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Chapter 1

Introduction

The problem of data security is a fundamental aspect in any sector, and

the growing ubiquity of mobile and distributed systems has accentuated the

problem. Mobile code is software that is transferred between systems and

executed on a local system without explicit installation by the recipient, even

if it is delivered through an insecure network or retrieved from an untrusted

source. During delivery, the code may be corrupted or a malicious cracker

could change the code damaging the entire system. Potential problems can be

summarized as problems related to security, allowing access to data or system

resources which were not previously authorized, illegal or unlawful activities

on the data, or functional incorrectness, that arises when the provided code

fails to satisfy a necessary connection between its input and output. Code-

Carrying Theory (CCT) [18, 19] is one of the technologies aimed at solving

these problems. The idea of CCT is based on proof-based program synthesis,

where a set of axioms that define functions are provided by the code producer

together with suitable proofs guaranteeing that defined functions obey cer-

tain requirements. The form of the function-defining axioms is such that it

is easy to extract executable code from them. Thus, all that has to be trans-

mitted from the producer to the consumer is a theory (a set of axioms and

theorems) and a set of proofs of the theorems. There is no need to transmit

code explicitly. A basic implementation of the CCT methodology that uses a

Fold/Unfold transformation framework for rewrite theories, and that reduces
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1.1. PLAN OF THE THESIS. 1. Introduction

the burden on the code producer is done in Rewriting logic [8]. Rewriting

logic is efficiently implemented in the high-performance functional language

Maude [10]. The purpose of this thesis is to extend and improve the frame-

work for the CCT turning it into a stable and usable tool for Maude. The

implementation is written in Maude itself, Python and some scripts in Bash.

This thesis describe the general architecture of the system and the technical

aspects that make it all modular and extensible.

1.1 Plan of the Thesis.

The thesis is organized as follows:

• In Chapter 2, we provide the necessary notation and preliminary defini-

tions about the term rewriting formalism that will be used in this thesis.

• In Chapter 3, we recall a Fold/Unfold based transformation framework

for rewriting logic theories that we apply to implement the Code Car-

rying Theory (CCT) system.

• In Chapter 4, we describe the overall structure of the Code Carrying

Theory (CCT) system, and discusses how the framework described in

Chapter 3 can be embedded into the system.

• In Chapter 5, we analyze the security of the framework and analize a

few examples of attacks that witness its weaknesses. Then we discuss

how it is possible to prevent the attacks with the introduction of a

suitable procedure for checking the certificates.

• In Chapter 6, we describe the architecture of Pyconnect, a software

system for connecting and communicating different processes through

2



1. Introduction 1.1. PLAN OF THE THESIS.

only one system shell.

• In Chapter 7, we describe the resulting refined framework for CCT ex-

tended for Certificate Checking, how it is assembled and how it works.

• In Chapter 8, we present our conclusions and discuss some lines for

future work.
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Chapter 2

Background on Term Rewriting

In this chapter, we provide the basic notation and terminology about rewrit-

ing logic and term rewriting system, that are used in this thesis.

2.1 Terminology and definitions

We consider an order-sorted signature Σ, with a finite poset of sorts (S,≤).

We assume an S-sorted family V = {Vs}s∈S of disjoint variable sets. A

variable x ∈ V of sort s is denoted by x :: s, while by f :: s1 . . . sn 7→ s we

represent the signature of the operator f ∈ Σ of arity n and type s. TΣ(V)s

and TΣs are respectively the sets of terms and ground terms of sort s. We

write TΣ(V) and TΣ for the corresponding term algebras. The set of variables

occurring in a term t is denoted by Var(t). For semplicity we write on for

the list of syntactic objects o1, . . . , on.

Positions are represented by sequences of natural numbers. The empty

sequence Λ denotes the root position of a term. Given S ⊆ Σ ∪ V , OS(t)

denotes the set of positions of a term t that are rooted by symbols in S.

Positions are ordered by the prefix ordering: p ≤ q, if ∃w such that p.w = q.

t|p denotes the subterm of t at position p, and t[s]p denotes the result of

replacing the subterm t|p by the term s. Syntactic equality is represented by

≡.

A substitution σ ≡ {x1/t1, x2/t2, . . .} is a mapping from the set of vari-
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2.2. Term Rewriting

ables V into the set of terms TΣ(V) satisfying the following conditions: (i)

xi 6= xj, whenever i 6= j, (ii) xiσ = ti, i = 1, . . . , n and (iii) xσ = x, for all

x ∈ V \ {x1, . . . , xn}. By ε we denote the empty substitution. A substitution

θ is more general than a substitution σ, in symbols θ ≤ σ, if σ = θγ for some

substitution γ. Given two terms s and t, a unifier for s and t is a substitution

σ such that sσ = tσ. By mgu(s, t) we denote the most general unifier for s

and t. An instance of a term t is defined as tσ, where σ is a substitution.

The identity substitution is denoted by id.

2.2 Term Rewriting

Term rewriting systems (TRS) provide an adequate computational model

for functional languages[15][7]. In this section, we provide a brief overview

of such a model following the standard framework of term rewriting.

An (order-sorted) equational theory is a pair E ≡ (Σ,∆ ∪ B), where

Σ is an order-sorted signature, ∆ is a set of equations of the form l = r,

where l, r ∈ TΣ(V), l /∈ V , and B is a set of algebraic axioms such as the

associativity, commutativity, and identity declared for the different defined

functions. We assume Σ can be always considered as the disjoint union Σ ≡
C]D of symbols c ∈ C, called constructors, and symbols f ∈ D, called defined

functions, each one having a fixed arity, where D ≡ {f | f(t) = r ∈ ∆} and

C ≡ Σ − D. Then TC(V) is the set of constructor terms. Given an equation

l = r, terms l and r are called the left-hand side (or lhs) and the right-hand

side (or rhs) of the equation, respectively, and Var(r) ⊆ Var(l).
The equations in an equational theory E are considered as simplification

rules by using them only in the left to right direction, so for any term t, by

repeatedly applying the equations as simplification rules, we eventually reach

a term to which no further equations apply. The result is called the canonical

form of t w.r.t. E. This is guaranteed by the fact that E is required to be

terminating and Church-Rosser [4]. The set of equations in ∆ together with

the equational axioms of B in an equational theory E induce a congruence

relation on the set of terms TΣ(V) which is usually denoted by =E. E is
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2.2. Term Rewriting

a presentation or axiomatization of =E. In abuse of notation, we speak of

the equational theory E to denote the theory axiomatized by E. Given a

canonical equational theory E, we say that a substitution σ is a E-unifier

of two generic terms t and t′ if tσ and t′σ are both reduced to the same

canonical form modulo the equational theory (in symbols tσ =E t
′σ).

A (order-sorted) rewrite theory is a triple R ≡ (Σ,∆ ∪ B,R), where R

is a set of rewrite rules of the form l → r, where l, r ∈ TΣ(V), l /∈ V , and Σ

is the pairwise disjoint union D1 ] D2 ] C such that (D1 ] C,∆ ∪ B) is an

order-sorted equational theory and D2 ≡ {f | f(t) → r ∈ R}. Symbols in

D2 are called defined symbols as well as those in D1, with the only difference

that the former are defined in rewrite rules, while the latter in the equational

theory. We omit Σ when no confusion can arise. Given a rule l→ r, terms l

and r are called the left-hand side (or lhs) and the right-hand side (or rhs) of

the rule, respectively, and Var(r) ⊆ Var(l). An equation of the form t = t′

or a a rule of the form t→ t′ are said to be:

(1) Non-erasing, if Var(t) = Var(t′).

(2) Sort preserving, if for each substitution σ, we have tσ ∈ TΣ(V)s if and

only if t′σ ∈ TΣ(V)s.

(3) Sort decreasing, if for each substitution σ, t′σ ∈ TΣ(V)s implies tσ ∈
TΣ(V)s.

(4) Left (or right) linear, if t (resp. t′) is linear, i.e., no variable occurs in

the term more than once. It is called linear if both t and t′ are linear.

A set of equations/rules is said to be non-erasing, or sort decreasing, or sort

preserving, or (left or right) linear, if each equation/rule in it is so.

An equational theory (resp. rewrite theory) is said to be conditional if its

equations (resp. rules) are of the form (l = r if c) (resp. l→ r if c), where c

is a term representing the condition. Moreover, labels may be associated with

equations and rules in order to easily identify them, in the form (label : l = r)

or (label : l→ r).

We define the one-step rewrite relation on TΣ(V) as follows: t →R t′ if

there is a position p ∈ OΣ(t), a rule l → r in R, and a substitution σ such

7



2.2. Term Rewriting

that t|p ≡ lσ and t′ ≡ t[rσ]p. An instance lσ of a rule l→ r is called a redex.

A term t without redexes is called normal form. Let R ≡ l → r be a rule

in a given rewrite theory and t →R t
′ be a rewrite step reducing a redex at

position p ∈ OΣ(t).

The relation →R/E for rewriting modulo E is defined as =E ◦ →R ◦ =E.

Let →⊆ A × A be a binary relation on a set A. We denote the transitive

closure by →+, the reflexive and transitive closure by →∗, and the rewrite

up to normal form by →!.

A rewrite theory is sufficiently complete if enough rules/equations have

been specified, so that functions of the theory are fully defined on all relevant

data.

Example 1 Consider the following rewrite theory (Σ,∆ ∪ B,R) such that

C ≡ {b, c, e}, D1 ≡ {a, d}, D2 ≡ {f}, ∆ ≡ {a = b, d = e}, R ≡ {f(b, c)→ d}
where B contains the commutativity axiom for f . Then we can R/E-rewrite

term f(c, a) to e by means of the following R/E rewrite sequence f(c, a) =∆

f(c, b) =B f(b, c)→R d =∆ e. �

We say that a rewrite theory R ≡ (Σ,∆ ∪ B,R) is terminating w.r.t.

→R/E, if there exists no infinite rewrite sequence t1 →R/E t2 →R/E . . . A

rewrite theory is confluent w.r.t. →R/E if, for all terms s, t1, t2, such that

s→∗R/E t1 and s→∗R/E t2, there exists a term t s.t. t1 →∗R/E t and t2 →∗R/E t.

8



Chapter 3

The Rewrite Framework

In this chapter, we show the theoretical framework for transformation rules

for rewrite theories used to implement Code Carrying Theory [18, 19] and

presented in [8, 5, 6], explaining how it’s composed and how it works.

In the first part, we formalize the operation of narrowing that is used

by some functions of the framework. After that, we proceed to illustrate

the basic steps and operations that are used and compose the transforma-

tions system, analyzing the preconditions and postconditions that ensure the

completeness of the framework. Finally, we provide some examples of trans-

formation sequences, that will make more clear to the reader the structure

and the powerfulness of the system.

3.1 Introduction

Many transformation systems for program optimization, program synthe-

sis, and program specialization are based on fold/unfold transformations,

also know as the rules+ strategies approach. In this chapter, we discuss

a fold/unfold–based transformation framework for rewriting logic theories

which is based on narrowing, an generalization of term rewriting which re-

places pattern matching by unification. To the best of our knowledge, this is

the first fold/unfold transformation framework which allows one to deal with

9



3.2. Narrowing in Rewriting Logic

functions, rules, equations, sorts, and algebraic laws (such as commutativity

and associativity).

When performing program transformation, we end up with a final pro-

gram which is semantically equal to the initial one. During the transfor-

mation process, we need strategies (such as composition and tupling) which

guide the application of the transformation rules and allow us to derive pro-

grams with improved performance, which can be done in a semi-automatic

way. The process for obtaining a correct and efficient program can be split

in two phases, which may be performed by different actors: the first phase is

to write an initial maybe inefficient program whose correctness can be easily

shown by hand or by automatic tools; in the second phase, the actor trans-

forms the initial program by applying the rules of the framework to derive a

more efficient one.

We consider possibly non-confluent and non-terminating rewriting logic

theories, and the operations for transforming these rewriting logic theories,

with a strategy to restore completeness defined in [8], that preserves the

rewriting logic semantics of the original theory.

3.2 Narrowing in Rewriting Logic

Considering the rewrite relation →R/E introduced in Chapter 2, since E-

congruence classes can be infinite, →R/E-reducibility is undecidable in gen-

eral. One way to overcome this problem is to implement R/E-rewriting by

a combination of rewriting using oriented equations and rules [20].

We define the relation →∆,B on TΣ(V) as follows: t →∆,B t′ if there is a

position p ∈ OΣ(t), l = r in ∆, and a substitution σ such that t|p =B lσ and

t′ = t[rσ]p. The relation →R,B is similarly defined, and we define →R∪∆,B

as →R,B ∪ →∆,B. The idea is to implement →R/E using →R∪∆,B. For this

approach to be correct and complete, we need the following assumptions [16].

We assume the following properties on E = ∆ ∪B.

(i) B is non-erasing, and sort preserving.

(ii) B has a finitary and complete unification algorithm, which implies that

10



3.2. Narrowing in Rewriting Logic

B-matching is decidable, and ∆∪B has a complete (but not necessarily

finite) unification algorithm.

(iii) ∆ is sort decreasing, and confluent and terminating modulo B.

(iv) →∆,B is coherent with B, i.e., ∀t1, t2, t3, we have that t1 →+
∆,B t2 and

that t1 =B t3 implies ∃t4, t5 such that t2 →∗∆,B t4, t3 →+
∆,B t5, and

t4 =E t5.

(v) →R,B is E-consistent with B, i.e., ∀t1, t2, t3, we have that t1 →R,B t2

and that t1 =B t3 implies ∃t4 such that t3 →R,B t4, and t2 =E t4.

(vi) →R,B is E-consistent with→∆,B, i.e., ∀t1, t2, t3, we have that t1 →R,B t2

and that t1 →∗∆,B t3 implies ∃t4, t5 such that t3 →∗∆,B t4, t4 →R,B t5,

and t5 =E t2.

Narrowing [9],[12] generalizes term rewriting by allowing free variables in

terms (as in logic programming) and by performing unification (at non-

variable positions) instead of matching in order to (nondeterministically)

reduce a term. The narrowing mechanism has a number of important applica-

tions including automated proofs of termination, execution of functional-logic

programming languages, partial evaluation, verification of cryptographic pro-

tocols and equational unification. The narrowing relation for rewriting logic

theories is defined as follows [16].

Definition 1 (R ∪∆, B-Narrowing) Let R = (Σ,∆ ∪ B,R) be an order-

sorted rewrite theory satisfying properties (i) - (vi) above. The R ∪ ∆, B-

narrowing relation on TΣ(V) is defined as t ;σ,p,R∪∆,B t′ if there exist p ∈
OΣ(t), a rule l → r or equation l = r in R ∪ ∆, and σ, which is a B-

unifier of t|p and l such that t′ = (t[r]p)σ. t ;σ,p,R∪∆,B t′ is also called a

R ∪∆, B-narrowing step.

Example 2 Consider the following rewrite theory (Σ,∆ ∪ B,R) such that

C = {b, c, e}, D1 = {a, d}, D2 = {f}, ∆ = {a = b, d = e}, R = {f(x, f(y, b))→
d} where B contains the commutativity axiom for f . Then we can perform

the narrowing step f(f(w, z), c) ;σ,Λ,R∪∆,B d, with σ = {x/b, z/b}, since for

11



3.3. Transforming Rewrite Theories

the commutativity of f we have that f(f(w, z), c){z/b} =B f(x, f(y, b)){x/c}.
�

When it is clear from the context, we omit R ∪ ∆, B from the narrow-

ing relation. Narrowing derivations are denoted by t0 ;∗
σ tn, which is a

shorthand for the sequence of narrowing steps t0 ;σ1,p1 . . . ;σn,pn tn with

σ = σn ◦ . . . ◦ σ1 (if n = 0 then σ = id).

3.3 Transforming Rewrite Theories

In this section, we recall the fold/unfold transformation framework of PEPM

2010 by introducing the transformation rules over rewrite theories.

A transformation sequence of length k for a rewrite theory (Σ,∆∪B,R)

is a sequence R0, . . . ,Ri,Ri+1, . . . ,Rk, k ≥ 0, where each Rj, 0 ≤ j ≤ k is a

rewrite theory, such that

• R0 = (Σ, E0, R0), with E0 = (∆ ∪B) and R0 = R.

• For each 0 ≤ j < i, Rj+1 = (Σ,∆j+1 ∪B,R0) is derived from Rj by an

application of a transformation rule on the equation set ∆j.

• For each i ≤ j < k, Rj+1 = (Σ, Ei, Rj+1) is derived from Rj by an

application of a transformation rule on the rule set Rj.

The transformation rules are Definition Introduction, Definition Elimination,

Folding, Unfolding, and Abstraction, which are defined as follows.

3.3.1 Definition Introduction

We can obtain program Rk+1 by adding to Rk a set of new equations (resp.

rules), defining a new symbol f called eureka. We consider equations (resp.

rules) of the form f(ti) = ri (resp. f(ti)→ ri), such that:

(1) f is a function symbol which does not occur in the sequence R0, . . . ,Rk

and is declared by f : s1 . . . sn → s [Ax], where s1, . . . , sn, s are sorts

declared in R0 and Ax are equational attributes.

12



3.3. Transforming Rewrite Theories

(2) ti ∈ TC(V), and Var(ti) = Var(ri), for all i — i.e., the equations/rules

are non-erasing.

(3) Every defined function symbol occurring in ri belongs to R0.

(4) The set of new equations (resp. rules) are left linear, sufficiently com-

plete and non overlapping. For rules we require also right linearity.

In general, the main idea consists of introducing new auxiliary function sym-

bols which are defined by means of a set of equations/rules whose bodies

contain a subset of the functions that appear in the right-hand side of an

equation/rule that appears in R0, whose definition is intended to be im-

proved by subsequent transformation steps. The non overlapping property

and the left-linearity ensure confluence of eurekas, which is needed to pre-

serve the completeness of the fold operation and will be discussed later.

Sufficient completeness is needed to ensure the completeness of unfolding

and will be discussed later. Right-linearity on rules is needed to ensure nar-

rowing completeness [16], and left-linearity is also needed to preserve the

right-linearity of rules when doing folding. Consider, for instance, the fold-

ing of rule f(x)→ g(x) using the (non left linear) eureka new(x, x)→ g(x),

which would produce a new rule f(x)→ new(x, x), which is not right-linear.

Note that, once a transformation is applied to a eureka, the obtained

equation/rule is not considered to be a eureka anymore. As we will see later,

this is important for the folding operation, since we can only fold non-eureka

equations/rules using eureka ones.

The non-erasing condition is a standard requirement that avoids the creation

of equations/rules with extra-variables when performing folding steps. Con-

sider, for instance, the folding of equation f(x) = g(x) using the (erasing) eu-

reka new(x, y) = g(x), which would produce a new equation f(x) = new(x, y)

containing an extra variable in its right-hand side (thus an illegal equation).

13



3.3. Transforming Rewrite Theories

3.3.2 Definition Elimination

Let Rk be the rewrite theory (Σk,∆k ∪ Bk, Rk). We can obtain program

Rk+1 by deleting from program Rk,

• all equations that define the functions f0, . . . , fn, say ∆f , such that

f0, . . . , fn do not occur either in R0 or in (Σk, (∆k \∆f ) ∪Bk, Rk).

• all rules that define the functions f0, . . . , fn, say Rf , such that f0, . . . , fn

do not occur either in R0 or in (Σk,∆k ∪Bk, Rk \Rf ).

Note that the deletion of the equations/rules that define a function f implies

that no function calls to f are allowed afterwards. However, subsequent

transformation steps (in particular, folding steps) might introduce those

deleted functions in the rhs’s of the equations/rules, thus producing incon-

sistencies in the resulting programs. To avoid this, we forbid any folding step

after a definition elimination has been performed (this generally boils down

to postpone all elimination steps to the end of the transformation sequence).

3.3.3 Folding

Roughly speaking the Folding operation is the replacement of some piece of

code by an equivalent function call. Let F ∈ Rk be an equation (the ”folded

equation”) of the form (l = r), and let F ′ ∈ Rj, 0 ≤ j ≤ k, be an equation

(the ”folding equation”) of the form (l′ = r′), such that r|p =Bk
r′σ for some

position p ∈ OΣ(r) and substitution σ. Note that, since we transform the

equations of an equational theory, we consider here the congruence relation

=Bk
modulo the equational axioms Bk (assuming an empty equation set).

This is because we cannot consider a congruence modulo an equational theory

which is being modified. Moreover, the following conditions must be satisfied:

(1) F is not a eureka.

(2) F ′ is a eureka.

14



3.3. Transforming Rewrite Theories

(3) The substitution σ is sort decreasing, i.e, if x ∈ Vs, then xσ ∈ TΣ(V)s′

such that s′ ≤ s.

(4) Let l′ = f(tn) and r|p = e and let f(tn) and e have type sf and se,

respectively; then sf ≤ se.

Then, we can obtain program Rk+1 from program Rk by replacing F with

the new equation (l = r[l′σ]p).

Folding can be applied to rules whenever the transformation of the equa-

tional theory has been completed. To fold rules we proceed as follows. Let

F ∈ Rk be a rule (the ”folded rule”) of the form (l → r), and let F ′ ∈ Rj,

0 ≤ j ≤ k, be a rule (the ”folding rule”) of the form (l′ → r′), such that

r|p =Ek
r′σ for some position p ∈ OΣ(r) and substitution σ, fulfilling condi-

tions (1) - (4) above. Then, we can obtain program Rk+1 from program Rk

by replacing F with the new rule (l→ r[l′σ]p).

The need for conditions (1) and (2) is twofold. These conditions forbid

self-folding, that is, a folding operation with F = F ′, thus a rule with the

same left and right-hand side cannot be produced, which may introduce

infinite loops on derivations and destroy the correctness properties of the

transformation system. These conditions also forbid the folding of a eureka,

which is meaningless as illustrated in the following example.

Example 3 Consider the following two rules:

new → f (eureka)

g → f (non-eureka)

Without conditions (1) and (2), a folding of the eureka rule would be possible,

obtaining the new rule (new → g), which is nothing more than a redefinition

of the symbol new. Since transformation rules aim at optimizing the original

program with the support of eurekas, a folding over a eureka is meaningless

or even dangerous. �

Finally, conditions (3) and (4) ensure the sort compatibility of both the ap-

plied substitutions and the term that is inserted into the folded equation/rule

right-hand side. We can see an example of Folding operation.
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3.3. Transforming Rewrite Theories

Example 4 Consider the following rewrite theory:

R = (ΣR, ∅, R), where ΣR is the signature containing all the symbols of R

and
R :

f(a, b) → g(a, b)

f(x, y) → g(x, y)

g(a, x) → a

g(b, x) → b

h(a) → a

R′ :

f(a, b) → g(h(a), b)

f(x, y) → g(x, y)

g(a, x) → a

g(b, x) → b

h(a) → a

We get program R′ = (ΣR, ∅, R′) from R by applying a fold step to the rule

f(a, b)→ g(a, b) using the eureka h(a)→ a. �

3.3.4 Unfolding

Unfolding is essentially the replacement of a call by its body, with appropriate

substitutions. Let us introduce formally the Unfolding operation:

Let R = (Σ,∆ ∪ B,R) be a program and let F be an equation (resp. rule)

of the form l = r (resp. l → r) in R. We obtain a new program from R by

replacing F with the set of equations (resp. rules)

{lσ = r′ | r ;σ,∆,B r
′ is a ∆, B narrowing step}

{lσ → r′ | r ;σ,R∪∆,B r
′ is a R ∪∆, B narrowing step}

Since we consider rewrite theories where defined symbols are allowed to

be arbitrarily nested in left-hand sides of rules, rule unfolding may cause the

loss of completeness for the transformed program w.r.t. the semantics of the

original one. Let us illustrate this problem by means of an example.

Example 5 Consider the following rewrite theory R = (ΣR, ∅, R), where

16



3.3. Transforming Rewrite Theories

ΣR is the signature containing all the symbols of R and

1.

2.

3.

4.

5.

R :

g1(x) → x

h(x) → 0

h(g1(x)) → 1

f(x) → g1(x)

R′ :

g1(x) → x

h(x) → 0

h(g1(x)) → 1

f(x) → x

We get program R′ = (ΣR, ∅, R′) from R by applying an unfolding step

over rule 4 in R, through the narrowing step g1(x) ;ε x. Term h(f(0))

can be rewritten in R to the normal forms 0 or 1 by means of the rewrite

sequences h(f(0)) →4 h(g1(0)) →1 h(0) →2 0, and h(f(0)) →4 h(g1(0)) →3

1, respectively. The only possible rewrite sequences from h(f(0)) in R′ are

h(f(0)) →2 0, and h(f(0)) →5 h(0) →2 0, thus we miss normal form 1. In

fact, symbol g1 is needed for rule 3 to be applied, and function f provides that

occurrence of g1 needed to reach the normal form 1. However, the unfolding

of rule 4 forces the occurrence of symbol g1 to be evaluated, and, hence, that

rewrite sequence is no longer available in R′. �

In [8] a procedure to restore completeness of the new program R′ is pro-

posed, together with a proof of soundness and a methodology for optimizing

that procedure, which are outside the scope of this thesis.

3.3.5 Abstraction

The set of rules presented so far constitute the core of our transformation

system; however let us mention another useful rule, called Abstraction, which

can be simulated in our settings by applying appropriate definition introduc-

tion and folding steps. This rule is usually required to implement tupling,

and it consists of replacing, by a new function, multiple occurrences of the

same expression e in the right-hand side of an equation/rule. For instance,

consider the following equation

double sum(x, y) = sum(sum(x, y), sum(x, y))

17
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where e = sum(x, y). The equation can be transformed into the following

pair of equations

double sum(x, y) = ds aux(sum(x, y))

ds aux(z) = sum(z, z)

These equations are generated from the original one by a definition intro-

duction of the eureka ds aux and then by folding the original equation by

means of the newly generated eureka.

Note that the abstraction rule applies to equations or rules which are not

right-linear, since the same expression e occurs more than once in their rhs.

Since we ask for rules to be right-linear for the completeness of the narrowing

relation, we may think to use the abstraction rule to preprocess rewrite rules

in order to try to make them right-linear.

3.4 Program Semantics and Correctness of

the transformation system

We now provide a definition of the considered program semantics.

Definition 2 (Program Semantics) Given a program R = (Σ,∆∪B,R),

the semantics of ground reducts of R is the set gred(R) = {(t, s) | t ∈
TΣ, t→∗R∪∆,B s}.

Let us also denote by gnf(R) (⊆ gred(R)) the semantics of ground reducts

in normal form, and by (t, s) ∈ gnf(E) the fact that s is the canonical form

of t w.r.t. the equational theory E.

The theoretical result for the transformation system based on the elemen-

tary rules introduced so far (definition introduction, definition elimination,

unfolding, folding, and abstraction) are given in [8]. The main result is strong

correctness of a transformation sequence, i.e., the semantics of the ground

reducts gred( ) is preserved modulo the equational theory, as stated by

Theorem 1.
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Theorem 1 Let (R0, . . . ,Rk), k > 0, be a transformation sequence. Then,

gnf(E0) =B gnf(Ek), and for all t ∈ TΣ0, if (t, s) ∈ gred(R0) then there

exist s1, s2 such that (t, s1) ∈ gred(Rk), (s, s2) ∈ gred(R0) and s1 =E0 s2.

Viceversa, for all t ∈ TΣ0, if (t, s) ∈ gred(Rk) then there exist s1, s2 such

that (t, s1) ∈ gred(R0), (s, s2) ∈ gred(Rk) and s1 =E0 s2.
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Chapter 4

Rewrite on Code Carrying

Theory

This chapter recall the framework for Code Carrying Theory [18, 19] and

show how it can be used to achieve secure delivery of code, explaining how it

is designed and how it works. Then we discuss the necessary steps required

to combine it with framework of the Code Syntesis described in Chapter 3.

The chapter also introduce the theoretical concept of Certificate as a set

of descriptions of transformation operations, and discusses its application to

a source theory in order to get an equivalent one with improved performance.

We provide some examples of transformation sequences that make evident

to the reader the structure and the robustness of the system.

4.1 Background on CCT

Code-Carrying Theory (CCT) [19] is a framework to secure delivery of code.

With CCT, instead of transmitting code explicitly like in Proof-Carrying-

Code, only assertions and proofs are transmitted to the consumer. If the

proof-checking succeeds, the final code is then obtained by applying a sim-

ple tool to the resulting theory. CCT can be seen as a means of protecting

software from malicious manipulations or eventual corruption of code that
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4.1. Background on CCT

arrives from an untrusted source or through an insecure network, and can

be viewed as a variation on the traditional proof-based program synthesis

approach. Figure 4.1 illustarte with a diagram the basic architecture of the

system.

We can identify two actors in the process: the Code Consumer and the

Code Producer. The Code Consumer defines the requirements, and the Code

Producer processes them and provides the Code Consumer with a set of as-

sertions and proofs that satisfy the requirements and improve the system in

a secure way. The Code Consumer then can apply a code extractor to the

set of assertions and proofs to obtain the executable code, but only if the

associated proofs actually do prove the theorems.
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ABSTRACT
Code-Carrying Theory (CCT) is an alternative to the Proof-Carrying
Code (PCC) approach to secure delivery of code. With PCC, code
is accompanied by assertions and a proof of correctness or of other
required properties. The code consumer does not accept delivery
unless it first succeeds in generating theorems, called verification
conditions, from the code and assertions and checking that the sup-
plied proof proves these theorems. With CCT, instead of transmit-
ting code explicitly, only assertions and proofs are transmitted to
the consumer. If proof checking succeeds, code is then obtained
by applying a simple tool called CODEGEN to the resulting the-
ory. This paper explains the design and implementation of CCT
and shows how it can be used to achieve secure delivery of code
with required correctness or safety properties. All the tools used in
the verification steps are implemented in ATHENA, which is both a
traditional programming language and a deduction language.
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1. INTRODUCTION
Proof-Carrying Code (PCC) [1, 3, 11, 15, 16] is a means of pro-

tecting software consumers from malicious or inadvertent corrup-
tion of code that arrives from an untrusted source or through an in-
secure network. Important examples of such mobile code include
Web applets, actor-based distributed system software, and updates
to embedded computers. This proof-based protection approach is
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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permission and/or a fee.
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Copyright 2008 ACM 978-1-59593-753-7/08/0003 ...$5.00.

Figure 1: Code-Carrying Theory (CC stands for Additional
Consistency Condition, TC is Termination Condition, CTC is
Correctness Condition, and FDA is Function Defining Axioms)

based on a policy of not accepting delivery of new code unless it is
accompanied by a formal proof of correctness that can be machine-
checked by the code consumer.

Most PCC research has focused on safety requirements (e.g.,
no out-of-bounds memory references are allowed) and, to a lesser-
extent, security requirements (e.g., no unauthorized access to clas-
sified data), but in principle the method could be used with func-
tional correctness requirements (e.g., the output of a sorting al-
gorithm must be an ordered permutation of its input). However,
proofs of functional correctness are inherently more difficult to au-
tomate than those of safety or security properties, and from the
research literature it is apparent that many researchers today con-
sider proof-based approaches to be infeasible unless proofs can be
fully automated. That is, if the required proofs must be constructed
under human direction, the level of expertise and effort is consid-
ered to be so high as to be impractical. The work reported in this
paper is intended to challenge this view, in addition to presenting a
somewhat different take on the proof-based approach to assurance
that we call Code-Carrying Theory (CCT).

2. CODE-CARRYING THEORY
Figure 1 illustrates the basic Code-Carrying Theory approach

in detail. With CCT, instead of transmitting code, assertions, and
proofs explicitly, as in PCC, only assertions and proofs are trans-

376

Figure 4.1: Code Carrying Theory Diagram
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4.1.1 Code-Carrying Theory Steps

In this section we illustrate all the steps that are necessary to perform a

secure transfer of code. At each step we specify who performs the step.

1. Code Consumer: Defining Requirements

The code consumer is responsible for the formulation of requirements.

Requirements contain declarations and axiomatic definitions of some

common functions. Initially, the code producers do not have these

types of requirements and receive them from the consumers later in

the process; after that, both consumers and producers share the same

set of general requirements.

2. Code Producer: Defining a New Function

Once the code producer receives the specifications of a function re-

quested by the consumer, the code producer wants to send to the code

consumer an efficient implementation of the specified function and a

proof that it satisfies the required specification. Rather than sending

the efficient function as actual code, the producer will send only defi-

nitions and proofs in the form of a suitable set of axioms.

3. Code Producer: Proving Termination

The consumer cannot accept and assert arbitrary axioms and proposi-

tions. It is the producer’s responsibility to show that the new definitions

do not introduce any inconsistency into the assumption base. This can

be done by proving that the new function-defining axioms satisfy a

definitional principle, that takes the form of a requirement that the

equations defining the function are total (the function terminates for

all inputs). Proving termination is done in TCGEN in Figure 4.1 in an

approach that is similar to defining a well-founded ordering onto the

equations.
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4.1. Background on CCT

4. Code Producer: Proving The Additional Consistency condi-

tion

Similar to Step 3, CCGEN takes a list of function-defining axioms and

produces a predicate called consistency condition (CC). The additional

consistency condition expresses that it is possible to define a function

that satisfies the conditions given by the axioms.

5. Code Producer: Proving Correctness

In this Step, the producer attempts to construct a proof of each of the

required correctness conditions by using axioms. Once all the proofs

are ready, the producer can send them to the consumer along with the

function-defining axioms and proofs of the termination and additional

consistency condition. Thus the producer does not send actual code

but the theory which carries it.

6. Code Consumer: Termination Checking

After receiving the theory and proofs for a new function, the consumer

runs TCGEN to obtain the termination condition (TC). The termi-

nation proof sent by the producer must be checked to analyze if it

has been corrupted during the transmission or modified by hackers, in

which case the consumer will reject the theory immediately, and do not

generate the code.

7. Code Consumer: Additional Consistency Checking

Similarly to Step 6, the consumer runs CCGEN to generate the consis-

tency condition (CC) and check it.

8. Code Consumer: Checking Correctness

If the consumer reaches this point, it is safe to assert the new function-

defining axioms into the system and check the proofs provided by the

producer. If each such proof is accepted, the consumer can access the
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last step and generate the code

9. Code Consumer: Code Extraction

Now the consumer is sure of the correctness, and the last step can be

done. He runs CODEGEN, which extracts the function-defining ax-

ioms and generates the final optimized code.

4.2 Program Synthesis and CCT

We have shown that in CCT, only a handy certificate is transmitted in the

form of a theory (a set of axioms and theorems) together with a set of proofs

of the theorems. No code needs to be explicitly transmitted, hence this is a

quasi-natural extension of the framework presented in Chapter 3.

Now we embed the proposed system of Fold/Unfold transformations with

CCT methodology, which greatly reduces the operations done by the Code

Producer and the Code Consumer. Assuming the Code Consumer provides

the requirements in the form of a rewrite theory, the Code Producer can

(semi-) automatically obtain an efficient implementation of the specified func-

tions by applying a sequence of transformation rules (the Certificate). The

Code Producer can then transmit the Certificate, as a compact representa-

tion of the transformations sequence, to the Code Consumer who applies it

with no need to construct any other correctness proof.

4.2.1 Certificate

Roughly speaking, the Certificate is a representation of the transformations

sequences consisting of a sequence of the operations presented in Section 3.3.

We provide a formal definition as follows:

Definition 3 (Transformation rule description) Assuming that rules and

equations are referenced by an identification label, a valid transformation rule
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description d is a term of the following forms:

• Definition Introduction Description:

Intro(Operator Declaration, Equation Set)

Intro(Operator Declaration, Rule Set)

• Elimination Description:

Elim(List of function symbols)

• Unfolding Description:

Unfold(Unfolded equation id, Unfold position)

Unfold(Unfolded rule id, Unfold position)

• Folding Description:

Fold(Folding equation id, Folded equation id, Fold position)

Fold(Folding rule id, Folded rule id, Fold position)

Definition 4 (Certificate) Let (R0, . . . ,Rk), k > 0, be a transformation

sequence. The certificate associated with the transformation sequence (R0, . . . ,Rk)

is the ordered list of transformation rule descriptions C ≡ (d1, . . . , dk) asso-

ciated with the transformation rules r1, . . . , rk s.t. ∀i ∈ {1, . . . , k}, ri is the

transformation rule applied to Ri−1 in order to obtain Ri.

By applying the certificate provided by the Code Producer to the initial in-

efficient theory (R0), the Code Consumer obtains a new theory semantically

equivalent to the first one but with improved performances (Rk).

4.2.2 Steps on new framework

With the considered Certificates, so we can revisit the steps defined by the

CCT methodology presented in Section 4.1.1 in order to work together in the

new framework.

The refined methodology consists only of 3 steps, which are illustrated in

Figure 4.2, and summarized below.
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Figure 4.2: Rewrite CCT Diagram

1. Code Consumer: Defining Requirements

This step is similar to Step 1 of the basic CCT framework: the Code

Consumer provides the requirements to the code producer in the form

of a rewrite theory. The rewrite theory can be written in Maude, the

high-level specification language that implements rewriting logic.

2. Code Producer: Defining New Functions

This step resumes the steps [2, . . . , 5]. The Code Producer uses the

fold/unfold-based transformation system presented in Section 3.3 in

order to obtain an efficient implementation of the specified functions.

Subsequently, the producer will send only a Certificate C defined in

Definition 4 to be used by the Code Consumer to derive the program.

3. Code Consumer: Code Extraction

Once the Certificate is received, the code consumer can apply the trans-

formation sequence, described in the Certificate, to the initial theory,

and the final program is automatically obtained. The strong correctness
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of the transformation system ensures that the obtained program is cor-

rect w.r.t. the initial Consumer specifications., so the Code Consumer

does not need to check extra proofs provided by the Code Producer.

This covers Steps [6, . . . , 9] of the basic methodology.

4.2.3 Case Study: a tail recursive function

Let us provide an example that explains the overall mechanism described

above.

Assume the Code Consumer needs a function for computing the sum of the

natural numbers in a list. The consumer specification is a rewrite theory

which consists of the equational theory expressed by the following set of

rules.
op sum-list : NatList -> Nat .

R1 rl sum-list(nil)⇒ 0 .

R2 rl sum-list(x xs)⇒ x + sum-list(xs) .

The above rules defining the sum-list function can be transformed into a

more efficient, tail-recursive structure by using the fold/unfold framework as

follows.

Introduce the following new eureka symbol sum-list-aux:

op sum-list-aux : NatList Nat -> Nat .

R3 rl sum-list-aux(xs,x)⇒ x + sum-list(xs) .

Apply the unfold operation over the eureka R3, we obtain the following new

rules:

R4 rl sum-list-aux(nil, x)⇒ x + 0 .

R5 rl sum-list-aux(y ys, x)⇒ x + y + sum-list(ys) .
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Now, by folding rule R2 and R5 using the eureka R3, we obtain the final

tail-recursive program.

R1 rl sum-list(nil)⇒ 0 .

R4 rl sum-list-aux(nil,x)⇒ x + 0 .

R6 rl sum-list-aux(x xs,y)⇒ sum-list-aux(xs, x + y) .

R7 rl sum-list(x xs)⇒ sum-list-aux(xs, x) .

The certificate C is then as follows:

(

Intro((op sum-list-aux : NatList Nat -> Nat.),

(rl sum-list-aux(xs, x)⇒ x + sum-list(xs).)),

Unfold(R3, 2),

Fold(R3, R5, Λ),

Fold(R3, R2, Λ)

)

By applying now the certificate to the initial specification, the code con-

sumer can efficiently obtain the required efficient implementation.
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Chapter 5

Security attacks and extension

of the framework

In this Chapter, we analyze the security of the transformation framework

for rewrite theories applied to CCT described in Chapter 4, and examine a

few examples of attacks that witness the main weaknesses of the framework.

Then, we discuss how it is possible to prevent the attacks by introducing a

suitable procedure for checking the certificates.

5.1 Security

Security is a fundamental aspect of every architecture based on a number of

actors that exchange information among them. We have seen in Chapter 4

that the framework for CCT is based on two main actors (Code Consumer

and Code Producer) and the data sent between them can be captured by a

new malicious actor who could change them, and then cause incorrectness.

For instance, the fold/unfold methodology in the CCT context is correct,

because the code consumer does not start rewrites from any of the terms of

the final theory but only on terms it had previously specified in the original

theory, so if a code producer or some intruder in the middle introduces a new

function foo, the code consumer never starts rewrites with foo. If we apply

a correct certificate it is impossible to reach terms that carry malicious code
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or improper operations.

So if we want identify possible flaws, we need to look for certificates which

do not satisfy the conditions of the transformations rules.

In this section, we show a few examples which produce theories that are not

correct or complete.

Example 6 Consider the following rewrite theory

R = (ΣR, ∅, R), where X :: s ∈ V and ΣR is the signature containing all the

symbols of R with only one sort s, and

1.

2.

3.

4.

5.

6.

R :

f(a, a) → a

f(b, c) → d

a → b

a → c

g(X) → f(X,X)

R′ :

f(a, a) → a

f(b, c) → d

a → b

a → c

g(a) → a

We obtain program R′ = (ΣR, ∅, R′) from R by applying an unfolding step

over the rule g(X) → f(X,X) ∈ R which is not right-linear, through the

narrowing step f(X,X) ;X/a a. Let us consider term g(a). In the original

program R, g(a) can rewrite to the normal form d by the rewrite sequence:

g(a)→5 f(a, a)→3 f(b, a)→4 f(b, c)→2 d. In the transformed program R′,
it is no longer possible from term g(a) to reach the term d, and, hence, the

normal form d is lost. �

As in the previous example, a Code Producer may send a Certificate with

illicit operations which wen applied may result in a loss of code functionality.

Terms no longer reachable may corrupt a whole system. Particularly they

could make the system unstable or potentially attackable, if they had been

designed for controlling critical conditions or processing security policies.

This is only one possible scenario out of many, and perhaps less dangerous

than others, the worst case being those configurations of certificates that lead

out of the class of terms that were reached within the initial theory. That

32



5.1. Security

is to say those certificates which cause a loss of correctness, as illustrated in

the next example.

When we presented the definition introduction operation, we said that

eurekas have to be confluent in order to ensure the correctness of the fold

operation. We now discuss this critical point by means of an example.

Example 7 Consider the following rewrite theory

R = (ΣR, ∅, R), obtained from a previous theory R′′ by introducing a fresh

symbol m, where X :: s ∈ V and ΣR is the signature containing all the

symbols of R with only one sort s and

R :

f(a, b) → g(a, b)

m(a) → a

m(a) → b

m(b) → a

g(a,X) → a

g(b,X) → b

R′ :

f(a, b) → g(m(a), b)

m(a) → a

m(a) → b

m(b) → a

g(a,X) → a

g(b,X) → b

We get program R′ = (ΣR, ∅, R′) from R by applying a folding step to the

rule f(a, b) → g(a, b) using the eureka m(a) → a. It is easy to see that in

R′ we can reduce term f(a, b) to the normal forms a or b, while in R we

can reach only the normal form a. The point is that in R, term f(a, b) can

reduce only to g(a, b) while the fold operation introduces the possibility of

rewriting it to g(b, b) cause the eureka defining m is not confluent. This leads

to a new solution b, thus missing the correctness. �

The above example clearly shows that the introduction of non-confluent func-

tions, combined with the fold operation, leads to the achievement of new

terms that would otherwise be previously unreachable, and therefore it ex-

tends the semantics of ground normal forms considered in the original theory.
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5.1.1 Hacking the certificate

Although the code producer should ensure the correctness of the certificate

and the framework for fold/unfold transformation ensures the correctness

and completeness of the final program, there is no guarantee that the re-

quirements of the transformation rules are met correctly. During delivery,

the certicate might be corrupted, or a malicious hacker might change the

code. Potential problems can be categorized as security problems (i.e., unau-

thorized access to data or system resources), safety problems (i.e., illegal op-

erations), or functional incorrectness (i.e., the delivered code fails to satisfy

a required relation between its input and output)

If there is no automatic support, it is very easy for the code producer to

make a mistake due to the large number of restrictions and preconditions,

and it is even easier for an expert malicious hacker to intercept the certificate

through an insecure network, modify it and resend to the code consumer.

Consider the architecture discussed in Chapter 4 and summarized in Fig-

ure 4.2. In Figure 5.1 illustrate a possible attacking scenario, that we com-

ment in the following example of a possible cracking of a certificate.

Example 8 We now reuse the example discussed in Section 4.2.3 and we

show what happens when changing the Certificate with functions which do

no respect the preconditions. Remember that the consumer specification is

a rewrite theory which is expressed by the following set of rules.

op sum-list : NatList -> Nat .

R1 rl sum-list(nil)⇒ 0 .

R2 rl sum-list(x xs)⇒ x + sum-list(xs) .

The code producer improves the computational cost of this function and

produces the certificate C:
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Figure 5.1: Bad Certificate
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(

Intro((op sum-list-aux : NatList Nat -> Nat.),

(rl sum-list-aux(xs, x)⇒ x + sum-list(xs) .)),

Unfold(R3, 2),

Fold(R3, R5, Λ),

Fold(R3, R2, Λ)

)

Now suppose that a malicious hacker changes the C into C ′ as follows:

(

Intro((op sum-list-aux : NatList Nat -> Nat.),

(rl sum-list-aux(xs, x)⇒ x + sum-list(xs) .)),

Intro((op sum-list-aux : NatList Nat -> Nat.),

(rl sum-list-aux(xs, x)⇒ (x + sum-list(xs)) + x .)),

Unfold(R3, 2),

Fold(R3, R5, Λ),

Fold(R3, R2, Λ)

)

Obviously C ′ is not longer a valid certificate, but the code consumer does

not realize and applies it obtaining as the final program1the following set of

1We skip the intermediate steps of application rules descriptions and show only the
final result.
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rules:

R1 rl sum-list(nil)⇒ 0 .

R4 rl sum-list-aux(xs,x)⇒ (x + sum-list(xs)) + x .

R6 rl sum-list-aux(x xs,y)⇒ y + x + sum-list(xs) .

R7 rl sum-list-aux(nil,x)⇒ x + 0 .

R8 rl sum-list(x xs)⇒ sum-list-aux(xs, x) .

Now consider the following rewrite sequence as one of the possible com-

putations of the function sum-list fed with the list (1, (1, nil)):

sum-list( (1, (1,nil)) ) →R8

sum-list-aux( (1,nil), 1 ) →R4

(1 + sum-list( (1,nil) ) ) + 1 →R8

(1 + sum-list-aux( nil, 1 ) ) + 1 →R4

(1 + (1 + sum-list( nil )) + 1) + 1 →R1

(1 + (1 + 0) + 1) + 1 →∗ 4

The result for sure is not what one would expect. Actually it is very easy

to think of a certificate that makes the system do everything you want. For

example if we delete the rule R6, the system becomes deterministic and every

time the code consumer uses the sum-list rule it computes the function

λx.2 ∗ sumlist(x) where sumlist is the original function which sums the

elements of a list. �

5.2 Checking the Certificate

In the examples of the previous section we have demonstrated that we cannot

apply a certificate regardless of its contents. We need to check that all the

operation descriptions to be carried over to the system are lawful (all the
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preconditions are respected) and all operations are done in the correct order,

because the permutation of the operation descriptions of transformation are

not commutative.

In Figure 5.2, we present the extended architecture. Our solution to the

problem introduces a procedure to check the certificate which, in case of

failure it notifies the code consumer of the poor quality of the certificate,

preventing the generation of malicious programs and/or incorrect functions.
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Figure 5.2: Certificate Checking

5.2.1 Preconditions

The basic check is a purely syntactic: we provide a parser for looking that

all the functions (RuleDescription) defined in Section 4.2.1 which compose a
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certificate respect the following BNF grammar.

〈Certificate〉 ::= (〈RuleList〉)

〈RuleList〉 ::= 〈RuleDescription〉 | 〈RuleDescription〉, 〈RuleList〉

〈RuleDescription〉 ::= introEq(〈OpDecl〉, 〈EquationSet〉)
| introRl(〈OpDecl〉, 〈RuleSet〉)
| elim(〈QidList〉)
| fold(〈Nat〉 , 〈Nat〉, 〈NatList〉)
| unfold(〈Nat〉 , 〈NatList〉)

〈OpDecl〉 ::= (op 〈Qid〉 : 〈TypeList〉 -> 〈Type〉 [〈AttrSet〉] .)

〈EquationSet〉 ::= none | 〈Equation〉 〈EquationSet〉

〈Equation〉 ::= eq 〈Term〉 = 〈Term〉 [〈AttrSet〉] .

| ceq 〈Term〉 = 〈Term〉 if 〈EqCondition〉 [〈AttrSet〉] .

〈RuleSet〉 ::= none | 〈Rule〉 〈RuleSet〉

〈Rule〉 ::= rl 〈Term〉 => 〈Term〉 [〈AttrSet〉] .

| crl 〈Term〉 => 〈Term〉 if 〈Condition〉 [〈AttrSet〉] .

〈EqCondition〉 ::= nil

| 〈Term〉 = 〈Term〉
| 〈Term〉 : 〈Term〉
| 〈Term〉 := 〈Term〉
| 〈EqCondition〉 /\ 〈EqCondition〉

〈Condition〉 ::= 〈EqCondition〉
| 〈Term〉 => 〈Term〉

The type of above variable RuleDescription is a String provided by Maude

and all nonterminals not defined here such as Term, Nat,.. etc. are common

types of Maude. For a full reference we refer the META-MODULE in the

prelude.maude file of the Maude distribution or the Maude manual.
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After the syntactic check, we look for precondition violations over the

rule descriptions described below:

• Definition Introduction Description check:

The introduced equation (resp. rule) is a fresh function symbol which

does not occur in the previous transformation sequence, and all sorts

in the signature are sorts declared in the original theory provided by

the code consumer.

The equations/rules are non-erasing.

Every defined function symbol occurring in right-hand side of a rule

belongs to the initial theory.

The set of new equations (resp. rules) are left-linear, sufficiently com-

plete2 and non-overlapping.

Finally we check also right-linearity of the introduced rules.

• Elimination Description check:

Only symbols not in the original theory can be deleted.

After an elimination, only other elimination rules can be applied. Let

x, y be a rule description, where x ∈ { Definition Introduction Descrip-

tion, Folding Description, Unfolding Description } and y ∈ { Elimi-

nation Descritpion }; then we accept now only certificates of the form

(x0, . . . , xi, yi+1, . . . , yj) or (x0, . . . , xi) with i, j ≥ 0.

• Unfolding Description check:

Due to the use of narrowing described in Section 3.2 by the unfold

operation, all preconditions of narrowing must be checked. However,

we do this, after the creation of the initial rewrite theory, provided by

code consumer.

• Folding Description check:

We remember the signature of the description folding(F ′, F, Pos)

2We use an external tool [1]
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were F is the folded equation, and F ′ is the folding equation. The

following conditions must be checked: F is not a eureka, and F ′ is a

eureka.

The sort of the function (resp. rule) and the term of its application

must be preserved.

If all checks are ok, the code consumer is granted that the certificate

has it been not manipulated by anyone and none of the attacks discussed

in Section 5.1.1 have been done. Therefore he can applies the transforma-

tions descriptions to the initial inefficient theory in order to obtain the final

optimized program.
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Chapter 6

Pyconnect

In this chapter, we provide the motivation that led us to implement Pycon-

nect. The reader will learn the functionalities, utility and the structure of

the program.

In addition we explain in detail how to configure it, and how to extend the

source code and its classes in order to adapt at to any ad-hoc situations.

6.1 Description and Motivation

Suppose you want to use a particular software to do a certain operation. Now

assume that part of this result should be used by a consumer software. On

Unix systems, the concept is well known and is widely used in a wide range

of applications: we are obviously talking about the PIPE [13, 17]. If these

software systems are developed in such a way as to fit with this concept, the

solution is very simple: just call the execution of the two software systems

by connecting them in a pipe which serially passes the output of the first

one as the input for second one. In this way you can connect in a chain a

potentially unlimited number of programs. What happens however, if these

software systems are not written according to this paradigm, or the result of

the second program must be reused by the first one that at the same time

needs to maintain a state of consistency with its own data?
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Obviously the solution of the PIPE is not ’appropriate.

Pyconnect, developed in Python a programming language that allows you to

work very quickly and integrate your systems more effectively with support

for the object oriented paradigm [3, 2]. In our case we need to integrate

two environments, in particular Maude [11] that runs the framework for the

transformation of programs, and an extended version of Maude 2.3 with Ceta

tree automata that is necessary for testing the sufficient completness [1], as

due to incompatibility of versions, we are not able to integrate them directly

within the maude language.

Pyconnect is essentially an interactive pipe, which allows us, through a single

interface, to transmit data from one or more sources to one or more destina-

tions. Also it allows you to decide which data should be sent on time. Thanks

to its modular design, it can be easily extended for ad-hoc solutions. With

Pyconnect, we can integrate the two otherwise incompatible environments,

and make invisible to the end user the process of transmitting data for the

verification of the certificates described in Chapter 5.

6.2 Configuration

Pyconnect manages communication of data, and it creates virtual channels

that cannot be created at run-time, but must be declared in the configuration

file, so that Pyconnect can create them at startup and manage at runtime.

Pyconnect creates FIFOS [13] or named pipes which will be attached to the

process. The names of those FIFOS must be specified in the configuration

file and are part of the property of the channels created by Pyconnect . The

configuration file ”pyconnect.config” is situated in the same folder of Pycon-

nect. We now see in detail its structure and its functionality..

All lines that begin with the character # are discarded because they are

considered comments by Pyconnect. We have a group of four basic options

that help to define the settings for a single channel:
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• NAME: This variable is used by Pyconnect to recognize the name of

the channel and to select it, for routing the data to and from it. The

name of the channel must be unique; otherwise all channels with the

same name in the environment of Pyconnect intercommunication are

excluded.

• PROC: This variable indicates the position in the file system of the

process that must ’be started.

• IN: This variable indicates the absolute path of the FIFO from which

Pyconnect will read. To avoid confusion between those who will read

or write, the names refer to Pyconnect, so assuming you create a chan-

nel with properties IN, the process attached to that channel must be

written on this fifo.

• OUT: This variable indicates the absolute path of the fifo on which

Pyconnect will write the output data.

To add a new channel it suffices to add into the configuration file a new group

of the four variables listed above and their values. The lack of one of the

variables in the introduction of a new channel will invalidate the configura-

tion file.

Finally, the variable DEFAULT indicate to Pyconnect which of the channels

will be selected for communication by default.

6.2.1 Configuration example

Here we can see a typical example of the configuration file, where there are

two channels of communication with the first selected one as the default.
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#simple configuration for Pyconnect

DEFAULT = "maude"

# maude channel

# runs the framework

NAME = "maude"

# #the name of the proc not used

PROC = "/usr/local/bin/maude"

# uses a script to spawn maude like this

# # maude < /tmp/readmeMaude > /tmp/writemeMaude

# #the named pipe used for writing

IN = "/tmp/wirtemeMaude"

# #the named pipe used for reading

OUT = "/tmp/readmeMaude"

# maude-ceta channel

# runs the sufficient completeness checker

NAME = mceta"

PROC = "/usr/local/bin/maude-ceta"

# uses a script to spawn maude like this

# # maude-ceta < /tmp/readmeMC > /tmp/writemeMC

# #the named pipe used for writing

IN = "/tmp/wirtemeMC"

# #the named pipe used for reading

OUT = "/tmp/readmeMC"
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6.3 Functions

Once your setup is done, Pyconnect is ready to run. The startup FIFOS

specified in the configuration file are created and Pyconnetct waits for the

connection of the process to them. When all processes are ready, Pyconnect

shows you the shell ready for the communication with the channel specified

by default.

At this point, the user can enter input commands as if he were in the

process. The commands will be passed directly to the selected process and

the result will be shown on the screen.

In Figure 6.1, you can see a session of Pyconnect with a channel of Maude.

Figure 6.1: Pyconnect session
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To avoid that commands and controls of the processes overlap, Pyconnect

uses a special escape sequence

!@#$

This sequence is interpreted as the beginning of a command of Pyconnect

and must be inserted every time you want to change a channel or modify a

property of Pyconnect.

6.3.1 Channels and sending groups

To understand how Pyconnect works and how to use it in an efficient way,

we need to understand the concepts of channel and channel group.

Pyconnect is an interactive pipe, but cannot select more than one input/output

channels at the same time. Nevertheless this does not affect the ability to

send data to other channels: the channel currently selected will have priority

over others in that it will write the input of Pyconnect and all the data sent

by the user or other connected processes will be sent to it.

The other processes in those channels that are not selected will be in a state

of running. Pyconnect does not interfere with their status, but only sends

and receives data to be processed, so attention must be paid to synchroniza-

tion problems among them.

In Figure 6.2 you can see a schematic and detailed representation of the con-

nections.

The important thing to understand is that Pyconnect actually makes no

difference between the user and a process. Also the processes can send com-

mands to Pyconnect to change its state.

It might be a good idea to organize a channel/process that supports the

other processes, directs the control of the main execution and manages the

flow of data when you need it. The communication primitives of Pyconnect

are sufficient to direct traffic to a parent process.

Pyconnect organizes channels in a group called sending group, and if the
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Pyconnect
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Figure 6.2: Pyconnect Connection Diagram

channel is in this group, then it receives the data sent by Pyconnect. The

prompt is always the list of channels that you are connected to and to which

the data will be sent.

6.3.2 Pyconnect commands

Let us summarize the commands of Pyconnect with their functionality.

• !@#$ help : Prints help screen with the available commands.

• !@#$ ls : Prints on screen a list of names of the channels configured

by the system.
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• !@#$ select NAME: Selects a channel for communication. All infor-

mations will be sent to that channel. NAME refers to the name of the

preset channel in the configuration file in the list (and available through

the ls command). When you select a channel, its output will be sent

to Pyconnect and will be sent in accordance with its status.

• !@#$ send NAME : adds channel to channel send group. After this

operation, the channel will receive an exact copy of the data sent to

the selected communication channel.

• !@#$ unsend NAME : opposite to the send command, clears the chan-

nel NAME from the channel send group.

• !@#$ receive NAME : the currently selected channel receives data from

channel.

The input of an invalid command or a valid command with an invalid

argument, does not change the system status.

6.4 Extending the software

In this section, we discuss the main classes that make up Pyconnect. Pycon-

nect is written in Python because it is quite versatile and easy to extend. It

is organized into a few classes that deal with all the work of routing data. In

Figure 6.3, you can see the class diagram. The main class is RWproc, which

calls the configuration file and initializes the fifos. It is the core of pyconnect,

provides methods for high-level reading and writing in a channel, maintains

the status and deals with parsing the command line, exchange operations

and channel management.

50



6.4. Extending the software

The class WriterGroup handles groups of channels and duplicates the input

to and from these outwards. However, the important class that performs all

the work of timing and data buffering is IStream class. This class contains

the methods necessary to perform read and write operations to the stream

and parseOut parseIn methods. They are invoked respectively by read and

write, and take a string as input value and return a string as well. In the

basic version of Pyconnect, these two methods do nothing but return the

same string. However, if you extend Pyconnect for ad-hoc situations you

can redefine these methods or extend the iStrem class by writing an ad-hoc

parser for your own neceds. We should point out the abundance of tools for

the Python language, including instruments that support regular expressions

or others a bit more sophisticated such as bison, that can help you to develop

your own solution.
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Chapter 7

Putting all together

In this chapter, we present the resulting framework extended with certificate

checking and describe in detail how it is composed and the main features of

the user interface.

7.1 Implementation

We implemented in a prototypical system, the transformation framework ex-

tended with the infrastructure for certificate checking presented in Chapter 5,

which consists of a suit of tools.

The ground components are:

• MetaMaudestCode (MMC), written in Maude 2.5.

• Sufficient completeness checker (SCC), which uses a patched version of

Maude 2.3 with ceta tree automata.

• Pyconnect, which support the communication between MetaMaudest-

Code and the sufficient completeness checker.

• Some scripts in bash that start the frameworks above.

In Figure 7.1, we show the resulting framework architecture.

The sufficient completeness checker is a tool written in Maude. Sufficient
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Figure 7.1: Architecture of the framework

completeness is the property that every operation in a specification is de-

fined on all valid inputs. It is an important property both for developers of

specifications (in our case the Code Producer), and the users of these spec-

ifications (Code Consumers), to check that they have not missed a case in

defined operations. The tree automata SCC [14] version requires an extended

version of Maude 2.3, and pre-built binaries for GNU/Linux and x86 proces-

sors which are provided by [1].

As explained in Chapter 6, we have implement Pyconnect due to the in-

compatibility of the versions of MetaMaudestCode and the Sufficient Com-

pletness Checker: the MMC cannot run in the ceta patched version 2.3,

because MMC requires the version 2.5 of Maude, SCC cannot run in a ver-

sion of Maude without the patch of tree automata and therefore we cannot

patch maude 2.5 due to incompatibility and missing codes/patches.

Pyconnect is the main software which manages the connection and the flow

of theories, from MMC and SCC, to support us the checking of certificate

correctness.
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MetaMaudestCode is the core framework for program synthesis and

fold/unfold transformation. It is written in Maude 2.5. and provides a func-

tion (described below in Section 7.1.1) for testing and applying certificates.

A snapshot of the Meta Maudest Code is shown in Figure 7.2 where we have

preloaded the example in Section 4.2.3.

Figure 7.2: MetaMaudestCode

The main scripts which start the Pyconnect, Maude 2.5, Maude 2.3 and

the frameworks MMC and SCC, are provided in Bash

7.1.1 Features

The MetaMaudestCode consist of about 2500 lines of code, written in Maude.

Basically, our framework allows us to perform the elementary transformation

rules and checking of the certificates over a given initial theory. In order to

implement the framework MMC, we made use of a useful Maude property
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called reflection. Rewriting logic is reflective in a precise mathematical way.

In a finitely presented universal theory U we can represent in U any finitely

presented rewrite theory R as a meta-term R, any term t, t′ in R as meta-

terms t, t′, and any pair (R, t) as a meta-term 〈R, t〉, in such a way that we

have the following equivalence:

R ` t→ t′ ⇔ U ` 〈R, t〉 → 〈R, t′〉 because U is representable as a meta-term

itself, it is possible to extend the equivalence to U ` 〈U , 〈R, t〉〉 → 〈U , 〈R, t′〉〉.
Thanks to Maude reflection, our framework has been easily implemented by

manipulating the meta-term representations of rules and equations. In prac-

tice, both transformation rules and certificate checking presented respectively

in Sections 3.3 and 5.2, have been implemented as rewrite rules that work

and manipulate the meta-term representation of the rewrite theories we want

to transform and the transformation rule descriptions that perform it.

The interface allows one to perform single transformation rules over the

initial theory (we do not recommend it for Code Consumers but only for test-

ing purposes by Code Producers), checking certificates syntactically, checking

the certificates preconditions (we recommend to perform this operation by

both, Producer to avoid mistakes/omissions and Consumers to avoid corrup-

tion/craking), and applications of the Certificate.

When the user performs a transformation sequence, the result is shown step

by step in the form of intermediate theories. When the user performs a cer-

tificate checking, a report is shown over the single steps, and in the case of

bad certificates the cause of failure is reported, as well as in specific cases

where the certificates do not respect the correctness preconditions.

In Figure 7.3 we present the modules structure used by our framework, which

can be useful for future extensions or maintenance of the software.
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Chapter 8

Conclusions

In this dissertation, we investigated on some of the most recent and complex

directions of research in computer science and we proposed some effective so-

lutions. We extended a novel framework for Code Carrying Theory, which is

fed with a methodology based on narrowing to perform fold/unfold program

transformation. In order to achieve this goal, we made use of rule-based

formalisms, such as rewriting logic, and narrowing to develop our system.

The main aspect in which we concentrated our focus is the security and the

interoperability of the framework.

The core transformation rules of our CCT framework are folding, unfold-

ing, definition introduction, and definition elimination. The correctness of

the program transformation framework guarantees that the transformed pro-

gram is equivalent to the initial one, and the program synthesis methodology

can be effectively applied to CCT and significantly simplify the code pro-

ducer and code consumer tasks. More precisely, the transformation process

is represented as a compact sequence of applied transformation rules, and is

delivered as a certificate to the code consumer. The distributed character of

the considered systems has led us to the study of security aspects such as the

software certification for secure the delivery of code, and we have shown that

the code consumer cannot apply a certificate regardless of its contents, due

to the possibility of certificate manipulation by a malicious actor that can

attack the whole system. To obtain the desired final and improved program,
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8. Conclusions

the code consumer needs to check and apply the certificate to the initial

requirements, which requires only modest computational resources. Future

work related to the subject presented in this thesis includes experiments with

optimizations to speed up the analysis, and automatize the code synthesis

process.

We implemented in a prototypical system the transformation framework and

extended it with the infrastructure for certificate checking, which implements

the complete CCT infrastructure, reducing the number of the steps and the

burden of the code producer and the code consumer. So the code consumer

which uses our framework can receive, check and apply a certificate to an

initial theory in order to obtain the desired program, can detect and refuse

bad certificates with a detailed report; and then avoid data corruption or

attacks from malicious actors.

We also plan to take advantage of the Pyconnect architecture, which allows

us to integrate in our framework, in an easy way, some available Maude

formal tools, to verify other relevant program properties such as termina-

tion and confluence of the initial equations set of the theory. Moreover, we

can integrate an automated theorem prover for the verification of interested

consumer properties. Such an extension is subject to future work.
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