
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

FINAL PROJECT

Community Based Mappings for the
Semantic Web: MappingsTool

Author:
Omar Pera Mira
Computer Science Engineer
Escola Tècnica Superior d’Enginyeria Informàtica

Supervisor:
Antonio Molina
DSIC

March, 2011

Abstract

An extension of BioPortal, an open source ontology repository developed
by the UNIVERSITY OF STANFORD, that facilitates the manipulation of map-
pings between ontologies. We provide a flexible web user interface that
facilitate the workflow to create a mapping and the exploration of the rela-
tions between ontologies.

Contents

Abstract i

1 Introduction 1

1.1 Presentation . 1

1.2 Overview . 1

1.3 Objectives . 2

1.4 Motivation . 3

2 Background 4

2.1 Semantic Web . 4

2.1.1 What is an ontology 5

2.1.2 Semantic components overview 6

2.1.3 OWL: Web Ontology Library 7

2.1.4 Example: BBC World Cup 2010 8

2.2 Relationships between ontologies: mappings 9

2.3 Bioportal: an ontology repository 13

3 Previous work 15

3.1 Existing tools . 15

3.1.1 Prompt + CogZ . 15

Contents iii

3.1.2 Mapping view . 18

3.2 Comparison with Mappingstool 18

4 Technology overview 20

4.1 Ruby . 20

4.1.1 Ruby and Rails . 20

4.2 Javascript . 21

4.2.1 AJAX . 22

4.2.2 JSON . 23

4.2.3 jQuery . 24

4.3 FlexViz: ontology visualization tool 25

4.4 Web Services . 27

4.5 Bioportal . 27

4.5.1 Bioportal UI . 27

4.5.2 Bioportal Core . 28

5 Software architecture and design 30

5.1 Architecture overview . 30

5.1.1 Client side . 31

5.1.2 Server side . 33

5.2 UI overview . 34

5.2.1 Flexibility . 34

5.2.2 Usability . 35

5.2.3 Mockups . 35

Contents iv

6 Main use cases 37

6.1 Browse and search ontology concepts 37

6.2 Browse mappings . 38

6.3 Information about an ontology concept 40

6.4 Create a mapping . 41

6.5 Discussions about a mapping 42

6.6 Visualize the context of a concept 43

6.7 Export to RDF the mappings between 2 ontologies 44

7 Conclusions 45

Bibliography 47

A Mockups 48

B RDF Export 53

C Deploying Bioportal Core 57

D Deploying Bioportal UI 68

Chapter 1

Introduction

1.1 Presentation

The aim of this document is the report for the Final Project Community Based
Mappings for the Semantic Web: MappingsTool, for the Escola Tècnica Supe-
rior d’Enginyeria Informàtica (ETSINF) of the Universitat Politècnica de
València (UPV).

1.2 Overview

The application presented in this document is a mapping editor between
concepts of different ontologies. In the context of the Semantic Web, the
mappings between controlled vocabularies in a given domain are essen-
tial to interoperability between different data systems. In other words, it is
important to have a machine-readable way for a computer to understand
how terms are related (for example, if one term is equivalent to, more gen-
eral than, or narrower than another term).

We have developed Mappingstool, an extension of Bioportal1 that eases the
manipulation of mappings across ontologies. We formalize the relation-
ships between ontology concepts by providing a first approach of a spec-
ification for representing the mappings involved, and providing a flexible

1BioPortal is an open source ontology repository developed by the UNIVERSITY OF
STANFORD, more information in the subsection 2.3

Objectives 2

user interface that facilitates the generation of mappings and the explo-
ration of the relations. Users can browse the mappings, create new ones,
download them, or begin a discussion about the mapping itself.

Each mapping has its own set of metadata that describes who created the
mapping and when, application context in which the mapping might be
valid, mapping source, the specific mapping relationship, and other prop-
erties.

Mappings between ontologies are key to interoperability data in the vision
of Semantic Web. They are a fundamental component to achieve the inte-
gration and reuse of information. Section 2 will provide some background
information, and provide some pointers that show the connection points to
our work.

This power users of this extension is a small group of domain experts, who
are familiar with the controlled vocabularies. Doing accurate mapping re-
quires an in-depth knowledge of the meaning of the terms in each vocabu-
lary.

1.3 Objectives

• Develop a tool that facilitates the creation of mappings between on-
tologies encouraging collaboration between domain experts.

• Design a flexible web application on top of Bioportal in which you
can see the context of a visual mapping, promoting collaboration and
discussion among experts and facilitate the exploration of relations
between ontologies.

• Encourage the use of mappings between controlled vocabularies to
provide interoperability between different types of systems in a spe-
cific domain

• Formalize relationships between ontological vocabulary by creating a
well known vocabulary that contains the key relationships as OWL2:
same as, owl : inverse o f , etc. In addition to give the possibility to
add new relationship types.

2More detailed information in the Subsection 2.1.3

Motivation 3

1.4 Motivation

Within the context of the project OASIS3 there was a key requeriment to
have an open repository for ontologies and to be able to reuse, create rela-
tions between them, collaborate, etc. There are several research and devel-
opment initiatives at this time aiming at producing ’open ontology reposi-
tories’; the most stable and mature of these is the BioPortal platform devel-
oped for the Biomedical domain. This platform has been developed by the
National Center for Biomedical Ontology of the UNIVERSITY OF STANFORD.

We have taken BioPortal and considered the precise extensions and mech-
anisms necessary for moving the BioPortal framework to the Assistive Tech-
nologies domain. The result is a new repository, ORATE4, that is the first
instantiation of BioPortal technology outside of the Biomedical domain.
ORATE has been implemented by the University of Bremen in the am-
bit of Assistive Technologies (with ontologies such as Device, Sensor, Trip,
GPS or Transportation) where the relations are key within the context of
the project.

In typical OASIS scenarios, several services and devices have to be in inter-
action and hence the corresponding software must be highly interoperable.
As the software is driven by ontologies, these ontologies must be interop-
erable or connectable too: if two applications, based on ontologies, inter-
operate in a well specified way then their underlying ontologies must be
related in a meaningful way.

Interoperability or connectivity in the case of ontologies means that two
ontologies are connected via a relation with a well defined semantics. In
many cases the purpose of such connections is to transport concepts and
their implications from the source ontology to the target ontology. A sim-
ple example is the import relation where the target ontology imports all
knowledge from a source ontology. This interoperability between ontolo-
gies has been acquired with Mappingstool, being able to easily formalize
relationships between ontology concepts.

3Open architecture for Accessible Services, it is an European Project with the scope to
revolutionise the interoperability, quality, breadth and usability of services for all daily ac-
tivities of older people.

4Ontology Repository for Assistive Technologies

Chapter 2

Background

2.1 Semantic Web

The World Wide Web is an information resource with virtually unlimited
potential. However, this potential is relatively untapped because it is dif-
ficult for machines to process and integrate this information meaningfully.
The Semantic Web is based on the idea of adding semantic and ontological
metadata to the World Wide Web. This extra information - that describes
its content, meaning and their relationships - must be provided formally,
so that can be evaluated automatically by processing machines.

Researchers have begun to explore the potential of associating web content
with explicit meaning. Rather than rely on natural language processing to
extract this meaning from existing documents, this approach requires au-
thors to describe documents using a knowledge representation language.

The main obstacle is the fact that the Web was not designed to be processed
by machines. Although, web pages include special information that tells a
computer how to display a particular piece of text or where to go when a
link is clicked, they do not provide any information that helps the machine
to determine what the text means. Thus, to process a web page intelligently,
a computer must understand the text, but natural language understanding
is known to be an extremely difficult and unsolved problem.

With the Semantic Web, the software is able to process your content, rea-
soning with it, combining and logical deductions for solve everyday prob-
lems automatically. All this knowledge is based on ontologies, leading to

Semantic Web 5

an intelligence derived from the possibilities of inference implicit in RDF /
OWL - languages used to generate ontologies.

At its core, the semantic web comprises a set of design principles, collab-
orative working groups, and a variety of enabling technologies. Some ele-
ments of the semantic web are expressed as prospective future possibilities
that are yet to be implemented or realized. On the other hand, other el-
ements of the semantic web are expressed in formal specifications. Some
of these include Resource Description Framework (RDF), a variety of data
interchange formats (e.g. RDF/XML, N3, Turtle, N-Triples), and notations
such as RDF Schema (RDFS) and the Web Ontology Language (OWL), all
of which are intended to provide a formal description of concepts, terms,
and relationships within a given knowledge domain.

Tim Berners-Lee, inventor of the Web, has coined the term Semantic Web
to describe this approach.

2.1.1 What is an ontology

This definition was originally proposed by Tom Gruber.

In the context of knowledge sharing, I use the term ontology to
mean a specification of a conceptualization. That is, an ontol-
ogy is a description (like a formal specification of a program) of
the concepts and relationships that can exist for an agent or a
community of agents. This definition is consistent with the us-
age of ontology as set-of-concept-definitions, but more general.
And it is certainly a different sense of the word than its use in
philosophy.

What is important is what an ontology is for. My colleagues and
I have been designing ontologies for the purpose of enabling
knowledge sharing and reuse. In that context, an ontology is
a specification used for making ontological commitments. The
formal definition of ontological commitment is given below. For
pragmetic reasons, we choose to write an ontology as a set of
definitions of formal vocabulary. Although this isn’t the only
way to specify a conceptualization, it has some nice properties
for knowledge sharing among AI software (e.g., semantics inde-
pendent of reader and context). Practically, an ontological com-
mitment is an agreement to use a vocabulary (i.e., ask queries

Semantic Web 6

and make assertions) in a way that is consistent (but not com-
plete) with respect to the theory specified by an ontology. We
build agents that commit to ontologies. We design ontologies
so we can share knowledge with and among these agents.

2.1.2 Semantic components overview

To represent the Semantic Web, the main technologies are:

XML Provides an elemental syntax for content structure within documents,
yet associates no semantics with the meaning of the content contained
within.

URIs A global naming scheme

RDF A standard syntax for describing data. An RDF-based model can be
represented in XML syntax.

RDF Schema A standard means of describing the properties of that data

OWL A standard means of describing relationships between data items.
OWL adds more vocabulary for describing properties and classes:
among others, relations between classes (e.g. disjointness), cardinal-
ity (e.g. ”exactly one”), equality, richer typing of properties, charac-
teristics of properties (e.g. symmetry), and enumerated classes.

SPARQL It is a protocol and query language for semantic web data sources.

The intent is to enhance the usability and usefulness of the Web through:

• Structured documents with semantic information, this could be machine-
understandable information about the human-understandable con-
tent of the document.

• Data systems systems using the RDF and SPARQL standards.

• Ontotologies and maps between vocabularies that allow document
creators to know how to mark up their documents so that agents can
use the information in the supplied metadata.

• Automated agents to perform tasks and infer information using the
semantic data.

Semantic Web 7

2.1.3 OWL: Web Ontology Library

The ontologies that are used in Mappingstool are of the type OWL, being
able to add relations between classes.

OWL is a W3C specification built upon RDF and RDFS, that defines the
types of relationships that can be expressed in RDF using an XML vo-
cabulary to indicate the hierarchies and relationships between different re-
sources. In other words, as we have explained in the previous section, on-
tologies define data models in terms of classes, subclasses, and properties.
This ontologies are expressed with OWL.

Since taxonomies (systems of classification) express the hierarchical rela-
tionships that exist between resources, we can use OWL to assign proper-
ties to classes of resources and allow their subclasses to inherit the same
properties. OWL also utilizes the XML Schema datatypes and supports
class axioms such as subClassOf, disjointWith, etc., and class descriptions
such as unionOf, intersectionOf, etc.

The basic components of OWL include:

• Classes are the basic building blocks of an OWL ontology. A class is
a concept in a domain. Classes usually constitute a taxonomic hierar-
chy (a subclass-superclass hierarchy).

• Properties have two main categories:

• Object properties, which relate individuals to other individuals.

• Datatype properties, which relate individuals to datatype values, such
as integers, floats, and strings.

• Individuals are instances of classes, and properties can relate one in-
dividual to another.

We have focus our Mappingstool in establishing relations between classes,
not individuals. Bioportal was not supported to retrieve the individuals
but they had it in the roadmap, so the main reason was not to reinvent the
wheel.

Semantic Web 8

2.1.4 Example: BBC World Cup 2010

In order to show a real example of the use of Semantic Web technologies
and mappings, we are going to present what was developed by BBC site to
publish information from the World Cup 2010.

The period of the World Cup event is a perfect example of dynamic data,
with lots of relationships between Players, Teams, groups, etc. They cre-
ated a framework that facilitated the publication of automated metadata-
driven web pages that required minimal journalistic management, as they
automatically aggregate and render links to relevant stories.

The underlying publishing framework does not author content directly,
rather it publishes data about the content (metadata). The published meta-
data described the World Cup content, providing rich content relationships
and semantic navigation. By querying this published metadata they were
able to create dynamic page aggregations for teams, groups and players.

The origin of these dynamic aggregations is a rich set of ontologies. The
ontologies described entity existence, groups and relationships between the
concepts that describe the World Cup. For example, ”Frank Lampard” is
part of the ”England Squad” and the ”England Squad” competes in ”Group
C” of the ”FIFA World Cup 2010”.

This diagram gives a high-level overview of the main architectural compo-
nents of this domain-driven framework.

The journalists could tag concepts to content, for example associated the
content of ”Puyol” with the story ”Shark Puyol beats Germany”.

In addition to the manual selective tagging and mapping process, journalist-
authored content is automatically analysed against the World Cup ontol-
ogy. A natural language and ontological determiner process automatically
extracts World Cup concepts embedded within a textual representation of
a story.

Journalist-published metadata is captured and made persistent for query-
ing using the resource description framework (RDF) metadata representa-
tion and triple store technology. A RDF triplestore and SPARQL approach
was chosen over and above traditional relational database technologies due
to the requirements for interpretation of metadata with respect to an onto-
logical domain model.

Relationships between ontologies: mappings 9

Figure 2.1: Architectural components of the BBC semantic web system

This is a perfect example about what could be the next phase of Internet,
Semantic Web or Web 3.0.

2.2 Relationships between ontologies: mappings

The ability to specify semantic mappings between ontologies is an impor-
tant research agenda in the semantic web community. Several approaches
have been proposed for alignment between ontologies ranging from en-
tirely manual (the one explained in the document), to semi-automatic, to
fully-automatic mapping techniques.

More recently, with the growing number of ontologies and the increasing

Relationships between ontologies: mappings 10

requirement for their alignment, community-based approaches to create
mappings have been necessary to that allow users and domain experts to
specify semantic correspondences in a collaborative manner.

In configurations for which different conceptualizations of the same do-
main can exist, information systems must respond effectively allowing the
contextualization of it. Coordination and the relationship of concepts (map-
ping) help you share, reuse and integrate different controlled vocabularies.

Similarity

We start with a short definition of similarity from a dictionary: having char-
acteristics in common, being comparable. From our point of view we want
to compare two entities to find identity among them. We also give a formal
definition of similarity derived from [3]:

• sim(x, y) ∈ [0..1]

• sim(x, y) = 1⇒ x = y: two objects are identical.

• sim(x, y) = 0: two objects are different and have no common charac-
teristics.

• sim(x, x) = 1: similarity is reflexive.

• sim(x, y) = sim(y, x): similarity is symmetric.5

• similarity and distance are inverse to each other.

• sim(x, z) ≤ (sim(x, y) + sim(y, z)): The triangular inequation is valid
for the similarity measure.

Similarity for Ontologies

As it is pointed out in [4], What is the meaning of similarity in the context of
ontologies? The basic assumption is that knowledge is captured in an arbi-
trary ontology encoding. Based on the consistent semantics the coherences
modelled within the ontology become understandable and interpretable.
From this it is possible to derive additional knowledge such as, in our case,

Relationships between ontologies: mappings 11

Figure 2.2: Relations between ontologies

similarity of entities in different ontologies. An example shall clarify how
to get from encoded semantics to similarity: by understanding that labels
describe entities in natural language one can derive that entities having the
same labels are similar. This is not a rule which always holds true, but it
is a strong indicator for similarity. Other constructs as subclass relations or
type definition can be interpreted similarly.

Mapping

Due to the wide range of expressions used in this area (merging, alignment,
integration etc.), we want to describe our understanding of the term map-
ping. The definition for mapping given by [9] is:

Given two ontologies A and B, mapping one ontology with an-
other means that for each concept (node) in ontology A, we try

Relationships between ontologies: mappings 12

to find a corresponding concept (node), which has the same or
similar semantics, in ontology B and viceverse.

We only consider one-to-one mappings between single entities in Map-
pingstool. Neither do we cover mappings of whole ontologies or sub-trees,
nor complex mappings or functional transformation of attributes.

Example within OASIS context

We will illustrate the relations by the following example within the OASIS
project context: Suppose there is an ontology describing the functionality
of a mobile phone and another ontology describing an application to be
plugged in. Then an ontology describing both the mobile phone and its
plug-in is most likely given by importing the plug-in ontology into the
mobile phone ontology. For instance, if the target ontology of the mo-
bile phone has a notion of telephone numbers in the address book and the
source ontology of the plug-in has in addition to this a notion of emergency
numbers as a subclass of telephone numbers, then the target ontology will
also gain a notion of emergency numbers when it imports the source on-
tology. An alternative way of describing this is to say that a plug-in is
’integrated’ into a target system.

With interoperability we always associate some degree of independence
between the participating components. Another relevant example: in par-
ticular for the elderly it may be annoying to have for each and every remote
controllable device its own remote control with its own specific style of be-
ing handled. Different handling for the same purpose is an unnecessary
irritation. A remote control that can be used to control several different de-
vices instead may then be desirable. Typically such a remote control should
have only few operating elements with a very intuitive operationâfor in-
stance: a wheel that can be used to adjust the volume of the radio or of the
television or its brightness depending on the context. With such an exam-
ple we already see several natural ’modularities’ that call for independence
of accounts. The basic operation and meaning of the ’wheel’ gadget can be
defined independently of the particular values that it is used to manipulate.
Those values are themselves then defined within the individual ’theories’
of TV operation, radio operation, and so on. Interoperability is achieved by
defining the necessary relation between the modules.

Bioportal: an ontology repository 13

This very simple scenario already suggests the value of adopting different
ontological perspectives to describe the involved objects: this wheel can be
just an object that can be turned, it can be a volume controller or a bright-
ness controller, or it can be a controller for a radio or a television. Moreover,
volume is a position for the wheel as volume controller, but a certain volt-
age for the speaker, or decibel for an acoustic sensor, etc.

Concerning modularity we therefore come to at least two conclusions. First,
different purposes of a single entity can call for different ontologies reflect-
ing those purposes. It is even possible that different perspectives can lead
to incompatible ontologies; for instance, what is called a small symbol in
an ontology for visually users with a vision deficit might be called a big
symbol in an ontology for users without such a deficit. In fact, this is only
one type of the many heterogeneity requirements.

2.3 Bioportal: an ontology repository

Bioportal1 is an open source ontology repository where a user can search
and browse the ontologies, find resources annotated with concepts from
these ontologies, and download ontologies for their use. Provides facilities
for browsing, visualizing, and reusing ontologies as well as a basic reposi-
tory for ontology storage and retrieval.

Researchers in biomedical informatics submit their ontologies to BioPortal
and others can access the ontologies through the Bioportal user interface
or through web services. The Bioportal users can browse and search the
ontologies, update the ontologies in the repository by uploading new ver-
sions, comment on any ontology (or portion of an ontology) in the reposi-
tory, evaluate it and describe their experience in using the ontology,

Understanding how the concepts in different ontologies relate to one an-
other is one of the key requirements of BioPortal users. We refer to the
relations between concepts in different ontologies as concept mappings, or
simply mappings.

Mappingstool is one of the additions within the BioPortal framework that
move the system further towards the OASIS project goals of modularity
and re-usability.

1http://bioportal.bioontology.org/

http://bioportal.bioontology.org/

Bioportal: an ontology repository 14

Figure 2.3: ORATE homepage

The Ontology Repository for Assistive Technologies (ORATE) is built upon
Bioportal technology. We will use Bioportal when we are referering to the
ORATE version of the Bioportal platform that we have extended.

Chapter 3

Previous work

3.1 Existing tools

A brief overview about the existing tools for ontology mapping is provided.

3.1.1 Prompt + CogZ

PROMPT is a Protege1 plugin that supports various tasks for managing
multiple ontologies, including ontology mapping. The ontology mapping
process starts by performing an initial comparison of the source and tar-
get to be mapped, based on lexical comparison of class names (other algo-
rithms are available). After the comparison, you can create mappings from
a set of candidates or user-defined mappings. As you are creating the map-
pings, Prompt ’monitors’ the correspondences that you create and creates
instances of its built-in mapping ontology behind the scenes

The PROMPT plugin framework allows developers to plug in your own
mapping algorithms for initial comparison of ontologies or your own user
interface. At the moment there are some plugins available in Prompt (these
plugins are installed when you install PROMPT):

CogZ alternative perspective to Prompt’s mapping interface.

1Protege is a free, open source ontology editor and knowledge-base framework. More
info in http://protege.stanford.edu/

http://protege.stanford.edu/

Existing tools 16

Figure 3.1: Prompt tab plugin

FOAM in Prompt use the FOAM algorithm for mapping

Synonyms if you have synonyms for your terms, have Prompt use syn-
onyms to create lexical mappings

CogZ has been implemented with mapping user support in mind. It sup-
ports a variety of filters to aid the mapping process. It also uses a visual
representation of mappings rather than a simple list. Finally, it supports a
visual graph-based representation of ontology concepts that allow you to
inspect the semantics/context of the terms you intend to map.

PROMPT and its CogZ extension are under active development and are
included in the full installation of Protege. This work environment man-
ages multiple ontologies and performs automatic and manual mappings,
and it is quite full-featured.

The main features of CogZ are:

Existing tools 17

Figure 3.2: CogZ user interface

• View structural representation of mapping suggestions in Prompt.

• Identifies candidate rich areas of the ontologies.

• Provides progress indicators about the completion of the mapping.

• Visualizes suggested, created, and temporary mappings and visually
supports manual mapping of terms.

• Provides ontology and mapping filtering.

• Mapping status and hierarchy reports.

Comparison with Mappingstool 18

3.1.2 Mapping view

This experimental tool2 is under development by Victoria University and
is constrained to the visualization of the relationship, the classes, and the
corresponding class hierarchies. The list of mappings is provided so that
the users can navigate through the mappings.

Figure 3.3: Mapping view

At the moment there is no way to know the mapping origin at the moment.
It is developed in FLEX3.

3.2 Comparison with Mappingstool

Mappingstool provides a service that allow the user to create and manip-
ulate mappings online, unlike the plugin Prompt + CogZ that is a desktop
application. This Protege plugin is extremely powerful providing features
such as automatic mapping based on lexic comparison and visual repre-
sentation of mappings, but that was not the objective of our Bioportal ex-

2http://keg.cs.uvic.ca/ncbo/mapping/MappingApp.html
3Framework for deployment of cross-platform Rich Internet Applications based on the

Adobe Flash, explained in 4.3

http://keg.cs.uvic.ca/ncbo/mapping/MappingApp.html

Comparison with Mappingstool 19

tension. We have developed Mappingstool having in mind the domain
curators that manually creates mappings.

On the other hand, we have describe a alpha release of a mapping editor
developed by Victoria University. They provide a nice visualization for the
mappings (a line from the concept source to the target). At the moment,
we do not know which is the data source for the mappings, and it does
not show enough information about a concept or the mapping itself. Map-
pingstool provides more information about the ontology, shows mapping
information of the whole ontology or a given concept, export features, con-
text visualization, etc.

The main limitation of Mapping view is that you cannot create mappings
within the tool, is only for visualization.

Chapter 4

Technology overview

We will present the technologies that have been used to develop this Bio-
portal extension, with references how we have used them.

4.1 Ruby

Ruby is a dynamically typed programming language similar to Python,
Smalltalk and Perl. Its creator, Yukihiro ’matz’ Matsumoto, blended parts
of his favorite languages (Perl, Smalltalk, Eiffel, Ada, and Lisp) to form a
new language that balanced functional programming with imperative pro-
gramming. In Ruby, everything is an object. Every bit of information and
code can be given their own properties and actions.

4.1.1 Ruby and Rails

Ruby on Rails1 is an open source web application framework for the Ruby
programming language. It enables rapid prototyping as well as solid inte-
gration with web services.

It is intended to be used with an Agile development methodology that is
used by web developers for rapid development. It has became a leading
mature UI framework supported by large software development commu-
nities.

1Official website: http://rubyonrails.org/

http://rubyonrails.org/

Javascript 21

There are two basic principles that govern the way that Ruby on Rails
works. The first is often referred to as DRY, or Don’t Repeat Yourself and
the second principle is COC or Convention over Configuration. This frame-
work has been growing along the years due to its simplicity and commu-
nity.

The frontend of Bioportal currently uses the Ruby on Rails technology fol-
lowing the Model-View-Controller (MVC) architectural design pattern. These
principle divides the work of an application into three separate but closely
cooperative subsystems:

Model It is the system that handles the data representation, handling with
validation, association, transactions, etc.

View A presentation of data in a particular format, triggered by a con-
troller’s decision to present the data. It renders the Model with the
less possible logic. Multiple views can exist for a single model for
different purposes (e.g. JSON, XML, HTML, PDF).

Controller Dispatches requests and control flow, centralize access and in-
teracts with Model and View.

4.2 Javascript

JavaScript is an implementation of the ECMAScript language standard and
is typically used to enable programmatic access to computational objects
within a host environment. It it is primarily used in the form of client-
side JavaScript, implemented as part of a web browser in order to provide
enhanced user interfaces and dynamic websites.

The very good ideas of Javascript include loose typing, dynamic objects
and functions (first class objects with lexical scoping). It is surprising, but
it has more in common with Lisp and Scheme than with Java.

Nowadays it is becoming more and more popular thanks to HTML 5, CSS
3, AJAX, Comet and the different stack of technologies that makes the
browser as the first target for personal and enterprise applications. And not

Javascript 22

Figure 4.1: MVC arquitectural design pattern with RoR framework

only on the client side, there are some interesting projects around server-
side Javascript such as Node.js2, a toolkit for writing extremely high per-
formance non-blocking event driven network servers in JavaScript.

4.2.1 AJAX

AJAX (Asynchronous JavaScript and XML) is a method of building inter-
active applications for the Web that process user requests immediately.
Ajax combines several programming tools including JavaScript, dynamic
HTML (DHTML), Extensible Markup Language (XML), cascading style
sheets (CSS), the Document Object Model (DOM), and the Microsoft ob-
ject, XMLHttpRequest. Ajax allows content on Web pages to update imme-
diately when a user performs an action, unlike an HTTP request, during
which users must wait for a whole new page to load. XML is not actually

2The author’s definition is ’Evented I/O for V8 JavaScript’, more info in http://nodejs.

org

http://nodejs.org
http://nodejs.org

Javascript 23

Figure 4.2: AJAX arquitecture

required as the data format, in fact, we make an extensive use of JSON,
explained in the next section.

Mappingstool makes extensive use of AJAX, being capable to load different
modules asynchronously and retrieving new information without reload-
ing the page.

4.2.2 JSON

JSON (JavaScript Object Notation)3 is a lightweight data-interchange for-
mat. It is easy for humans to read and write, easy for machines to parse
and generate and based on a subset of the JavaScript Programming Lan-
guage.

It has became really popular thanks to AJAX. In our project we make an
extensive use of JSON as a data format between the browser and the client.

An example of a JSON object:
3Official website: http://www.json.org/

Javascript 24

bioportal.mappings = {

sourceTreeviewComp: new Object(),

sourceConceptInfoComp: new Object(),

util: {

isValidObject: function() {},

ontoSelectElemSource: ’’,

ontoSelectElemTarget: ’’,

idOntologySource: [’Example 1’, 3, ’a’]

}

};

4.2.3 jQuery

jQuery is a cross-browser, fast and concise JavaScript Library designed to
simplify the client-side scripting of HTML. It facilitates HTML document
traversing, event handling, animating, and Ajax interactions for rapid web
development. It is most popular Javascript library in use today.

We have make extensive use of this library for manipulating the DOM4,
handle the different events and for the AJAX interation. With this library
we have not been worried about the different layout engines of the browsers
that translates the HTML into the DOM, being this process the main prob-
lem for cross-compatibility.

jQuery also provides capabilities for developers to create plugins on top of
the JavaScript library.

Plugins

We make use of some jQuery plugins such as:

jQuery UI.Layout It is page layout manager that can create any UI look
you want - from simple headers or sidebars, to a complex application
with toolbars, menus, help-panels, status bars, sub-forms, etc. It is

4Document Object Model, cross-platform and language-independent convention for
representing and interacting with objects in HTML, XHTML and XML documents

FlexViz: ontology visualization tool 25

really powerful and with a lot of different capabilities and customiza-
tions. We use this widget for the whole layout of Mappingstool, being
able to resize and show/hide diffent page components.

jQuery Tabs Tabs are generally used to break content into multiple sec-
tions that can be swapped to save space, much like an accordion. We
make use of the tabs for the information of a ontology concept.

jQuery History It is for Ajax-driven pages to have back/forward naviga-
tion and to allow bookmarking. We make extensive use of this plugin
to be able to go forward and back throught the process of selecting
and ontology, browse a mapping, etc. So we preserve the state modi-
fying the URL as appropiate.

jqgrid It is really powerful grid plugin. It is a client-side solution that
loads data with Ajax callbacks, so it can be used with any server-
side language, in our case Ruby on Rails for providing its data. These
grids are AJAX-enabled, and support sorting, paginating, and data
search. In order to facilitate its integration with RoR, the Rails plugin
2dc jqgrid has been used.

4.3 FlexViz: ontology visualization tool

Adobe Flex is a software development kit released by Adobe Systems for
the development and deployment of cross-platformrich Internet applica-
tions based on the Adobe Flash platform. Flex applications can be written
using Adobe Flash Builder or by using the freely available Flex compiler
from Adobe.

FlexViz is a graph based visualization tool written in Adobe Flex. It has
support for browsing a single ontology where the concepts are represented
by nodes and the relationships between concepts (e.g. is a, part of) are rep-
resented as arcs.

Here is a list of the main features:

• Node and arc type filtering

• Searching

• Many different graph layouts

FlexViz: ontology visualization tool 26

Figure 4.3: Example of visualization using FlexViz

• Customizable node and arc labels

• Customizable node and arc tooltips

• Zooming

• Node and arc type filtering

• Can be displayed as a widget on other (with a fixed ontology)

All communication with BioPortal (ORATE in our case) occurs through the
REST services provided by BioPortal for accessing ontology-related data.
The asynchronous service calls help reduce performance concerns that are
typically found with desktop visualization systems that depend on loading
the entire ontology into memory. All expansion, search, and focus opera-
tions result in a service call to BioPortal. Results are cached for fast recall.

We will reuse the visualization tool that is already deployed in Bioportal in
order to show the context of an ontology concept.

Web Services 27

4.4 Web Services

A web service is an Application Programming Interface (API) or that is ac-
cessed via HTTP and executed on a remote system, hosting the requested
service. There are currently two schools of thought in developing web ser-
vices: the traditional, standards-based approach SOAP and the conceptu-
ally simpler REST.

SOAP5 was designed to be a platform and language-neutral alternative to
previous middleware techologies like CORBA and DCOM. Together with
WSDL and XML Schema, SOAP has become the standard for exchanging
XML-based messages. It has became less popular during the past years due
to its complexity, in favour of REST.

REST6 is not a standard, there is no W3C specification. REST is just an
architectural style. The HTTP methods such as GET and POST, PUT and
DELETE are the verbs that the developer can use to describe the necessary
create, read, update, and delete (CRUD) actions to be performed. Some
may see an analogy to operations in SQL, which also relies on a few com-
mon verbs. Similar to SOAP services, RESTful Web services are language
and platform independent, having additional advantages in that they are
light weight, simple and easier to integrate.

4.5 Bioportal

Bioportal uses a classic architecture layered approach, which decouples the
logic and domain object models between each layer. This approach decou-
ples the versioning and changes in one layer from another. There are four
differenciate layers within two projects: Bioportal UI and Bioportal Core.

4.5.1 Bioportal UI

Bioportal UI is the Presentation Tier that delivers the user-interface which
currently uses the Ruby on Rails technology.

5SOAP, Simple Object Access Protocol
6REST, Representational State Transfer

Bioportal 28

4.5.2 Bioportal Core

Bioportal Core it is composed of the following layers:

Interface Tier Consists of both REST and SOAP Web Services7 that present
all BioPortal capabilities to the upper tiers (e.g., upload ontology,
download ontology, display concept, administrative functions, etc).
Bioportal UI is primarly driven by the REST services. Using this web
services another organizations could implement a completely differ-
ent UI than that currently exposed by the BioPortal. Or, one could
simply want to consume a single REST services for integrating into a
back-end workflow with no UI at all.

This tier include Web Services to get ontology metadata, to get ontol-
ogy content, to download an ontology, and to search ontologies. Each
ontology in BioPortal is indexed with a stable ontology identifier and
is the same for all versions of the same ontology, ontology versions
are indicated by a version identifier, which changes from one version
to the next. BioPortal Web services provide a list of the latest ver-
sions of all BioPortal ontologies, enable callers to find an ontology
identifier based on a version identifier, find all version identifiers for
a specific ontology, and list ontology categories. Web services to get
ontology content include services to get all root concepts, get children
or parents of a specific concept, and get details of a concept.

Business Logic Tier Uses the Spring technology which enables a partner
to insert any software implementation that abides to the defined in-
terfaces.

Persistence Tier Uses the Hibernate technology as a basic object-relational
mapping to the back-end relational database. Hibernate is used for
storing administrative (e.g., user information) and external ontology
data (e.g., ontology attributes specified at upload time). All ontology
content is stored in Protege and LexGrid as shown in the Business
Logic layer.

7See NCBO REST Web Services documentation to learn about consuming the BioPortal
REST services: http://www.bioontology.org/wiki/index.php/NCBO_REST_services

http://www.bioontology.org/wiki/index.php/NCBO_REST_services

Bioportal 29

Figure 4.4: Bioportal arquitecture

Chapter 5

Software architecture and
design

5.1 Architecture overview

Mappingstool is an extension built on top of Bioportal UI, where the main
login of the applications runs on the browser side, using Javascript making
extensive use of AJAX. These asynchronous calls that interacts with the
server makes the corresponding operations (query, create, update, delete)
to the data layer.

We have used the same approach that Bioportal UI uses with the frame-
work Rails to extend it. We have created some controllers on the frontend
Bioportal UI (Ruby on Rails) that retrieves information from the Model,
having as data sources the external RESTful Web Services (Bioportal Core)
and the internal database built in MySQL.

More precisely, here it is a brief overview of the tipical interaction between
the browser and Mappingstool:

• A user makes an HTTP request to the application, then the server
receives the request and send the response to the browser.

• When the browser finishes to load the page, the browser is waiting
until an event is fired by the user.

Architecture overview 31

• If the user clicks on an ontology source or target, browse the concept
tree, load a mapping, etc. We make AJAX calls to the server.

• This AJAX calls retrieves information from either Bioportal Core Web
Services or the MySQL database that Biportal UI handles.

From the point of view where the code is executed, we can clearly differen-
ciate two different approaches in the arquitecture of Mappingstool: server
and client side.

5.1.1 Client side

The majority of the logic of Mappingstool is written in Javascript to be exe-
cuted by the browser. It interacts with the server-side code of Bioportal UI
making use of AJAX.

We have tried to modularize the code, so that we produce reusable and
maintenable components. As we explained in the last chapter, we make
use of several jquery plugins that are used internally in each component,
except the jQuery history and jQuery layout. Each component is a class1

that makes use of the jQuery plugins mentioned in the last chapter, be-
ing independent and not accesing the global state of the application (some
needed data and dependencies with other components is injected).

The file ’/public/javascripts/mappingstool/controller.js’ is the starting point
of the application, where you can set the components that you want to load
and the main configuration for the different components and jQuery plu-
gins. Every component and function is in the scope of bioportal object, so
that we do not have conflicts with other Javascript libraries.

When the page is loaded we need to initialize the components, the layout
and the history:

/**

* Initialize the layout and components, making the appropiate requests

* according to the current state (hash url)

*/

bioportal.mappings.init = function() {

1Javascript is commonly considered procedural, but it is still possible to define custom
objects that behave, in many ways, like classes in C or Java.

Architecture overview 32

bioportal.mappings.initLayout();

// Initialize the history

$.historyInit(bioportal.mappings.util.loadPageFromUrlParams);

bioportal.mappings.initComponents();

}

The main components are:

Conceptinfo It is used to show the information about a given concept on-
tology. It retrieves the concept information (label, id, fullId, etc.),
the graph visualization and the mappings that this concept has with
other ontologies. It is reused for the source and target ontology.

Mappingstable It is the component that shows a table (using jQgrid) with
the mappings of the source and target ontologies. When the ontology
source or target ontology changes it fires a event to this component.
The data can be sorted, filtered, exported in RDF, etc.

Treeview It retrieves the concept hierarchy of a ontology and display it in a
tree. The user can also search a concept withing the current ontology.
When you click on a concept it refresh the Conceptinfo component.

As a sample code, in the following function we initialize the components:

/**

* Init the components to use (conceptinfo, mappingstable and treeviews)

* according to the global state. It is called just once when the page

* is ready and the layout has been initialized.

*/

bioportal.mappings.initComponents = function () {

[...]

M.sourceTreeviewComp = new M.treeviewComponent.treeview(

M.util.idOntologyVersionSource, M.util.idOntologySource,

M.util.idConceptSelectedSource, M.util.labelConceptSelectedSource,

{ selectorTree: ’.simpleTree’,

selectorTreeWrapper: ’.ui-layout-west’,

identifier: ’source’,

Architecture overview 33

init: true }, M.sourceConceptInfoComp);

[...]

M.mappingsTableComp = new M.mappingstableComponent.mappingstable(

M.util.idOntologySource, M.util.idOntologyTarget,

{ selectorMappingsGrid: ’#list-mappings’,

selectorMappingsGridPager: ’#list-mappings-pager’,

selectorContainer: ’#mappings-source-target-tab’,

init: true });

}

Figure 5.1: Main components

5.1.2 Server side

The directory structure of the whole Bioportal UI is the convention taken
from Ruby on Rails2.

2See Appendix D

UI overview 34

We have created and modified some Controllers3 that handles the different
actions needed by Mappingstool. The controller access the Model handling
the internal database that has Bioportal UI and also from the REST Web
Services from Bioportal Core. Once we get the data, we render it into a
View such as JSON, XML, RDF or HTML.

Mappingstool makes extensive use of the REST web services of the Inter-
face tier (Bioportal Core), between others the following actions: authenti-
cate a user, get all ontologies, find all version identifiers for a specific ontol-
ogy, get all root concepts for a specific ontology, get children or parents of
a specific concept, and get details of a concept.

In the following sample code we have an action that retrieves the informa-
tion of an ontology concept, located in the Controller mappingstool (used
in the client-side component Conceptsinfo). DataAccess object provides an
interface to Bioportal Core Web Services, and Mapping is an ActiveRecord
object (belongs to the Model) that access the MySql database of Bioportal
UI. Then we render the View node info injecting the variables we have taken
from the Model.

def node_info

@concept = DataAccess.getNode(params[:ontology], params[:id])

@ontology = DataAccess.getOntology(params[:ontology])

@mappings = Mapping.find(:all, :conditions =>

{:source_ont => @concept.ontology_id, :source_id => @concept.id})

render :partial => ’node_info’

end

5.2 UI overview

5.2.1 Flexibility

With the use of the plugin jQuery Layout the tool gains flexibility. You
can hide and show sections of the tool or expand or contract them without
refreshing the page. This is very convenient for instance when you have an
ontology with a lot of concepts and you want to see the entire tree, or when
you want to be able to see bigger the concept graph.

3See subsection 4.1.1

UI overview 35

Figure 5.2: Flexibility of the main screen, we can expand or collapse the
marked zones.

5.2.2 Usability

We have tried to create a rich experience where all the use cases could be
done without refreshing the page. Integrating jQuery history, we have all
the functionality that could be in a conventional webpage bookmarking the
current state or going forward and backward.

Mappingstool has been reviewed by ontology curators providing feedback
about the different components. This enables the mapping curator to look
for different ontologies, create a mapping, look at the context, create a note,
etc. easily and without losing the current state of your page.

5.2.3 Mockups

We created several mockups with the expected layout of the web applica-
tion, and its main use cases. We used Wireframe Sketcher4 to create them.

There are more mockups in Appendix A.

4It is an Eclipse plugin to create mockups and wireframes, more information at http:
//wireframesketcher.com/

http://wireframesketcher.com/
http://wireframesketcher.com/

UI overview 36

Figure 5.3: Main screen

Chapter 6

Main use cases

We will now present the main use cases that the extension covers.

6.1 Browse and search ontology concepts

For this, the user first has to choose an ontology with concepts of interest
participating in a mapping, either as the source or the target ontology. Once
an ontology is selected, a tree view is presented with the hierarchy of the
ontology, having icons when there are mappings in a specific concept. Also
the user is able to search a specific concept of the tree.

Figure 6.1: Browse and search ontology concepts

Browse mappings 38

6.2 Browse mappings

Users have the option to browse mappings between two ontologies or the
ones from a specif concept (to the same ontology or others). After the selec-
tion of a source and target ontologies, you have two ontology trees where
you completely browse the ontologies, then the list of mappings from the
ontology source to the target is displayed. Each mapping has its own set
of metadata that describes who created the mapping and when, which al-
gorithm was used to produce the mapping, application context in which
the mapping might be valid, the specific mapping relationship, and other
properties. There are several options to filter by this options.

The user can also click on a mapping of a specif concept, and the tool will
load the target concept. If the mappings has as target another ontology, it
will ask if we want to override the current target ontology selected.

We get all mappings associated with a concept attached directly to the cur-
rent version of this concept or to earlier versions.

Browse mappings 39

Figure 6.2: Main screen of the application

Information about an ontology concept 40

6.3 Information about an ontology concept

When users selects a concept from source or target ontologies, you can see
the description, the neighboorhood and the list of mappings of this concept
with any other concept (concerning target or any other ontology involved
in the mapping). If you select a mapping, the target ontology is loaded.

Figure 6.3: Information about an ontology concept

Create a mapping 41

6.4 Create a mapping

The main use case is to create mappings between two ontologies. The user
chooses a source and a target ontologies, select a concept in each ontology
tree and create the mapping. If there is already a mapping between these
concepts there is an option to view the details (author, date created, rela-
tion, map source, map type, etc.).

It creates a new mapping and attach it to the current version of the concept
(there could be several versions of the same ontology).

Figure 6.4: Create a mapping

Discussions about a mapping 42

6.5 Discussions about a mapping

Registered users can add notes on existing mappings and carry out discus-
sions about the mappings. The curators can create notes, reply and browse
notes related to a mapping.

Figure 6.5: Discussions about a mapping

Visualize the context of a concept 43

6.6 Visualize the context of a concept

In the concept tab a user could visualize the neighborhood of a concept,
being really useful to provide the context of a concept withing the ontology.
This can be use to compare the contexts of both source and target ontology
concepts selected.

Export to RDF the mappings between 2 ontologies 44

6.7 Export to RDF the mappings between 2 ontologies

Finally these mappings can be exported as RDF-triples and explored and
integrated with other tools for employing mappings. See the Appendix B,
to see the exact format.

Figure 6.6: Export to RDF the mappings between 2 ontologies

Chapter 7

Conclusions

BioPortal offers investigators ’one-stop shopping’ on the Web for important
biomedical ontologies. We have adapted this open source tool to our needs,
creating ORATE and extending it with Mappingstool. The incorporation
of a variety of Web 2.0 features allows the system to behave not only as
a comprehensive ontology repository, but also as general infrastructure to
support community-based access, peer-review and mapping of ontology
content.

We have developed a tool that provides a usable and easy tool to create
manual mappings between ontologies, as we gain more experience with
mappings in ORATE and as more users start contributing the mappings,
we hope that the data that we collect will help us understand the dynamics
of ontology mapping as a collaborative and open process. It is interesting
to see how curators of a specif domain (Assistive technologies) use the tool
and help each other in the process of mapping concepts.

Mappingtool tries to focus in the Bioportal ecosystem, using his mappings
and ontologies as the data source. As a future work, a promising task will
be to adapt Mappingstool to accept RDF mappings as inputs from Protege
or other mapping format. Also, to be able to use different ontology reposi-
tories. And the last step for fully integration, would be to be able to change
the Bioportal instance to use on the fly, in near future Bioportal will be ex-
tended to other domains as we did with Assitive Technologies (ORATE).

Possible features to implement in the future could be a graph visualization
of the mappings, automatic mapping and lines between the source and tar-

46

get concepts representing the mappings as it is done in Mapping View (see
3.1.2).

We hope that we have helped researchers in the mapping process, allowing
them to know the context of the mapping they try to create and having a
better understanding about the whole picture.

Bibliography

[1] Naveen Balani. The future of the web is semantic. 2005.
http://www.ibm.com/developerworks/web/library/wa-semweb/.

[2] Tim; James Hendler Berners-Lee and Ora Lassila. The Semantic Web.
Scientific American Magazine, 2001.

[3] G. Bisso. Why and how to define a similarity measure for object based repre-
sentation systems. Towards Very Large Knowledge Bases. 1995.

[4] Christoph Bussler. The Semantic Web: research and applications. Springer,
2004.

[5] Douglas Crockford. Javascript: the good parts. O’Reilly Media, Inc, 2008.

[6] T. R. Gruber. A translation approach to portable ontologies. Knowledge
Acquisition, 1993.

[7] Musen MA Noy NF. Prompt: Algorithm and tool for automated on-
tology merging and alignment. AAAI Press, pages 450–455, 2000.

[8] Jem Rayfield. Bbc world cup 2010 dynamic semantic publishing. 2010.
http://bbc.in/d5pM7E.

[9] Xiaomeng Su. A text categorization perspective for ontology mapping. Nor-
wegian University of Science and Technology, Norway, 2002.

[10] John Bateman; Alexander Castro; Immanuel Normann; Omar Pera;
Leyla Garcia; Jose-Maria Villaveces. Oasis common hyper-ontological
framework (cof). OASIS Project report, 2010.

Appendix A

Mockups

These are the full list of mockups made before developing the application.

49

Figure A.1: Main screen

50

Figure A.2: Create a mapping

51

Figure A.3: Discussion about a mapping

52

Figure A.4: Concept information

Appendix B

RDF Export

This is a sample of a list of mappings represented in RDF format when you
export them from Mappingstool.

<?xml version=’1.0’ encoding=’UTF-8’?>

<!DOCTYPE rdf:RDF [

<!ENTITY xsd ’http://www.w3.org/2001/XMLSchema#’ >

<!ENTITY a ’http://protege.stanford.edu/system#’ >

<!ENTITY rdfs ’http://www.w3.org/2000/01/rdf-schema#’ >

<!ENTITY mappings ’http://protege.stanford.edu/mappings#’ >

<!ENTITY rdf ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’ >

]>

<rdf:RDF xmlns="http://bioontology.org/mappings/mappings.rdf#"

xml:base="http://bioontology.org/mappings/mappings.rdf"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:mappings="http://protege.stanford.edu/mappings#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<rdf:Property rdf:about="&mappings;author">

<rdfs:domain rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">author</rdfs:label>

54

</rdf:Property>

<rdf:Property rdf:about="&mappings;comment">

<rdfs:domain rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">comment</rdfs:label>

</rdf:Property>

<rdf:Property rdf:about="&mappings;confidence">

<rdfs:domain rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">confidence</rdfs:label>

</rdf:Property>

<rdf:Property rdf:about="&mappings;date">

<rdfs:domain rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:range rdf:resource="&xsd;date"/>

<rdfs:label rdf:datatype="&xsd;string">date</rdfs:label>

</rdf:Property>

<rdfs:Class rdf:about="&mappings;Mapping_Metadata">

<rdfs:label rdf:datatype="&xsd;string"

>Mapping_Metadata</rdfs:label>

</rdfs:Class>

<rdf:Property rdf:about="&mappings;mapping_metadata">

<rdfs:domain rdf:resource="&mappings;One_to_one_mapping"/>

<rdfs:range rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:label rdf:datatype="&xsd;string"

>mapping_metadata</rdfs:label>

</rdf:Property>

<rdf:Property rdf:about="&mappings;mapping_source">

<rdfs:domain rdf:resource="&mappings;Mapping_Metadata"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">authority</rdfs:label>

</rdf:Property>

<rdfs:Class rdf:about="&mappings;One_to_one_mapping">

<rdfs:label rdf:datatype="&xsd;string"

>One_to_one_mapping</rdfs:label>

</rdfs:Class>

<rdf:Property rdf:about="&mappings;relation">

<rdfs:domain rdf:resource="&mappings;One_to_one_mapping"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">relation</rdfs:label>

</rdf:Property>

55

<rdf:Property rdf:about="&mappings;source">

<rdfs:domain rdf:resource="&mappings;One_to_one_mapping"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">source</rdfs:label>

</rdf:Property>

<rdf:Property rdf:about="&mappings;target">

<rdfs:domain rdf:resource="&mappings;One_to_one_mapping"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdfs:label rdf:datatype="&xsd;string">target</rdfs:label>

</rdf:Property><mappings:One_to_one_mapping rdf:ID="1">

<mappings:mapping_metadata rdf:resource="#2"/>

<mappings:relation rdf:datatype="&xsd;string"></mappings:relation>

<mappings:source

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/9/storageplace:Freezer’/>

<mappings:target

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/6/DomoticOntology:Device’/>

</mappings:One_to_one_mapping>

<mappings:Mapping_Metadata rdf:ID="2">

<mappings:author rdf:datatype="&xsd;string">omar

</mappings:author>

<mappings:mapping_source rdf:datatype="&xsd;string">

</mappings:mapping_source>

<mappings:comment rdf:datatype="&xsd;string"><

/mappings:comment>

<mappings:date rdf:datatype="&xsd;date">

Mon Jan 18 22:18:48 +0100 2010</mappings:date>

</mappings:Mapping_Metadata><mappings:One_to_one_mapping rdf:ID="3">

<mappings:mapping_metadata rdf:resource="#4"/>

<mappings:relation rdf:datatype="&xsd;string"></mappings:relation>

<mappings:source

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/9/storageplace:Fridge’/>

<mappings:target

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/6/DomoticOntology:Device’/>

</mappings:One_to_one_mapping>

<mappings:Mapping_Metadata rdf:ID="4">

<mappings:author rdf:datatype="&xsd;string">

56

omar</mappings:author>

<mappings:mapping_source rdf:datatype="&xsd;string">

</mappings:mapping_source>

<mappings:comment rdf:datatype="&xsd;string">

</mappings:comment>

<mappings:date rdf:datatype="&xsd;date">

Mon Jan 18 22:18:49 +0100 2010</mappings:date>

</mappings:Mapping_Metadata><mappings:One_to_one_mapping rdf:ID="5">

<mappings:mapping_metadata rdf:resource="#6"/>

<mappings:relation rdf:datatype="&xsd;string">

Lexical similarity</mappings:relation>

<mappings:source

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/9/storageplace:Freezer’/>

<mappings:target

rdf:resource=’http://ontologies.informatik.uni-bremen.de/

virtual/6/DomoticOntology:Port’/>

</mappings:One_to_one_mapping>

<mappings:Mapping_Metadata rdf:ID="6">

<mappings:author rdf:datatype="&xsd;string">

omar</mappings:author>

<mappings:mapping_source rdf:datatype="&xsd;string">

</mappings:mapping_source>

<mappings:comment rdf:datatype="&xsd;string"></mappings:comment>

<mappings:date rdf:datatype="&xsd;date">

Tue Feb 23 19:55:27 +0100 2010</mappings:date>

</mappings:Mapping_Metadata></rdf:RDF>

Appendix C

Deploying Bioportal Core

The following instructions explains how to build and deploy Bioportal Core.

Building and Deploying BioPortal REST Services
(Core)

Table of Contents
Building and Deploying BioPortal REST Services (Core) ... 1

Table of Contents .. 1

System Requirements ... 2

Source Structure .. 2

General Installation and Configuration .. 3

Installation and Configuration on Ubuntu .. 4

Build and Deploy BioPortal REST Services ... 7

Accessing BioPortal REST Services .. 10

System Requirements
1. The Java Development Kit (version 1.5 or higher).

2. Apache Ant (see http://ant.apache.org/ for the latest release).

3. Tomcat Application server (version 5.5 or higher). Although has not been
tested, the system should be able to perform equally well on other
application servers, such as JBoss, with minimal configuration changes.

4. MySQL 5.0 Database Server.

5. The latest MySQL Connector/J driver (see
http://dev.mysql.com/downloads/connector/j/ for the latest release).

Source Structure

build.properties.sample
A template file that contains all build
properties with corresponding sample
values

build.xml Ant build file

build
Auto-generated folder that contains
BioPortal as it is deployed under an
application server

classic_to_core_migration

The folder containing source code,
database scripts, and instructions on
migrating existing data from BioPortal
1.0

db
The folder containing all relevant
database scripts and dumps

dist
The folder containing the generated
BioPortal Web Application Archive
(WAR) file

src BioPortal source code

tmpl
The folder containing templates used
for generating runtime configuration
files and message repository

WebRoot The web application root folder

WebRoot/WEB-
INF/conf/generated

The folder containing runtime
configuration files, auto-generated

http://ant.apache.org/
http://dev.mysql.com/downloads/connector/j/

using the templates in “tmpl” folder

WebRoot/WEB-INF/lib
The folder containing dependent
libraries

WebRoot/WEB-INF/resources

The folder containing resource files,
such as stylesheets. Currently, it also
houses the auto-generated LexGrid
runtime configuration file
(config.props) due to a specific LexGrid
folder structure requirement

To get the source code from Subversion and successfully use the Ant build file,
you must issue the following command:

svn checkout https://bmir-gforge.stanford.edu/svn/bioportal_core

General Installation and Configuration
1. Install the Java Development Kit (version 1.5 or higher). Make sure to set the

JAVA_HOME environment variable to the installation directory of your JDK.

2. Install Apache Ant. See Apache's web site to download Ant.

3. Install Tomcat application server. Alternatively, install and configure your
own preferred application server.

4. Copy the MySQL Connector/J driver to <your Tomcat installation
dir>/common/lib folder. Alternatively, ensure that the Connector/J driver is
located in your application server’s CLASSPATH environment.

5. Install and configure MySQL 5 database.

A. Create three separate databases:

 bioportal – used for storing ontology metadata, version information,
and user data.

 bioportal_lexgrid – used for storing LexGrid database backend.

 bioportal_protege – used for storing Protégé database backend.

The database names are arbitrary, provided they are correctly
reference in the build.properties file.

B. Run the following SQL script: <project root>/db/sql/bioportal_db.sql

http://ant.apache.org/bindownload.cgi
https://bmir-gforge.stanford.edu/svn/bioportal_core

C. Run the following SQL script: <project
root>/db/sql/bioportal_lookup_data.sql

Ignore the other database scripts. Their artifacts are contained in
bioportal_db.sql.

D. Create three dedicated database users, one for each database above:

 bioportal_user – used for accessing bioportal database. Grant this
user SELECT/CREATE/INSERT/UPDATE/DELETE rights to bioportal
database.

 bioportal_lexgrid_user – used for accessing bioportal_lexgrid
database. Grant this user SELECT/CREATE/INSERT/UPDATE/DELETE
rights to bioportal_lexgrid database.

 bioportal_protege_user – used for accessing bioportal_protege
database. Grant this user SELECT/CREATE/INSERT/UPDATE/DELETE
rights to bioportal_protege database.

Installation and Configuration on Ubuntu
These are detailed steps to install and configure the environment required. This is a
basic tutorial, for production environment is not recommended. It has been tested
on Ubuntu 9.04.

1. Install the Java Development Kit (version 1.5 or higher).

$ sudo apt-get install sun-java6-jdk

$ java -version

The JVM should provided by Sun NOT gij anymore

2. Install Apache Ant. See Apache's web site to download Ant. Current release is
Apache Ant 1.7.1

$ tar -xvzf ~/archive/a/apache-ant-1.7.1-bin.tar.gz -C ~/programs

$ cd programs

$ ln -s apache-ant-1.7.1 ant

Edit ~/.bashrc and set the ANT_HOME environment variable to the directory where
you installed Ant.

ANT_HOME=/home/omar/programs/ant

PATH=$PATH:$ANT_HOME/bin

http://ant.apache.org/bindownload.cgi

export PATH

Check the basic installation with opening a new shell and typing ant. You
should get a message like this:

Buildfile: build.xml does not exist!

Build failed

3. Install Tomcat application server (version 5.5 or higher).

$ sudo aptitude install tomcat5 tomcat5-webapps

Usually config files are located on /etc/tomcat5.5 , and in <your Tomcat
installation dir>/bin scripts to startup, restart the server

Tomcat needs JAVA_HOME variable in the path, we can either put it into our
environment:

nano ~/.bashrc

JAVA_HOME=/usr/lib/jvm/java-6-sun/

JAVA_BIN=$JAVA_HOME/bin

PATH=$PATH:$JAVA_HOME:$JAVA_BIN

export PATH

or in the tomcat init scripts:

nano ~ <your Tomcat installation dir>/bin/catalina.sh

JAVA_HOME=/usr/lib/jvm/java-6-sun/

Tomcat is started using a security manager, you can define the permissions
for your servlets and JSPs in /etc/tomcat5/policy.d/*. All files in this directory
are joined to /etc/tomcat5.5/catalina.policy at startup. If your webapp does
not work with the tomcat5.5 Ubuntu/Debian package but works fine with the
binary distribution from Jakarta, try to disable the security manager in
/etc/default/tomcat5.5 first (TOMCAT5_SECURITY=no). If this works, add the
required permissions in a new file in /etc/tomcat5.5/policy.d/ restart and re-
enable the security manager. Disabling the security manager is not
recommended on production systems since a call to System.exit() in a servlet
of JSP page would then stop the whole virtual machine that is running
Tomcat.

In order to change the port where tomcat listen:

$ sudo <editor_you_want> <your Tomcat installation dir>/conf/server.xml

Modify the port int the connector tag:

<Connector port="8080" maxHttpHeaderSize="8192"

 ….

4. Install MySQL 5.0 Database Server.

$ sudo aptitude install mysql-server-5.0

5. Get the latest MySQL Connector/J driver (see
http://dev.mysql.com/downloads/connector/j/ for the latest release).

6. Copy the MySQL Connector/J driver to <your Tomcat installation
dir>/common/lib folder. Alternatively, ensure that the Connector/J driver is
located in your application server’s CLASSPATH environment.

7. Configure MySQL 5 database.

A. Set password for a ROOT account on the MySQL5 Server

$ mysqladmin -u root password your-new-password

$ sudo /etc/init.d/mysql restart

B. Create three separate databases:

 bioportal – used for storing ontology metadata, version information,
and user data.

 bioportal_lexgrid – used for storing LexGrid database backend.

 bioportal_protege – used for storing Protégé database backend.

The database names are arbitrary, provided they are correctly reference
in the build.properties file.

C. Run the following SQL script: <project root>/db/sql/bioportal_db.sql

mysql> SOURCE [<project root>/db/sql/bioportal_db.sql];

mysql> USE [database_name_bioportal];

mysql> SHOW tables; // Just to be sure tables has been created

D. Run the following SQL script:

mysql> SOURCE [<project root>/db/sql/bioportal_lookup_data.sql];

E. Create three dedicated database users, one for each database above:

◦ bioportal_user – used for accessing bioportal database. Grant this
user SELECT/CREATE/INSERT/UPDATE/DELETE rights to bioportal
database.

◦ bioportal_lexgrid_user – used for accessing bioportal_lexgrid
database. Grant this user SELECT/CREATE/INSERT/UPDATE/DELETE
rights to bioportal_lexgrid database.

◦ bioportal_protege_user – used for accessing bioportal_protege
database. Grant this user SELECT/CREATE/INSERT/UPDATE/DELETE
rights to bioportal_protege database.

mysql> CREATE USER <user> IDENTIFIED BY PASSWORD <password>;

mysql> GRANT SELECT,CREATE,INSERT,UPDATE,DELETE ON <database_name>.*
TO '<user>'@'localhost';

Build and Deploy BioPortal REST Services
1. Rename “build.properties.sample” to “build.properties”. The “.sample”

extension has been added so that each time the source code is downloaded,
the build.properties file is not overwritten (which causes user defined settings
to be lost).

2. In the file build.properties there is a property called lexgrid.single.db.mode,
check what it means and then, if you decide to set it to true be sure to give
all privilegies to bioportal_lexgrid user related to bioportal_lexgrid database.

3. Modify build.properties to reflect your environment settings. Below are the
most commonly set properties:

bioportal.environment An environment within which this installation
is run.

Possible values: [dev, prod].

Setting the value to “dev” will enable the use
of local datasource, which is convenient for
running JUnit tests and other development
tasks.

Setting the value to “prod” will enable a
container-based datasource, which will use
connection pooling, maximum active

connections, and other configurable settings
(see tmpl/context.xml.tmpl for complete list)

bioportal.resource.path
Location of resource files on the server, such
as ontology files, lucene indices, and other
filesystem artifacts required at runtime

appserver.home The root directory of your application server

obo.pull.scheduler.enabled

A flag that enables/disables a scheduler job
that pulls ontologies from OBO Sourceforge
repository.

Possible values: [true/false].

obo.pull.scheduler.cronexp
ression

A cron expression that defines the time and
frequency of the OBO Sourceforge scheduler
runs (provided the
obo.pull.scheduler.enabled property is set to
“true”). Uses standard cron expressions (see
http://quartz.sourceforge.net/javadoc/org/qua
rtz/CronTrigger.html for examples)

ontology.parse.scheduler.e
nabled

A flag that enables/disables a scheduler job
that parses ontologies to enable
searching/visualization.

Possible values: [true/false].

ontology.parse.scheduler.c
ronexpression

A cron expression that defines the time and
frequency of the ontology parse scheduler
runs (provided the
ontology.parse.scheduler.enabled property is
set to “true”). Uses standard cron
expressions (see
http://quartz.sourceforge.net/javadoc/org/qua
rtz/CronTrigger.html for examples)

bioportal.smtp.server
The SMTP server to be used by the
application

bioportal.datasource.name
The name of the BioPortal datasource (used
only if the bioportal.environment flag is set to
“true”)

bioportal.jdbc.url
JDBC url of the “bioportal” database (see 5A
above)

http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html
http://quartz.sourceforge.net/javadoc/org/quartz/CronTrigger.html

bioportal.jdbc.username
Username of the dedicated db user for
accessing “bioportal” database (see 5D
above)

bioportal.jdbc.password
Password of the dedicated db user for
accessing “bioportal” database (see 5D
above)

bioportal.encryption.key
Encryption key used for encrypting user
passwords

protege.jdbc.url
JDBC url of the “bioportal_protege” database
(see 5A above)

protege.jdbc.username
Username of the dedicated db user for
accessing “bioportal_protege” database (see
5D above)

protege.jdbc.password
Password of the dedicated db user for
accessing “bioportal_protege” database (see
5D above)

lexgrid.db.url
JDBC url of the “bioportal_lexgrid” database
(see 5A above)

lexgrid.db.user
Username of the dedicated db user for
accessing “bioportal_lexgrid” database (see
5D above)

lexgrid.db.password
Password of the dedicated db user for
accessing “bioportal_lexgrid” database (see
5D above)

lexgrid.email.to
An email address for sending LexGrid errors.
Only applicable if lexgrid.email.errors
property is set to “true”

4. Execute the following ant commands to build and deploy BioPortal REST
services:

a. ant clean

b. ant deploywar

Accessing BioPortal REST Services
1. Start application server.

2. Access BioPortal RESTful URLs. (See
http://www.bioontology.org/wiki/images/7/71/BioPortal2.0_User_Guide_v2.doc
for details).

http://www.bioontology.org/wiki/images/7/71/BioPortal2.0_User_Guide_v2.doc

Appendix D

Deploying Bioportal UI

The detailed instructions about how to deploy Bioportal UI with Map-
pingstool.

Deploying BioPortal Ruby On Rails GUI

Table of Contents
Deploying BioPortal Ruby On Rails GUI ... 1

Table of Contents .. 1

System Requirements ... 2

Source Structure .. 2

Installation and Configuration ... 3

Installation and Configuration on Ubuntu .. 4

Deploy BioPortal GUI ... 10

Detailed deployment of BioPortal GUI ... 10

Accessing BioPortal GUI ... 12

System Requirements
1. Ruby Programming Language (1.8.5 or greater)

2. RubyGems

3. Memcache

4. Apache

5. MySQL 5.0 Database Server.

Source Structure

/config/database.yml
File that contains database connection
properties

/config/mongrel_cluster.yml
File for configuring the mongrel server
cluster

/config/environment.rb
File containing environment variables
such as mail server

/
config/environments/productio
n.rb,

/
config/environments/developm
ent.rb

Files that contain environment
variables that are specific to a
environment (e.g. memcache settings)

/app
The folder containing all the core logic
to the ruby on rails application

/db
The folder containing database
migrations

/lib
The folder containing libraries used for
talking to services

/public
The folder containing public files such
as stylesheets and images

/vendor The folder containing ruby plugins

To get the source code from, you must issue the following command:

svn checkout https://bmir-gforge.stanford.edu/svn/bioportalui

Installation and Configuration
1. Install the Ruby Core Library (version 1.8.5 or higher

2. Install Ruby Gems

A. actionmailer (2.1.0, 2.0.2)

B. actionpack (2.1.0, 2.0.2)

C. activerecord (2.1.0, 2.0.2)

D. activeresource (2.1.0, 2.0.2)

E. activesupport (2.1.0, 2.0.2)

F. capistrano (2.4.3)

G. cgi_multipart_eof_fix (2.5.0)

H. daemons (1.0.10)

I. fastthread (1.0.1)

J. gem_plugin (0.2.3)

K. highline (1.4.0)

L. hoe (1.7.0)

M. httpclient (2.1.2)

N. memcache-client (1.5.0)

O. mongrel (1.1.5)

P. mongrel_cluster (1.0.5)

Q. mysql (2.7)

R. net-scp (1.0.1)

S. net-sftp (2.0.1)

T. net-ssh (2.0.3)

U. net-ssh-gateway (1.0.0)

V. rails (2.1.0, 2.0.2)

W. rake (0.8.1)

X. rubyforge (1.0.0)

Y. soap4r (1.5.8)

3. Install Apache Web Server

4. Install Memcache

5. Install and configure MySQL 5 database.

A. Create a database to contain metadata

B. Point the config/database.yml file to the newly created database.

C. Run the following command in the main ruby code directory: rake
db:migrate

Installation and Configuration on Ubuntu
These are detailed steps to install and configure the environment required. It has
been tested on Ubuntu 9.04.

 1. To install the Ruby base packages, you can enter the following command in
the terminal prompt:

$ sudo aptitude install ruby rdoc ri irb libopenssl-ruby ruby-dev

ruby = An interpreter of object-oriented scripting language Ruby

ri = Ruby Interactive reference

rdoc = Generate documentation from ruby source files

irb = Interactive Ruby

At the moment of this tutorial Ruby version: ruby 1.8.7 (2008-08-11 patchlevel
72) [i486-linux]

 2. Test the correct instalation:

 $ ruby -ropenssl -rzlib -rreadline -e "puts :Hello"

>Hello

 3. Next we need to install the Ruby gem package manager. You can download
the latest Ruby gems from http://rubyforge.org/projects/rubygems/

$ cd ~

$ wget http://rubyforge.org/frs/download.php/45905/rubygems-1.3.2.tgz

$ tar xzvf rubygems-1.3.2.tgz

http://rubyforge.org/projects/rubygems/

$ cd rubygems-1.3.2

$ sudo ruby setup.rb

$ sudo ln -s /usr/bin/gem1.8 /usr/bin/gem

Once it’s done you can delete the .tgz file and rubygems directory.

 4. (Optional) We can to create a set of simlinks, otherwise it will be a tedious
task to type commands with the version (1.8).

$ sudo ln -s /usr/bin/gem1.8 /usr/local/bin/gem

$ sudo ln -s /usr/bin/ruby1.8 /usr/local/bin/ruby

$ sudo ln -s /usr/bin/rdoc1.8 /usr/local/bin/rdoc

$ sudo ln -s /usr/bin/ri1.8 /usr/local/bin/ri

$ sudo ln -s /usr/bin/irb1.8 /usr/local/bin/irb

 5. Install Rails via RubyGems and the gems mentioned on the previous section.

$ sudo gem install rails

 6. Install MySQL 5.0 Database.

By default, Rails includes the sqlite3 gem and is automatically configured to use
it. To use MySQL instead, follow the following steps:

$ sudo apt-get install mysql-server-5.0 mysql-client-5.0

$ sudo apt-get install libmysql-ruby libmysqlclient-dev

$ sudo gem install mysql

Rails assumes that the MySQL socket file will be found in /tmp/mysqld.sock. In
Debian/Ubuntu, this is not the case. Be sure to change database.yml to reflect
the actual location of the socket file. (it will be located on
/var/run/mysqld/mysqld.sock or /var/lib/mysql/mysql.sock

 7. To build the necessary databases and tables (development, test and
production configured on config/database.yml):

$ cd <path_rails_app>

$ rake db:create

$ rake db:migrate

 8. Installing Memcache system

1. Introduction

Bioportal UI uses MemCached, a distributed memory object caching system
intended for use in speeding up dynamic web applications by alleviating
database load. (http://www.danga.com/memcached/)

MemCached is the server library which runs the caching daemon, a client library
that interact with the server is required.

Bioportal has choose Ruby MemCache client
(http://www.deveiate.org/projects/RMemCache/)

2. Memcached installation

Memcached is packaged for Ubuntu Jaunty, so:

$ sudo aptitude install memcached

We then started a memcached instance:

$ memcached -d -l 127.0.0.1 -p 11299 -m 1024

 * -d = run as a daemon

 * -l <ip address> = bind to ip address

 * -p <port> = run on this port

 * -m <num> = use num Mb of memory for the store

 * -P = where to put the pid file

* -vv = extra verbose and doesn't daemonize

3. Ruby memcached binding installation: Ruby-Memcache

sudo gem install Ruby-MemCache

It install an old version (currently 0.0.1), in order to install the last version
download from http://www.deveiate.org/projects/RMemCache/ the last gem.

At this point we suggest to make all the changes in order to deploy Bioportal
correctly (Memcache options, database, Bioportal REST URL, etc.) before the
next step. Read the next section and returns to this point.

Check that everything works OK with the built-in server of Ruby (WEBrick)

$./script/server

http://www.deveiate.org/projects/RMemCache/
http://www.deveiate.org/projects/RMemCache/
http://www.deveiate.org/projects/RMemCache/

 9. Installing the production server

There are now a huge number of options available for deploying a Rails
application in a production environment: Apache + FastCGI, Lighttpd +
FastCGI, SCGI, Apache 2, Litespeed, Mongrel, etc.

We have decided to use Mongrel + Mongrel Cluster + Apache 2.

1. Installing Mongrel + Mongrel Cluster

$ sudo gem install mongrel –include-dependencies

In order to check everything is OK

$ cd <path_rails_app>

$ mongrel_rails start

// Or just run ./script/server and check is booting with Mongrel

We will be using a cluster of three mongrel processes, you need to decide
how many will be suitable for you. To run a cluster of mongrel processes we
need to install the mongrel_cluster gem, for details on this gem see the
Mongrel web site.

 $ sudo gem install mongrel_cluster

2. Testing Mongrel

Go to your Rails application directory and execute:

$ mongrel_rails cluster::configure -p 18000 -N 3

This allows mongrel to spawn 3 instance to handle the load. Each instance
will open on port 18000, and succeeding. So that is 18000, 18001, and
18002.

 Check cluster:configure help to get more information about the options.

This will create the a mongrel_cluster configuration file in
<path_rails_app>/config/mongrel_cluster.yml.

To test everything is OK, execute:

$ mongrel_rails cluster::start

Now open up http://localhost:18000/, http://localhost:18001/, and
http://localhost:18002/ to ensure that your site is working perfectly fine.

3. Installing Apache 2

$ sudo apt-get install apache2

$ sudo a2enmod proxy_balancer

$ sudo a2enmod proxy_http

$ sudo a2enmod rewrite

4. Configure Apache and the Balacing Proxy

You have X mongrel servers running, ready to handle incoming requests. But,
you want your visitors to use ‘myapp.com’ or just an IP address and not an IP
address with different port numbers. This is where Apache comes in.

Create a new file in /etc/apache2/sites-available named 'bioportal' and add
the following:

<proxy balancer://mongrel_cluster>

 BalancerMember http://127.0.0.1:18000

 BalancerMember http://127.0.0.1:18001

 BalancerMember http://127.0.0.1:18002

</proxy>

Listen 10000

Set the port you want to listen the requests for your application

<VirtualHost *:10000>

 #ServerName myapp.com

 #ServerAlias www.myapp.com

 DocumentRoot "path_to_public_dir"

 <directory "path_to_public_dir">

 Options FollowSymLinks

 AllowOverride None

 Order allow,deny

 Allow from all

 </directory>

 RewriteEngine On

 RewriteCond %{DOCUMENT_ROOT}/system/maintenance.html -f

 RewriteCond %{SCRIPT_FILENAME} !maintenance.html

http://www.myapp.com/

 RewriteRule ^.*$ /system/maintenance.html [L]

 RewriteRule ^/$ /index.html [QSA]

 RewriteRule ^([^.]+)$ $1.html [QSA]

 RewriteCond %{DOCUMENT_ROOT}/%{REQUEST_FILENAME} !-f

 RewriteRule ^/(.*)$ balancer://mongrel_cluster%{REQUEST_URI} [P,QSA,L]

 #ErrorLog /path/log/errors_log

#CustomLog /path/log/custom_log combined

</virtualhost>

Listen 9999

<VirtualHost *:9999>

 <Location />

 SetHandler balancer-manager

 Deny from all

 Allow from localhost

 </Location>

</VirtualHost>

The first VirtualHost (port 10000) is our rails application, the second one
enables a front end for load balancing, available only to localhost on port
9999.

Lets enable the virtual host:

$ sudo a2ensite myapp

$ sudo /etc/init.d/apache2 restart

Note 1: If you can’t access your site, its because the default virtual host has a
higher precedence. Execute sudo a2dissite default. Similarly ensure that you
are access your site via the domain you specified in the ServerName
directive.

Note 2: In some cases you may need to make a small change to
/etc/apache2/mods-enabled/proxy.conf and swap

Order deny,allow

Deny from all

for

Order allow,deny

Allow from all

5. Start Mongrel Cluster on Boot

Create a mongrel_cluster conf directory in /etc/mongrel_cluster.

In the Mongrel Cluster gem, there is an init.d script you need to copy.

$ sudo cp /usr/lib/ruby/gems/1.8/gems/mongrel_cluster-
0.2.1/resources/mongrel_cluster/mongrel_cluster /etc/init.d

Now we need to add the init.d script to startup:

$ sudo chmod +x /etc/init.d/mongrel_cluster

$ sudo update-rc.d mongrel_cluster defaults

$ sudo ln -s <path_rails_app>/config/mongrel_cluster.yml /etc/mongrel_cluster/railsapp

Deploy BioPortal GUI
 1. Configure the mongrel_cluster.yml to contain the amount of servers you want

to run and the port you want them to run on (default is 5)

 2. Modify the /config/environments/production.rb file to point to the correct
location of your memcache server.

 3. Modify the /config/environment.rb file to point to the correct SMTP server.

 4. Configure apache to point to the mongrel services

Detailed deployment of BioPortal GUI
1. config/database.yml → Set your database settings

2. config/environment.rb

A. Comment RAILS_VERSION in order to use the last Rails version installed
on your machine.

B. Set REST_URL var with the Bioportal core URL

3. app/views/ontologies/show.html.erb

A. Change the FlexViz tool path to the local one (/flex/FlexoViz.swf)

B. Change Bioportal URL webservice → <%=$REST_URL%>

C. Change Bioportal URL webservice in diff row.

4. app/views/concepts/images.html.erb → check path to FlexViz

5. app/views/search/index.html.erb → choose between built-in or Flex search:

A. Flex search:

i. Change path to Bioportal REST webservice and the current server
holding Bioportal UI in app/views/search/index.rhtml,
app/views/search/results.rhtml

ii. This search is hosted on a remote server, so we must create a
crossdomain.xml in the root directory of our Bioportal webservice
server. Put the following lines in <tomcat_dir>/webapps/ROOT/cross-
domain.xml:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE cross-domain-policy SYSTEM
"http://www.macromedia.com/xml/dtds/cross-domain-policy.dtd">

<cross-domain-policy>

<site-control permitted-cross-domain-policies="all"/>

<allow-access-from domain="*" secure="false"/>

<allow-http-request-headers-from domain="*" headers="*"
secure="false"/>

</cross-domain-policy>

B. Built-in search:

i. Descomment '@ontologies = DataAccess.getActiveOntologies()' in
app/controllers/search_controller.rb in the action 'index'.

6. Set your own server and port specified in MemCached daemon in
config/environments/*.rb, also note that we must include the class before the
creation of the MemCache object:

--> require 'memcache'

memcache_options = {

 :c_threshold => 10_000,

 :compression => true,

 :debug => true,

 :namespace => 'BioPortal',

 :readonly => false,

 :urlencode => false

}

CACHE = MemCache.new memcache_options

CACHE.servers = '<server>:<port>'

7. lib/BioportalRestfulCore.rb → it is hard-coded the port of Bioportal REST
service URL, so in case is not 80, change it in 'def
self.postMultiPart(url,paramsHash)'

Accessing BioPortal GUI
1. Start Memcache daemon.

2. Start the mongrel cluster

3. Access BioPortal UI.

