

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

TRABAJO FIN DE GRADO

PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

ÍNDICE

MEMORIA

1 INTRODUCCIÓN	1
2 OBJETO DEL PROYECTO	2
3 REQUISITOS QUE SE SOLICITAN AL REDUCTOR	2
3.1 NECESIDADES DE VELOCIDAD	2
3.2 CONDICIONES DE GEOMETRÍA	2
3.3 CONDICIONES AMBIENTALES	2
3.4 CONDICIONES DE MANTENIMIENTO Y DURACIÓN	
4 SOLUCIONES ALTERNATIVAS	
4.1 TRANSMISIÓN POR ROZAMIENTO DE CORREAS	3
4.1.1 Correas planas	
4.1.2 Correas trapezoidales	4
4.2 TRANSMISIÓN FLEXIBLE	
4.2.2 Transmisión por correas dentadas	
4.3 TRANSMISIÓN POR ENGRANAJES	6
4.3.1 Engranajes cilíndricos	7
4.3.2 Engranajes cónicos.	
4.3.3 Tornillo sin fin	
5 SOLUCIÓN ADOPTADA	
5.1 DESCRIPCIÓN DE LA SOLUCIÓN	
5.1.1 Engranajes	
5.1.2 Ejes	
5.1.3 Rodamientos	
5.1.4 Unión a torsión	
5.1.5 Lubricante	
5.1.6 Arandelas elásticas	
5.1.7 Casquillos	
5.1.8 Carcasa y tapas	
5.1.9 Retenes	
5.1.10 Tapones y nivel	18
<u>CALCULOS</u>	
6 CALCULOS PREVIOS	21
7 DATOS INICIALES	22
8 DISEÑO CONCEPTUAL	22
9 DISEÑO DE LOS ENGRANAJES	23
9.1 CÁLCULO PREVIO. DIÁMETRO DEL EJE POR RIGIDEZ TORSIONAL	23
9.2 DETERMINACIÓN DEL DIÁMETRO DE LOS ENGRANAJES	24
9.3 LUBRICANTE A UTILIZAR.	27
9.4 Anchura de los engranajes.	28
9.4.1 Cálculo a presión superficial	29

33
37
37
37
37
42
44
47
60
60
60
61
62
69
69
71
73
.74
77 78
. / 0
.79
79
. 79 . 80
. 79 . 80 . 80 . 81
. 79 . 80 . 80
. 79 . 80 . 80 . 81
. 79 . 80 . 81 . 81
.79 .80 .80 .81 .81 .82
.79 .80 .81 .81 .82 .83
.79 .80 .81 .81 .82 .82
.79 .80 .81 .81 .82 .83 .84
.79 .80 .81 .81 .82 .83 .84 .85
.79 .80 .81 .81 .82 .83 .84 .85
.79 .80 .81 .81 .82 .83 .84 .85 .86
79 80 81 81 82 83 84 85 86 87 88
.79 .80 .81 .81 .82 .83 .84 .85 .86 .87
.79 .80 .81 .81 .82 .83 .84 .85 .86 .87 .88
.79 .80 .81 .81 .82 .83 .84 .85 .86 .87 .88 .89 .90
.79 .80 .81 .81 .82 .83 .84 .85 .86 .87 .88 .90 .91

36 ANEXO 24: VISOR NIVEL DE ACEITE	97
<u>PRESUPUESTO</u>	
37 INTRODUCCIÓN	101
38 ENGRANAJES.	
38.1 PIÑON PRIMERA ETAPA	_
38.2 RUEDA PRIMERA ETAPA.	
38.3 PIÑON SEGUNDA ETAPA	_
38.4 RUEDA SEGUNDA ETAPA.	
39 EJES.	
39.1 EJE DE ENTRADA.	
39.2 EJE INTERMEDIO.	
39.3 EJE DE SALIDA.	
40 CARCASA Y TAPAS.	
40.1 CARCASA	_
40.2 Tapa eje de entrada.	
40.2 TAPA EJE DE ENTRADA.	
40.4 TAPÓN LLENADO DE LUBRICANTE.	
41 ELEMENTOS NORMALIZADOS	
41 ELEMENTOS NORMALIZADOS42 42 PRESUPUESTO DE LA EJECUCIÓN MATERIAL	
43 PRESUPUESTO DE LA EJECUCION MATERIAL	
44 PRESUPUESTO TOTAL	
45 DISEÑO DE UN REDUCTOR EN SOLIDWORKS	111
45.1 INTRODUCCION	111
46 PIEZAS	
46.1 EJES	
46.1.1 Eje de entrada	
46.1.2 Eje intermedio	
46.1.3 Eje de salida	
46.2 Engranajes	
46.2.1 Piñón primera etapa	
46.2.2 Rueda primera etapa	
46.2.3 Piñón segunda etapa	
46.2.4 Rueda segunda etapa	
46.3 CARCASA	
46.3.1 Carter	
46.3.2 Tapa de la carcasa	
46.4 Tapas del eje de entrada y de salida	
46.4.1 Tapa eje de entrada	
46.4.2 Tapa eje de salida	
46.5 CHAVETAS	
46.6 CASQUILLOS	
40.0 CA3QUILLO3	121

126
127
128
131
128
129
130
131
132
133
134
135
136
137
138
139

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO Nº:1 MEMORIA

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

1.- INTRODUCCIÓN

Durante mucho tiempo el litio se ha empleado principalmente en la producción de cerámicas, vidrio y aleaciones con aluminio. Pero la aparición de nuevas tecnologías ha hecho que su uso se extienda actualmente en la fabricación de baterías de teléfonos móviles, portátiles, tablets, almacenamiento de electricidad generada por las energías no convencionales, especialmente la eólica y la solar, baterías para transporte público masivo, entre otras.

Baterias 39% Cerámica y vidrio 30% Cubricantes y grasas 8% Otros 9%

Fig. 1.Reportes internacionales del Servicio Geológico de los Estados Unidos (USGS).

En el caso del presente proyecto se va a situar en una mina de litio donde lo que se pretende es diseñar un reductor de velocidad para mover una cinta transportadora que tendrá la función de transportar el mineral en bruto desde la cantera a las instalaciones donde se procesará.

Fig. 2.Detalle del conjunto motor-reductor-cinta.

2.- OBJETO DEL PROYECTO

Este proyecto tiene como objetivo el diseño y cálculo de un reductor de velocidad de dos etapas para uso industrial en minería de litio que cumpla las siguientes especificaciones:

Velocidad a la entrada del reductor: 1488 rpmVelocidad de salida del reductor: 191.571 rpm

Potencia del motor eléctrico: 46kW

La finalidad del reductor de velocidad es aumentar el par, a costa de reducir la velocidad, para de este modo poder conectarse a la cinta que es el elemento que se va a querer arrastrar.

3.- REQUISITOS QUE SE SOLICITAN AL REDUCTOR.

3.1.- NECESIDADES DE VELOCIDAD

La finalidad del reductor es adaptar la velocidad de entrada proporcionada por el motor eléctrico, lo que se consigue al utilizarlo es un aumento significativo de par junto a una reducción de velocidad a la salida de este.

3.2.- CONDICIONES DE GEOMETRÍA

En el diseño del reductor se ha tenido en cuenta el factor tamaño y peso, intentando que este sea lo más compacto y ligero posible, sin comprometer su resistencia en ningún momento. A su vez todo el diseño se va a basar en la sencillez, lo cual ayudará a no complicar su fabricación y abaratará costes.

3.3.- CONDICIONES AMBIENTALES

El reductor va a trabajar a una temperatura media exterior de unos 25ºC, la temperatura media de trabajo se estima en unos 50ºC, pudiendo alcanzar máximas de 60ºC.

3.4.- CONDICIONES DE MANTENIMIENTO Y DURACIÓN

Ya que el reductor es una parte indispensable de la cadena de trabajo, se debe asegurar una alta fiabilidad. Dado que el trabajo que realiza será ininterrumpido se sustituirán los rodamientos cada 45.000h. El aceite se deberá sustituir cada 3000h de uso.

4.- SOLUCIONES ALTERNATIVAS PARA LA TRANSMISIÓN.

Ya que difícilmente se puede encontrar un motor eléctrico que cumpla los requisitos finales de par y velocidad se va a utilizar un sistema de transmisión para conseguirlo. En este caso la cinta trabaja a una velocidad inferior que la que ofrece el motor eléctrico, por eso es interesante el uso de un sistema de transmisión que adecue estas características a las necesarias.

En este caso se ha optado por un reductor que utiliza engranajes cilíndricos de dientes helicoidales, no obstante, en el mercado existen otros sistemas de transmisión.

4.1.- TRANSMISIÓN POR ROZAMIENTO DE CORREAS

Este tipo de transmisión tiene un rendimiento comprendido entre el 85 y el 98 %. La relación de velocidades no es exacta y depende de la potencia transmitida, a causa del deslizamiento entre correa y poleas.

En el mercado existen dos alternativas en cuanto a correas se refiere: correas planas y correas trapezoidales.

Ventajas:

- Funcionamiento silencioso.
- Absorción elástica de los choques, y protección contra sobrecargas.
- Coste reducido y bajos requerimientos en el posicionamiento de los árboles

Inconvenientes:

- Sensibilidad al ambiente.
- Duración limitada.
- Sobrecarga de los cojinetes debida a su precarga previa.
- Relación de transmisión inexacta que dependerá de la carga, esto produce un deslizamiento que puede que oscila entre el 1 y el 3%.
- Requerimiento de espacio.

4.1.1.- Correas planas.

Se emplean entre árboles paralelos y cruzados, su relación de transmisión oscila entra $i \le 6$ para accionamientos abiertos e $i \le 15$ para accionamientos con rodillos tensores. Su utilización es principalmente en aplicaciones de velocidad elevada o donde existan poleas de radio reducido. Debido a su deslizamiento el rendimiento está alrededor del 85%.

Fig. 3. Correas planas

4.1.2.- Correas trapezoidales.

Este tipo de correas ofrecen una capacidad de transmisión hasta tres veces superior frente a las correas planas para una misma fuerza de presión, esto significa una menos sobrecarga de los cojinetes. Tienen un arranque más suave y prácticamente no tiene deslizamiento. Se emplea en arboles paralelos, teniendo una relación de transmisión de i \leq 10. Este tipo de correa puede trabajar entre 2 y 50 m/s. Se pueden combinar varias correas en paralelo. El rendimiento puede llegar al 98%,aunque se debe comprobar la tensión de la correa frecuentemente para que no descienda este valor.

Fig. 4. Correas trapezoidales

No se ha optado por esta solución, ya que se necesita optimizar al máximo el espacio y a su vez la precisión no es suficiente.

4.2.- TRANSMISIÓN FLEXIBLE

4.2.1.- Transmisión por cadenas.

Se emplean entre árboles paralelos ya que tiene la capacidad de transmitir mayores fuerzas que las correas con menores ángulos de abrazamiento y distancia entre ejes. Se pueden llegar a relaciones de transmisión de $i \le 7$, pero cuando la velocidad es pequeña puede llegarse hasta i = 10. Rendimientos del 97 al 98 %.

Fig. 5. Transmisión flexible

Ventajas:

- Relación de transmisión constante.
- Coste menor en comparación a los engranajes.
- Su resistencia en condiciones de ambiente agresivo es buena sin necesidad de cárter. Con una sola cadena tiene la posibilidad de accionar varias ruedas.

Inconvenientes:

- Son más caras que las correas.
- Vida limitada.
- Límite de potencia y velocidad de funcionamiento.
- Necesarios espacios elevados.
- Necesidad de lubricación y protección frente al polvo.
- No tienen capacidad de trabajo elástica.

Igual que en el caso de las correas, no se utilizará este sistema por optimización de espacio, además de por su vida limitada.

4.2.2.- Transmisión por correas dentadas.

Este tipo de transmisión tiene ventajas similares a las cadenas, pero permitiendo trabajar a velocidades superiores y eliminando el problema de la lubricación. Su inconveniente es que necesita un espacio mayor para las mismas condiciones de carga. Su rendimiento llega hasta el 98% pero son ruidosas y menos adecuadas para cargas de impacto.

Fig.6. Transmisión por correas dentadas

Igual que en el caso de las correas, no se utilizará este sistema por optimización de espacio.

4.3.- TRANSMISIÓN POR ENGRANAJES.

Constituyen el tipo de transmisión más utilizado, puesto que sirven para una gama de potencias, velocidades y relaciones de transmisión muy amplia.

Ventajas:

- Elevada fiabilidad y larga duración.
- Capacidad para soportar sobrecargas.
- Mantenimiento reducido.
- Relación de transmisión constante e independiente de la carga.
- Elevado rendimiento.
- Dimensiones reducidas.

Inconvenientes:

- Se trata de una transmisión muy rígida, necesitando acoplamientos elásticos para que absorban los choques.
- Coste elevado.
- Generación de ruidos.

4.3.1.- Engranajes cilíndricos.

Se utilizan únicamente para ejes paralelos, admitiendo relaciones de transmisión en cada etapa de i=8. Su rendimiento en cada una de las etapas oscila entre el 96% y el 99%.

para conseguir un funcionamiento silencioso se recurre a los engranajes de dentado helicoidal. La mayor diferencia entre ambos es el ángulo β , que es el que forma el dentado con el eje axial.

Fig.7. Dientes planos

Fig.8. Dientes helicoidales

4.3.2.- Engranajes cónicos.

Empleados entre ejes que se cruzan, consiguen relaciones de transmisión hasta i=6. Si el trabajo es muy exigente se puede utilizar dentando espiral.

Fig. 9. Engranajes cónicos

4.3.3.- Tornillo sin fin.

Se utiliza para árboles cruzados, con relaciones de transmisión desde 1 a más de 100 por etapa, y con rendimientos entre el 97 y el 45 % (disminuye al aumentar la relación de transmisión).

Fig.10. Tornillo sin fin

5.- SOLUCIÓN ADOPTADA

La solución final es optar por un sistema de transmisión de engranajes directos, empleando para ello engranajes de dientes helicoidales, por ofrecer una relación de transmisión constante, volumen compacto, alta fiabilidad, alto rendimiento ,un bajo mantenimiento y buena resistencia química.

Se ha optado por engranajes de diente helicoidal frente a su alternativa de dientes rectos, para obtener un funcionamiento mucho más suave, evitando cualquier tipo de vibración cuando se encuentre en funcionamiento.

Se ha optado por dividir en dos etapas el reductor de velocidad, estas tendrán cuatro engranajes en total, dos piñones y dos ruedas, divididas en tres ejes, teniendo finalmente una relación de transmisión de 7,769.

5.1.- DESCRIPCIÓN DE LA SOLUCIÓN

A continuación, se detallan los diferentes componentes que formaran el reductor de velocidad, los cálculos relativos a estos se encuentran en el Anexo de Cálculos.

5.1.1.- Engranajes

La relación de transmisión de cada etapa junto al diámetro mínimo de los ejes serán las características principales que condicionarán el diseño de los engranajes. Se entiende como engranaje el conjunto de dos o más ruedas unidas para transmitir un trabajo. Para calcular este diámetro se realizará el estudio de la rigidez torsional, una vez tengamos los diámetros mínimos de estos se calculará el diámetro primitivo del piñón y seleccionando un módulo normalizado se obtendrá el número de dientes. A continuación, con la relación de transmisión podremos sacar el numero de dientes de la rueda.

Para estimar el ancho de los engranajes se va a realizar dos tipos de cálculos ,fallo superficial y fallo a flexión. Se quiere evitar en todo momento un fallo que produzca una rotura.

Para la fabricación de los engranajes se ha optado por utilizar acero aleado, templado y revenido 34NiCrMo16. Sus características se han extraído del **ANEXO 1**, estas son:

- S_y: 1030 N/mm2

- H_B: 352

S_{HL}: 835,2 N/mm2S_{FL}: 336,6 N/mm2

5.1.1.1.- Primera etapa

La primera etapa del reductor se compone del piñón, que se ubica en el eje de entrada, y la rueda que se ubicará en el eje intermedio, sus características son las siguientes:

Característica	Piñón	Rueda
Módulo m	3	3
Número de dientes z	27	76
Diámetro primitivo dp(mm)	87.30	244.95
Ángulo de presión α (º)	20	20
Inclinación del diente 6 (ª)	25	25
Anchura b (mm)	36	36

Fig.11.Tabla resumen primera etapa.

5.1.1.2.- Segunda etapa

La segunda etapa del reductor se compone del piñón, que se ubica en el eje intermedio, y la rueda que se ubicará en el eje de salida, sus características son las siguientes:

Característica	Piñón	Rueda
Módulo m	4	4
Número de dientes z	26	71
Diámetro primitivo dp(mm)	111.40	313.36
Ángulo de presión α (º)	20	20
Inclinación del diente 6 (a)	25	25
Anchura b (mm)	62	62

Fig.12.Tabla resumen segunda etapa.

5.1.2.- Ejes.

El dimensionado de los ejes se basa en tres criterios:

- **Rigidez torsional**: se comprobará que no supere 0.25º/m y para una longitud de 20 veces el diámetro la deflexión no supere 1º.
- **Deflexión lateral**: se comprobará que la sección central de los engranajes no superará en 0,005·mn su separación y la pendiente en el árbol será menor de 0,0005 rad. Por otra parte, en los rodamientos la pendiente no superará 0,0008 rad.
- Fatiga: el coeficiente de seguridad para que el eje no falle a fatiga es de X = 2,5

Se han estudiado las secciones mas críticas de los ejes, partiendo estos en diferentes secciones.

La disposición final de los ejes es la siguiente:

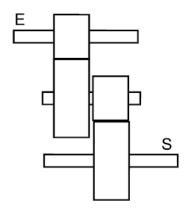


Fig.13. Distribución de los ejes.

Para la fabricación de los ejes vamos a utilizar el mismo material por el que se ha optado para los engranajes, utilizaremos un acero aleado, templado y revenido 34NiCrMo16. Sus características se han extraído del **ANEXO** 1, siendo estas:

- S_v: 1030 N/mm2

- H_B: 352

S_{HL}: 835,2 N/mm2S_{FL}: 336,6 N/mm2

5.1.2.1.- Eje de entrada.

Este eje tiene una velocidad de rotación de **1488 rpm**, suministrada por el motor eléctrico. Mediante los cálculos y con todas las restricciones planteadas anteriormente, se obtiene un diámetro final de 55mm. Este eje estará soportado por dos rodamientos de rodillos cónicos situados en los extremos, además, estará mecanizado para albergar la chaveta que fijará el engranaje.

5.1.2.2.- Eje intermedio.

Este eje tiene una velocidad de rotación de **534 rpm**, esta proviene de la reducción llevada a cabo por la primera etapa del reductor. Mediante los cálculos y con todas las restricciones planteadas anteriormente, se obtiene un diámetro final de 70mm. Este eje estará soportado por dos rodamientos de rodillos cónicos situados en los extremos, además, estará mecanizado para albergar las chavetas de unión con los engranajes.

5.1.2.3.- Eje de salida.

Este eje tiene una velocidad de rotación de **192 rpm**, esta proviene de la reducción llevada a cabo por la segunda etapa del reductor. Mediante los cálculos y con todas las restricciones planteadas anteriormente, se obtiene un diámetro final de 90mm. Este eje estará soportado por dos rodamientos de rodillos cónicos situados en los extremos, además, estará mecanizado para albergar la chaveta de unión con el engranaje.

5.1.3.- Rodamientos

Los rodamientos han sido calculados con el fin de soportar los esfuerzos durante un tiempo de vida determinados. En este caso, ya que se van a utilizar engranajes de dientes helicoidales, se ha optado por utilizar rodamientos de rodillos cónicos por ser capaces de transmitir tanto fuerza radial como axial.

Finalmente se ha optado por rodamientos de la marca SKF.

5.1.3.1.- Rodamiento izquierdo del eje de entrada.

RODAMIENTO SKF 33110

Ancho b (mm)	26
Diámetro menor d (mm)	50
Diámetro mayor <i>D (mm)</i>	85
Capacidad de Carga Dinámica C (kN)	106
Capacidad de Carga estática CO (kN)	122
Comportamiento en el extremo	Fijo
Lubricación	Grasa

Fig.14. Rodamiento del apoyo "A".

5.1.3.2.- Rodamiento derecho del eje de entrada

RODAMIENTO SKF 32910

Ancho b (mm)	15
Diámetro menor d (mm)	50
Diámetro mayor D (mm)	72
Capacidad de Carga Dinámica <i>C (kN)</i>	41.30
Capacidad de Carga estática CO (kN)	53
Comportamiento en el extremo	Libre
Lubricación	Grasa
	Gl asa

Fig.15. Rodamiento del apoyo "B".

5.1.3.3.- Rodamiento izquierdo del eje intermedio

RODAMIENTO SKF 33113

Ancho b (mm)	34
Diámetro menor d (mm)	65
Diámetro mayor <i>D (mm)</i>	110
Capacidad de Carga Dinámica C (kN)	175
Capacidad de Carga estática CO (kN)	208
Comportamiento en el extremo	Fijo
Lubricación	Grasa

Fig.16. Rodamiento del apoyo "A".

5.1.3.4.- Rodamiento derecho del eje intermedio

RODAMIENTO SKF 33013

Ancho b (mm)	27
Diámetro menor d (mm)	65
Diámetro mayor <i>D (mm)</i>	100
Capacidad de Carga Dinámica <i>C (kN)</i>	119
Capacidad de Carga estática CO (kN)	153
Comportamiento en el extremo	Libre
Lubricación	Grasa

Fig.17. Rodamiento del apoyo "B".

5.1.3.5.- Rodamiento izquierdo del eje de salida

RODAMIENTO SKF 32017X

Ancho b (mm)	29
Diámetro menor d (mm)	85
Diámetro mayor <i>D (mm)</i>	130
Capacidad de Carga Dinámica C (kN)	171
Capacidad de Carga estática CO (kN)	224
Comportamiento en el extremo	Fijo
Lubricación	Grasa

Fig.18. Rodamiento del apoyo "A".

5.1.3.6.- Rodamiento derecho del eje de salida

RODAMIENTO SKF 32917

Ancho b (mm)	23
Diámetro menor d (mm)	85
Diámetro mayor D (mm)	120
Capacidad de Carga Dinámica <i>C (kN)</i>	115
Capacidad de Carga estática CO (kN)	156
Comportamiento en el extremo	Libre
Lubricación	Grasa

Fig.19. Rodamiento del apoyo "B".

La ficha de cada rodamiento se puede encontrar en los ANEXOS 13,14,15,16,17 y 18.

5.1.4.- Unión a torsión.

Se ha escogido como sistema de unión a torsión las chavetas por su sencillez y efectividad. Las dimensiones están normalizadas según el diámetro del eje donde se sitúan. La longitud ha de ser 1,25 veces el diámetro del eje, pero por dar este cálculo longitudes mayores al ancho de nuestros engranajes, se ha recalculado para poder poner un valor menor dando un resultado favorable que cumple con los requisitos que se piden.

El chavetero se ha realizado mecanizando una ranura, tanto en el engranaje como en el eje. en esa ranura se aloja la chaveta la cual evita un deslizamiento del engranaje respecto al eje cuando se encuentre en movimiento. Se ha tenido en cuenta el concentrador de tensiones que esto supone de cara al diseño del eje.

El método de cálculo de chavetas esta normalizado según la norma UNE 17102-1:1967.

Se ha empleado un acero F1140 (C45), por ser un material habitual para la fabricación de estas y más blando que el material del eje, con lo cual esta rompería antes en caso de fallo.

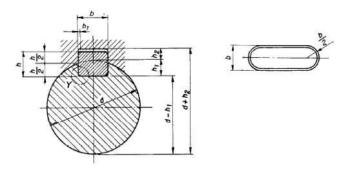


Figura 20. Chavetas

	Eta	pa 1	Etapa 2	
	Piñón	Rueda		
Diámetro del eje(mm)	55	70	70	90
Longitud de la chaveta(mm)	30	30	60	60
Altura (mm)	10	12	12	14
Anchura(mm)	16	20	20 25	
Profundidad en cubo(mm)	4,3	4,9	4,9 5,4	
Profundidad en eje (mm)	6	7,5	7,5	9

Figura 21. Tabla de dimensiones según el diámetro del eje.

El cálculo se ha realizado apoyándose en el ANEXO 4.

5.1.5.- Lubricante.

Se ha optado por un lubricante del tipo ISO VG320, es un lubricante del tipo industrial comúnmente utilizado para este tipo de reductores de velocidad.

El lubricante tiene las siguientes ventajas:

- Índice de viscosidad muy elevado (>200).
- Extraordinario coeficiente de fricción.
- Bajo punto de congelación.
- Alta estabilidad térmica.

5.1.6.- Arandelas elásticas.

Para evitar el desplazamiento de los distintos elementos en el eje, se ha optado por utilizar arandelas elásticas. Se van a seleccionar anillas DIN 471-E de la empresa "Damesa".

5.1.6.1.- Eje de entrada

Rodamiento A y B: Ref.01090398 Espesor: 2mm

5.1.6.2.- Eje intermedio

Rodamiento A y B: Ref.01090478 Espesor: 2.5mm

5.1.6.3.- Eje de salida

Rodamiento A y B: Ref.01090566 Espesor: 3mm

En el **ANEXO** 19 se puede ampliar la información.

5.1.7.- Casquillos.

Para evitar el desplazamiento axial de los diferentes componentes que van montados en los ejes se utilizarán este tipo de casquillos del proveedor *Permaglide*. Se encuentran representados en el plano de conjunto del Anexo de planos.

5.1.7.1.- Eje de entrada:

-1 x Casquillo de longitud 25,21mm.

5.1.7.2.- Eje intermedio:

-1 x Casquillo de longitud 15,09 mm -1 x Casquillo de longitud 30.49 mm

5.1.7.3.- Eje de salida

- 1 x Casquillo de longitud 65.94 mm

5.1.8.- Carcasa y tapas.

La carcasa tiene la función de hacer de soporte estructural para los elementos que componen el reductor. A su vez los protege y aísla de los agentes corrosivos del exterior. Tiene que tener la rigidez suficiente para aguantar las cargas y no producir deformaciones que pudieran ser fatales para los elementos internos.

Se empleará la fundición gris como material para su fabricación ya que tiene buena aptitud para el moldeo y facilidad de mecanizado. Este material además tiene baja conductividad térmica y presenta pocas dilataciones cuando se calienta.

La fundición gris F-25 tienes las siguientes características:

- Resistencia a la tracción: 250 – 350 MPa

Dureza: 180 – 250 HB

Para fabricar el carter se empleará la técnica de moldeo en arena, y posteriormente se mecanizarán los alojamientos necesarios para los rodamientos.

Se empleará una pintura en polvo termo endurecible para el acabado de la carcasa ya que confiere una gran estabilidad térmica y resistencia a la corrosión.

La unión se realizará mediante tornillos de métrica 6, empleando juntas de estanqueidad donde sea necesario para evitar las fugas de lubricante.

5.1.9.- Retenes.

Con el fin de evitar fugas de lubricante al exterior por los ejes tanto de entrada como de salida se van a emplear retenes de la marca SKF. Estos se pueden ver detallados en el Anexo de planos, en el plano de conjunto, donde se podrá ver su posicionamiento.

5.1.9.1.- Eje de entrada:

-Retén SKF HMS5 V 40x50x8.

5.1.9.2.- Eje de salida

-Retén SKF HMS5 V 100x120x10.

Se puede encontrar más información en los ANEXOS 20 y 21.

5.1.10.- Tapones y nivel.

Ya que el lubricante debe ser sustituido cada cierto periodo de horas, se debe de disponer de un tapón de llenado, uno de vaciado y para verificar el nivel de lubricante, se instalará un visor para este fin. Se va a emplear la marca TECNODIN para estos tres elementos.

El tapón de llenado se sitúa en la parte superior del reductor, lo cual facilitara añadir el lubricante. El tapón tendrá un agujero que deje salir el exceso de presión de dentro del reductor, esta presión podría ocasionar problemas en los sellos radiales y producir fugas de lubricante. Se utilizará un tapón de llenado de cabeza hexagonal con la referencia 48003220021 y métrica M 20x1,5

El tapón de vaciado se sitúa en la parte inferior para favorecer la salida del lubricante por gravedad. Este tapón incorpora un imán para verificar si hay alguna partícula metálica que se haya podido desprender. Se utilizará un tapón de vaciado con imán con la referencia *TM-1415* y métrica M14x1,5

El visor de nivel se sitúa en un lateral, en una zona donde la inspección del nivel sea fácil y rápida para el operario. Se utilizará un visor circular con reflector con la referencia 48002120000 y métrica M20x1,5.

En los **ANEXOS** 22,23 y 24 se puede encontrar más información al respecto.

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO Nº:2 CÁLCULOS

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

6.- CALCULOS PREVIOS.

Antes de profundizar de lleno en el cálculo del reductor se necesita saber unos datos que condicionaran el diseño mismo.

El reductor será el elemento que conecte el motor eléctrico con la cinta transportadora portadora del mineral de litio. Las características de la cinta son las siguientes:

- Velocidad de avance 2 m/s
- Potencia requerida para ser arrastrada 46 kW.
- Tambor de transmisión de 200mm de diámetro.

Ya que se dispone de un motor con velocidad de entrada de 1488 rpm se procede a realizar el siguiente cálculo.

- La velocidad de giro del tambor deberá de ser de:

$$\omega = \frac{V}{\frac{D}{2}} = 20 \frac{rad}{s} = 191.571 \, rpm$$

Con lo cual podemos calcular la relación de transmisión i:

- Relación de transmisión i : $\frac{Velocidad}{Velocidad} \frac{de}{de} \frac{entrada}{entrada} \frac{del}{de} \frac{motor}{191.53} = 7.769$

Con estos datos ya se puede profundizar en los cálculos del reductor teniendo en cuenta el contexto donde se va a utilizar.

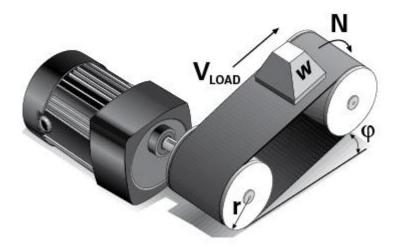


Fig.O.Esquema de funcionamiento.

7.- DATOS INICIALES.

- Potencia del motor: 46 kW

Velocidad de entrada: 1488 rpmRelación de transmisión: 7,769

8.- DISEÑO CONCEPTUAL.

En esta fase del diseño, quedan definidas las siguientes características del reductor, teniendo en cuenta los datos de partida:

- Número total de etapas.
- Disposición de los ejes.
- Forma de la carcasa.
- Lubricación.
- Métodos de fijación de las distintas piezas sobre los ejes.
- Selección de rodamientos
- Métodos de fijación de los rodamientos con el eje y la carcasa.

La mayoría de reductores industriales no suelen emplear relaciones de velocidad superiores a 4, para el presente proyecto se ha decidido dividir en dos etapas la relación final de 7,769, ambas etapas tendrán el valor siguiente:

$$i_{Total} = i_{1^{\underline{a}}etapa} \cdot i_{2^{\underline{a}}etapa} = 7,769$$

Ec.1.

$$i_{2^{\underline{a}}etapa} = \sqrt{i_{Total}} = \sqrt{7,769} = 2,787$$

Ec.2.

Una vez definidas las etapas, se procede a seleccionar una configuración para los ejes, para el presente proyecto se ha escogido una disposición de ejes paralelos con el fin de diseñar una carcasa lo más sencilla posible

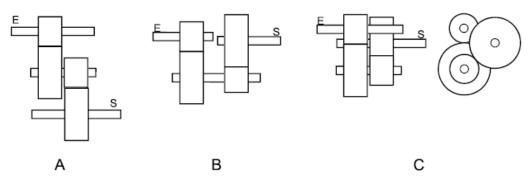


Fig 1. Disposiciones comunes de ejes en un reductor de 2 etapas.

Teniendo como premisa principal economizar el reductor, se ha realizado un diseño de carcasa que permita utilizar un solo tipo de lubricante para todo el conjunto, inicialmente se escoge un lubricante ISO 320.

La carcasa deberá permitir el montaje del reductor, con lo que dispondrá de dos partes. A su vez tendrá tapones de llenado, vaciado y nivel de aceite. Donde haya riesgo de fugas se montará junta de estanqueidad. Se evitará en todo momento las aristas cortantes redondeando estas en el proceso de fabricación. Para mejorar la manipulación e inspección de los rodamientos se diseñarán tapas individuales para estos.

Para la fijación de las distintas piezas, se utilizarán, arandelas, casquillos y cambios de sección cuando sea necesario. Para unir los elementos a torsión con los ejes se utilizarán chavetas, si el diseño lo requiere también podrían mecanizarse los engranajes en los ejes.

Inicialmente se elegirán rodamientos de rodillos cónicos, por tener estos la capacidad de trasmitir esfuerzos radiales y axiales. Una vez estudiada la vida de estos, se comprobará su validez, o si por el contrario se debe seleccionar uno con mayores prestaciones. Para evitar esfuerzos axiales innecesarios, en la unión de los rodamientos con el eje y la carcasa, encontraremos un extremo fijo y otro libre.

9.- DISEÑO DE LOS ENGRANAJES.

9.1.- CÁLCULO PREVIO. DIÁMETRO DEL EJE POR RIGIDEZ TORSIONAL

En este apartado se va a llevar a cabo el cálculo del dimensionado de los engranajes, para ello es necesario saber las características de cada eje en cuanto a velocidad angular (ω), par torsor (T) y potencia transmitida (P).

	ω(rpm)	T(Nm)	P(kW)
Eje de entrada	1488	296,111	46
Eje Intermedio	533,907	825,26	46
Eje de salida	191,571	2300	46

Tabla.1-Resumen de fuerzas actuantes en los ejes.

Para calcular estos esfuerzos se han utilizado las siguientes formulas:

$$\omega_{salida} = \frac{\omega_{entrada}}{i_{total}}$$

Ec.3.

$$T_{salida} = \frac{P(W)}{\omega(\text{rad/s})}$$

Ec.4.

El factor determinante para seleccionar el diámetro de los ejes en la zona de los engranajes es la rigidez torsional, esta se define como la capacidad de soportar esfuerzos sin sufrir excesivas deformaciones o desplazamientos.

A partir de la siguiente ecuación se hace un cálculo estimado del diámetro de los ejes para que cumpla por rigidez torsional

$$\frac{\theta}{L} = \frac{32 \cdot T}{\pi \cdot G \cdot d^4}$$
 despejamos el diámetro de la formula -> $d = \sqrt[4]{\frac{32 \cdot T \cdot L}{\theta \cdot \pi \cdot G}}$

Ec.5.

El límite de deformación torsiónal es igual a 0,25°/m (por requisitos de diseño) y el valor del módulo de rigidez torsional del acero (G) es de $8.1\cdot10^{10}~\text{N/}m^2$. Mediante el calculo obtenemos los siguientes valores:

	ω	T	Dmin	Dmin norm.
	(rpm)	(Nm)	(mm)	(mm)
Eje de entrada	1488	296,111	54,049	55
Eje intermedio	533,907	825,26	69,835	70
Eje de salida	191,517	2300	90,231	90

Tabla.2-Diametros de los ejes según rigidez torsional.

9.2.- DETERMINACIÓN DEL DIÁMETRO DE LOS ENGRANAJES

Ya que es un caso de cálculo de engranajes cilíndricos de dientes helicoidales, sé tiene que calcular el módulo aparente, se calcula con la siguiente expresión:

$$m_t = \frac{m_n}{\cos \beta}$$

Ec.6.

El ángulo seleccionado es β = 25º

Se calcula el diámetro mínimo para cada uno de los piñones, se realiza mediante la siguiente expresión:

$$d_1 = d_{eje} + 2 \cdot h_2 + 2 \cdot S_R + 2 \cdot 1,25 \cdot m_n = d_{eje} + 2 \cdot h_2 + 7,9 \cdot m_n$$

Ec.7.

Donde " m_n " se ha escogido de la tabla de módulos estandarizados siguiente:

$$m_n$$
 0,5 0,6 0,8 1 1,25 1,5 1,75 2 2,5 3 4 5 6 8 10 12 16 20 25

A continuación, se procede al cálculo del número de dientes del engranaje, se realiza mediante la siguiente expresión:

$$Z = \frac{d}{m_t}$$

Ec.8.

Se redondea a un número entero el resultado de esta ecuación y se vuelve a calcular el diámetro para un número de dientes entero mediante la Ec.8.

A continuación, se calcula el número de dientes de la rueda mediante la relación de transmisión:

$$Z_2 = Z_1 \cdot i$$

Ec.9.

Para finalizar, se ha calculado el diámetro de la rueda y la relación de transmisión.

El proceso descrito será iterativo para el resto de los módulos, generándose una tabla con distintos resultados. Estos se filtrarán de manera que no se encuentre ninguna rueda que supere los 125 dientes y que tengan un diámetro inferior a 500 mm

Por otra parte, el piñón debe de tener un mínimo de dientes para evitar que aparezca interferencia de generación en el tallado con una cremallera de corte. El número de dientes mínimo del piñón se puede calcular con la siguiente expresión:

$$z_{min} = \frac{2 \cdot \cos \beta}{\sin^2 \alpha_t}$$

Ec.10.

Siendo α_t el ángulo de presión tangencial que se puede obtener de:

$$tg\,\alpha_{t} = \frac{tg\,\alpha_{n}}{\cos\beta}$$

Ec.11.

Finalmente, se ha obtenido que el mínimo número de dientes del piñón sean 13 dientes.

1ª Etapa.

Diámetro del eje	55 mm
Relación de transmisión i	2,787
Profundidad del chavetero en el cubo h2	4,3 mm
Número mínimo de dientes Z_{min}	13 dientes
Número máximo de dientes $oldsymbol{Z}_{max}$	125 dientes
Ángulo de inclinación del dentado β	25°
Ángulo de presión normal α:	20°

Tabla.3-Caracteristicas de la primera etapa.

Se descartarán los módulos que no cumplan las condiciones de interferencia o número mínimo de dientes.

m	m_t	d ₁ (mm)	Z ₁ *	Z 1	d _{1real}	Z 2*	Z 2	Z 2opt	d ₂ (mm)	i
1,00	1,10	71,50	64,80	66,00	72,82	180,60	181,00	181,00	199,71	2,74
1,25	1,38	73,48	53,27	54,00	74,48	148,47	149,00	149,00	205,50	2,76
1,50	1,66	75,45	45,59	46,00	76,13	127,05	128,00	129,00	211,85	2,80
2,00	2,21	79,40	35,98	36,00	79,44	100,28	101,00	101,00	222,88	2,81
3,00	3,31	87,30	26,37	28,00	92,68	73,50	74,00	75,00	244,95	2,68
4,00	4,41	95,20	21,57	22,00	97,10	60,12	61,00	61,00	269,22	2,77
5,00	5,52	103,10	18,69	20,00	110,34	52,08	53,00	53,00	292,40	2,65
6,00	6,62	111,00	16,77	18,00	119,16	46,73	47,00	47,00	311,15	2,61
8,00	8,83	126,80	14,36	16,00	141,23	40,04	41,00	41,00	361,91	2,56
10,00	11,03	142,60	12,92	14,00	154,47	36,02	37,00	37,00	408,25	2,64
12,00	13,24	158,40	11,96	12,00	158,89	33,34	34,00	35,00	450,18	2,92
16,00	17,65	190,00	10,76	12,00	211,85	29,99	30,00	31,00	529,62	2,58
20,00	22,07	221,60	10,04	12,00	264,81	27,99	28,00	29,00	617,89	2,42
25,00	27,58	261,10	9,47	10,00	275,84	26,38	27,00	27,00	744,78	2,70

Tabla.4-Módulos estandarizados y sus características en la primera etapa.

Se debe de escoger entre los módulos que cumplen los requisitos, son los siguientes: **2,3,4,5,6** y **8.**

Un modulo mayor supone más resistencia, lo que a su vez nos lleva a un diámetro primitivo mayor y esto conlleva mayor gasto de fabricación. Por ello se debe tener en cuenta este factor para su elección.

El módulo que se utilizará para el posterior calculo es el 3.

2ª Etapa.

Diámetro del eje	70 mm
Relación de transmisión i	2,787
Profundidad del chavetero en el cubo h2	4,9 mm
Número mínimo de dientes Z_{min}	13 dientes
Número máximo de dientes $oldsymbol{Z}_{max}$	125 dientes
Ángulo de inclinación del dentado β	25°
Ángulo de presión normal α:	20°

Tabla.5-Caracteristicas de la segunda etapa.

Se descartan aquellos módulos que no cumplan las condiciones de interferencia o número mínimo de dientes.

m	m_t	d ₁ (mm)	Z ₁ *	Z ₁	d _{1real}	Z2*	Z 2	Z _{2opt}	d ₂ (mm)	i
1,00	1,10	87,70	79,48	80,00	88,27	221,52	222,00	223,00	244,95	2,79
1,25	1,38	89,68	65,02	66,00	91,03	181,21	182,00	185,00	251,02	2,80
1,50	1,66	91,65	55,38	56,00	92,68	154,33	155,00	155,00	256,54	2,77
2,00	2,21	95,60	43,32	44,00	97,10	120,74	121,00	123,00	267,02	2,80
3,00	3,31	103,50	31,27	32,00	105,92	87,14	88,00	89,00	291,29	2,78
4,00	4,41	111,40	25,24	26,00	114,75	70,35	71,00	71,00	313,36	2,73
5,00	5,52	119,30	21,62	22,00	121,37	60,27	61,00	61,00	336,53	2,77
6,00	6,62	127,20	19,21	20,00	132,41	53,55	54,00	53,00	357,49	2,65
8,00	8,83	143,00	16,20	17,00	150,06	45,15	46,00	47,00	406,04	2,76
10,00	11,03	158,80	14,39	15,00	165,51	40,11	41,00	41,00	452,38	2,73
12,00	13,24	174,60	13,19	14,00	185,37	36,75	37,00	37,00	489,90	2,64
16,00	17,65	206,20	11,68	12,00	211,85	32,55	33,00	35,00	582,58	2,92
20,00	22,07	237,80	10,78	11,00	242,74	30,03	31,00	31,00	684,09	2,82
25,00	27,58	277,30	10,05	11,00	303,43	28,02	29,00	29,00	799,95	2,64

Tabla.5-Módulos estandarizados y sus características en la segunda etapa.

Se debe de escoger entre los módulos que cumplen los requisitos, estos son: 2,3,4, y 5.

Un módulo mayor supone más resistencia, lo que a su vez nos lleva a un diámetro primitivo mayor y esto conlleva mayor gasto de fabricación. Por ello se debe tener en cuenta este factor para su elección.

El módulo que se utilizará para el posterior calculo es el 4.

9.3.- LUBRICANTE A UTILIZAR.

Las dimensiones del engranaje y la viscosidad del lubricante van relacionadas la una con la otra, para proceder al cálculo se supondrá inicialmente un lubricante, y posteriormente tras finalizar el dimensionado de los engranajes, se evaluará que este lubricante sea correcto o incluso que disponga de mejores características que el necesario

Para resolver el cálculo de la anchura de los engranajes será necesario conocer la viscosidad cinemática del lubricante a una temperatura de 40 °C. Mediante la norma ISO 3448 que realiza una clasificación de los aceites industriales, se estimará la viscosidad del lubricante haciendo uso de la gráfica que se muestra a continuación:

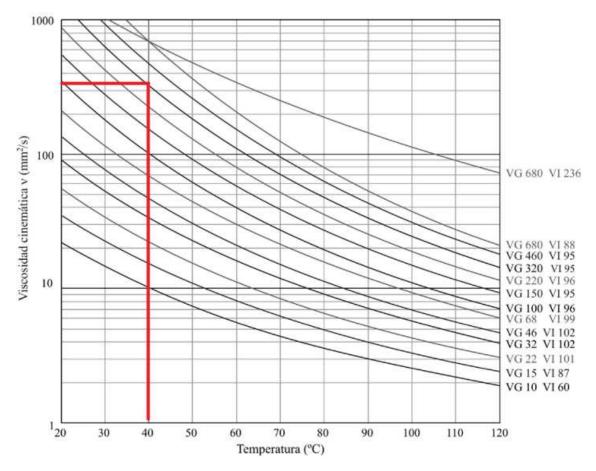


Fig. 2.- Variación de la viscosidad cinemática de aceites con la temperatura

Finalmente, se escogerá un lubricante ISO **VG 320** con temperaturas de entre 20 °C y 50 °C. Tal como se observa en la tabla anterior, la viscosidad del lubricante elegido a 40° C será de 320 mm^2 /s.

9.4.- ANCHURA DE LOS ENGRANAJES.

En primer lugar, se va a escoger material para la fabricación de los engranajes, se va a utilizar un acero aleado, templado y revenido 34NiCrMo16. Sus características se han extraído del **ANEXO** 1, siendo las siguientes:

Sy: 1030 N/mm2

- H_B: 352

S_{HL}: 835,2 N/mm2S_{FL}: 336,6 N/mm2

Teniendo como referencia los datos geométricos anteriormente calculados y aplicando un coeficiente de seguridad de X = 1.5 se va a proceder a calcular la anchura, bajo la premisa de que cumpla dos criterios de fallo. El primer criterio es la anchura mínima a presión superficial y el segundo a flexión.

Además, la anchura del engranaje debe de cumplir estas dos condiciones:

9.4.1.- Cálculo a presión superficial.

Para realizar el cálculo se va a utilizar la expresión de Hertz aplicándola a engranajes cilíndricos de dientes helicoidales. La expresión es la siguiente:

$$\sigma_{H} = Z_{H} \cdot Z_{E} \cdot Z_{\varepsilon} \cdot Z_{\beta} \cdot \sqrt{\frac{F_{t}}{b \cdot d_{1}} \cdot \frac{1+i}{i}} \cdot \sqrt{K_{A} \cdot K_{V} \cdot K_{H\beta} \cdot K_{H\alpha}}$$

Ec.12.

Se sustituye el coeficiente de seguridad en la expresión:

$$X_H = \left(\frac{S_{HP}}{\sigma_H}\right)^2$$

Ec.13.

Y finalmente se despeja el ancho obteniendo:

$$b = \frac{Ft}{d1} \cdot \frac{1+i}{i} \cdot K_A \cdot K_V \cdot K_{H\beta} \cdot K_{H\alpha} \cdot \left(\frac{Z_H \cdot Z_E \cdot Z_{\varepsilon} \cdot Z_{\beta}}{S_{HP}}\right)^2$$

Ec.14.

A continuación, se van a explicar los distintos términos de la expresión anterior:

Fuerza tangencial Ft. Su expresión es:

$$F_t = \frac{T_1}{d_1/2} = \frac{T_2}{d_2/2}$$

Ec.15.

Diámetro primitivo d1 . Calculado en apartados anteriores

Relación de transmisión de la etapa i. Calculada en apartados anteriores.

Coeficiente de aplicación K_A . Este coeficiente valora las sobrecargas dinámicas externas al engranaje, tiene en cuenta el tipo de maquina motriz y la arrastrada. Entre las diferentes opciones se escoge que la máquina motriz tiene un comportamiento uniforme y la maquina arrastrada recibe choques moderados. Por lo tanto, el valor obtenido es igual a KA=1,5 se obtiene del **ANEXO** 5.

Coeficiente dinámico Kv. Tiene en cuenta las cargas dinámicas internas debidas a la vibración del piñón o la rueda sobre el árbol. Se ve afectado por los siguientes factores:

- Los errores en el dentado de los engranajes
- La velocidad tangencial
- Los momentos de inercia polares de la rueda y el piñón
- La rigidez de los dientes de los engranajes, ejes y soportes
- La carga transmitida (incluido K_A)

La fórmula mostrada a continuación es válida si:

- - Sistema es lo suficientemente rígido.
- -El número de dientes del piñón sea menor de 50.
- -El valor de β sea inferior a 30º,
- La relación $\frac{V \cdot z_1}{100} \cdot \sqrt{\frac{i^2}{1+i^2}}$ sea menor de 10 m/s
- -En el caso del reductor que se va a calcular, al tratarse de engranajes cilíndricos con dientes helicoidales, el índice de recubrimiento sea 1 o mayor que 1.

$$K_V = 1 + \left(\frac{K_1}{K_A \cdot \frac{F_t}{h}} + K_2\right) \cdot \frac{V \cdot z_1}{100} \cdot K_3 \cdot \sqrt{\frac{i^2}{1 + i^2}}$$

Ec.16.

Donde:

- K_1 depende de la calidad del tallado, que en nuestro caso es QISO=5 y se extrae del **ANEXO** 6
- K_2 para el caso de dentado helicoidal es igual a 0,0087
- K_3 depende de:

Coeficiente de distribución de carga longitudinal $K_{H\beta}$. Este coeficiente considera los problemas debidos a una distribución de carga sobre los dientes de los engranajes diferente a la supuesta en el cálculo de las tensiones. Este coeficiente es función:

- Calidad Q_{ISO} .
- Anchura del engranaje (b) .
- Diámetro del piñón (d1).
- Tipo de ajuste.

En nuestro reductor el ajuste seria del tipo b, c. La expresión es la siguiente:

$$K_{H\beta} = H_1 + H_2 \cdot b + H_3 \cdot \left(\frac{b}{d_1}\right)^2$$

Ec.17.

Donde los valores de H1,H2 y H3 se obtienen del ANEXO 7

Coeficiente de distribución de carga transversal $K_{H\alpha}$. Este coeficiente tiene en cuenta La distribución de la carga entre los distintos pares de dientes en contacto. Tomamos para el cálculo QISO igual a 5. Por ser inferior a 6 el valor final es 1.

Coeficiente geométrico Z_H . Se calcula con la siguiente expresión:

$$Z_H = \sqrt{\frac{2 \cdot \cos\beta}{\sin\alpha t \cdot \cos\alpha t}}$$

Ec.18.

Coeficiente elástico Z E. Se calcula con la siguiente expresión:

$$Z_{E} = \sqrt{\frac{1}{\pi \cdot \left(\frac{1 - \nu_{1}^{2}}{E_{1}} + \frac{1 - \nu_{2}^{2}}{E_{2}}\right)}}$$

Ec.19.

Coeficiente de conducción $Z\varepsilon$. Para dientes helicoidales depende del valor de recubrimiento:

Si
$$\varepsilon_{\beta} < 1 \rightarrow Z_{\varepsilon} = \sqrt{\frac{4 - \varepsilon \alpha}{3} \cdot (1 - \varepsilon \beta) + \frac{\varepsilon_{\beta}}{\varepsilon_{\alpha}}}$$

Si
$$\varepsilon_{\beta} > 1 \rightarrow Z_{\varepsilon} = \sqrt{\frac{1}{\varepsilon_{\alpha}}}$$

Ec.20.

Donde la relación de conducción ε_{lpha} se obtiene:

$$\varepsilon_{\alpha} = \frac{1}{\pi \cdot cos\alpha_{t}} \left[\sqrt{\frac{z_{1}^{2}}{4} sin_{2}\alpha_{t} + y_{1}^{2} + z_{1}y_{1}} + \sqrt{\frac{z_{1}^{2}}{4} sin_{2}\alpha_{t} + y_{1}^{2} + z_{1}y_{1}} - \left(\frac{z_{1} + z_{2}}{2}\right) sin \alpha_{t} \right]$$
Ec.21.

Factor de ángulo de hélice Z_{β} . Se calcula con la siguiente expresión:

$$Z_{\beta} = \frac{1}{\sqrt{\cos\beta}}$$

Ec.22.

Tensión de contacto máxima admisible S_{HP}. Se calcula con la siguiente expresión para probabilidad de un 1% de fallo:

$$S_{HP} = S_{HL} \cdot Z_N \cdot Z_L \cdot Z_R \cdot Z_V \cdot Z_W \cdot Z_X$$

Ec.23.

Donde:

- $-S_{HL}$: Tensión de contacto límite del material durante $5\cdot10^7$ ciclos de carga.
- Z_N: Coeficiente de duración. Para nuestro material y N_L ≥ 5·10⁷ su valor es igual a 1.
- $-Z_L$: Coeficiente de viscosidad del lubricante. Utilizaremos la siguiente expresión para calcular el coeficiente:

$$Z_L = C_{ZL} + \frac{4 \cdot (1 - C_{ZL})}{1,2 + \frac{134^2}{\text{vall}}}$$
 Ec.24.

Donde C_{ZL}=0,83 puesto que S_{HL} ≤ 850 N/mm²

- Z_R: Coeficiente de rugosidad. Para calcular este coeficiente se utiliza la siguiente expresión:

$$Z_R = \left(\frac{3}{R_{Z10}}\right)^{C_{ZR}}$$

Ec.25.

Donde
$$R_{Z10} = 1.4 \cdot \sqrt[3]{\frac{10 \cdot (r1 + r2)}{r1 \cdot r2 \cdot sin_{\alpha t}}}$$

− Z_V: Coeficiente de velocidad. Se calcula con la siguiente expresión:

$$Z_V = C_{ZV} + \frac{2 \cdot (1 - C_{ZV})}{\sqrt{0.8 + \frac{32}{V}}}$$

Ec.26.

Donde C_{ZV} = C_{ZL} +0,02

- − Z_w: Coeficiente de dureza. El coeficiente de dureza del piñón y de la rueda es igual a 1.
- $-Z_X$: Coeficiente de tamaño. Su valor es igual a 1.

9.4.2.- Cálculo a flexión.

Se va a emplear el modelo de Lewis modificado, el cual es válido para dientes helicoidales. La expresión es la siguiente:

$$\sigma_F = \frac{F_t}{b \cdot m_n} \cdot Y_{Fa} \cdot Y_{\varepsilon} \cdot Y_{sa} \cdot Y_{\beta} \cdot Y_{B} \cdot K_{A} \cdot K_{V} \cdot K_{F\beta} \cdot K_{F\alpha}$$

Ec.27.

Donde:

Fuerza tangencial F_t . Fuerza tangencial aplicada sobre el diente.

Ancho b. Ancho del engranaje con menor numero de dientes o material más débil

Modulo normal del engranaje m_n . Modulo seleccionado para el engranaje

Coeficiente de forma Y_{Fa} . Tiene en cuenta la carga aplicada en el extremo. En nuestro caso se calcula con la siguiente expresión:

$$Y_{Fa} = 38,18 \cdot Z_V^{-1,29} + 2,11$$

Ec.28.

donde
$$z_v = \frac{z}{\cos^3 \beta}$$

Coeficiente de conducción Y_ε. Se calcula mediante la siguiente expresión:

$$Y_{\varepsilon}=0.25+\left(\frac{0.75}{\varepsilon_{\alpha}}\right)$$

Ec.29.

Coeficiente de concentración de tensiones Y_{sa} Se calcula mediante la siguiente expresión:

$$Y_{sa}=0.96 + 0.54 \cdot log z_v$$

Ec.30.

Factor de inclinación Y_{\beta}. Se calcula mediante la siguiente expresión:

$$Y_{\beta} = 1 - \varepsilon_{\beta} \cdot \left(\frac{\beta}{120^{\circ}}\right)$$

Ec.31.

Factor de espesor de aro Y_B. Se calcula mediante la siguiente expresión:

$$Y_B = 1.6 \cdot ln \left(2.242 \cdot \frac{h_t}{S_R} \right)$$

Ec.32.

Coeficiente de distribución de carga longitudinal $K_{F\beta}$ Se calcula mediante la siguiente expresión:

$$K_{F\beta} = (K_{H\beta})^{N}_{F}$$

Ec.33.

donde
$$NF = \frac{1}{1 + \frac{h}{h} + \left(\frac{h}{h}\right)^2}$$

Coeficiente de distribución de carga transversal $K_{F\alpha}$. Tomamos para el cálculo QISO igual a 5. Por ser inferior a 6 el valor final es 1.

Los valores KA, Kv han sido calculados en apartados anteriores.

Finalmente, el cálculo del coeficiente de seguridad a flexión se realizará mediante la siguiente expresión:

$$X_F = \frac{S_{FP}}{\sigma_F}$$

Ec.34.

donde

- SFP es la tensión normal máxima admisible por el material en las condiciones geométricas y de funcionamiento del engranaje para una vida determinada y con un nivel de confianza conocido.
- σF es la tensión normal máxima debida a la flexión que aparece en el dentado del engranaje, que se obtendrá con la Ec. 27.

9.4.2.1.- Resultados para la primera etapa.

m	m _t	d ₁	Z ₁	Z _{2opt}	d₂(mm)	Base(mm)	i	Valoración
2,00	2,21	79,40	36,00	101,00	222,88	42,32	2,81	Válido
3,00	3,31	87,30	27,00	76,00	244,95	35,14	2,81	Válido
4,00	4,41	95,20	22,00	61,00	269,22	27,35	2,77	Válido
5,00	5,52	103,10	19,00	53,00	292,40	24,94	2,79	Válido
6,00	6,62	111,00	17,00	47,00	311,15	22,45	2,76	Válido
8,00	8,83	126,80	15,00	41,00	361,91	19,19	2,73	Válido

Tabla.6-Módulos válidos para la primera etapa

. Se ha utilizado el módulo 3. Los resultados que se muestran a continuación son extraídos de la hoja de calculo proporcionada por el D.I.M.M.

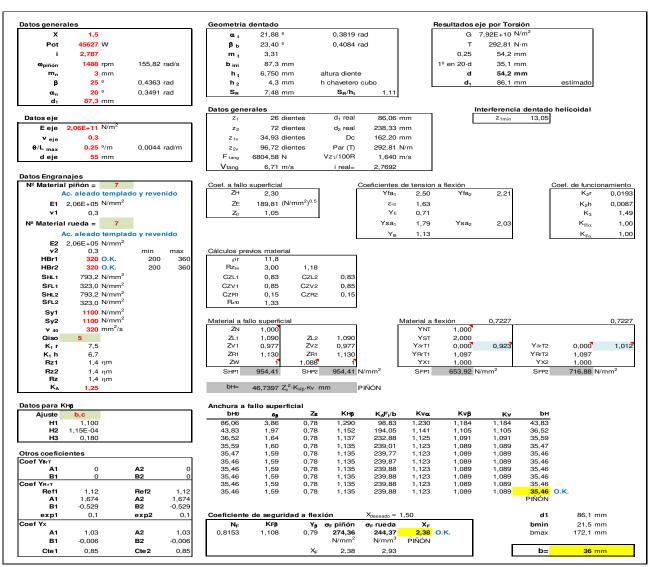


Fig. 3.- Hoja de Excel con los resultados de la primera etapa.

9.4.2.2.- Resultados para la segunda etapa.

m	m _t	d₁	Z ₁	Z _{2opt}	d₂(mm)	Base(mm)	i	Valoración
2,00	2,21	95,60	44,00	123,00	267,02	85,90	2,80	Válido
3,00	3,31	103,50	32,00	89,00	291,29	74,07	2,78	Válido
4,00	4,41	111,40	26,00	71,00	313,36	61,63	2,73	Válido
5,00	5,52	119,30	22,00	61,00	336,53	49,41	2,77	Válido

Tabla.7-Módulos válidos para la segunda etapa.

Se ha utilizado el módulo 4. Los resultados que se muestran a continuación son extraídos de la hoja de cálculo proporcionada por el D.I.M.M.

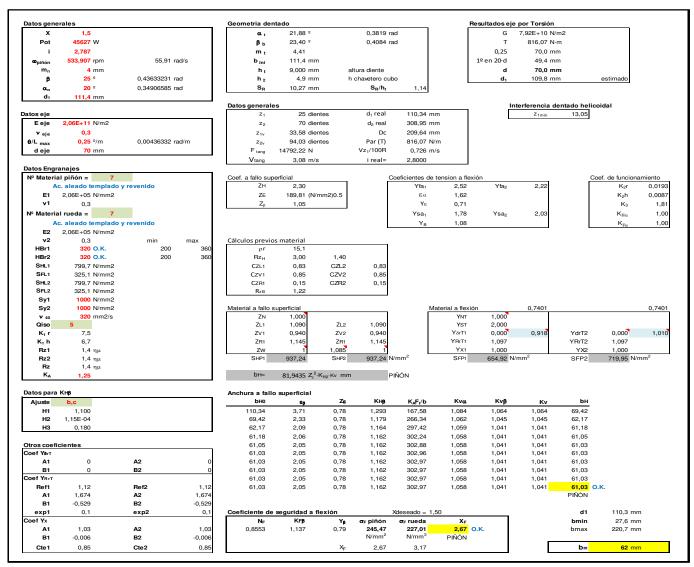


Fig. 4.- Hoja de Excel con los resultados de la segunda etapa.

10.- DISEÑO DE LOS EJES.

10.1.- DISPOSICIÓN DE LOS EJES.

Como se explica en el apartado número 2 de *diseño conceptual* la disposición de los ejes viene influida por la necesidad de hacer lo mas compacto posible el reductor, estudiando las diferentes opciones se ha llegado a la conclusión de elegir la siguiente disposición:

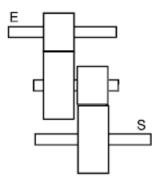


Fig 5. Esquema final del reductor.

Para el cálculo de los ejes se necesita saber el material del cual van a ser fabricados, en este caso se va a utilizar el mismo acero que para los engranajes por ofrecer características que se ajustan a las necesidades, se va a utilizar un acero aleado, templado y revenido 34NiCrMo16. Sus características se han extraído del **ANEXO** 1, siendo las siguientes:

- Sy: 1030 N/mm2

- H_B: 352

S_{HL}: 835,2 N/mm2
 S_{FL}: 336,6 N/mm2

10.2.- DIMENSIONADO DE LOS EJES.

Para determinar el tamaño de cada una de las secciones de los ejes se realizará el dimensionado a rigidez torsional, a fatiga y a deflexión lateral. El dimensionado del eje a rigidez torsional habrá sido realizado previamente, para decidir el diámetro de los piñones.

10.2.1.- Fuerzas que actúan sobre los ejes.

Previo al cálculo de la deflexión lateral y la fatiga, se van a calcular las fuerzas que aparecen sobre los ejes. Como el reductor puede girar en ambos sentidos, se realizarán cálculos tanto para el sentido horario como antihorario.

10.2.1.1.- Eje de entrada.

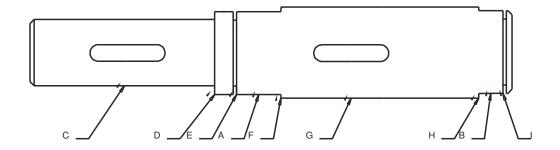


Fig 6. Secciones eje de entrada.

Este eje recibe la fuerza a través del motor eléctrico, el cual introduce un Par torsor en la sección C. de valor:

$$T = 296,111 Nm$$

Las fuerzas que actúan sobre el engranaje (Sección G.) para el sentido horario son:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = -6783,734 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha = 2724,293 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = -3163,307 \text{ N}$$

-
$$M = F_a \cdot r_{pi\~non} = -$$
 138,078 N

Las fuerzas que actúan sobre el engranaje (Sección G.) para el sentido antihorario son:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = 6783,734 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha =$$
 2724,293 N

-
$$F_a = F_t \cdot \tan \beta = -$$
 3163,307 N

-
$$M=F_a\cdot r_{pi ilde{ iny n}on}=$$
 138,078 N

Las secciones A y B representan el alojamiento de los rodamientos, sus reacciones se calcularán más adelante.

10.2.1.2.- Eje intermedio

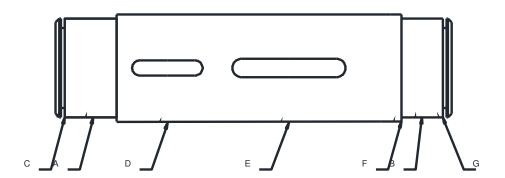


Fig 7. Secciones eje intermedio.

En este eje hay que tener en cuenta el Par torsor que recibe del primer eje, y que aparece en la sección D. este tiene un valor de:

Las fuerzas que actúan en el sentido horario son:

Las fuerzas sobre la sección D. se determinan como:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = 6738,191 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha = -2706,003 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = -3142,07028 \text{ N}$$

-
$$M = F_a \cdot r_{piñon} = -384,825 \text{ N}$$

Las fuerzas sobre la sección E se determinan como:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = 14816,158 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha =$$
 5950,050 N

-
$$F_a = F_t \cdot \tan \beta = 6908,887 \text{ N}$$

-
$$M = F_a \cdot r_{pi\~non} = -393,806 \text{ N}$$

Las fuerzas que actúan en el sentido antihorario son:

Las fuerzas sobre la sección D se determinan como:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = -6738,191 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha = -2706,003 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = 3142,07028 \text{ N}$$

-
$$M = F_a \cdot r_{pi\~non} = 384,825 \text{ N}$$

Las fuerzas sobre la sección E se determinan como:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = -$$
 14816,158 N

-
$$F_r = F_t \cdot \tan \alpha = 5950,050 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = -6908,887 \text{ N}$$

-
$$M = F_a \cdot r_{piñon} = 393,806 \text{ N}$$

Las secciones A y B representan el alojamiento de los rodamientos, sus reacciones se calcularán más adelante.

10.2.1.3.- Eje de salida.

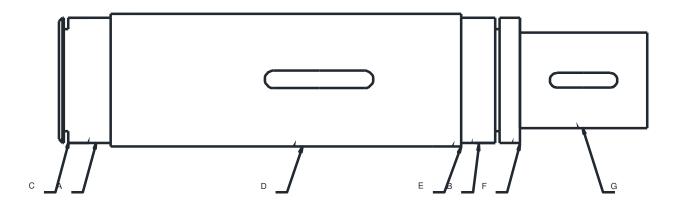


Fig 8. Secciones eje salida.

En este eje hay que tener en cuenta el Par torsor que recibe del segundo eje, y que aparece en la sección D, este tiene un valor de:

T = 2300 Nm

Las fuerzas que actúan sobre el engranaje (Sección D.) para el sentido horario son:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = -$$
 14679,601 N

-
$$F_r = F_t \cdot \tan \alpha = -5895,210 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = -$$
 6845,210 N

-
$$M = F_a \cdot r_{piñon} = -$$
 1072,507 N

Las fuerzas que actúan sobre el engranaje (Sección D.) para el sentido antihorario son:

-
$$F_t = \frac{T_e}{\frac{d_1}{2}} = 14679,601 \text{ N}$$

-
$$F_r = F_t \cdot \tan \alpha = 5895,210 \text{ N}$$

-
$$F_a = F_t \cdot \tan \beta = -6845,210 \text{ N}$$

-
$$M = F_a \cdot r_{pi ilde{n}on} = -$$
 1072,507 N

10.2.2.- Cálculo a fatiga.

Cuando aparecen fuerzas alternantes sobre un mismo punto de aplicación y repetidas a lo largo del tiempo puede aparecer un fenómeno de rotura por fatiga del material, en este apartado se va a estudiar las partes criticas de los distintos ejes para comprobar que esto no ocurra. Cuando aparecen este tipo de cargas la resistencia mecánica del material se reduce, por esto es tan importante llevar a cabo estas comprobaciones

Se tomará como punto de partida un coeficiente de seguridad X =2,5 y a continuación se comprobará si efectivamente las zonas mas criticas cumplen esta condición.

10.2.2.1.- Cálculo del límite de fatiga.

El valor del coeficiente S_e para cada una de las secciones de estudio, se calcula con la siguiente expresión:

$$S_{e} = K_{a} \cdot K_{b} \cdot K_{c} \cdot K_{d} \cdot K_{e} \cdot \frac{S'_{e}}{K_{f}}$$

Ec.35.

A continuación, se explica cada término de la ecuación anterior:

Límite a fatiga S'_{e.} Representa el límite a fatiga de una probeta en un ensayo a flexión rotativa. Se puede obtener su valor mediante:

$$S'_e = 0.5 \cdot S_u \text{ si } S_u \leq 1400 \text{ MP}_a$$

Ec.36.

$${\rm S'}_{\rm e} = 700 \; {\rm MP}_a \; \, {\rm si} \; \, {\rm S}_u > 1400 \; {\rm MP}_a$$

Ec.37.

Factor de superficie K_a. Tiene en cuenta el acabado superficial del eje, se calcula con la siguiente expresión:

$$K_a = \alpha \cdot (S_u)^b$$

Ec.38.

El valor de a y b se obtendrán de la tabla siguiente:

ACABADO SUPERFICIAL	Factor a (MPa)	Exponente b
Rectificado	1.58	-0.085
Mecanizado o laminado en frío	4.51	-0.265
Laminado en caliente	57.7	-0.718
Forjado	272.0	-0.995

Fig. 5.- Factor de superficie.

En este caso todos los ejes tendrán el mismo acabado, el del mecanizado mediante torno, por ello el valor de Ka será:

$$K_a$$
=4.51·(980)^{-0.265}=0.727

Ec.39.

Factor de tamaño K_b . Tiene en cuenta el tamaño del eje. Se calcula mediante la siguiente expresión:

$$K_b = \left(\frac{d}{7.62}\right)^{-0.11333}$$
 $2.79 \le d \le 51 \text{ mm}$

Ec.40.

$$K_b = 0.75$$

d > 51 mm

Ec.41.

Factor de tipo de carga K_c.

- -K_c= 0.8 si existe carga axial
- -K_c= 1 si existe carga a flexión
- -K_c= 0.577 si existe torsión y esfuerzo cortante

Factor de temperatura K_{d.} En un rango medio de temperaturas, el comportamiento a fatiga del acero teniendo en cuenta su temperatura es prácticamente nulo, el valor de este factor será:

$$Kd=1$$

Factor de confiabilidad K_e. El valor lo extraemos de la siguiente tabla:

Confiabilidad	0.5	0.9	0.95	0.99	0.999	0.9999
Factor de corrección	1.0	0.897	0.868	0.814	0.753	0.702

Fig. 6.- Factor de confiabilidad.

Factor de reducción del límite de fatiga K_f. Su valor se obtiene de la expresión:

$$K_f = 1 + q (K_t - 1)$$

Ec.41.

El factor de sensibilidad de entalla q se obtiene de la siguiente expresión:

$$q = \frac{1}{1 + \frac{\alpha}{\rho}}$$

Ec.42.

Debido a que el material empleado en todos los ejes es el mismo, el valor de la constante del material α se obtendrá:

$$\alpha = 0.025 \cdot \left(\frac{2070}{S_u}\right) = 0.0544 \text{ mm}$$

Ec.43.

El valor de ρ es igual al radio del cambio de sección.

El coeficiente K_t representa el coeficiente de concentración de tensiones, y se obtiene con el siguiente diagrama:

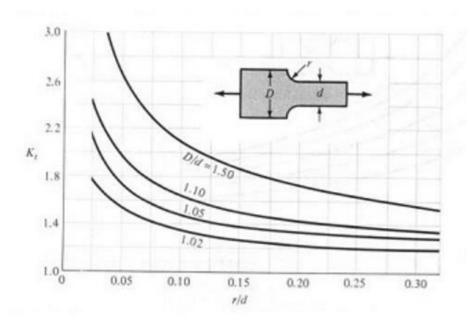


Fig. 7.- Diagrama para el cálculo del coeficiente $\ensuremath{K_t}\xspace.$

10.2.3.- Cálculo del factor de seguridad.

10.2.3.1.- Factor de seguridad del eje de entrada.

				Eje	entrad	a sentido	horario							
Seccion	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ka	Kb<50	Kb>50	Kc	Kd	Ke	Kf	S´e	Se	Х
Inicio	0,04	0,00	0,00	0,00	0,73	0,83	0,00	1,00	1,00	0,87	1,00	475,00	250,43	
Chavetero	0,04	0,00	0,00	0,00	0,73	0,83	0,00	1,00	1,00	0,87	1,00	475,00	250,43	
Cambio seccion	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura1	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura 2	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Rodamiento	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Engranaje	0,06	174,73	-200,23	265,75	0,73	0,80	0,75	1,00	1,00	0,87	2,00	475,00	113,32	6,97
Cambio seccion	0,05	61,93	-70,96	94,19	0,73	0,81	0,00	1,00	1,00	0,87	2,35	475,00	103,86	13,53
Rodamiento B	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	
Fin	0,05	0,00	0,00	0,00	0,73	0,81	0,00	1,00	1,00	0,87	1,00	475,00	244,17	

Fig. 8.- Tabla de resultados para el eje de entrada y sentido horario.

				Eje ei	ntrada	sentido a	ntihorar	io		•				•
Seccion	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ka	Kb<50	Kb>50	Kc	Kd	Ke	Kf	S´e	Se	Χ
Inicio	0,04	0,00	0,00	0,00	0,73	0,83	0,75	1,00	1,00	0,87	1,00	475,00	250,43	
Chavetero	0,04	0,00	0,00	0,00	0,73	0,83	0,75	1,00	1,00	0,87	1,00	475,00	250,43	
Cambio seccion	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura1	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura 2	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Rodamiento	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Engranaje	0,06	124,17	200,23	235,61	0,73	0,80	0,75	1,00	1,00	0,87	2,00	475,00	113,32	7,86
Cambio seccion	0,05	-4,93	70,96	71,14	0,73	0,81	0,75	1,00	1,00	0,87	2,35	475,00	103,86	17,92
Rodamiento B	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Ranura	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	
Fin	0,05	0,00	0,00	0,00	0,73	0,81	0,75	1,00	1,00	0,87	1,00	475,00	244,17	

Fig. 9.- Tabla de resultados para el eje de entrada y sentido antihorario.

10.2.3.2.- Factor de seguridad del eje intermedio.

				Fie in	iterme	dio senti	do horar	io						
Sección	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ка	Kb<50	Kb>50	Кс	Kd	Ke	Kf	S'e	Se	Х
Inicio	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Rodamiento	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio seccioó	0,07	-116,78	327,33	347,53	0,73	0,78	0,75	1,00	1,00	0,87	2,21	475,00	102,73	9,95
Engranaje 1	0,07	-230,43	645,89	685,76	0,73	0,78	0,75	1,00	1,00	0,87	2,00	475,00	113,32	5,56
Engranaje 2	0,07	96,47	875,57	880,87	0,73	0,78	0,75	1,00	1,00	0,87	2,00	475,00	113,32	4,33
Rodamiento	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	2,21	475,00	102,73	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Fin	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	

Fig. 10.- Tabla de resultados para el eje intermedio y sentido horario.

	•			Eie inte	ermedi	o sentido	antihor	ario		•				
Sección	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ка	Kb<50	Kb>50	Кс	Kd	Ke	Kf	S'e	Se	Х
Inicio	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Rodamiento	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio sección	0,07	123,89	-327,33	349,99	0,73	0,78	0,75	1,00	1,00	0,87	2,21	475,00	102,73	9,88
Engranaje 1	0,07	244,47	-645,89	690,61	0,73	0,78	0,75	1,00	1,00	0,87	2,00	475,00	113,32	5,53
Engranaje 2	0,07	364,46	-875,57	948,39	0,73	0,78	0,75	1,00	1,00	0,87	2,00	475,00	113,32	4,02
Rodamiento	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	2,21	475,00	102,73	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Fin	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	

Fig. 11.- Tabla de resultados para el eje intermedio y sentido antihorario.

10.2.3.3.- Factor de seguridad del eje de salida

	•			Eje de sa	lida s	entido	horario					•		·
Sección	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ka	Kb<50	Kb>50	Kc	Kd	Ke	Kf	S´e	Se	Χ
Inicio	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Rodamiento	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio sección	0,09	-154,08	-178,01	235,43	0,73	0,76	0,75	1,00	1,00	0,87	2,25	475,00	100,53	30,56
Engranaje 1	0,09	-907,90	-1048,93	1387,28	0,73	0,76	0,75	1,00	1,00	0,87	2,00	475,00	113,32	5,85
Rodamiento	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	2,00	475,00	113,32	
Ranura	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	2,25	475,00	100,53	
Ranura fin	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio seccion	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Fin	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	

Fig. 12.- Tabla de resultados para el eje de salida y sentido horario.

	•		•	Eje de	e salida	sentido	antihora	rio		•	•			•
Sección	d(mm)	My(Nm)	Mz(Nm)	M(Nm)	Ka	Kb<50	Kb>50	Kc	Kd	Ke	Kf	S'e	Se	Х
Inicio	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Ranura	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Rodamiento	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio sección	0,09	154,08	54,26	163,35	0,73	0,76	0,75	1,00	1,00	0,87	2,25	475,00	100,53	44,05
Engranaje 1	0,09	907,90	-752,78	1179,39	0,73	0,76	0,75	1,00	1,00	0,87	2,00	475,00	113,32	6,88
Rodamiento	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	2,00	475,00	113,32	
Ranura	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	2,25	475,00	100,53	
Ranura fin	0,09	0,00	0,00	0,00	0,73	0,76	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Cambio sección	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	
Fin	0,07	0,00	0,00	0,00	0,73	0,78	0,75	1,00	1,00	0,87	1,00	475,00	226,65	

Fig. 13.- Tabla de resultados para el eje de salida y sentido antihorario.

10.2.3.4.- Interpretación de los resultados

Como podemos observar en las tablas, para las secciones estudiadas obtenemos un coeficiente de seguridad en los cálculos mayor al propuesto inicialmente como condición, esto nos indica que no habrá una rotura por fatiga.

10.2.4.- Deflexión lateral.

La deflexión lateral de los ejes ha de estar limitada, por lo que se tendrá que comprobar que no supere dichos límites. Se comprobará que:

- En ejes con engranajes cilíndricos de dientes helicoidales es conveniente una separación menor de 0,05·mm.
- Para los engranajes cilíndricos la pendiente ha de ser menor de 0,0005 rad.
- Para los rodamientos rígidos de bolas la pendiente ha de ser menor de 0,002 rad.
- Para los rodamientos de rodillos cilíndricos la pendiente ha de ser menor de 0,001 rad.
- Para los rodamientos de rodillos cónicos la pendiente ha de ser menor de 0,0008 rad.

Si no se cumplen estas limitaciones se puede aumentar el diámetro del eje, o si es posible se puede reducir la distancia entre rodamientos

Los cálculos para comprobar la deflexión lateral se realizarán con la ayuda de una hoja de cálculo proporcionada por el DIMM

Para el estudio de los ejes se tendrán en cuenta los dos sentidos de rotación, dentro de cada sentido de rotación se hará un estudio en dos planos distintos. Finalmente se combinarán los resultados para obtener los esfuerzos finales que aparecen sobre el eje.

Con este cálculo lo que se pretende comprobar es que no existan deformaciones excesivas que provoquen un funcionamiento erróneo que lleve a un fallo prematuro de los distintos componentes.

A su vez en las distintas tablas podemos ver los esfuerzos en los apoyos de los rodamientos.

10.2.4.1.- Eje de entrada.

Resultados de cálculo para el sentido horario:

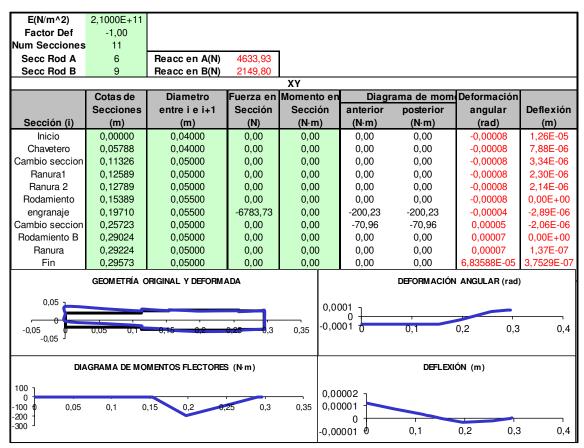


Fig. 14.- Resultados para el eje de entrada, sentido horario y plano XY.

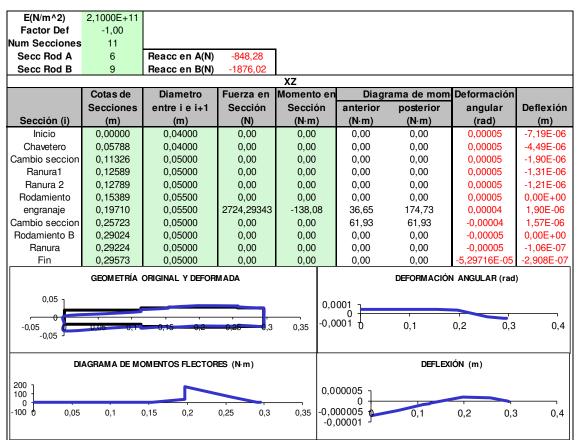


Fig. 15.- Resultados para el eje de entrada, sentido horario y plano XZ.

		7	ΓΟΤΑL			
Reacc en A(N)	4710,93631					
Reacc en B(N)	2853,25807					
	Cotas de	Diametro	Diagr	ama de mon	Deformación	
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N·m)	(rad)	(m)
Inicio	0,00000	0,04000	0,00	0,00	1,11E-04	1,70E-05
Chavetero	0,05788	0,04000	0,00	0,00	1,11E-04	1,06E-05
Cambio seccion	0,11326	0,05000	0,00	0,00	1,11E-04	4,50E-06
Ranura1	0,12589	0,05000	0,00	0,00	1,11E-04	3,10E-06
Ranura 2	0,12789	0,05000	0,00	0,00	1,11E-04	2,88E-06
Rodamiento	0,15389	0,05500	0,00	0,00	1,11E-04	0,00E+00
engranaje	0,19710	0,05500	203,56	265,75	4,91E-05	3,85E-06
Cambio seccion	0,25723	0,05000	94,19	94,19	6,65E-05	2,72E-06
Rodamiento B	0,29024	0,05000	0,00	0,00	9,06E-05	0,00E+00
Ranura	0,29224	0,05000	0,00	0,00	9,06E-05	1,81E-07
Fin	0,29573	0,05000	0,00	0,00	9,06E-05	4,97E-07

Fig. 16.- Resultados esfuerzos totales para el eje de entrada y sentido horario.

Resultados de cálculo para el sentido antihorario:

E(N/m^2)	2,1000E+11							
Factor Def	-1,00							
Num Secciones	11			_				
Secc Rod A	6	Reacc en A(N)	-4633,93					
Secc Rod B	9	Reacc en B(N)	-2149,80					
				XY				
	Cotas de	Diametro	Fuerza en	Momento e	n Diagı	rama de mom	Deformación	
	Secciones	entre i e i+1	Sección	Sección	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N)	(N·m)	(N·m)	(N·m)	(rad)	(m)
Inicio	0,00000	0,04000	0,00	0,00	0,00	0,00	0,00008	-1,26E-05
Chavetero	0,05788	0,04000	0,00	0,00	0,00	0,00	0,00008	-7,88E-06
Cambio seccion	0,11326	0,05000	0,00	0,00	0,00	0,00	0,00008	-3,34E-06
Ranura1	0,12589	0,05000	0,00	0,00	0,00	0,00	0,00008	-2,30E-06
Ranura 2	0,12789	0,05000	0,00	0,00	0,00	0,00	0,00008	-2,14E-06
Rodamiento	0,15389	0,05500	0,00	0,00	0,00	0,00	0,00008	0,00E+00
engranaje	0,19710	0,05500	6783,73	0,00	200,23	200,23	0,00004	2,89E-06
Cambio seccion	0,25723	0,05000	0,00	0,00	70,96	70,96	-0,00005	2,06E-06
Rodamiento B	0,29024	0,05000	0,00	0,00	0,00	0,00	-0,00007	0,00E+00
Ranura	0,29224	0,05000	0,00	0,00	0,00	0,00	-0,00007	-1,37E-07
Fin	0,29573	0,05000	0,00	0,00	0,00	0,00	-6,83588E-05	-3,753E-07
	GEOMETRÍA O	RIGINAL Y DEFORM	ADA			DEFORMACIÓN	I ANGULAR (rad)
							,	
ر 0,05				100	001			
					0 +	-		
-0,05	0,05 0,1	0,15 0,2	0,25 0,3	0,35	0001 8	0,1	0,2 0,3	0,4
-0,05								
DIA	GRAMA DE MOI	MENTOS FLECTORE	SS(N·m)			DEFLEX	IÓN (m)	
300 1					0004			
200 -				0,0	0001			
100 -				-0.0	0001	0,1	0,2 0,3	0,4
-100 0 0,05	0,1 0,	15 0,2 0,	25 0,3		0002	0,1	0,0	, 0,4
100 1 0,00		-,,,-					_	

Fig. 17.- Resultados para el eje de entrada, sentido antihorario y plano XY.

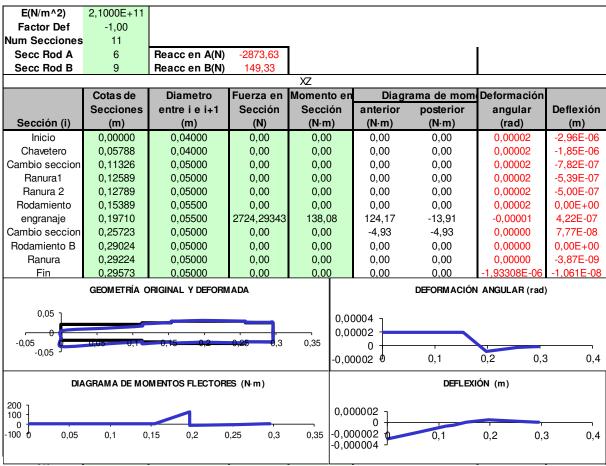


Fig. 18.- Resultados para el eje de entrada, sentido antihorario y plano XZ.

	TOTAL					
Reacc en A(N)	5452,62162					
Reacc en B(N)	2154,9798					
	Cotas de	Diametro	Diametro Diagrama de momDeformación			
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N⋅m)	(rad)	(m)
Inicio	0,00000	0,04000	0,00	0,00	0,00007	-9,56E-06
Chavetero	0,05788	0,04000	0,00	0,00	0,00007	-5,55E-06
Cambio seccion	0,11326	0,05000	0,00	0,00	0,00007	-1,71E-06
Ranura1	0,12589	0,05000	0,00	0,00	0,00007	-8,32E-07
Ranura 2	0,12789	0,05000	0,00	0,00	0,00007	-6,93E-07
Rodamiento	0,15389	0,05500	0,00	0,00	0,00007	0,00E+00
engranaje	0,19710	0,05500	235,61	200,71	0,00005	3,70E-06
Cambio seccion	0,25723	0,05000	71,14	71,14	-0,00008	8,46E-07
Rodamiento B	0,29024	0,05000	0,00	0,00	-0,00009	0,00E+00
Ranura	0,29224	0,05000	0,00	0,00	-0,00009	-1,72E-07
Fin	0,29573	0,05000	0,00	0,00	-8,5832E-05	-4,7122E-07

Fig. 18.- Resultados esfuerzos totales para el eje de entrada y sentido antihorario.

10.2.4.2.- Eje intermedio

Resultados de cálculo para el sentido horario:

E(N/m^2)	2.1000E+11							
Factor Def	-1.00							
Num Secciones	,							
Secc Rod A	3	Reacc en A(N)	-9627,23	Ī				
Secc Rod B	7	Reacc en B(N)	-11927,12					
	·			XY				
	Cotas de	Diametro	Fuerza en	Momento en	Diag	grama de mom	Deformación	
	Secciones	entre i e i+1	Sección	Sección	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N)	(N·m)	(N·m)	(N⋅m)	(rad)	(m)
Inicio	0,00000	0,06500	0,00	0,00	0,00	0,00	0,00023	-1,37E-06
Ranura	0,00350	0,06500	0,00	0,00	0,00	0,00	0,00023	-5,73E-07
Rodamiento	0,00600	0,06500	0,00	0,00	0,00	0,00	0,00023	0,00E+00
Cambio seccion	0,04000	0,07000	0,00	0,00	327,33	327,33	0,00020	7,44E-06
Engranaje 1	0,07309	0,07000	6738,19	0,00	645,89	645,89	0,00013	1,31E-05
Engranaje 2	0,15259	0,07000	14816,16	0,00	875,57	875,57	-0,00011	1,45E-05
Rodamiento	0,22600	0,06500	0,00	0,00	0,00	0,00	-0,00024	0,00E+00
Ranura	0,25299	0,06500	0,00	0,00	0,00	0,00	-0,00024	-6,49E-06
Ranura	0,25549	0,06500	0,00	0,00	0,00	0,00	-0,00024	-7,09E-06
Fin	0,25899	0,06500	0,00	0,00	0,00	0,00	-0,00024	-7,93E-06
	GEOMETRÍA O	ORIGINAL Y DEFORM	IADA			DEFORMACIÓN	ANGULAR (rad)	
							(,	
0,1				0.0	005 ¬			
0,05					0			
-0,05 -0,05 0	0,05	,1 0,15 (0,2 0,25	0,0	005 ₺	0,05 0,1 0	0,15 0,2	0,25 0,3
-0,1 J								
DIA	GRAMA DE MO	MENTOS FLECTORE	ES (N⋅m)			DEFLEXI	ON (m)	
1000 ¬								
500 -				0,00	0002			
-500 0 0.09	5 0,1	0,15 0,2	0,25	0,00	0002	0.05 0.1	0,15 0,2	0,25 0,3
-300 0 0,00	5 0,1	0,10 0,2	0,23	0,5	U	0,00 0,1	0,10 0,2	0,20 0,0

Fig. 19.- Resultados para el eje intermedio, sentido horario y plano XY.

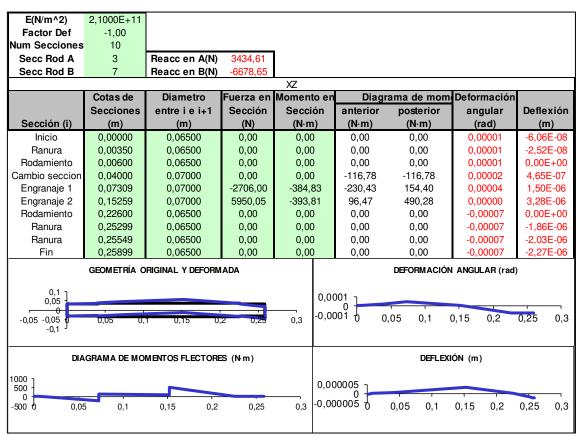


Fig. 20.- Resultados para el eje intermedio, sentido horario y plano XZ.

	TOTAL					
Reacc en A(N)	10222					
Reacc en B(N)	13670					
	Cotas de	Diametro	Diagr	ama de mon	Deformación	
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N⋅m)	(rad)	(m)
Inicio	0,00000	0,06500	0,00	0,00	0,00025	-1,53E-06
Ranura	0,00350	0,06500	0,00	0,00	0,00025	-6,35E-07
Rodamiento	0,00600	0,06500	0,00	0,00	0,00025	0,00E+00
Cambio seccion	0,04000	0,07000	347,53	347,53	0,00025	2,78E-06
Engranaje 1	0,07309	0,07000	685,76	664,09	0,00020	1,12E-05
Engranaje 2	0,15259	0,07000	880,87	1003,49	-0,00009	1,82E-05
Rodamiento	0,22600	0,06500	0,00	0,00	-0,00026	0,00E+00
Ranura	0,25299	0,06500	0,00	0,00	-0,00026	-2,87E-06
Ranura	0,25549	0,06500	0,00	0,00	-0,00026	-3,52E-06
Fin	0,25899	0,06500	0,00	0,00	-0,00026	-4,43E-06

Fig. 21.- Resultados esfuerzos totales para el eje intermedio y sentido horario.

Resultados de cálculo para el sentido antihorario:

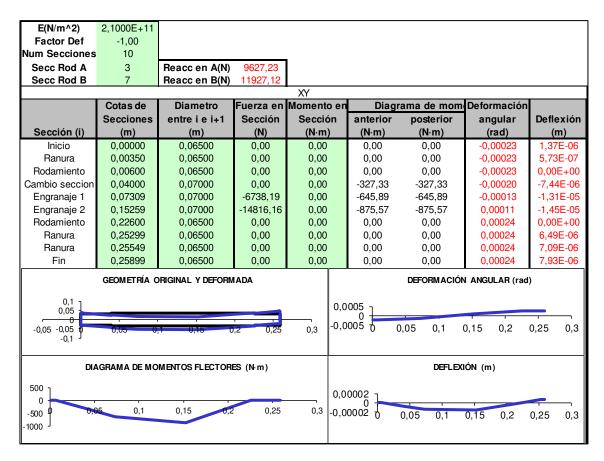


Fig. 22.- Resultados para el eje intermedio, sentido antihorario y plano XY.

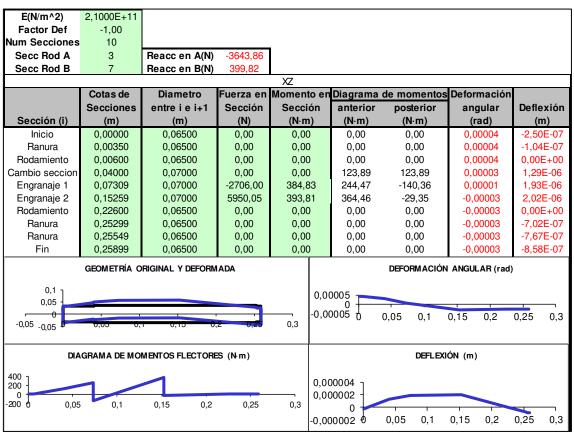


Fig. 23.- Resultados para el eje intermedio, sentido antihorario y plano XZ.

	TOTAL					
Reacc en A(N)	10293,75					
Reacc en B(N)	11933,82					
	Cotas de	Diametro	Diagrama d	le momentos	Deformación	ı
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N·m)	(rad)	(m)
Inicio	0,00000	0,06500	0,00	0,00	-0,00025	1,53E-06
Ranura	0,00350	0,06500	0,00	0,00	-0,00025	6,35E-07
Rodamiento	0,00600	0,06500	0,00	0,00	-0,00025	0,00E+00
Cambio seccion	0,04000	0,07000	349,99	349,99	-0,00025	-2,78E-06
Engranaje 1	0,07309	0,07000	690,61	660,97	-0,00020	-1,12E-05
Engranaje 2	0,15259	0,07000	948,39	876,06	0,00009	-1,82E-05
Rodamiento	0,22600	0,07000	0,00	0,00	0,00026	0,00E+00
Ranura	0,25299	0,06500	0,00	0,00	0,00026	2,87E-06
Ranura	0,25549	0,06500	0,00	0,00	0,00026	3,52E-06
Fin	0,25899	0,06500	0,00	0,00	0,00026	4,43E-06

Fig. 23.- Resultados esfuerzos totales para el eje intermedio y sentido antihorario.

10.2.4.3.- Eje de salida.

Resultados de cálculo para el sentido horario:

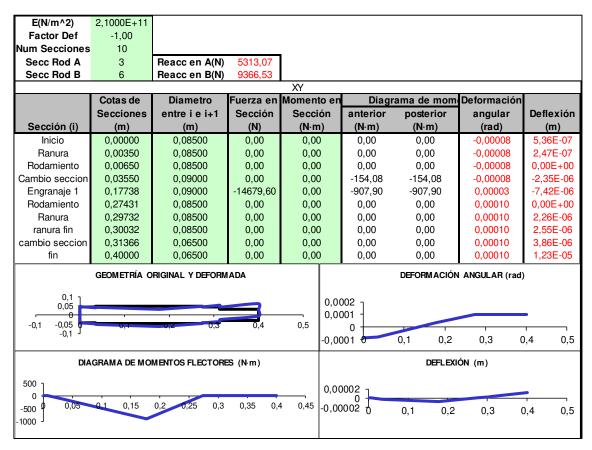


Fig. 24.- Resultados para el eje de salida, sentido horario y plano XY.

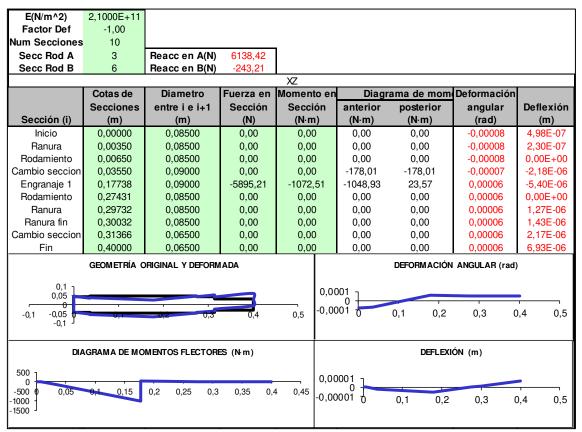


Fig. 25.- Resultados para el eje de salida, sentido horario y plano XZ.

		_	TOTAL			
Reacc en A(N)	8118,43					
Reacc en B(N)	9369,69					
	Cotas de	Diametro	Diagrama d	le momentos	Deformación	
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N·m)	(rad)	(m)
Inicio	0,00000	0,08500	0,00	0,00	-0,00009	5,90E-07
Ranura	0,00350	0,08500	0,00	0,00	-0,00009	2,72E-07
Rodamiento	0,00650	0,08500	0,00	0,00	-0,00009	0,00E+00
Cambio seccion	0,02050	0,09000	235,43	235,43	-0,00009	-1,27E-06
Engranaje 1	0,17738	0,09000	1387,28	908,20	0,00003	-8,57E-06
Rodamiento	0,28332	0,09000	0,00	0,00	0,00011	0,00E+00
Ranura	0,29732	0,08500	0,00	0,00	0,00011	1,48E-06
Ranura fin	0,30032	0,08500	0,00	0,00	0,00011	1,80E-06
Cambio seccion	0,31366	0,06500	0,00	0,00	0,00011	3,21E-06
Fin	0,40000	0,06500	0,00	0,00	0,00011	1,24E-05

Fig. 25.- Resultados esfuerzos totales para el eje de salida y sentido horario.

Resultados de cálculo para el sentido antihorario:

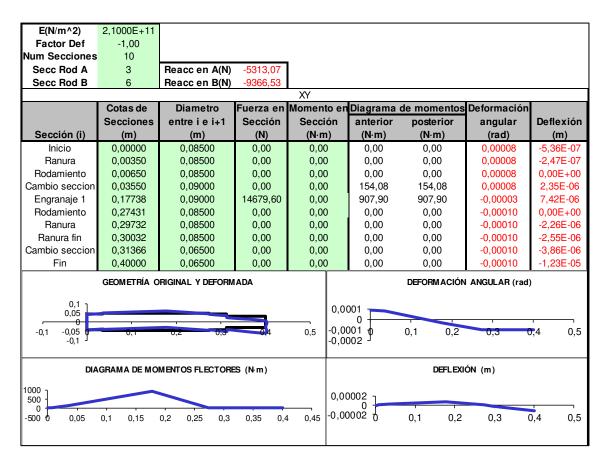


Fig. 26.- Resultados para el eje de salida, sentido antihorario y plano XY.

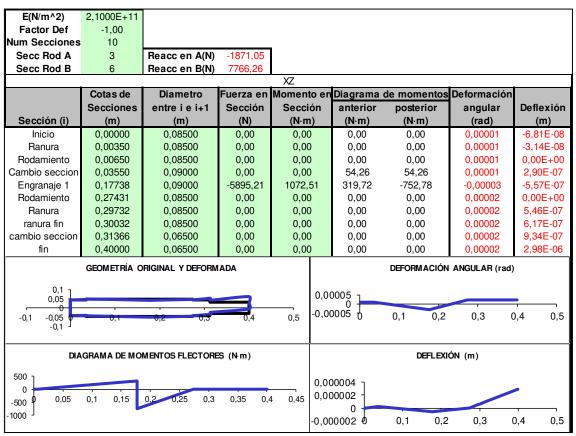


Fig. 27.- Resultados para el eje de salida, sentido antihorario y plano XZ.

	TOTAL					
Reacc en A(N)	5632,90					
Reacc en B(N)	12167,44					
	Cotas de	Diametro	Diagrama d	le momentos	Deformación	
	Secciones	entre i e i+1	anterior	posterior	angular	Deflexión
Sección (i)	(m)	(m)	(N·m)	(N·m)	(rad)	(m)
Inicio	0,00000	0,08500	0,00	0,00	0,00000	-3,06E-08
Ranura	0,00350	0,08500	0,00	0,00	0,00000	-1,41E-08
Rodamiento	0,00650	0,08500	0,00	0,00	0,00000	0,00E+00
Cambio seccion	0,02050	0,09000	163,35	163,35	0,00000	6,46E-08
Engranaje 1	0,17738	0,09000	962,55	1179,39	-0,00003	-1,19E-06
Rodamiento	0,28332	0,09000	0,00	0,00	0,00003	0,00E+00
Ranura	0,29732	0,08500	0,00	0,00	0,00003	4,49E-07
Ranura fin	0,30032	0,08500	0,00	0,00	0,00003	5,45E-07
Cambio seccion	0,31366	0,06500	0,00	0,00	0,00003	9,73E-07
Fin	0,40000	0,06500	0,00	0,00	0,00003	3,74E-06

Fig. 28.- Resultados esfuerzos totales para el eje de salida y sentido antihorario.

11.- SELECCIÓN Y CÁLCULO DE RODAMIENTOS.

11.1.- SELECCIÓN DE RODAMIENTOS.

A la hora de seleccionar los rodamientos, con el fin de evitar esfuerzos axiales innecesarios, se ha de garantizar que cada eje tenga un apoyo fijo y un apoyo libre.

En este caso, se va a optar por utilizar rodamientos cónicos de rodillos de la marca SFK para los tres ejes, el de entrada, el intermedio y el de salida.

11.1.1.- Cálculo de rodamientos

Para el cálculo de la fuerza equivalente se ha de tener en cuenta los esfuerzos axiales que aparecen al tratarse de engranajes de dientes helicoidales, por ello se ha seleccionado rodamientos de rodillos cónicos que permiten transmitir esta fuerza axial.

La fuera equivalente se calcula con la siguiente expresión:

$$si \frac{F_a}{F_e} < e \rightarrow F_{eq} = F_r$$

Ec.44.

si
$$\frac{F_a}{F_e}$$
 > e \rightarrow F_{eq} = 0.4 · F_r + Y · F_a

Ec.45.

Los valores de "e" y de "Y" se encuentran en el catálogo del fabricante.

En este tipo de rodamiento, la aplicación de una carga radial genera un empuje axial, el cual hay que contabilizar a efectos de cálculos. Se calcula mediante la siguiente expresión:

$$0.5 \cdot \frac{F_r}{Y}$$

Ec.46.

Las cargas que aparecen en los rodamientos nos plantean dos casos distintos. Para evaluar estas cargas se utiliza la siguiente expresión.

$$\begin{aligned} \text{-} \quad &\text{Si } 0.5 \cdot \frac{F_{rA}}{Y_A} \leq F_h + 0.5 \cdot \frac{F_{rB}}{Y_B} \\ \\ \text{-} \quad &F_{a,A} = F_h + 0.5 \cdot \frac{F_{rB}}{Y_B} \\ \\ \text{-} \quad &F_{a,B} = 0.5 \cdot \frac{F_{rB}}{Y_B} \end{aligned}$$

Ec.47.

$$\begin{array}{ll} \text{-} & \text{Si } 0.5 \cdot \frac{F_{rA}}{Y_A} > F_h + 0.5 \cdot \frac{F_{rB}}{Y_B} \\ \\ \text{-} & F_{a,A} = 0.5 \cdot \frac{F_{rA}}{Y_A} \\ \\ \text{-} & F_{a,B} = -F_h + 0.5 \cdot \frac{F_{rA}}{Y_A} \end{array}$$

Ec.48.

11.1.2.- Cálculo de la vida del rodamiento

El cálculo de la vida de un rodamiento se basa en el cálculo de la capacidad de carga dinámica, basado exclusivamente en el fallo por fatiga. Se calculará mediante la siguiente expresión:

$$L = a_1 \cdot a_{ISO} \cdot L_{10}$$
 Ec.50.

Donde:

•L₁₀: número de revoluciones, u horas a una velocidad constante dada, que el 90% de un grupo de rodamientos idénticos completará o excederá antes de desarrollar un fallo.

$$L_{10} = 10^6 \frac{C^q}{F}$$

Ec.51.

Donde:

- C: Capacidad de carga dinámica básica. relaciona la fuerza transmitida equivalente con la vida en revoluciones del rodamiento. Este valor es proporcionado por el fabricante.
- F: Fuerza equivalente.
- q: Para los rodamientos utilizados, por ser de rodillos cónicos su valor equivale a q=10/3.
- •a₁: Factor de fiabilidad. El valor de este factor se puede extraer del **ANEXO** 11. Ya que se quiere conseguir un 99% de fiabilidad su valor será de 0.25.
- •a_{ISO}: Factor por condiciones de trabajo. Es necesario tener en cuenta las condiciones de trabajo, particularmente la lubricación inadecuada.

La relación contaminación-carga, $\eta_c(P_u/F)$ depende de la fuerza equivalente, del valor P_u y del factor de contaminación η_c que para este caso se aplica un valor de contaminación normal, su valor es de 0,5. Se puede ver su valor en el **ANEXO** 12

Para el cálculo de la relación de viscosidades, $\kappa = v/v_1$, hay que establecer la temperatura de trabajo, que en este caso será de 60°C. Una vez establecida la temperatura de trabajo, podemos extraer el valor de v del **ANEXO** 2.

El valor de la viscosidad relativa v1 viene determinado por:

$$v_1 = \frac{45000}{\sqrt{d_m \cdot n^{1.667}}} \text{ para } n < 1000 \text{ rpm}$$

Ec.52.

$$v_1 = \frac{4500}{\sqrt{d_m \cdot n}}$$
 para $n \ge 1000$ rpm

Ec.53.

11.1.3.- Resultados

Para todos los ejes se realizará el calculo en los dos sentidos posibles de giro del reductor. Por el tipo de servicio que ofrece el reductor, continuo durante las 24h, se estima que la vida de los rodamientos debe de ser de 45.000h. Las características de los distintos rodamientos se podrán encontrar en los **ANEXOS** 13,14,15,16,17 y 18.

11.1.3.1.- Eje de entrada.

Rodamiento A horario

d(mm)	50,000
n(rpm)	1488,000
a1	0,250
nc	0,500
v _{60°c} (mm2/s)	110,000
q	3,330

F _h	3163,307
F _r	4710,936
F_a	4733,619
F_{eq}	8959,852
F _a /F _a	1.005

cod.	33110,000
D(mm)	85,000
С	106,000
P_u	13,400
е	0,400
Υ	1,500

d _m (mm)	67,500
v ₁ (mm^2/s)	14,199
K	7,747
Cont-carga	0,748
aiso	13,000
L ₁₀ (rpm)	3742025267,586
L _{10c}	41913,365
L(h)	136218,438

Fig. 29.- Cálculo para el rodamiento del apoyo "A" sentido horario.

0,98

28,00

82049,09

574343,64

7325342911,47

Rodamiento B horario

d(mm)	50,00		Cod.	32910
n(rpm)	1488,00		D(mm)	72,00
a1	0,25		С	41,30
nc	0,50		P_u	5,60
v _{60ºc} (mm2/s)	110,00		е	0,35
q	3,33		Υ	1,70
		•		
F_h			d _m (mm)	61,00
F _r	2853,26		v ₁ (mm^2/s)	14,94
Fa	839,19		K	7,36

Fig. 30.- Cálculo para el rodamiento del apoyo "B" sentido horario.

Cont-carga

L₁₀(rpm)

aiso

L(h)

Rodamiento A antihorario

d(mm)	50
n(rpm)	1488
a1	0,25
nc	0,5
v _{60°c} (mm2/s)	110
q	3,33

2853,26

0,29

F_h	3163,307232
F _r	5452,62
F _a	4980,847772
F _{eq}	10171,27154
F _a /F _r	0,913477611

Cod.	33110
D(mm)	85
С	106
P_u	13,4
е	0,4
Υ	1,5

d _m (mm)	67,5
v ₁ (mm^2/s)	14,19904586
K	7,746999419
Cont-carga	0,658718035
aiso	7
L ₁₀ (rpm)	2453064418
L _{10c}	27476,07995
L(h)	48083,13991

Fig. 31.- Cálculo para el rodamiento del apoyo "A" sentido antihorario.

Rodamiento B antihorario

d(mm)	50,00	
n(rpm)	1488,00	
a1	0,25	
nc	0,50	
v _{60°c} (mm2/s)	110,00	
q	3,33	

Cod.	32910
D(mm)	72,00
С	41,30
P_{u}	5,60
е	0,35
Υ	1,70

F _h	
F _r	2154,98
Fa	633,82
F _{eq}	2154,98
F _a /F _r	0,29

61,00
14,94
7,36
1,30
45,00
18652961987,76
208926,55
2350423,64

Fig. 32.- Cálculo para el rodamiento del apoyo "B" sentido antihorario.

11.1.3.2.- Eje intermedio.

Rodamiento A horario

65,000
534,000
0,250
0,500
110,000
3,330

Cod.	33113
D(mm)	110,000
С	175,000
P_u	24,000
е	0,400
Υ	1,500

F _h	3766,000
F _r	10221,552
Fa	7173,184
F _{eq}	18201,601
F _a /F _r	0,702

d _m (mm)	87,500
v ₁ (mm^2/s)	25,633
K	4,291
Cont-carga	0,659
aiso	11,000
L ₁₀ (rpm)	1875649853,153
L _{10c}	58540,882
L(h)	160987,425

Fig. 33.- Cálculo para el rodamiento del apoyo "A" sentido horario.

Rodamiento B horario

d(mm)	65,000	
n(rpm)	534,000	
a1	0,250	
nc	0,500	
v _{60°c} (mm2/s)	110,000	
q	3,330	

Cod.	33013
D(mm)	100,000
С	119,000
P_u	17,300
e	0,350
Υ	1,700

F _h	
F _r	13669,694
Fa	4020,498
F _{eq}	13669,694
F _a /F _r	0,294

d _m (mm)	82,500
v ₁ (mm^2/s)	26,399
K	4,167
Cont-carga	0,633
aiso	9,000
L ₁₀ (rpm)	1347393817,721
L _{10c}	42053,490
L(h)	94620,352

Fig. 34.- Cálculo para el rodamiento del apoyo "B" sentido horario.

Rodamiento A antihorario

d(mm)	65,000
n(rpm)	534,000
a1	0,250
nc	0,500
v _{60⁰c} (mm2/s)	110,000
q	3,330

Cod.	33113
D(mm)	110,000
С	175,000
P_u	24,000
e	0,400
Υ	1,500

F _h	3766,000
F _r	10293,752
Fa	7197,251
F_{eq}	18319,528
F _a /F _r	0,699

d _m (mm)	87,500
v ₁ (mm^2/s)	25,633
K	4,291
Cont-carga	0,655
aiso	11,000
L ₁₀ (rpm)	1835744035,696
L _{10c}	57295,382
L(h)	157562,300

Fig. 35.- Cálculo para el rodamiento del apoyo "A" sentido antihorario.

Rodamiento B antihorario

d(mm)	65,000
n(rpm)	534,000
a1	0,250
nc	0,500
v _{60°c} (mm2/s)	110,000
q	3,330

Cod.	33013
D(mm)	100,000
С	119,000
P_u	17,300
e	0,350
Υ	1,700

F _h	
F _r	11933,817
Fa	3509,946
F _{eq}	11933,817
F _a /F _r	0,294

d _m (mm)	82,500
v ₁ (mm^2/s)	26,399
K	4,167
Cont-carga	0,725
aiso	12,000
L ₁₀ (rpm)	2117854281,901
L _{10c}	66100,321
L(h)	198300,963

Fig. 36.- Cálculo para el rodamiento del apoyo "B" sentido antihorario.

11.1.3.3.- *Eje de salida.*

Rodamiento A horario

d(mm)	85,000
n(rpm)	195,000
a1	0,250
nc	0,500
v _{60⁰c} (mm2/s)	110,000
q	3,330

Cod.	32017X
D(mm)	130,000
С	171,000
P_u	25,500
e	0,440
Υ	1,350

F _h	6845,211
F _r	8118,432
Fa	9852,037
F _{eq}	14900,698
F _a /F _r	1,214

107,500
53,551
2,054
0,856
10,000
3381419110,297
289010,180
722525,451

Fig. 37.- Cálculo para el rodamiento del apoyo "A" sentido horario.

Rodamiento B horario

d(mm)	85,000
n(rpm)	195,000
a1	0,250
nc	0,500
v _{60°c} (mm2/s)	110,000
q	3,330

Cod.	32917
D(mm)	120,000
С	115,000
P_u	17,600
e	0,330
Υ	1,800

F _h	
F _r	9369,687
Fa	2602,691
F _{eq}	9369,687
F _a /F _r	0,278

d _m (mm)	102,500
v ₁ (mm^2/s)	54,841
K	2,006
Cont-carga	0,939
aiso	11,000
L ₁₀ (rpm)	4229405310,947
L _{10c}	361487,633
L(h)	994090,992

Fig. 38.- Cálculo para el rodamiento del apoyo "B" sentido horario.

Rodamiento A antihorario

d(mm)	195,000
n(rpm)	534,000
a1	0,250
nc	0,500
v _{60°c} (mm2/s)	110,000
q	3,330

Cod.	32017X
D(mm)	130,000
С	171,000
P_{u}	25,500
e	0,440
Υ	1,350

F _h	6845,211
F _r	5632,899
F _a	8931,469
F _{eq}	11177,001
F _a /F _r	1,586

d _m (mm) 162,5 v ₁ (mm^2/s) 18,6	
v ₁ (mm^2/s) 18.5	210
1 () - /	210
K 5,8	848
Cont-carga 1,	141
aiso 31,0	000
L ₁₀ (rpm) 8809552432,	172
L _{10c} 274954,	820
L(h) 2130899,	855

Fig. 39.- Cálculo para el rodamiento del apoyo "A" sentido antihorario.

Rodamiento B antihorario

d(mm)	85,000
n(rpm)	195,000
a1	0,250
nc	0,500
v _{60⁰c} (mm2/s)	110,000
q	3,330

Cod.	32917
D(mm)	120,000
С	115,000
P_{u}	17,600
e	0,330
Υ	1,800

F _h	
F _r	12167,441
F _a	3379,845
F _{eq}	12167,441
F _a /F _r	0,278

d _m (mm)	102,500
v ₁ (mm^2/s)	54,841
K	2,006
Cont-carga	0,723
aiso	6,000
L ₁₀ (rpm)	1771782027,953
L _{10c}	151434,361
L(h)	227151,542

Fig. 40.- Cálculo para el rodamiento del apoyo "B" sentido antihorario.

11.1.3.4.- Conclusiones

Como se puede observar mirando la casilla de la vida en horas del rodamiento "L" todos cumplen holgadamente la condición de aguantar 45.000h de servicio, esto indica que los rodamientos son adecuados para las condiciones a las que se van a ver sometidos.

12.- UNIONES A TORSIÓN

Para la unión de los engranajes a los distintos ejes se van a utilizar chavetas, se emplearán de un material más blando que del eje, así en caso de rotura serian estas las primeras en romper, en este caso se ha empleado un acero F1140 (C45), por ser un material habitual para la fabricación de estas.

Este material tiene las siguientes características:

- $S_v = 640 \text{N/mm}^2$
- $S_u = 800 N/mm^2$

A continuación, se muestra una tabla resumen con las medidas de las chavetas en función de la norma UNE 17102-1:1967.

	Eta	pa 1	Eta	pa 2
	Piñón	Rueda	Piñón	Rueda
Diámetro del eje(mm)	55	70	70	90
Altura (mm)	10	12	12	14
Anchura(mm)	16	20	20	25
Profundidad en cubo(mm)	4,3	4,9	4,9	5,4
Profundidad en eje (mm)	6	7,5	7,5	9

Fig. 41.- Tamaño de la chaveta en función del diámetro del eje.

La longitud de estas debe de ser mínimo 1,25 veces la del eje, con lo cual en caso de que esta sea mas larga que el ancho del engranaje, nos encontraremos antes dos posibilidades, o ensanchar la base del engranaje donde tiene el hueco para la chaveta, o elegir una chaveta más corta, previo cálculo para comprobar si resiste los esfuerzos recibidos.

12.1.1.- Eje de entrada

Diámetro del eje: 55mm

- Longitud de la chaveta: $55 \cdot 1.25 = 68.75$ mm

Sección: 10 x 16 mm

Chaveta del piñón: En este eje el piñón tiene una anchura de 32mm, ya que la chaveta tiene una medida mayor, vamos a comprobar si una chaveta de **longitud = 30mm** aguantaría.

Calculo de la fuerza ejercida en la sección central de la chaveta:

$$Ft = \frac{T}{d.\,eje/2} = 11844,44\,N$$

Ec.54.

Tensión de corte en la sección central:

$$Área = 0.03 \cdot 0.016 \, mm$$

Ec.56.

$$\zeta_{max} = \frac{3}{2} \cdot \frac{Ft}{\acute{a}rea} = 3.70 \cdot 10^7 N/m^2$$

Ec.57.

Se compra con la tensión tangencial de fluencia del material:

$$S_{sy}=rac{S_y}{2}=3.20\cdot 10^8 N/m^2>\zeta_{max}~{
m Es}$$
 válido

Ec.58.

Se va a evaluar el aplastamiento:

- L=longitud de la chaveta
- H=altura de la chaveta

$$\sigma_{aplastamiento} = \frac{FC}{L/h} = 7.90 \cdot 10^7 N/m^2$$

Ec.59.

Se compra con la tensión de fluencia del material:

$$S_y = 640 \cdot 10^8 N/m^2 > \sigma_{\rm aplastamiento}$$
 Es válido.

Ec.60.

12.1.2.- Eje intermedio

- Diámetro del eje: 70mm

- Longitud de la chaveta: $70 \cdot 1.25 = 87.5$ mm

- Sección: 12 x 20 mm

Chaveta de la rueda: En este eje la rueda tiene una anchura de 32mm, ya que la chaveta tiene una medida mayor, vamos a comprobar si una chaveta de longitud = 30mm aguantaría.

Calculo de la fuerza ejercida en la sección central de la chaveta:

$$Ft = \frac{T}{d.\,eje/2} = 23578.85\,N$$

Ec.61.

Tensión de corte en la sección central:

$$Área = 0.03 \cdot 0.02 \, mm$$

Ec.62.

$$\zeta_{max} = \frac{3}{2} \cdot \frac{Ft}{\text{á}rea} = 5.89 \cdot 10^7 N/m^2$$

Ec.63.

Se compra con la tensión tangencial de fluencia del material:

$$S_{sy} = \frac{S_y}{2} = 3.20 \cdot 10^8 N/m^2 > \zeta_{max}$$
 Es válido.

Ec.64.

Se va a evaluar el aplastamiento:

- L=longitud de la chaveta
- H=altura de la chaveta

$$\sigma_{\rm aplastamiento} = \frac{FC}{L/h} = 1.31 \cdot 10^8 N/m^2$$

Ec.65.

Se compra con la tensión de fluencia del material:

$$S_{\nu} = 6.40 \cdot 10^8 N/m^2 > \sigma_{\rm aplastamiento}$$
 Es válido.

Ec.66.

Chaveta del piñón: En este eje el piñón tiene una anchura de 64 mm, ya que la chaveta tiene una medida mayor, vamos a comprobar si una chaveta de **longitud = 60mm** aguantaría.

Calculo de la fuerza ejercida en la sección central de la chaveta:

$$Ft = \frac{T}{d.\,eje/2} = 23578.85\ N$$

Ec.67.

Tensión de corte en la sección central:

$$\text{Á} rea = 0.06 \cdot 0.02 \, mm$$

Ec.68.

$$\zeta_{max} = \frac{3}{2} \cdot \frac{Ft}{\text{á}rea} = 2.95 \cdot 10^7 N/m^2$$

Ec.69.

Se compra con la tensión tangencial de fluencia del material:

$$S_{sy} = \frac{S_y}{2} = 3.20 \cdot 10^8 N/m^2 > \zeta_{max}$$
 Es válido.

Ec.70.

Se va a evaluar el aplastamiento:

- L=longitud de la chaveta
- H=altura de la chaveta

$$\sigma_{aplastamiento} = \frac{FC}{L/h} = 6.55 \cdot 10^7 N/m^2$$

Ec.71.

Se compra con la tensión de fluencia del material:

$$S_y = 640 \cdot 10^8 N/m^2 > \sigma_{\rm aplastamiento}$$
 Es válido.

Ec.72.

12.1.3.- Eje de salida.

- Diámetro del eje: 90mm

- Longitud de la chaveta: $90 \cdot 1.25 = 112.5$ mm

- Sección: 14 x 25 mm

Chaveta de la rueda: En este eje la rueda tiene una anchura de 64 mm, ya que la chaveta tiene una medida mayor, vamos a comprobar si una chaveta de longitud = 60mm aguantaría.

Calculo de la fuerza ejercida en la sección central de la chaveta:

$$Ft = \frac{T}{d.\,eje/2} = 51111.11N$$

Ec.73.

Tensión de corte en la sección central:

$$Área = 0.06 \cdot 0.025 \, mm$$

Ec.74.

$$\zeta_{max} = \frac{3}{2} \cdot \frac{Ft}{\text{á}rea} = 5.11 \cdot 10^7 N/m^2$$

Ec.75.

Se compra con la tensión tangencial de fluencia del material:

$$S_{sy} = \frac{S_y}{2} = 3.20 \cdot 10^8 N/m^2 > \zeta_{max}$$
 Es válido.

Ec.76.

Se va a evaluar el aplastamiento:

- L=longitud de la chaveta
- H=altura de la chaveta

$$\sigma_{aplastamiento} = \frac{FC}{L/h} = 1.22 \cdot 10^8 N/m^2$$

Ec.77.

Se compra con la tensión de fluencia del material:

$$S_y = 6.40 \cdot 10^8 N/m^2 > \sigma_{\rm aplastamiento}$$
 Es válido.

Ec.78.

12.1.4.- Conclusiones

Como se observa en los distintos cálculos, pese a escoger unas chavetas de menor tamaño todas cumplirán para las cargas a las que se van a ver sometidas.

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO Nº:3 TABLAS

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

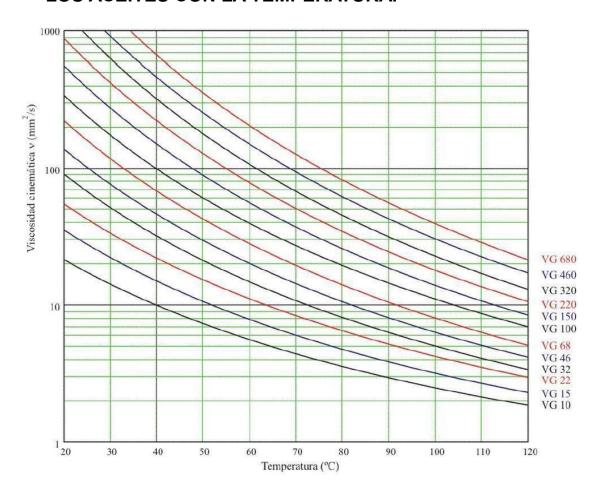
PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

1.- ANEXO 1:MATERIAL PARA ENGRANAJES


MATERIAL	Denominación	S _u (N/mm ²)	S _v (N/mm ²)	Dureza superficial
(tabla iso 6336-5)		min - max	min - max	-
Fundiciones grises (GG)	GJL-200	200 - 300	_	HB (150-230)
UNE EN 1561:2012	GJL-250	250 - 350	_	HB (170-250)
01,2 21, 1301,2012	GJL-250 GJL-350	350 - 450	_	HB (210-275)
	G1L-330	330 - 430	-	HB 150-275
Fundiciones maleables	GJMB-500-5	500 -	300 -	HB (165-215)
de corazón negro (GTS)	GJMB-550-5	550 -	340 -	HB (180-230)
UNE EN 1562:2012	GJMB-550-4 GJMB-600-3	600 -	390 -	HB (195-245)
51, <u>2</u> 21, 13, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	GJMB-650-2	650 -	430 -	HB (210-260)
	GJMB-030-2	050 -	430 -	HB 135-250
Fundiciones con grafito	GJS-400-15	400 -	250 -	HB (150-180)
esferoidal (nodular o	GJS-600-3	600 -	380 -	HB (210-250)
dúctil) (GGG)	GJS-800-2	800 -	480 -	HB (260-300)
UNE-EN1563:2012	GJS-800-2	800 -	400 -	HB 175-300
Acero moldeado	GE240	450 - 600	240 -	HB 140 - HV 152
no aleado (St cast)	GE300	520 - 670	300 -	HB 175 - HV 200
UNE-EN10293:2006	GESOO	320 - 070	300 -	HB 140-210
Acero no aleado forjado	C25	400	280	HB 140 - HV 141
	C25	580	380	HB 180 - HV 182
(St)	C45	680	430	HB 207 - HV 210
	(43	080	430	HB 110-210
Acero no aleado	C25	570	430	HB 168 - HV 170
	C25	600 - 750	430 - 520	
forjado, templado y	(3)	000 - 730	430 - 320	HB 212 - HV 216
revenido (V) UNE- EN10083-2:2008				HV 135-210 HV 115-215
	2021:0-24-02-2	050	500	
Aceros aleados	20NiCrMoS2-2	850	580	HB 255 - HV 267
templados y revenidos	20MnCr5	980 1000 - 1200	735 800	HB 302 - HV 317
(V) UNE-EN10083-3:2008	34CrMo4			HB 310 - HV 326
ONE-EN10083-3:2008	42CrMo4	1100 - 1300	950	HB 321 - HV 337
	34NiCrMo16	1230 - 1420	1030	HB 352 - HV 368
Acero moldeado no				HV 200 - 390
				HV 130-215
aleado templado (V				HV 130-213
cast) Acero moldeado aleado	G35CrMo4	750-980	650	HB 290 - HV 305
	G42CrMo4	800-1025	700	HB 305 - HV 320
templado (V cast)	G42C11/104	800-1023	/00	HV 200-360
A Corio do do	20MnCr5	980	735	HV 720
Acero forjado de				
cementación. (Eh) UNE- EN10084:2010	20NiCrMoS2-2 F1522	850	600	HV 600
EN10084.2010	15 NiCr13 (F-1540) 14NiCrMo13 F 1560	950	750	HV 700
	14MC1M015 F 1500	1300	1100	HV 740
Acoro fariada a	CAS	1024	786	HV 600-800
Acero forjado o	C45	1034	/80	HB 525 - HV 560
moldeado, endurecido	37Cr4 F-1201	1150	1200	HV 550 - 610
superficialmente a la	42CrMo4	1300	1200	HB 515 - HV 615
llama o por inducción				HV 485-615
(IF)	420-24-4	1450		
Acero forjado de	42CrMo4	1450	000	IR. 200
nitruración(NT), acero	24CrMo13-6 F 1711	1100	900	HV 700
templado de	31CrMoV9 F 1721	1000	800	HV 700
nitruración(NV), acero	41 CrAIMo7-10 F 1741	950 - 1150	750	HV 850 - 950
de nitruración (NT)UNE- EN10085:2001	34CrAINi7-10	900-1100	680	HV 850 - 950
EN10085:2001				NT HV 650-900
Acora foris de de				NV HV 450-650
Acero forjado de				UT/ 200 650
nitrocarburización (NV)				HV 300-650

2.- ANEXO 2: COMPOSICIÓN Y PROPIEDADES MECÁNICAS DE LOS ACEROS

Designación				Compo	sición			Trata	miento	Propi	edades	meca	ínicas
EN 10027-1										Su	Sy	3	Dureza
AISI / UNE (antigua)	С	Si	Mn	Cr	Mo	Ni	Otros	Tipo	Temp (ºC)	MPa	MPa	%	НВ
(_					MOLDI						,,,	
GC25													
/ F-8104	0.25		0.55							440	225	22	150
GC35	0.22												
/ F-8106	0.35		0.65							510	255	18	155
GC45	0.03		0.03							310			
/ F-8108	0.45		0.65							580	295	15	195
7					NO	ΔΙ ΕΔΟΟ	S (Mn < 19	6)					
C25	0.25		0.55			, LED LOO	0 (14111 - 27	N	900	490	310	22	150
1025 / F-1120	0.23		0.55					T+R	870 + 480	570	430	28	168
C35	0.35		0.65					LC		585	375	29	190
1035 / F-1130	0.03		0.03					N	900	680	420	28	183
10057. 1100								T + R	840 + 430	730	520	15	212
C45	0.45		0.65					N	870	660	390	20	197
1045 / F-1140								Rec	790	600	360	23	180
								T+R	825 + 450	850	640	14	248
C60	0.6		0.75					N	870	760	410		225
1060	0.0		0.75					T+R	815 + 430	1000	790	6	315
2000					ALFA	CIÓN INF	ERIOR AL		010 / 100	2000			
20MnCr5	0.2		1.25	1.15				N	900	680	400	23	207
5120 / F-150 D	0.2			1.10				"	880 + 860				207
2207. 2300								C+T+R	+ 150	980	735	14	302
20NiCrMoS2-2	0.2		0.8	0.55	0.2	0.55		LF	1100/850	650	320	22	192
8620 / F-1522	0.2			0.22	0.2	0.22		N	900	600	340		174
									910 + 845				
								C+T+R	+ 150	850	580	19	255
41Cr4	0.41		0.75	1.05				LF	1050/850	770	520		229
5140 / F-1202								N	870	760	470	23	227
								T+R	840 + 540	970	840	18	293
42CrMo4	0.42		0.75	1.05	0.22			N	900	950	560	19	277
4140 / F-1252								Rec	830	650	420	25	192
								LF	1100/850	1030	720	15	311
								T+R	840 + 540	1120	1040	14	321
34CrNiMo6	0.34		0.65	1.5	0.22	1.5		LF	1150/900	1300	860		401
4340 / F-128								N	870	1280	860	12	388
								T+R	840 + 540	1210	1100	14	352
51CrV4	0.51		0.9	1.05			V 0.17	LF	1100/850	950	630		285
6150								N	860	940	615	21	277
								T+R	840 + 540	1200	1155	14	352
55Cr3	0.55		0.85	0.85				LF	1050/850	1000	680	15	302
5160 / F-1431								N	900	950	600	16	285
								T+R	840 + 540	1200	1100	14	352
					ALEA	CIÓN SUI	PERIOR AL	5%					
X10CrNi18-8													
304	0.1	<0.8	<2	18-20		8-10		Recoc	1100	510	206	40	160
X5CrNiMo17-12-2													
316	0.05	<0.8	<2	16-18	2-3	10_11		Recoc	1100	510	206	40	150
X6CrNiTi18-10													
321	0.06	<1	<2	17-19	1-d	9_10	Ti		. I E lamina	540	245	45	

N normalizado, T templado, R revenido, Rec recocido, LF laminado forjado, C cementado.

3.- ANEXO 3: VARIACIÓN DE LA VISCOSIDAD CINEMÁTICA DE LOS ACEITES CON LA TEMPERATURA.

4.- ANEXO 4: DIMENSIONES NORMALIZADAS PARA CHAVETAS CUADRADAS

							Chav	vatero					·		
Diám	etros			Ancho Profundidad					Gl. Gr.						
del	eje	Sección				Tolerancia				Eje	C	ubo	Chaflán Pı		
d		de la chaveta			Clase de	ajuste del e	nchavetado			h_1		h ₂			
		$b \times h$	Nominal	Lit	ore	No	rmal	Ajustado	Nomi-	Tole-	Nomi-	Tole-			
más de	hasta			Eje H 9	Cubo D 10	Eje N 9	Cubo Js 9	Eje y cubo P 9	nal	rancia	nal	rancia	Minimo	Máximo	
6	8 10	2 × 2 3 × 3	2 3	+ 0,025 0	+ 0,060 + 0,020	0,004 0,029	± 0,0125	- 0,006 - 0,031	1,2 1,8	+ 0.1	1 1,4	+ 0.1	80,0 80,0	0,16 0,16	
10 12 17	12 17 22	4 × 4 5 × 5 6 × 6	4 5 6	+ 0,030	+ 0,078 + 0,030	0,030	± 0,015	0,012 0,042	2,5 3 3,5	0,1	1,8 2,3 2,8	0	0,08 0,16 0,16	0,16 0,25 0,25	
22 30	30 38	8 × 7 10 × 8	8 10	+ 0,036 0	+ 0,098 + 0,040	0 0,036	± 0,018	- 0,015 - 0,051	4 5		3,3 3,3		0,16 0,25	0,25 0,40	
38 44 50 58	44 50 58 65	12 × 8 14 × 9 16 × 10 18 × 11	12 14 16 18	+ 0,043	+ 0,120 + 0,050	0 0,043	± 0,0215	0,018 0,061	5 5,5 6 7	+ 0,2	3,3 3,8 4,3 4,4	+ 0,2	0,25 0,25 0,25 0,25 0,25	0,40 0,40 0,40 0,40	
65 75 85 95	75 85 95	20 × 12 22 × 14 25 × 14 28 × 16	20 22 25 28	+ 0,052	+ 0,149 + 0,065	0 0,052	± 0,026	0,022 0,074	7,5 9 9 10	0	4,9 5,4 5,4 6,4	0	0,40 0,40 0,40 0,40	0,60 0,60 0,60 0,60	
110 130 150 170 200	130 150 170 200 230	32 × 18 36 × 20 40 × 22 45 × 25 50 × 28	32 36 40 45 50	⊥ 0,062 0	+ 0,180 + 0,080	0 - 0,062	± 0,031	0,026 0,088	11 12 13 15 17		7,4 8,4 9,4 10,4 11,4		0,40 0,70 0,70 0,70 0,70	0,60 1,00 1,00 1,00 1,00	
230 260 290 330	260 290 330 380	56 × 32 63 × 32 70 − 36 80 × 40	56 63 70 80	0,074	+ 0,220 - 0,100	0 0,07 4	± 0,037	- 0,032 0,106	20 20 22 25	+ 0,3	12,3 12,4 14,4 15,4	+ 0,3	0,70 1,20 1,20 2,00	1,00 1,60 .1,60 2,50	
380 400	440 500	90 × 45 100 × 50	90 100	+ 0,087	+ 0,260 + 0,120	0 0,087	± 0,0435	0,037 0,124	28 31		17,4 19,5		2,00 2,00	2,50 2,50	

5.- ANEXO 5:COEFICIENTES DE APLICACIÓN KA

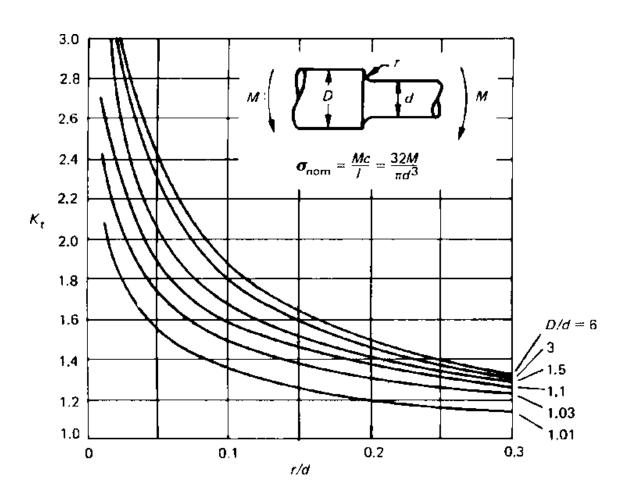
	Características de la máquina arrastrada									
Características de la máquina motriz	Uniforme	Choques ligeros	Choques moderados	Choques fuertes						
Uniforme	1,00	1,25	1.50	1,75						
Choques ligeros	1,10	1,35	1.60	1,85						
Choques moderados	1,25	1,50	1.75	2,00						
Choques fuertes	1,50	1,75	2,00	2,25 o mayor						

6.- ANEXO 6: COEFICIENTE K1 EN FUNCIÓN DE LA CALIDAD DEL TALLADO (QISO) PARA KV

Q _{ISO}	10	9	8	7	6	5	4	3
K ₁ rectos	76,6	52,8	39,1	26,8	14,9	7,5	3,9	2,1
K _I helic.	68,2	47,0	34,8	23,9	13,3	6,7	3,5	1,9

7.- ANEXO 7: COEFICIENTES H₁,H₂ Y H₃ PARA K_{HB}

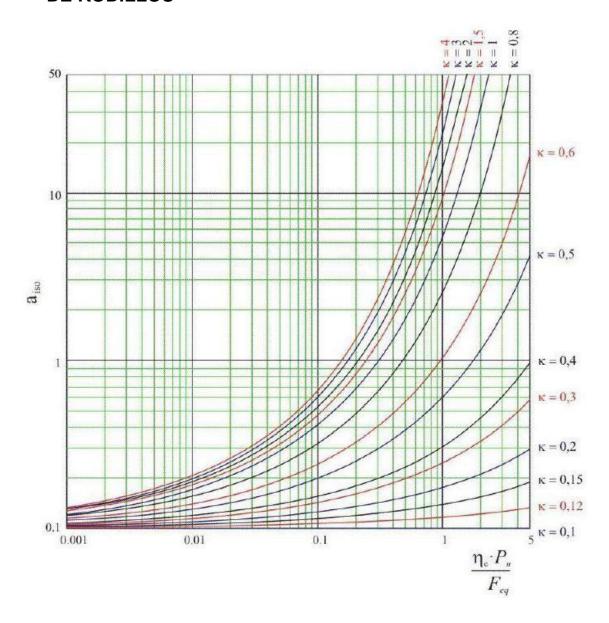
		Dent	ados no endure superficialme		supe	ceros endurecid erficialmente / c mentados rectif	dentados
Qiso	Ajuste	H ₁	H_2	H ₃	H ₁	H_2	H ₃
5	a	1.135	$2.3 \cdot 10^{-4}$	0.18	1.09	1.99·10 ⁻⁴	0.26
5	b, c	1.10	1.15 · 10 -4	0.18	1.05	1.0.10-4	0.26
6	a	1.15	3.0.10-4	0.18	1.09	3.3·10 ⁻⁴	0.26
6	b, c	1.11	1.5·10 ⁻⁴	0.18	1.05	1.6·10 ⁻⁴	0.26
7	a	1.17	4.7·10 ⁻⁴	0.18	-	-	-
7	b, c	1.12	2.3·10 ⁻⁴	0.18			
8	a	1.23	6.1.10-4	0.18	-	-	-
8	b, c	1.15	3.1·10 ⁻⁴	0.18			

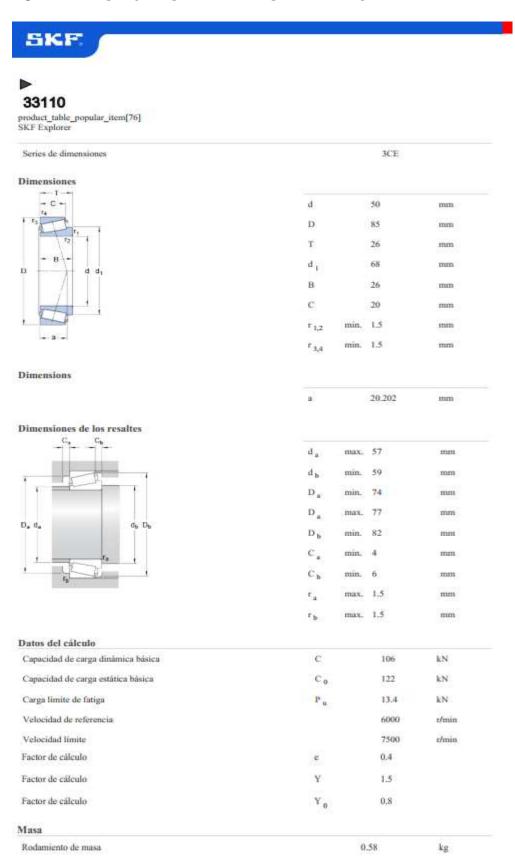

8.- ANEXO 8: DEFINICIÓN DEL FACTOR DE ACABADO SUPERFICIAL PARA ACEROS

ACABADO SUPERFICIAL	Factor a (MPa)	Exponente b
Rectificado	1.58	-0.085
Mecanizado o laminado en frío	4.51	-0.265
Laminado en caliente	57.7	-0.718
Forjado	272.0	-0.995

9.- ANEXO 9: FACTOR DE CORRECCIÓN DEL LÍMITE DE FATIGA POR CONFIABILIDAD

Confiabilidad	0.5	0.9	0.95	0.99	0.999	0.9999	0.99999	0.999999
Factor de corrección	1.0	0.897	0.868	0.814	0.753	0.702	0.659	0.620


10.- ANEXO 10: FACTOR DE CONCENTRACIÓN DE TENSIONES KT


11.- ANEXO 11: FACTOR DE FIABILIDAD A₁

Fiabilidad %	a ₁
90	1
95	0.64
96	0.55
97	0.47
98	0.37
99	0.25
99.2	0.22
99.4	0.19
99.6	0.16
99.8	0.12
99.9	0.093
99.92	0.087
99.94	0.080
99.95	0.077

12.- ANEXO 12: FACTOR A_{ISO} PARA RODAMIENTOS RADIALES DE RODILLOS

13.- ANEXO 13: RODAMIENTO A DEL EJE DE ENTRADA

14.- ANEXO 14: RODAMIENTO B DEL EJE DE ENTRADA

Series de dimensiones			2BC	
Dimensiones				
- C -	d		50	mm
r ₂	D		72	mm
72	т		15	mm
- B -	d ₁		62.2	mm
d d _t	В		15	mm
711	c		12	mm
	r 1,2	min.	1	mm
- 3 -	r 3,4	min.	1	mm
Dimensions				
	a		13.457	mm
Dimensiones de los resaltes				
- C _b	d a	max.	56	mm
	d _b	min.	57,5	mm
	D _a	min.	66	mm
	D _a	max.	65.5	mm
D _e d _e d _b D _b	D _b	min.	69	mm
r,	C _a	min,	3	mm
	Ch	min.	3	mm
	Tr.	max.	1	mm
	rb	max.	1	mm
Datos del cálculo				
Capacidad de carga dinámica básica	С		41.3	kN
Capacidad de carga estática básica	Ca		53	kN
Carga limite de fatiga	P u		5.6	kN
Velocidad de referencia			7000	r/min
Velocidad limite			8500	r/min
Factor de cálculo	ę		0.35	
Factor de cálculo	Y		1.7	
Factor de cálculo	Y_0		0.9	
fasa				
Rodamiento de masa		0	.19	kg

15.- ANEXO 15: RODAMIENTO A DEL EJE INTERMEDIO

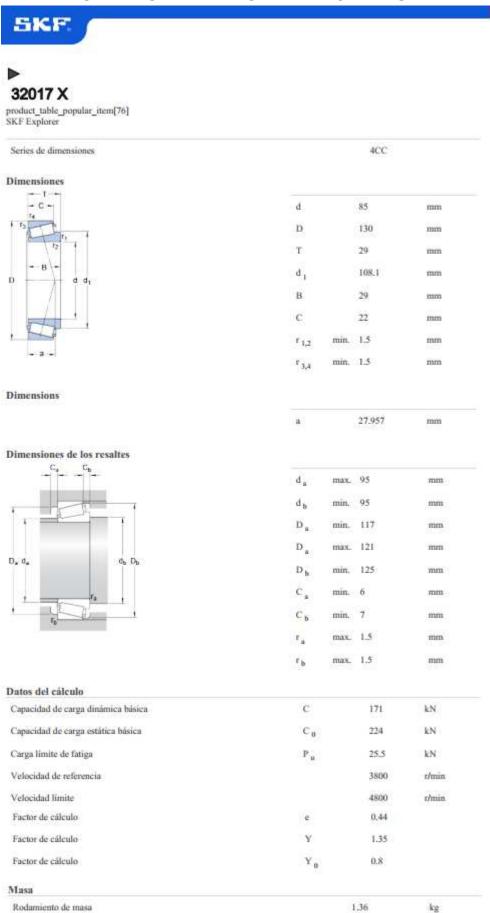
SKF 33113 product_table_popular_item[76] SKF Explorer Series de dimensiones 3DE Dimensiones đ 65 mm D 110 mm T 34 mm d, 88.3 В 34 mm c 26.5 mm min. 1,5 mm Dimensions a 25.628 Dimensiones de los resaltes max. 74 d_b min. 74.5 mm D, min. 96 mm 101.5 D. d. D_b min. 106 mm min. 6 mm max. 1.5 mm max. 1,5 mm Datos del cálculo C kN Capacidad de carga dinámica básica 175 C_0 208 Capacidad de carga estática básica kN Carga limite de fatiga 24 kN Velocidad de referencia 4800 r/min Velocidad límite 5600 r/min Factor de cálculo 0.4 Factor de cálculo 1.5

0.8

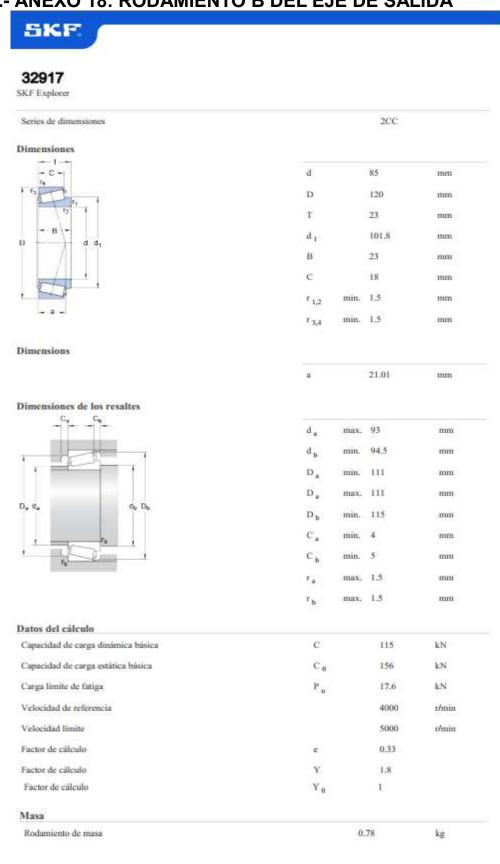
kg

1.28

Factor de cálculo


Rodamiento de masa

Masa


16.- ANEXO 16: RODAMIENTO B DEL EJE INTERMEDIO

SKF 33013 product_table_popular_item[76] SKF Explorer Series de dimensiones 2CE Dimensiones ď 65 mm D 100 mm 27 d_1 82.65 mm В 27 mm 0 21 mm 1.5 min. mm Dimensions 21.006 mm Dimensiones de los resaltes max. 72 mm d_b 74 min. mm D a min. 89 mm D_B max. 92 mm min. mm min. 5 mm min. 6 mm max. 1.5 mm Datos del cálculo Capacidad de carga dinámica básica 119 kN C_0 kN Capacidad de carga estática básica 153 Carga limite de fatiga 17.3 kN Velocidad de referencia 5000 t/min Velocidad limite 6300 r/min Factor de cálculo 0.35 Factor de cálculo 1.7 Y_0 Factor de cálculo 0.9 Rodamiento de masa 0.75 kg

17.- ANEXO 17: RODAMIENTO A DEL EJE DE SALIDA

18.- ANEXO 18: RODAMIENTO B DEL EJE DE SALIDA

19.- ANEXO 19: ANILLOS DE EJE

Diámetre nom.	Referencia DEN 471-E	8	a máx.	b=		d ₁	Recubri- miento	d _s min.	Envase	e Embalaje
3	01090013	0.4 -0.05	1,9	0,8	2.7	+0,04/-0,15	A	1	1000	54000
4	01090021	0.4 -0.05	2,2	0,9	3.7	+0.04/-0.15	E	- 1	5000	160000
5	01090030	0.6 -0.05	2,5	1.1	4.7	+0,04/-0,15	F	1	2500	160000
6 7	01090048 01090056	0.7 -0.05 0.8 -0.05	2,7 3,1	1,3	5.6 6.5	+0,04/-0,15	F	1,2	2500 1500	80000 48000
8	01090064	0.8 -0.05	3,2	1,5	7.4	+0,06/-0.18	F	1,2	4009	32000
9	01090072	1 -0,06	3,3	1,7	8.4	+0,06/-0,18	F	1.2	2000	32000
10	01090080	1 -0,06	3,3	1,8	9,3	+0,10/-0,38	F	1,2	1500	24000
11	01090099	1 -0,06 1 -0,06	3,3	1,8	10.2	+0,10/-0,36	F	1,5	1500	12000 16000
13	01090128	1 -0.06	3,4	2	11.9	+0.10/-0.36	F	1.7	1000	16000
14	01090136	1 -0,06	3,5	2,1	12.9	+0.10/-0.36	F	1,7	1000	8000
15	01090144	1 -0.06	3,6	2,2	13.8	+0,10/-0,36	F	1,7	1000	8000
16 17	01090152	1 -0,06	3,7	2,2	14.7	+0,10/-0,36	1.5	1.7	1000	8000 8000
18	01090160	1.2 -0.06	3.9	2,4	16.5	+0,10/-0,36	F	1,7	1000	8000
19	01090187	1.2 -0,06	3,9	2,5	17.5	+0,10/-0,36	F	2	1000	8000
20	01090195	1.2 -0,06	4	2,6	18,5	+0,13/-0.42	F	2	1000	8000
21	01090208	1.2 -0.06	4.1	2.7	19.5	+0.13/-0.42	F	2	1000 500	8000
24	01090216 01090232	1.2 -0.06 1.2 -0.08	4,2	2,8	20,5	+0,13/-0,42	F	2 2	500	4000 4000
25	01890240	1.2 -0.06	4,4	3	23.2	+0.21/-0.42	F	2	500	4000
26	01090259	1.2 -0,06	4,5	3,1	24.2	+0,21/-0,42	F	2	500	4000
27	01090849	1.2 -0.06	4.8	3,1	24.9	+0.21/-0.42	E	2	500	2000
28 29	01090267 01090275	1.5 -0,06 1.5 -0,08	4,7 4,B	3,2	25.9 26.9	+0,21/-0,42	E	2 2	250 250	2000 2000
30	01090283	1,5 -0,06	5	3,5	27,9	+0,21/-0,42	F	2	250	2000
32	01090304	1,5 -0,06	5,2	3,6	29,6	+0,21/-0,42	F	2,5	250	2000
33	01090873	1.5 -0.08	5,2	3.7	30.5	+0,25/-0,5	E	2,5	250	2000
34 35	01090312 01090320	1.5 -0,06 1.5 -0,06	5,4 5.6	3,8	31,5	+0,25/-0,5	F	2,5 2.5	250 250	2000 2000
36	01090320	1.75 -0.06	5,6	3,8	33.2	+0.25/-0.5	A	2,5	100	1600
38	01090347	1,75 -0,06	5.8	4,2	35.2	+0,25/-0,5	A.	2,5	100	800
40	01090355	1,75 -0,06	6	4,4	36,5	+0,39/-0,9	A	2,5	100	800
42 44	01090363	1,75 -0,06	6,5	4,5	38,5	+0.39/-0.9	A A	2,5 2,5	100 100	1600 800
45	01090881 01090371	1,75 -0,06 1,75 -0,06	6,6 6,7	4.7	40.5 41.5	+0,39/-0,9	Ä	2,5	100	800
46	01090857	1.75 -0,06	6,7	4.8	42.5	+0,39/-0,9	A	2,5	109	800
47	01093865	1,75 -0,06	6,8	4,9	43.5	+0.39/-0.9	A	2,5	100	800
48 50	01090380	1,75 -0,06	6.9	5	44,5	+0,39/-0.9	A	2.5	100	800
Diámetro nom.	01090398 Referencia DIN 471-E	2 -0,07 s	6,9 a ma	5,1 ix.	45,8 b=	+0,39/-0,9	d _s	2.5 Recubri- miento	d _s min.	Envase Emba
52	01090400	2 -0	.07 7		5.2	47,8	+0.397-0.9	A	2.5	100 80
55	01090419	2 -0	97 7,1		5,4	50,8	+0.467 -1.1	A	2.5	100 800
56	01090427		.07 7,3		5,5		+0.46 / -1.1	. 0	2,5	100 40
58 60	01090435		.07 7,4 .07 7,4		5,6 5.8	53,8 55.8	+0.46 / -1.1	A	2.5	100 40
62	01090451		07 7,5		- 6	57,8	+0.46 / -1.1	Ä	2.5	100 40
63	01090460	2 -0	07 7.6		6.2	58.8	+0.46 / -1.1	A	2.5	100 40
65	01090478		.07 7.1	6	6,3	60,8	+0,46 / -1,1	- A	3	75 30
68 70	01090486 01090494		07 8 07 8,1		6,5	63,5 65,5	+0,46 / -1,1	A	3	75 30 75 30
72	01090507	2,5 -0	07 8,2		6.8		+0.46 / -1.1	Ä	3	75 60
75	01090515	2,5 -0	.07 8.4		7	70.5	+0.46 / -1.1	A	3	75 60
78	01090531		.07 8,6		7.3		+0.46 / -1.1	- A	3	75 60
80 82	01090540		.07 8,6 .07 8,7		7,4	74,5 76,5	+0.46 / -1,1	A	3	75 60 75 60
85	01090566		.07 8.7		7,8	79,5	+0.467-1.1	Ä	3.5	50 40
90	01090582	3 -0	.07 8,8		8,2	84,5	+0,54/-1.08	Ä	3,5	50 40
92	01090910		.08 9		8,4	86,5	+0.54/-1.3	A	3.5	50 80
95 100	01090590		07 9,4 07 9,6		8,6	89.5	+0,54/-1,08 +0,54/-1,08	A	3,5 3.5	50 40 50 40
105	01090603		,07 9,6 ,07 9,5		9.3	94,5 98	+0.54/-1.08	Â	3.5	40 16
110	01090620	4 -0	.07 10,	1	9.6	103	+0,54/-1,08	A	3,5	40 16
115	01090638	4 -0	07 10.		9,8	108	+0.54/-1.08	A	3.5	40 16
120	01090646		07 11		10.2		+0,54/-1,08	- 4	3,5	40 16
125 130	01090654 01090662		07 11, 07 11,		10,4	118 123	+0,54/-1,08 +0,63/-1,26	A	4	40 16 40 16
135	01090670		07 11,		11	128	+0.63/-1.26	Ä	4	40 16
140	01090689	4 -0	07 12		11,2	133	+0,63/-1,26	- A	4	40 16
145	01090697		07 12,		11,5	138	+0,63/-1,26	A	4	40 16
150 160	01090700 01090726		.07 13 .1 13,		11,8	142 151	+0.63/-1.26	A	4	40 164
170	01090726		13.		12.9	160.5	+0.63/-1.5	Ä	4	40 4
175	01090750	4 -1	.1 13,	5	12,9	165,5	+0.63/-1.5	A	4	40 4
180	01090769	4 +	.1 14,	2	13.5	176,5	+0,63/-1,5	A	4	40 4
185	01090777	4 +1			13.5	175.5	+0.63/-1.5	A	4	40 41
190 195	01090785 01090793		1,1 14, 1,1 14,		14	180,5 185,5	+0.72/-1.7	A	4	40 4
200	01090806		1 14.		14	190,5	+0,72/-1.7	Ä	4	40 4
e49 HRc	les: RA MUELLES 47+54 (HV 470 44+81 (HV 436							 .	Π	
	Charles and the second					16	\	1	1	
cabade	o s: lo Antioxidante									

20.- ANEXO 20: SELLO RADIAL EJE DE ENTRADA

21.- ANEXO 21: SELLO RADIAL EJE DE SALIDA

2674

14

max.

r/min

m/s

Velocidad de giro

Velocidad de la superficie del eje

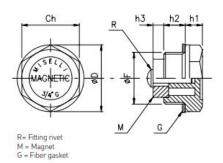
22.- ANEXO 22: TAPÓN DE LLENADO

Tapón roscado de cabeza hexagonal realizada en material termoplástico PA66 de óptima resistencia mecánica a bajas y altas temperaturas (máx. 100°C), excelente estabilidad dimensional y muy buena resistencia al impacto.

Arandela plana de retención en fibra exenta de amianto. FASIT 202 (Sobre encargo se puede suministrar con goma NBR)

Color negro. Sobre encargo y para cantidades adecuadas, disponible en color rojo. Los tapones de carga de aceite se suministran con el simbolo de carga y la inscripción OIL.

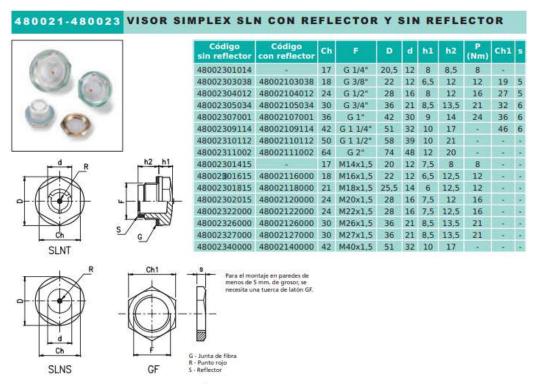
El tapón de descarga se suministra simplemente con el símbolo de descarga. El respiradero de un O de 2 a 3,5 mm, está ubicado en la cabeza bexagonal. Nm = Par de apriete máx. para el montaje.


23.- ANEXO 23: TAPÓN DE VACIADO

 $TM\,\text{-}\,\text{DRAIN}\,\text{PLUGS}\,\text{WITH}\,\text{MAGNET}\,\text{(}\,\text{PLASTIC}\,\text{)}$

-Thermoplastic hex plug with magnet

-The plug is fitted to the bottom of the transmission or tank, to be used as drain plug; the magnet attract ferrous metal parts, preventing damage to gears and othe moving components


-Production colour black, marked MAGNETIC on the hex surface.

-Oil resistant asbestos-free seal

-In larger quantities, these plugs are available with threads other than those shown, ie M16-18-20-22 $\,$

Code	F	Ch	D	h2	h1	h3
TM-14	G 1/4"	17	20	9	7	5
TM-38	G 3/8"	18	22	10	7,5	10
TM-12	G 1/2"	24	27	11	8	9
TM-34	G 3/4"	30	34	11	9	6,5
TM-1	G 1"	35	42	12	10.5	14
TM-1415	M14X1,5	17	20	9	7	5

24.- ANEXO 24: VISOR NIVEL DE ACEITE

Material: Resina poliamídica de gran transparencia. Óptima resistencia mecánica a alta y baja temperatura, gran estabilidad dimensional y muy buena resistencia al aceite y gasolina. Evitar el contacto con alcohol, liquidos anticongelantes a altas temperaturas y agua a más de 80°C. El modelo con reflector mejora la visualización del nivel de aceite.

Arandela plana de retención en fibra exenta de amianto (sobre encargo se puede suministrar en goma sintética NBR 70). Presión de trabajo hasta 1 bar. Temperatura máx. de trabajo: 100°C

Nm - Par de apriete max. para el montaje.

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO Nº:4 PRESUPUESTO

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

37.- INTRODUCCIÓN

El presupuesto define los costes de cada uno de los componentes del reductor de velocidad. Se van a definir costes para material y para los procesos de fabricación. Para los elementos que han sido utilizados y se encuentran previamente manufacturados se elaborará una tabla resumen con los precios de cada componente y el numero de estos que han adquirido.

Finalmente se mostrarán los cuadros resúmenes con los precios de cada apartado y el precio final del reductor de velocidad, incluyendo los impuestos y el beneficio.

38.- ENGRANAJES.

El precio de la mano de obra está incluido en los distintos procesos.

38.1.- PIÑON PRIMERA ETAPA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	1,51	3,45	5,21
Torneado	h	0,60	25,00	15,00
Fresado	h	0,25	30,00	7,50
Taladrado	h	0,10	15,00	1,50
Mecanizar dientes	h	1,40	38,00	53,20
Rectificado	h	0,20	40,00	8,00
	90,41 €			

38.2.- RUEDA PRIMERA ETAPA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	11,83	3,45	40,81
Torneado	h	0,95	25,00	23,75
Fresado	h	0,75	30,00	22,50
Taladrado	h	0,10	15,00	1,50
Mecanizar dientes	h	2,30	38,00	87,40
Rectificado	h	0,23	40,00	9,20
	185,16 €			

38.3.- PIÑON SEGUNDA ETAPA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	4,86	3,45	16,77
Torneado	h	0,65	25,00	16,25
Fresado	h	0,35	30,00	10,50
Taladrado	h	0,10	15,00	1,50
Mecanizar dientes	h	1,55	38,00	58,90
Rectificado	h	0,20	40,00	8,00
	111,92 €			

38.4.- RUEDA SEGUNDA ETAPA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	39,15	3,45	135,07
Torneado	h	1,15	25,00	28,75
Fresado	h	0,89	30,00	26,70
Taladrado	h	0,10	15,00	1,50
Mecanizar dientes	h	2,53	38,00	96,14
Rectificado	h	0,23	40,00	9,20
TOTAL				

39.- EJES.

El precio de la mano de obra está incluido en los distintos procesos.

39.1.- EJE DE ENTRADA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	5,50	3,45	18,98
Torneado	h	0,26	25,00	6,50
Cilindrado	h	1,63	30,00	48,90
Ranurado	h	0,24	15,00	3,60
Avellanado	h	0,10	38,00	3,80
Fresado chavetero	h	0,15	40,00	6,00
	87,78 €			

39.2.- EJE INTERMEDIO.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	8,98	3,45	30,98
Torneado	h	0,35	25,00	8,75
Cilindrado	h	2,62	30,00	78,60
Ranurado	h	0,24	15,00	3,60
Avellanado	h	0,10	38,00	3,80
Fresado chavetero	h	0,20	40,00	8,00
	133,73 €			

39.3.- EJE DE SALIDA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Acero F-127 (34CrNiMo6)	Kg	27,74	3,45	95,70
Torneado	h	0,50	25,00	12,50
Cilindrado	h	5,80	30,00	174,00
Ranurado	h	0,28	15,00	4,20
Avellanado	h	0,10	38,00	3,80
Fresado chavetero	h	0,30	40,00	12,00
	302,20 €			

40.- CARCASA Y TAPAS.

En este apartado contabilizaremos la parte superior e inferior de la carcasa del reductor El precio de la mano de obra está incluido en los distintos procesos.

40.1.- CARCASA

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Fundición gris FG-25	Kg	100,00	0,95	95,00
Moldeo y desbarbado	Ud.	1,00	85,00	85,00
Fresado	h	2,40	30,00	72,00
Taladro	h	1,20	15,00	18,00
Roscado	h	0,80	38,00	30,40
Fresado chavetero	h	0,15	10,00	1,50
	301,90			

40.2.- TAPA EJE DE ENTRADA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Fundición gris FG-25	Kg	0,15	0,95	0,14
Torneado	h	0,15	25,00	3,75
Taladro	h	0,10	15,00	1,50
Roscado	h	0,10	38,00	3,80
Rectificado	h	0,10	40,00	4,00
	TOTAL			13,19€

40.3.- TAPA EJE DE SALIDA.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Fundición gris FG-25	Kg	0,30	0,95	0,29
Torneado	h	0,32	25,00	8,00
Taladro	h	0,22	15,00	3,30
Roscado	h	0,24	38,00	9,12
Rectificado	h	0,18	40,00	7,20
	27,91 €			

40.4.- TAPÓN LLENADO DE LUBRICANTE.

Materiales y procesos	Unidades	Cantidad	Precio parcial (€)	Precio Total(€)
Fundición gris FG-25	Kg	0,40	0,95	0,38
Torneado	h	0,30	25,00	7,50
Taladro	h	0,20	15,00	3,00
Roscado	h	0,15	38,00	5,70
Rectificado	h	0,16	40,00	6,40
TOTAL				

41.- ELEMENTOS NORMALIZADOS

Descripción	Referencia	Cantidad	Precio parcial (€)	Precio Total(€)
Rodamiento	SKF-33110	1,00	49,95	49,95
Rodamiento	SKF-32910	1,00	37,46	37,46
Rodamiento	SKF-33113	1,00	58,44	58,44
Rodamiento	SKF-32013	1,00	34,23	34,23
Rodamiento	SKF-32017X	1,00	70,78	70,78
Rodamiento	SKF-32917	1,00	100,24	100,24
Junta	Carcasa	1,00	4,50	4,50
Junta	Tapas	4,00	2,30	9,20
Tornillo	M6 x 20	8,00	0,12	0,96
Tornillo	M6 x 18	40,00	0,11	4,40
Casquillo	ø55x23,1	1,00	0,55	0,55
Casquillo	ø70x15,09	1,00	0,68	0,68
Casquillo	ø70x30,49	1,00	0,72	0,72
Casquillo	ø90x65,94	1,00	1,15	1,15
Arandela elástica	ø50x2	2,00	0,30	0,60
Arandela elástica	ø65x2,5	2,00	0,35	0,70
Arandela elástica	ø85x3	2,00	0,38	0,76
Chaveta	30x10x16	1,00	1,35	1,35
Chaveta	30x12x20	1,00	1,53	1,53
Chaveta	60x12x20	1,00	2,15	2,15
Chaveta	60x14x25	1,00	2,30	2,30
Reten	55x72x8 HMS5 V	1,00	12,04	12,04
Reten	90x110x10 HMS5 V	1,00	24,77	24,77
Pintura	Comercial	5L	4,95	24,75
Aceite	VG-320	25L	5,83	145,84
	TOTAL			590,05€

42.- PRESUPUESTO DE LA EJECUCIÓN MATERIAL.

Descripción	Precio Total(€)
Engranajes	684,85
Ejes	523,71
Carcasa	301,90
Tapas	80,44
Tapón	22,98
Rodamiento	351,10
Juntas	13,70
Tornillos	5,36
Casquillos	3,10
Arandelas elásticas	2,06
Chavetas	7,33
Retenes	36,81
Pintura	24,75
Lubricante	145,84
Mano de obra	114,25
TOTAL	2.318,17 €

43.- PRESUPUESTO DE CONTRATA.

Descripción	Precio Total(€)
Presupuesto ejecución material	2.318,17
15% Gastos generales	347,73
6% Beneficio industrial	139,09
TOTAL	2.804,99 €

44.- PRESUPUESTO TOTAL.

Descripción	Precio
Descripcion	Total(€)
Presupuesto base contrata	2.804,99
21% IVA	589,05
TOTAL	3.394,03 €

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO №5: DISEÑO DEL REDUCTOR EN SOLIDWORKS

Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

PRESENTADO POR:

Adrián Fernández Calvo

DIRIGIDO POR:

Francisco J. Rubio Montoya

1.- DISEÑO DE UN REDUCTOR EN SOLIDWORKS

1.1.- INTRODUCCION

Durante los apartados anteriores se ha ido calculando y diseñando el reductor de velocidad, empezando por su parte mas teórica y continuando por unos planos que hacen más fácil la tarea de visualizar sus formas, dimensiones y el reparto de los distintos elementos dentro del reductor. Y en este último punto del diseño del reductor es donde vamos a profundizar ya que las posibilidades del software hoy en día permiten su diseño en 3D al completo y su posterior puesta en movimiento tanto de los engranajes, como una vista donde el conjunto se desmonta y se vuelve a montar para visualizar la situación de las distintas piezas.

Durante los siguientes subapartados se va a ir desgranando las distintas partes del reductor y se hará una breve explicación del proceso utilizado para diseñar el elemento.

2.- PIEZAS

2.1.- **EJES**

Para el diseño de los ejes en SolidWorks se ha partido de una vista lateral del eje cogiendo solo la parte superior de la simetría y a continuación se le ha aplicado el comando "revolución de saliente" para conseguir el volumen final. El eje de rotación de esta operación es el eje interno de la pieza.

Una vez realizada la operación de revolución se procede a ejecutar la operación para conseguir los chaveteros, se dibuja un croquis con la forma final del chavetero para luego aplicar la operación de "extrusión con corte" para profundizar dentro del eje a una medida previamente calculada.

2.1.1.- Eje de entrada

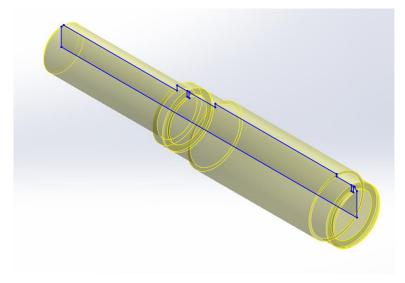


Fig.1.Operación de revolución eje de entrada.

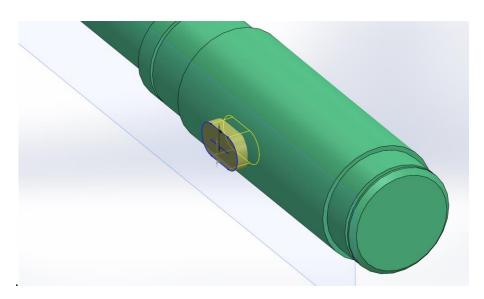


Fig.2.Operación de "extrusión con corte "para realizar el chavetero.

2.1.2.- Eje intermedio

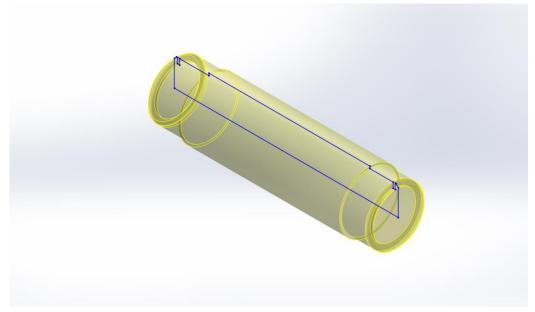


Fig.3.Operación de "revolución" eje de intermedio.

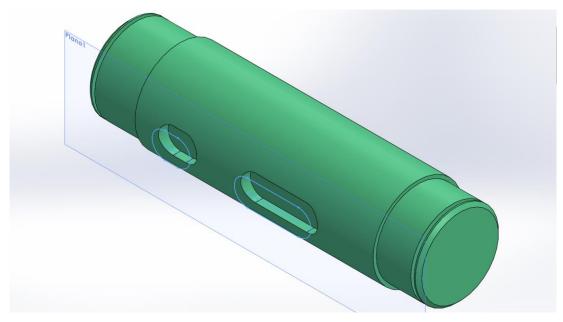


Fig.4.Detalle de los dos chaveteros del eje intermedio.

2.1.3.- Eje de salida

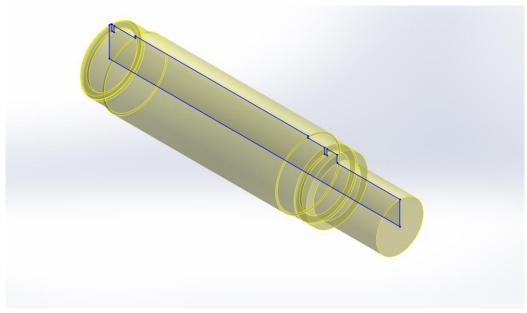


Fig.5.Operación de "revolución" eje de salida.

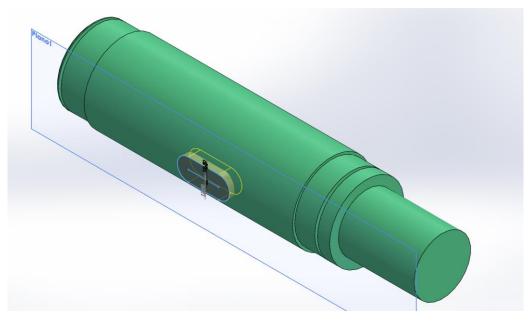


Fig.6.Operación de "extrusión con corte "para realizar el chavetero.

2.2.- ENGRANAJES

Los engranajes al tratarse de elementos previamente calculados y normalizados se han extraído de las librerías "Toolbox" que ofrece SolidWorks. Estas librerías ofrecen todo tipo de elementos normalizados para las distintas homologaciones, en este caso se han utilizado elementos de la norma ISO.

Fig.7.Distintas normas dentro del entorno "Toolbox".

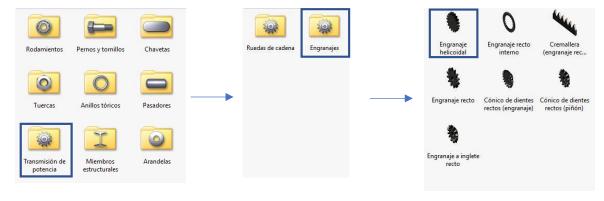


Fig.8.Proceso para insertar engranajes helicoidales.

Las librerías mencionadas ofrecen la configuración total del elemento utilizado, en este caso los engranajes. A continuación, se puede ver las distintas opciones que ofrece el programa.

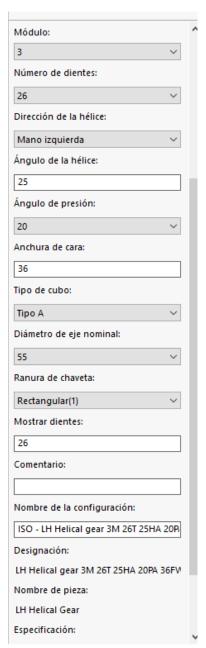


Fig.9.Caracteristicas de los engranajes.

2.2.1.- Piñón primera etapa

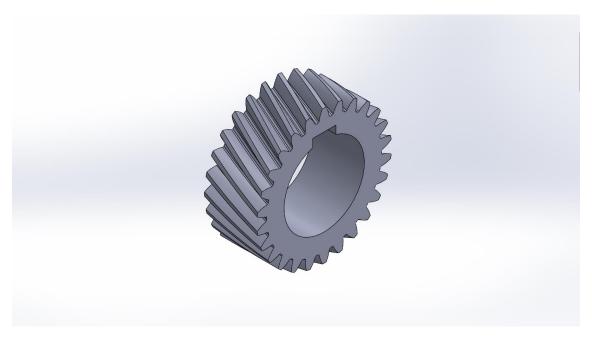


Fig.10.Detalle piñón primera etapa.

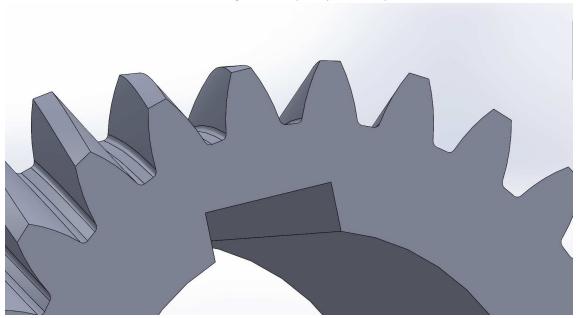


Fig.11.Detalle dientes piñón primera etapa.

2.2.2.- Rueda primera etapa

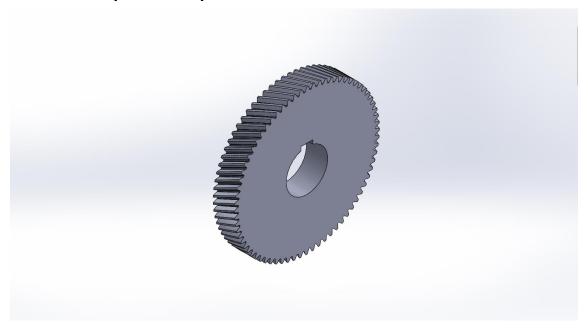


Fig.12.Detalle rueda primera etapa.

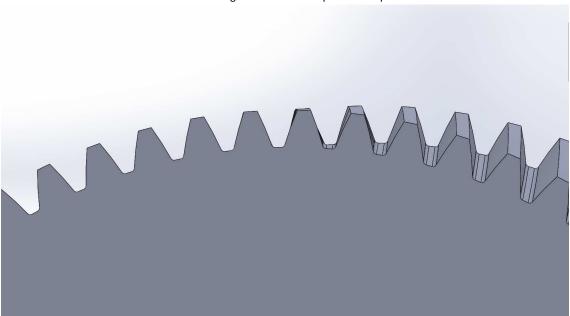
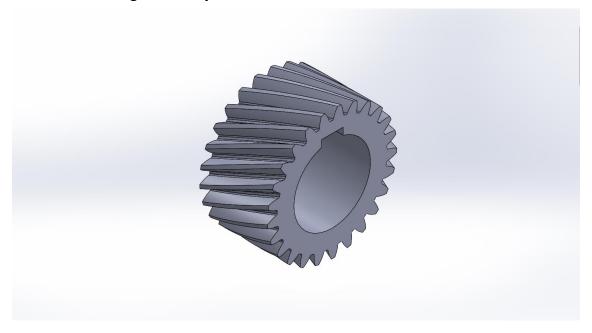



Fig.13.Detalle dientes rueda primera etapa.

2.2.3.- Piñón segunda etapa

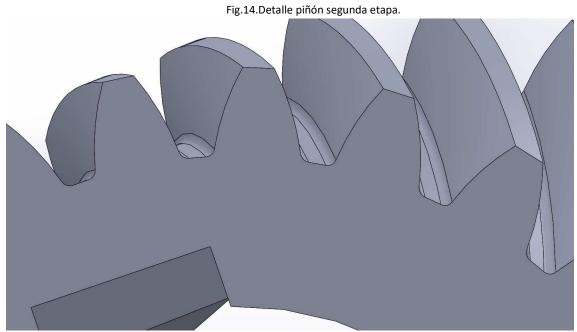


Fig.15.Detalle dientes piñón segunda etapa.

2.2.4.- Rueda segunda etapa

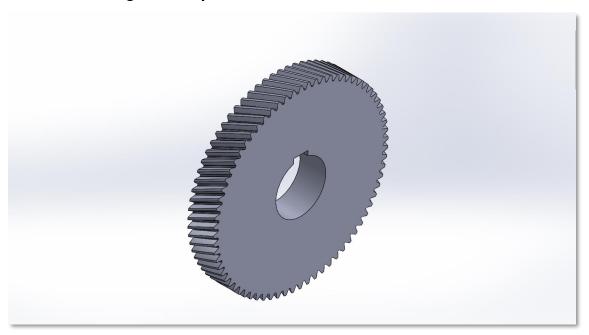


Fig.15.Detalle rueda segunda etapa.

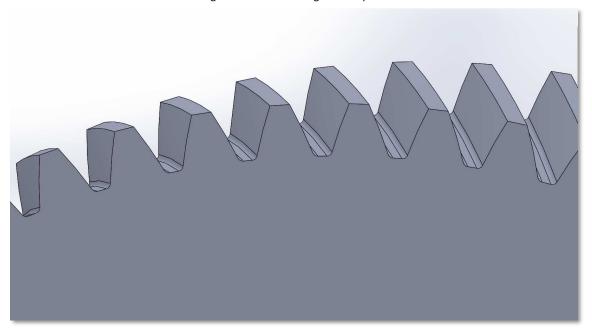


Fig.16.Detalle dientes rueda segunda etapa.

2.3.- CARCASA

La carcasa es sin duda el elemento mas complejo de todo el conjunto, esta ha sido dividida en dos partes ya en su etapa de diseño teórica para favorecer el montaje final.

Cada una de las partes de la carcasa además de la estructura exterior tiene muchas otras operaciones, entre estas se encuentran los asientos para los rodamientos, los agujeros para el eje de entrada y de salida, agujeros para sujeción de las tapas de los ejes de entrada y de salida, orificios para los distintos tapones y orificios para la tornillería que sujetara el carter con la tapa superior.

Para comenzar con su diseño se parte de una vista superior y a partir de esta se ha ido trabajando los distintos volúmenes para conseguir la pieza final, por ultimo se han realizado los distintos taladros para la tornillería, a continuación, se puede ver algunos detalles tanto del carter como de la tapa superior.

2.3.1.- Carter

El carter es la parte inferior del conjunto de la carcasa, es el encargado de mantener el contacto con el suelo o la superficie de apoyo, sobre él se montarán el resto de las piezas del reductor y además hace la funcion de recoger el lubricante.

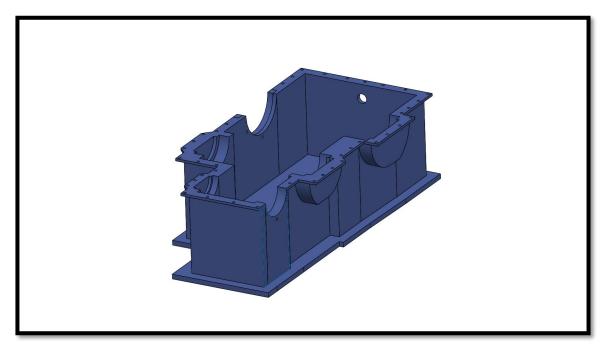


Fig.17.Vista global del carter.

En la siguiente imagen se pueden apreciar los asientos de los rodamientos, así como los orificios para el tapón de vaciado y el tapón de inspección de nivel de aceite

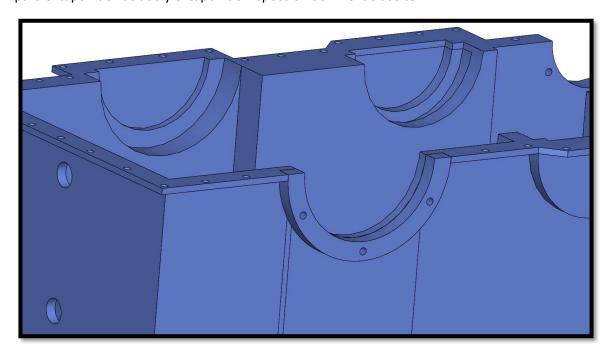


Fig.18. Vista de detalle del carter.

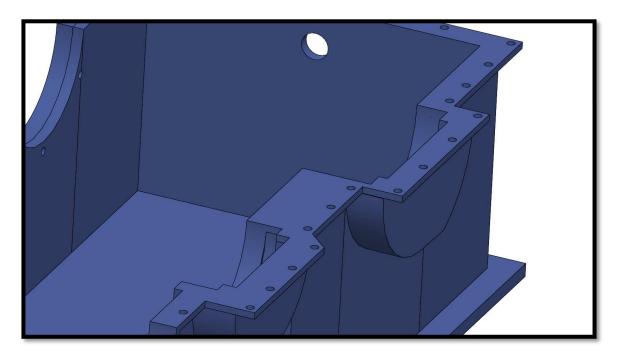


Fig.19. Vista de detalle de los orificios para la tornillería.

2.3.2.- Tapa de la carcasa.

Es el elemento encargado de cerrar por la parte superior el conjunto, igual que el carter sirve también para apoyo de los rodamientos, dispone de un orificio por donde se llenará el lubricante y dispone de una serie de orificios para la tornillería que posibilitan el cierre del conjunto con sus correspondientes tornillos.

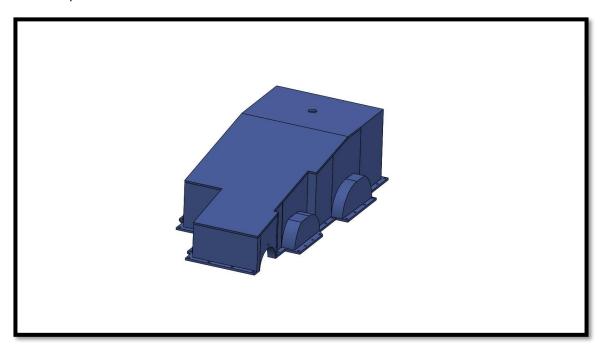


Fig.20.Vista global de la tapa.

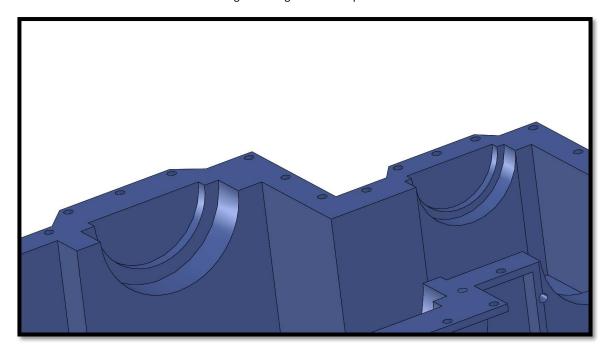


Fig.21.Vista detalle de la tapa.

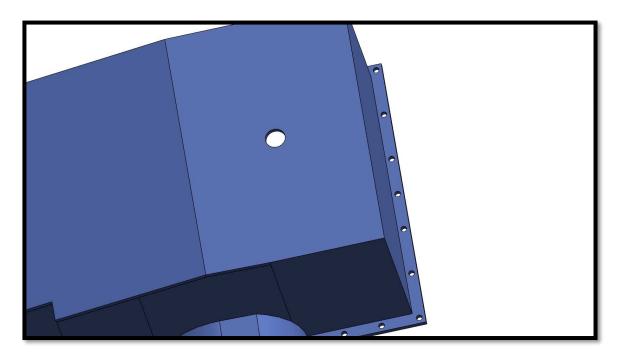


Fig.22.Orificio de llenado y orificios para la tornillería.

2.4.- TAPAS DEL EJE DE ENTRADA Y DE SALIDA

Las tapas han sido diseñadas partiendo de una vista frontal y aplicando distintas operaciones tanto de "extrusión" como "extruir corte" para los orificios.

2.4.1.- Tapa eje de entrada

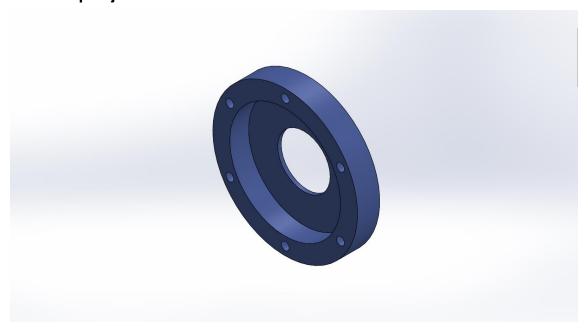


Fig.23.Vista general tapa eje de entrada.

2.4.2.- Tapa eje de salida

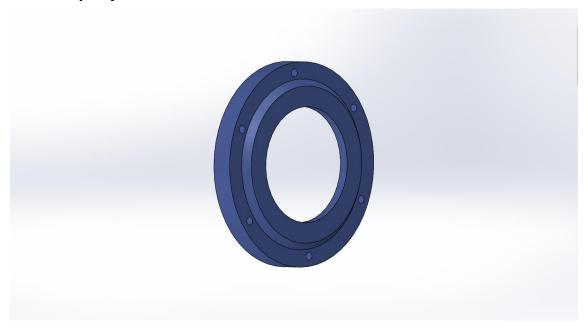


Fig.24.Vista general tapa eje de salida.

2.5.- CHAVETAS

Estas al ser de unas medidas no normalizadas se ha tenido que diseñar directamente en SolidWorks , partiendo de una vista frontal con las medidas requeridas, se ha aplicado una "extrusión" para dar volumen a la pieza.

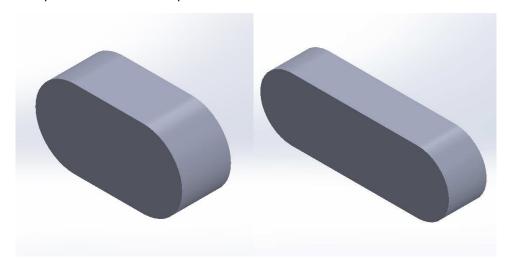


Fig.25. Vista general de las chavetas.

2.6.- CASQUILLOS

Este elemento ha sido muy sencillo de diseñar puesto que se trata de un cilindro hueco, se parte de unas circunferencias concreticas a las cuales se las aplica una "extrusión" para darle volumen. En la siguiente foto se puede apreciar el proceso. Se ha realizado exactamente el mismo proceso en los cuatro casquillos.

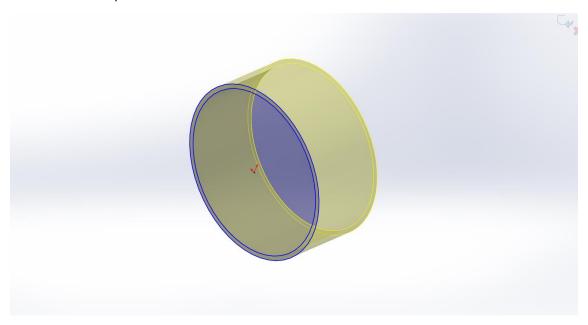


Fig.26.Detalle de la realización de un casquillo.

2.7.- TAPONES Y VISOR

Se parte de un hexágono al cual se le aplica una "extrusión" para dotarlo de volumen y será la cabeza del tornillo y del visor. A continuación, se realizan unas pocas operaciones sencillas para obtener el volumen final. Para el visor lo que se ha hecho es darle una apariencia transparente al tapón. El mismo elemento se aprovecha para los dos tapones y el visor.

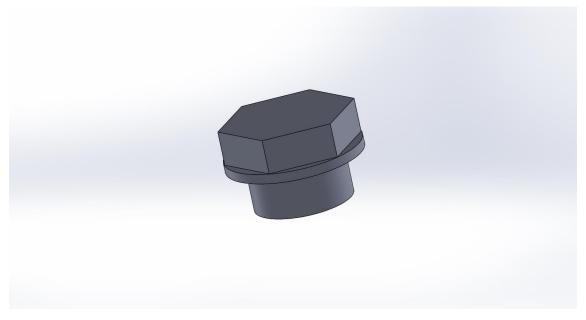


Fig.26.Vista general del tapón.

2.8.- ELEMENTOS NORMALIZADOS

Como ocurre con los engranajes, hay ciertos elementos que no son necesarios diseñarlos desde cero ya que al ser piezas normalizadas existe la posibilidad de importarlos a través de la librería "Toolbox" integrada en SolidWorks.

Dentro de estos elementos normalizados tenemos los rodamientos, las arandelas elásticas, la tornillería y las tuercas.

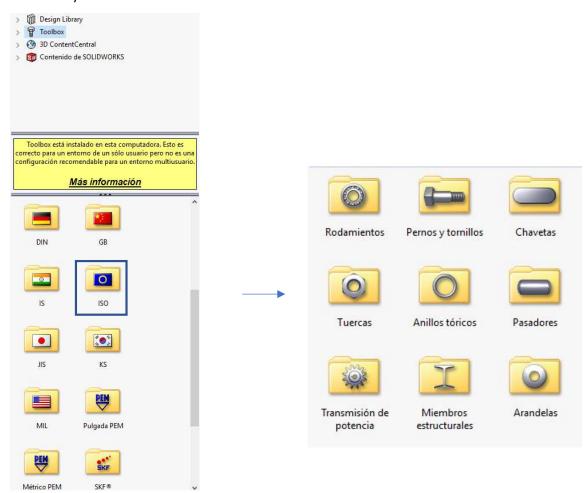


Fig.27.Libreria de elementos normalizados.

3.- CONJUNTO

Para poder ensamblar el conjunto de piezas en SolidWorks se ha utilizado la herramienta "relaciones de posición" que sirve para decirle al programa como se deben comportar dos piezas la una respecto a la otra, ya sea creando caras paralelas, coincidentes, agujeros concéntricos, etc...

A continuación, se puede ver las distintas opciones:

Fig.28.Distintas opciones para la herramienta "relación de posición".

Seria imposible describir todas las operaciones de este tipo realizadas a lo largo del reductor, la más importante a destacar seria la relación de posición mecánica aplicada entre los distintos ejes la cual nos permitirá que aplicando un giro en el eje de entrada este se transmita a través de los dientes de los engranajes hasta el eje de salida.

En las siguientes imágenes e puede ver el conjunto del reductor con sus distintas piezas.

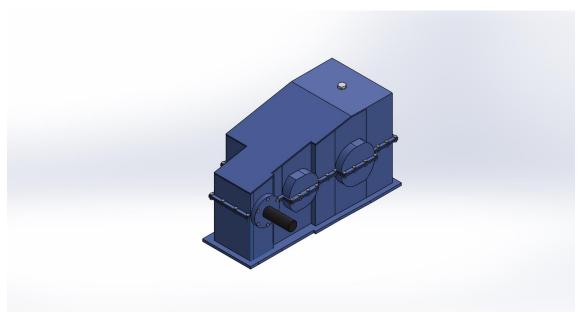


Fig.29.Vista general del reductor.

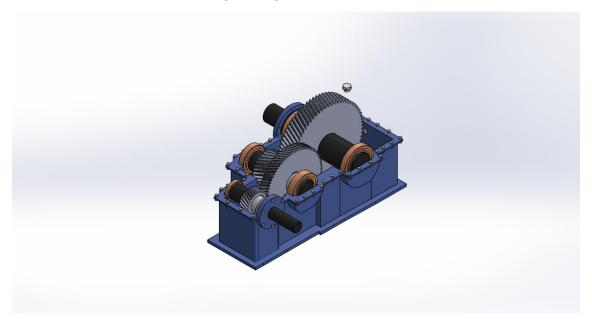


Fig.30.Vista general del reductor sin tapa superior.

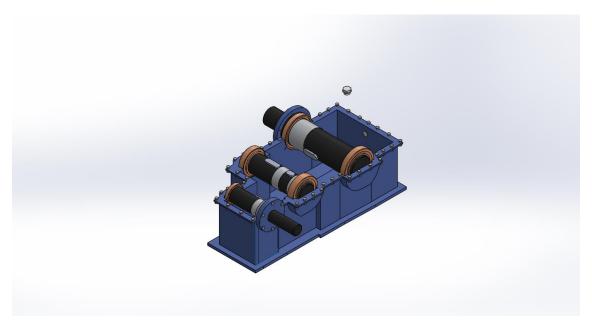


Fig.30.Vista detalle del reductor

El programa nos permite crear vistas explosionadas del ensamblaje donde se puede apreciar la posición de cada una de las partes, además como se puede ver en el video adjunto en el CD de presentación, este tipo de vistas se pueden animar para ver una representación del proceso de montaje del reductor.

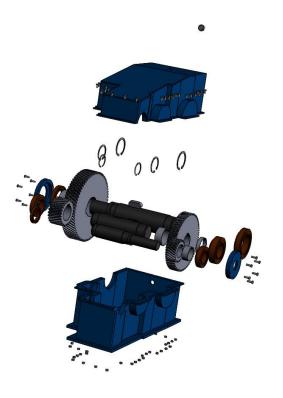


Fig.31.Vista explosionada del reductor.

4.- VIDEOS

Se han generado tres tipos de videos distintos que se puede encontrar en el CD.

Inicialmente se ha creado un video que es una visión global del reductor para hacerse una idea de las formas y sus dimensiones.

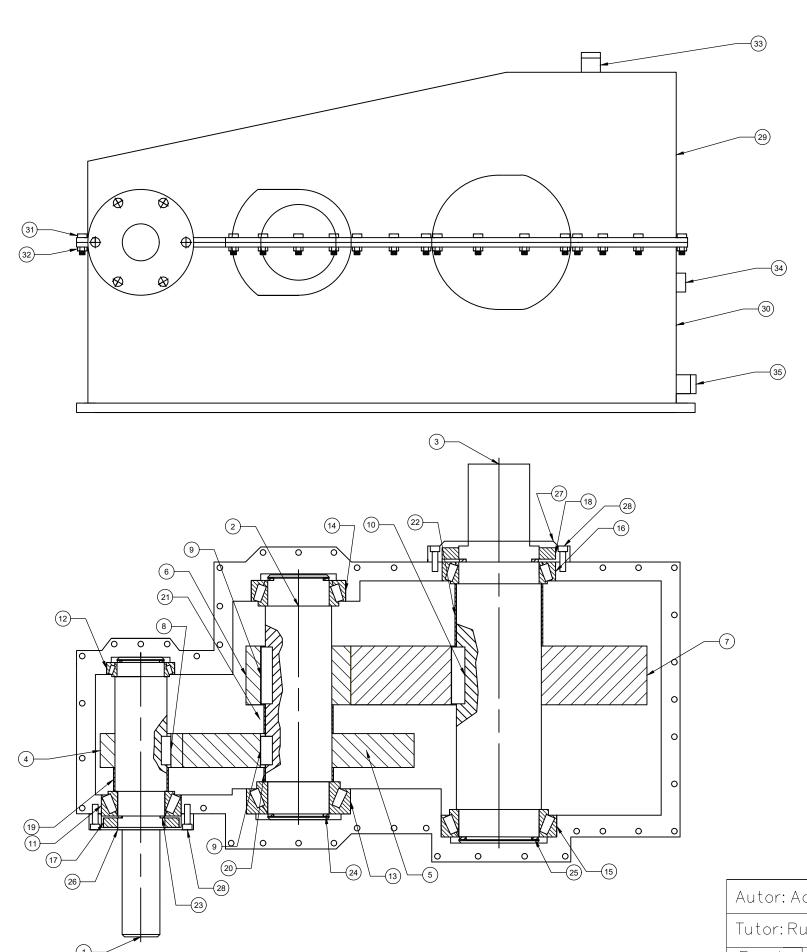
Un segundo video donde se ve una animación donde el reductor se "desmonta" y se vuelve a "montar", esto dentro de SolidWorks se denomina explosionar o contraer el conjunto.

Por ultimo se ha generado un video donde se ve detalladamente el giro de los engranajes para ver el funcionamiento real del reductor y así corroborar que todo encaja a la perfección y se mueve como había sido previsto inicialmente en el diseño

UNIVERSIDAD POLITÉCNICA DE VALENCIA

GRADO EN INGENIERÍA MECÁNICA

DOCUMENTO Nº:6 PLANOS


Diseño y cálculo de un reductor de velocidad para el accionamiento de una cinta transportadora de mineral de litio.

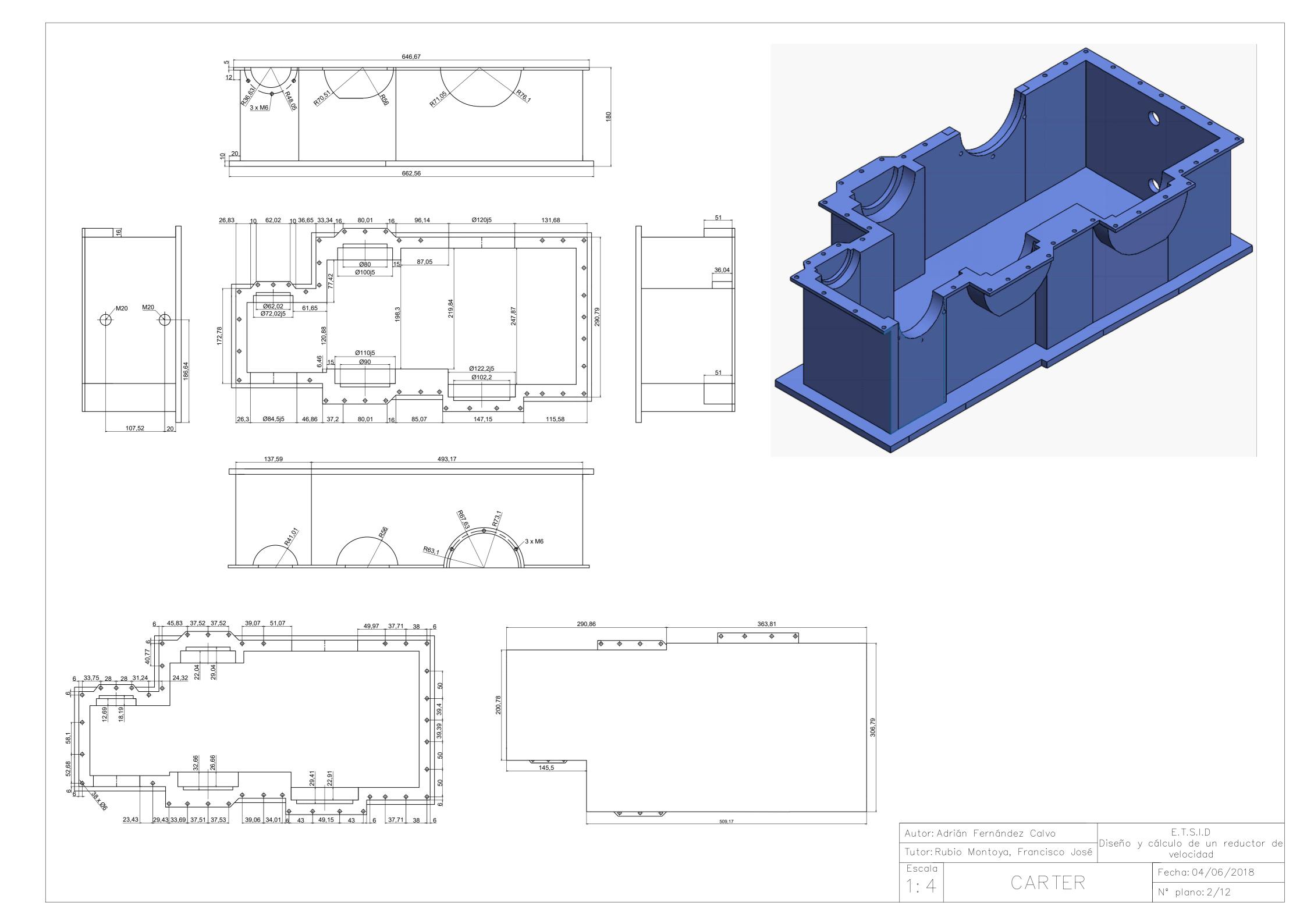
PRESENTADO POR:

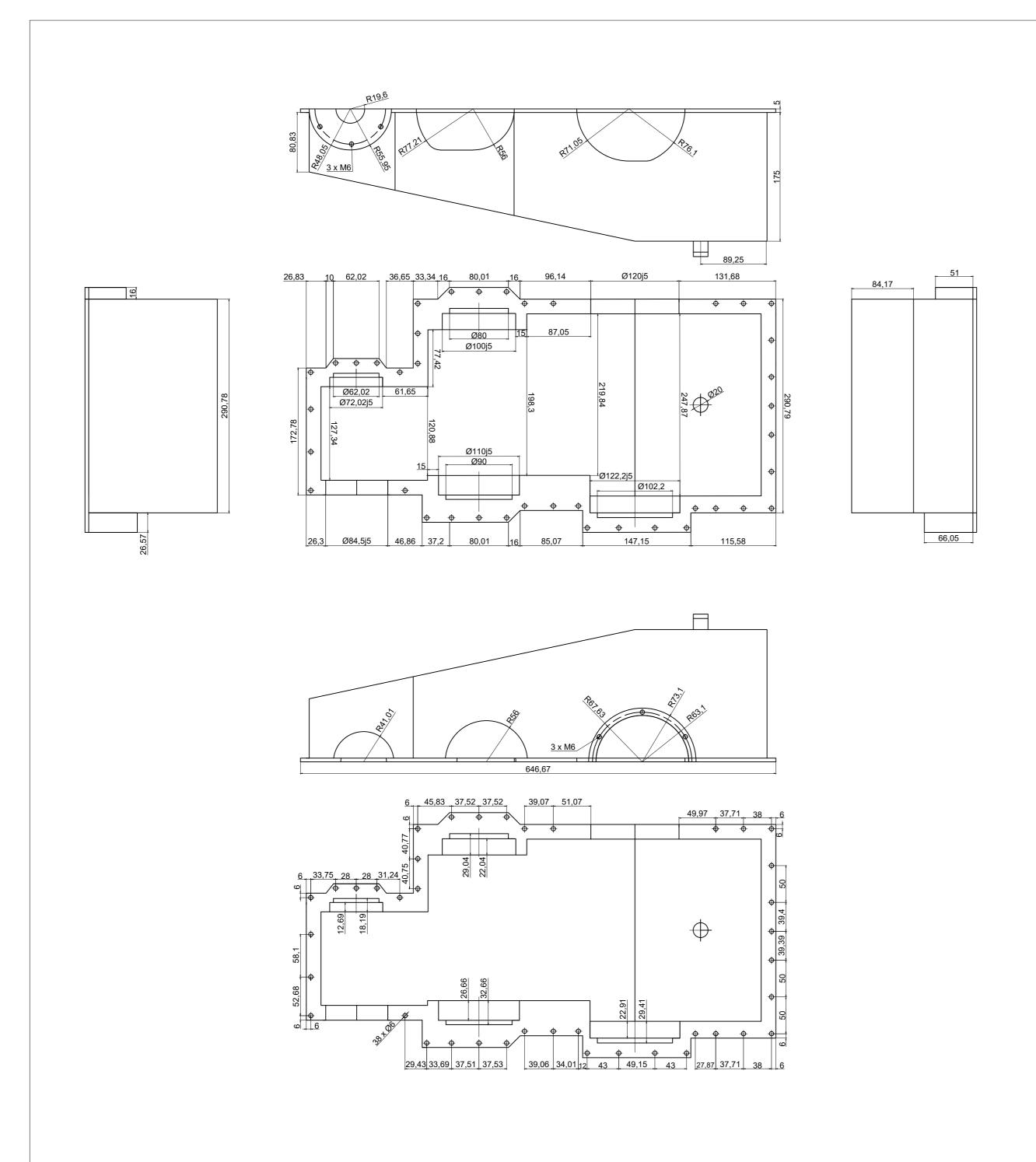
Adrián Fernández Calvo

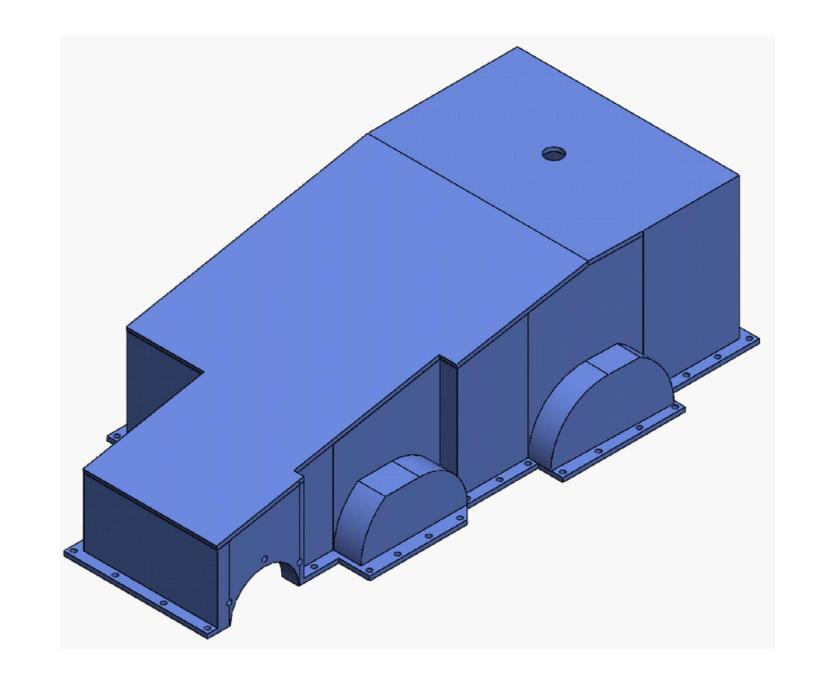
DIRIGIDO POR:

Francisco J. Rubio Montoya

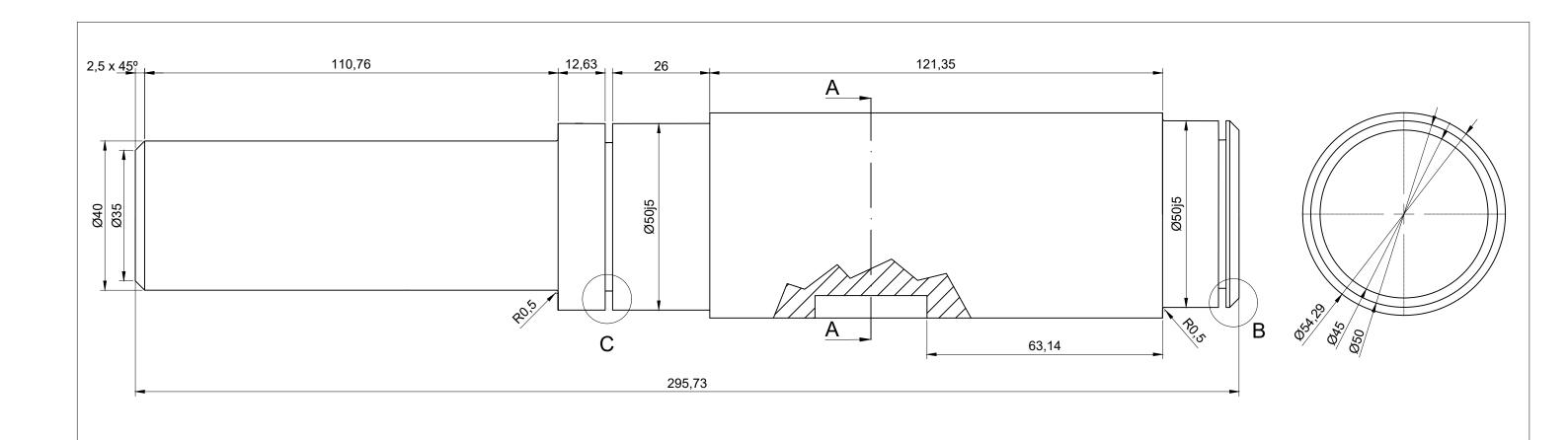
LISTA DE PIEZAS			
N°	CTDAD	TÍTULO	
1	1	EJE DE ENTRADA	
2	1	EJE INTERMEDIO	
3	1	EJE DE SALIDA	
4	1	PIÑON PRIMERA ETAPA	
5	1	RUEDA PRIMERA ETAPA	
6	1	PIÑON SEGUNDA ETAPA	
7	1	RUEDA SEGUNDA ETAPA	
8	1	CHAVETA EJE DE ENTRADA	
9	2	CHAVETA EJE INTERMEDIO	
10	1	CHAVETA EJE DE SALIDA	
11	1	RODAMIENTO SKF 33110	
12	1	RODAMIENTO SKF 32910	
13	1	RODAMIENTO SKF 33113	
14	1	RODAMIENTO SKF 32013	
15	1	RODAMIENTO SKF 32017X	
16	1	RODAMIENTO SKF 32917	
17	1	SELLO RADIAL SKF 50X80X8 HMS5 V	
18	1	SELLO RADIAL SKH 85X120X12 HMS5 V	
19	1	CASQUILLO PERMAGLIDE	
20	1	CASQUILLO PERMAGLIDE	
21	1	CASQUILLO PERMAGLIDE	
22	1	CASQUILLO PERMAGLIDE	
23	2	ANILLO ELASTICO 01090398	
24	2	ANILLO ELASTICO 01090478	
25	2	ANILLO ELASTICO 01090566	
26	1	TAPA EJE DE ENTRADA	
27	1	TAPA EJE DE SALIDA	
28	12	TORNILLO M6X20	
29	1	TAPA SUPERIOR	
30	1	CARTER	
31	40	TORNILLO M6X13	
32	40	TUERCA M6	
33	1	VISON NIVEL	
34	1	TAPÓN DE LLENADO	
35	1	TAPÓN DE VACIADO	

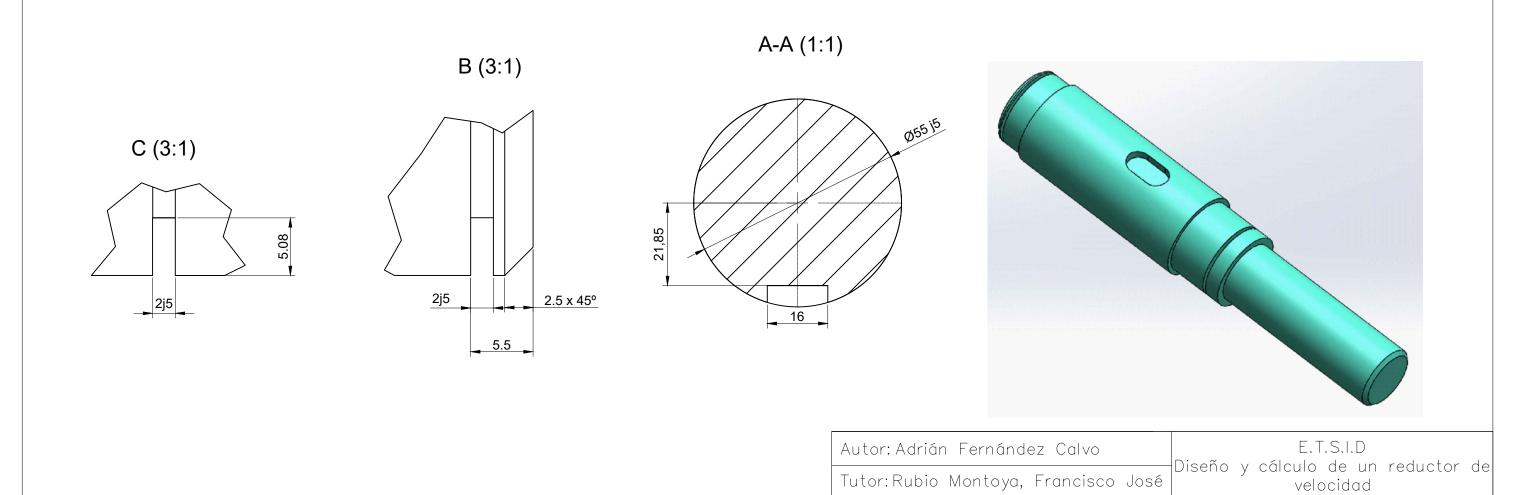

Autor: Adrián Fernández Calvo	E.T.S.I.D	
Tutor: Rubio Montoya, Francisco José	Diseño y cálculo de un reductor de velocidad	
Escala	Fecha: 04/06/2018	


1:4

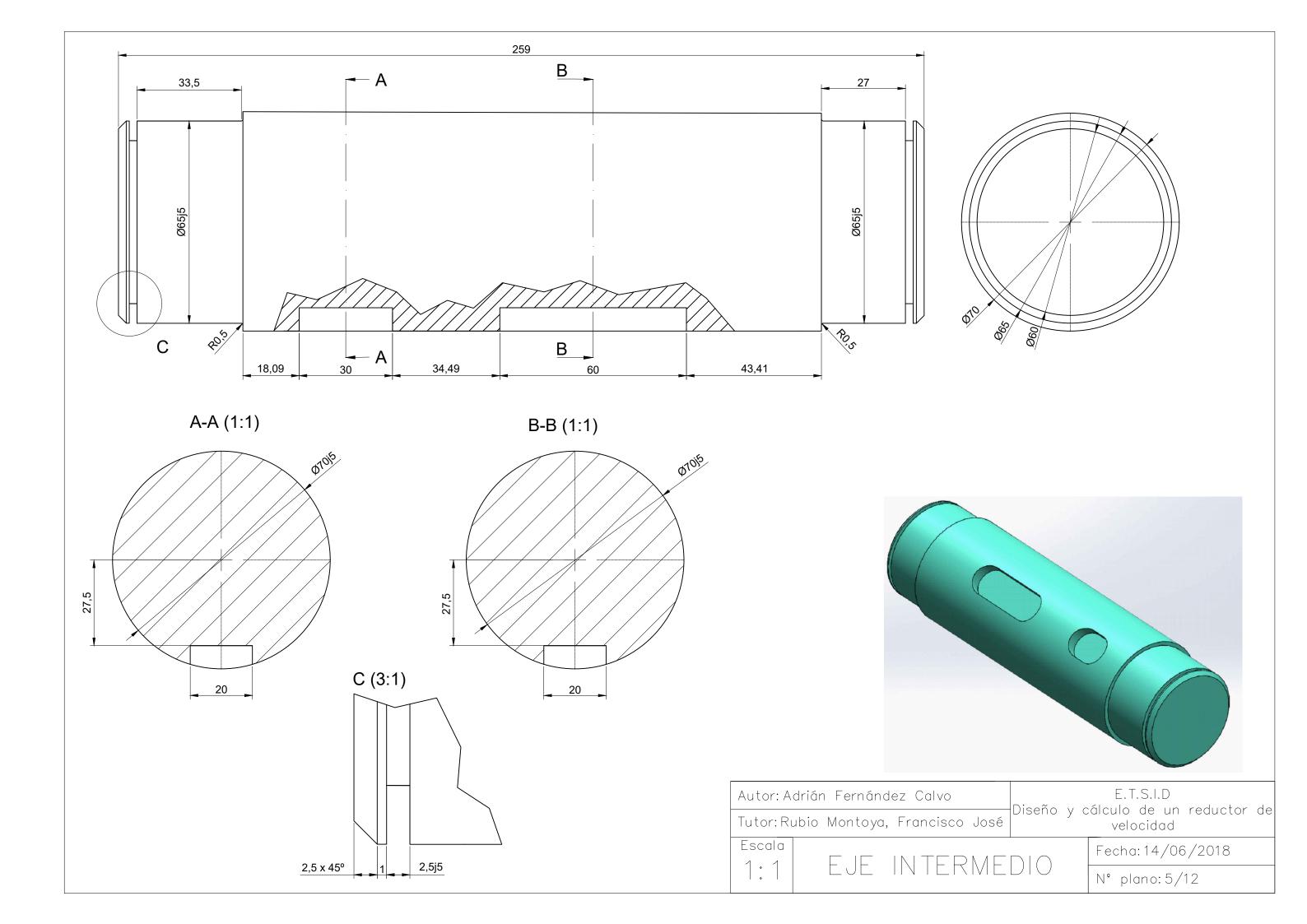

CONJUNTO

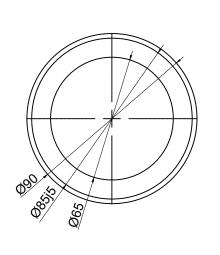
Fecha: 04/06/2018

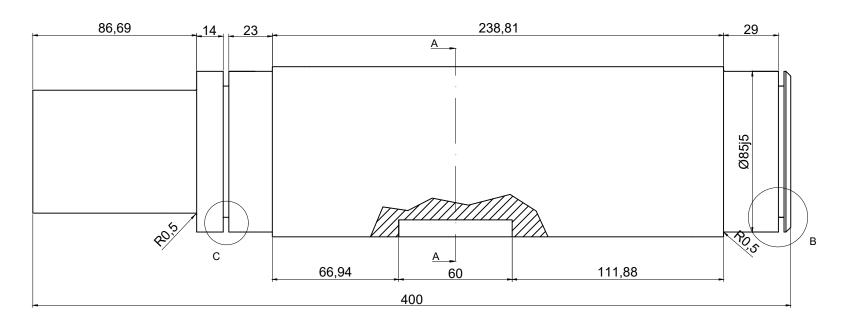

N° plano: 1/12

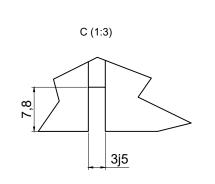


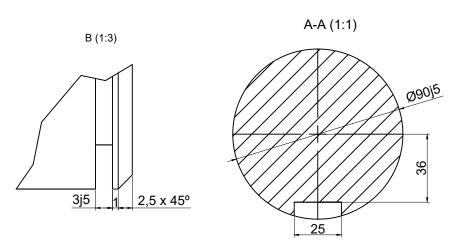
Autor: Adrián Fernández Calvo Tutor: Rubio Montoya, Francisco José			E.T.S.I.D	d 6	
		Diseño y cálculo de un reductor c velocidad		ae	
Escala	$\top \wedge \cap \wedge$			Fecha: 04/06/2018	
: 4	I APA	SUPERIOR		N° plano: 3/12	

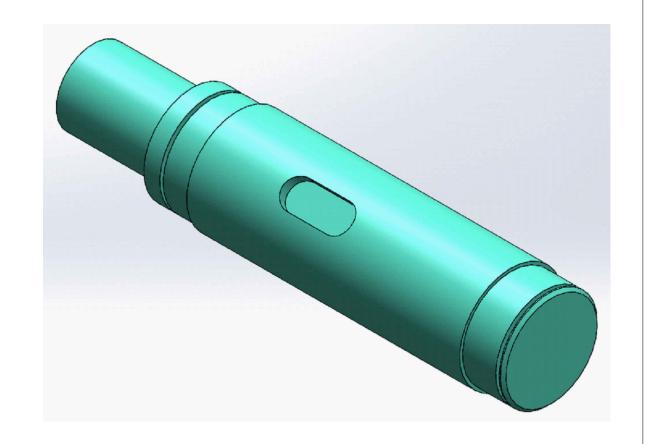

Tutor: Rubio Montoya, Francisco José


Fecha: 14/06/2018


N° plano: 4/12

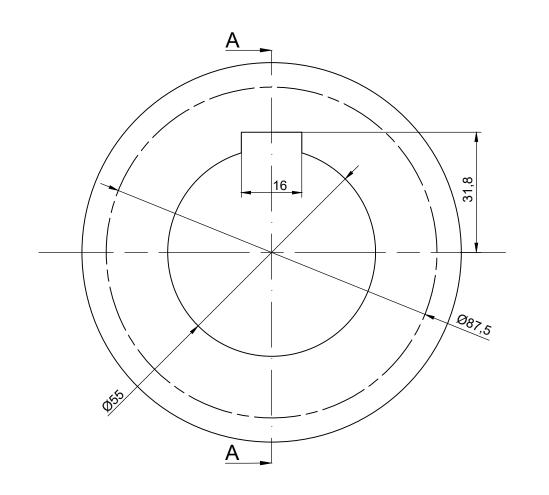

Escala

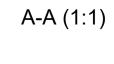

1.1

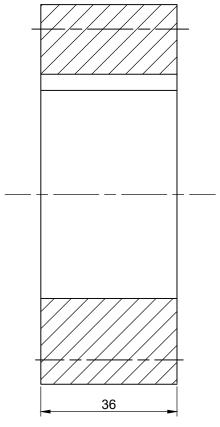


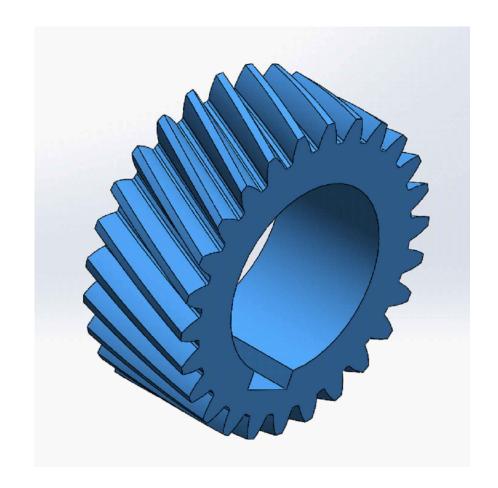
Autor: Adrián	Fernández	Calvo	
Tutor Rubio 1	Aontova Fr	ancisco lo	c i

E.T.S.I.D Diseño y cálculo de un reductor de velocidad

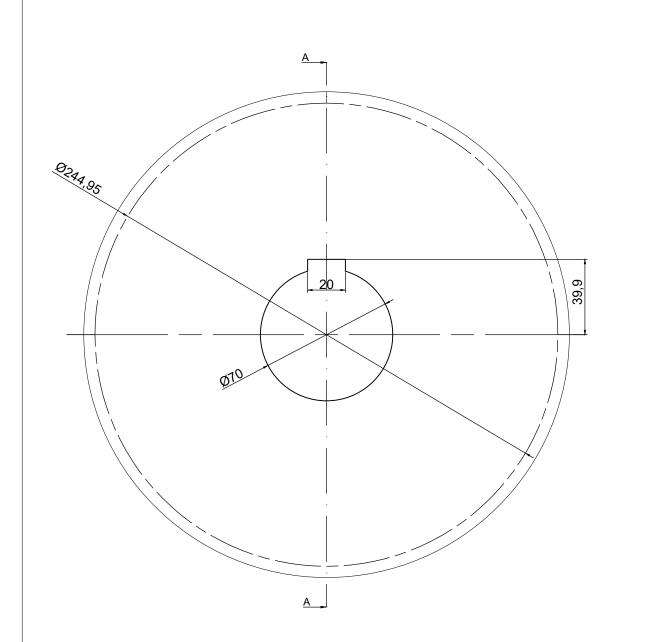

Escala

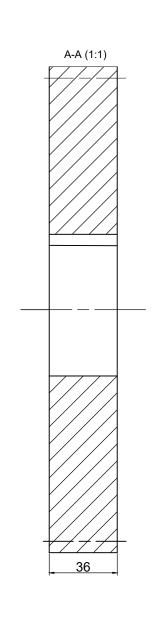

1:2

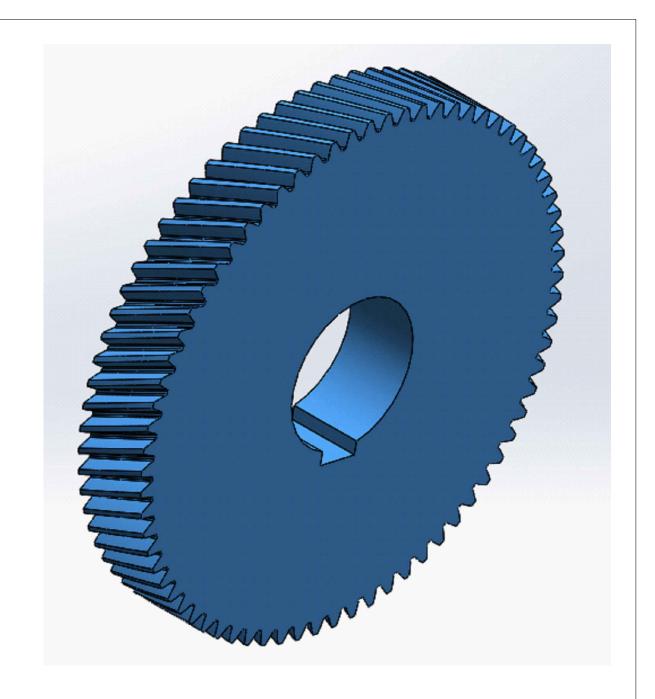

EJE DE SALIDA


Fecha: 14/06/2018

N° plano: 6/12

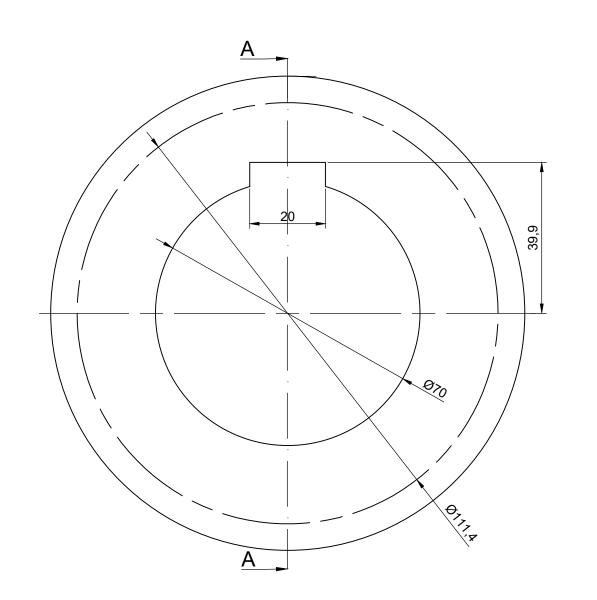






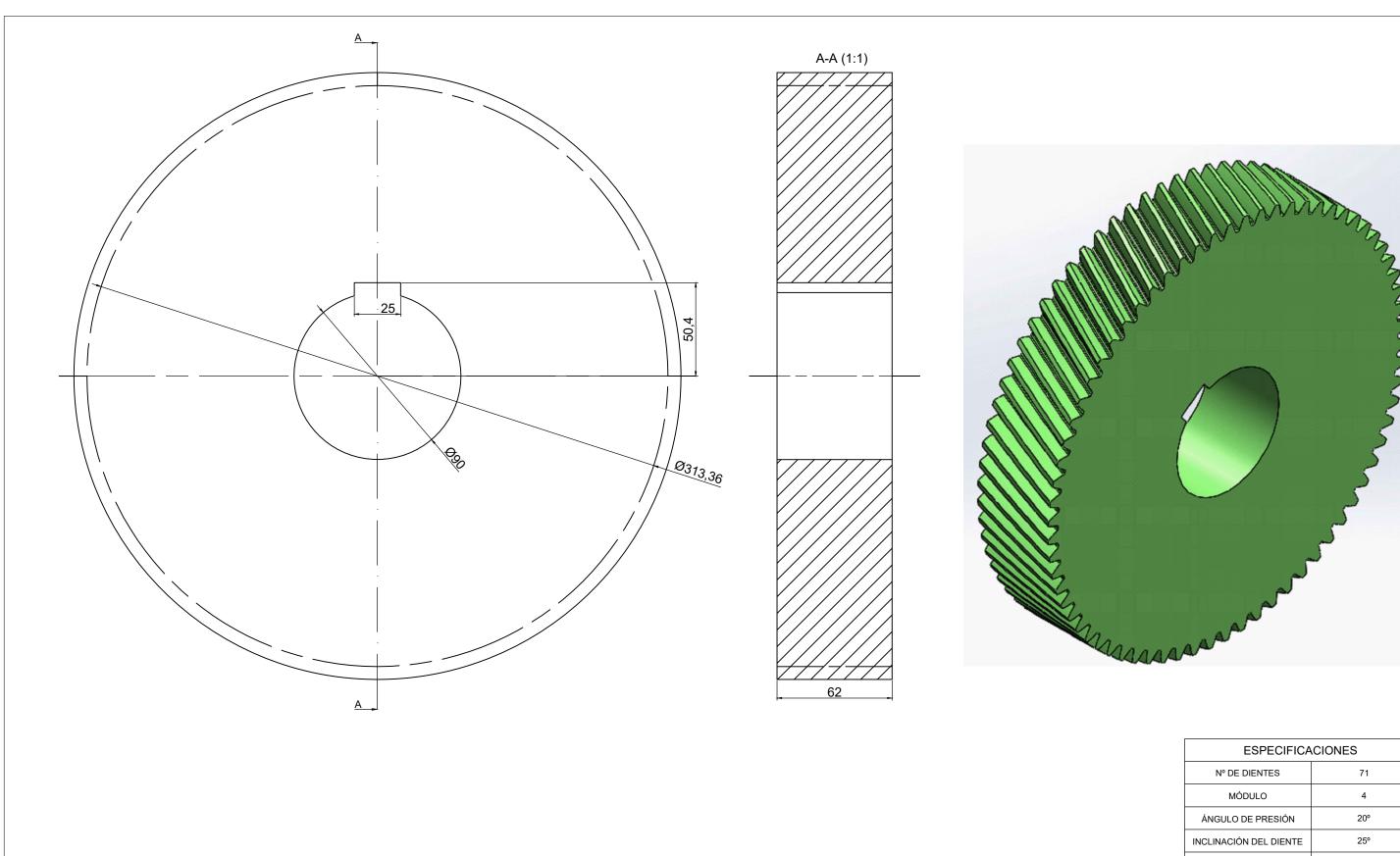
ESPECIFICACIONES		
N° DE DIENTES	27	
MÓDULO	3	
ÁNGULO DE PRESIÓN	20°	
INCLINACIÓN DEL DIENTE	25°	
DIÁMETRO PRIMITIVO	87.50mm	

				_	
Autor: Adrián Fernández Calvo		E.T.S.I.D			
	Tutor: Rubio Montoya, Francisco José		Juiseno y c	cálculo de un reductor de velocidad	
	Escala				Fecha: 16/06/2018
		PINUN	PRIMERA	LIAPA	N° plano: 7/12



ESPECIFICA	ESPECIFICACIONES			
N° DE DIENTES	76			
MÓDULO	3			
ÁNGULO DE PRESIÓN	20°			
INCLINACIÓN DEL DIENTE	25°			
DIÁMETRO PRIMITIVO	244.95mm			

Autor: Adrián Fernández Calvo		E.T.S.I.D		
Tutor: Ri	ubio Montoya	, Francisco José	Tuiseno y c	cálculo de un reductor de velocidad
Escala				Fecha: 15/06/2018
	RUEDA PRIMERA E	$\underline{-}$ IAPA	N° plano: 8/12	

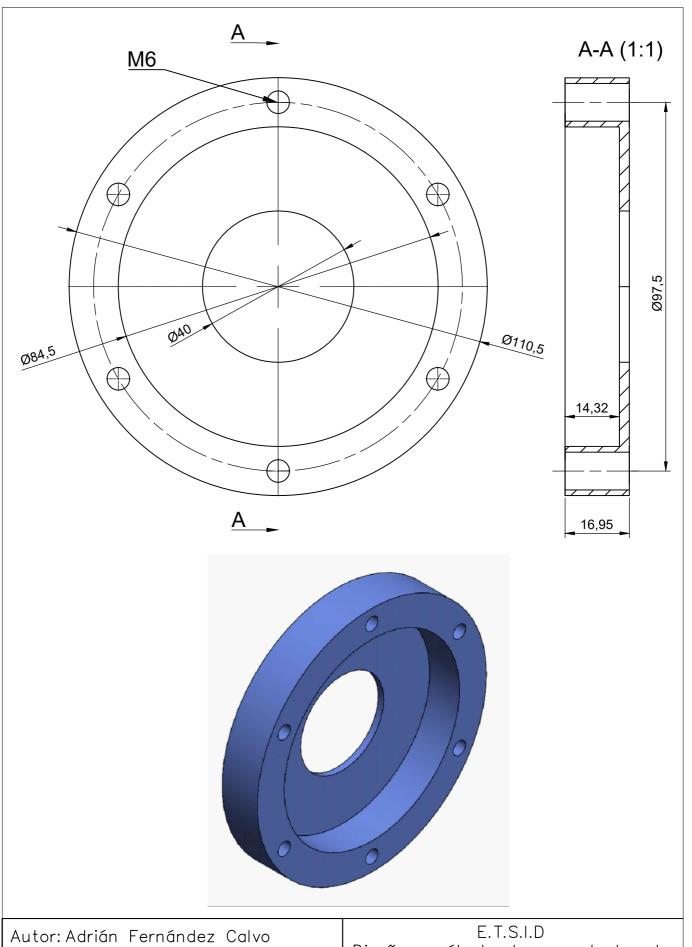


ESPECIFICA	ESPECIFICACIONES		
N° DE DIENTES	26		
MÓDULO	4		
ÁNGULO DE PRESIÓN	20°		
INCLINACIÓN DEL DIENTE	25°		
DIÁMETRO PRIMITIVO	111.40mm		

Autor: Adrián Fernández Calvo	E.T.S.I.D Diseño y cálculo de un reductor d velocidad	
Tutor: Rubio Montoya, Francisco José		
Escala	ETAPA	Fecha: 15/06/2018
1:1 PIÑON SEGUNDA I		N° plano: 9/12

ESPECIFICACIONES			
N° DE DIENTES	71		
MÓDULO	4		
ÁNGULO DE PRESIÓN	20°		
INCLINACIÓN DEL DIENTE	25°		
DIÁMETRO PRIMITIVO	313.36mm		
	N° DE DIENTES MÓDULO ÁNGULO DE PRESIÓN INCLINACIÓN DEL DIENTE		

Autor: Adrián Fernández Calvo Tutor: Rubio Montoya, Francisco José


E.T.S.I.D Diseño y cálculo de un reductor de velocidad

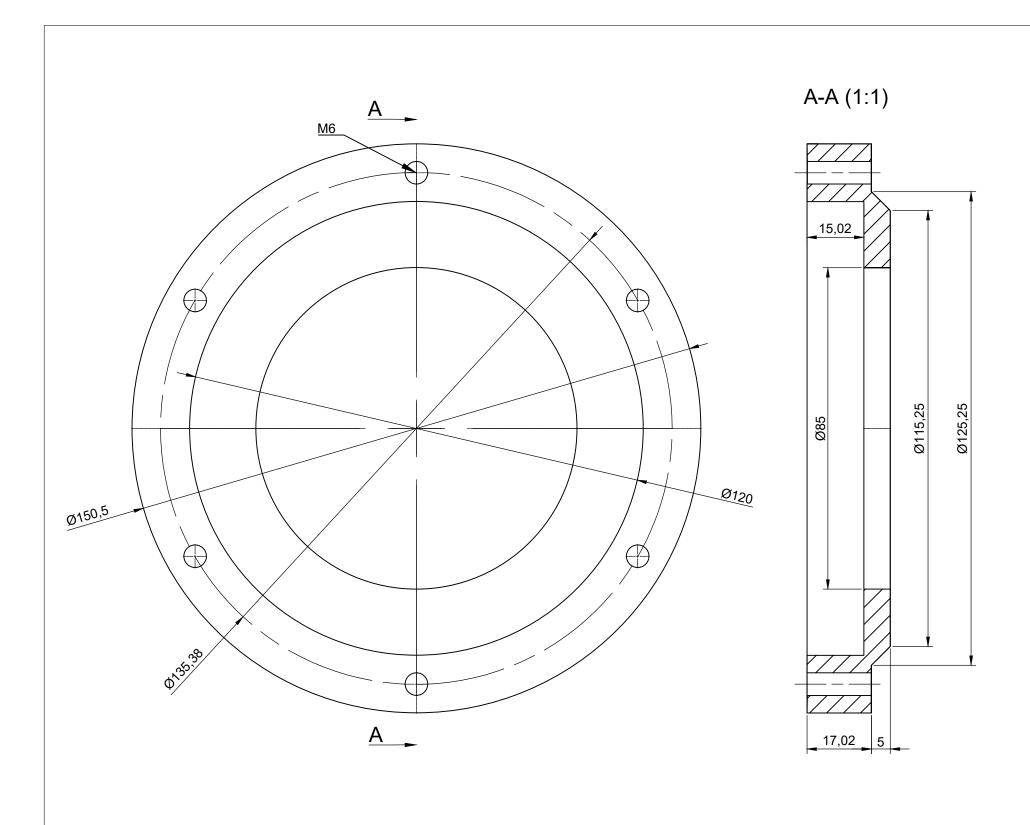
Escala

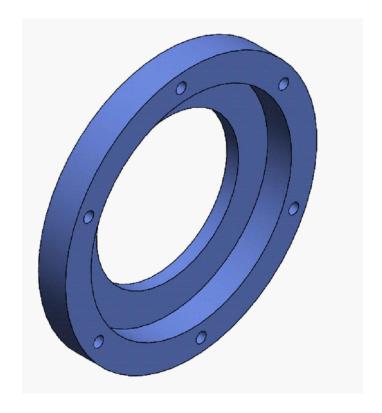
RUEDA SEGUNDA ETAPA

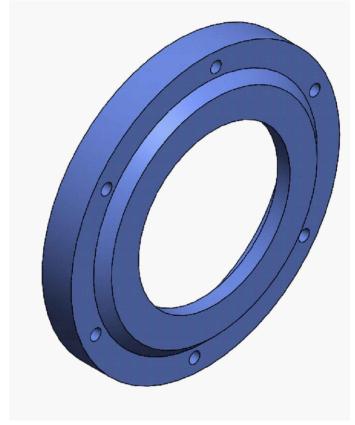
Fecha: 04/06/2018

N° plano: 10/12

Tutor: Rubio Montoya, Francisco José


Diseño y cálculo de un reductor de velocidad


Escala


. 1 TAPA EJE DE ENTRADA

Fecha: 15/06/2018

N° plano: 11/12

Autor: Adrián Fernández Calvo		E.T.S.I.D Diseño y cálculo de un reductor d	
Tutor: Ru	ubio Montoya, Francisco José	Diseno y c	velocidad
Escala 1.1 TAPA EJE DE SALIDA		Fecha: 15/06/2018	
1 . 1	I TAMA EJE DE S <i>e</i>	ALIDA	N° plano:12/12