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Abstract

The recent investigation of the turbulent features in flows dominated by a shear stress,
like Couette flows, have proven the presence of strong and long unexpected turbulent
structures. Despite different scientific publications have described these structures since
the early nineties, little has been said about their stability and length. It has very recently
been shown that the length of these structures grows with the Reynolds number, which
makes in some cases the determination of their length beyond the possibilities of the
largest supercomputers. On the other hand, these structures are curiously not present in
pressure driven flows, such as Poiseuille flow.

The aim of this master’s thesis is to analyse the stability of these large turbulent
structures by adding a certain percentage of Poiseuille flow to each case until a pure
Poiseuille flow is achieved. Thus, a stepped transition between both scenarios can be
studied. Additionally, different domain sizes are employed in order to study the length
of these turbulent features. Due to the potential extent of the structures studied, our
biggest domain is indeed considered among the longest simulation channels in turbulence.
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Resumen

Las recientes investigaciones sobre las características de la turbulencia en flujos dominados
por el esfuerzo cortante, como en los flujos de Couette, han demostrado la presencia de
estructuras turbulentas extensas y persistentes. A pesar de que diversas publicaciones
científicas han descrito estas estructuras desde el principio de los noventa, poco se ha
dicho sobre su estabilidad y longitud. Hace poco se demostró que su longitud crece con el
número de Reynolds, lo cual hace que casos con elevado número de Reynolds sobrepasen
la capacidad de los supercomputadores más grandes. Por otra parte, curiosamente estas
estructuras no están presentes en flujos regidos por un gradiente de presión, como el flujo
de Poiseuille.

El objetivo de este TFM es analizar la estabilidad de estas grandes estructuras turbu-
lentas. Para ello, se estudiarán diversos casos, los cuales cubren una transición escalonada
desde un flujo de Poiseuille puro hasta un flujo de Couette puro. Además, dominios con
diferentes tamaños se usarán en el estudio de la longitud de estas estructuras turbulentas.
Debido a su posible longitud, nuestro dominio más grande está considerado actualmente
como uno de los canales turbulentos más extensos.
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Resum

Les investigacions recents sobre les característiques de la turbulència en fluxos dominats
per l’esforç tallant, com el flux de Couette, han demostrat la presència d’estructures tur-
bulentes extenses i persistents. Encara que diverses publicacions científiques han descrit
estes estructures des del principi dels noranta, poc s’ha dit sobre la seua estabilitat i
longitud. De fet, fa poc s’ha desmostrat que la seua longitud creix amb el número de
Reynolds; açò fa que casos amb un elevant número de Reynolds sobrepassen la capacitat
de les supercomputadores més grans. Per altra part, curiosament estes estructures no
estàn presents en els fluxos regits per un gradient de pressió, com és un flux de Poiseuille.

L’objectiu d’aquest TFM és analitzar l’estabilitat d’estes grans estructures turbulentes.
Per a això, s’estudiaràn diversos casos, els cuals cobrixen una transició escalonada des
d’un flux de Poiseuille pur fins un flux de Couette pur. A més, s’emplearàn dominis amb
diferents tamanys en l’estudi de la longitud de les estructures turbulentes. Degut a la
seua possible longitud, el nostre domini més gran està considerat actualment com un dels
canals turbulents més extensos.
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Chapter 1

Introduction

An essential feature of turbulent flows is that the fluid velocity field varies significantly
and irregularly in both space and time. When one imagines a turbulent flow, the first
image that comes to the mind is an unsteady, irregular and chaotic flow. This idea is quite
accurate indeed. As the instantaneous characterization of a flow gives little information,
turbulence is best described through statistical techniques, which try to extract useful
information from the chaos.

Broadly speaking, one can say if a flow is turbulent by measuring its Reynolds num-
ber. This non-dimensional number described in Eq. 1.0.1 compares the inertial forces
(numerator) and the viscous forces (denominator). At low Reynolds numbers, where vis-
cous forces are dominant, the flow becomes smooth, also known as laminar. On the other
hand, at high Reynolds numbers, the predominant inertial forces produce chaotic eddies
and flow instabilities. This case is called turbulent flow. In engineering, most flows are
turbulent, being lubrication the only exception to this general rule.

In fluid mechanics, Reynolds number is employed to scale similar but different-sized
flow situations. For instance, one can estimate the interaction between the air and an
aircraft by measuring a scaled model, but ensuring a similar Reynolds number as in reality.

Re = ρuL

µ
= uL

ν
(1.0.1)

where:

• ρ is the density of the fluid [kg/m3]

• u is the velocity of the fluid with respect to the object [m/s]

• L is a characteristic linear dimension [m]

• µ is the dynamic viscosity of the fluid [kg/ (m · s)]

• ν is the kinematic viscosity of the fluid [m2/s]

These characteristics were first observed by Osborne Reynolds in 1883, who also es-
tablished that the transition between both types occurs at Re ≈ 2× 103, in case of a flow
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1.1. Turbulent scales. Kolmogorov cascade

in a pipe. On the contrary, this value is approximately Re ≈ 5 · 105 for free-stream flow
over a flat plate.

Since the kinematic viscosity ν = µ/ρ of the air or water is small, at a moderate length
L or speed u, the Reynolds number is high enough for the flow to be turbulent. As a
consequence, turbulent flows are present in our everyday surroundings. The smoke from
a chimney, water flowing in a river or a strong wind are turbulent flow.

In order to describe the velocity fields as well as the fluid characteristics in a certain
case, the Navier-Stokes equations were developed in the beginning of the XX century.
See Eq. 1.0.2 for an incompressible case. These balance equations arise from applying
Newton’s second law to fluid motion, together with the assumption that the inertia in
the fluid (left-side of the equation) is the sum of a diffusing viscous term (proportional to
the gradient of velocity) and a pressure term; hence, describing viscous flow. Note that
gravitational and external forces are neglected.

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

(1.0.2)

In these equations, i and j are subscripts referred to Einstein summation convention. In
Eq. 1.0.2, the subscript i is a free index, which can take on the values 1, 2 and 3. Thus,
Eq. 1.0.2 is in fact three separate equations.

In the previous equation, ∂tu is the non-stationary term, uj ∂ui

∂xj
is the convective term,

1
ρ
∂p
∂xi

is related to the influence of the pressure gradient, and ν∇2u is the viscous term,
which is related to the dissipation and controlled by the kinematic viscosity, ν.

Despite more than one hundred years have passed since Navier-Stokes equations were
released, the process of finding the solution of these equations is still one of the most
important open problems in mathematics and physics. Even the existence and uniqueness
of solutions is an open problem. Therefore, all the progress made up to now was acquired
using experimental and numerical methods. This problem stems from a) the pressure
term and b) the non-linearity of these equations, which is caused by the convective term.
This term is, by the way, the main contributor to the turbulence in the equations.

Going deeper into turbulence organization, turbulent flows have complex characterist-
ics that can not be appreciated with the naked eye, such as their wide variety of scales.
From large eddies that fill the entire domain in Couette flows, to small and universal
scales that escape from the visual range of the current measure devices.

1.1 Turbulent scales. Kolmogorov cascade

Kolmogorov described turbulence through vortexes with a wide variety of scales. His
theory stated that the energy is introduced in the flow at the largest scales, where Reynolds
number is high. Hence, the dissipation does not play a relevant role. Nevertheless, these
vortexes are highly unstable, although nobody yet knows why, and they break into smaller
vortexes, transferring completely the energy from one to the others. This process takes
place until the scales of the eddies become small enough to locally achieve Re ≈ 1, and
the energy dissipation due to viscous effects becomes relevant.
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Chapter 1. Introduction

The eddies in the largest size range are characterized by the length scale l0, which is
comparable to the flow scale L. Their characteristic velocity u0 ≡ u(l0) is on the order of
the r.m.s. turbulence intensity u′. The Reynolds number of these eddies Re0 = u0l0/ν is
therefore large, so the direct effects of viscosity are small, as stated. The length scale l0
is commonly referred as integral scale in the literature, [1].

Then, the largest eddies become unstable after a certain time, which is similar to their
wash-out time T0 = l0/u0. Wash-out time is the time needed in order to cover the scale
l0 considering a speed u0. Soon after, smaller eddies are created and they receive the
energy of the bigger and unstable ones. This process is defined by the dissipation rate,
ε ∼ u2

0/T0 = u3
0/l0.

Finally, the Kolmogorov scale (η) describes at which moment the viscosity is relevant
enough to dissipate the eddies instead of creating smaller ones. Hence, this scale is
calculated by making the instability time of an eddy of size l, Tl = l/ul, equal to the time
required to dissipate that eddy, Tν = l2/ν.

η2

ν
= ν

(εη)1/3 → η =
(
ν3

ε

) 1
4

(1.1.1)

See that in Tl and Tν , longitude l is substituted by Kolmogorov scale η. Moreover, ul is
determined from the dissipation rate as ul = 3

√
ε l

According to the Kolmogorov hypotheses, at a high Reynolds number the turbulent
scales can be classified in three different ranges, being l the eddy size.

• Energy-containing range (l > lEI): here the scales are comparable to the flow scale.
The eddies located in this range are anisotropic and the turbulent velocity fields
depend on each case. The demarcation parameter is defined as lEI = l0/6.

• Inertial subrange (lEI < l < lDI): in this subrange the transfer of energy to suc-
cessively smaller scales occurs. It is part of the universal equilibrium range, so the
statistics of the motions inside this range have a universal form that is uniquely
determined by ε, independent of ν, as viscous efforts are not relevant yet.

• Dissipation range (l < lDI): dissipation occurs in this range, so Kolmogorov scale
(Eq. 1.1.1) is contained. This range is also universal as the Inertial subrange, but
now the universal form is determined by ε and ν.

For the sake of clarity, these ranges are graphically classified in Figure 1.1.

1.2 Numerical methods for turbulence resolution

The numerical simulation of turbulent flows, also known as CFD (Computational Fluid
Dynamics), is still one of the most difficult problems in physics. It is generally admitted
that a simulation can be considered at three levels of detail. As detail increases, simula-
tions become more computationally demanding, and it is also the case of the initialization.
Moreover, each level tackles the equations in a different way.
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1.2. Numerical methods for turbulence resolution

Figure 1.1: Various lengthscales and ranges for eddy sizes l at high Reynolds number.

The lowest level corresponds to RANS (Reynolds Averaged Navier Stokes), in which
Reynolds decomposition is applied to the Navier-Stokes equations. The objective of RANS
is to compute the Reynolds stresses.

That is, the decomposition of the velocity U (~x, t) into its mean 〈U (~x, t)〉 and its
fluctuation u (~x, t), as follows

U (~x, t) = 〈U (~x, t)〉+ u (~x, t) (1.2.1)

Employing Eq. 1.2.1 in Eq. 1.0.2 is complex and it is fully detailed in [1], pages 83,
84 and 85. The resulting equations are known as Reynolds equations.

D〈Uj〉
Dt

= −1
ρ

∂〈p〉
∂xj

+ ν∇2〈Uj〉 −
∂〈uiuj〉
∂xi

(1.2.2)

See that on the right hand side of Eq. 1.2.2, the second term is the viscous stress. However,
the third term is not a stress at all, but namely a re-worked version of the fluctuating
contribution to the non-linear acceleration terms; that is, ∇2〈Uj〉. This term is known as
Reynolds stress.

In appearance, the Reynolds equations (Eq. 1.2.2) and the Navier-Stokes equations
(Eq. 1.0.2) are the same, except for the Reynolds stress, 〈uiuj〉. That is a crucial differ-
ence. Physically, the Reynolds stress stems from momentum transfer by the fluctuating
velocity field.

Even though we can assume it is a stress, the physics which give rise to it are very
different from the viscous stress. The viscous stress is related to flow properties through
constitutive equations. This approach works because constitutive equations average over
characteristic length and time scales much smaller than those of the flows we are interested
in. Unfortunately, this is not the case of Reynolds stress, so closure equations become
complex1.

The presence of the Reynolds stresses introduce new unknowns to the equations, lead-
ing to an unbalance between number of equations and unknowns. To be exact, there

1https://www.cfd-online.com/Wiki/Introduction_to_turbulence/Reynolds_averaged_equations
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Chapter 1. Introduction

are six individual stress components we must deal with: 〈u2〉, 〈v2〉, 〈w2〉, 〈uv〉, 〈uw〉,
〈vw〉. Hence, the Reynolds equations are not closed, and the Reynolds stresses must be
determined through empirical/theoretical turbulence models.

As a consequence, all the turbulent fluctuations are modelled, requiring the lowest
resolution of the three methods. In this approach only the geometric aspects of the mean
flow are solved, and all the unsteady eddies of the flow are included in the model. As the
largest eddies of the flow are not universal and depend on the particular mechanism of
energy injection, as stated in Section 1.1, each turbulence model must be adapted to each
particular case.

There are three main categories of RANS-based turbulence models:

1. Linear eddy viscosity models

2. Nonlinear eddy viscosity models

3. Reynolds stress model (RSM)

In Linear eddy viscosity models, Reynolds stresses are modelled by a linear constitutive
relationship with the mean flow straining field, as:

−ρ〈uiuj〉 = 2µtSij −
2
3ρkδij (1.2.3)

where

• µt is the turbulence viscosity (also known as eddy viscosity).

• k = 1
2 (〈u2〉+ 〈v2〉+ 〈w2〉) is the turbulent kinetic energy.

• Sij = 1
2

[
∂Ui

∂xj
+ ∂Uj

∂xi

]
− 1

3
∂Uk

∂xk
δij is the mean strain rate.

Depending on the empirical or transport equations employed to compute the eddy
viscosity coefficient, there are different subcategories within this approach. For instance,
the distinguished k − ε model.

Nevertheless, linear eddy-viscosity models (EVM) are prone to calculate poor approx-
imation in complex flows. For instance, in case of a curved domain a linear EVM does
not reproduce the asymmetry in the velocity profile, because of the stress-strain rela-
tion employed for Reynolds stress. Moreover, in stagnation regions linear EVM tend to
overestimate turbulence energy levels, by estimating incorrect normal stresses.

In recent times, non-linear eddy-viscosity models have received significant interest,
as they offer better estimations than linear EVMs, but with only a moderate increase
in computing resources. This approach considers a nonlinear relationship fnl between
Reynolds stress, the mean strain rate Sij and the mean vorticity Ωij, as:

−ρ〈uiuj〉 = 2µt fnl (Sij, Ωij) (1.2.4)

Finally, Reynolds Stress Models (RSM) are higher level turbulence closures and rep-
resent the most complete classical turbulence model. Here, model transport equations

5



1.2. Numerical methods for turbulence resolution

are solved for the individual Reynolds stresses 〈uiuj〉 and for the dissipation ε. As a con-
sequence, the turbulent-viscosity hypothesis is no longer needed. This fact removes the
major defect of the eddy-viscosity models described before, since this convenient closure
to the Reynolds equations shows deficiencies in many flows due to its intrinsic and specific
assumptions. The interested reader is referred to the classic book of Pope [1], section 10.1.

For this approach, the exact transport equation for Reynolds stresses is obtained from
the Navier-Stokes equations as specified in Pope [1] on page 319, resulting:

D

Dt
〈uiuj〉+ ∂

∂xk
Tkij = Pij +Rij − εij (1.2.5)

In RSM, the known variables are 〈U〉, 〈p〉, 〈uiuj〉 and ε. Hence, in Eq. 1.2.5 both
the mean-flow convection, D/Dt〈uiuj〉, and the production tensor Pij, are in closed form.
However, models for the dissipation tensor εij, the pressure rate of strain tensor Rij, and
the Reynolds-stress flux Tkij are required. For detailed information, we refer the reader
to Pope [1], page 387.

The approach adopted in RSM makes it good for accurately predicting complex flows;
that is, flows with streamlines curvature, swirl, rotation and high strain rates. I.e, cyc-
lone flows, secondary flows and separation. However, the large amount of still necessary
modelling and the complexity of this approach, makes it the least used of the RANS
methods.

Going one step further, the second level of detail corresponds to the Large Eddy
Simulation (LES). This model is based on space-filtered equations. Also this model is not
time-averaged, and time dependent calculations are performed. Here the largest eddies of
the flow, which depend on the particular case in study, are simulated directly, while the
smallest scales are isolated by means of a filter and modelled as in RANS. This idea stems
from the fact that small scales in inertial subrange or dissipative range are isotropic and
universal.

The space-filtering can be conducted implicitly employing the domain grid as a filter
itself, or explicitly through different techniques. For example, Fourier filter or subgrid
filter, such as Smagorinsky, which removes high wave-numbers, corresponding to small
scales. These small scales are therefore modelled.

Regarding computational expense, LES lies between Reynolds-stress models and DNS,
and it is motivated by the limitations of each of these approaches. Because the large-scale
unsteady motions are represented explicitly, LES can be expected to be more accurate
and reliable than Reynolds-stress models for flows in which large-scale unsteadiness is
significant, such as the flow over bluff bodies or meteorological simulations.

Since LES model is complex and will not be employed in this thesis, it will be no
longer explained. For a deeper explanation, we refer the reader to [1], chapter 13.

The last level of detail is achieved through Direct Numerical Simulation (DNS), in
which the equations are solved by a numerical scheme without any other approximation.
This is the technique used in this project. With high enough computational power, the
error can be reduced as much as is wanted. Nevertheless, the computational cost is very
high. This depends on the Reynolds number. Every time the Reynolds is doubled, the
cost of the simulation is multiplied by 7 approximately. This exponential grow makes still
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Chapter 1. Introduction

impossible the simulation of large Reynolds, and only very simple geometries have been
characterized with a good detail.

As a consequence, this method is not practical for industrial applications. Moreover,
the grid spacing in the domain must accomplish certain precision requirements in order
to solve both the large and small scales of turbulence.

The range of scales solved in each level of detail is depicted in Figure 1.2. Therefore,
the resolution method for a specific turbulent flows is based on which scales should be
calculated and which ones should be modelled.

More information about the DNS scheme used in our simulation is provided in the
Chapter 2. Now, a short description of the classical Couette and Poiseuille flows is intro-
duced in the following Section 1.3.

Figure 1.2: Diagram of the resolved/modelled turbulent scales at each level.

1.3 Description of Couette and Poiseuille flows

The main characteristics of the flows, that will be analysed in this master’s thesis, are now
presented. For the sake of understanding, both flows are initially described as laminar.

Both Couette and Poiseuille flows are steady flows between two infinitely long, parallel
plates at a fixed distance. The difference is that in Couette flow the upper wall has a
velocity U in the direction parallel to the bottom wall. As a result, the driving force is
the moving upper wall due to the effect of viscosity, but no pressure gradient in the fluid
is applied. In contrast, in Poiseuille flow both walls are at rest, and the flow movement is
caused by an external negative pressure gradient, dp/dx < 0, in the direction parallel to
the walls.

The theoretical solution for a laminar Couette flow is obtained through the Navier-
Stokes equations (Equation 1.0.2) for an incompressible fluid of constant and uniform
viscosity as well as no gravitational potencial. It can be shown that this problem can be
reduced to a one-dimensional problem in this case.

The no-slip condition at the stationary wall is specified through the boundary condi-
tions. The pressure term in the Navier-Stokes equation can be removed. At the moving

7



1.4. Use of canonical turbulent wall flows

wall (y = h), the boundary condition is ux(h) = U . According to that, the stream-wise
velocity is described as:

ux (y) = U · y
h

(1.3.1)

As there is a first order relationship between ux and y, the velocity profile is linear.
(Figure 1.3). On the other hand, laminar Poiseuille flow is solved using the same equation
1.0.2 at i = j = 1. However, no-slip boundary condition is applied at both walls. The
presence of a pressure gradient gives a different result for the profile of the stream-wise
velocity, which is:

ux = h2

2µ
dp

dx

(
1− y2

h2

)
(1.3.2)

where −h ≤ y ≤ h.
As one can see, here there is a second order relationship between ux and y, so the

velocity profile is described by a parabola. See Figure 1.3.
Applying the definition of shear stress in fluid mechanics (Eq. 1.3.3, left) to the Eq.

1.3.2, the result is shown in Eq. 1.3.3, right. As a matter of curiosity, the defined integral
along the y-domain of the shear stress in Poiseuille flow is 0. That is, the shear force is
balanced along the stream-wise velocity profile.

τ = µ · ∂u
∂y

= 1
2 ·

dp

dx
· (2y − h) (1.3.3)

Figure 1.3: Laminar stream-wise velocity profile in Couette (left) and in Poiseuille (right)
flows.

The analysis in this master’s thesis is conducted through the transition from a tur-
bulent Couette flow to a turbulent Poiseuille flow. Therefore, the stream-wise velocity
profile for a pure Couette flow (P = 0), as well as for a case, where both flows are applied
(P > 0) is defined in Figure 1.4. There, the profile in case of a positive pressure gradient
(P < 0), dp/dx > 0, is also represented, but this case is less relevant.
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Chapter 1. Introduction

Figure 1.4: Stream-wise velocity profile in case of Couette with pressure gradient. Image
from Pope [1].

1.4 Use of canonical turbulent wall flows

In contrast to the free shear flows, which are not explained in this study, most turbulent
flows are influenced by the presence of a wall. Among the examples one can distinguish
internal flows, such as flows through ducts and pipes, and external flows, such as the flow
around an aircraft.

In a first approach, all these flows are studied in simple geometries in order to extract
relevant information about their canonical turbulent structures near the wall. The interest
stems from studying how the presence of a wall influences the turbulence in different
cases. As stated by Pope [1] in page 264, these simple flows are of practical importance
and played a prominent role in the historical development of the study of turbulent flows.

The used geometries are channel flows, pipe flows and flat-plate boundary layers. A
characteristic of these domains is that the mean velocity vector is almost parallel to the
wall, and the near-wall behaviours in each of these cases are very similar.

Couette and Poiseuille flows are generally studied employing DNS in channel domains,
as it is easy to set a relative velocity between walls. Moreover, both flows are classical
fluid mechanics problems, which are specially simple to model.

Poiseuille flows are employed to study the turbulent features and vortex organizations
in the near-wall layers: viscous layer, buffer layer and logarithmic layer, if present. J.
Jimenez [2] performed an extensive study in this direction. On the other hand, turbulent
Couette flow studies point to the very large turbulent structures in the channel center, as
well as their influence on the near-wall turbulence, as Pirozzoli et al. [3] did.

Aside from the conclusions extracted on each flow, the results are usually employed to
improve and check other turbulent models, which are of course less accurate than a DNS.
For example, for developing more accurate closure equations in RANS models.

For more information, the interested reader is referred to Pope [1], chapter 7.
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Chapter 2

Direct Numerical Simulation. DNS

Among the numerical methods introduced in Section 1.2, we have selected Direct Numer-
ical Simulation for our cases, because our aim is to analyse all the turbulent scales in the
Couette, Poiseuille flows and their transition; that is, from the biggest ones in the center
of the channel, to the smallest ones near the walls. All the research conducted in this field
has been carried out through experiments [4, 5], which allow a high Reynolds number,
and DNS [6, 7, 8], which is limited to a moderate Reynolds, whose maximum is currently
located around Reτ = 8000 [9]. It is worth to mention that most of these works have been
done by aerospace engineers of in AE-related schools and research center.

Employing DNS introduces several complexities to the resolution, which were ex-
plained before. Moreover, the definition of suitable initial and boundary conditions is
fundamental in order to reduce the convergence time, and ensure a final solution inde-
pendent of them.

The type of domain employed in our study is channel flow. Among the characteristic of
this domain we find two advantages. First, wall-parallel dimensions are assumed periodical
in their boundaries. Fortunately, this condition is easy to implement. Second, the flow
is statistically fully developed in stream- and spanwise directions. Moreover, anisotropy
in wall-normal direction allows us to study other turbulent cascades beyond the classical
Kolmogorov cascade (Section 1.1). The interested reader is referred to Tennekes and
Lumley [10].

In the wall normal direction, there are two walls that denote the beginning and end of
the domain in this direction. Hence, no-penetration and no-slip conditions are implemen-
ted here. Considering the turbulence as homogeneous in this direction is consequently
infeasible [1].

The numerical scheme employed in our simulations is explained in Section 2.1. This
approach was first introduced by Kim, Moin and Moser [11], and it is specific for turbulent
channel flows.

In addition, the code of the numerical scheme used for this work has been employed
in different works for several different boundary conditions, [12, 13, 14, 15, 16, 17], so it
will not be further validated.

10



Chapter 2. Direct Numerical Simulation. DNS

2.1 Numerical Scheme

The scheme starts from the original Navier-Stokes equations for an incompressible flow,
which are:

∇ · ~v = 0 (2.1.1)

ρ
∂~v

∂t
+ ρ~v · ∇~v = −∇p+∇τ ′ (2.1.2)

where τ ′ is the viscous stress tensor, which is defined by the Navier-Poisson law. See Eq.
2.1.3. Notice that the mass forces per volume, ρ ~fm, are not included in Eq. 2.1.2.

τ ′ij = 2µγij +
(
µv −

2
3µ
)

(∇ · ~v) (2.1.3)

here γij is strain-rate tensor, and δij is the Dirac delta.
Considering an isotropic and incompressible fluid, the volumetric viscosity (µv) and

the divergence of the velocity ∇ · ~v is zero in Eq. 2.1.3. So, now the viscous stress tensor
is defined as:

τ ′ij = µ (∂ivj + ∂jvi) (2.1.4)

where i and j are subscripts referred to Einstein summation convention.
Despite viscosity µ is generally dependent from the temperature, it will be supposed

that its variations in our desired range of temperatures can be neglected.
After these steps, the initial Navier-Stokes (Eq. 2.1.2) equation converts to:

∂~v

∂t
+ ~v · ∇~v = −1

p
∇p+ ν∇2~v (2.1.5)

Until now the steps were quite straightforward. However, due to numerical considera-
tions and advantages, that will be further explained, the equation system made up of the
Eq. 2.1.1 and Eq. 2.1.5 must be transformed into two equation. One for the Laplacian of
the wall-normal velocity component, φ = ∇2v, and another for the wall-normal vorticity
component, ωy. These characteristics were developed by Kim et al [11].

Before starting the transformation, a new parameter called helicity is introduced. This
parameter stems from the vectorial product of the velocity and vorticity.

~H = ~v × ~ω (2.1.6)

where ~H = (H1, H2, H3).
Writing Eq. 2.1.5 as non-dimensional and applying the definition of helicity (Eq.

2.1.6) to the convective term, ~v · ∇~v, the result is:

∂~v

∂t
+ 1

2∇ (~v · ~v)− ~H = −1
ρ
∇p+ 1

Reb
∇2~v (2.1.7)
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2.1. Numerical Scheme

Notice that in Eq. 2.1.7 the variables are no longer dimensional despite their symbols
remain the same. Additionally, the half-height of the channel, h, and the stream-wise bulk
velocity, ub (Eq. 2.1.8), were employed in order to develop the non-dimensional equation,
as well as the Reynolds bulk, Reb = ub h/ν.

ub = 1
2h

∫ h

−h
〈U〉 dy (2.1.8)

The equations for φ and ωy will be deducted from Eq. 2.1.7. The first step is to
calculate the divergence of Eq. 2.1.7 in order to develop an equation for the divergence
of ~H. Additionally, the divergence of the gradient is called Laplacian ∇ · ∇ = ∇2. Note
that the divergence is commutable in Laplacians and time derivatives, so the condition
imposed by the mass conservation in incompressible flows, ∇ · ~v = 0, is achieved.

0 + 1
2∇

2 (~v · ~v)−∇ · ~H = −1
ρ
∇2p+ 0 ⇒ ∇ · ~H = 1

2∇
2 (~v · ~v) + 1

ρ
∇2p (2.1.9)

Moreover, the Laplacian of Eq. 2.1.7 is calculated.

∂

∂t
∇2~v +∇

(1
2∇

2 (~v · ~v)
)
−∇2 ~H = −∇

(
1
ρ
∇2p

)
+ 1
Reb
∇4~v (2.1.10)

and adding the result (right) of Eq. 2.1.9 to the Laplacian of Eq. 2.1.7, gives:

∂

∂t
∇2~v +∇

(
∇ · ~H

)
−∇2 ~H = 1

Reb
∇4~v (2.1.11)

On the other hand, the curl of Eq. 2.1.7 is calculated:

∂

∂t
~ω + 1

2∇×∇ (~v · ~v) +∇× ~H = −1
ρ
∇×∇p+ 1

Reb
∇2~ω (2.1.12)

Considering that the curl of a gradient is null, this equation becomes as follows:

∂

∂t
~ω +∇× ~H = 1

Reb
∇2~ω (2.1.13)

Note that Eq. 2.1.11 and Eq. 2.1.13 are vectorial equations, but our interest is focused
on the Laplacian of the wall-normal velocity component and on the wall-normal vorticity
component, as explained before. Therefore, the wall-normal component of these equations
is considered, and described as:

∂

∂t
φ = hv + 1

Reb
∇2φ (2.1.14)

∂

∂t
ωy = hg + 1

Reb
∇2ωy (2.1.15)

hv = − ∂

∂y

(
∂H1

∂x
+ ∂H3

∂z

)
+
(
∂2

∂x2 + ∂2

∂z2

)
H2 (2.1.16)
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Chapter 2. Direct Numerical Simulation. DNS

hg = ∂H1

∂z
− ∂H3

∂x
(2.1.17)

According to Eq. 2.1.6, the helicity components are defined as:

H1 = v · ωz − w · ωy
H2 = w · ωx − u · ωz
H3 = u · ωy − v · ωx (2.1.18)

where u, v and w are the stream-wise, wall-normal and span-wise velocity components,
respectively.

The system of equations is completed when the equations that relate φ and ωy to the
velocity and vorticity components are introduced.

∇2v = φ (2.1.19)

∂u

∂x
+ ∂w

∂z
= −∂v

∂y
(2.1.20)

∂u

∂z
− ∂w

∂x
= ωy (2.1.21)

∂ωx
∂x

+ ∂ωz
∂z

= −∂ωy
∂y

(2.1.22)

∂ωz
∂x
− ∂ωx

∂z
= φ (2.1.23)

The advantages of this method are:

• The pressure is no longer required in order to solve the equations.

• Only two complex equations are needed to calculate φ and ωy. Then, the three
velocity components are easily integrated. Hence, the execution becomes at least
one third faster than solving an equation for each velocity component.

Regarding the selection of the solved variables, φ and ωy were the only ones that gave
the previously described advantages.

For the numerical scheme resolution, the spatial discretization uses dealiased Fourier
expansions in x and z, and seven-point compact finite differences in y, with fourth-order
consistency and extended spectral-like resolution [18]. The temporal discretization is a
third-order semi-implicit Runge-Kutta scheme [19].
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2.2. Numerical Scheme

2.2 Boundary Conditions

At the walls

As depicted in Figure 1.3, the Couette flows and Poiseuille flows are enclosed by two
walls in the Y-direction. However, in case of a Couette flow, the upper wall has a relative
velocity in the wall-parallel direction, UW , in comparison to the bottom wall.

Hence, the boundary condition of the velocity at the moving wall is ~u|W = (UW , 0, 0),
where UW is 0 if it is a pure Poiseuille flow.

As a consequence, the velocity derivatives in stream-wise and span-wise directions are
neglected at the wall. This fact provokes that, due to the Mass Conservation (Eq. 2.1.1),
the derivative ∂v/∂y = 0 at the walls. Additionally, the wall-normal component of the
vorticity (Eq. 2.1.21) is 0 at the walls.

In case of a transition between Couette and Poiseuille, UW is not nullified and there
is a negative pressure gradient, −∂p/∂x. At every case, despite the flow is driven by
a constant velocity of the upper wall and/or a pressure gradient, selected parameters
ensure that the bulk Reynolds number Reb = ub h/ν remains constant at approximately
Reb = 2250. For ub definition, see Eq. 2.1.8.

According to Pope [1] (page 266), the flow is laminar for Reb < 1350, and fully
turbulent for Reb > 1800, although transitional effects are evident up to Reb = 3000.

At the parallel directions to the walls

The parallel directions to the walls are considered periodicals; so the longest wave-length
of the structures in streamwise and spanwise direction is constrained by the domain length,
Lx and Lz, respectively. This fact must be taken into account while analysing the longest
wave-lengths in the stream-wise direction, which take place in pure Couette flows. It
is probed that periodical boundaries increase the coherence of these structures if the
length of the domain is too short [8]; that is, in case their wave-lengths are similar to the
streamwise size of the domain.

Due to the same periodical conditions and constant spacing (See Chapter 3) in x and z
directions, the spatial discretization of the Numerical Scheme (Section 2.1) uses dealiased
Fourier expansions. As this is not the case in y direction, the discretization is not the
same.
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Chapter 2. Direct Numerical Simulation. DNS

2.3 Initial Conditions and Steady-state

In every simulation, the flow had to evolve from an initial file, which has been taken from
previous different simulations. The code was run until a transition phase was passed,
and the flow adjusted to the new set of parameters. The transition is characterized by,
among other variables, the value of the averaged total shear stress along the wall-normal
dimension.

After estimating the averaged equations of Navier-Stokes, adapted to a Couette flow,
we obtain the expression in Eq. 2.3.1. This is broadly known as the conservation of the
mean momentum for C- flows. Physically, this equality states that the total shear flow in
wall units contains two parts: one defined by the wall effect, and another defined by the
velocity transmission from u to v.

Once this parameter reaches a plateau at 1, statistics are collected. This quantity was
confirmed in other calculations, such as in M. Lee and Moser [8] and Avsarkisov et al.
[14].

τ+
total =

〈
∂u

∂y

〉+

− 〈u′v′〉+ = 1 (2.3.1)

As is common in wall-bounded turbulence, the superscript + designates a quantity
normalized in wall units; i.e. normalized by uτ (See Eq. 3.0.2) and ν.

The results on Eq. 2.3.1 of Avsarkisov et al. [14] are depicted in Figure 2.1. Here
we can see a constant value at 1 for τ+

total, and a variable value of 〈u′v′〉+ near the wall,
as expected. Notice that diverse Couette flows at friction Reynolds numbers (Eq. 3.0.1)
from 125 to 550 are represented using different colors. As Reτ increases, 〈u′v′〉+ reaches
sooner a constant value.

Figure 2.1: Total shear and Reynolds stresses of Couette flows in inner and outer scales
at diverse Reτ . Extracted from Avsarkisov et al. [14].
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Chapter 3

Description of the cases

Turbulent channel flows, as it is the case in this work, are studied generally through DNS
since the first analysis conducted by Kim, Moin and Moser [11]. Once stated the type of
flow, such as C-flow, P-flow or transition, each study is basically described through its
friction Reynolds number, Reτ , and the size of the domain, specially in stream- (Lx) and
spanwise (Lz) directions.

The friction Reynolds number is described as,

Reτ = uτh

ν
(3.0.1)

where:

• uτ is the shear velocity, defined in Equation 3.0.2.

• h is the half-height of the channel

• ν is the kinematic viscosity.

uτ =
√
τ

ρ
=
√√√√ν ∂U

∂y

∣∣∣∣∣
y/h=−1

(3.0.2)

In this study, the shear velocity at the stationary wall is usτ = 0.0525m/s, and the
friction Reynolds number is 125.

See also that according to Eq. 3.0.1 and the definition of the dimensionless wall
distance, y+ = (uτy)/ν, the relation in Eq. 3.0.3 is a useful tool to translate wall-units
into physical units, and vice versa.

y+

Reτ
= y

h
(3.0.3)

For the study of the stability and origin of the longest coherent structures in Couette
flows, a DNS dataset, which covers a stepped transition between Couette (C-flow) and
Poiseuille (P-flow) was calculated. Each case is identified by an specific name, which
describes the Couette and Poiseuille quantity present in the flow. The name is CxxPzz,
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Chapter 3. Description of the cases

where xx goes from 00 (no shear) to 10 (pure C-flow), and zz is defined as zz = 10− xx.
Hence, pure Couette is called C10P00, pure Poiseuille is called C00P10, and both flows
being same relevant is named as C05P05.

As briefly commented at the beginning of Chapter 2, all our simulations are performed
in channel domains. This geometry is usually employed for canonical turbulent wall
flows, as well as boundary layers and pipe flows. In our domains, axis X is parallel to
the streamwise flow, axis Y is normal to the walls, and axis Z is parallel to the walls
and normal to the streamwise flow. Their mean velocity components are U , V and W ,
respectively. This way, u′, v′ and w′ are their respective fluctuation terms, according to
Reynolds decomposition (Equation 1.2.1). Moreover, we assume that the bottom wall
stays at y/h = −1, the upper wall at y/h = 1.

Our database was calculated in two domains. First one is a short domain, whose
dimensions, described as Lx×Ly×Lz, are 16πh×2h×6πh. On the contrary, a very long
computational domain was also employed, whose dimensions are 128πh× 2h× 6πh. Note
that due to periodical boundary conditions as said in Section 2.2, the length and width
of the domain is expressed in terms of n times π and multiplied by the half-height of the
channel, h.

The simulation of pure Couette flow at this low Reynolds number is thus comparable
to other simulations made by Tsukahara et al.[20] and Bernardini et al.[21]. Neverthe-
less, the streamwise size of the boxes (Lx) must be taken into account while comparing
the results. Bernardini [21] performed DNS at Reτ = 167 in a box (12πh× 2h× 4πh).
On the contrary, Tsukahara [20] performed DNS at Reτ = 126 in several boxes up to
(64h× 2h× 6h). Pirozzoli et al. in a very interesting paper, [3], studied the transitions
from C- to P- Flows at Reτ = 250. They related the absence of true large-dynamics scale
for the P-flows to the lack of significant transport of turbulent kinetic energy. However,
their box had a length of only 12πh, so the largest structures of C-flows could not be
studied in large.

Therefore, as the largest structures of C-flow could not be identified in the short boxes
of other studies, we employed a very large domain in order to succeed in our analysis.
Moreover, we want to analyse the differences in the results of a too short and an adequate
domain.

Regarding the spacing on the domain, it remains constant along the wall-parallel
directions; that is, the values are ∆x+ ' 9.4 and ∆z+ ' 4.7.

The wall-normal grid spacing is adjusted to keep the resolution at ∆y = 1.5η, i.e.,
approximately constant in terms of the local isotropic Kolmogorov scale η = (ν3/ε)1/4,
see Eq. 1.1.1. In wall units, ∆y+ varies from 0.83 at the wall, up to ∆y+ ' 2.3 at the
centreline.

Once the cases are described, their mean velocity U as well as velocity fluctuations and
Reynolds stresses are discussed in the following section; that is, their one-point statistics.
For the sake of clarity, only some of the cases are represented; however, they cover the
whole transition between C- and P- flows. Additionally, the domain employed is the
small one, because it is enough in order to ensure the independence of the results from
the domain size, as it is stated by Lozano-Durán and Jimenez [22].
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3.1. Mean velocity, fluctuations and Reynolds stress

3.1 Mean velocity, fluctuations and Reynolds stress

Before describing the graphics that show the one-point statistics along the transition, each
case is described in Table 3.1. Note that the line related to each case is kept in all the
Figures in this section, so no further legend will be used.

Two different Reynolds numbers are given depending on the local uτ at the moving
(third column) or the stationary (fourth) wall. Nx, Ny, Nz are number of collocation
points in physical space. The last two columns denote the computational time span
while statistics were taken in wash-outs (Ub/Lx) and eddy turn-overs (uτ/h). T is the
computational time spanned by those fields.

The velocity fluctuations u′+rms, v′+rms and w′+rms, as well as the Reynolds stress u′v′
+ are

depicted in Figures 3.1 and 3.2. The overline illustrate an averaged quantity. All of them
start on the stationary wall.

In every case, there is a minor sensitivity to wall motion near the stationary wall;
hence, u′+rms and v′+rms collapse perfectly up to y+ ≈ 25; that is, in the viscous and buffer
layers. On the contrary, w′+rms shows at y+ ≈ 7 variations among the cases. This result
was observed by Pirozzoli et al. [3].

Case Line Resτ Remτ Nx Ny Nz TUb/Lx Tuτ/h

C10P00 132 132 512 151 383 8.9 188
C08P02 · · · · · · 133 83 512 151 383 10.9 235
C06P04 – – – – 135 13 512 151 383 11.2 243
C04P06 — ·— 137 69 512 151 383 19.4 430
C02P08 142 102 512 151 383 16.8 384
C00P10 147 147 512 151 383 11.1 264

Table 3.1: Parameters of the simulations. Line shapes given in the second column are
used to identify the cases through all the figures of the present section.

Additionally, in this paper Pirozzoli et al. analyses these fluctuations near the moving
wall; in that case, curves show a larger spread and stronger deviations from the canonical
channel behaviour. One can predict this result from the strong deviation among cases in
Reynolds stress (Fig. 3.2b) near the moving wall (y/h = 1).

The minor sensitivity in u′+rms and v′+rms affects consequently the Reynolds stress, as a
perfect collapse is shown up to y/h ≈ −0.8, which is y+ ≈ 25, according1 to Eq. 3.0.3.

Near the stationary wall, a peak in u′+rms is appreciated for all the cases. This peak
occurs at y+ ≈ 12 and it is independent from the Reynolds number, as stated in Pope [1]
page 285. In addition, this peak is related to a peak of turbulent production, where the
viscous stress equals the Reynolds shear stress.

Moreover, small and coherent turbulent scales are usually located near stationary walls.
As stated in the Kolmogorov cascade (See Section 1.1), small scales in the inertial and
dissipation ranges are considered universal, as defined in Figure 1.2. As a consequence,

1Since the reference is the stationary wall, the value employed in Equation 3.0.3 is y/h = 0.2
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Figure 3.1: Lines as in Table 3.1. (a) Root-mean-square of velocity fluctuation u′. (b)
Root-mean-square of velocity fluctuation v′. Both are scaled with the shear velocity at
the stationary wall, usτ .
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Figure 3.2: Lines as in Table 3.1. (a) Root-mean-square of velocity fluctuation, w′. (b)
Root-mean-square of Reynolds stress, uv. Both are scaled with the shear velocity at the
stationary wall, usτ .

turbulent intensities at low y+ are likely to be independent from the case, but not from
the Reynolds number [14].

At channel center, the velocity fluctuations in C-flow are higher than those in P-flow,
mainly due to the non-zero Reynolds stress. This fact is linked to turbulence production
in the center of the domain [20], see Figure 3.2b.

Regarding the distribution of uv+, it has a relevant role in the stability of the largest
coherent structures in the channel center. As stated in Gandia-Barbera et al. [23], these
coherent structures are present as long as the arithmetical sign of uv+ remains constant
along the Y-axis. That is, approximately from case C06P04 to pure Poiseuille they are
no longer present. This idea will be further explained in the coherent velocity structures
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3.1. Mean velocity, fluctuations and Reynolds stress

Figure 3.3: Lines as in Table 3.1. Mean velocity U for each case. No wall units are used.

chapter; that is Chapter 5.
Case C06P04 presents another characteristic, which is its low Reynolds shear stress

near the moving wall. This characteristic was also appreciated in Pirozzoli et al. [3],
because their paper analyses a stepped Couette-Poiseuille transition too. The authors
state that the main effect of reducing the mean shear at the moving wall is the suppression
of the turbulence production term in its vicinity. In this case, near-wall turbulence is
dominated by the transport of kinetic energy from the channel core.

Additionally, this fact reduces drastically the friction Reynolds number at this position
(Remτ ) as stated in Table 3.1. We will see later its effects on the vortex distribution, and
on the streamwise fields in Section 5.1 and Section 5.2.

Finally, just further comment that the distributions depicted in Figures 3.1 and 3.2
follow the same trend as in Pirozzoli et al. [3] despite we employ a slightly lower Reτ .
Moreover, in C-flow case it gives similar results as Tsukahara et al. [20], which employed
almost the same Reτ as in this study. Note that Tsukahara et al. made use of a much
bigger domain; however their one-point statistics agree with ours, as both domains are
big enough to throw independent results. This fact was stated before.

In Figure 3.3 the averaged U velocity is depicted for each case. Here one can see how the
transition takes place between the C- and P- flows. In addition, the boundary conditions
employed in C- and P- flows, as commented in Section 2.2, can be also appreciated.

The shear stress along the Y-axis is easy to understand from this figure, considering
Eq. 1.3.3, left. In C- flows the shear stress never reaches a null value, which is not the case
in P- flows in the channel center. Also the shear stress is quite reduced at C06P04 near
the moving wall, which consequently affects the shear velocity (Eq. 3.0.2) and friction
Reynolds stress (Eq. 3.0.1), as commented before.

Denote that due to the initial condition that ensures a constant bulk Reynolds number
and mass conservation (See Section 2.3), the area covered by each U along y/h in Figure
3.3 is the same.
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Finally, in Figure 3.4 the mean velocity U scaled in wall units in depicted for each case.
We can see that there is a perfect collapse among cases in the viscous sublayer, which is
defined at y+ < 5. Then, as long as we achieve the buffer layer, defined at 5 < y+ < 30,
and the log-law region (y+ > 30, y/h < 0.3), the different cases tend to separate. Region
intervals according to Pope [1], page 275.

This behaviour is also observed in Pirozzoli et al. [3], showing higher values for
Poiseuille flow in the log-law region. Moreover, Pirozzoli et al. states that log-law constant
B (See Eq. 3.1.1) depends on the type of flow. Hence, it becomes B = 5.2 in Poiseuille
flow and B = 4.7 in Couette flow.

U
+ = 1

κ
log

(
y+
)

+B (3.1.1)

where κ (Von Kármán Constant) and B are constants. Pope [1] defines this constants as
κ = 0.41 and B = 5.2 in a fully developed DNS channel. However, Kraheberger et al.
[16] could see that these values change drastically when wall transpiration is present.

Figure 3.4: Mean velocity profiles near the stationary wall scaled in wall units. Lines as
in Table 3.1.

In another interesting paper, M. Lee and Moser [8] get a perfect collapse for Couette
flows at diverse Reτ from 93 to 550, which covers our case. Nevertheless, the authors
conclude that at this Reynolds numbers, Couette flows do not produce a convincing log
layer. In addition, they state that in Poiseuille flow, an unambiguous log layer does not
appear until Reτ ≈ 5000. They can make these asseverations by observing the value of
the log-layer diagnostic β = y+〈∂u+/∂y+〉 in the log-law region. This value must stay
constant around 1/κ = 2.604. However, it neither achieves this values nor stays constant
at their Reynolds numbers.

As a consequence, we conclude that there is no proper log layer in our simulations.
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Chapter 4

Mathematical tools for
post-processing

After the simulations were carried out according to the numerical scheme explained in
Chapter 2, the results must be post-processed in order to extract relevant conclusions.
Therefore, different post-processing tools were developed in Matlab. In this chapter, the
tools are presented and an explanation about each one is given. However, Matlab code
will not be written here, as this document is merely focused on the tools algorithm and
background theory.

4.1 Velocity fields and derivatives extraction

The results from the simulations are stored in files with extension .h5. This extension
corresponds to a HDF5 file1, which is a file format for storing and managing extremely
large and/or complex data collections, as in our case. The advantages of this extension
are the following:

• Complex and heterogeneous data objects can be stored independently of their size.

• Storage allows a wide variety of datatypes, which can vary from each data object.

• High speed raw data acquisition.

• It requires no outside information for applications to interpret the structure and
contents of the file.

• It runs on a wide range of computational platforms and programming languages.

Each simulation file contains a header with relevant information about the simulation,
as well as the simulation results for φ and ωy. This content is expounded in Table 4.1.
See that in Matlab each dataset must be specified as a full pathname with a leading ’/’.
For example, ’/Re’ for Reb.

1More information on https://www.hdfgroup.org/
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Dataset Definition

alp Wavenumber inverse in streamwise direction

bet Wavenumber inverse in spanwise direction

fmap Technical function employed in the wall normal derivative

mx Number of points in streamwise direction, referred as Nx

my Number of points in wall normal direction, referred as Ny

mz Number of points in spanwise direction, referred as Nz

nummpi Number of MPI processes, in which the code was executed

phi Value of φ in each domain point

Re Bulk Reynolds number, Reb
time Simulation time at which the results were recorded

u00 Mean speed in streamwise direction

vcon Initial wall normal velocity

vor Value of ωy in each domain point

w00 Mean speed in spanwise direction

y Distribution of the points along the wall normal direction

Table 4.1: Datasets included in each H5 simulation file.

The process followed for extracting the velocity fields and their derivatives from the
simulation results is depicted in Figure 4.1.

Simulation results
φ, ωy

// Velocity components
u, v, w

&&

// Fourier
∂/∂x, ∂/∂z

CFD
∂/∂y

Figure 4.1: Transformation steps for extracting the velocity fields and their derivatives.

Simulation results for φ and ωy are collected in a 3D matrix, whose rows, columns and
third dimension are the wall-normal, spanwise and streamwise directions of the channel,
respectively. Further, take into account that the results stored are in Fourier domain;
this allows us to calculate the derivatives in an easier way, as for a given function f (x)
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4.1. Velocity fields and derivatives extraction

in Fourier domain, it is derived as in Eq. 4.1.2.

f (x) =
∑
k

f̂k · eikx (4.1.1)

f ′ (x) =
∑
k

ik · f̂k · eikx (4.1.2)

where k represents the wave-number. Hence, in Fourier domain the derivative of a given
function is calculated by multiplying its wave-number and the imaginary unit, i =

√
−1.

In regard to our study, the streamwise and spanwise directions have different wave-
number arrays to derive from X and Z. These are described in Eq. 4.1.3 and 4.1.4,
respectively. Additionally, their distribution is dissimilar. Both arrays were arranged
taking into consideration the way the results of the simulations are stored, as well as
Fourier transformation preferences in Matlab.

xalp = i · α ·
[
0 : mx2 − 1

]
(4.1.3)

xbet = i · β ·
[
0 : mz − 1

2 ,
1−mz

2 : −1
]

(4.1.4)

The initial definition of variable k covers the interval [0, 2π), but in both directions
the length is larger than 2π. Therefore, the constants α and β are chosen in order to
expand this interval; now variable k covers from 0 to 2π/α or 2π/β, respectively. After
this explanation, one can understand that the definition of these constants arise from,

[α, β] =
[2π
Lx
,

2π
Lz

]
(4.1.5)

being Lx and Lz, the channel length and width, respectively.
In order to extract the velocity fields (u, v, w) from the results (φ, ωy), the procedure

solves first Equation 2.1.19. Expanding that equation, we obtain:

∂2v

∂x2 + ∂2v

∂y2 + ∂2v

∂z2 = φ (4.1.6)

Now, the derivative in Fourier domain is applied. Notice that the second derivative is
obtained through the derivation of the Eq. 4.1.2:

f ′′ (x) = −
∑
k

k2 · f̂k · eikx (4.1.7)

from now k2
x and k2

z will be referred as alp2 and bet2, respectively; according to the
nomenclature in the Matlab script.

Consequently, Eq. 4.1.6 is written as:

−xalp2 · v + ∂2v

∂y2 − xbet
2 · v = φ (4.1.8)
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Chapter 4. Mathematical tools for post-processing

Derivation in wall-normal direction is not straightforward. As stated in the intro-
duction to the Chapter 3, the spacing along the Y direction is not constant. This fea-
ture makes necessary to use another derivation scheme in this direction. Concretely,
the method utilized is based on seven-point compact finite differences, with fourth-order
consistency and extended spectral-like resolution [18]. Its error is of the order O (h10).

In accordance with this method, second-order derivatives are expressed as:

B2 ·
∂2v

∂y2 = A2 · v (4.1.9)

where A2 and B2 are Ny×Ny sparse matrices. These matrices where computed using the
methods developed in the last year project of Alfonso Pallarés. In this case, Ny = 151.

With this definition, Eq. 4.1.8 is expressed as:

B−1
2 · A2 · v − (alp2 + bet2) · v = φ (4.1.10)

So, the last step is to extract v from the equation.

(A2 −B2 · (alp2 + bet2)) · v = B2 · φ (4.1.11)

Note that Eq. 4.1.11 is a matrix equation. Curiously enough, the matrix that multi-
plies v on the left-side of the equation is a pentadiagonal matrix. This allows us to employ
a specific Matlab user-function called pentsolve to solve this system, which reduces signi-
ficantly the calculation time.

However, the results of φ as well as ωy are complex, so the real parts are collected
in the odd positions along the rows, and the imaginary parts are collected in the even
positions. That is, for a given wall-parallel plane along the domain:

ωy = vor(1 : 2 : end, :) + i · vor(2 : 2 : end, :)
φ = phi(1 : 2 : end, :) + i · phi(2 : 2 : end, :)

(4.1.12)

This fact is the reason why the resolution of the Eq. 4.1.11 is carried out twice in the
Matlab nested function Lapvdv inside the script eddysimplified.

In order to extract the remaining velocity fields, we still need the first derivative ∂v/∂y,
which is described by the compact finite differences method [18] as:

A1 ·
∂v

∂y
= B1 · v (4.1.13)

See that when employing the expression in Eq. 4.1.13 in Matlab for deriving, the right
side is multiplied by a one-dimensional column called fmap. Its purpose is to map the
derivative from an equispaced grid to a non-uniform grid, as it is the case in wall-normal
direction. This increases the precision of this first derivative.

The streamwise and spanwise velocity field are calculated from the equations system
conformed by Eq. 2.1.20 and Eq. 2.1.21. For the u field, Eq. 2.1.20 is derived by x on
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4.1. Velocity fields and derivatives extraction

its both sides, and Eq. 2.1.21 is derived by z on its both sides. Then, both resulting
equations are summed, giving Eq. 4.1.14 as a result.

∂2u

∂x2 + ∂2u

∂z2 = ∂ωy
∂z
− ∂2v

∂x∂y
(4.1.14)

In a similar way, for extracting w field Eq. 4.1.15 is obtained by deriving Eq. 2.1.20
by z, and Eq. 2.1.21 by x, on its both sides. Then, second equation is subtracted from
the first one.

∂2w

∂x2 + ∂2w

∂z2 = −∂ωy
∂x
− ∂2v

∂y∂z
(4.1.15)

The last step on both equations is to apply the Fourier derivation, for obtaining u and
w, respectively. Thus, Eq. 4.1.14 and 4.1.15 are written the following way in Matlab.

(alp2 + bet2) · u = ωy · xbet−
∂v

∂y
· xalp

(alp2 + bet2) · w = −ωy · xalp−
∂v

∂y
· xbet

(4.1.16)

where ∂v
∂y

was previously computed from Eq. 4.1.13 in function Lapvdv.
The last step for completing the velocity fields is adding their mean values at each

wall-normal position. Spanwise and wall-normal velocity fields have no mean values due
to the description of the studied cases, but the streamwise velocity field has. In order to
add these values, which are stored as u00 (See Table 4.1), they are written in the first
column of the estimated u field, Eq. 4.1.16. So, in Matlab we see:

uc (:, 1, 1) = u00

vc (:, 1, 1) = 0
wc (:, 1, 1) = 0

(4.1.17)

Once each velocity field is computed, we have to derive each one from each spatial
dimension; that is, x, y and z. So, each field develops three different derivatives of the
same size as the original field. We do this because they will be further needed for the
vortex identification method, which is later explained in Section 4.2.

Derivations are carried out in a Matlab function called physDer, in which the inputs
are, among others, the extracted velocity fields in Fourier domain; and its output is a
Matlab structure containing these velocity fields and their derivatives in the physical
domain. The method for deriving in Fourier domain is already explained, so now the
transformation from Fourier to Physical is described.

The steps are:

1. Permute the 3D matrix in Fourier domain, so its new dimensions are the third,
second and first dimensions of the initial matrix. Check for correctness that the size
of the resulting matrix is mx/2×mz ×my.
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Chapter 4. Mathematical tools for post-processing

2. Making use of a for-loop along the third dimension [1 : my], select each 2D plane
and apply the inverse Fourier transform along each row.

3. Rearrange the 2D matrix distribution along the columns. This step is done to create
a conjugate symmetry in this direction, so the inverse transform computation in
Matlab is faster and the output is real.2. The distribution employed is:

[u(:, k, j); 0; transpose(u(end : −1 : 2, k, j)′)] (4.1.18)

Take into account that for complex numbers, the function transpose calculates their
conjugate, and then transposes.

4. Apply the inverse Fourier transform along each column of the 2D matrix. Then,
select the following 2D matrix employing the For-loop.

5. Once left the For-loop, multiply the resulting 3D matrix by a factor, which arises
from the definition of the Fourier transformation. This factor is mx · (mz + 1).

This factor is not applied for calculating the inverse Fourier transform of the mean
velocity fields and derivatives. Mean velocity fields are estimated as the mean of all in-
stantaneous fields in physic domain, and later, transformed to Fourier in order to calculate
its derivatives. In this process, no factor is used, so in the inverse neither.

4.2 Vortex identification method

The analysis of the large turbulent structures in Couette flows will be carried out first
by observing and measuring the velocity distribution along the channel, and second by
analysing the vortex distribution in the domain. The reason for studying the vortex
distribution is to find patterns related to each kind of coherent structure, which are
mainly low and high velocity structures.

This approach is already employed in other studies. C. Prus [24] carried out vortex
identification in turbulent duct flows of different aspect ratios. Additionally, in this study
diverse identification methods were compared. In another interesting paper, Chakraborty
et al. [25] stated a relationship between diverse identification schemes based on a threshold
relationship. Nevertheless, Alamo et al. [26] reported the defect of considering a constant
threshold in wall-bounded turbulence, owing to the inhomogeneity of the flow in the
wall-normal direction. This fact complicates the comparison of data from different wall
distances when a uniform threshold is used. When the threshold is chosen to visualize
properly the vortices of the near-wall layer of the present channels, very few of them are
observed in the outer region. Conversely, when the threshold is lowered to visualize the
vortices of the outer layer, the near-wall region becomes confusingly cluttered with vortex
tubes. This behaviour is proven to worsen with increasing Reynolds number.

According to the information about our study, very large vortex clusters are found in
the centre of the channel, which makes necessary a variable threshold.

2For more information, read Matlab Documentation for the inverse Fourier transformation function,
ifft.
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4.2. Vortex identification method

Following the steps employed in Alamo et al. [26], in this study we selected the
identification method developed by Chong et al. [27] for vortex identification, with a non-
uniform threshold along the wall-normal direction. This approach is also shared by C.
Prus [24]. For more information about other identification methods, we refer the reader
to Chakraborty et al. [25].

The Chong method, sometimes referred as ∆ criterion, is based on a local analysis
of the velocity gradient tensor, ∇~u, defined in Eq. 4.2.1. Here are used the derivatives
determined in Section 4.1.

∇~u =


Ux Uy Uz

Vx Vy Vz

Wx Wy Wz

 (4.2.1)

where Ux = ∂u/∂x, Vy = ∂v/∂y, and so on.
According to this method, a vortex region is a domain, where ∇~u has complex eigen-

values. Considering a non-rotating reference frame translating with a fluid particle, the
instantaneous streamline pattern, which can be obtained from Taylor series expansion of
the local velocity to a linear order, is governed by the eigenvalues of ∇~u.

If two of the eigenvalues form a complex conjugate pair (for both compressible and
incompressible flows), these streamlines are closed or spiralling. Note that in an unsteady
flow, the usage of instantaneous streamlines implies assuming the velocity field to be
frozen at that instant in time [25].

The equation for the eigenvalues of ∇~u is written as:

λ3 + Pλ2 +Qλ+R = 0 (4.2.2)

where P , Q and R are the three invariants of ∇~u, defined as P = −∇·~u (first invariant3),
Q (second invariant, defined in Eq. 4.2.3) and R = −Det (∇~u).

Q = −1
2 Tr

(
S2 + Ω2

)
(4.2.3)

where S = 1
2

(
∇~u+ (∇~u)t

)
and Ω = 1

2

(
∇~u− (∇~u)t

)
are the symmetric and antisymmet-

ric components of ∇~u, respectively. For clarity, the superscript t means transposed, and
Tr () is the trace function.

The discriminant for Eq. 4.2.2 is (for incompressible case, P = 0):

∆ =
(
R

2

)2
+
(
Q

3

)3
(4.2.4)

Considering a given threshold, which in our case will depend on the position in the
wall-normal direction, the condition ∆ is greater than the threshold implies that this
point is located in a vortex core. That is why this method is also called ∆ criterion.

3Another way to write the first invariant is P = −div (~u) = −
(

∂u
∂x + ∂v

∂y + ∂w
∂z

)
.
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Chapter 4. Mathematical tools for post-processing

Figure 4.2: Standard deviation of ∆ in wall-parallel planes along y+. Lines in [26].

According to Del Alamo et al. [26], the threshold proposed should vary with wall
distance as (∆′2)1/2; that is, the standard deviation of ∆ over wall-parallel planes. This
approach would be enough to reduce the vortex identification difficulties in wall-bounded
flows, which were partially described at the beginning of this section. The distribution of
the standard deviation of ∆ over wall-parallel planes is depicted in Figure 4.2, extracted
from Del Alamo et al. [26]. Here, we can see that its value is higher near the walls than
in the channels center. This means that the criterion is more restrictive with near-wall
vorticity. Different lines describe increasing Reτ , as one can notice due to the increasing
length in y+ by taking into account Eq. 3.0.3.

Following this idea, we consider that a point ~x belongs to a vortex core if

∆ (~x) > α · (∆′2)1/2 (4.2.5)
where α is the percolation limit, which has a constant value for a given case.

The purpose of the percolation limit is to select the threshold, which would not collect
all vortex cluster points into a big vortex cluster neither would consider many scattered
vortex clusters. Both cases would be troublesome for vortex identification. Hence, for
selecting the appropriate percolation limit α, the following approach is carried out by C.
Prus [24] and Del Alamo et al. [26].

To perform the percolation analysis, we first identify the vortex points of a given
simulation through Chong method. Note that Chong method makes use of the threshold in
Eq. 4.2.5, where α is still an unknown factor. Hence, several identification will be carried
out with different values of α inside a given range. Take into account that computational
time can increase considerably if many values for α are used.

The result of each identification is a 3D matrix of size Nx × Nz × Ny, in which the
only possible values are 0 and 1. This matrix will be further referred as Chong matrix.
If a given point ~x = (x, z, y) accomplishes the condition in Eq. 4.2.5, the identification

29



4.2. Vortex identification method

matrix has a 1 in the position of that point. Otherwise, it is a 0.
Bearing these facts in mind, we store all the identifications matrices in one by adding

them up. As a result, there is only one 3D matrix of size Nx × Nz × Ny, in which the
values go from 0 to the number of identifications carried out. The latter is the same as
the amount of values for α.

Additionally, since matrix values are limited integers, we can store the Chong matrix
efficiently employing int8 or uint8. This way its size is eight times smaller than storing
the matrix as double, what Matlab do automatically; i.e. according to the number of
points in each direction of the domain (See Table 3.1), only one identification matrix
stored as double occupies 236.88 MB, which is reduced to 29.61 MB if stored as int8.

Secondly, gather the vortex points that are adjacent in any direction. In such manner
we can define the vortex clusters present in the domain. For this step, we have developed
specific tools for 2D and 3D vortex clusters. Both will be explained in detail in Section
4.4 and Section 4.5, respectively.

In order to determine the optimal value of the percolation limit, Del Alamo et al.
[26] recommends to calculate the division between the volume of the biggest cluster en-
countered Vmax, and the overall volume V occupied by all the clusters; that is, Vmax/V ,
for each identification made with a given value of α. A 3-dimensional cluster is defined
by connecting the points satisfying the criterion in Eq. 4.2.5. Connectivity is checked on
each point along 26 directions employing unitary vectors.

In other words, if we have a 3-dimensional point (x0, z0, y0 ), we have 33 − 1 possible
connections, considering that there are 3 dimensions and 3 possible directions, which are
0, −1 and +1. See that direction (0, 0, 0 ) is not employed, because it aims to the initial
point itself, so it is subtracted.

Figure 4.3: Volume Vmax of the largest cluster normalized with the overall volume V
occupied by all the clusters, represented as a function of the threshold α.

Figure 4.3 shows the behaviour of Vmax/V along the percolation limit. For α ≈ 1, few
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small vortex points are identified; so, we expect this relation to have a value near 0. As
soon as α decreases, new vortex points appear while others coalesce, and the variation of
Vmax/V with α is the result of the trade-off between the two processes.

Figure 4.3 also exhibits that both processes are balanced above α ≈ 10−2, so that
Vmax/V remains roughly constant while the number of clusters increases. See that vertical
axis is logarithmic. Below this value of the percolation limit, few new clusters are identified
and the existing ones merge until only a single, large vortex cluster remains, yielding
Vmax/V ≈ 1. Finally, see that all lines tend to collapse; this means that the evolution of
Vmax/V is independent from the friction Reynolds number Reτ .

Taking into account that the percolation limit must ensure that vortex clusters are
neither excessively merged nor too scattered, Del Alamo et al. [26] defines this limit where
the slope of Vmax/V is maximum. In Figure 4.3, this value is at α ≈ 0.008. This criteria
is also adopted by C. Prus [24].

Nevertheless, Del Alamo et al. [26] selects as percolation limit the latter value multi-
plied by 2.5, because the computational time needed by their clustering algorithm diminish
significantly, and the volume coefficient remains roughly constant.

In our study, the percolation limit must be calculated for each Couette-Poiseuille case,
including the pure ones. Results are published in Section 6.1. Moreover, since we have
several instantaneous simulations of each case, the corresponding α to each case will be
estimated as the mean of all the instantaneous percolation limits.

4.3 Vortex clusters determination

In this section the algorithms for vortex clusters determination in 2D and 3D will be
explained. These algorithms take as an input the Chong matrix, in which the only possible
values are 0 or 1. Then, they gather vortex points that connect each other, creating a
vortex cluster with all the connected points.

The algorithm for 2D clusters determination is a Matlab function called
analizasparse. The inputs of this function are:

• matriz_chong: Identification matrix calculated through Chong method, where
the only possible values are 0 and 1. Size: Nx ×Nz ×Ny.

• n: position of the XZ plane in matriz_chong, where the cluster determination will
be carried out. The range of this value is from 1 to Ny. Size: 1× 1.

On the other hand, the output of this function is:

• vortex: Matlab structure with an only field called nodes. Each field position con-
tains the points corresponding to a certain vortex cluster. The size of this structure
goes from 1 to the number of identified vortex clusters. Moreover, each field position
has a variable size. For calling the i-th field position of this structure in Matlab, we
make use of the command vortex(i).nodes

The algorithm employed in analizasparse is detailed in Algorithm 1.
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Algorithm 1: 2D vortex cluster identification
1 Create a variable called A, which contains the XZ plane to analyse;
2 Mirror this plane in another variable called wk, whose content will be later

modified;
3 Define a matrix with all the possible directions to search, from a given A matrix

point, when conforming a vortex cluster. These directions are explained in
Figure 4.4;

4 for i = 1 to NX do
5 for k = 1 to NZ do
6 if wk (i, k) = 0 then
7 Jump to the next step in the For loop;

/* This condition means that this point has no vortex. */

/* Start the identification of a cluster of index ind */
8 Create a queue where all the points that could pertain to this cluster will

be gathered ;
/* These points can be repeated, so this is not a result. */

9 Write the identified (i, k)-point on the first position of the queue;
10 Number of identified points on this vortex cluster set to 1;

/* Variable np */
11 Position of point in queue being treated set to 1;

/* Variable nq */
12 Size of the queue set to 1;

/* Variable sq */
13 while nq ≤ sq and Point treated is not zero do
14 if nq = 581 then
15 Remove all the values in the queue from position 1 to 580;
16 if wk (i, k) = 0 then
17 This point was already saved in function output, so it is deleted

from the queue. The way we delete a point in queue is by setting
it to (0, 0);

18 nq = nq + 1;
19 Jump to the next step in the For loop;
20 Save the current point in the function output;
21 Set wk (i, k) = 0; /* Hence, if this point is written again in

the queue, it will be automatically deleted. */
22 for Each possible direction to look for connected points do
23 Load the coordinates of the first point in a given direction;
24 while Loaded coordinates give wk = 1 do
25 Add the point coordinates to the queue;
26 sq = sq + 1;
27 Load the coordinates of the next point following the same

direction;

28 Set to 0 the coordinates of the initial point treated nq in the queue;
29 nq = nq + 1;
30 If are still present, remove remaining zero values in function output;

/* These zeros were created due to preallocation of cluster
points. */

31 ind = ind+ 1;
/* Starts with the next vortex cluster. */
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As a single field is around 1.8 GB, it is necessary to optimise the codes as much as
possible. Take into account that in Matlab removing a row from a matrix is a computa-
tionally expensive task. If every time an analysed point is removed from the queue, the
algorithm would be poorly optimized. Consequently, queue positions are removed after a
given number of points is checked. This value is of course arbitrary, and can be modified if
it is required. Remember that the queue stores identified vortex points, that may conform
the cluster being analysed.

By avoiding this step, so no position would be removed, the queue could become so
large, that performing operations with it would be also inefficient. Hence, it is necessary
to remove queue positions after a given amount of treated points.

On the other hand, in order to identify a treated point in the queue, its coordinates
are basically changed to 0. Since Matlab does not accept (0, 0) as a matrix location, we
ensure that this is no longer a matrix point.

Regarding the searching direction depicted in Figure 4.4, matrix dirs has altogether 8
pointing directions, because (0, 0) is not a direction. In this part of the algorithm, every
pointing direction is selected and starts from the initial treated point. If the next point
in a given direction, i.e. (0, 1), has a value 1, then it is stored in the queue, and the next
point in this direction is checked. Once the checked point has a value 0, stops counting,
and the next direction in matrix dirs is selected, i.e. (0, −1). Again, this new direction
starts from the initial treated point.

Finally, each time the algorithm starts with a new vortex cluster, an array of zeros is
created in the Matlab structure position ind, which will store this vortex cluster points.
If after finishing the identification, some of this zeros still remain, Algorithm 1 removes
them in Line 30. This preallocation improves the algorithm if a large vortex is identified.

Remember from Section 2.2 that in wall parallel directions there is periodicity. This
fact must be taken into account when following a pointing direction. If searching starts
from a point on a domain limit or while following a pointing direction a limit is reached,
the algorithm must continue on the beginning of that direction. For instance, if the
right wall of the domain is reached, the next point will be located on the left wall. This
condition is invoked in streamwise and spanwise indices, which are defined as:

indx = [1 : NX , 1 : NX , 1 : NX ]
indz = [1 : NZ , 1 : NZ , 1 : NZ ]

(4.3.1)

Searching directions are always added to the second 1 : Ni present in indx and indz.
As a result, at point (indx, indz) = (1, 1) if direction (−1,−1) is employed, we get
(indx, indz) = (NX , NZ). Following this idea, at point (indx, indz) = (NX , NZ) if
direction (1, 1) is employed, we get (indx, indz) = (1, 1).

Once explained the algorithm for 2D vortex cluster identification, algorithm for 3D
vortex clusters has minor changes from Algorithm 1.

Despite the output is the same as in Algorithm 1, inputs are slightly different.

• matriz_chong: Identification matrix calculated through Chong method, where
the only possible values are 0 and 1. Size: Nx ×Nz ×Ny.
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4.3. Vortex clusters determination

Figure 4.4: All possible directions for connecting points during vortex cluster identifica-
tion. These directions are stored in matrix dirs

• n_ini: position of the XZ plane in matriz_chong, from where the cluster determ-
ination starts. The range of this value is from 1 to Ny. Size: 1× 1.

• n_fin: position of the XZ plane in matriz_chong, where the cluster determination
ends. The range of this value is from 1 to Ny. Size: 1× 1.

Therefore, for a complete cluster determination: nini = 1 and nfin = Ny.
Regarding the searching directions, in 3D there are altogether 26 directions. Con-

sidering that we have 3 dimensions and 3 possible values at each dimension, i.e. -1, 0
and 1, the number of combinations is 33 − 1. One combination is subtracted because
(0, 0, 0) is not a possible direction. As one can imagine, this fact makes the algorithm
more computationally demanding in comparison with the 2D algorithm.

In the 3D algorithm the new dimension advance in wall-normal direction. As stated
in Section 2.2, wall-normal direction has no periodicity. So, this must be specified when
following a given searching direction. In the algorithm we define the indexes in Y as:

indy = [−1, 1 : ny, −1] (4.3.2)

which means that if the algorithm tries to cross a wall along the Y direction, the variable
indy becomes -1. This is clearly not a wall-normal coordinate for a point in Matlab. In
addition, While loop present in Algorithm 1 on Line 24, has an additional condition: the
third coordinate of a point cannot be -1. If so, stop in that direction and load the next
searching direction.

For example, if at point (56, 120, NY ), algorithm follows the direction (1, 0, 1), the
resulting point would be (57, 120, −1). This result would make the algorithm leave the
While-loop, and select the next direction; i.e. (1, 1, 0).

Finally, removal of queue positions is carried out after 98000 points are analysed. As
in this algorithm a longer queue is expected, it is optimal to do this step after a larger
amount of points is treated in comparison with the 2D algorithm.
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4.4 Areas of 2D vortex clusters

A useful way of extracting information of the identified vortex clusters is to calculate
their area or volume, depending on how many dimensions it has. Our first step will
be to develop an algorithm able to calculate the area of 2D vortex clusters. As one
can imagine, this is a necessary step in order to develop later an algorithm to calculate
the volume of each 3D vortex cluster. The importance of their volume stems from the
percolation analysis described in Section 4.2. Remember that volumes are used in one
step of the process for measuring the appropriate percolation limit.

The algorithm is coded in a Matlab function called vortexvol2Doriented. This function
has as inputs:

• vortex: Matlab structure with an only field called nodes. Each field position con-
tains a matrix with the points corresponding to a certain vortex cluster. The size of
this matrix is 2×Npoints. The size of vortex goes from 1 to the number of identified
vortex clusters.

• hx: constant distance between points in streamwise direction. This distance should
be introduced in meters. Size of this variable: 1× 1.

• hz: constant distance between points in spanwise direction. This distance should
be introduced in meters. Size of this variable: 1× 1.

• capa: XZ plane of matrix Chong, where vortex clusters in vortex were identified.
Size of this variable: Nx ×Nz.

On the contrary, the output of this function is:

• nv: array with the area of each vortex cluster, preferably in m2.
Its size is Nclusters × 1.

In a comprehensive way, the process of estimating the area of each cluster is based
on considering that a cluster is conformed by many small squares of area (hx · hz). As
expected, the area of each square is determined by how many of its points have a positive
value; that is, 1 in the Chong matrix. Consequently, if a square has 4 points, whose
coordinates in Chong matrix have a unitary value, this square contributes an area (hx · hz)
to the whole cluster area. As soon as not all its points have unitary values, its contribution
decreases by a given factor. This can be appreciated in Algorithm 2, and it is later
explained in this section.

Each square is identified by a single cluster point, so each time a cluster point is
selected, Algorithm 2 calculates the area of the square referred by this point. This idea is
explained in Figure 4.5. Bear in mind that due to the number of positive points conforming
the square, it can be in fact, half square, a line (straight or inclined) or a single point.

This stems from the fact that despite the selected point conforms a vortex cluster, the
surrounding domain points may not be located in a vortex, so their value is 0 in Chong
matrix.
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Algorithm 2: Measure the area of a 2D vortex cluster.
1 Function vortexvol2Doriented:
Data: vortex, hx, hz, capa
Result: nv

2 if vortex is not an structure then
3 Create a one-field structure with input vortex ;

4 Preallocation of output nv and variable areas;
/* Variable areas collects all the contributions of the squares,

which finally gives the cluster area. */
5 Create indexes along streamwise and spanwise direction. Take into account

periodicity boundary condition;
6 for Each vortex clusters gathered do
7 Store the cluster nodes in a variable called wk;
8 for Each node in a vortex cluster do
9 Store in diverse variables the values that the neighbouring domain points

have in Chong matrix. These variables are N, S, E, and so on;
/* This variables are later employed to check which the

contribution of the selected square is to the total area.
*/

10 Based on the way the area contributions are defined, the variables dots
and surround are created.

11 if dots = 3 then
/* Square is complete. */

12 area = area+ 1;
13 else if dots = 2 then

/* Half square is complete. */
14 area = area+ 0.5;
15 else if All neighbouring points are 0 then

/* This is a single point. */
16 area = area+ 0.125;
17 else if dots = 1 then

/* This is a line. */
18 if East Point is 1 and surround = 0 then
19 area = area+ 0.25;
20 else if South Point is 1 and West and South-West Points are 0

then
21 area = area+ 0.25;
22 else if South-East Point is 1 then
23 area = area+ 0.25;

24 if North Point is 0 and East and North-East points are 1 then
25 area = area+ 0.5;

/* Half square on top */
26 else if North and East points are 0 and North-East point is 1 then
27 area = area+ 0.25;

/* Line inclined up. */

28 Variable area is multiplied by (hx · hz), and stored in output vector nv.
Variable area is reset.
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Chapter 4. Mathematical tools for post-processing

Figure 4.5: Names as used in Algorithm 2. Neighbouring points to a treated point (circled)
by the algorithm. The selected point is employed to calculate the area contribution of the
depicted square (dashed lines).

The contribution of each square to the whole cluster area follows the next statements.
Bear in mind that selected point has always a positive value in Chong matrix, that is the
reason why this point is part of a vortex cluster.

From here, the sum of the values in points E, S and SE will be referred as dots, as it
is done in Algorithm 2. The contribution is later multiplied by (hx · hz) to estimate the
area.

• If dots is equal to 3, we have a complete square, so its contribution is 1.

• If dots is equal to 2, we have a half square, so its contribution is 0.5.

• If dots is equal to 1, we have a line, so its contribution is 0.25.

• If dots is equal to 0, we have a single point, so its contribution is 0.125.

This approach may look easy to apply, but in fact it has some aspects to consider
while gathering all contributions.

See in Figure 4.5 that once the square contribution is counted, in the next steps the
algorithm will select the point E for treatment. Thus, it will become the circled one. If
its corresponding E and SE points are 0, variable dots will still be equal to 1 due to the
contribution of its corresponding S point. In short, for a given square its points E and SE
can be considered later as a line according to this approach, despite this line was already
considered in the square contribution.

In order to avoid this problem we can see in Algorithm 2 that if variable dots becomes
1, another condition must be fulfilled in order to consider a line contribution. See that
this problem also concerns the horizontal bottom line of a square.

37



4.5. Volumes of 3D vortex clusters

Furthermore, this approach must be modified to contemplate a half square on top
or a inclined line if they are conformed by NE and E or just NE, respectively. These
modifications are defined in Lines 24 and 26 in Algorithm 2.

For the sake of clarity, an example is depicted in Figure 4.6. Here we can see a vortex
cluster constituted by black points. White points are domain points without a vortex.
Figure 4.6 could be considered as a piece of a XZ plane belonging to a Chong matrix.
See also that periodicity does no affect in this example, this was defined on purpose for
simplicity.

Figure 4.6 also includes the area contributions of each domain square, which are in
tune with the statements declared before.

See that the half-square contribution on the top in the middle will be calculated in
algorithm Line 24, as it is an exception commented before.

Figure 4.6: Example of a cluster area calculation. Black points are cluster points. White
points are domain points without vortex. Each area contribution is depicted in its cor-
responding position.

In order to resolve example in Figure 4.6 in Matlab, first we define the matrix in Eq.
4.4.1.

chong =



0 0 0 0 0 0

0 1 0 1 0 0

0 0 1 1 1 0

0 0 0 1 0 1


(4.4.1)

Then, it is introduced in the vortex cluster identification code (Algorithm 1) as input
matriz_chong. Additional input n is 1.

Finally, output vortex is introduced in areas calculation code (Algorithm 2). For
simplicity, hx and hz are defined 1, and input capa is matrix in Eq. 4.4.1.

The output nv is 2.5, as expected.
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Chapter 4. Mathematical tools for post-processing

4.5 Volumes of 3D vortex clusters

As stated before, the determination of cluster volumes is relevant for tuning correctly the
vortex identification method, described in Section 4.2. However, at first sight this process
seems more complex and more computationally demanding than the ones described before,
as a 3D cluster is analysed all the way through. Moreover, remember that domain points
in wall-normal direction do not have a constant spacing, as it is the case in streamwise
and spanwise directions. This fact will be included in Algorithm 3.

The main idea behind the algorithm in charge of estimating a vortex cluster volume
is simple. Given a cluster, algorithm takes its points located on the lowest XZ plane,
and calculates their area, proceeding as in Algorithm 2. Nevertheless, each time an area
contribution is estimated, algorithm checks the points over the selected square, which
would conform a rectangular prism. Finally, based on the completeness of the lower and
the upper squares, as well as on the wall-normal spacing, Algorithm 3 estimates a volume
contribution.

In other words, in Algorithm 2 cluster area was based on the sum of (hx · hz) area
contributions. Here, in Algorithm 3, cluster volume rests on the sum of (hx · hz ·∆y)
volume contributions, being ∆y the spacing in wall-normal direction.

Algorithm 3 is implemented in a Matlab function called vortexvol3D. As well as on
the previous sections, now the inputs and outputs of this algorithm are presented. The
function takes as inputs:

• vortex: Matlab structure with an only field called nodes. Each field position con-
tains a matrix with the points corresponding to a certain vortex cluster. The size of
this matrix is 3×Npoints. The size of vortex goes from 1 to the number of identified
vortex clusters.

• matrix_chong: Identification matrix calculated through Chong method, where
the only possible values are 0 and 1. Size: Nx ×Nz ×Ny.

• hx: constant distance between points in streamwise direction. This distance should
be introduced in meters. Size of this variable: 1× 1.

• hz: constant distance between points in spanwise direction. This distance should
be introduced in meters. Size of this variable: 1× 1.

• y: array with the position of the wall-normal points. Size of this variable: Ny × 1.

On the contrary, the function gives as output:

• volumes: array with the volume of each vortex cluster, preferably in m3.
Its size is 1×Nclusters.

Algorithm 3 describes the structure of the function responsible for estimating the
vortex clusters volumes. However, this function has two Matlab nested functions, which
constitute inner layers of the algorithm.
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4.5. Volumes of 3D vortex clusters

The first nested function is called vortexvol_adapted. Given a (hx · hz ·∆y) rectangu-
lar prism, its aim is to calculate how many points on the lower wall-parallel plane integrate
the lower face of the prism. This approach is completely based on Algorithm 2. The main
difference is that vortexvol_adapted does not gives a result, but calls the second nested
function, which evaluates how many points on the upper wall-parallel plane contribute
to the volume. The second nested function is called makeit3D, and it is explained in
Algorithm 4.

For the sake of completeness, Figure 4.7 depicts an example of how Algorithm 3 and
4 estimate the contribution of the prism referred to a given vortex cluster point. See that
as in cluster areas estimation, a given point on the low wall-parallel plane is the reference
of a whole geometry.

Figure 4.7: Example on how works the cluster volume determination. a) Chong wall-
parallel plane (XZ) located below wall-parallel plane in b). Black points denote vortex
points, white points denote no-vortex points. Circled point in a) is the reference point.
Its position in the upper wall-parallel plane b) is also circled for clarity.

First nested function starts from the circled point in Figure 4.7 a). Acting in accord-
ance with Algorithm 2, it determines that there is half-square associated to the circled
point, as we see in the picture. It sends this result to the second nested function, which
concludes that over the half-square only one point (circled) constitutes the volume con-
tribution. As a result, we have three points down and one point up. This is a triangular
pyramid, whose volume is 1

3 ·
hx·hz

2 · ∆y. Hence, this is the volume contribution of the
reference point in Figure 4.7 a).

All the possible volume contributions are collected in Table 4.2.
Now, main function and second nested function are explained in Algorithm 3 and

Algorithm 4, respectively. See that first nested function is namely a slight modification
of Algorithm 2, so it will not be further detailed.
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Algorithm 3: Vortex cluster volume estimation. Main function.
1 Function vortexvol3D:
Data: vortex, matrix_chong, hx, hz, y
Result: volumes

2 Preallocation of volumes;
3 for Each vortex cluster identified do
4 Create variable vpoints with all the points of a selected cluster;
5 Initialize variable vol, which allocates the cluster volume;
6 All cluster points are sorted. First in streamwise direction; then, spanwise and

finally, wall-normal direction;
7 Initialize variable pref. This is the first point, whose wall-normal coordinate

dictates which the first wall-parallel reference plane is;
8 for Each cluster point do
9 if Selected point pertains to the next wall-parallel plane then

10 Calculate wall-normal distance between reference plane and the next
wall-parallel plane. That is, ∆y ;

11 The first nested function is called with all the points placed in
reference plane;

/* Now this algorithm jumps to the function
vortexvol_adapted. */

12 Variable pref becomes the wall-normal coordinate of the point placed
on the next wall-parallel plain. This is the n-point.

13 Cluster volume is stored in main function output;

Regarding the inputs in Algorithm 4, variable ap means area points. This is the
number of points detected by the first nested function. Its value goes from 1 to 4.

On the other hand, variable flag_down has a more complex background. If function
vortexvol_adapted detects a half-square or inclined line through Lines 24 or 26 in Al-
gorithm 2, which are modifications on the initial approach, function makeit3D must know
that the points to analyse in the above wall-parallel plane are E, NE and N, instead of E,
SE and S. See Figure 4.5.

Therefore, if flag_down is equal to 1, Algorithm 4 considers the points in the square
depicted in Figure 4.5 for volume estimation. Otherwise, it considers the square conformed
by points Origin (circled), E, NE and N.

Finally, its output vol is the volume contribution linked to the reference point selected
in first nested function, called vortexvol_adapted.
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Algorithm 4: Vortex cluster volume estimation. Second nested function.
1 Function makeit3D:
Data: ap, flag_down
Result: vol

2 if flag_down is 1 then
3 Store Chong values of the points conforming the square in Figure 4.5. See

that value on circled point is now also stored;
4 Sum them in variable vp;
5 else if flag_down is 0 then
6 Store Chong values of the points conforming the upper square in Figure

4.5. This are Origin, N, NE and E.
7 Sum them in variable vp;

8 if Variable vp is not 0 then
/* With this condition, algorithm ensures that there are upper

points to conform a volume. */
9 Sort both variables vp and ap. This ensures that always vp ≤ ap;

10 if Variable vp is 1 then
11 if ap is 1 then
12 vol is 1

3 · (0.125hxhz) ·∆y; /* Pyramid base per 0.125 */

13 else if ap is 2 then
14 vol is 1

3 · (0.25hxhz) ·∆y /* Pyramid base per 0.25 */

15 else if ap is 3 then
16 Variable vol is 1

3 ·
hxhz

2 ·∆y; /* Triangular pyramid */

17 else if ap is 4 then
18 Variable vol is 1

3 · (hxhz) ·∆y; /* Rectangular pyramid */

19 if vp is 2 then
20 if ap is 2 then
21 Variable vol is 0.25 · (hxhz) ·∆y; /* Prism base per 0.25 */
22 else if ap is 3 then
23 Variable vol is 0.5 · hxhz2 ·∆y; /* 0.5 Prism of triang. base */

24 else if ap is 4 then
25 Variable vol is 0.5 · (hxhz) ·∆y; /* Half rectangular prism */

26 if vp is 3 then
27 if ap is 3 then
28 Variable vol is 0.5 · (hxhz) ·∆y; /* Triangular prism */
29 else if ap is 4 then
30 Variable vol is 0.75 · (hxhz) ·∆y; /* Rectangular prism per

0.75 */

31 if vp is 4 then
/* Due to sorting, here ap can only be 4. */

32 Variable vol is (hxhz) ·∆y; /* Rectangular prism */
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For clarity, the volume contribution for each number of area points (ap) and volume
points (vp) is presented in Table 4.2. This information is displayed according to Algorithm
4.

Volume Points (vp) Area Points (ap) Volume Contribution (vol)

1 1 Triangular pyramid. Base per 0.125

1 2 Triangular pyramid. Base per 0.25

1 3 Triangular pyramid

1 4 Rectangular pyramid

2 2 Rectangular prism. Base per 0.25

2 3 Triangular prism. Base per 0.5

2 4 Rectangular prism. Base per 0.5

3 3 Triangular prism

3 4 Rectangular prism. Base per 0.75

4 4 Rectangular prism

Table 4.2: Volume contribution according to the number of points on the base and on top
of the geometry.

Finally, the volume formula of the geometries named in Table 4.2 are displayed:

• Pyramid: 1
3 ·Base ·∆y

• Prism: Base ·∆y

Base area depends on the base geometry and on the possible reduction factor employed,
as specified in Table 4.2.
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4.6. Field characteristics on vortex points

4.6 Field characteristics on vortex points

As seen until now, the size of the vortex clusters present in the simulation is not only
relevant, but also necessary for our post-process. One can gather relevant information
from the variations in size, when comparing between near-wall and far from wall vortexes.
Additionally, size identification makes possible to detect coherent vortex structures near
the wall, which are extensively described in numerous papers ([2], [26]), among others.

However, it is also relevant to study the properties of the field; i.e. Reynolds stress
or vorticity, on the points where a vortex cluster is present. This idea shows us if there
is any tendency between field characteristics and the presence of a vortex. Moreover, we
can compare these properties with the streamwise velocity field, when a vortex is present.
It may be interesting to observe if there is any influence between vortex clusters and large
rolling structures in Couette flow. This is later presented in Section 6.3.

The next algorithm was created in order to study the organization of vortex clusters
in comparison with streamwise velocity structures. Furthermore, this algorithm is able to
show field properties on vortex cluster points, and finally classify them according to their
position on the velocity field.

In other words, our algorithm takes a specified field variable (i.e. 〈uv〉), sets to 0
all values on points without vortex, and separates positive from negative magnitudes.
Then, compares each one with a filtered streamwise velocity field. This filtering let us
distinguish high-speed, low-speed and neutral streamwise velocity areas. Finally, our
algorithm classifies vortex areas with positive or negative magnitudes according to their
position in the filtered streamwise velocity field. That is, if that vortex is on a high-speed
structure, or it touches both high-speed and neutral, and so on.

Algorithm 5 is implemented in Matlab script analisis_areas. As it is not a Matlab
function, it does not need proper inputs. Nevertheless, variables at the beginning act as
inputs, so they are explained here:

• root_dir: path to case directories (i.e. C02P08). These directories must contain
the h5 files of velocity fields.

• filder: path to the directory where compact finite difference matrices for wall-
normal derivation (Read Section 4.1) are stored.

• rootout_dir: path to the directory where output h5 fields will be created, if
required.

• sep: path separator. It may change depending on the system (Windows, Linux...)

See that in Algorithm 5, percolation limit must be specified, so percolation analysis
must be performed before launching this algorithm.

A limitation of this study is that Algorithm 5 can only be applied on wall-parallel
planes; in other words, it is a 2D study. Hence, one ought to think which wall-parallel
planes to choose in order to obtain proper results. In addition, only 4 characteristics are
analysed. These are Reynolds stress 〈uv〉, and vorticity components (ωx, ωy, ωz).
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As well as in Section 4.5, our main algorithm has inner local functions, which are
called during execution. First local function is called file_velocity_expansion. Its aim
is to derive the velocity fields stored in an input h5 file, and give as an output their
derivatives in each coordinate as well as the original velocity fields. Since this function is
based on the procedure explained in Section 4.1, it will not be further detailed.

Second local function is called distribucion. Its steps are explained in Algorithm 6.
Here, a vorticity or Reynolds stress field is taken as input in campo_analisis. Additionally,
the streamwise field is given in campo_compara. This local function filters the streamwise
field through Algorithm 7 and classifies positive and negative values in campo_analisis,
separately, based on the filtered streamwise field.

On the other hand, third local function filtra_campo is in charge of filtering a velocity
field, generally a streamwise field (input T ). Procedure steps are detailed in Algorithm 7.
See that the threshold is the standard deviation of the field. However, the threshold can
be multiplied by input factor. This would modify the filtering of the field.

Algorithm 5: Main script for the analysis of field characteristics on vortex
points.
Result: Classification of field characteristics based on streamwise velocity field.

1 Load the input data (roots and separator). Set also the name of the velocity
fields h5 file;

2 Launch first local function file_velocity_expansion; /* Here, algorithm
extracts the derived velocity fields from the original fields.
*/

3 Calculate Reynolds stress 〈uv〉 on a given wall-parallel plane;
4 Calculate vorticity components (ωx, ωy, ωz) on a specified wall-parallel plane;
5 Introduce the percolation limit corresponding to the studied case;
6 Perform vortex identification through Chong method. If desired, specify the

studied wall-parallel plane, so unnecessary operations are avoided;
7 Filtrate Reynolds stress and vorticity component planes, so only remain the

values on points that contain a vortex;
8 Classify the filtrated Reynolds and vorticity planes according to the streamwise

velocity structures. Classification is done for positive values and negative
values of the filtrated planes; /* Here, second local function is
called. */

9 Classifications (outputs) are stored in a h5 file;
10 Show a pseudocolor plot pcolor of each filtered field property. Here one can

distinguish between positive and negative magnitudes.
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4.6. Field characteristics on vortex points

Algorithm 6: Analysis of field characteristics on vortex points. Local function
2.
1 Function distribucion:
Data: campo_analisis, campo_compara, hx, hz, modo
Result: dist_pos, dist_neg

2 Define filtering factors for the streamwise velocity field;
3 Preallocate function outputs;
4 Filter input campo_analisis, so positive values become 1, and negative values

become -1. Values on no-vortex points remain 0;
5 for Each filtering factor do
6 Obtain a filtered streamwise velocity field according to the filtering factor

selected by the For-bucle. /* In this step, third local function is
launched. */

7 Classify the positive values in campo_analisis, based on the filtered velocity
field;

8 Classify the negative values in campo_analisis, based on the filtered velocity
field;

/* Classification is made by the fourth local function */
9 Store the results in the preallocated matrices;

10 if Input variable called modo is ’p’ then
11 Express the results in percentage of total vortex surface;

Algorithm 7: Filter the streamwise velocity field. Local function 3.
1 Function filtra_campo:
Data: T, factor
Result: Filtered streamwise velocity field. Possible values are {−1, 0, 1}

2 if factor is empty then
3 Set factor to 1;
4 Subtract the mean value of the wall-parallel plane from all values;

/* Variable Tm */
5 Preallocate function output;
6 Create filtering threshold (st) as the standard deviation of variable Tm multiplied

by factor /* 0.5 ≤ factor ≤ 1 */
7 At a given point ~x: if Tm (~x) > st then
8 Filtered velocity field at ~x becomes 1; /* High-speed point */
9 else if Tm (~x) < −st then

10 Filtered velocity field at ~x becomes -1; /* Low-speed point */
11 else
12 Filtered velocity field at ~x becomes 0; /* Neutral point */
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The aim of the fourth local function is to perform the classification of vortex clusters,
which are filtered according to a given magnitude. For example, positive Reynolds stress.
A given vortex cluster can touch a high-, low- or neutral speed region, or even a com-
bination of them. According to this fact, Algorithm 8 classifies this vortex area in a
class.

Algorithm 8: Classify vortex clusters areas. Local function 4.
1 Function filtra_campo:
Data: Q, nt, hx, hz
Result: Vortex areas classified according to their position on the filtered velocity

field.
2 Launch vortex clusters identification;

/* Section 4.2. Algorithm 1 */
3 Extract the areas of all the clusters;

/* Section 4.4. Algorithm 2 */
4 Preallocate function output;
5 for Each vortex cluster do
6 Determine which kind of streamwise structures are touched by the selected

cluster. These can be high-speed, low-speed, neutral or a combination;
/* Variable aux stores the indicator of these structures; that
is, a combination of {−1, 0, 1}. */

7 if aux is 0 then
8 The cluster is classified in neutral; /* Class 3 */
9 else if Number of non-zero values in aux is 1 then

/* Here the possible combinations are 1, −1, {0, 1} or
{−1, 0} */

10 if Length of aux is 1 then
/* Possible combinations: -1, 1 */

11 if aux is 1 then
12 The cluster is classified in high-speed; /* Class 1 */
13 else
14 The cluster is classified in low-speed; /* Class 2 */

15 else
/* Possible combinations: {−1, 0}, {0, 1} */

16 if Minimum value in aux is -1 then
17 Cluster is low-speed and neutral; /* Class 5 */
18 else
19 Cluster is high-speed and neutral; /* Class 4 */

20 else
/* Combination {−1, 0, 1} */

21 Cluster touches three kinds of structures; /* Class 6 */
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Chapter 5

Characterization of velocity fields

In this chapter we focus on the description of velocity and vorticity fields present in each
case. We will depict our measurements in diverse wall-parallel planes; mainly, near the
moving wall, in the channel center and near the stationary wall. Moreover, following
the common procedures in the literature, we will see how to extract relevant information
from the coherent velocity structures through two-point correlation analysis and spectral-
density plots. Indeed this information is becomes relevant when extracted from our very-
long computational domain of size 128πh× 2h× 6πh (Read Chapter 3), because it shows
for the first time the averaged streamwise length of the coherent velocity structures at
Reτ = 125.

Following this line, we will show the link between the coherent velocity structures and
the averaged Reynolds stress along the wall-parallel planes. This approach makes easier
to understand how these velocity structures, when present, create long counter-rotating
rolls, which can extend along the domain length.

Finally, employing the algorithms described in Section 4.6, some quantities on vortex
points, such as Reynolds stress or vorticity, will be compared with the velocity structures
near these points.

5.1 Velocity and Reynolds stress fields

Before extracting the statistical data from the velocity in our cases and domains, it is
mandatory to understand which kind of structures we found in our simulations. Bearing
this in mind, one achieves a better understanding of the results extracted through two-
points correlations and spectral-density.

For this purpose, here we compare wall-parallel planes of filtered instantaneous and
mean velocity in each case. Additionally, they are gathered according to their wall-normal
distance to the walls. Finally, these results are contrasted with similar studies.
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In Figure 5.1 filtered streamwise velocity fields at instantaneous simulation times are
depicted on the left. As one can read in each caption, these figures start from case C00P10
(pure Poiseuille) on the top to C10P00 (pure Couette) on the bottom. Filtering in these
fields was carried out employing Algorithm 7, explained in Section 4.6. In this case,
the threshold was the standard deviation among all the velocity values in the selected
wall-parallel plane. See that now one can differentiate between three zones of colour:

• Yellow: high-speed regions, where local streamwise speed is above the standard
deviation.

• Light blue: neutral regions, where local streamwise speed is in the range of the
standard deviation.

• Dark blue: low-speed regions, where local streamwise speed is below the standard
deviation.

All these regions were already mentioned in Section 4.6, as they were employed for the
classification of vortex areas with a given magnitude.

On the right column, the streamwise mean velocity of each case is depicted without
filtering. This magnitude helps to find patterns visible after analysing many instantaneous
fields. Finally, the channel center point at y/h = 0.065 was selected on purpose in order
to compare these figures with the results in Gandia-Barbera et al. [23].

As we can see in Figure 5.1, in pure Poiseuille there is no clear pattern among
the filtered streamwise velocity structures. The filtered field is composed by short and
scattered structures. So, we can see that low-speed and high-speed regions come closer
and get away with no clear arrangement. Furthermore, if we compare the filtered instant-
aneous with the mean streamwise velocity field, we can appreciate the lack of organization
among these structures.

The same statements agree with the case C02P08, in which the Couette contribution
is still considerable small.

In case C04P06 we appreciate for the first time structures of the same kind organizing
in order to create longer structures than the ones visualized in previous cases. This
tendency is confirmed once we analyse the mean flow in Figure 5.1f.

In case C06P04 the streamwise velocity structures arrange themselves in tight struc-
tures. These structures sometimes reach both domain ends in streamwise direction. How-
ever, we notice in the mean field that the structure are not strong enough. Additionally,
an alternating pattern of structures along the spanwise direction is not developed yet.

Cases C08P02 and C10P00 (pure Couette) show another scenario. Here we can see
that streamwise structures have completely arranged creating strong structures that touch
both streamwise sides of the domain. Moreover, their mean velocity fields show a clear
spanwise pattern, which alternates between low-speed, neutral, high-speed and so on.

The conclusions about case C10P00 are confirmed in Gandía-Barberá et al. [23]. Here
the authors state that the clear strip pattern developed in C10P00 is a direct consequence
of the too short domain employed and the periodic boundary conditions (Read Section
2.2), specially in streamwise direction.
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(a) C00P10. Instantaneous (b) C00P10. Mean

(c) C02P08. Instantaneous (d) C02P08. Mean

(e) C04P06. Instantaneous (f) C04P06. Mean

(g) C06P04. Instantaneous (h) C06P04. Mean

(i) C08P02. Instantaneous (j) C08P02. Mean

(k) C10P00. Instantaneous (l) C10P00. Mean

Figure 5.1: Filtered streamwise velocity wall-parallel planes. y/h = 0.065, channel center.
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This fact was previously described by M. Lee and Moser [8], who compared simulations
at a given Reτ in short and large domains.

As one can see in Figure 5.1, all pictures are taken from our shortest domain, of
length 16πh. As a result, we are not able to determine the streamwise length of the
velocity structures present in C10P00 or C08P02. Other authors, such as Pirozzoli et al.
[3] or Tsukahara et al. [20], could not measure their length to this issue.

In Figure 5.2 a fragment of a filtered streamwise field of C10P00 in a domain of length
128πh is presented. Inside the red box of length 100h we appreciate on top two velocity
structures. A high-speed one covering from 180 to 230, and a low-speed one from 230 to
280. Additionally, a similar pattern is seen on the bottom inside the red box; however, it
starts with a low-speed structure and changes at 230 to a high-speed one. This behaviour
makes us asseverate that the actual length of a structure is 50h, approximately [23].
This result will be confirmed later in Section 5.3 by estimating a two-point correlation in
streamwise direction.

Figure 5.2: Fragment of the filtered streamwise velocity field in case C10P00. Long
domain, length 128πh. Extracted from Gandía-Barberá et al. [23]

Furthermore, notice in Figure 5.2 that velocity structures have a slight inclination
along the streamwise direction. Once the periodic boundary conditions are far from
the analysed region, structures become slightly tilted at moderate Reτ ; that is, around
Reτ = 220 and lower than Reτ = 500, as M. Lee and Moser [8] could estimate. The
authors state that the coherence of the structures underlying the correlations are strongly
dependend on the Reynolds number, and their simulation at Reτ = 93 seems to be too low
in Reynolds number to show inclined structures. However, their simulation at Reτ = 500
shows an insignificant inclination angle, as this angle is also strongly dependent on Reτ .
Since our case at Reτ = 125 is this interval, we can appreciate an inclination angle in
Figure 5.2.

Now, the reader has understand the distribution of streamwise velocity structures in
the domain center along the transition between pure Poiseuille flow and pure Couette.
However, there is still an important question, which is: why are these structures relevant
for our analysis?

As stated in the Abstract, we seek for the longest turbulent structures in Couette
flows, in order to determine their stability and origin. Moreover, we want to link these
structure with the large contrarrotating rolls present also in Couette flows, which were
previously detected by many authors, both experimentally and numerically.
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5.1. Velocity and Reynolds stress fields

According to Pope [1] in Section 7.4, in the near-wall region (y+ < 100) of turbulent
boundary layers pairs of counter-rotating streamwise vortices or rolls are identified as
the dominant vortical structures. These structures are described in Figure 5.3. In this
simplified picture, the fluid moving away from the wall with a positive wall-normal velocity
(v) has a relatively reduced axial velocity, which is also depicted in Figure 5.3. The author
also asserts that these points are associated with wall bursting, a common event in near-
wall turbulence.

Figure 5.3: Counter-rotating vortices dominant in the near-wall region of turbulent bound-
ary layers. Image from Pope [1], page 326.

On the other hand, in Figure 5.5 we have depicted time- and streamwise-averaged
images of u/uτ for the transition between pure Couette and pure Poiseuille in the small
domain, 16πh. In this Figure we appreciate the distribution of streamwise velocity struc-
tures in a YZ plane; that is, along the wall-normal and spanwise directions.

Notice that in Figure 5.5, we have depicted the fluctuating component of the stream-
wise velocity, according to the Reynolds decomposition (Eq. 1.2.1). Hence, this value
may be negative despite the instantaneous streamwise velocity is always positive.

In pure Poiseuille (C00P10) or cases with strong Poiseuille contribution (C02P08)
we can see that there is an alternating pattern of high- and low-speed structures near
the walls. In the domain center, the mean values are around zero. If we remind the
Reynolds stress distribution along the wall-normal direction (Figure 3.2b), we see that
Reynolds stress peaks in Poiseuille or quasi-Poiseuille flows are near the walls. This stress
is responsible for the production of turbulent kinetic energy is this regions. Moreover, in
Figure 3.2b we notice that the Reynolds stress is nullified in the channel’s center. The
idea of linking the time- and streamwise-averaged fields of u/uτ with the Reynolds stress
was previously suggested by M. J. Lee and Kim [28], and developed in Gandia-Barbera
et al. [23].

As soon as we reach intermediate states, such as C04P06 or C06P04, the structures
increase in height from the stationary wall at y/h = −1 to the moving wall at y/h = 1.
This fact stays in accordance with the distribution of Reynolds stress in Figure 3.2b, since
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Chapter 5. Characterization of velocity fields

the crossing position tends to the moving wall as the Couette contribution increases.
Finally, in Couette dominant cases (C08P02 and C10P00) we can see for the first time

that the streamwise velocity structures occupy the whole height of the channel. Addi-
tionally, by comparing the colorbars of each case we also conclude that these structures
become stronger as soon as the Couette contribution becomes relevant enough.

M. J. Lee and Kim [28] identified these structures and their distribution for a plane
Couette flow at Reτ ≈ 170 in a domain of size (Lx, Lz, Ly) =

(
4πh, 8

3πh, 2h
)
. The

authors employed the same approach as in Figure 5.5. However, they went one step
further and projected on their figure the velocity vectors in wall-normal and spanwise
direction. This is depicted in Figure 5.4. Notice that dark blue regions in Figure 5.5
are represented with a continuous line in Figure 5.4. Yellow regions are represented with
intermittent lines. Green regions depict the transition between both kind of lines.

On the one hand, we can see on the right region of Figure 5.4 (b), the tendency is to
develop strong negative wall-normal velocity (v << 0) in the core of high-speed structures
(yellow regions in Figure 5.5), and strong positive wall-normal velocity (v >> 0) in the
core of low-speed velocity structures (blue regions in Figure 5.5). Moreover, at both
regions the spanwise velocity is almost null.

On the other hand, regions of strong spanwise velocity are located near the walls on
the transitions between positive and negative u regions. In addition, transitions in the
channel center create regions of almost no spanwise or wall-normal velocity.

Figure 5.4: Velocity field of the time-averaged large-eddy field in a plane Couette flow;
(a) contours of u in the yz-plane, where is u ≥ 0 and - - - - is u < 0; (b) velocity
vectors (v, w) projected on the yz-plane. Extracted from M. J. Lee and Kim [28].

Based on the above description of Figure 5.4, one can easily see the relation between
the coherent streamwise velocity structures and the secondary flow movement, which
develop counter-rotating pairs of vortices.
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Figure 5.5: Time- and streamwise-averaged images of u/uτ for the cases, top to bottom,
C00P10, C02P08, C04P06, C06P04, C08P02 and C10P00
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Now, going back to Figure 5.1, we can demostrate that as the streamwise structure
occupy the whole channel length in short domains, the counter-rotating rolls do so. This
explains why we employed a very-long domain in order to analyse the real extent of these
rolls.

Going one step further, in Gandia-Barbera et al. [23] the authors performed a similar
analysis by illustrating the contours of Reynolds stress in yz-planes, instead of velocity
vectors as in Figure 5.4. Through this approach, the presence of counter-rotating rolls is
linked to the distribution of Reynolds stress along the wall-normal direction. These fields
are depicted in Figure 5.6, following the same order as in Figure 5.5. Additionally, each
case can be compared with the Reynolds stress distribution depicted in Figure 3.2b.

In pure Poiseuille flow we notice both layers of substantial Reynolds stress near both
walls. Near y/h = 1 its value is positive, and near y/h = −1 it is negative. However,
if we compare this field with the u/uτ field of the same case in Figure 5.5, we notice an
alternating pattern of positive and negative wall-normal velocity near both walls. For
understanding this step, see Table 5.1.

uv/u2
τ > 0 u/uτ > 0 v/uτ > 0

u/uτ < 0 v/uτ < 0

uv/u2
τ < 0 u/uτ > 0 v/uτ < 0

u/uτ < 0 v/uτ > 0

Table 5.1: Relationship between Reynolds stress (uv+), and stream- or spanwise fluctu-
ating velocity.

The alternating wall-normal fluctuating velocity at near-wall region creates counter-
rotating rolls of small width and length. For visualizing these near-wall rolls, their axis
are located in the near-zero u/uτ regions between positive and negative values. Moreover,
each positive or negative value is the border region between both counter-rotating rolls,
where wall-normal velocity reaches its maximum. These characteristics were also seen in
Figure 5.4, thanks to velocity vectors.

As the reader might remember, near-wall (y+ < 100) counter-rotating structures were
previously described in this section, according to Pope [1], and depicted in Figure 5.3.

As soon as some Couette contribution is applied in case C02P08, the Reynolds stress
magnitude decreases and zero values move slightly to the moving wall at y/h = 1, as one
can see also in Figure 3.2b.

In cases C04P06 and C06P04, counter-rotating rolls are developing due to the increas-
ing contribution of Couette flow. Concretely, in C04P06 Reynolds stress distributions do
not reach the moving wall yet. This wall is reached in case C06P04 and so on. So we
state that counter-rotating rolls are present in this range of cases, as it was asseverated
in Gandia-Barbera et al. [23].

However, we see that as soon as some Poiseuille contribution is present in the flow,
Reynolds stress magnitude decreases. Thus, strongest values are only present in pure
Couette flow; that is, case C10P00. This is also confirmed in Figure 3.2b.
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Figure 5.6: Time- and streamwise-averaged images of 〈uv〉/u2
τ for the cases, top to bottom,

C00P10, C02P08, C04P06, C06P04, C08P02 and C10P00
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Finally, following Table 5.1 we can relate our u+ and 〈uv〉+ fields at C10P00 with
velocity vectors depicted by M. J. Lee and Kim [28] in Figure 5.4. Notice that each
positive and negative u+ structure at C10P00 in Figure 5.5 is located on a strong negative
Reynolds stress region at C10P00 in Figure 5.6. Therefore, we have an alternating positive
and negative fluctuating wall-normal velocity, as described in Figure 5.4.

Now the reader will understand that in regions of 〈uv〉+ ≈ 0, the wall-normal velocity
becomes zero. Here, located in the channel center, we encounter the center of the counter-
rotating rolls.

In Figure 5.7 time- and streamwise-averaged fields of w/uτ are depicted following the
same case order as in the previous figures. In pure Poiseuille flow, we can detect near
the walls some positive structures above negative structures or vice versa. One pair of
structures represent a roll. However, we can also see that these structures do not follow
a clear pattern near the wall. One must remember that their velocity intensities are not
as strong as Couette rolls.

Surprisingly once a slight Couette contribution is present; i.e. C02P08, spanwise ve-
locity magnitude as well as all the other magnitudes depicted (u+ and 〈uv〉+) tend to
slightly diminish. Additionally, we see that the alternating pattern of the spanwise fluc-
tuating velocity suddenly disappears near the moving wall at y/h = 1. At the stationary
wall intensities also decreased.

During the Poiseuille-Couette transition; i.e. C04P06 and C06P04, we detect two
steps. First, spanwise velocity near the moving wall increases its isotropy, and near the
stationary wall, structures elongate. An overall positive spanwise velocity is shown in
the channel center. Second, an alternating pattern of large structures near both walls is
present at C06P04; however, its intensity is still low.

We notice that this pattern strengthens in the following cases until pure Couette. Here
we see a clear alternating pattern which indicates the presence of counter-rotating rolls
that occupy all the channel height. This pattern is less clearly depicted in Figure 5.4
through velocity vectors.

Therefore, we can properly state that at C06P04 counter-rotating rolls are present
despite their intensity is low. Additionally, see that as long as Couette contribution
increases from C06P04 until C10P00, the structures length slightly increases. Hence, the
rolls width increases. We will later see through two-points correlation that this is the
tendency.

In this section we have proven the existence of strong counter-rotating rolls in cases
from C06P04 to C10P00. Hence, we can relate our results to the stability of these struc-
tures at Reτ = 125, when a Poiseuille contribution is present. This stability could not be
broken in other studies. For example, Kraheberger et al. [16] found out that these rolls
at Reτ = 1000 are strongly stable against wall transpiration up to V +

0 = 0.071, being V0
the mean wall-normal velocity.
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Figure 5.7: Time- and streamwise-averaged images of w/uτ for the cases, top to bottom,
C00P10, C02P08, C04P06, C06P04, C08P02 and C10P00
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Now, it is relevant to explain the influences of these rolls in the flow, and also give
a deeper description of them. Pirozzoli et al. [3] describe them as momentum-carrying
eddies or low wave-number flow mode. This is because counter-rotating rolls in Couette
flow are identified as large wave-lengths in a pre-multiplied energy spectra; that is, as low
wave-numbers.

The authors also linked these rolls to the occurence of streaky patterns of alternating
momentum through the channel, as we could see from the inspection of the streamwise
velocity filtered field in wall-parallel planes, showed in Figure 5.1. The authors also
suggest that streaks are not expected to occur in the regions, where the local mean shear
is near zero.

We can proven this asseveration by comparing the streaky patterns of Couette driven
flows (i.e. C06P04) and the lack of this pattern in pure Poiseuille flow (C00P10) in Figure
5.1. Moreover, we can appreciate this more clearly in the filtered streamwise velocity fields
near the moving wall in Figure 5.10. Case C06P04 achieves near-zero Reynolds stress near
the moving wall as seen in Figure 3.2b; this affects the pattern of its velocity structures,
and develops quasi-isotropic ones.

The explanation behind this phenomena was studied by Lee, Kim & Moin [29], who
discovered that streaks are not an exclusive feature of wall-bounded flows, and the pres-
ence of a solid boundary is indeed not a necessary condition. The authors showed that
homogeneous turbulence subjected to intense shear exhibits coherent flow patterns which
closely resemble the streaks found in the near-wall region of wall-bounded flows.

In our case, we have homogeneous turbulence along the streamwise and spanwise
directions as we already stated in Section 2.2. That is the reason why our simulations
can adopt periodic boundary conditions in both directions. Moreover, we appreciate that
there is a intense shear stress (Reynolds stress) in the channel center for Couette-driven
flows; exactly the ones that show defined streaks in this region. Thus, we agree on the
statement of Lee, Kim & Moin [29].

We will see later in Figure 5.8 that near-wall regions at a stationary wall show always
streaky patterns, for every case.

Following the conclusions of Lee, Kim & Moin [29], the authors noted that the form-
ation of streaky structures is primarily controlled by the value of a dimensionless shear
parameter σk/ε, where σ is the mean shear, k is the turbulent kinetic energy, and ε is its
dissipation rate. This dimensionless parameter can also be considered as a measure of the
ratio between the eddy turnover time k/ε and the time scale of mean deformation 1/σ.

However, Lam & Banerjee [30] identified the turbulent production-to-dissipation ratio
σ〈uv〉/ε as the controlling parameter for the occurrence of streaks. This parameter is
easier to understand as we already have the distribution of Reynolds stress in our cases.
Therefore, we can forecast the presence of streaks in the streamwise velocity field by
observing Figure 3.2b.

Regarding the influence of the largest structures in Couette flow with the near-wall
region, Pirozzoli et al. [3] states that these large-scale motions superpose onto the near-
wall turbulence, causing deviation from the universal wall scaling at sufficiently large
Reynolds number. Furthermore, positive large-scale velocity fluctuations above the wall
cause increased small-scale near-wall turbulent activity.
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5.2 Near-wall velocity fields

We present in this section the filtered streamwise velocity fields near both walls, the
moving and the stationary wall. We will discuss here the features present in each region
of the domain for our different cases. Notice that as in Figure 5.1 we will employ a small
domain of size LX × LY × LZ = 16πh × 2h × 6πh. Moreover, the filter employed is the
same as in Section 5.1, which was previously described in Algorithm 7 in Section 4.6.

In Figure 5.8 the filtered streamwise velocity field near the stationary wall are depicted
for each case. Their specific position is y/h = −0.9178, as it stays near y+ ≈ 10, where
we could measure a peak of streamwise fluctuating velocity u in Figure 3.1a. This is also
confirmed in Pope [1] or Pirozzoli et al. [3].

We notice that the streamwise velocity fields at y/h = −0.9178 are quite similar
among cases, when observing the instantaneous cases. All of them show a streaky and
meandering pattern along the wall-normal plane. Comparing both kind of structure at
pure Poiseuille flow we see that low-speed ones are thinner and longer than high-speed
structures. Moreover, after the wholes transition to pure Couette flow, the main difference
is that both structures become slightly wider.

This similarity among cases was expected as we could proven a perfect collapse of
all velocity fluctuations and Reynolds stress near the stationary wall in Section 3.1. Ad-
ditionally, in Figure 3.3 we could notice that the shear stress (based on velocity slope)
near the stationary wall was not zero in any case. Consequently, streaks in all cases were
expected. Therefore, we can proven that the streamwise velocity field remains unaffected
by the movement of the opposite wall.

Pirozzoli et al. [3] shows instantaneous velocity fields for cases C00P10, C06P04
and C10P00 at y/h = −0.96 employing Reτ ≈ 250 in a box of size LX × LY × LZ =
12πh × 2h × 4πh. The authors appreciate a similar streaky pattern. According to the
non-dimensional parameter suggested by Lam & Banerjee [30], streaks are present if the
ratio of local turbulent kinetic energy production to local viscous dissipation is at least
of order unity. So, Pirozzoli et al. [3] estimates that the parameter is around 1.72 in all
cases at this position.

Curiously, despite the similarity among cases in instantaneous flows, mean flows show
the same tendency as in channel center, which denote the presence of counter-rotating
rolls. However, near the stationary wall the presence of these rolls is only clear in cases
C08P02 and C10P00, despite we saw in the channel center that the rolls are also present
in case C06P04. We can conclude that in case C06P04 rolls are weak in intensity as well
as they do not occupy the whole channel height. See in Figures 5.5, 5.8 and 5.10 that
rolls extend along the wall-normal dimension in cases C08P02 and C10P00.

In Figure 5.10 instantaneous filtered and mean streamwise velocity fields are depicted
near the moving wall, at y/h = 0.9269. Notice that there is almost no difference between
the instantaneous and mean fields observed near the stationary or the moving wall in pure
Poiseuille flow. This is evident as in Poiseuille flow both walls are stationary. See Section
1.3.
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(a) C00P10. Instantaneous (b) C00P10. Mean

(c) C02P08. Instantaneous (d) C02P08. Mean

(e) C04P06. Instantaneous (f) C04P06. Mean

(g) C06P04. Instantaneous (h) C06P04. Mean

(i) C08P02. Instantaneous (j) C08P02. Mean

(k) C10P00. Instantaneous (l) C10P00. Mean

Figure 5.8: Filtered streamwise velocity wall-parallel planes. y/h = −0.9178, near stationary wall.
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However, the moment that a slight Couette contribution is applied (i.e. C02P08),
streamwise fields are different near walls. See that in C02P08 we can distinguish two
types of structures: thin and elongated structures characteristic of Poiseuille flows and
thick structures from Couette flow in channel core (See Figure 5.1k). This suggestion was
also proposed by Pirozzoli et al. [3], who also analysed this fact through a two-points
correlation near the moving wall.

Something more interesting occurs in case C04P06, and specially in case C06P04 near
the moving wall. We see in Figures 5.10e and 5.10g, that the streaks tend to disappear.
Recalling Figure 3.3 and observing each slope near y/h = 1; that is, the shear stress,
we notice that shear stress is much lower in these cases than the other ones. Hence, as
Pirozzoli et al. [3] estimated, the ratio of local turbulent kinetic energy production to
local viscous dissipation is near 0.

One may say that this is also the case in the channel center for pure Poiseuille flow;
however, there are differences between Figures 5.1a and 5.10g. The dissimilarity arises
from the blocking effect of the moving wall in the C06P04 case, as proposed by Pirozzoli
et al. [3].

Finally, in cases C08P02 and C10P00 we find a perfect meandering pattern among
high-speed structures, while low-speed ones show thicker and shorter streaks. Here we can
perfectly see that there are two kind of patterns, and that the meandering ones compare
with the ones present at pure Poiseuille flow near the moving wall (Figure 5.10a).

On the other hand, mean streamwise field near the moving wall are not as clear as
instantaneous ones. One can only distinguish the presence of counter-rotating rolls from
cases C06P04 to C10P00. Notice however that near the stationary wall we could not find
these rolls for case C06P04 (See Figure 5.8h).

Finally, for a better understanding of the the ratio of local turbulent kinetic energy
production to local viscous dissipation, we have extracted Figure 5.9 from Pirozzoli et al.
[3], which shows the distribution of this parameter along wall-normal dimension among
different cases. Notice that in Figure 5.9, moving wall is located at y/h = −1 and
stationary wall at y/h = 1.

Figure 5.9: Ratio of local turbulent kinetic energy production (P ) to local viscous dissip-
ation (ε). C00P10 ; C02P08 ; C06P04 − · −· ; C08P02 ; C10P00 · · ·.
Image extracted from [3].
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(a) C00P10. Instantaneous (b) C00P10. Mean

(c) C02P08. Instantaneous (d) C02P08. Mean

(e) C04P06. Instantaneous (f) C04P06. Mean

(g) C06P04. Instantaneous (h) C06P04. Mean

(i) C08P02. Instantaneous (j) C08P02. Mean

(k) C10P00. Instantaneous (l) C10P00. Mean

Figure 5.10: Filtered streamwise velocity wall-parallel planes. y/h = 0.9269, near moving wall.
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5.3 Two-points correlation

In previous sections, we could analyse the structures distribution during the transition
and in pure Poiseuille flow near both walls. In this section, we are going to measure the
rolls size at each case through two-points correlation. Results will be compared with other
studies.

Two-points correlation is a mathematical tool commonly employed in the literature
in order to find repeating patterns, such as the presence of a periodic signal obscured by
noise, or identifying a fundamental frequency.

Two-points correlation of a random process, sometimes known as autocorrelation func-
tion, is defined as:

Rij (r, t) = ui (x+ r, t)uj (x, t)√
u2
i

√
u2
j

(5.3.1)

where ui is the fluctuating velocity component in i-direction, and r is an advancing step
in x-direction.

The possible values for Rij lie in the range [−1, 1], with 1 indicating perfect correlation
and −1 indicating perfect anti-correlation. Do not confound anti-correlation (−1) with
no correlation between values, in which Rij becomes 0.

According to Pope [1] in page 68, notice that a turbulent flow, after an initial transient
perior, can reach a statistically stationary state in which, even though the flow variables
(i.e. U (t)) vary with time, the statistics are independent of time.

Hence, our two-points correlations are independent of time, and only depend on the
advancing step.

Moreover, based on its definition in Eq. 5.3.1, a two-points correlation has the prop-
erties:

Rij (0, t) = 1 (5.3.2)

|Rij (r, t) | ≤ 1 (5.3.3)

Remind that our principal aim is to extract information on the width and length
of the counter-rotating rolls present in Couette-driven cases; that is, case C06P04 until
pure Couette. Consequently, among the possible two-points correlations, we are specially
interested in R11 in streamwise and spanwise directions applied in the channel center.
Notice that R11 correlates only the streamwise fluctuating velocity term along a given
direction. We saw in Section 5.1 that this term defines well the rolls.

The two-point correlation of our simulations along the streamwise direction at y/h =
0.065 was published in Gandía-Barberá et al. [23], from where we extracted Figures 5.11a
and 5.11b. Notice that both correlations were carried out on the large domain of length
128πh, in order to extract the proper length of the structures.

Additionally, see that both figures fulfil the conditions stated in Eq. 5.3.2 and
Eq. 5.3.3.
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(a) (b)

Figure 5.11: Autocorrelation of U at y/h = 0.065 in streamwise (a) and spanwise (b)
direction. Lines as in Table 3.1. Images extracted from [23].

The length of the rolls can be gained from Figure 5.11a. The extremely long domain
employed shows the second minimum of the correlation for the first time; this could not
happen in previous studies such as Pirozzoli et al. [3] or Tsukahara et al. [20]. Hence,
the length of the longest structures, which is half of the distance between two consecutive
minima of the curve, can be estimated in pure Couette flow as 50h, approximately.

Notice that the length of these structures gets shorter when the Couette contribution
is reduced. This fact could not be seen in the small domain fields depicted in Section
5.1. Finally, the different minima cannot be truly appreciated beyond C06P04, as we also
stated from Figure 5.1.

Recalling Figure 5.2, which shows a filtered streamwise velocity field in the center of
the large domain, we can estimate that a low- or high-speed structure has an approximate
length of 50h.

Furthermore, in an interesting study M. Lee and Moser [8] performed two-points cor-
relations in a box of length 100πh for Couette flows at Reτ = 220 and Reτ = 500. For
the first case, the authors concluded that streamwise oscillations have a wavelength of
25πh; however, they could no extract information from the case at Reτ = 500, because
the second minimum was not present. This fact suggest us that the length of the rolls is
highly dependent on the friction Reynolds number of the simulation.

On the other hand, two-points correlation of U in spanwise direction (Figure 5.11b)
estimates that the width of the rolls is approximately 2.5h. This value agrees with the
results in Avsarkirov et al. [14], Kraheberger et al. [16], and M. Lee and Moser [8].
However, it differs from Tsukahara et al. [20] and Pirozzoli et al. [3]. These two authors
give a smaller value: 1.3h and 1.7h, respectively. The main reason for this discrepancy is
the width and length of their domain, which are not sufficient to simulate a full cycle of
the rolls.

Additionally, Avsarkirov et al. [14] showed that this spanwise length remained constant
for Couette flows from Reτ = 125 to Reτ = 550 in a domain of size LX × LY × LZ =
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20πh×2h×6πh. This is also confirmed by M. Lee and Moser [8] at Reτ = 500 in a larger
domain. Finally, Kraheberger et al. [16] estimated a similar value of the rolls spanwise
length at Reτ = 1000, without wall transpiration.

Therefore, we can conclude that the spanwise length of the rolls remains independent
from friction Reynolds number in the range from Reτ = 125 to Reτ = 1000.

5.4 Spectral densities

Another mathematical tool for the study of turbulence is the velocity spectra. This tool
shows how the velocity structure sizes are distributed. A velocity spectra is based on the
Fourier series of the velocity. Hence, if the wavenumber associated to a given length l is
k = 2π/l, streamwise velocity is estimated as:

u (x) =
∫ ∞
−∞

û (k) eikxdk (5.4.1)

This representation in Fourier series (Eq. 5.4.1) is only valid in homogeneous direc-
tions, such as our streamwise and spanwise directions.

Indeed, a Fourier representation makes easier to estimate the energy associated to a
given range of scales or wavelengths.

Moreover, Fourier coefficients in Eq. 5.4.1 could be considered as u components in
different bases specified by vk (x) = eikx, which are orthogonal.

As a consequence, the scalar product between u and the bases v is expressed as the
averaged sum of the products of each vector component. This leads us to Perceval the-
orem:

u · v = 〈u (x) v (x)〉 = 2π
L

∫ ∞
−∞

û (k) v̂ (k)dk (5.4.2)

For the particular case u = v, Eq. 5.4.2 represents the mean square of variable u.
Consequently, if u is a velocity, the term |û (k) |2 represents the energy spectra, and
estimates the energy related to the wavenumber k.

However, for representing we are not interested in comparing k with k + 1, but 101 k,
102 k, and so on. Therefore, it is more useful to represent |û (k) |2 as a function of log (k).

This approach makes us lose the main property of an integral; that is, calculate the
accumulated energy in a range of wavenumbers as the area enclosed by the |û (k) |2 curve.
Thus, in order to maintain the attribute, we will not represent the original spectra, but
the premultiplied spectra k |û (k) |2 as a function of log (k):

〈u2〉 =
∫ ∞

0
|û (k) |2dk =

∫ ∞
0

k|û (k) |2d (log k) (5.4.3)

Through the premultiplied spectra, sometimes referred as velocity spectra, we will
estimate which are the wavenumbers that carry the largest amount of energy in our
simulations, as other authors have already done; i.e. M. Lee and Moser [8] or Pirozzoli et
al. [3].
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Chapter 5. Characterization of velocity fields

The streamwise velocity spectra of our simulations in the large domain is depicted in
Figure 5.12. Moreover, it was published in Gandía-Barberá et al. [23], from where Figure
5.12 is extracted.

Figure 5.12: Lines as in Table 3.1. Spectral density at y/h = 0.065 for U . The thin line
represents the 10% of the energy maximum and the thick one the 75%. In every case,
LX = 128πh.

Figure 5.12 shows how the energy is organized among the streamwise (X-axis) and
spanwise (Y-axis) wavelengths in each simulation case. Notice that it is much easier to
identify the rolls wavelengths in Figure 5.12 than in Figure 5.11, specially for intermediate
cases; i.e. C04P06.

By analysing Figure 5.12, we extract similar conclusions about the length and width
of the rolls as in Figure 5.11. Notice that the thick line of pure Couette flow is highly
concentrated in λx/h = 100 and λz/h = 5. Something similar occurs at C08P02; however,
now the energetic region moves to λx/h = 70. At C06P04 these energetic structures are
still present, but the region has moved to λx/h = 50, as well as it has expanded.

Case C04P06 also shows a energetic region far from low values of λx/h; nevertheless,
the thick line also covers the small wavelengths, which did not happen in previous cases.
This energetic region present in C04P06 is similar to the one we find in C02P08 and
C00P10. Therefore, we conclude that rolls are no longer present in case C04P06.

It is also relevant to indicate that according to Figure 5.12, Figure 5.11 and streamwise
velocity fields in Section 5.1, there is a smooth and stepped transition from the presence
of the rolls to the complete disappearance of them. This is an important conclusion we
did not expect at the beginning of our study.

On the other hand, M. Lee and Moser [8] showed the premultiplied spectra of uiuj
along the streamwise and spanwise direction for different Couette flows and for a Poiseuille
flow.

The first aspect the authors notice is that the spectra of each Reynolds component
uiuj close enough to the wall (y+ < 60) and for small wavelengths is the same regardless
of Reynolds number and including the Poiseuille flow. This occurs due to the approximate

67



5.4. Spectral densities

universality of small-scale near-wall turbulence, as we stated in Section 1.1 for turbulent
small-scales.

Furthermore, in streamwise Couette flow spectra at Reτ = 220 the authors find a
strong peak at λx/h = 78 that covers the whole wall-normal dimension of the domain.
This is similar to what we could demonstrate in Figure 5.5 or in Figure 5.4. The same
occurs in spanwise direction.

The authors also notice that the peaks of Eww in spanwise direction are stronger far
from the channel center. This is in accordance with Figure 5.7 at C10P00, where we see
that the strongest structures are aligned near both walls.

Finally, the authors also perform this study in a Couette flow at Reτ = 500. They
show that the premultiplied spectra of u along the streamwise direction is distributed
across a range of wavenumbers. This differs from the results at Reτ = 220 and our
results at Reτ = 125. However, authors noticed through two-points correlations that
their domain at Reτ = 500 is not long enough to capture these energetic structures.
Thus, their assessments regarding this case cannot be definitive.

It is also relevant to point that M. Lee and Moser [8] could not probe the existence of
strong counter-rotating rolls in pure Couette flow at Reτ = 93.

We will not comment here the pre-multiplied spectra calculated by Pirozzoli et al. [3],
because the domain employed is too small to extract information about the most energetic
structures in any case. Therefore, what we see in their spectra is only the approximate
universality of small-scale near-wall turbulence described by M. Lee and Moser [8]. This
fact makes their spectra for pure Poiseuille and pure Couette flows really similar.
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Chapter 6

Vortex structures and classification

Our last analysis is focused on the characteristics of the vortex structures present in each
case. This kind of study is not carried out frequently, in fact among our references only in
Kraheberger et al. [16] performed a vortex analysis of several Couette flows at Reτ = 1000
with different transpiration flow velocities. Also C. Prus [24] performed a vortex analysis
on Poiseuille flows, but the author focused primarily on square ducts, and slightly on
channel flows.

In this chapter we will first explain our results of the percolation analysis. All the
theory behind this analysis as well as the vortex identification method was described in
Section 4.2. However, in Section 6.1 we show for each case the mean percolation limit and
standard deviation among instantaneous simulations. We will also see the distribution
of discriminant standard deviation along the wall-normal direction, as in Figure 4.2 on
Section 4.2.

6.1 Percolation analysis

Recalling the explanation in Section 4.2, percolation analysis is necessary in order to
find the optimal value for the threshold parameter α in vortex identification method,
according to Equation 4.2.5. The relevance for this value stems from its influence on the
vortex cluster identification. As explained, for near-zero values of α, identified cluster
would merge until only a single large object remains in the channel. On the contrary,
near-one values of α would lead the method to identify few small clusters, which would
be dispersed in the channel. For detailed information, the interested reader is referred to
Del Alamo et al. [26].

This explanation is quite comprehensible by observing Equation 4.2.5. For near-zero
values of α, the threshold becomes zero; which is a poor filter in Galilean invariant vortex
identification techniques, as stated by Chakraborty et al. [25]. For large values of α, the
threshold becomes highly restrictive; thus, the scheme identifies just few vortex points.

No more explanation will be given about the percolation analysis steps as they were
previously described in Section 4.2.
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6.1. Percolation analysis

The mean optimal value for α at each simulation case is presented in Table 6.1 as
variable αopt. We also found interesting to add in Table 6.1 the standard deviation of
the optimal α’s obtained in each instantaneous simulation of a given case. Standard
deviation is defined as variable

(
α2
)1/2

. According to a normal distribution, by adding
and subtracting the deviation to the mean value one can estimate with a probability of
approximately 70% where the correct value of αopt is. These limits are also described in
Table 6.1.

Case αopt −
(
α2
)1/2

αopt αopt +
(
α2
)1/2 (

α2
)1/2

C00P10 0.0070 0.0086 0.0103 0.0016

C01P09 0.0060 0.0075 0.0090 0.0015

C02P08 0.0063 0.0079 0.0095 0.0016

C03P07 0.0064 0.0080 0.0096 0.0016

C04P06 0.0056 0.0077 0.0098 0.0021

C05P05 0.0061 0.0081 0.0100 0.0019

C06P04 0.0057 0.0076 0.0095 0.0019

C07P03 0.0069 0.0088 0.0107 0.0019

C08P02 0.0075 0.0094 0.0112 0.0018

C09P01 0.0089 0.0105 0.0121 0.0016

C10P00 0.0094 0.0109 0.0125 0.0016

Table 6.1: Mean optimal percolation limit at each case, as αopt. Standard deviation among
instantaneous results is presented as

(
α2
)1/2

. By subtracting and adding the deviation to
the mean value, the range of αopt is estimated with 70% of probability.

By comparing our optimal percolation limit at pure Poiseuille flow in Table 6.1 with
the value obtained by Del Alamo et al. [26], we see that the difference is negligible. Notice
that the authors employ the same value for all their simulation cases at 185 ≤ Reτ ≤ 1901.
Additionally, we see that all our results are in the same order as the one estimated by
the authors. Regarding the analysis of C. Prus [24], we can not compare our results
because the author employs a different vortex identification method, so the author does
not calculate the discriminant ∆.

Finally, the study of Kraheberger et al. [16] employed a constant threshold, so Equa-
tion 4.2.5 does not apply. As a consequence, their distribution of vortices along the
wall-normal direction is more abundant near the walls. This is not our case due to em-
ploying a variable threshold. Following Kraheberger et al. [16], in Figure 6.1 we have
plotted the mean percentage of identified vortices along the wall-normal direction for our
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analysis cases. This defined by parameter φ (y), which is described in Equation 6.1.1.

φ (y) =
∑
x

∑
z

H (x, z, y) · 100
NX NZ

(6.1.1)

In this equation, H (x, z, y) is the Chong matrix, explained in Section 4.2.
Notice that in Figure 6.1a the percentage of vortices along the wall-normal direction

in C10P00 remains constant around 8% across the channel in our study. This differs from
the φ (y) distribution of a Couette flow in Kraheberger et al. [16], obtained through a
constant threshold. Regarding the other cases, all of them remain in a range between 5%
and 12%, despite case C04P06 which shows a peak of 16% near the moving wall.

It is relevant to see in Figure 6.1a that case C06P04 shows a clear decrease of vortex
population near the moving wall. We saw previously in Table 3.1 or in Figure 3.3, that
this case has a very low shear stress near the moving wall, hence its friction Reynolds
number stays around Reτ ≈ 13. In this region we assume that the flow is laminar.
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Figure 6.1: Lines as in Table 3.1. Percentage of points where Chong identification method
was positive depicted along (a) y/h, (b) y+. For each case its corresponding αopt presented
in Table 6.1 was employed.

Furthermore, it is also interesting to depict the standard deviation of the discriminant
∆ averaged among the instantaneous simulations of a given case. This distribution shows
how the variable threshold changes along the wall-normal direction from pure Poiseuille
flow to pure Couette.

In Figure 6.2a, we appreciate this distribution along y/h. Notice also that only cases
C00P10 and C10P00 show an evident symmetry. The remaining cases show values of ∆
almost negligible near the moving wall; curiously all of them are transition cases. Previous
authors have not commented this fact in their studies, as none of them conducted a
percolation analysis along a stepped transition from Poiseuille to Couette flow.

However, by comparing Figure 6.2a with Figure 6.1a, we notice that despite the vari-
able threshold decreases notably near the moving wall, the percentage of vortex identified
in this region for transition cases remains constant.
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6.1. Percolation analysis

In Figure 6.2b, the same distribution is depicted in wall-units near the stationary
wall. We see a similar behaviour as the one depicted in Figure 4.2, and described by Del
Alamo et al. [26]. See that in all cases the standard deviation has a peak near y+ ≈ 10;
that is, the threshold of the identification method becomes more restrictive in this region.
Recalling Figure 3.1a and Figure 5.9, we notice both peaks of fluctuating streamwise
component u′ and turbulent production near y+ ≈ 10; therefore, it is comprehensive to
find a numerous amount of vortex points.

(a) (b)

Figure 6.2: Lines as in Table 3.1. Distribution of the standard deviation of discriminant
∆ along the wall-normal direction depicted along (a) y/h, (b) y+.

By observing the vortex distribution parameter φ (y) in Kraheberger et al. [16], we
see that a constant threshold identifies a larger amount of vortices near both walls than in
the channel center, for a pure Couette flow. Applying a variable threshold depending on
wall distance as specified by Del Alamo et al. [26], the threshold becomes more restrictive
near the walls at pure C- and P- flows, and remains less restrictive in the channel center.
Hence, we ensure that near-wall vortices do not influence our measures in the channel
center, which is more important in our study.

Finally, Kraheberger et al. [16] proposes the integral of φ (y) for estimating the part
of volume of the channel where vortical structures exists. Following this statement, we
have performed a numerical integration of φ (y) according to Simpsons rule. See Equation
6.1.2.

Vφ =
∫ h

−h
φ (y) dy ≈

NY −2∑
i=1

∫ hi+2

hi

φ (y) dy =
NY −2∑
i=1

hi+2 − hi
6 · (φ (hi) + 4φ (hi+1) + φ (hi+2))

(6.1.2)
For the cases depicted in Figure 6.1 and Figure 6.2, we have estimated the volume

percentage Vφ presented in Table 6.2. Recalling the value estimated by Kraheberger et
al. [16] for a pure Couette flow, the authors state Vφ = 34.25. This value is similar to
our result at C10P00. Hence, we conclude that the variable threshold adapts itself to
decrease the identified vortex population near walls, but at the same time it increases
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Chapter 6. Vortex structures and classification

this population in the channel center. That is why despite observing strong peaks in φ at
Kraheberger et al. [16], their value of Vφ remains similar to ours.

Finally, volume percentage Vφ remains in the same order at all cases. This is in
accordance with the depicted distribution of φ in Figure 6.1. Notice that the minimum
value of Vφ appears in case C06P04 due to its low shear stress near the moving wall.

Case C00P10 C02P08 C04P06 C06P04 C08P02 C10P00

Vφ (%) 28.626 28.435 28.811 27.616 29.058 28.126

Table 6.2: Percentage of volume occupied by vortices at each case. For each case its
corresponding αopt presented in Table 6.1 was employed.

Once presented the results of our percolation analysis, and compared them with the
results after employing a constant threshold in a pure Couette flow, we are going to show
the vortex distributions at diverse wall-parallel planes. Additionally, these planes will be
compared with the streamwise velocity wall-parallel planes explained in Section 5.1.

6.2 Vortex distribution along wall-parallel planes

In this section the distribution of vortices in wall-parallel planes at diverse distances from
the wall are presented. Then, the distributions will be analysed using statistical methods
in order to extract relevant conclusions. In this process, the vortex volumes around three
regions will be calculated among cases, and later their Probability Distribution Function
(PFD) compared.

In Figure 6.3 diverse wall-parallel planes of a Chong identification matrix are depicted
near the stationary wall at y/h = −0.9178, as well as near the moving wall at y/h =
0.9269. The yellow points denote vortex points, where the value of the identification
matrix is 1. On the contrary, in the blue region no vortex was detected by the Chong
method.

Among the wall-parallel planes near the stationary wall there is a notorious similarity.
All cases show vortex clusters following a streaky pattern. The similarity among cases in
this domain region was previously observed in the instantaneous streamwise velocity fields
in Figure 5.8. Moreover, other magnitudes, such as the mean streamwise velocity profile
(Figure 3.3), the Reynolds stress (Figure 3.2b) and the velocity fluctuating components
(Figure 3.1 and Figure 3.2a) show a great similarity in this near-wall region around y+ ≈
10.

On the contrary, the wall-parallel planes near the moving wall do not show a streaky
pattern in cases C04P06 and C06P04. In these cases vortices are gathered in thicker
and compact clusters, which decrease notably in case C06P04. As commented before,
case C06P04 has a very poor friction Reynolds stress in these region. Additionally, both
commented cases described the same tendency in their instantaneous streamwise velocity
fields in Figure 5.10.
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(a) C00P10. Stationary wall (b) C00P10. Moving wall

(c) C02P08. Stationary wall (d) C02P08. Moving wall

(e) C04P06. Stationary wall (f) C04P06. Moving wall

(g) C06P04. Stationary wall (h) C06P04. Moving wall

(i) C08P02. Stationary wall (j) C08P02. Moving wall

(k) C10P00. Stationary wall (l) C10P00. Moving wall

Figure 6.3: Chong matrix wall-parallel planes near the stationary wall (left) at y/h = −0.9178, and
near the moving wall (right) at y/h = 0.9269. 74
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(a) C00P10. Channel center (b) C02P08. Channel center

(c) C04P06. Channel center (d) C06P04. Channel center

(e) C08P02. Channel center (f) C10P00. Channel center

Figure 6.4: Chong matrix wall-parallel planes in the channel center at y/h = 0.065.

Finally, wall-parallel planes at the channel center are depicted in Figure 6.4. See that the vortex
population increases in cases C08P02 and C10P00 in this region. Remind that in Section 5.1 the
presence of large counter-rotating rolls was demonstrated in these cases. It may be a relation between
these structure and the increase of vortex clusters in the channel center. However, notice that more
vortices in pure Poiseuille case were detected than in transition cases.

As one can see, a visual analysis of Figure 6.3 and Figure 6.4 is not optimal, as few conclusions can
be extracted. Therefore, the next step is to perform a statistical analysis of the volume of the vortices
present in the regions depicted. All volumes were estimated using Algorithm 3 and 4, described in
Section 4.5. Two-dimensional approaches were considered, such as measuring stream- and spanwise
dimensions at the presented planes, or measuring vortex areas, however the results could not shed
light on vortex tendencies in these regions.

The regions were arbitrarily described according to the following wall-distances, where subscript
s denotes from stationary wall, and m from moving wall.

• Near stationary wall: from y+
s ≈ 1 to y+

s ≈ 20.

• Channel center: from y/h ≈ −0.25 to y/h ≈ 0.25.

• Near moving wall: from y+
m ≈ 1 to y+

m ≈ 20.
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6.2. Vortex distribution along wall-parallel planes

(a) (b)

Figure 6.5: Lines as in Table 3.1. Probability plot of vortex volumes (a) near the stationary
wall, and (b) near the moving wall. For each case its corresponding αopt presented in Table 6.1
was employed.

Figure 6.6: Lines as in Table 3.1. Probability plot of vortex volumes in the channel center
region. For each case its corresponding αopt presented in Table 6.1 was employed.

For all distributions, the vortex volumes in the regions previously described were extracted
from twelve instantaneous cases. All Figures use a Lognormal distribution. In Figure 6.5a the
probability plot in the region near the stationary wall is depicted. Notice a perfect collapse
among all simulation cases. Hence, in this region we see that the vortex volumes follow the
same distribution independently of the case. Even the biggest volumes present remain in the
same range, around 10−1h3.

This result stays in accordance with the similarity of the streamwise velocity structures in
this region, as seen in Figure 5.8. Therefore, Figure 6.5a denotes a link between the vortex
volumes and the streamwise velocity structures.
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Distributions near the moving wall in Figure 6.5b only achieve a good collapse in pure
Couette and Poiseuille flows. However, transition cases show bigger vortex clusters in
this region in comparison with pure cases, specially in case C04P06. See that the largest
scales in case C04P06 are four times bigger than in pure cases. Recalling the streamwise
velocity fields near the moving wall, depicted in Figure 5.10, one can see that case C04P06
shows a clear different pattern, in which the structures are more compact and thicker.
Nevertheless, in the remaining cases a streaky pattern is defined, which develops elongated
and thin structures. This is specially notorious in pure cases.

Moreover, we saw in Figure 6.1a that case C06P04 has a reduced vortex population
near the moving wall. This was also observed in the measures gathered, which are 50%
less than other cases.

Therefore, by comparing Figure 6.5b with Figure 5.10, one can understand why pure
cases have vortices with less volume than in transition cases.

Before analysing the channel center, see in Figure 6.5 that most of the probability is
related to small volumes in all cases. According to the volume data from Algorithm 3,
each vortex cluster introduces one volume value; hence, many small vortex clusters were
identified in all cases, which develop a great probability around them. On the contrary, a
large cluster, if present, only introduces one value; therefore, despite it is relevant for the
study, the graphics show that its probability is pretty low. One must bear this in mind,
in order to not neglect large volume values present at very low probabilities.

Furthermore, in order to check if the small clusters population was an effect of the
selected optimal percolation limit (See Table 6.1), the same volume analysis was performed
employing a more restrictive threshold; that is, 1.7 times αopt. However, the results that
are not presented here, showed the same distributions for all cases and regions.

The vortex volume distribution in the channel center is presented in Figure 6.6. Here
a good collapse is achieved until a vortex volume equal to 0.04h3. This fact indicates
that the channel center has also a great population of small vortices. However, it is more
interesting to observe the results in Figure 6.6 once the collapse is lost. Pure Poiseuille
flow reaches all the probability in a region near 0.1h3. Then, each transition case in a
stepped way reaches higher volumes in the channel center. And finally, cases C08P02 and
C10P00 collapse at the end of the curves in a region around h3.

By comparing Figure 6.6 with the instantaneous streamwise velocity structures in the
channel center, depicted in Figure 5.1, one notice that the size of the structures increase
gradually from pure Poiseuille to pure Couette flow. This is also the result observed in
the vortex volume probability.

As a conclusion, statistical distributions of vortex volumes in diverse domain regions
following a stepped transition from P- to C- flow are presented for the first time. A link
between the vortex volumes and the two-dimensional representations of the instantaneous
streamwise velocity structures is observed. As described by velocity magnitudes and
Reynolds stress, the region near the stationary wall remains unaffected by the type of
flow simulated. However, this is not the case near the moving wall as observed in Figure
5.10 and Figure 6.5b. This idea is also supported by Pirozzoli et al. [3]. Finally, in the
channel center the volume of the largest clusters grow gradually in accordance with the
Couette contribution, increasing one order of magnitude from P-flow as soon as the very
large counter-rotating rolls are present in the flow.
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Notice that wall-parallel vortex distributions in these regions (Figures 6.3 and 6.4)
were not useful at all, as they showed similar scenarios among the cases in a given region.
Additionally, they could not describe the volume patterns.

6.3 Flow properties on vortex clusters

In this section diverse flow parameters are analysed on vortex clusters, in order to find
any tendency present. For the regions presented in Section 6.2, in each wall-parallel plane
each flow parameter (i.e. positive Reynolds stress) values are only considered on vortex
points. Then, these points are gathered into clusters, and their position is compared
with the filtered instantaneous streamwise velocity structures. The filter is the standard
deviation. Therefore, any tendency regarding the position of the vortices will be observed.
Additionally, in order to obtain an accurate result, instead of counting number of clusters,
their area is classified. The classification is done by observing which kind of regions the
vortex touches. According to the three filtered regions, the classification is:

• H: high-speed structure.

• L: low-speed structure.

• N: neutral region.

• HN: high-speed and neutral region.

• NL: neutral region and low-speed structure.

• HNL: all regions touched.

For obtaining the results in this section, Algorithm 5 and its local functions described
in Section 4.6 were employed. The classified parameters are the Reynolds stress and the
vorticity components ~ω.

In the channel center, Table 6.3 shows a greater amount of classified vortex area than
near the walls. As seen in Figure 6.1, the presence of vortices decrease in the near-wall
positions.

Notice a greater presence of vortices with positive Reynolds stress, specially in cases
where the counter-rotating rolls are not present. Recalling Figure 3.2b, see that the
mean Reynolds stress has positive regions in the channel center for Poiseuille dominant
cases. The presence of negative Reynolds stress in vortices increases in Couette like flows;
however, there is not a clear difference. Consequently, we propose a more conservative
threshold for 〈uv〉.

It is relevant to indicate that in Table 6.3 most of the vortices in all classifications
are rarely located on regions of high- (H) or low-speed (L) structures. According to the
classification, they are usually located on regions where a neutral zone (N) is present; that
is, on the transition between high- and low speed regions.

Regarding the distribution of the vorticity components, ωx and ωy follow the same
tendency among the different cases, in which they tend to be located in neutral zones. In
this case, it seems that region NL is predominant.
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On the contrary, vorticity component ωz shows an equilibrated pattern in case C00P10,
but as soon as a Couette contribution is present, negative ωz vortices are much more
predominant. Recalling the definition of ωz as ωz = ∂v/∂x− ∂u/∂y, a negative vorticity
means that the wall-normal derivative of u is larger than the streamwise derivative of v.
In Figure 3.3 one can see how the pure Poiseuille flow achieves a maximum of U in the
channel center, while transition and pure Couette cases have a constant increase of U
in this region. Hence, one can expect that in channel center the tendency is to achieve
negative values of ωz.

Table 6.4 presents the vortex area classification in the region near the stationary wall.
As we could observe in previous analysis in Section 3.1 and Section 5.2, the flow conditions
in this region remain little affected by the type of flow simulated. See consequently how the
same tendencies and similar values are achieved in each classification among the diverse
cases. Here, as well as in the channel center, we see that vortices tend to be located where
a neutral region is present.

Regarding the Reynolds stress classification, vortices with positive values are usually
located on NL zones, while vortices with negatives values tend to HN zones. As NL
regions denote fluctuating u < 0, and HN regions u > 0, this tendency indicates that near
the stationary wall, the fluctuating v is lower than 0.

The vorticity components ωx and ωy follow a similar trend as in the channel center.
However, component ωz shows a prevailing negative distribution. Recalling the explan-
ation for this fact, Figure 3.3 shows even a greater wall-parallel derivative of u in this
region, and similar among cases. Moreover, we could observe in Figure 5.8 that the in-
stantaneous structures near the stationary wall show a clear thin and streaky pattern;
hence, great vortices of negative ωz will touch all kind of regions, so HNL predominates.

Table 6.5 presents the vortex area classification near the moving wall. It was observed
in previous Section 3.1 and Section 5.2 that the flow conditions in this region are highly
dependent on the flow simulated. Recalling Figure 6.1a, see that case C04P06 shows a
vortex peak near the moving wall, while case C06P04 shows a decrease in vortex popula-
tion. As a result, a greater amount of area is classified in case C04P06, and the opposite
occurs in case C06P04.

Regarding the Reynolds stress classification, the pattern previously observed near the
stationary wall is lost. However, the vortices still tend to occupy neutral regions.

Notice that both vorticity components ωx and ωy describe separately the same dis-
tribution in their positive and negative values. However, ωz shows a curious pattern, in
which positive values have a larger area from pure Poiseuille until case C04P06. Then,
the opposite occurs. See that the transition takes place when the counter-rotating rolls
appear in the flow; that is, case C06P04 as described in Section 5.1.

Once again in Figure 3.3, observe that the cases in which positive ωz predominates,
the slope of U becomes negative; that is, the wall-parallel derivative of U . On the other
hand, from C06P04 to C10P00 the slope is positive, which also develops a positive ωz.
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Parameter
C00P10 C02P08

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.281 0.256 1.820 1.195 2.186 1.083 0.301 0.281 2.680 2.017 4.273 2.506

〈uv〉 < 0 0.345 0.229 1.916 1.519 1.909 0.915 0.242 0.229 1.711 1.017 1.478 0.404

ωx > 0 0.323 0.243 2.046 1.532 2.281 0.916 0.277 0.286 2.338 1.712 3.149 1.358

ωx < 0 0.332 0.249 1.979 1.494 2.233 0.947 0.292 0.250 2.324 1.821 3.114 1.412

ωy > 0 0.348 0.270 2.113 1.421 2.044 0.681 0.310 0.306 2.487 1.633 2.894 1.028

ωy < 0 0.355 0.271 2.110 1.412 2.019 0.616 0.311 0.280 2.446 1.641 2.934 0.972

ωz > 0 0.335 0.225 1.956 1.681 2.107 1.120 0.226 0.200 1.686 1.097 1.754 0.562

ωz < 0 0.291 0.247 1.921 1.333 2.359 1.168 0.335 0.306 2.830 2.215 4.509 2.813

Parameter
C04P06 C06P04

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.329 0.356 2.991 2.183 5.204 2.699 0.319 0.392 3.021 1.806 4.941 2.122

〈uv〉 < 0 0.247 0.264 1.796 0.926 1.726 0.427 0.257 0.264 1.831 0.911 1.702 0.419

ωx > 0 0.300 0.304 2.550 1.781 3.828 1.516 0.278 0.314 2.624 1.554 3.790 1.279

ωx < 0 0.298 0.313 2.570 1.807 3.797 1.481 0.317 0.346 2.510 1.552 3.539 1.205

ωy > 0 0.321 0.358 2.689 1.735 3.540 1.028 0.315 0.371 2.699 1.420 3.479 0.914

ωy < 0 0.307 0.354 2.693 1.712 3.482 1.085 0.317 0.361 2.721 1.463 3.185 0.865

ωz > 0 0.212 0.240 1.758 1.054 2.025 0.634 0.231 0.256 1.865 0.936 2.020 0.447

ωz < 0 0.354 0.367 3.174 2.350 5.503 2.940 0.351 0.385 3.148 1.988 5.211 2.417

Parameter
C08P02 C10P00

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.409 0.579 3.330 1.780 4.938 1.585 0.436 0.505 3.102 1.424 3.556 0.877

〈uv〉 < 0 0.511 0.404 2.734 1.613 2.760 0.713 0.660 0.420 3.086 1.991 2.809 0.887

ωx > 0 0.506 0.509 3.144 1.870 4.030 1.141 0.573 0.470 3.272 1.953 3.438 0.929

ωx < 0 0.438 0.491 3.199 2.021 4.368 1.313 0.568 0.472 3.267 1.869 3.415 0.901

ωy > 0 0.484 0.537 3.332 1.663 3.689 0.870 0.610 0.520 3.346 1.630 3.062 0.664

ωy < 0 0.512 0.547 3.299 1.806 3.813 0.903 0.586 0.498 3.344 1.688 3.019 0.660

ωz > 0 0.397 0.380 2.374 1.287 2.416 0.552 0.467 0.360 2.413 1.242 2.043 0.478

ωz < 0 0.542 0.585 3.857 2.353 5.865 1.995 0.663 0.558 3.948 2.302 4.718 1.511

Table 6.3: Vortex clusters area classified according to flow properties. Channel center. For each case
its corresponding αopt presented in Table 6.1 was employed.
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Parameter
C00P10 C02P08

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.185 0.237 2.178 1.383 3.089 1.282 0.194 0.232 2.241 1.469 3.458 1.477

〈uv〉 < 0 1.070 0.063 1.846 3.388 0.666 0.885 1.023 0.068 1.969 3.431 0.660 0.824

ωx > 0 0.419 0.183 1.826 3.118 2.186 1.972 0.406 0.185 1.946 3.098 2.383 2.214

ωx < 0 0.410 0.184 1.869 2.974 2.265 2.149 0.399 0.181 1.932 3.197 2.473 2.273

ωy > 0 0.473 0.154 1.837 2.576 1.946 1.990 0.465 0.162 2.014 2.619 2.077 2.084

ωy < 0 0.482 0.155 1.875 2.615 1.960 1.986 0.469 0.162 1.987 2.671 2.178 2.027

ωz > 0 0.057 0.024 1.170 0.589 1.010 0.227 0.071 0.029 1.246 0.718 1.008 0.264

ωz < 0 0.531 0.244 2.424 4.894 2.785 6.696 0.535 0.249 2.612 4.850 3.043 6.804

Parameter
C04P06 C06P04

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.195 0.214 2.105 1.413 3.060 1.237 0.180 0.190 1.997 1.340 2.684 1.154

〈uv〉 < 0 0.991 0.056 1.839 3.180 0.618 0.739 0.945 0.047 1.784 2.984 0.524 0.503

ωx > 0 0.399 0.161 1.877 2.881 2.212 1.612 0.395 0.146 1.775 2.838 1.932 1.712

ωx < 0 0.403 0.165 1.833 2.990 2.225 2.053 0.382 0.148 1.810 2.747 2.057 1.504

ωy > 0 0.459 0.145 1.889 2.467 1.917 1.651 0.435 0.129 1.815 2.363 1.697 1.550

ωy < 0 0.443 0.145 1.862 2.590 1.952 1.834 0.457 0.131 1.822 2.309 1.737 1.331

ωz > 0 0.057 0.024 1.101 0.632 0.887 0.215 0.067 0.024 1.108 0.587 0.799 0.157

ωz < 0 0.540 0.222 2.443 4.794 2.874 6.008 0.518 0.194 2.394 4.610 2.651 4.878

Parameter
C08P02 C10P00

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.167 0.143 1.536 1.035 1.934 0.868 0.215 0.149 1.804 1.380 1.917 0.966

〈uv〉 < 0 0.749 0.041 1.344 2.314 0.352 0.327 0.980 0.040 1.525 2.633 0.368 0.369

ωx > 0 0.318 0.109 1.437 2.171 1.390 1.231 0.412 0.117 1.633 2.879 1.374 1.184

ωx < 0 0.331 0.113 1.413 2.254 1.406 1.184 0.423 0.113 1.655 2.770 1.442 1.134

ωy > 0 0.389 0.103 1.484 1.812 1.127 0.990 0.475 0.105 1.671 2.294 1.185 1.044

ωy < 0 0.355 0.102 1.418 1.807 1.177 1.029 0.492 0.103 1.642 2.227 1.211 0.978

ωz > 0 0.060 0.022 0.938 0.568 0.602 0.155 0.084 0.022 1.018 0.588 0.507 0.126

ωz < 0 0.466 0.146 1.860 3.455 1.816 3.379 0.581 0.148 2.163 4.565 1.882 3.831

Table 6.4: Vortex clusters area classified according to flow properties. Near the stationary wall. For
each case its corresponding αopt presented in Table 6.1 was employed.
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Parameter
C00P10 C02P08

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.479 0.353 2.585 1.617 2.099 0.863 0.318 0.229 2.261 2.617 3.068 2.216

〈uv〉 < 0 0.572 0.492 3.253 1.792 2.099 0.632 0.443 0.269 2.909 3.020 3.074 1.589

ωx > 0 0.529 0.387 3.064 2.244 2.801 1.145 0.363 0.211 2.544 3.124 3.603 3.030

ωx < 0 0.517 0.384 3.089 2.164 2.678 1.198 0.336 0.223 2.617 3.232 3.589 2.763

ωy > 0 0.547 0.421 3.133 2.056 2.422 0.786 0.428 0.264 2.672 3.366 3.494 2.329

ωy < 0 0.555 0.424 3.143 2.004 2.474 0.766 0.368 0.215 2.858 3.271 3.636 2.552

ωz > 0 0.652 0.518 3.992 3.319 4.549 5.223 0.530 0.315 3.960 5.300 6.338 10.24

ωz < 0 0.200 0.150 1.244 0.637 0.742 0.126 0.029 0.016 0.291 0.385 0.298 0.114

Parameter
C04P06 C06P04

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.351 0.217 2.542 2.736 4.373 4.126 0.116 0.107 1.206 1.294 2.332 2.047

〈uv〉 < 0 0.466 0.320 3.444 3.370 4.794 4.550 0.143 0.100 1.102 0.950 1.339 0.860

ωx > 0 0.385 0.219 2.819 3.551 5.483 5.207 0.126 0.106 1.221 1.244 2.054 1.561

ωx < 0 0.328 0.248 3.016 3.422 5.224 5.936 0.135 0.097 1.150 1.246 2.012 1.816

ωy > 0 0.357 0.298 3.444 3.785 5.510 3.967 0.162 0.108 1.262 1.237 1.897 1.408

ωy < 0 0.489 0.279 3.447 3.956 5.469 4.044 0.147 0.127 1.316 1.185 1.901 1.242

ωz > 0 0.586 0.363 4.499 6.143 9.465 18.59 0.048 0.032 0.316 0.267 0.515 0.250

ωz < 0 0.007 0.006 0.051 0.029 0.048 0.007 0.170 0.128 1.736 2.028 3.521 4.836

Parameter
C08P02 C10P00

H L N HN NL HNL H L N HN NL HNL

〈uv〉 > 0 0.238 0.253 1.899 1.293 2.483 0.968 0.273 0.268 1.948 0.909 1.350 0.351

〈uv〉 < 0 0.262 0.327 2.220 1.342 1.970 0.746 0.347 0.353 2.310 1.048 1.450 0.347

ωx > 0 0.210 0.282 2.219 1.586 2.729 1.380 0.316 0.298 2.319 1.400 1.857 0.513

ωx < 0 0.261 0.276 2.229 1.600 2.730 1.274 0.317 0.288 2.337 1.321 1.959 0.597

ωy > 0 0.254 0.346 2.291 1.510 2.574 0.879 0.331 0.327 2.278 1.121 1.511 0.324

ωy < 0 0.299 0.317 2.317 1.460 2.449 0.874 0.339 0.325 2.342 1.061 1.594 0.310

ωz > 0 0.060 0.071 0.605 0.313 0.407 0.079 0.127 0.125 1.051 0.456 0.540 0.068

ωz < 0 0.360 0.395 3.359 2.664 4.772 4.564 0.450 0.410 3.164 2.051 3.238 1.873

Table 6.5: Vortex clusters area classified according to flow properties. Near the moving wall. For
each case its corresponding αopt presented in Table 6.1 was employed.
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Chapter 7

Conclusions

A stepped transition from a pure Poiseuille to a pure Couette flow has been studied in
channel domains of diverse length. Two main approaches were carried out. On the one
hand, the streamwise velocity structures and the Reynolds stress at diverse regions were
studied. On the other hand, an identification of the vortices present in the flow and a
classification of their features were performed.

From the results obtained, the following conclusions were extracted:

• It is proven that the stability of the large counter-rotating rolls that extent from
wall to wall is affected by the pressure gradient applied, as well as on the friction
Reynolds number. In addition, the use of a small domain increases the intensity
of the rolls due to the effect of the periodicity boundary conditions. In our study,
these huge structures are present from case C06P04 to pure Couette.

• The presence of large counter-rotating rolls is demonstrated by the streaky pattern
of the streamwise velocity structures in the channel center. This is observed in both
instantaneous and mean velocity fields. Additionally, the distribution of Reynolds
stress along the wall-normal direction describes the presence of these rolls.

• A link between the distribution of the mean Reynolds stress along the wall-normal
dimension and the presence of the rolls is verified. As soon as the Reynolds stress
distribution changes its arithmetical sign, the rolls are no longer present. As a result,
this idea was published in detail in a scientific article [23], written by the authors
of this thesis, among others.

• The region near the stationary wall remains almost unaffected by the movement
of the upper wall. It was proven that the mean velocity and Reynolds stress show
a good collapse in this region among cases. Additionally, other analysis, such as
vortex distribution or velocity structures in this region, shown the same pattern for
all cases.

• On the contrary, the region near the moving wall is highly affected by the movement
of the wall. One can see a great disparity in the mean velocity and Reynolds stress
profiles. Moreover, case C06P04 achieves in this region a low friction Reynolds
number, which no longer sustains turbulence.
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7.0. Flow properties on vortex clusters

• The use of a threshold dependent on the distance to the wall results in most
of the cases on a constant vortex population along the wall-normal dimension.
This threshold becomes more restrictive near the walls in case of pure Couette
or Poiseuille flows. However, its distribution is not symmetric in transition cases.
In case of a constant threshold, the population shows great peaks near walls, and a
severe decrease in the channel center.

• Vortex clusters tend to locate in the regions where the fluctuating streamwise velo-
city (u′) is below its standard deviation; that is, regions called neutral. Sometimes
they also touch other high- or low-speed regions. However, seldom situate the vor-
tex clusters only in regions where the absolute value of the fluctuating streamwise
velocity is higher than its standard deviation.
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Chapter 8

Project specifications

8.1 Workstation conditions

While conducting a project, the worker is under specific conditions that may affect their
health as well as their performance. Due to this fact, it is necessary to regulate these
working conditions in order to diminish the worker risks. The regulations covering the
workstation conditions in Spain are gathered in Real Decreto 488/1997, released on 14th
of April.

Regarding the conditions related to security and health while working with a computer
and a screen, the regulation states in Spanish: “el constituido por un equipo con pantalla
de visualización provisto, en su caso, de un teclado o dispositivo de adquisición de datos,
de un programa para la interconexión persona-máquina, de accesorios ofimáticos y de un
asiento y mesa o superficie de trabajo”.

The project planning must take care of at least four points in order to prevent the
worker from diverse risks:

• Time spent working in front of a screen.

• Amount of time with a high degree of attention to the screen.

• Complexity and exigency of the tasks performed with a screen.

• The need of processing information fast.

On the contrary, the risks may arise from:

• Electric circuits

• Workstation hygiene: illumination, noise, ambient temperature, humidity...

• Ergonomics: visual, physical and mental fatigue.
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8.1. Workstation conditions

8.1.1 Workspace

The workspace where the project tasks will be carried out, must stay in accordance with
Real Decreto 486/1997, regarding on the minimum security and hygiene conditions present
in the workspace. This also applies to additional spaces, where eventual project activities
take place, such as meetings, experiments, and so on.

8.1.2 Emergency measures: paths and exits

The owner of the facilities must have implemented emergency measures. These include
the required evacuation paths and exits, which would be employed in case of emergency.
All these measures must be announced to the workers.

8.1.3 Protection against fire emergency

All measures against a fire emergency must be depicted, implemented and maintained by
duly authorized companies.

8.1.4 Electrical wiring

The electrical wiring must be projected, operating and maintained by a duly authorized
company. The installation must avoid any contact with workers, as well as ensure safe
working conditions without possible ignition or explosion. Its specific regulations are
collected in Reglamentos de Baja y Alta Tensión.

According to the regulations related to the use of screens, the electrical wiring must
ensure:

• Piddling levels of electromagnetic radiation.

• Proper maintenance of wires and connections.

• Separation between electrical and phone wires.

• Use of wires long enough in order to perform future installation changes.

• Accessibility and maintenance of the wire without jeopardizing workers operations.

8.1.5 Ambient conditions

Real Decreto 488/1997 established the following rules on ambient conditions in a work-
space with computers and screens. This normative guarantees the well-being and comfort
of the employees.

• The ambient temperature should stay in a range from 23 to 26◦C in summer, or
from 20 to 24◦C in winter.

• Relative humidity should stay always between 45% and 65%.
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Chapter 8. Project specifications

8.1.6 Workspace lighting

The lighting can be natural or artificial, although natural light is more recommended.
However, as its intensity depends on diverse factors, such as the hour of the day, the
meteorology or the season, it must be complemented with artificial lighting. The lighting
installation must avoid dazzle and excessive contrasts.

The lighting intensity should be suitable for the development of the project tasks.
Additionally, the lights location and orientation should avoid too much reflected light and
dazzle.

8.1.7 Ergonomics

The lack of ergonomics in the workspace is closely related to postural problems. Consid-
ering that the use of a screen means maintaining a static position during a long time, one
can assure that an inappropriate position would reduce drastically the well-being of an
employee. Therefore, the workspace tools must follow these indications.

The height and inclination of the chair must be adjusted according to the requirements
of the employees. The chair back should have a smooth bump where the lower back can
rest. It is recommended to use chairs with wheels; however, the wheels resistance must
avoid involuntary movements.

The table surface must not be reflective, and its dimensions must allow the worker’s
movement and position change. Moreover, it must be wide enough to place a screen, a
keyboard, documents and material.

The optimal distance between the user and the screen should be between 45 and 75
cm, to ensure visual comfort. The screen location should assure that the screen is inside
the horizontal visual line and 60◦ below. In a horizontal plane, the screen must be located
inside the user vision range of 70◦.

The screen must be stable, and not reflective. Its contrast and lighting should be
easily modified by the user. Furthermore, the screen orientation and inclination should
adapt to the user requirements.

The keyboard must be inclined, and independent from the screen. In this manner, the
employee has a correct position, which does not leads to physical pain.

It is highly recommended the use of a screen protector. This is a polarized plate,
which is placed on the screen. Consequently, it protects the user eyesight and improves
the image quality.

8.1.8 Noise

According to Real Decreto 1316/1989, the employer must measure the noise level in the
workspaces, in order to estimate if the noise limits are exceeded. To avoid reaching the
maximum at 55 dB, equipment with low noise emissions should be used, and the workspace
acoustic should be improved.
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8.2. Workstation conditions

8.2 Conditions of computer tools

The calculations performed in this project needed high performance computer tools. These
tools are divided in: hardware and software.

Due to the huge size of the simulations, a high performance computer with large data
storage was employed. This computer is connected to a local net, so it is accessible once
connected through the university WiFi or VPN connection. Additionally, it allowed us to
perform uninterrupted calculations that lasted several days. This kind of machines need
a regular maintenance in order to ensure a high performance without interruptions.

On the other hand, a normal computer Acer E1-572 was used in this project for
performing easy calculations, analysis, looking for information and writing the document.

Diverse softwares were used in this project. All simulation codes were written in FOR-
TRAN programming language, which is open source. Then, the results post-processing
and studies were performed with Matlab. Finally, the master thesis document is written
in LATEX.

8.2.1 Hardware conditions

• Laptop Acer E1-572

Processor: Intel Core i7 4500U at 1.8 GHz
Number of processors: 2
RAM memory: 8 GB
ROM memory: 750 GB
Graphics card: Intel HD Graphics
OS: Windows 10

8.2.2 Software conditions

• FORTRAN code

The code used for performing all simulations was written in FORTRAN. It is a general-
purpose, compiled imperative programming language that is especially suited to numeric
computation and scientific computing. It was originally developed by IBM in the 1950s
for scientific and engineering applications.

• Matlab

All post-process routines were developed in Matlab, specifically for this project. Here,
a student license was employed, which is available for all UPV students. The costs of this
license according to Matlab webpage are specified among the project costs.

• LATEX

This open-source software was used to write the thesis document. All packages are
for free, and are developed by independent users. So, no costs arise from this software.
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Chapter 9

Project costs

In this chapter the costs related to the duties and stages of this project will be evaluated.
Thus, the project is chronologically divided, and the hours spent in each part are indicated.
In each stage, a short explanation of its objectives and material employed is given. Later,
the hours in each part are multiplied by the work cost in Euros per worked hour. This
cost depends on the worker’s qualification.

Among the material used, the costs related to the work office; i.e. table, chair, space
and so on, will be added as indirect costs. The same occurs with the computer used
for coding and post-processing, whereas the computer hours done in the supercomputer
SuperMUC will not be considered, since it is not a part of this master thesis project.

In order to quantify the effort made by the staff, the units used are worked hours.
Accordingly, the costs are expressed in Euros per worked hour.

9.1 Project stages

The master thesis was carried out by following these stages:

1. Information compilation and processing

First, read scientific papers published in the recent years, which are closely or partially
related to the project topic. Second, understand the approaches employed by the authors,
and take into account their limitations. Finally, look for other articles for a deeper un-
derstanding.
This stage is based on the use of papers, a printer, a laptop and office material.

2. Post-process Matlab code implementation

First, write the code for extracting the physical velocity fields from simulation files.
Second, implement the identification method as well as other relevant algorithms de-
scribed in Chapter 4. Notice that most of these codes require testing before applying
them in this project.
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9.2. Budget

3. Post-process of velocity fields

Here, the velocity field are treated in order to extract relevant information about the
presence of the large counter-rotating rolls. This stage requires Matlab coding as well
as critical analysis of the results. Moreover, the conclusions were published in Gandia-
Barbera et al. [23]; hence, additional time was spent in this stage.

4. Vortices identification

Here, the vortices present in the velocity fields are identified, and classified. As well as in
Stage 3, this part requires a critical analysis. In addition, as few authors performed this
analysis, it required extra time to think about the proper approach.

5. Report elaboration

The report was elaborated using open-source software LATEX. Hence, no additional cost
due to software license is considered.

9.2 Budget

In this section the detailed budget for each stage is presented. The project supervisor
is here referred as Superior Engineer, while the author is referred as Technical Engineer.
The electricity price considered is 0.12 e/kWh. Additionally, the office is provided with
four lights of 20 W each.

The material described in the first Stage refers to a notebook and several printed
papers. The software license refers to a Matlab student license, and Fortran license.

• First stage

Stage Description Hours e/ Hour Amount

1

Superior Engineer 18 50 900 e

Technical Engineer 155 30 4650 e

Material 1 7.4 7.4 e

Electricity 155 9.6 · 10−3 1.48 e

Total 5559 e

Table 9.1: Budget for the first stage.
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Chapter 9. Project costs

• Second stage

Stage Description Hours e/ Hour Amount

2

Superior Engineer 36 50 1800 e

Technical Engineer 312 30 9360 e

Matlab License 1 400 400 e

Fortran License 1 0 0 e

Electricity 312 9.6 · 10−3 3 e

Total 11563 e

Table 9.2: Budget for the second stage.

• Third stage

Stage Description Hours e/ Hour Amount

3

Superior Engineer 50 50 2500 e

Technical Engineer 260 30 9360 e

Electricity 260 9.6 · 10−3 2.5 e

Total 11863 e

Table 9.3: Budget for the third stage.

• Forth stage

Stage Description Hours e/ Hour Amount

4

Superior Engineer 24 50 1200 e

Technical Engineer 126 30 3780 e

Electricity 156 9.6 · 10−3 1.5 e

Total 4981.5 e

Table 9.4: Budget for the forth stage.
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9.2. Budget

• Fifth stage

Stage Description Hours e/ Hour Amount

5

Superior Engineer 10 50 500 e

Technical Engineer 144 30 4320 e

LATEX License 1 0 0 e

Electricity 144 9.6 · 10−3 1.38 e

Total 4821.4 e

Table 9.5: Budget for the fifth stage.

• Project cost

Stage First Second Third Forth Fifth Project Cost

Cost 5559 e 11563 e 11863 e 4981.5 e 4821.4 e 38788 e

Table 9.6: Budget summary.

• Additional cost

+ Additional Cost = 11636 e

+ IVA = 10589 e

• Total cost

The total cost of the project is:

sixty-one thousand thirteen e.
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