, isFocusable, isFocusOwner,
isFocusTraversable, isFontSet, isForegroundSet, isLightweight, isMaximumSizeSet,
isMinimumSizeSet, isPreferredSizeSet, isShowing, isValid, isVisible, keyDown, keyUp,
list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit,
mouseMove, mouseUp, move, nextFocus, paintAll, postEvent, prepareImage, preparelmage,
processComponentEvent, processFocusEvent, processHierarchyBoundsEvent,
processHierarchyEvent, processInputMethodEvent, processMouseWheelEvent, remove,
removeComponentListener, removeFocusListener, removeHierarchyBoundsListener,
removeHierarchyListener, removeInputMethodListener, removeKeyListener,
removeMouselListener, removeMouseMotionListener, removeMouseWheellistener,
removePropertyChangelListener, removePropertyChangelListener, repaint, repaint, repaint,
resize, resize, setBounds, setBounds, setComponentOrientation, setCursor, setDropTarget,
setFocusable, setFocusTraversalKeysEnabled, setIgnoreRepaint, setLocale, setLocation,
setLocation, setName, setSize, setSize, show, show, size, toString, transferFocus,
transferFocusBackward, transferFocusUpCycle

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail
routes

private java.util.Collection<ApproximationRoute> routes

private Map map

flightSimDataListMAP

private final FlightSimulationDataList flightSimDataListMAP

admin

private final AConMapAdministrator admin

acListenerList

private final java.util.List<IAircraftDatalistener> acListenerList

private java.lang.Double lonmin

lonmax

private java.lang.Double lonmax

private java.lang.Double latmin

latmax

private java.lang.Double latmax

A graphic tool for air traffic control |84

mapArea

private java.awt.geom.Rectangle2D mapArea

onlyMap

private boolean onlyMap

Constructor Detail
MapPanel

public MapPanel ()
the constructor creates theFligthSimulationDataListMap, the admin (an AConMapAdministrator) and the

acListenerList. OnlyMap is set to false, what means that by default both, approximation routes and aircraft flying
are going to be represented.

Method Detail
setlAircraftDataListener

public void setIAircraftDatalistener (IAircraftDatalListener acDatalistener)

adds and acDatalistener to the acListenerList

Parameters:

acDatalistener - to be added to the acListenerList

initComponents

private void initComponents ()
This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this code.
The content of this method is always regenerated by the Form Editor.

formMouseClicked

private void formMouseClicked (java.awt.event.MouseEvent evt)

It assigns a new chosenAC afte the mouse was clicked over the map and sends it to the AcDataListeners

Parameters:

evt - of mouse clicked over the map

getSelectedACdata

private FlightSimulationData getSelectedACdata()

It gets from the List with all FlightSimulationData the data of the actual chosen aircraft

Returns:
data of the chosenAC
sendToAcDatalListener

private void sendToAcDataListener (FlightSimulationData fsd)

It sends the fsd, FlightSimulationData, to all the AcDataListeners

Parameters:

A graphic tool for air traffic control |85

fsd - to be send to AcDataListeners

paintComponent

protected void paintComponent (java.awt.Graphics g)

Overrides:
paintComponent in class javax.swing.JComponent

paintMap

protected void paintMap(java.awt.Graphics q)

paintAircraft

private void paintAircraft(java.awt.Graphics2D g)

it paints all the Aircraft from the acList over the map

Parameters:

g - over which the aircraft should be painted

createPolygonMapForPlot

private void createPolygonMapForPlot ()

starting from the wpData, the polygons are created to represent the map

paintApproximation

private void paintApproximation(java.awt.Graphics2D g)

setRoutes

public void setRoutes(java.util.Collection<ApproximationRoute> routes)

updatePositions

public void updatePositions(java.util.List<FlightSimulationData> list)
it updates the position of all aircraft flying at the time of simulation

Specified by:
updatePositions in interface ITrafficListener
Parameters:

list - with FlightSimulationData for actual simulation time

updateFlightData

public void updateFlightData(FlightSimulationData fsd)
it sets the chosenAC to the admin

Specified by:
updateFlightData in interface IAircraftDatalistener

Parameters:

fsd - of the chosenAC
clearMap

public void clearMap()

the map is cleared, only the approximation routes are shown on the Map, no aircraft and the chosenAC is set to
null

A graphic tool for air traffic control

19.4.

RPIPanel

OVERVIEW PACKAGE USE TREE DEPRECATED INDEX HELP

PREV CLASS NEXT CLASS FRAMES NO FRAMES

SUMMARY:NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD
historicTraffic.GUI
Class RPIPanel

java.lang.Object
java.awt.Component
java.awt.Container
javax.swing.JComponent
javax.swing.JPanel
historicTraffic. GUI.RPIPanel

All Implemented Interfaces:
IAircraftDatalistener, ITrafficlistener, java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable, javax.accessibility.Accessible

public class RPIPanel
extends javax.swing.JPanel
implements ITrafficListener, IAircraftDatalistener

The RPIpanel contains the relative position indicator. Each aircraft is represented over one line, with a maximum of 12
aircraft. At the end of each line the time left to reach the MergePoint is represented. rpiMaxTime is the time from
which the aircraft are started to be repesented over the line.

See Also:

Serialized Form
Nested Class Summary

Nested classes/interfaces inherited from class javax.swing.JPanel

javax.swing.JPanel.AccessibleJPanel

Nested classes/interfaces inherited from class javax.swing.JComponent

javax.swing.JComponent.AccessibleJComponent

Nested classes/interfaces inherited from class java.awt.Container

java.awt.Container.AccessibleAWTContainer

Nested classes/interfaces inherited from class java.awt.Component

java.awt.Component.AccessibleAWTComponent, java.awt.Component.BaselineResizeBehavior,
java.awt.Component.BltBufferStrategy, java.awt.Component.FlipBufferStrategy

Field Summary

Modifier and Type Field and Description

private java.util.List<FlightSimulationData> acList

private java.util.List<IAircraftDataLi aclis ist
private AConRPIAdministrator admin

private FlightSimulationDataList £flightSimDataRPI
private Map map

private java.awt.geom.Rectangle2D mapArea

private boolean onlyLines

orivate int roiMaxTime

|86

A graphic tool for air traffic control |87

(package private) double
(package private) double

(package private) double

FTE L

(package private) double

Fields inherited from class javax.swing.JComponent

listenerList, TOOL_TIP_TEXT KEY, ui, UNDEFINED CONDITION,
WHEN_ANCESTOR_OF FOCUSED_COMPONENT, WHEN_FOCUSED, WHEN_IN_FOCUSED_WINDOW

Fields inherited from class java.awt.Component

accessibleContext, BOTTOM ALIGNMENT, CENTER ALIGNMENT, LEFT ALIGNMENT, RIGHT ALIGNMENT,
TOP_ALIGNMENT

Fields inherited from interface java.awt.image.ImageObserver

ABORT, ALLBITS, ERROR, FRAMEBITS, HEIGHT, PROPERTIES, SOMEBITS, WIDTH

Constructor Summary

Constructor and Description
RPIPanel (int rpiMaxTime)
in the constructor, the rpiMaxTime is set.

Method Summary
nivetoss
Modifier and Type Method and Description
void clearRPI ()
private void createPolygonLinesRPI ()
creates a map with the polygon information of the lines to represent
private void formMouseClicked (java.awt.event.MouseEvent evt)

If the mouse was clicked over the RPI panel is assigns the new chosenAC and
sends the selected ACdata to the AcDataListeners

private FlightSimulationData getSelectedACdata ()
it obtains the FlightSimulationData from the chosenAC out of the List with all

the FlightSimulationData
private void initComponents ()

This method is called from within the constructor to initialize the form.
protected void paintComponent (java.awt.Graphics g)
void paintLinesRPI (java.awt.Graphics2D g)

paints the lines on the panel over which the aircraft are represented

private void paintRPI (java.awt.Graphics2D g)
it paints the aircraft identified by its callsign over the RPI panel (placeing the
one closest to the Merge Point at the top line) and sets the time at the end of
each line.

private void sendToAcDatalistener (FlightSimulationData fsd)
it send the fsd to all the acListener assigned to the acLinstenerList

void setIAircraftDatalistener (IAircraftDatalistener acDatalistener)
it adds the acDatalistener to the acListenerList

void setLinesRPI ()

A graphic tool for air traffic control |88

void setRPImaxTime (int time)

void updateFlightData (FlightSimulationData fsd)
tells the admin which is the chosenAC

void updatePositions (java.util.List<FlightSimulationData> list)
it assigns the FlightSimulationData in the list to the FlightSimulationDataList
deleting all the flight that already passed the Merge Point

Methods inherited from class javax.swing.JPanel

getAccessibleContext, getUI, getUIClassID, paramString, setUI, updateUI

Methods inherited from class javax.swing.JComponent

addAncestorListener, addNotify, addVetoableChangelListener, computeVisibleRect, contains,
createToolTip, disable, enable, firePropertyChange, firePropertyChange,
firePropertyChange, fireVetoableChange, getActionForKeyStroke, getActionMap,
getAlignmentX, getAlignmentY, getAncestorListeners, getAutoscrolls, getBaseline,
getBaselineResizeBehavior, getBorder, getBounds, getClientProperty,
getComponentGraphics, getComponentPopupMenu, getConditionForKeyStroke,
getDebugGraphicsOptions, getDefaultLocale, getFontMetrics, getGraphics, getHEeight,
getInheritsPopupMenu, getInputMap, getInputMap, getInputVerifier, getlInsets, getlnsets,
getListeners, getLocation, getMaximumSize, getMinimumSize, getNextFocusableComponent,
getPopupLocation, getPreferredSize, getRegisteredKeyStrokes, getRootPane, getSize,
getToolTipLocation, getToolTipText, getToolTipText, getTopLevelAncestor,
getTransferHandler, getVerifylInputWhenFocusTarget, getVetoableChangeListeners,
getVisibleRect, getWidth, getX, getY, grabFocus, hide, isDoubleBuffered,
isLightweightComponent, isManagingFocus, isOpaque, isOptimizedDrawingEnabled,
isPaintingForPrint, isPaintingOrigin, isPaintingTile, isRequestFocusEnabled,
isValidateRoot, paint, paintBorder, paintChildren, paintImmediately, paintImmediately,
print, printAll, printBorder, printChildren, printComponent, processComponentKeyEvent,
processKeyBinding, processKeyEvent, processMouseEvent, processMouseMotionEvent,
putClientProperty, registerKeyboardAction, registerXeyboardAction,
removeAncestorListener, removeNotify, removeVetoableChangeListener, repaint, repaint,
requestDefaultFocus, requestFocus, requestFocus, requestFocusInWindow,
requestFocusInWindow, resetKeyboardActions, reshape, revalidate, scrollRectToVisible,
setActionMap, setAlignmentX, setAlignmentY, setAutoscrolls, setBackground, setBorder,
setComponentPopupMenu, setDebugGraphicsOptions, setDefaultLocale, setDoubleBuffered,
setEnabled, setFocusTraversalKeys, setFont, setForeground, setInheritsPopupMenu,
setInputMap, setInputVerifier, setMaximumSize, setMinimumSize,
setNextFocusableComponent, setOpaque, setPreferredSize, setRequestFocusEnabled,
setToolTipText, setTransferHandler, setUI, setVerifyInputWhenFocusTarget, setVisible,
unregisterKeyboardAction, update

Methods inherited from class java.awt.Container

add, add, add, add, add, addContainerListener, addImpl, addPropertyChangeListener,
addPropertyChangeListener, applyComponentOrientation, areFocusTraversalKeysSet,
countComponents, deliverEvent, doLayout, findComponentAt, findComponentAt, getComponent,
getComponentAt, getComponentAt, getComponentCount, getComponents, getComponentZOrder,
getContainerListeners, getFocusTraversalKeys, getFocusTraversalPolicy, getLayout,
getMousePosition, insets, invalidate, isAncestorOf, isFocusCycleRoot, isFocusCycleRoot,
isFocusTraversalPolicyProvider, isFocusTraversalPolicySet, layout, list, list, locate,
minimumSize, paintComponents, preferredSize, printComponents, processContainerEvent,
processEvent, remove, remove, removeAll, removeContainerListener, setComponentZOrder,
setFocusCycleRoot, setFocusTraversalPolicy, setFocusTraversalPolicyProvider, setLayout,
transferFocusDownCycle, validate, validateTree

Methods inherited from class java.awt.Component

action, add, addComponentListener, addFocusListener, addHierarchyBoundsListener,
addHierarchyListener, addInputMethodListener, addKeyListener, addMouselListener,
addMouseMotionListener, addMouseWheellListener, bounds, checkImage, checkImage,
coalesceEvents, contains, createImage, createImage, createVolatileImage,
createVolatileImage, disableEvents, dispatchEvent, enable, enableEvents,
enableInputMethods, firePropertyChange, firePropertyChange, firePropertyChange,
firePropertyChange, firePropertyChange, firePropertyChange, getBackground, getBounds,
getColorModel, getComponentListeners, getComponentOrientation, getCursor, getDropTarget,
getFocusCycleRootAncestor, getFocusListeners, getFocusTraversalXKeysEnabled, getFont,

A graphic tool for air traffic control 189

getForeground, getGraphicsConfiguration, getHierarcnyBoundsListeners,
getHierarchyListeners, getIgnoreRepaint, getInputContext, getInputMethodListeners,
getInputMethodRequests, getKeyListeners, getLocale, getLocation, getLocationOnScreen,
getMouseListeners, getMouseMotionListeners, getMousePosition, getMouseWheelListeners,
getName, getParent, getPeer, getPropertyChangelisteners, getPropertyChangeListeners,
getSize, getToolkit, getTreelock, gotFocus, handleEvent, hasFocus, imageUpdate, inside,
isBackgroundSet, isCursorSet, isDisplayable, isEnabled, isFocusable, isFocusOwner,
isFocusTraversable, isFontSet, isForegroundSet, isLightweight, isMaximumSizeSet,
isMinimumSizeSet, isPreferredSizeSet, isShowing, isValid, isVisible, keyDown, keyUp,
list, list, list, location, lostFocus, mouseDown, mouseDrag, mouseEnter, mouseExit,
mouseMove, mouseUp, move, nextFocus, paintAll, postEvent, preparelmage, preparelmage,
processComponentEvent, processFocusEvent, p Hierarchy vent,
processHierarchyEvent, processInputMethodEvent, processMouseWheelEvent, remove,
removeComponentListener, removeFocusListener, removeHierarchyBoundsListener,
removeHierarchylistener, removelnputMethodListener, removeXeyListener,
removeMouselistener, removeMouseMotionListener, removeMouseWheelListener,
removePropertyChangeListener, removePropertyChangelistener, repaint, repaint, repaint,
resize, resize, setBounds, setBounds, setComponentOrientation, setCursor, setDropTarget,
setFocusable, setFocusTraversalKeysEnabled, setIgnoreRepaint, setLocale, setLocation,
setLocation, setName, setSize, setSize, show, show, size, toString, transferFocus,
transferFocusBackward, transferFocusUpCycle

A

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail
acList

private java.util.List<FlightSimulationData> acList
flightSimDataRPI

private final FlightSimulationDataList flightSimDataRPI
admin

private final AConRPIAdministrator admin

rpiMaxTime

private int rpiMaxTime

mapArea

private java.awt.geom.Rectangle2D mapArea

private Map map

acListenerList

private final java.util.List<IAircraftDataListener> acListenerList

onlyLines

private boolean onlyLines

A graphic tool for air traffic control 190

double xmin

double xmax

ymin

double ymin

ymax

double ymax

Constructor Detail
RPIPanel

public RPIPanel(int rpiMaxTime)

in the constructor, the rpiMaxTime is set. The flightSimDataRPI, acListenerList and admin are created.
onlyLines is set to false, so lines, times and aircraft will be defaultly represented.

Parameters:

rpiMaxTime -

Method Detail
setlAircraftDatalListener

public void setIAircraftDatalistener (IAircraftDatalistener acDatalistener)
it adds the acDatalistener to the acListenerList

Parameters:

acDatalistener - to be added to acListenerList

paintComponent

protected void paintComponent (java.awt.Graphics g)

Overrides:

paintComponent in class javax.swing.JComponent

paintRPI

private void paintRPI(java.awt.Graphics2D g)

it paints the aircraft identified by its callsign over the RPI panel (placeing the one closest to the Merge Point at
the top line) and sets the time at the end of each line. The information is obtained from the flightSimDataRPI.

Parameters:

g -

createPolygonLinesRPI

A graphic tool for air traffic control 191

private void createPolygonLinesRPI ()

creates a map with the polygon information of the lines to represent

setLinesRPI

public void setLinesRPI()

paintLinesRPI

public void paintLinesRPI(java.awt.Graphics2D g)

paints the lines on the panel over which the aircraft are represented

Parameters:

g -

initComponents

private void initComponents ()
This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this code.
The content of this method is always regenerated by the Form Editor.

formMouseClicked

private void formMouseClicked(java.awt.event.MouseEvent evt)

1f the mouse was clicked over the RPI panel is assigns the new chosenAC and sends the selected ACdata to the
AcDataListeners

Parameters:

evt - of mouse clicked over the RPI panel

getSelectedACdata

private FlightSimulationData getSelectedACdata ()

it obtains the FlightSimulationData from the chosenAC out of the List with all the FlightSimulationData

Returns:
data of chosenAC

sendToAcDataListener

private void sendToAcDataListener (FlightSimulationData £sd)

it send the fsd to all the acListener assigned to the acLinstenerList

Parameters:

fsd - to be send to acListeners

updatePositions

public void updatePositions(java.util.List<FlightSimulationData> list)

it assigns the FlightSimulationData in the list to the FlightSimulationDataList deleting all the flight that already
passed the Merge Point

Specified by:

updatePositions in interface ITrafficListener

Parameters:

list - containing the FlightSimulationData

setRPImaxTime

A graphic tool for air traffic control 192

public void setRPImaxTime (int time)

updateFlightData

public void updateFlightData(FlightSimulationData £sd)
tells the admin which is the chosenAC

Specified by:
updateFlightData in interface IAircraftDatalistener
Parameters:

fsd - which are actual

clearRPI

public void clearRPI ()

A graphic tool for air traffic control 193

PART 6 — PROJECT FINALIZATION

20. Budget calculation

The budget for the presented Project is composed of three main blocks,
labour costs, material and tools costs and indirect costs. The budget calculation
for each block is listed in detail and the resulting final budget can be consulted at
the end.

Labour costs

This project was realized by two engineers. One, who is the main developer
(Engineer1) and the second, who was giving support and supervision. The
engineer’s salary is set at 50 €/hour. The project was realized from the end of

April until the end of July, a total of 12 weeks. The total labour costs are calculated

as follows:
Hours/week Total Total €/hours Total €
weeks hours
Engineer1 30 12 360 50 18.000
Engineer2 3 12 36 50 1.800
Total
19.800€
labour cost

Material and Tools costs

This block contains the costs for all the material and programs used during

the realization of the project.

A graphic tool for air traffic control |94

The software used for the realization of the project and the costs for their

licenses are the following:

Netbeans 8.2 — free

NEST — free

Microsoft Office — 4,28 € / month
Lucidchart — 9,95 € / month

Zotero — free

Regarding the material cost, the project was mainly developed with a

MacBook 7,2. Due to incompatibilities of the NEST software with the MacBook

operating system, a Lenovo 80UD (windows) was also used.

Total Original Usage Usage Total cost
durability price (€) during period €

(months) project (months)
(%)
MacBook 48 1177,33 95% 3 70
Lenovo 36 600 3% 3 1,5
Microsoft - - - 3 12,84
Office
Lucidchart - - - 3 29,85
Total
114,19€
material cost

A graphic tool for air traffic control |95

Indirect costs

The indirect costs are related to transport, electricity, administration and
office costs. As they are difficult to calculate, an estimation of these costs based
on the direct costs will be given. The indirect costs are estimated to be 20% of

the direct costs.

Part of direct cost Total direct cost Total €

Indirect costs 20% 19.914,19 3.982,84

The sum of these three blocks makes the total budget of the project; so the

resulting final budget amounts to 23.897,03 €.

Costs (€)
Labour 19.800
Material and tools 114,19
Indirect 3.982,84
Total budget 23.897,03 €

A graphic tool for air traffic control |96

21. Conclusion

The objective of this work was introducing the theoretical concept of Point
Merge operations, establishing all the relevant concepts related and analysing
the advantages and opportunities Point Merge operations provide. The main part
of this work is the development of a graphical tool for traffic simulation. Revising
the program requirements with the final version of the developed tool, you arrive
at the conclusion that all the requirements could be fulfilled. The implementation
of a use case was an important part of the project in order to arrive at this

conclusion.

RPI is a promising aid to improve the advantages of Point Merge identified in
the theoretical part. The program developed constitutes a starting point to further
improvement of RPI representation and offers an approach to integrate RPI as a

standard tool for air traffic controllers monitoring Point Merge approaches.

Inside the program structure, the RPI panel can be easily replaced by another
panel. If at any moment, a new tool is designed to be placed on the controller’s
monitor, it can be integrated in the present tool for testing, improvement and

demonstration

21.1. Future work

As the developed tool - especially the inclusion of RPI - is only a first
approach to a new monitor representation and reduced to historic traffic, future
developments are necessary in order to make it a powerful tool adding new value

to the controllers' work environment.

Regarding the design and starting from the presented use case, the clients
and final users of the tool should be given the opportunity to comment any change
requests. These changes could include the arrangement of information over the
monitor, colour or dimension adjustments and most important, modifications in

the RPI representation.

As for the historic traffic, the information about the route flown is known from
the beginning and no calculations of higher complexity need to be done. The

A graphic tool for air traffic control |97

program for simulated and real traffics should include an algorithm to calculate
prospectively. It should be based on the actual intended route and the time left to
reach the Merge Point. For these calculations, aspects like turns, descent and
speed variations need to be taken into account.

Another difference concerning simulated and real traffic compared to historic
traffic, is the chance that the route to fly can be modified. This feature will have

to be added to the code for these traffics.

The way information about the different traffics is obtain also varies between
the three traffics to simulate. While for historic traffic all the necessary information
is obtained in the .so6 file or can be easily calculated from it, in the simulated
traffic all the information needs to be defined previously, manually changed or
calculated. In case of real traffic, information is taken directly from the flying

aircraft via radar.

21.2. Personal conclusion

The realization of this project allowed me to study and understand in detail
the ATM Merge Point procedure. During my investigation, | could amplify my
knowledge about Eurocontrol and learn about the tools and services they offer.
The development of the program with NetBeans IDE using Java language and
the GUI swing tool posed the challenge of learning about object oriented
programming and a new programming language. By way of conclusion, it should
be said that this work not only meant to apply knowledge acquired during my
studies, but also demanded the transfer of this knowledge and the use of the
developed skills to acquire the domination of a previously unknown tool. And this
definitely is an utmost relevant skill engineers are frequently faced with during
their professional career.

A graphic tool for air traffic control |98

22. BIBLIOGRAPHY

[1]tagesschau.de, ‘Trotz Nachtflugverbots: So viele Nachtflige wie noch nie’,
tagesschau.de. [Online]. Available:
https://www.tagesschau.de/inland/nachtfluege-101.html. [Accessed: 11-Jul-
2018].

[2]‘Chapter6.website.v3.en.pdf’. .

[3]‘Air traffic management (ATM) explained | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/articles/air-traffic-management-atm-explained.
[Accessed: 18-May-2018].

[4]ICAO, ‘WHAT IS ATM’, presented at the ASIA/PACIFIC MET/ATM
Seminar, Fukuoka, Japan, 24-Jan-2011.

[5]‘airspace management’, TheFreeDictionary.com. [Online]. Available:
https://www.thefreedictionary.com/airspace+management. [Accessed: 19-May-
2018].

[6]‘Airspace Management (ASM), BULATSA, 26-Mar-2017. [Online].
Available: http://www.bulatsa.com/en/activities/air-navigation-services/air-traffic-

management/airspace-management-asm. [Accessed: 19-May-2018].
[7]1ICAOQ, ‘Air Navigation Report’, 2014.

[8]'NOP Network Operations Portal’. [Online]. Available:
https://www.public.nm.eurocontrol.int/PUBPORTAL/gateway/spec/. [Accessed:
19-May-2018].

[9]J. Vila Carbo, ‘Air Traffic Services & Airspace organization’, 13-Oct-2015.

[10] ‘Airspace - EUROCONTROL ATM Lexicon’. [Online]. Available:
https://ext.eurocontrol.int/lexicon/index.php/Airspace. [Accessed: 22-May-2018].

[11] ICAO, ‘Directives to Regional Air Navigation Meetings and Rules of
Procedure for their Conduct’. 1987.

[12] ‘Lower airspace - EUROCONTROL ATM Lexicon’. [Online].
Available: https://ext.eurocontrol.int/lexicon/index.php/Lower_airspace.

A graphic tool for air traffic control 199

[Accessed: 22-May-2018].

[13] ‘Upper airspace - EUROCONTROL ATM Lexicon’. [Online].
Available: https://ext.eurocontrol.int/lexicon/index.php/Upper_airspace.
[Accessed: 22-May-2018].

[14] ‘Introduction to Airspace’, NATS. [Online]. Available:
https://www.nats.aero/ae-home/introduction-to-airspace/. [Accessed: 25-Jun-
2018].

[15] ‘Air Traffic Services. Air Traffic Control Service, Flight Information
Service, Alerting Service.’ International Civil Aviation Organization, Jul-2001.

[16] ICAO, ‘Doc 8168, Procedimientos para los servicios de navegacion
aérea — Operacién de aeronaves, Volumen I, Construccién de procedimientos

de vuelo visual y por instrumentos’. 2014.

[17] ‘Is this the end of stack holding?’, NATS. [Online]. Available:
https://www.nats.aero/apac/september-enewsletter/end-stack-holding/.
[Accessed: 29-May-2018].

[18] EUROCONTROL, ‘RNAV Approaches’. Dec-2012.

[19] ‘RNAYV Avionic System Basics | RNAV advantages,disadvantages’.
[Online]. Available: http://www.rfwireless-world.com/Terminology/RNAV-
Random-or-Area-Navigation.html. [Accessed: 01-Jun-2018].

[20] B. Favennec, T. Symmans, D. Houlihan, F. Vergne, and K. Zeghal,
‘Point Merge Integration of Arrival Flows Enabling Extensive RNAV Application
and Continuous Descent - Operational Services and Environment Definition’.
Eurocontrol, 19-Jul-2010.

[21] P. V. MacWilliams, A. P. Smith, and D. T. A. Becher, ‘RNP RNAV
ARRIVAL ROUTE COORDINATION’, 2006, p. 12.

[22] ‘EUROCONTROL - Point Merge for Oslo, Dublin and Rome?’
[Online]. Available:
https://www.eurocontrol.int/eec/public/standard_page/EEC_News 2008 3 PM.
html#dublin. [Accessed: 08-Jun-2018].

A graphic tool for air traffic control 110

[23] L. Boursier, B. Favennec, E. Hoffman, A. Trzmiel, F. Vergne, and
K. Zeghal, ‘MERGING ARRIVAL FLOWS WITHOUT HEADING
INSTRUCTIONS’, presented at the 7 th USA/Europe Air Traffic Management
R&D Seminar, Barcelona, Spain, 2007.

[24] ‘Real Time Simulation Dublin TMA2012 Phase 2. Implementation of
a Point Merge System in Dublin TMA., EUROCONTROL EXPERIMENTAL
CENTRE, Nov. 2010.

[25] B. Favennec, L. Rognin, A. Trzmiel, F. Vergne, and K. Zeghal,
‘POINT MERGE IN EXTENDED TERMINAL AREA (PMS-TE 2009-2010)’,
EUROCONTROL EXPERIMENTAL CENTRE, Oct. 2011.

[26] T. Symmans, ‘Point Merge. A more efficient way of sequencing

arrivals.’, presented at the Eurocontrol Experimental Center.

[27] ‘NATS and SESAR - working together to deliver a Single European
Sky’. [Online]. Available: http://www.nats.aero/static/sesar/. [Accessed: 30-Jun-
2018].

[28] ‘Point Merge: improving and harmonising arrival operations |
Eurocontrol’. [Online]. Available: http://www.eurocontrol.int/services/point-
merge-concept. [Accessed: 08-Jun-2018].

[29] ‘About the Network Manager | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/articles/about-network-manager. [Accessed: 12-May-
2018].

[30] ‘Airspace modelling | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/articles/airspace-modelling. [Accessed: 12-May-
2018].

[31] ‘NEST modelling tool | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/services/nest-modelling-tool. [Accessed: 12-May-
2018].

[32] ‘Demand Data Repository (DDR) | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/ddr. [Accessed: 14-May-2018].

A graphic tool for air traffic control 110

[33] ‘DDR2 Reference Manual for General Users 2.9.5'. 13-Feb-2018.

[34] ‘DDR2 - Web Portal | Eurocontrol’. [Online]. Available:
http://www.eurocontrol.int/articles/ddr2-web-portal. [Accessed: 14-May-2018].

[35] D. Poo, D. Kiong, and S. Ashok, Object-Oriented Programming and
Java, Second Edition. Springer, 2008.

[36] ‘Introduction to object oriented programming - Java Tutorial - Java
With Us’. [Online]. Available: http://www.javawithus.com/tutorial/introduction-to-
object-oriented-programming. [Accessed: 11-Jul-2018].

[37] ‘Processes and Threads (The Java™ Tutorials > Essential Classes
> Concurrency)'. [Online]. Available:
https://docs.oracle.com/javase/tutorial/essential/concurrency/procthread.html.
[Accessed: 13-Jul-2018].

[38] ‘NetBeans IDE - Overview’. [Online]. Available:
https://netbeans.org/features/index.html. [Accessed: 11-Jul-2018].

[39] ‘NetBeans’, Wikipedia. 05-Jun-2018.

[40] ‘Point Merge successfully implemented in Dublin | Eurocontrol’.
[Online]. Available: https://www.eurocontrol.int/news/point-merge-successfully-
implemented-dublin. [Accessed: 08-Jun-2018].

[41] ‘Dublin Point Merge Irish Aviation Authority - Point Merge
Conference March 2015 Oslo’, presented at the Point Merge Conference, Oslo,
Mar-2015.

A graphic tool for air traffic control

APPENDIX

Appendix 1. AIP IRELAND EIDW AD 2.24-17 .1

AIP IRELAND e
AP 12190

RNAV STANDARD ARRIVAL CHART TRANS ALT 5000ft G ot A Dh

DUELIN ACC LOWER NORTH 132575

OUBUN ACC LOWER SOUTH 126230

INSTRUMENT (STAR) - ICAD TRANS LEVEL by ATC

:

CHANGE: LIPGO 1L removed and replaced with ABLIN 1L. MAG VAR and Bearings. Revised Note 3.

EIDW AD 2.24-171
DUBLIN RWY 28

AT SL REVME 1L, BAGEA L ML L WY N
R0 TL SUTER TL DS0AR T OLAPD LB 1L

AERONAUTICAL INFORMATION 02 APR 15

Irish Aviation Autharity

A graphic tool for air traffic control 110

3
EIDW AD 2.24-17.2 AIP IRELAND
02 APR 2015
BAGSOIL CAT A/B/C/D STAR RWY28
BAGSIL
Navigation Path . : FlyByor | Distance | TrucTrack/ | Upper Limi Timit
Performance Termingtor | WPTName | Latitude (N), Longitude W) | pU\er | (M) | Magnetic Track | Lower Limi SM(:_u) ianinn
RNAV1 IF BAGSO 534048.0 / 0053000.0 Fly-By - - - FL100 250 -
RNAV1 TF ADSIS 534103.1 /0053934.0 Fly-By 5.7 272.6/276 - - -
RNAV1 TF KERAV 533742.7 / 0054557.3 Fly-By 5.1 228.7/232 (@ FL80 230 -
RNAV1 TF KOGAX 533418.6 / 0053814.1 Fly-By 5.7 126.5/130 @ FL80 230 L
RNAV1 TF KUDOM 532925.8 / 0053314.3 Fly-By 5.7 148.6 /152 (@ FL80 230 -
RNAV1 TF DW814 532347.5/0053141.1 Fly-By 5.7 170.6 /174 (@ FL80 230 -
RNAVI TF DWS815 531812.9 / 0053346.6 Fly-By 5.7 192.7/ 196 @ FL8O 230 -
RNAV1 TF DWS816 531346.9 / 0053844.4 Fly-By 53 213.9/217 @ FL80 230 -
RNAV1 TF NARMU 532643.2 / 0055134.3 Fly-By 15.1 329.4/333 - - R
RNAV1 CF LAPMO 532411.0 / 0055644.1 Fly-By 4.0 230.6 /234 + 30001t 180 -
BAMLIIL CAT A/B/C/D STAR RWY28
BAMLIL
Phc‘:f:r;’n‘l‘::c Tu::m; WPTNams | Latituds (N), Longitude (W) ?m: NN MTM Lr‘Td‘n:'k mﬁ;ﬁ spe(:n:-)m Romarks
RNAV1 IF BAMLI 540828.5 / 0063904.0 Fly-By - - - - -
RNAV1 TF RONON 534233.9/0063619.2 Fly-By 26.0 176.4 / 180 - - -
RNAV1 TF ORVEN 533953.5 / 0061129.8 Fly-By 15.0 100.1 /104 - - -
RNAV1 TF GIRAS 533821.0 / 0055733.2 Fly-By 8.4 100.4 / 104 - - -
RNAVI1 TF KERAV 533742.7 / 0054557.3 Fly-By 6.9 095.2 /099 (@ FL8O 230 -
RNAVI1 TF KOGAX 533418.6 / 0053814.1 Fly-By 5.7 126.5/130 (@ FL8O 230 -
RNAV1 TF KUDOM 532925.8 / 0053314.3 Fly-By 5.7 148.6 / 152 (@ FL8O 230 -
RNAV1 TF DW814 532347.5/0053141.1 Fly-By 5.7 170.6 /174 (@ FL8O 230 -
RNAVI1 TF DWS815 531812.9 / 0053346.6 Fly-By 5.7 192.7 /196 (@ FL80 230 -
RNAVI1 TF DW816 531346.9 / 0053844.4 Fly-By 5.3 213.9/217 (@ FL8O 230 -
RNAV1 TF NARMU 532643.2 / 0055134.3 Fly-By 15.1 329.4 /333 - - R
RNAV1 CF LAPMO 532411.0 / 0055644.1 Fly-By 4.0 230.6 /234 + 3000ft 180 -
BOYNEIL CAT A/B/C/D STAR RWY28
BOYNIL
Navigation Path . Fly-By or Distance True Track / U Limat/ S Lmat
Performance | Teminator | WPTName | Latitude (), Longiude W) | et | PR | VBRI | Lower Lumi = Remarks
RNAVI1 1F BOYNE 534601.6 / 0053000.0 Fly-By . - - - -
RNAV1 TF ADSIS 534103.1 /0053934.0 Fly-By 7.6 228.8/232 - - -
RNAV1 TF KERAV 533742.7 / 0054557.3 Fly-By 5.1 228.7/232 (@ FL80 230 -
RNAV1 TF KOGAX 533418.6 / 0053814.1 Fly-By 5.7 126.5 /130 (@ FL8O 230 L
RNAV1 TF KUDOM 532925.8 / 0053314.3 Fly-By 5.7 148.6 / 152 (@ FL80 230 -
RNAVI1 TF DW814 532347.5 /0053141.1 Fly-By 5.7 170.6 /174 (@ FL80 230 -
RNAV1 TF DW815 531812.9 / 0053346.6 Fly-By 5.7 192.7 / 196 (@ FL80 230 -
RNAV1 TF DW816 531346.9 / 0053844.4 Fly-By 53 213.9/217 (@ FL80 230 -
RNAVI TF NARMU 532643.2 / 0055134.3 Fly-By 15.1 329.4/333 - - R
RNAV1 CF LAPMO 532411.0 / 0055644.1 Fly-By 4.0 230.6 /234 + 3000ft 180 -
BUNEDIL CAT A/B/C/D STAR RWY28
BUNEIL
T I g e i el o el Bl
RNAVI1 1F BUNED 523721.9 /0063748.2 Fly-By - - - - -
RNAV1 TF DIRUM 530009.7 / 0063940.0 Fly-By 229 357.2/001 - - -
RNAV1 TF KEPOR 531016.5 / 0062200.7 Fly-By 14.7 046.3 / 050 - - -
RNAV1 TF ARVOK 530919.0 / 0060335.1 Fly-By 11.1 094.8 / 098 - - -
RNAVI1 TF SORIN 530829.3 / 0054822.5 Fly-By 9.2 095.1 /099 @ FL70 230 -
RNAV1 TF SIVNA 531152.3 /0053827.7 Fly-By 6.9 060.3 / 064 @ FL70 230 -
RNAVI TF SUGAD 531722.5 / 0053139.8 Fly-By 6.9 036.5/ 040 @ FL70 230 -
RNAV1 TF DW704 532403.7 / 0052910.1 Fly-By 6.9 012.6 /016 @ FL70 230 -
RNAV1 TF DW705 533046.6 / 0053126.4 Fly-By 6.9 348.6 /352 @ FL70 230 -
RNAVI1 TF DW706 533621.3 / 0053806.9 Fly-By 6.9 324.6 /328 @ FL70 230 -
RNAV1 TF SOPEP 532105.9 / 0055229.4 Fly-By 17.5 209.4 /213 - - L
RNAVI CF LAPMO 532411.0 / 0055644.1 Fly-By 4.0 320.6/324 +3000ft 180 -
ABLINIL CAT A/B/C/D STAR RWY28
ABLIIL
Navigation Path . : FlyByor | Distance | TrucTrack/ | Upper Limit! | Specd Limit
Pcrfo“fl:lume Teminator | 71 Name | Latitude (N), Longitude (W) l-‘ly—Ovu'y . (NM)__ | Magretic Track Lower Limit M&) Remarks
RNAV1 IF ABLIN 524658.0/0045933.0 | Fly-By . . ;‘;‘l'_'lg . .
RNAV1 TF IRKUM 525948.0 / 0052239.0 Fly-By 19.0 312.7/316 +FL90 - -
RNAVI TF LIPGO 530350.1 / 0053000.0 Fly-By 6.0 312.4/316 - 240 -
RNAV1 TF PEKOK 530739.3 / 0053400.8 Fly-By 4.5 327.7/331 @ FL70 - -
RNAVI TF SIVNA 531152.3 / 0053827.7 Fly-By 5.0 327.7/331 @FL70 230 -
RNAV1 TF SUGAD 531722.5/0053139.8 Fly-By 6.9 036.5 / 040 @ FL70 230 -
RNAV1 TF DW704 532403.7 / 0052910.1 Fly-By 6.9 012.6 /016 @ FL70 230 -
RNAVI TF DW705 533046.6 / 0053126.4 Fly-By 6.9 3486/352 | @FLT0 230 -
RNAV1 TF DW706 533621.3 / 0053806.9 Fly-By 6.9 324.6 /328 @ FL70 230 -
RNAVI TF SOPEP 532105.9 / 0055229.4 Fly-By 17.5 209.4/213 - g L
RNAV1 CF LAPMO 532411.0 / 0055644.1 Fly-By 4.0 320.6/324 + 3000# 180 -

A graphic tool for air traffic control 110

4
AIP IRELAND EIDW AD 2.24-17.3
02 APR 2015
NIMATIL CAT A/B/C/D STAR RWY28
NIMAIL
Navigation Path R Fly-By or Distance True Ti / U Lmat/ Limit
Performance Terminator | WPTName | Latitude (N), Longitade (W) | e RO | R .\Lamm b Tock | Loper Lk sw?d@ Remarks
RNAVI1 IF NIMAT 535754.1 /0054431.7 Fly-By - - - - -
RNAVI1 TF KERAV 533742.7 / 0054557.3 Fly-By 20.2 1824/18 | @ FL8O 230 -
RNAVI1 TF KOGAX 533418.6 /0053814.1 Fly-By 5.7 126.5 /130 @ FL80 230 -
RNAVI1 TF KUDOM 532925.8 /00533143 Fly-By 5.7 148.6 /152 @ FL80 230 -
RNAVI1 TF DW814 532347.5/0053141.1 Fly-By 5.7 1706 /174 @ FL80 230 -
RNAVI1 TF DWS815 531812.9 /0053346.6 Fly-By 5.7 192.7/196 @ FL80 230 -
RNAV1 TF DW816 531346.9 /0053844 4 Fly-By 53 213.9/217 @ FL80 230 -
RNAVI1 TF NARMU 532643.2 /00551343 Fly-By 15.1 3294/333 - - R
RNAVI CF LAPMO 532411.0/0055644.1 Fly-By 4.0 230.6 /234 + 3000ft 180 -
OLAPOIL CAT A/B/C/D STAR RWY28
OLAPIL
pertotmance | Terminaor | WFTName | Latkude (V) Longitude W) | NS | BRAE | BRI | Vierrmt | e | Remers
RNAVI1 IF OLAPO 534649.0/0071740.6 Fly-By - - - - -
RNAVI1 TF RONON 534233.9 /0063619.2 Fly-By 249 099.6/103 - - -
RNAVI1 TF ORVEN 533953.5/0061129.8 Fly-By 15.0 100.1 /104 - - -
RNAVI1 TF GIRAS 533821.0/0055733.2 Fly-By 8.4 1004 /104 - - -
RNAVI TF KERAV 533742.7 / 0054557.3 Fly-By 6.9 095.2 /099 @ FL80 230 -
RNAVI TF KOGAX 533418.6 / 0053814.1 Fly-By 5.7 126.5/130 @ FL80 230 -
RNAVI TF KUDOM 532925.8 /0053314.3 Fly-By 5.7 1486/152 @ FL80 230 -
RNAVI TF DW814 532347.5/0053141.1 Fly-By 5.7 1706 /174 @ FL80 230 -
RNAVI TF DW815 531812.9 /0053346.6 Fly-By 5.7 192.7/196 @ FL80 230 -
RNAVI TF DWS816 531346.9 /0053844 4 Fly-By 5.3 213.9/217 @ FL80 230 -
RNAVI TF NARMU 532643.2 /0055134.3 Fly-By 15.1 329.4/333 - - R
RNAVI CF LAPMO 532411.0/0055644.1 Fly-By 4.0 230.6 /234 + 30001t 180 -
OSGARIL CAT A/B/C/D STAR RWY28
OSGAIL
Navigation Path R Fly-By or Dist True Track / U Limat/ Limit
mfo:mmc Terminator WPT Name Latitude (N), Longitude (W) H;O);u (N;‘;c .\gﬂm i Track L:::t Limit s”z:g) Remarks
RNAVI ¥ OSGAR 530257.9/0071612.8 Fly-By - - - - -
RNAVI TF DIRUM 530009.7 / 0063940.0 Fly-By 222 097.0/101 - - -
RNAVI TF KEPOR 531016.5 / 0062200.7 Fly-By 14.7 046.3 / 050 - - -
RNAV1 TF ARVOK 530919.0 / 0060335.1 Fly-By 1.1 094.8 / 098 - - -
RNAVI1 TF SORIN 530829.3 / 0054822.5 Fly-By 9.2 095.1/099 @ FL70 230 -
RNAV1 TF SIVNA 531152.3 / 0053827.7 Fly-By 6.9 060.3 / 064 @ FL70 230 -
RNAVI1 TF SUGAD 531722.5/0053139.8 Fly-By 6.9 036.5 / 040 FL70 230 -
RNAVI1 TF DW704 532403.7 / 0052910.1 Fly-By 6.9 012.6 /016 @ FL70 230 -
SUTEXIL CAT A/B/C/D STAR RWY28
SUTEIL
o o T Ty I el I el Bl B
RNAV1 1F SUTEX 524927.7 / 0065549.3 Fly-By - C - - s
RNAV1 TF DIRUM 530009.7 / 0063940.0 Fly-By 14.5 042.3 / 046 - - -
RNAV1 TF KEPOR 531016.5 / 0062200.7 Fly-By 14.7 046.3 / 050 - - -
RNAV1 TF ARVOK 530919.0 / 0060335.1 Fly-By 1.1 094.8 /098 - - -
RNAV1 TF SORIN 530829.3 / 0054822.5 Fly-By 92 095.1/099 @ FL70 230 -
RNAV1 TF SIVNA 531152.3 / 0053827.7 Fly-By 6.9 060.3 / 064 @ FL70 230 -
RNAV1 TF SUGAD 531722.5/0053139.8 Fly-By 6.9 036.5 /040 @ FL70 230 -
RNAV1 TF DW704 532403.7 / 0052910.1 Fly-By 6.9 012.6/016 @ FL70 230 -
RNAV1 TF DW705 533046.6 / 0053126.4 Fly-By 6.9 348.6/352 @ FL70 230 -
RNAVI1 TF DW706 533621.3 / 0053806.9 Fly-By 6.9 324.6/328 @ FL70 230 -
RNAV1 TF SOPEP 532105.9 / 0055229.4 Fly-By 17.5 2094 /213 - - L
RNAV1 CF LAPMO 532411.0/0055644.1 Fly-By 4.0 320.6 /324 + 30001t 180 -
VATRY1L CAT A/B/C/D STAR RWY28
VATRIL
Navigation Path R R Fly-By or Distance True Track / b/ Limat/ Limit
Performance Terminator | WPTName | - Latitude (N), Longitude (W) | 500 | TRAD Magnetic Track oo Lk sw::_ns) Remarks
RNAVI1 IF VATRY 523316.0 / 0053000.0 Fly-By - - - - -
RNAV1 TF SORIN 530829.3 / 0054822.5 Fly-By 37.0 342.6/346 @ FL70 230 -
RNAV1 TF SIVNA 531152.3 /00538277 Fly-By 6.9 060.3 / 064 @ FL70 230 -
RNAV1 TF SUGAD 531722.5/0053139.8 Fly-By 6.9 036.5 /040 @ FL70 230 -
RNAV1 TF DW704 532403.7 / 0052910.1 Fly-By 6.9 012.6/016 @ FL70 230 -
RNAV1 TF DW705 533046.6 / 0053126.4 Fly-By 6.9 348.6 /352 @ FL70 230 -
RNAV1 TF DW706 533621.3 / 0053806.9 Fly-By 6.9 324.6/328 @FL70 230 -
RNAV1 TF SOPEP 532105.9 / 0055229.4 Fly-By 17.5 209.4/213 - - L
RNAV1 CF LAPMO 532411.0 /0055644.1 Fly-By 4.0 320.6/324 + 30001t 180 -

Hold Identification — EIDW AD 2.24-17.1

Holding Latitude (N) / Maxir Maxis /Minii Di e Direction
Fix Longitude (W) | True Track | Mag Track Indicated Holding Altitude/ outbound of Turn
(degrees) (degrees) Airspeed (kis) Level (FL/fy) Limit (NM)
5337427/ 54
KERAV 0054557.3 205.5 209 230 FL140/5000 R
530829.3/ 54
SORIN 0054822.5 3424 346 230 FL140/3000 L

IRISH AVIATION AUTHORITY AIRAC Amdt 003/15

A graphic tool for air traffic control 110

AlIP IRELAND

THIS PAGE INTENTIONALLY LEFT BLANK

IRISH AVIATION AUTHORITY

A graphic tool for air traffic control 110

Appendix 2. Excel File — Routes for Approach Dublin Runway 28

Aproximations 98NN path Terminator WPTName Latitude (N) Longitude (W) £y -or or m"" TrueTrack MagneticTrack UpperLimit Lower Limit (5::,"“‘“" Remarks |
BAGSI1L RNAV1 IF BAGSO 534048.00N 0053000.00W Fly-By FL100 250,00
BAGSI1L RNAV1 TF ADSIS 534103.10N 0053934.00W Fly-By 57 272,60 276,00

BAGSIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 51 228,70 232,00 FL8O FL8O 230,00
BAGSIL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00 L
BAGSIL RNAV1 TF KUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
BAGSI1L RNAV1 TF Dws814 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
BAGSI1L RNAV1 TF DWs815 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
BAGSI1L RNAV1 TF Dws816 531346.90N 0053844.40W Fly-By 53 213,90 217,00 FL8O FL8O 230,00
BAGSIL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
BAGSIL RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 230,00 234,00 3000ft 180,00
BAMLIL RNAV1 IF BAMLI 540828.50N 0063904.00W Fly-By

BAMLIL RNAV1 TF RONON 534233.30N 0063619.20W Fly-By 26 176,40 180,00

BAMLIL RNAV1 TF ORVEN 533953.50N 0061129.80W Fly-By 15 100,10 104,00

BAMLIL RNAV1 TF GIRAS 533821.00N 0055733.20W Fly-By 8,4 100,40 104,00

BAMLIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 6,9 95,20 99,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF KUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF Dws814 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF DWs815 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF Dws816 531346.90N 0053844.40W Fly-By 53 213,90 217,00 FL8O FL8O 230,00
BAMLIL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
BAMLIL RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 230,60 234,00 3000ft 180,00
BOYN1L RNAV1 IF BOYNE 534601.60N 0053000.00W Fly-By

BOYN1L RNAV1 TF ADSIS 534103.10N 0053934.00W Fly-By 7.6 228,80 232,00

BOYN1L RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 51 228,70 232,00 FL8O FL8O 230,00
BOYNI1L RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00 L
BOYN1L RNAV1 TF KUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
BOYN1L RNAV1 TF DwWs814 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
BOYN1L RNAV1 TF DWs815 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
BOYN1L RNAV1 TF DwWs816 531346.30N 0053844.40W Fly-By 53 213,90 217,00 FL8O FL8O 230,00
BOYN1L RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
BOYN1L RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 230,60 234,00 3000ft 180,00
BUNEILL RNAV1 IF BUNED 523721.30N 0063748.20W Fly-By

BUNE1L RNAV1 TF DIRUM 530009.70N 0063940.00W Fly-By 229 357,20 1,00

BUNEILL RNAV1 TF KEPOR 531016.50N 0062200.70W Fly-By 14,7 46,30 50,00

BUNE1L RNAV1 TF ARVOK 530919.00N 0060335.10W Fly-By 11,1 94,80 98,00

BUNE1L RNAV1 TF SORIN 530829.30N 0054822.50W Fly-By 9,2 95,10 99,00 FL70 FL70 230,00
BUNE1L RNAV1 TF SIVNA 531152.30N 0053827.70W Fly-By 6,9 60,30 64,00 FL70 FL70 230,00
BUNEILL RNAV1 TF SUGAD 531722.50N 0053139.80W Fly-By 6,9 36,50 40,00 FL70 FL70 230,00
BUNE1L RNAV1 TF DW704 532403.70N 0052910.10W Fly-By 6,9 12,60 16,00 FL70 FL70 230,00
BUNE1L RNAV1 TF DW705 533046.60N 0053126.40W Fly-By 6,9 348,60 352,00 FL70 FL70 230,00
BUNE1L RNAV1 TF DW706 533621.30N 0053806.90W Fly-By 6,9 324,60 328,00 FL70 FL70 230,00
BUNE1L RNAV1 TF SOPEP 532105.90N 0055229.40W Fly-By 17,5 209,40 213,00 L
BUNEI1L RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 320,60 324,00 3000ft 180,00
ABLIIL RNAV1 IF ABLIN 524658.00N 0045933.00W Fly-By FL80 FL150

ABLIIL RNAV1 TF IRKUM 525948.00N 0052239.00W Fly-By 19 312,70 316,00 FLSO

ABLIIL RNAV1 TF LIPGO 530350.10N 0053000.00W Fly-By 6 312,40 316,00 240,00
ABLIIL RNAV1 TF PEKOK 530739.30N 0053400.80W Fly-By 4,5 327,70 331,00 FL70 FL70 230,00
ABLIIL RNAV1 TF SIVNA 531152.30N 0053827.70W Fly-By 5 327,70 331,00 FL70 FL70 230,00
ABLIIL RNAV1 TF SUGAD 531722.50N 0053139.80W Fly-By 6,9 36,50 40,00 FL70 FL70 230,00
ABLIIL RNAV1 TF DW704 532403.70N 0052910.10W Fly-By 6,9 12,60 16,00 FL70 FL70 230,00
ABLIIL RNAV1 TF DW705 533046.60N 0053126.40W Fly-By 6,9 348,60 352,00 FL70 FL70 230,00
ABLIIL RNAV1 TF DW706 533621.30N 0053806.90W Fly-By 6,9 324,60 328,00 FL70 FL70 230,00
ABLIIL RNAV1 TF SOPEP 532105.90N 0055229.40W Fly-By 17,5 203,40 213,00 L
ABLIIL RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 320,60 324,00 3000ft 180,00
NIMAILL RNAV1 IF NIMAT 535754.10N 0054431.70W Fly-By

NIMAILL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 20,2 182,40 186,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF KUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF DW814 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF DW815 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF DW816 531346.90N 0053844.40W Fly-By 53 213,90 217,00 FL8O FL8O 230,00
NIMAILL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
NIMALL RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 230,60 234,00 3000ft 180,00
OLAPLL RNAV1 IF OLAPO 534649.00N 0071740.60W Fly-By

OLAPLL RNAV1 TF RONON 534233.30N 0063619.20W Fly-By 24,9 99,6 103,00

OLAPLL RNAV1 TF ORVEN 533553.50N 0061129.80W Fly-By 15 100,1 104,00

OLAPLIL RNAV1 TF GIRAS 533821.00N 0055733.20W Fly-By 84 100,4 104,00

OLAPLIL RNAV1 TF KERAV 533742.70N 0054557.30W Fly-By 6,9 95,2 99,00 FL80O FL8O 230
OLAPLIL RNAV1 TF KOGAX 533418.60N 0053814.10W Fly-By 57 126,50 130,00 FL8O FL8O 230,00
OLAPLL RNAV1 TF KUDOM 532925.80N 0053314.30W Fly-By 57 148,60 152,00 FL8O FL8O 230,00
OLAPLIL RNAV1 TF DWE814 532347.50N 0053141.10W Fly-By 57 170,60 174,00 FL8O FL8O 230,00
OLAPLIL RNAV1 TF DW815 531812.90N 0053346.60W Fly-By 57 192,70 196,00 FL80O FL8O 230,00
OLAPLIL RNAV1 TF DW816 531346.90N 0053844.40W Fly-By 53 213,90 217,00 FL8O FL8O 230,00
OLAPLIL RNAV1 TF NARMU 532643.20N 0055134.30W Fly-By 15,1 329,40 333,00 R
OLAPLL RNAV1 CF LAPMO 532411.00N 0055644.10W Fly-By 4 230,60 234,00 3000ft 180,00
OSGA1L RNAV1 IF OSGAR 530257.90N 0071612.80W Fly-By

OSGA1L RNAV1 TF DIRUM 530009.70N 0063940.00W Fly-By 22,2 97 101,00

OSGA1L RNAV1 TF KEPOR 531016.50N 0062200.70W Fly-By 14,7 46,30 50,00

OSGA1L RNAV1 TF ARVOK 530919.00N 0060335.10W Fly-By 11,1 94,80 98,00

OSGA1L RNAV1 TF SORIN 530829.30N 0054822.50W Fly-By 9,2 95,10 95,00 FL70 FL70 230,00
OSGA1L RNAV1 TF SIVNA 531152.30N 0053827.70W Fly-By 6,9 60,30 64,00 FL70 FL70 230,00
OSGA1L RNAV1 TF SUGAD 531722.50N 0053139.80W Fly-By 6,9 36,50 40,00 FL70 FL70 230,00
OSGA1L RNAV1 TF DW704 532403.70N 0052910.10W Fly-By 6,9 12,60 16,00 FL70 FL70 230,00
OSGA1L RNAV1 TF DW705 533046.60N 0053126.40W Fly-By 6,9 348,60 352,00 FL70 FL70 230,00
OSGA1L RNAV1 TF DW706 533621.30N 0053806.90W Fly-By 6,9 324,60 328,00 FL70 FL70 230,00
OSGA1L RNAV1 TF SOPEP 532105.90N 0055229.40W Fly-By 17,5 209,40 213,00 L

OSGA1L RNAV1 Cr LAPMO 532411.00N 0055644.10W Fly-By 4 320,60 324,00 3000ft 180,00

A graphic tool for air traffic control

110

SUTELL RNAV1 IF SUTEX 524927.70N 0065549.30W Fly-By

SUTELL RNAV1 TF DIRUM 530009.70N 0063940.00W Fly-By 14,5 42,30 46,00

SUTELL RNAV1 TF KEPOR 531016.50N 0062200.70W Fly-By 14,7 46,30 50,00

SUTELL RNAV1 TF ARVOK 530919.00N 0060335.10W Fly-By 11,1 94,80 98,00

SUTELL RNAV1 TF SORIN 530829.30N 0054822.50W Fly-By 9,2 95,10 95,00 FL70 FL70 230,00
SUTELL RNAV1 TF SIVNA 531152.30N 0053827.70W Fly-By 6,9 60,30 64,00 FL70 FL70 230,00
SUTELL RNAV1 TF SUGAD 531722.50N 0053139.80W Fly-By 6,9 36,50 40,00 FL70 FL70 230,00
SUTELL RNAV1 TF DW704 532403.70N 0052910.10W Fly-By 6,9 12,60 16,00 FL70 FL70 230,00
SUTELL RNAV1 TF DW705 533046.60N 0053126.40W Fly-By 6,9 348,60 352,00 FL70 FL70 230,00
SUTELL RNAV1 TF DW706 533621.30N 0053806.90W Fly-By 6,9 324,60 328,00 FL70 FL70 230,00
SUTELL RNAV1 TF SOPEP 532105.90N 0055229.40W Fly-By 17,5 209,40 213,00 L
SUTELL RNAV1 CF LAPMO 532411.00N 0055644.10W _ Fly-By 4 320,60 324,00 3000ft 180,00
VATRIL RNAV1 IF VATRY 523316.00N 0053000.00W Fly-By

VATRIL RNAV1 TF SORIN 530829.30N 0054822.50W Fly-By 37 342,6 346,00 FL70 FL70 230,00
VATRIL RNAV1 TF SIVNA 531152.30N 0053827.70W Fly-By 6,9 60,30 64,00 FL70 FL70 230,00
VATRIL RNAV1 TF SUGAD 531722.50N 0053139.80W Fly-By 6,9 36,50 40,00 FL70 FL70 230,00
VATRIL RNAV1 TF DW704 532403.70N 0052910.10W Fly-By 6,9 12,60 16,00 FL70 FL70 230,00
VATRIL RNAV1 TF DW705 533046.60N 0053126.40W Fly-By 6,9 348,60 352,00 FL70 FL70 230,00
VATRIL RNAV1 TF DW706 533621.30N 0053806.90W Fly-By 6,9 324,60 328,00 FL70 FL70 230,00
VATRIL RNAV1 TF SOPEP 532105.90N 0055229.40W Fly-By 17,5 209,40 213,00 L
VATRIL RNAV1 CF LAPMO 532411.00N 0055644.10W _ Fly-By 4 320,60 324,00 3000ft 180,00

