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Abstract

In patient specific biomedical simulation, the numerical model is usually
created after cumbersome, time consuming procedures which often require
highly specialized human work and a great amount of man-hours to be carried
out. In order to make numerical simulation available for medical practice, it
is of primary importance to reduce the cost associated to these procedures
by making them automatic. In this paper a method for the automatic cre-
ation of Finite Element (FE) models from medical images is presented. This
method is based on the use of a hierarchical structure of nested Cartesian
grids in which the medical image is immersed. An efficient h-adaptive pro-
cedure conforms the FE model to the image characteristics by refining the
mesh on the basis of the distribution of elastic properties associated to the
pixel values. As a result, a problem with a reasonable number of degrees
of freedom is obtained, skipping the geometry creation stage. All the im-
age information is taken into account during the calculation of the element
stiffness matrix, therefore it is straightforward to include the material het-
erogeneity in the simulation. The proposed method is an adapted version of
the Cartesian grid Finite Element Method (cgFEM) for the FE analysis of
objects defined by images. cgFEM is an immersed boundary method that
uses h-adaptive Cartesian meshes non-conforming to the boundary of the
object to be analysed.

The proposed methodology, used together with the original geometry-
based cgFEM, allows prosthesis geometries to be easily introduced in the

Preprint submitted to Finite Elements in Analysis and Design August 22, 2017



model providing a useful tool for evaluating the effect of future implants
in a preoperative framework. The potential of this kind of technology is
presented by mean of an initial implementation in 2D and 3D for linear
elasticity problems.

Keywords: Cartesian grid Finite Element Method, Patient specific
modelling, implant simulation, image based simulation

1. Introduction

Nowadays, the use of numerical models based on volumetric image data is
widespread in biomechanics. Great efforts have been made to solve the elastic
problem in a number of patient specific medical applications using the Fi-
nite Element Method (FEM), common in structural engineering. This is the
case, for instance, of the prediction of bone fracture risk, Grassi et al. (2012),
and the evaluation of bone quality parameters for the detection of osteo-
porosis, Alberich-Bayarri et al. (2008) and Roque et al. (2012). Preoperative
implant simulation is a particularly promising use for patient-specific numer-
ical models. This is fundamental for several applications such as studying
the effect of positioning Bah et al. (2011), predicting the long term prosthesis
performance thanks to the recent advances in bone remodelling Prez et al.
(2014), designing customized implants taking advantage of optimization and
3D printing Sutradhar et al. (2016).

The most common procedures, Viceconti et al. (1998), to obtain numerical
models from volumetric images can be broadly categorised into two groups:
the vozel-based and geometry-based methods, both based on standard FEM.
The former convert each voxel into an element of the FE mesh simplifying
the modelling stage but typically providing problems with a high number
of degrees of freedom, whereas the latter rely on modelling strategies, often
hard to make automatic, to define geometrical domains from the image data
which are then meshed as in standard FE. There are other aspects which can
make one of the two methods more suitable than the other. For prosthesis
analyses, for example, the geometry-based FE approach, Natali et al. (2006),
is usually preferred because the assembly between the geometrical models
can be performed with standard CAD tools. On the other hand, when a
reliable relation between voxel values and elastic properties is available, as
in the case of bone CT scan, it usually easier to take it into account using
vozel-based methods due to the correspondence between elements and voxels.



Doing the same with geometry-based meshes is more complicated because the
elements do not conform to the pixels. A possible solution lies in assigning
each integration point the average value of the stiffness corresponding to
the surrounding pixels. Nevertheless the size of this influence area is not
univocally defined, Miiller-Karger et al. (2004).

New methods have recently been proposed in order to reduce both human
intervention and computational cost in patient specific simulations. Most
of them are extensions of geometry independent techniques defined by the
umbrella term of Finite Elements in ambient space, Bordas et al. (2010) but
available in the literature under a number of different names such as Fictitious
Domain, Burman and Hansbo (2010), or Embedded Methods, Dolbow and
Harari (2009), among others. These were originally developed to reduce the
modelling effort for standard, CAD-based FE problems, which is, even in this
case, responsible for about 80% of all the simulation time cost, Cottrell et al.
(2009). These methods simplify the mesh generation by using an auxiliary
domain €2., in general characterized by a simple, easy to mesh geometry,
containing the problem domain 2. The auxiliary, or meshing, domain €2, is
discretised instead of the problem domain 2. During the evaluation of the
element integrals these methods require the information about the problem
domain because the mesh does not conform to €. In particular we remark
the application to image-based problems of X-FEM, Legrain et al. (2011),
Composite Finite Elements, Liehr et al. (2009), or Finite Cell Method (FCM),
Ruess et al. (2012a).

We follow a similar path as the background of our proposal is the Carte-
sian grid Finite Element Method (¢gFEM), Nadal et al. (2013), a method
to solve CAD-based problems , which belongs to the family of the Finite
Elements in ambient space. For the sake of clarity, we refer to it as geometry-
based cgFEM in the following in order to distinguish it from the new method
object of this paper which we call image-based cgFEM and addresses the
problem of solving patient specific numerical models from volumetric image
data. Finally, we call FEAVox the Matlab-based code which implements both
geometry-based and image-based cgFEM. In both its versions, this has points
in common with the family of Finite Elements in ambient space, especially
with the Finite Cell Method (FCM).

FCM is a powerful method which combines the fictitious domain approach
with high-order hierarchical Ansatz spaces. The results, in the initial formu-
lation of the FCM, are enhanced by using p-adaptivity, i.e. by increasing the
order of the shape functions used for interpolation, while the spatial discreti-
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sation is kept uniform. An octree structure of subcell is used for integration.
These coincide with the voxels image-based models and on a hierarchical
octree structure in CAD-based models.

In geometry-based cgFEM the problem domain is immersed into a hier-
archical structure of Cartesian grids. For the elements on the boundary the
stiffness matrix is calculated solely by integrating the area of the element
actually lying within the domain 2. Special techniques are used to account
for the exact geometry during the element integration process thus avoiding
modelling errors associated to an inexact representation of the boundary. A
local h-adaptive refinement is used to enhance the solution.

In tmage-based cgFEM, we superpose a coarse Cartesian mesh upon the
bitmap. As in the FCM, each element contains an heterogeneous distribution
of elastic properties. As a consequence, the element stiffness matrix integra-
tion carries out a kind of material homogenisation which makes it possible
for ¢gFEM to keep the number of degrees of freedom (DOF) lower than in
classical vozxel-based methods. We use h-adaptivity to tailor the mesh to the
bitmap on the basis of the evaluation of the pixel value distribution in each
element. This is meant to prevent excessive material homogenization and
the resulting loss of accuracy in the solution.

1.1. Objectives and paper structure
The main contributions of this paper are:

e to present a cheaper and more parallelizable integration procedure for
k® based on the least-squares recovery of the Young’s modulus field in
each element and compare it with other integration schemes;

e to study some limitations in the mesh size due to the use of pixmaps
and propose a cost-effective mesh h-adaptive method;

e to propose a method to combine geometry and image-based cgFEM
perform patient-specific simulations of implants.

The next section opens briefly reminding the main features of geometry-
based cgFEM and follows describing its image-based version in detail and
how to combine them to include CAD models into the medical image. The
third section contains analyses of reference problems used for the validation
of the method whereas in the fourth one the method is applied to real medical
images in 2D and 3D to illustrate the behaviour of the proposal. Finally the
conclusions are discussed in the fifth section.



2. The methodologies implemented in the software FEAVox
2.1. The method background: the geometrical cgF'EM

cgFEM was originally intended as an alternative to standard geometry-
conforming FEM. The geometry from a CAD model is intersected with a
quadtree/octree-inspired hierarchical structure of Cartesian grids, see Figure
1 a) and b), and the calculation mesh is obtained by deleting the external
elements. The remaining elements can be internal or be cut by the contour.

Level 3
Level 2
Level 1
Level O %*I
H
a) b)

Figure 1: ¢gFEM mesher. a) First levels of the hierarchical structure of nested Cartesian
grids; b) Example of non-conforming Finite Element mesh with cgFEM

The former have proportional k® matrices if they share the same material
properties and are integrated as standard FE. The latter are integrated by
decomposition in triangular integration subdomains, to take into account
the non conformity of the interpolation integration domains, see Figure 2. In
order to avoid geometrical approximation at this stage, in the case of NURBs
based geometrical models, we use transfinite integration in 2D, Nadal (2014),
or a NEFEM inspired integration technique in 3D, Marco et al. (2015).

On the one hand this guarantees a speed-up in the integration process
because the complexity of the integration will be essentially associated to the
dimensions of the boundary, i.e., a D-1 dimensional space (from 2D to 1D
and from 3D to 2D) : as the elements in the bulk have proportional stiffness
matrices the integration computational cost is only proportional to the num-
ber of elements laying on the boundary. On the other hand, the nested grid
structure makes it possible to optimise the number of degrees of freedom by
a fast mesh h-adapting process, and to reorder them hierarchically to reduce
the computational cost, during the solving stage. For further details about
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Figure 2: Triangular integration subdomains of cgFEM element containing geometrical
boundaries

the hierarchical structure-based reordering of the DOF in the FE system of
equations, see Nadal (2014). In ¢gFEM the mesh is obtained by an initial
refinement based on geometrical criteria (the characteristics of the bound-
ary portions contained in the elements on the boundary) and an iterative
one guided by a Zienkiewicz and Zhu error estimator, Zienkiewicz and Zhu
(1987) and, with an enhanced version of the superconvergent patch recovery
(SPR) technique Nadal et al. (2015). Since the FE mesh is not conforming
to the geometry the Dirichlet boundary conditions are enforced via stabilized
Lagrangian multiplier techniques, Tur et al. (2014) and Tur et al. (2015).

The resulting stiffness matrix k¢ of such an element homogenizes the elas-
tic behaviour of the different domains. This is the procedure which inspires
the element integration in image-based cgFEM. Geometry and image-based
cgFEM mainly differ on the integration method, but they share the strengths
provided by the nested Cartesian grid structure: the fast meshing process and
the hierarchical DOF reordering which increases the solver speed.



2.2. The image-based cgFFEM

The image-based cgFEM follows a philosophy similar to the one used
for the integration of the elements on the boundary in the geometry-based
cgFEM, whose resulting stiffness matrix k® homogenizes the elastic behaviour
of the different domains see Figure 2. This is the procedure from which
the element integration in image-based cgFEM directly descends. After the
creation of the proper Cartesian FE mesh, see Figure 3 a), the calculation of
the element stiffness matrix k® (1) homogenizes different elastic behaviours
associated to the pixels on the basis of their value. Note that, following this
approach, not only B, the matrix containing the shape function derivatives
in linear elasticity, depends on the spatial coordinates (x) but also D, the
linear Hooke’s law matrix, does. As a consequence, k¢ is evaluated as:

kK = /EBT(X)D(X)B(x)dV (1)

Figure 3: a) Detail of neck CAT scan cross section immersed in uniform mesh. b) Magni-
fication of the element highlighted in green

In the process all the pixels contained in the elements are taken into
account at the integration stage. As opposite to the procedures used for
this purpose in conforming meshes, in the Cartesian environment this is
straightforward because, as explained later in this Section, the mesh creation
guarantees that an integer number of pixels is contained in each element.
The evaluation of the element integral is carried out by adopting a numerical
quadrature rule, see (2), based,for example, on the Riemann sum in which
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one integration point is located at the centre of each pixel i, see Figure 3 b),
and the weight w;, corresponding to each pixel/integration point is constant
for all pixels and equal to the relative area of each pixel in the element.

P
k¢ = ZBT(&)D(&)B(&) | J(&;) | wi
i—1
(2)

where I P is the number of integration points in the element, i.e. the number
of pixels in the element, and | J | is the determinant of the corresponding
Jacobian matrix.

The Riemann sum approach shown in (2) has some limitations: in general,
it is less accurate compared with a Gauss quadrature and elements belonging
to different levels of the hierarchical mesh contain a different number of inte-
gration points, because a single integration point is associated to each pixel.
The first consequence is the loss of accuracy of the numerical integration as
the mesh is refined beyond a certain degree. In order to address the loss
of accuracy of the integration strategy, an integration scheme similar to the
one presented in Yang et al. (2012) was used. This consist of decomposing
each element in a number of integrations subdomains, I.S, corresponding to
the pixels domains. In each of them the material properties are considered
constant and the proper Gaussian quadrature of [P integration points is
used.

IS 1P
k¢ = ZZBT(&j)DiB(fzj) | I(&ij) | w;
i=1 j=1

(3)

This prevents the integration error form increasing during the mesh refine-
ment at the expense of a higher computational cost for the calculation of
the k® matrices. In both schemes, the Riemann sum and the decomposition
in integration subdomains, the overall number of integration points is con-
stant and independent from the mesh but the latter requires more integration
points than the Riemann Sum scheme.

The second feature the Riemann sum scheme shares with the decompo-
sition in subdomains approach is that, since they have a different number
of integration points, the computational procedures are harder to parallelise.
The solution proposed is a least squares based integration scheme. The ma-
terial property samples provided by the image are fitted in each element by
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the polynomial p(&)Ta, where the column vector p is a polynomial basis
p={1&n & &nn?...}7 of a prescribed order and the column vectors a the
polynomial coefficients for each element e. The resulting material property
field is piecewise continuum and, in general, Cy discontinuous at the inter-
faces between elements. The polynomial p(&€)Ta, can be least squares fitted
to the material properties P; at the centre of the pixels &, by the minimization
of the functional II with respect to each one of the polynomial coefficients a;
as follows:

min Il = mi]n Z(H —p(&)"a)? (4)

Qg (671

This leads to the system of linear equations

[Z p(ﬁz)P(ﬁz)T] a= Z Pp(§,) (5)

which has to be solved to compute the coefficient column vector a for each
element in the mesh. For a visual representation of the three methods see
Figure 4.

Finally the element stiffness matrix is computed with (2) using Gaussian
quadrature required by the polynomial degree of the integrand. This reduces
the computational effort necessary to calculate the k., matrices because same
set of B matrices, obtained for an element of an arbitrary level, can be scaled
and used for all the elements in the mesh, Nadal et al. (2013).

It is worth highlighting that, in the framework of h-adaptivity, in which
cgFEM meshes consists of elements from different levels, this feature makes
the LS technique more efficient than the IS and Riemann sum-based inte-
gration schemes. Independently from the overall number of IP in the mesh,
these techniques require the full calculation of a B matrix for each Cartesian
grid level involved in the mesh, which is particularly expensive in the case of
coarse elements containing a high number of integration points.

For instance, if a mesh consists of elements from the level 4 of the Carte-
sian grid structure and each element contains 32x32x 32 pixels, the Riemann
sum requires the B matrix to be computed at 32768 positions. In the case of
linear interpolation functions, the number of locations is 8 times higher if the
integration is carried out by using the IS techniques whereas, if LS technique
is used, they are only 27.



If the mesh is A-refined and also consists of level 5 elements of 16x16x16
pixels the number of locations at which the B matrix has to be computed
increases by 4096. Additional elements from the levels 6, 7 and 8 introduce
512, 64 and 8 positions more respectively. In this case the total number of
B matrices to compute is 37448 in the case of the Riemann sum integration
techniques, whereas in the case of the LS techniques it continues to be 27 no
matter the levels involved.

Riemann sum Integration subdomains Fitting-based

i Bl 7 Ty

O Nodes B Integration point position @ Elastic property value

I
I
I
-0

[ Sep———
[ S

Figure 4: Schematic 1D representation for the integration techniques presented in Section
2.2.

A drawback of the least square fitting is that it alone cannot guarantee
neither the stability of the method nor the compliance with the energy con-
servation principles, as the values of the elastic properties extrapolated at
the Gauss Points might not lay in a physically admissible range. In this pa-
per we assume isotropic material models which only require two independent
parameters such as the Young’s modulus, which has to be positive, and the
Poisson’s ratio, which has to lay between 0 and 0.5. To keep the the solution
unique and physically consistent, we detect the elements which show unac-
ceptable values of the elastic properties at the Gauss Points and scale the
coefficients of the polynomial interpolation imposing that the values of elastic
constants are in a consistent range and their mean value over the element is
the same as in the uncorrected LS fitting.

In the following, we only use first order polynomial interpolations of the
element elastic properties as a series of drawbacks appear for higher orders.
It is worth anticipating that, for the interpolation of the FE solution, we use
linear shape functions because polynomial order higher than 1 suffer impor-
tant limitations in the framework of image-based cgFEM, as it is made clear
in Section 3. As the displacement is of low order, no gain is to be expected
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from increasing the order of the material property LS fitting. Instead it is
counter-productive as the computational cost increases due to a) the higher
number of I P and the corrections necessary to guarantee the method’s stabil-
ity, as more and more unrealistic elastic property values appear at the Gauss
points due to the typical oscillatory behaviour of higher order polynomials.

In CT-scans the pixel values, expressed in Hounsfield scale, depend on
the the average local X-ray absorption rate of the volumes represented by the
pixels. In the literature, Dance et al. (2014) the range of Hounsfield values
are related to different kinds of biological materials. For bones in particular,
a number of results have been published which relate the Hounsfield scale
to bone mineral density and finally to elastic material properties, usually
through non linear relationships This aspect lies beyond the purpose of this
paper, as a consequence, in the following, we will equally use different scales
with 2D and 3D images without pretension of proposing reliable material
properties but focusing on the numerical aspect of the method. Therefore, for
simplicity, in the numerical examples, the relation between the pixel values
and material properties will be defined as piecewise linear and interpolated
from typical values from the literature and only the case of isotropic materials
will be considered. The process originates relations between elastic properties
and pixel values qualitatively similar to the schematic graph in Figure 5.

In order to avoid a too aggressive homogenisation of the local properties,
the size of the FE mesh is tailored to the elastic property heterogeneity asso-
ciated to the bitmap. In the hierarchical structure, the grid of the n''-level
is obtained by splitting each element of the grid of the (n — 1)-level in two
new elements in each direction, therefore, in the following level, each element
generates 2° new elements, where D is the problem spatial dimension.

The image is immersed into an initial uniform grid in which the grey
value distribution is evaluated, see Figure 8 a). This is the beginning of a
recursive procedure of evaluation and h-refinement which stops when each
element satisfies the limitation imposed by the user on the elastic property
distribution or when the maximum mesh level allowed is reached, see Figure
8 b).

Let a! be the value of the Young’s modulus assigned to the pixel 7 within
the domain A. This initial implementation is based on the evaluation of the
I'% index, which represents the relative elastic property range associated to
the pixels in each element e and is evaluated as:
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Figure 5: Schematic representation of the relation between grey scale pixel values and
material properties

e — Ao max(af) — min(af”) (6)
B Ao maz(af) — min(af) ’

The extension of the variability evaluation to all the constants (2 for
isotropic or 21 for anisotropic and freely oriented orthotropic materials), re-
quired for the definition of the elastic compliance tensor, is straightforward.
Nonetheless, for simplicity, all the meshes presented in this paper are refined
on the basis of the Young’s modulus only. This simplification is admissible
as we are mainly interested in bone mechanics. A common assumption in
this field is that of isotropic material with a constant value of the Poisson’s
ratio of 0.3. The vast majority of relationships between elastic behaviour
and Hounsfield values available in the literature only involves the Young’s
modulus value.

The outcome of range-based mesh refinement is highly problem-dependent
and is affected by both the image characteristics and the voxel value-elastic
property relation. In the numerical examples in Section 3 we use a value
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Figure 6: Mesh refinement study

of 0.2 for the If index as we heuristically noticed that values around 0.2
usually lead to meshes adequate for our purpose. Figure 6 shows the mesh
density index Q/ DOF/DOF,,,, versus the I§ index value for the problems
shown in Section 4.1 and 4.3. The mesh density index provides a relative
dimension-independent estimation of the mesh density and is computed from
the problem dimensionality value D (which is 2 for 2D and 3 for 3D prob-
lems), the number of the degrees of freedom of the problem DOF and the
maximum possible value of degrees of freedom DOF,,,,, which corresponds
to a mesh having one element per pixel. The blue curve corresponds to the
X-ray grey scale image used in Section 3.1 whereas the red one to the CBCT
scan used for the models in Section 4.2 and 4.3. In both cases the I}, of
0.2 lays in a range of values for which the mesh refinement is sensitive to
the I}, but still easily controllable. Figures 7a, 7b, 7c and 7d correspond to
the values of I highlighted in Figure 6 as the extreme points of a range of
amplitude 0.1 around the value chosen for the numerical examples.

It is worth emphasizing that no error estimation method (issue that ex-
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Figure 7: h-adapted refinement sensitivity. Phalanx model of Section 4.1. a) I = 0.1; b)
If, = 0.1. Mandible model of Section 4.3. ¢) I =0.1; d) I, =0.1.

ceeds the scopes of this paper) is proposed to guide the h-adaptive mesh
refinement. Heterogeneity-based refinement can be considered analogous to
the geometry-based one in the case of CAD-based models. As a consequence,
it cannot be considered as an alternative to the use of error estimators as
heterogeneity alone does not determine high stress gradient values. Nonethe-
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less, it provides accurate results with a lower number of degrees of freedom
compared with uniform meshes and, in contrast to most error estimation
techniques, it is inexpensive and does not require any previous calculation.

b)

Figure 8: Mesh refinement process. a) Initial uniform mesh. b) h-adapted mesh.

2.3. Merging image- and geometry-based cgFEM for patient specific simula-
tion of future implants

Here we propose a procedure which takes advantage of both geometry-
and tmage-based cgFEM for simulating the effect of a future implant making
use of a patient-specific tissue model.

The first stage of the process is reading tissue image data, see Figure 9
a), and reshaping it in order to make them suitable for the mesh h-adaptive
process.

The prosthetic device is then introduced into the model as a closed geom-
etry defined by a CAD representation like a NURBS (non uniform rational
B-splines) surface immersed in the Cartesian grid structure which is over-
lapped to the bitmap, see Figure 9 b).

On the one hand the pixels whose centre is contained inside the closed
geometrical contour are deactivated because they correspond to the parts
which have to be removed in order to insert the implant, see Figure 10 a).
The pixels so ignored are the ones whose centres lay in the closed domains
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a) b)

Figure 9: Prosthetic device modelling. a) Bitmap domain. b) Geometric contour defined
on the Bitmap domain.

of the device. On the other hand, the closed geometrical domain is assigned
homogeneous material properties as in standard geometry-based cgFEM, see
Figure 10 a).

It is to be noted that, if the Riemann sum or the integration subdomain
based integration techniques are used, the intersection between geometry and
bitmap is not null neither their union perfectly covers the original image, see
Figure 11 a), whereas this does not occurs in the case of least-squares fitting,
see Figure 11 b).

Once the mesh has been created, three categories of elements are distin-
guished on the basis of their position with respect to the geometrical domain.
As shown in Figure 10 b), the elements of the hierarchical structure can be
external to the geometrical boundary (light grey elements), internal (dark
grey elements) or can lie on it (white elements).

All the elements inside the same geometrical domain have proportional
stiffness matrices k®, as in the geometry-based cgFEM, see Section 2.1, there-
fore the same efficient procedure is adopted. The external elements com-
pletely lie on the image, hence the same integration strategy as in image-based
cgFEM is adopted. The elements on the contour partially lie on both bitmap
and geometry. They are divided in triangular integration sub-domains on the
geometric side, as in the geometry-based cgFEM while, on the side of the im-
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Figure 10: Prosthetic device simulation. a) Geometric domain and active pixels corre-
sponding to the prosthesis in 9. b) Conceptual image of FEAVox mesh for the geometry-
image mixed problem.

age, the bitmap integration presented in Section 2.2 is applied only to the
active pixels, see Figure 11.

The sudden material change between prosthetic device and biological tis-
sue is detected by the image refinement procedure, hence the mesh is refined
in these areas and the inaccuracy associated to the excessive homogenization
of the material properties is controlled.

3. Validation

In this section, we present some validation results for 2D models based
on synthetic images focusing on the elastic property distribution and mesh
size effects in Section 3.1 and on the image resolution influence in Section
3.2.

They will show how, in cgFEM, standard mesh refinement techniques such
as element size reduction or interpolation order increase stop enhancing the
solution at the rate expected in FEM, when the discretisation error becomes
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Figure 11: Representation of the integration procedure adopted on the elements on the
contour of a geometrical domain in FEAVox a) Riemann Sum approach. b) Least-squares
fitting approach.

smaller than the modelling error which only depends on the image resolution.
As a consequence, they justify the use of linear interpolation functions and
meshes coarser than the pixmap in cgFEM.

As a measure of the accuracy of numerical analyses in this section we use
the following error in energy norm, see Ruess et al. (2012b):

‘er:c oD lodQ — [, oD lohd)

=100
fﬂez oD lodQ

e, = 100

where o, U" Q" and D;,, represent the FE stress, strain energy, problem
domain and material stiffness matrix respectively, whereas o, Ugy, 2e, and
D., the same magnitudes for the exact problem. The latter are calculated
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analytically if an exact solution is available as in the case of Section 3.1.1
and 3.2, otherwise they are substituted with reference values obtained from
more accurate FE models, as in Section 3.1.2 and 3.1.3. Note that we have
considered an absolute value in 7 to ensure a positive result that allows us
to represent the evolution of this error norm in a logarithmic scale.

In order to make the integration error negligible, all the validation prob-
lems have been solved adopting the IS approach to the element stiffness
matrix calculation, see Equation (3). All the models in this section have a
constant Poisson’s ratio value of 0.3.

3.1. Effect of mesh size and elastic property distribution

In this section, we study cgFEM convergence behaviour in the case of
uniform mesh refinement with different Young’s modulus distributions for
linear and quadratic FE interpolation. In order to better understand the
effect of the element size, the refinement is carried out until obtaining meshes
even finer than the corresponding bitmaps.

We consider three problems based on 128 X 128 pixel grey scale images.
In the first one the bitmap is created from a geometrical model containing
strong discontinuities, see Section 3.1.1, whereas in Sections 3.1.2 and 3.1.3
the images are obtained from analytical elastic property distributions.

3.1.1. A strong discontinuity case

The first case shows the convergence behaviour of the image-based model
of a homogeneous pipe with a circular cross-section loaded by internal pres-
sure under the hypothesis of plain strain condition according to Figure 12
a) and Table 2. This problem is a typical benchmark in computational me-
chanics and has a well known analytical solution. As usual, the model is
simplified by taking advantage of its symmetry, therefore, only one fourth of
the pipe is studied imposing convenient symmetry boundary conditions.

a [m)] 3 Material | E [MPa] | Grey level
b [m] 6 Material 1 0 0
P [MPa] 1 Material 2 1000 255

Table 1: Properties referred to the models in Figure 12

The image used in the simulation, see Figure 12 b), was obtained by
integrating a NURBs-based geometrical representation of the cylinder in a
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Figure 12: One fourth of pipe section with internal pressure in plain strain condition,
extracted from Nadal et al. (2013). a) Geometrical model. b) Corresponding bitmap
model

a [m] 3 Material | E [MPa] | Grey level
b [m)] 6 Material 1 0 0
P [MPa] 1 Material 2 1000 255

Table 2: Properties referred to the models in Figure 12

uniform mesh. This mesh had the same resolution as the desired resulting
image. We evaluated the percentage area of each element covered by the
cylinder and assigned a grey level proportional to this area percentage to
this element. Considering each element as a pixel we created the grey scale
image of the cylinder.

We chose to code the conversion from vector to bitmap representation
ourselves instead of using standard graphic software. Doing so we ensured
full control on the process and avoided introducing additional approxima-
tions in the final image as the procedure was intended to mimic an idealised
(noise free) X-ray scan which provides grey scale values proportional to the
material ratio inside the pixel area. By defining the area by a vector CAD
representation, integrating it over a uniform grid and converting the pixel
values into grey scale, we make sure that the only differences between the
models lay in the loss of local information on the boundaries, which is pixel-
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size dependent, and in the transformation of the area values into discrete
values of the grey scale.

We establish a linear relation between the Young’s modulus and the grey
scale computed by interpolating the values in Table 2. Doing so, we con-
sider the Young’s modulus to be proportional to the ratio of the geometrical
domain contained in each pixel.

Figure 13 shows the results obtained by uniform mesh refinement of the
models in Figure 12 in terms of strain energy and error. For the curves refer-
ring to the image-based model the solid trace represents super-pixel meshes,
coarser than the pixmap, whereas the dash-dotted trace represents sub pixel
meshes finer than the pixmap. Round markers indicates degree 1 of the
interpolation functions and square ones degree 2.

The upper graph represents the ratio between the FE energy norm and the
exact energy norm versus the number of degrees of freedom for image-based
models with linear and quadratic interpolation functions. The horizontal
black lines represent reference values: the exact solution in solid trace and
an estimation for the singular pixmap solution of the image in dashed trace.
This estimation was obtained by solving the image problem with a very re-
fined quadratic mesh, corresponding to the level 9 of the nested Cartesian
structure, see Figure 1. The reference lines shows the fact that the exact so-
lution of the pixmap (which is not available) is different from the analytical
solution of the geometrical model due to the piecewise discontinous nature of
the pixmap. As a consequence the blue and red curves converge to this other
value instead of converging to the exact solution of the geometrical problem.
This is apparent for subpixel meshes, both for linear and quadratic interpola-
tions. Due to the fact that, in this case, the estimation for the image singular
solution is higher than the exact one, the image-based convergence curves in-
tersect the solid black line, for a lower number of degrees of freedom in the
case of quadratic interpolation functions. These intersections are marked by
vertical dotted lines which are prolonged to the lower graph because they are
relevant to understand the error behaviour.

In the lower graph the results are plotted as relative error in energy norm
versus degrees of freedom. As a reference, we plot the geometrical model error
convergence curves calculated with the geometry-based cgFEM technique.
They are black lines characterised by the theoretical slope values of 0.5 and
1 for linear and quadratic interpolation functions.

As in the upper graph, the blue and red curves refer to image-based
models with linear and quadratic interpolation functions. Error is calculated
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Figure 13: Relative energy norm and error convergence of the problem shown in figure 12
with uniform mesh refinement and image resolution of 128 X 128 pixels

using the analytical strain energy value of the reference geometrical problem
in Equation (7). As a consequence, in each of them an ideal point can be
individuated which corresponds to the relative intersection in the upper graph
and for which the error equals 0. The vertical dotted lines are, therefore,
asymptotes for the error curves and the asymptotic parts of the blue and red
curves are represented with a dashed trace.

These 0 error points do not correspond to any actual mesh and will only
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appear if the singular image solution has a strain energy higher than the ex-
act solution. They are the result of a strain energy compensation between the
discretisation and the modelling error since the former decreases throughout
the refinement process, as in usual FEM, whereas the latter increases be-
cause finer meshes better capture the difference between the pixmap and the
geometrical model.

As the number of degrees of freedom increases beyond the vertical asymp-
totes, the blue and red error curves significantly diverge from the respective
geometrical FE solutions. As a consequence, they lose the theoretical con-
vergence rates in logarithmic scale of 0.5 for linear and 1 for quadratic inter-
polation functions.

For linear interpolation functions, the geometry and image-based solu-
tions behave alike provided that the elements are bigger than the pixels and
the solution clearly diverges for sub-pixel meshes (represented as dash-dot
lines). In the case of quadratic elements, in contrast, this phenomenon starts
appearing for coarser meshes because of the higher discretisation error re-
duction rate.

In the lower part of Figure 13 we also plot the image-based model error
convergence curves with respect to the image solution, in cyan and magenta
for linear and quadratic elements respectively. They result from substituting
the exact strain energy U in Equation (7) with the estimation of the pixelised
model solution corresponding to the black dashed line in the upper graph.

As the mesh is refined these curves tend to have the same slope. This
behaviour is reasonable considering that the pixelised model is piecewise dis-
continuous and, as a consequence, the singularities prevent the convergence
from reaching the theoretical values guaranteed for problems with smooth so-
lutions. The convergence slope is, therefore, determined by the singularities
and is independent from the FE interpolation order.

In this numerical example, the bitmap intrinsic inaccuracy in the domain
boundary representation prevents the numerical solution from converging to
the exact one with the increase of the number of degrees of freedom. In
contrast a limit appears for which the increase of computational cost due to
the mesh refinement ceases to reduce the error with respect to the analytical
solution. In this case this limit can be set in a neighbourhood of 2 X 2
and 16 X 16 pixels per element for linear and quadratic FE interpolation
respectively. Refining the mesh beyond these values is uneconomical. The
number of mesh levels suitable for the simulation is broader for linear FE
interpolation functions, as a consequence, this polynomial order appears more

23



suitable for the h-refinement of cgFEM.

3.1.2. A smooth Young’s modulus distribution

Figure 15 shows the relative energy norm and error versus the degrees of
freedom for the plate [-0.5, 0.5]x[-0.5, 0.5] loaded with uniform unit tension
on the upper side and symmetry boundary conditions on the lower and left
sides. The Young’s modulus distribution is expressed in Equation (8) and
shown in Figure 14 a) with the problem boundary conditions. The 128 X
128 pixel image was obtained computing the analytical mean value of the
Young’s modulus in the area of each pixel and converting it into grey scale.

E(z,y) = (y + 10)(z + 10)? (8)

In the image-based models we establish a linear relation between colour and

Figure 14: Square plate models representing the smooth variations of Young’s modulus
given in Equation (8) and 9 respectively

stiffness in such a way that the minimum of the function in Equation (8) on
the problem domain corresponds to 0 and its maximum to 255 in grey scale.

In Figure 15, as in the previous section, the upper graph compares the
energy norm convergence of the image-based models for linear (blue) and
quadratic (red) shape functions. The reference and the estimated image
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Figure 15: Relative energy norm and error convergence of the problem shown in figure 14
a) with uniform mesh refinement and image resolution of 128 X 128 pixels

solutions are traced as solid and dashed black lines respectively. These solu-
tions were computed with quadratic 8 level meshes integrating the element
stiffness matrix with the analytical Young’s modulus distribution in the first
case and with the value from the 128 X 128 bitmap in the second one. As
in the problem of Section 3.1.1, the estimated strain energy is higher for the
discontinuous model than the reference one and, as a consequence, the blue
and red curves intersect the solid black line. The intersection can actually
be seen only in the case of linear interpolation functions in Figure 15 for an
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element size slightly lower than 2 X 2 pixels per element. Note that, in this
case, the convergence curve starts diverging from the theoretical behaviour
of the continuous model for a coarser mesh than in the previous numerical
example. In the quadratic case is occurs for a coarser mesh outside the rep-
resented range. The intersection is marked and prolonged to the error graph
and used to draw the asymptotic curve branches. In the lower graphs the ref-
erence problem black curves appear to converge according to the theoretical
slope values for linear and quadratic interpolation functions. Despite the fact
that in this case the reference and the estimated image solution are closer
to each other, the behaviour of the image-based simulation error is similar
to the one in Section 3.1.1 for linear interpolation functions (blue line). In
contrast, for the quadratic meshes (red line), the discretisation error is negli-
gible compared with the modelling one. As a consequence, the corresponding
error in the lower graph does not follow the reference problem but directly
converges to the modelling error. Note that, for linear interpolation func-
tions, the error convergence curve is less stable than in the previous cases
and shows a certain divergence from the theoretical curve even at 2 X 2 pixels
per element.

3.1.3. A bisinusoidal Young’s modulus distribution

We obtained the model in figure 14 b) by substituting the Young’s mod-
ulus distribution in Equation (8) with the one in Equation (9) for the plate
in Section 3.1.2.

E(z,y) = (y + 10)(z + 10)*(1 + 0.7 sin 27z sin 27y) 9)

The results, shown in Figure 16, are computed as in the previous problem.
In contrast to the model in Section 3.1.2, in this case the energy norm value
of the reference solution is higher than that of the estimated image solution
ergo neither the blue nor the red curve intersects the exact solution, therefore
the asymptotic part is missing in the error curves of the second graph.

Since there is no difference between the way the models shown in Figure
14 are obtained, we deduce that the mutual relation between the exact strain
energies of the continuous model and discontinuous pixelised one is problem
dependent.

Similarly to the results in Figures 13 and 15, the error behaviour in the
linear interpolation case in Figure 16 follows the reference problem for meshes
coarser than the pixmap whereas the mesh refinement stops reducing the er-
ror value for a very low number of degrees of freedom for quadratic elements.
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Figure 16: Relative energy norm and error convergence of the problem shown in figure 14
b) with uniform mesh refinement and image resolution of 128 X 128 pixels

As in the previews case, the cause is an intrinsic bitmap model error which
cannot be reduced by the spatial or order refinement of the mesh. In con-
trast to the model in section 3.1, in this case the model error is related to
the discontinuous elastic property representation instead of the boundary
inaccurate definition.
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3.2. Image resolution effect

In order to evaluate the influence of image resolution on cgFEM results,
we study the behaviour of numerical models based on images of 128 X 128,
256 X 256, 512 x 512 and 1024 X 1024 pixels obtained from the geometri-
cal model shown in Figure 12 a) following the same procedure described in
Section 3.1.1.
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Figure 17: Relative energy norm for the model in figure 12 with different resolutions and
uniform refinement

The convergence curves for linear (p=1) and quadratic (p=2) interpola-
tion functions are shown in terms of relative strain energy versus degrees of
freedom in the same scale in Figure 17. In this case we only show results for
super-pixel meshes with a minimum number of 1 pixel per element, that is,
no sub-pixel mesh was used, in contrast to Section 3.1.1. As a reference the
exact solution is shown as a dashed black line. As to be expected, in both
graph the higher the image resolution, the closer the solution strain energy
is to the exact one. As in Figure 13, all the curves intersect the exact solu-
tion and tend to higher strain energy values, which tend to get closer to the
exact value as the image resolution increases. Nevertheless, in the range of
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Figure 18: Relative error in energy norm for the model in figure 12 with different resolu-
tions and uniform refinement

super-pixel meshes, the use of linear shape function has a smother approach
to the exact solution.

This can also be seen in Figure 18, in which the relative error in energy
norm versus degrees of freedom is plotted. As in Section 3.1.1, the error was
calculated according to Equation (7) using the benchmark problem exact
solution. In this case, the black curves represent the geometry-cgFEM con-
vergence curves with the theoretical slopes of 0.5 for linear and 1 for quadratic
interpolation functions. The asymptotic part of the curves tends to appear
earlier with respect to the most refined mesh, as the image resolution in-
creases. Nevertheless in the case of linear interpolation functions, the error
curves closely follow the geometrical results if the refinement is not carried
out beyond the element size corresponding to 2 X 2 pixels per elementor 4 x4
pixels in the case of the 256 X256 pixels image. For quadratic interpolation
functions, the curves lose the theoretical slope for coarser meshes.

WithTthese and the previous results we can conclude that, in general,
linear elements guarantee a reasonable convergence rate as long as the ele-
ments contain a number of pixels higher than what we can call the reliability
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limit that would be 2 X 2 or 4 X 4 pixels , depending on the problem and
the image resolution. This implies that, if we consider our target solution as
the exact continuous one, which in the general case is unknown and cannot
be estimated by FE refinement, it may be convenient to carry out simula-
tions with super-pixel meshes and that in traditional pixel-based methods
the increase of computational cost does not correspond to the accuracy en-
hancement expected in geometry-based FE. In addition the availability of a
higher number of valid mesh levels for which the theoretical convergence rate
is kept makes linear interpolation function more suitable for hA-refinement.

On the other hand, if we consider our target the singular solution of
the image-based problem, as soon as the mesh refinement starts capturing
the problem singularity, this determines the convergence rate of the solution
independently from the order of the FE interpolation functions.

Taking into account these considerations, all the problems presented from
now on are solved with linear elements.

4. Numerical results

The following are numerical results based on real medical images and
obtained by using linear interpolation functions and h-adapted meshes.

In Section 4.1 we use a 2D X-ray scan to study the performance of dif-
ferent integration techniques comparing uniform and colour-based h-adapted
meshes.

In Section 4.3 we show an application in 3D for which the model is ob-
tained from the CT scan of a human jaw.

Finally, in Section 4.2 , we present the 3D model of a dental implant as an
example of interaction between the the geometry and image-based cgFEM
techniques.

4.1. cgFEM application to 2D X-ray scan. Quadrature rule influence

In this section we evaluate the behaviour of the different integration pro-
cedures explained in Section 2.2 with uniform and colour-coded h-adapted
refinement on a real X-ray scan. For this purpose, we use the phalanx 2D
model in Figure 19.

The relation between Young’s modulus and image grey levels is considered
as a Cyp continuous, piece-wise lineal interpolation of the values in Table 3
extracted from the literature, see Viceconti et al. (1998) and Kim et al.
(2010). Regarding the Poisson’s ratio, we used a uniform value of 0.3.
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a)

Figure 19: a) Hand X-ray image. b) Phalanx image used in the simulation. The curves
used for the boundary condition imposition are shown.

Material Air Muscle | Bone 1 | Bone 2
Grey level | 0 150 190 255
E [GPa] 0.000 | 0.645 14.000 | 14.200

Table 3: Material Properties referred to Figure 19.

The area of interest of the X-ray image was selected, see 20 a), and two
curves were created in order to apply a null displacement Dirichlet boundary
condition, represented with green triangles , and a 1 MPa uniform pressure
Neumann boundary condition, represented with cyan arrows, see Figure 19
b).

Figure 20 shows the meshing step and the von Mises stress distribution
for an h-adaptive refinement on a coarse uniform mesh of level 4 up to level
8 of the Cartesian structure, limiting the maximum value of the variation
index of the pixel field to be Iy < 0.2, see Equation (6). In each refinement
step the elements which do not satisfy this condition are split into 4 new
elements. The new element neighbours are also refined, in turn, to guarantee
the maximum level difference between adjacent elements is not greater than
1. Note that although the different biological tissues have not been explicitly
segmented, the mesh refinement process automatically identifies the bound-
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2)

Figure 20: a) ¢gFEM mesh obtained by range evaluation guided h-adaptivity. b) von
Mises stress distribution

aries of the tissues and refines the mesh to properly capture their geometry.
The von Mises stress field calculated at the integration points is shown in Fig-
ure 20 b). It is apparently consistent with the problem characteristics even
though in 2D X-rays the effect of the projection along the third dimension
makes it difficult to distinguish between different materials.

The convergence study in Figure 21, carried out with uniform refinement,
shows the performance of the different quadrature described in Section 2.2.
The problem strain energy is plotted versus the number of degrees of freedom
(DOF), in the first chart, and versus the mesh total number of integration
points (IP), in the second chart. Both of them are relevant because, on the
one hand, the number of degrees of freedom affects the time and hardware
requirements necessary to solve the FE system of equations and, on the
other hand, a high number of integration points increases the computational
resources necessary to create the aforementioned system of equations.

In Figure 22 we compare the behaviour of uniform (dashed) and h-
adapted (solid) meshes in terms of strain energy versus degrees of freedom.

In both figures, the blue curves refer to the integration by subdomain
decomposition, see Equation (3), the red ones to the Riemann sum based
integration, see Equation (2), and the magenta curves to the integration
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Figure 21: Strain energy versus number of degrees of freedom (left) and integration points
(right) for uniform refinement of the model in Figure 21 for different integration schemes.

based on least square fitting, see Equations (4) and (5).

The integration by subdomain decomposition is the one used in the val-
idation results, see Section 3. In general, it is very expensive because the
model total number of integration points is high and independent from the
mesh. Nonetheless, it does not introduce any relevant further error source
since it implies the use of the adequate Gauss quadrature and the direct use
of the image information. As a consequence, we can adopt it as a reference
to judge the performance of the other integration techniques.

All the results in Section 3 show that, for linear shape functions, the
difference between the convergence curves of the geometry-based solution
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Figure 22: Strain energy versus number of degrees of freedom for uniform and h-adapted
refinement of the model in Figure 21 for different integration schemes

and the image-based image-based ones is negligible provided that at least
4 X 4 pixels are contained in each element. For such an element size the
pixelised nature of the model shows to have a very small influence on the
results. On the basis of this consideration, we plot the black dash-dotted
horizontal line which corresponds to the strain energy associated to this mesh
size as a reliability limit for the mesh refinement.

In Figures 21 and 22, the red curve appears to be as accurate as the
blue one for values below the reliability limit, nonetheless it is less expen-
sive because it only has one-fourth the amount of integration points. For
finer meshes, beyond the dash-dotted line, it results in a reduced integra-
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tion scheme that can influence the accuracy of the element stiffness matrix
k.. On the contrary the least square-based integration scheme, magenta
curve, underestimates the element stiffness for coarse meshes. In contrast
to the other two integration techniques, with the least square-based inte-
gration the number of integration points depends on the mesh refinement.
For coarse meshes the number of integration points is lower whereas for very
fine meshes, beyond the reliability limit, it becomes slightly higher than the
subdomain decomposition and Riemann sum-based techniques.

Figure 22, shows how the integration technique behaviour does not change
in the case of h-adapted refinement and how h-adapted meshes can provide
similar strain energy values as the uniform ones with fewer degrees of free-
dom and, as a consequence, with a lower computational cost. The uniform
refinement test shows that the LS technique appears as accurate as the refer-
ence integration scheme for meshes consisting of elements which contain less
than 16 X 16 pixels. For larger elements the LS elastic property smoothing
appears to underestimate the element stiffness, which, in this particular case,
makes the global energy of the solution closer to the convergence value than
the other integration techniques. LS provides fewer IP in the mesh than the
Riemann sum for elements containing more than 2 X 2 pixels. In contrast,
figure 22 shows that, if a proper number of refinement levels is available,
the h-refinement process detects and splits the large heterogeneous elements
unsuitable for the LS integration and provides accurate, less expensive re-
sults. On the basis of these results and the aspects highlighted in section
2.2, we consider the LS integration technique an effective way to reduce the
computational cost in the context of heterogeneity-based h-adaptivity.

4.2. A 3D cgFEM jaw bone model

As a mere example of efficiency of the meshing process, in Figure 23
we show one eighth of an h-adapted model obtained from a cone beam CT
(CBCT) without previous segmentation. This consists of about 2.8 million
nodes and was obtained in 63 seconds with an Intel(R) Core(TM) i7-3770K
3.50 GHz and a RAM of 16 GB of 451 X 451 X 451 voxels. It is not
suitable for calculation because of the impossibility of assigning univocal
elastic properties to the pixel values. For this reason, we reduced the analysis
area to the sole bone by segmenting the CBCT, see Figure 24. The voxels are
cubes and their side is 0.2 mm long. The scan underwent a previous reshape
in which empty pixels (corresponding to null Young’s modulus) were added
to the scan to form a image in order to fit the hierarchical mesh structure. We
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Figure 23: One eighth of a h-adapted mesh of an unsegmented dental CBCT scan.

Grey level | 0 227 | 228 | 1500 | 2000 | 4095
E [GPa] |10%[10%[0.5 |15 |7 30

Table 4: Material Properties referred to Figure 19.

also applied a semi-automatic segmentation based on thresholding, domain
growth and erosion which provided a logical matrix used to exclude from the
calculation mesh elements only containing irrelevant voxels, see Figure 24 a).

Concerning the material properties, we use a fix Poisson’s ratio of 0.3
whereas for the relationship between voxel value and Young’s modulus a
linear interpolation of the reference values in Table 4. These were chosen from
the literature without tackling the problem of the conversion between CBCT
grey values and Hounfield scale, see Reeves et al. (2012), which exceeds the
purpose of this paper.

The colour-based h-adapted mesh was obtained by setting the maximum
Young’s modulus range allowed in each element to 20% of the full-scale.
The recursive refinement process was carried out on an initial uniform mesh
coinciding with the level 2 of the nested Cartesian grid structure and the
maximum level allowed for the elements was 8, for which they contain 2 X
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a) b)

Figure 24: Jaw CBCT scan based model a) Segmented jaw. b) FEAVox h-adapted mesh.

2 X 2 voxels, see Figure 24 b).

The element stiffness matrices were integrated by using LS-based tech-
nique, see Section 2.1. The boundary conditions of the problem are shown
in Figure 25. All degrees of freedom were restrained in the nodes belonging
to the green surface, whereas a uniform pressure of 1 MPa is applied on the
red square surface with a side 10 mm long.

The result is shown in Figure 26 in terms of von Mises stress field. The jaw
bone cross section on the right lie on the vertical grey plane in Figure 25. In
Figure 26 we can clearly distinguish the area where the Neumann boundary
condition is applied and the bending stress distribution of the cortical bone
on the jaw cross-section.

The model presented in this case study is obtained from a clinical CBCT
scan and is characterised by the complexity and computational cost typical
of actual simulation in the biomechanical field. Even though the software
is implemented in MATLAB®, which is affected by the typical slowness of
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Figure 25: Boundary conditions for the problem in Figure 24. Lengths are expressed in
mm.

interpreted languages, it can handle problems of this size on a regular PC
thanks to the characteristics of cgFEM. In particular the mesh creation and
the integration of the element stiffness matrices took advantage of the speed
provided by the hierarchical Cartesian grid structure and the LS integration
technique respectively whereas the computational cost of the solution of the
system of equations is reduced by the DOF h-adaptive strategy and the DOF
reordering made possible by the a priori knowledge of the mesh structure.
This last aspect was exhaustively treated in Nadal (2014).

4.3. Image and geometry-based cgF'EM application. Dental implant

The objective of this example is to test the suitability of FEAVox for the
analysis of the interaction between a prosthesis and the surrounding biolog-

ical tissue in the case of complete osteointegration following the procedure
described in Section 2.3. For this purpose we use the 3D NURBs-based CAD
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Figure 26: von Mises stress field expressed in MPa for the problem in Figure 24.

model of a dental implant, see Figure 27 b) and the subregion highlighted
in Figure 27 a) of the segmented jaw CBCT scan used for the simulation in
Section 4.2.

The CAD model was immersed into the portion of the CBCT scan, the
voxels contained in the device volume were deactivated in the corresponding
logical sub-matrix from the segmentation process. The assembly and the
corresponding h-adapted FE mesh are shown in Figure 28 a) and b) respec-
tively. Homogeneous Dirichlet Boundary conditions are enforced upon all
the DOFs of the nodes lying on the green surfaces in Figure 28 a) and a
distributed load with components of -2 MPa in the y and z directions is
applied on the CAD model surface highlighted in red. The bitmap and the
geometry were initially immersed in a uniform mesh of level 4 and then an
h-adaptive refinement was performed by imposing I'y, < 0.2. The maximum
refinement level allowed was 5.

The same material properties as in the previous problem were used for the
CBCT scan, see Section 4.2, except for the prosthesis which was assumed to
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Figure 27: Model components. Position is expressed in mm. a)Part of the CBCT ref used
in this simulation b) Screw CAD model.

be made of titanium and, as a consequence, was assigned a Young’s modulus
and a Poisson’s ratio of 110 GPa and 0.32 respectively. The least-square
integration scheme was used for the CBCT scan. In the elements cut by the
CAD model the integration was performed by decomposition in tetrahedral
subdomains on both sides of the interface, see Figure 11 b).The subdomains
on the interface were integrated by using the NEFEM-integration techniques
as described by Marco et al. (2015).

Figure 29 a) shows the von Mises stress distribution of the assembly. In
order to make visible the tress distribution inside the bone, the CBCT scan
was cut with the grey plane shown in Figure 28 a) and only the front of the
bitmap is shown. The von Mises stress distribution in the prosthetic device is
magnified in Figure 29 b). The typical load transfer between the implant and
the cortical bone at the implant upper threads and the lower stress state at
the interface between the deep trabecular bone and the screw tip are visible.
The stress map is plotted differently for the CBCT scan and and the CAD
model. In the former the strain values are computed at the centre of the
pixels and the D matrix associated to the pixel is used to compute the stress
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a) b)

Figure 28: Jaw CBCT scan based model a) Segmented jaw. b) FEAVox h-adapted mesh.

in that position. In the latter, in contrast, we use the SPR technique to
obtain a C| continuous stress field. For representation purposes only, this is
computed at the vertices of the external faces of the integration tetrahedra
, represented as finer facets. This example shows how suitable cgFEM is for
the simulation of osteointegrated implants in a patient specific framework.
The method makes it possible to directly locate the implant CAD model on
the volume of the bitmap model of the mandible to obtain a conjoined model.
On the one hand, ¢gFEM eliminates the necessity of further manipulation
of the models and, on the other hand, it takes advantage of the specific
strengths of each of them: the detailed spatial distribution and the elastic
properties provided by the CT scans exact geometrical representation of the

CAD.
5. Conclusions

This paper presents a special version of the Cartesian grid Finite Ele-
ment Method (¢gFEM) especially developed to solve image-based structural
problems.
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Figure 29: von Mises stress field expressed in MPa. a) Front section of Figure 28 a). b)
Prosthetic device detail.

It is based on a hierarchical structure of nested Cartesian grids and is
capable of creating and refining FE models with very little user intervention
taking into account the heterogeneity of the human tissues given by a medical
image. The method is based on the availability of a reliable correlation
between pixel values and material properties.

The most important characteristics of the method are: a) a reduction
of the segmentation effort as long as voxel values are capable to account
for the difference in the elastic behaviour (for instance, there is no need
to separate the trabecular and cortical bone domains); b) the possibility of
taking into account all the material property heterogeneity; c) a decrease
of the geometrical modelling cost due to the fact that geometrical entities
corresponding to the living tissues are only necessary for the imposition of
the boundary conditions.

In addition, the method is suitable for modelling the effect of the inter-
action of implants with bones on the basis of preoperative medical images in
a patient-specific framework. The methodology has been successfully imple-
mented in 2 and 3D.

The validation tests justify the use of linear interpolation functions and
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indicate a proper refinement range in which the the modelling error is neg-
ligible and, therefore, the increase in the computational cost (mesh refine-
ment) corresponds to a predictable increase in the solution accuracy. Two
voxel-based and a least-square fitting-based integration schemes have been
presented. The latter has proved to be as accurate as the other two in the
framework cgFEM h-adapted strategy while being computationally more ef-
ficient. The comparison between the reference and image-based models of
different resolution shows an appropriate behaviour of the numerical tech-
nique.

This technique made it possible to easily create a FE model directly from
an X-ray image and to obtain the bone stress distribution. Similarly, it
allowed us to create a FE model of a system bone-prosthesis as a whole in
a simple way. The numerical results obtained with X-ray and CBCT scans
show the high potential of this technique.
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