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1.1. Graphene 

Since the Nobel Prize for Physics was awarded in 2010 to Andre Geim and Konstantin 

Novoselov there has been a continuous and increasing interest in exploring and 

exploiting the unique properties of graphene.[1-3] Although the existence of graphene 

was known since the earlier years of the XXst Century with the development of X-ray 

by Laue and Bragg[4], isolation of a single graphene layer was not reported.  

Due to its simple crystal structure and its high crystallinitity, pyrolytic graphite 

was one of the favorite materials to study the applicability of X-ray diffraction to 

determine the structure of crystalline solids.[5, 6] At that time it was determined that 

pyrolytic graphite was constituted by the stacking of layers, termed as graphene. 

Graphene is a bidimensional (2D) material constituted by layers of a single atom 

depth constituted by carbon atoms with sp2 orbital hybridation in a hexagonal 

arrangement. Figure 1.1 shows a layer of ideal graphene and the crystal structure of 

graphite. 

a b

 

Figure 1.1. The honeycomb lattice of a layer of ideal graphene (a) and the structure 

of graphite (b). 

 

However, although the existence of graphene was known, Geim and Novoselov 

were able to isolate for the first time a single monolayer and study their unique 

mechanical and electrical conductivity. The Swedish Academy of Science awarded the 



        

 Chapter 1 

4 

 

Nobel Prize to these researchers "for groundbreaking experiments regarding the 

two-dimensional material graphene". Being one atom thick graphene constitutes the 

physical limit of thickness for a material in where all the constitutive atoms are 

exposed to the external surface for interaction with the environment. A consequence 

is the large theoretical specific surface area of graphene that has been estimated as 

large as 2650 m2×g-1.[7, 8]   

The fact that all the atoms are accessible is also responsible for the large 

adsorption capacity of graphenes. Since the electronic configuration of graphenes 

has highest occupied molecular orbitals constituted by an extended  cloud above 

and below the basal graphene plane, graphenes can interact with adsorbates by 

relatively strong − interactions, as well as dipolar interactions and van der Waals 

forces.[9-12] Figure 1.2 shows the possible interactions between graphenes and 

adsorbates. 

a b
Interaction π-π

 

Figure 1.2. (a) Interaction of the π orbitals of G with the atomic orbitals d of metal 

NPs[13] and (b) Non-covalent intermolecular π-π interaction of G with other flat 

molecules (pyrene) bound to metal complexes (Ru, Pd).[14, 15] 

 

These π-π interactions are also responsible for the tendency of graphenes to 

undergo self-stacking and agglomeration. According to the Carbon guidelines for 

graphene and related materials, the term graphene should be reserved for single 

layer materials, something that requires the material to be deposited as film on a 

surface of a substrate or to be suspended in a liquid medium. As solid powders, some 
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percentage of aggregation occurs naturally as can be determined by the appearance 

in these powders of broad diffraction peaks, indicating some degree of stacking 

diffracting X-rays. 

Besides ideal graphene constituted exclusively by carbons in hexagonal geometry, 

there are defective graphenes in where pentagons, heptagons, carbon vacancies and 

even holes can be present on the layer. [16-20] Other possible defects are related to the 

presence of heteroatoms in the structure, either in low proportion (“dopants”) or in 

larger proportion. Among these heteroatoms oxygen and nitrogen are the most 

common ones, but there have been reports indicating the presence on the defective 

graphene of other heteroatoms, including B, S, Si, halogens, etc.[21-25] Some of them 

can be the possible active sites on the graphene sheets for the catalytic reactions. 

Figure 1.3 summarizes possible defects that can be encountered on the structure of 

defective graphenes. 

 

Figure 1.3. Representation of the types of defects present in a sheet of graphene.[26] 

 

The presence of defects modifies the intrinsic properties of ideal graphene. In 

particular, it has been reported that under favorable conditions ideal graphene 

behaves as a zero-band gap semiconductor enjoying high electrically conductivity, 

comparable to that of Cu and Ag. In addition, electron mobility in graphene is even 

larger than in metals and, for this reason, graphene is an ideal material for 
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optoelectronics, where fast response of the material at GHz frequencies can be 

achieved.[1,2,27,28] This fast response has implications in areas such as transmission of 

information in which larger amount of data can be submitted in shorter time. The 

presence of defects may cause the creation of a band gap with separation of the 

conduction and valence bands in energies that can be proportional to the density of 

defects on the graphene layer.[29-32] Also, electrical conductivity decreases 

substantially from the maximum value and electron mobility becomes slower. Figure 

1.4 illustrates the change from conductive to semiconductive graphene, as 

consequence of the presence of defects and heteroatoms on the graphene layer. 

Graphene Defective graphene
 

Figure 1.4. Band gap of pristine graphene and defective graphene.[33] 

 

This change from conductive to semiconductive graphene is also reflected on the 

optical absorption and transparency of graphene. In principle, ideal graphene has a 

negligible absorption for radiation wavelengths in the whole range from UV to the 

visible. Stacking of graphene layers increases light absorption, but the material still 

has a “neutral” absorption in the UV-vis region, meaning that absorptivity and 

transparency is constant at all wavelengths. Stacking of four layers can be visually 

detectable by a gray tint that tends to black and reflective surface upon increasing 

the number of layers.[34, 35] Figure 1.5 shows transmittance properties of single and 

few-layers graphene films. As it can be seen, the single lay graphene can have a value 

of about 97% in optical transmittance.  
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Figure 1.5. (a) Photographs of graphene films with 1–4 layers after the transfer 

produce to the glass substrate and (b) optical transmittance of these single and 

few-layers graphene films. The inset shows the transmittance of stacked graphene at 

λ = 550 nm as a function of the number of layers.[36] 

 

The presence of defects determines the appearance of an absorption band, 

generally in the UV region that is associated to electronic transitions from the 

valence to the conduction band of the semiconductor. As typical inorganic 

semiconductors, defective graphenes can classified as “p” or “n” semiconductors 

depending on the Hall effect in which electrical continuous currents undergo left or 

right deviation in the presence of intense magnetic fields. This is related to charge 

mobility and is due to the nature of the charge carrier, either electrons or holes. 

Figure 1.6 illustrates the Hall effect in a conductor. 

 

Figure 1.6. Representation of the Hall effect produced by the separation of charges. A 

current flows through the interior of conductor, in the presence of a magnetic field 

with a component perpendicular to the movement of the charges. 
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Figure 1.7 summarizes many other unique properties of graphenes that, as 

commented earlier, would depend on the presence of defects, doping and the degree 

of stacking. 

 

Figure 1.7. Illustration of the structure of graphene and some of its main properties. 

 

 

1.2. Graphene preparation 

There are basically two strategies for graphene preparation, denoted as 

“bottom-up” and “top-down”. Figure 1.8 summarizes these two complementary 

approaches for graphene formation. 

 

Figure 1.8. Two general strategies, top-down and bottom-up, for the preparation of 

graphene. 
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In the bottom-up approaches small molecules condense to form the graphene 

sheet. The most widely used method is chemical vapor deposition (CVD) synthesis on 

hot metal surfaces.[37-41] The typical precursor in this CVD process is methane and the 

atmosphere contains some hydrogen also. The metals most widely used in the CVD 

method are Ni and Cu that are heated at temperatures about 1000 oC. These metals, 

at the reaction temperature have catalytic hydrogenating/dehydrogenating activity 

and cause decomposition of methane into carbon and hydrogen, a process that can 

have even interest as a way to obtain hydrogen gas from methane. The process starts 

with the cleaning of the metal surface by exposing it to hydrogen at the reaction 

temperature. This step cleans the possible oxide overlayer that could be present on 

the Ni or Cu sheet, forming water in the process. After cleaning the metal surface, 

the chamber is fed with methane that undergoes decomposition. Equation 1.1 

summarizes the reaction taking place, while Scheme 1.1 illustrates the CVD process 

of graphene formation and Scheme 1.2 describes the mechanism of the process.  

CH4 (g) → Cg + 2H2 (g) 

Equation 1.1. The equation for describing the graphene growth in a reactive CH4/H2 

atmosphere in the CVD process.[42] 

 

Scheme 1.1. Procedure for the formation of graphene using the CVD technique.[43] 
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Copper atom

Methane molecule

Hydrogen molecule

Carbon atom
 

Scheme 1.2. Description of the mechanism of formation of a graphene film on a 

copper foil by the CVD process in several stages: (i) The copper foil is heated under 

vacuum to 1500 oC and a hydrocarbon such as methane is dosed. (ii) The 

hydrocarbon gets in contact with the copper atom and is pyrolyzed, resulting in the 

formation of hydrogen and atomic carbon that is deposited on the copper atom. (iii) 

Perpendicular view of these carbon atoms that are ordered on the copper atom in 

hexagonal form due to the template effect exerted by the copper atom. (iv) Finally on 

each copper atom the same thing happens, generating a carbon film in all the copper 

atoms and over time these carbon atoms spontaneously bond and generate a sheet 

of graphene on the "sea" of copper atoms. 

 

As it can be seen in Schemes 1.1 and 1.2, as the C atoms from methane deposit, 

they remain on the surface due to the low solubility of C in Cu or at the surface and 

subsurface in the case of Ni, for which C solubility is somewhat higher than for Cu. 

These carbon atoms at the metal surface start to surround each of the Cu or Ni 

atoms of the surface forming hexagons. Up to six C atoms can crown a Ni or Cu atom 

and this is one of the reasons why the graphene sheet develops in the CVD method. 

This mechanism of graphene formation by CVD has been supported by the matching 

of the 111 surface of Cu and Ni with the graphene sheet. Therefore, if other different 

surfaces of the metals are exposed in the CVD process, the graphene growth 
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becomes considerably less favorable due to lattice mismatch and also the sheet has 

less quality due to the presence of defects that include the formation of pentagonal 

and heptagonal cycles and carbon vacancies in addition to the prevalent hexagonal 

geometry of ideal graphene. For these reasons, high quality graphene sheets are 

prepared with Cu and Ni metal surface with exposing 111 planes. The CVD process 

was patented by Samsung and subsequent patents refer at how to transfer the 

graphene sheet from the metal surface to other arbitrary surfaces. In fact, the main 

limitations of the CVD method are the need of Cu or Ni 111 surface and the long time 

required to prepare high quality single-layer graphene. Fast graphene growth is also 

prone to produce defects and even multilayers graphene patches not uniformly 

distributed combined with graphene holes. 

Besides the CVD method, the group of Mullen has been actively developing 

graphene preparation procedures based on concepts of organic synthesis. In these 

processes an aromatic precursor undergoes polycyclizations forming additional rings. 

In this way, graphenic sheets having relatively small sizes, barely reaching the 

micrometric size can be obtained. Figure 1.9 shows some examples of the precursors 

and the organic synthesis strategy followed to form graphenic sheets. 

 

Figure 1.9. A bottom-up approach for the preparation of G material based on organic 

synthesis.[44] 
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Although this approach is very promising to prepare graphenes with desirable 

substructures and can be useful to obtain special graphenes, there are still some 

disadvantages related to the availability of precursors, the need of noble metal 

catalysts to promote the polycyclization and the occurrence of defects associated to 

incomplete cyclications and the presence of residual initial functional groups. As it 

will be commented later, one of the problems related with applications of graphene 

in certain areas, like metal-free catalysis, is the possible presence of metals even in 

trace quantities that could impurify the sample. There is sometimes the possibility 

that the observed catalytic activity derives from the presence of metals even in ppm 

or lower concentrations. For applications in microelectronics, also the presence of 

metals is highly detrimental for the electronic response of the materials. In general, 

to avoid the presence of defects, large quantities of metal catalysts are employed and 

they can be difficult to remove completely. 

Besides bottom-up methodologies, the most widely employed approaches to 

obtain graphene are the top-down. Many of them, rely on the fact that graphite 

already contains graphene sheets. The problem is, however, how to separate isolated, 

individual graphene layers. Geim and Novoselov used manual mechanical graphene 

exfoliation of graphite (Figure 1.10).[1,2] While this process produces high quality 

graphene samples starting from high-crystallinity pyrolytic graphite, it can only be 

used to obtain a few samples, mostly for the purpose of physical properties 

measurements.  

Direct exfoliation of graphite by ultrasonication in solvents requires the use of 

highly-viscous, low-volatility liquids that later are very difficult to separate from the 

graphene. In addition the yield of this process in terms of the mass of graphite that 

can be exfoliated is very low, frequently below 0.1 %. Typical solvents used in this 

direct exfoliation process are N,N-dimethylformamide (DMF), N-methylpirrolidone 

(NMP), dimethylsulfoxide (DMSO) and ionic liquids, among others.[45-49] The presence 

of additives, mainly surfactants, polycyclic aromatic molecules can assist the 

exfoliation of graphite, but then, again, removal of the additive becomes very 
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difficult. 

 

Figure 1.10. Graphene synthesis from HOPG block by using Scotch tape method.  

 

For all the above problems, the most widely used method to obtain graphene 

materials in large quantities is based on the deep oxidation of graphite to form 

graphite oxide, followed by exfoliation and reduction.[50-52] The process is presented 

in Figure 1.11. It was known that graphite can be deeply chemically oxidized to form 

graphite oxide using a series of chemical reagents. The most popular one is 

potassium permanganate in a highly concentrated mixture of nitric and sulfuric acids. 

This procedure was reported by Hummers and Offenbach in the mid fifties of the last 

century.[53] In contrast to graphite, graphite oxide may contain up to 60 wt.% of 

oxygen and the sheets are constituted by graphene oxide. The oxygen atoms in 

graphene oxide are present as oxygenated functional groups, including epoxide, 

hydroxyls, carbonyls and carboxylic acids. Figure 1.12 presents a general structure of 

graphene oxide that is in agreement with analytical and spectroscopic data, 

particularly IR and 13C NMR spectroscopies as reported by Klinowsski and co-workers. 
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Figure 1.11. Procedure used for chemically assisted exfoliation of graphite through 

Hummers oxidation.[54] 

 

Figure 1.12. Proposed structure of graphene oxide.[55] 

  

In contrast to graphite, graphite oxide can be easily exfoliated to the state of 

single, isolated layers of graphene oxide in essentially complete yields. The reason for 

this is the increase in the interplanar distance between the sheets due to the 

intercalation of oxygenated functional groups. While graphene sheets in graphite are 

separated by 0.34 nm, the interlaminar distance in graphene oxide sheets in graphite 

oxide is 0.69 nm that is more than double. In addition, the strong π–π interaction 

present in graphene that causes the high crystallinity of graphite does not exist in 

graphene oxide due to the lack of C=C double bonds and aromatic regions. 
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Furthermore, under certain pH ranges, the graphene oxide can exhibit repulsive 

interactions due to the high density of negatively charged carboxylate groups. 

Therefore, ultrasonication of graphite oxide in water produces the destruction of the 

solid and the appearance of a persistent, stable suspension of graphene oxide that is 

highly hydrophilic. Concentrations as high as 10 mg mL-1 of graphene oxide can be 

stable in aqueous phase. 

After exfoliation, a large degree of reconstruction of graphene is possible either 

by chemical reduction of graphene oxide or by physical treatments. Among the most 

employed reducing chemicals that have been used to reduce graphene oxide, 

hydrazine and metal hydrides can promote at room temperature the partial 

conversion of graphene oxide into some kind of defective graphene that is generally 

termed as reduced graphene oxide.[56-59] Figure 1.13 illustrates a proposed 

mechanism for chemical reduction by applying hydrazine as reducing reagent. The 

problem of this approach is that the sample of defective graphene becomes 

contaminated by the excess of the chemical agent that is generally difficult to 

separate from the reduced graphene oxide in aqueous suspension. Also some degree 

of N doping can be also promoted in the process. 

 

Figure 1.13. A possible reaction pathway for epoxide reduction using hydrazine as 

reducing reagent.[60] 

 

Besides chemical reactions, graphene oxide can also be reduced to reduced 

graphene oxide by thermal treatments and hydrothermal processes.[61-66] This is one 

of the procedures followed in the present Doctoral Thesis to obtain samples of 

defective reduced graphene oxide. It consists in the treatment of the aqueous 

suspension obtained in the sonication of graphite oxide in an autoclave at 
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temperatures about 150 oC for several hours. Under these conditions evolution of 

gases, mainly CO2 from graphene oxide leads to an effective decrease in the oxygen 

content of the materials. Since reduced graphene oxide is considerably less 

hydrophilic than graphene oxide, then, dispersion of this material in aqueous phase 

can only be achieved for much more diluted samples, typically one order of 

magnitude more diluted, and spontaneous separation of reduced graphene oxide 

from the aqueous phase occurs during the process. 

The reduced graphene oxide is far from ideal graphene because it still contains a 

certain amount of oxygen that can be as high as 20 % from the initial content of 

graphene oxide that is above 50 %. Besides oxygenated functional groups, other 

types of defects are carbon atom vacancies generated by CO2 evolution and even 

holes on the sheet. For this reason, the material obtained through graphene oxide by 

reduction is termed as reduced graphene oxide. For certain applications related to 

the high conductivity of graphene, reduced graphene oxide is far from the behavior 

expected for ideal graphenes. However, for some other applications, particularly for 

the use of these materials in catalysis that will be the subject of Chapter 4 on the 

electrochemical properties of graphene-boron nitride assemblies and also related to 

Chapters 5 and 6 on the catalytic activity of Fe and Co nanoparticles embedded on 

graphene matrices, the presence of defects is highly appropriate leading the 

introduction of active sites or providing strong metal-support interaction for 

anchoring of metals. 

Besides the above methods for preparation of graphenes, our group developed a 

novel procedure based on the pyrolysis of carbohydrate that because of its 

importance in the present PhD thesis will be described in the next section. 
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1.3. Defective graphenes by pyrolysis of biopolymers 

Carbohydrates owe their name to their well-known property to form carbon 

residues upon dehydration either by heating or chemical reagents. These chemical 

compounds are the most abundant components of biomass while cellulose and 

hemicellulose account for over 60 % of the mass in plants. Besides cellulose, there 

are also many natural polysaccharides, three examples of these biopolymers being 

alginates and carrageens from algae and chitosans from insect and crustacean skins. 

Figure 1.14 shows the structures of these natural polymers. 

 

Alginate   

Chitosan  

Carrageenan 
 

Figure 1.14. Illustrations of sources of biomass (alginate, chitosan and carrageenan) 

and structures of the biopolymer precursors used to obtain graphene by our research 

group. 

 

It was also known that upon pyrolysis, polysaccharides form carbon residues that 

were generally termed as “turbostratic graphitic carbons”.[67-71] In fact, after pyrolysis 

of these polysaccharides an imperfect graphite as deemed by evaluation of the XRD 

patterns was formed. In XRD these turbostratic graphitic carbons exhibit a broad 

diffraction peak at 2θ angles somewhat shorter than 24o that indicates that the 
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material is not highly crystalline. This is indicated also by the term turbostratic that 

means that the stratus (graphene layers) are disordered (turbo). Figure 1.15 presents 

a XRD pattern of the carbon residue obtained upon pyrolysis of chitosan at 900 oC 

compared with that of well-crystalline graphite showing the remarkable differences 

regarding the shape and position of the characteristic diffraction peaks. 

 

Figure 1.15. Graphene obtained by pyrolysis of chitosan obtaining signals that have 

very broad bands (1) and comparison with the XRD pattern of crystalline graphite 

that presents narrow and defined peaks (2). The inset shows photograph of the 

carbon residues.[72] 

 

Although formation of turbostratic graphitic carbons in the pyrolysis of 

polysaccharides was known, our group was the first showing that sonication of this 

residue in aqueous medium or other solvents renders dispersions of defective 

graphenes with a yield over 70 %.[72-77] The rest of the material could correspond to 

amorphous carbon that is not able to undergo exfoliation and dispersion. In some 

cases, the yield of defective graphene formation by sonication of the carbon residue 

derived from polysaccharide pyrolysis is close to be quantitative and, in any case 

much, much higher than that previously commented for the attempts of direct 

exfoliation of graphite. 

The reasons for this facile exfoliation derive from the configuration of the 
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graphitic carbon residue as being constituted by graphene layers that are loosely 

packed, in contrast to the case of graphite. This low crystallinity is reflected in the 

XRD with the broad diffraction peak, previously commented. Moreover, the fact that 

the peak appears at shorter angles indicates that the interlayer distance in the 

graphitic residue is much larger than in graphite and this decreases the strength of 

the interaction among the layers and, consequently, favors exfoliation. 

The morphology of the turbostratic graphitic carbon residue obtained in the 

pyrolysis of polysaccharides can be seen by microscopy. Figure 1.16 shows a series of 

images of the turbostratic graphitic residue obtained from pyrolysis of chitosan at 

different magnifications.  

a b

c d

 

Figure 1.16. SEM images (a, b) of the carbonaceous residues obtained after the 

pyrolysis of natural polysaccharides. TEM images (c, d) of the resulting graphenes 

after the exfoliation of the carbonaceous residues by ultrasonic treatment. The inset 

shows the selected area electron diffraction (SAED) pattern of image d.[72,74] 

 

Images from scanning electron microscope (SEM) of one of these samples 
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formed as spherical beads shows that the spheres are hollowed and that the walls of 

present layers not properly packed, particularly in the inner part. The upper and 

lower parts of the walls tend to become more packed than the central parts. Higher 

magnification by transmission electron microscopy (TEM) shows that these layers of 

the walls break in the sonication process into the typical morphology of single layer 

graphene with the characteristic light color contrast and the presence of wrinkles 

corresponding to flexible sheets. High resolution transmission electron microscopy at 

quasi atomic resolution shows the crystalline domains of the sheets, while electron 

diffraction exhibits the expected hexagonal arrangement of the atoms in the 

material. 

The single layer or few-layer morphology of the sheets can also be determined 

by atomic force microscopy (AFM) upon deposition on an atomically flat surface a 

drop of a dispersion of the defective graphene obtained by sonication of the 

turbostratic graphitic carbon residue formed in the pyrolysis. Typical substrates in 

this type of measurements are silica wafers or exfoliated mica materials. Figure 1.17 

presents some measurements of the samples related to the present Doctoral Thesis. 

As it can be seen in this Figure 1.17, the frontal view shows that the defective 

graphene particles have a lateral size in the range of micrometers. By measuring the 

vertical height with subnanometric resolution, it can be determined that most of the 

defective graphene particles are constituted by a single or few layers. It is also 

assumed that the thickness of the monolayer of the defective graphenes prepared by 

pyrolysis of polysaccharides with a high residual oxygen content can be close to 0.4 

nm. 

The presence of defects can be clearly determined by combustion chemical 

analysis, Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). In 

combustion elemental analysis the presence of elements such as N and S can be 

directly quantified, together with the carbon content and it can be inferred that the 

difference to 100 % should mainly correspond to residual oxygen. 
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Figure 1.17. AFM images (a, b, c) of the resulting samples and measurements of layer 

thickness where we can see the presence of a single sheet (d) or the stacking of 

several of them (e and f). 

 

The elements present on the surface of the material and their atomic ratio can 

be quantitatively determined by XPS. Since XPS is a surface technique and graphene 

and defective graphenes are 2D materials, XPS should in principle provide elemental 

compositions close to those measured by combustion chemical analysis. However, 

since most of the XPS measurements are performed on powders, rather than on films, 

where stacking should unavoidably occur, the values of XPS refer to the analytical 

composition of the outermost external surface that can be somewhat different from 

that of the bulk solid. Figure 1.18a provides a survey XP spectrum of the turbostratic 

graphitic carbon residues obtained upon pyrolysis of polysaccharides where the 
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presence of O can be observed. The relative intensity of the peaks corrected by the 

instrumental response of the equipment can provide the C/O atomic ratio. 
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Figure 1.18. The survey XP spectrum (a) and C 1s peak spectrum (b) of graphitic 

carbon residues prepared by pyrolysis of alginate. 

 

Besides the survey XP spectrum, the technique allows also the measurement of 

the peaks corresponding to the different electronic transitions of the various 

elements with higher resolution. Figure 1.18b shows the peak corresponding to C1s. 

The shape and width of the experimental XPS peak depends on the contribution of 

the individual components to this peak. By considering the binding energy of the 

individual components obtained from defined molecular compounds and by 

assuming a width of 0.5 eV, it is possible to fit the experimental peak as a sum of the 

individual components in the appropriate proportion. The fitting program estimates 

these proportions after subtracting the background using an appropriate algorithm. 

Figure 1.18b also presents the C1s peak that has been fitted according to the 

individual components indicated in the plot. As it can be seen there, the major 

component about 80 % corresponds to graphitic C atoms appearing at a binding 

energy of 284.5 eV. But the presence of other components corresponding to C atoms 

bonded to oxygen with single or double bond with characteristic binding energy at 

about 285.9 or 288.3 eV respectively and C atoms corresponding to carboxylic acid 

groups at about 290.2 eV can also be observed in decreasing proportions. Therefore, 

XPS allows estimating the distribution of the various elements present in the 
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defective graphene sample among various coordination environments characterized 

by different energies. 

The information of XPS about the existence of defects can be complemented 

with the information provided by Raman spectroscopy. This vibrational spectroscopy 

is very sensitive to graphene and can detect even a single layer of this material. 

Typically defective graphenes exhibit in Raman spectroscopy three characteristic 

peaks denoted as 2D, G and D appearing at about 2700, 1590 and 1350 cm-1, 

respectively, that correspond to the harmonic (2D), the characteristic graphitic peak 

(G) and defects (D). Figure 1.19 presents a characteristic Raman spectrum 

corresponding to defective graphene where the presence and shape of these three 

characteristic peaks can be clearly observed. 

 

Figure 1.19. Raman spectrum of graphene prepared from chitosan.[72] 

 

One simple way to quantify the density of defects on the graphene sheet is by 

determining the relative intensity of the G vs. the D peak (IG/ID). Thus, for instance, 

the value typically reported by this quantitative IG/ID indicator for reduced graphene 

oxide is about 0.85, while most of the defective graphenes prepared by pyrolysis of 

polysaccharides have IG/ID ratios between 1.1 and 1.2. Accordingly, the density of 

defects of the materials obtained by pyrolysis is smaller than typical value for 
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reduced graphene oxides. This parameter will be of importance in Chapter 3 when 

determining the influence that the presence of H2 and the pyrolysis temperature 

have over the quality of the obtained defective graphenes. 

The pyrolysis method has been adapted to the preparation of doped and 

co-doped defective graphene samples with heteroatoms that are not present in the 

precursor. Thus, while chitosan is the precursor of N in defective graphene and 

carrageen contains sulfate groups that can become integrated into the defective 

graphene sample, other heteroatoms like B, P, Si, etc can be introduced also in the 

resulting defective graphene sample by performing the esterification of the natural 

polysaccharides with an inorganic acid that contains the required element.[78-87] 

Scheme 1.3 illustrates this strategy. The rich chemistry of carbohydrates allows them 

to be derivatized and one simple characteristic reaction of hydroxyl groups is 

esterification with inorganic acids. Among them, boric, phosphoric and silicic acids 

have been reported to provide defective doped and co-doped graphenes by pyrolysis 

of the modified polysaccharide. If chitosan already containing N in its composition is 

esterified with phosphoric acid, then, the resulting defective graphene contains 

simultaneously N and P. 

 

Scheme 1.3. Preparation procedure for doped graphene by pyrolysis of natural 

polysaccharides (chitosan or alginate) with or without the esterification with 

inorganic acids.[83] 

 

The content of the doped elements has a maximum, but the actual percentage in 

the final defective graphene can be decreased by increasing the reaction 
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temperature. In general, the density of defects decreases with the temperature. In 

this regard, as previously indicated doping can be considered as a type of defect. It is 

a target of Chapter 3 to determine quantitatively how the temperature influences the 

percentage of doping. 

 

 

1.4. Heterojunctions of defective graphenes with 2D materials 

or metal nanoplatelets 

The strategy of pyrolysis of natural polysaccharides has also been adapted to the 

preparation of other 2D materials as well as some heterojunctions. Other one layer 

thick materials related to graphenes include boron nitride, transition metal 

dichalcogenides, phosphorene, silicone, etc. Figure 1.20 illustrates the structures of 

some of these 2D materials. 

Boron nitride Molybdenum disulfide Phosphorene  

Figure 1.20. The structures of boron nitride, molybdenum disulfide and phosphrene. 

 

The case of heterojunctions refers to the situation in which two different phases, 

like defective graphene and another different 2D material, are in intimate contact 

sharing a considerable fraction of common interface.[88-91] Then, there could be a 

transfer of electronic density from one material to the other that results in properties 

for the heterojunction different from those of the individual components.   
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Our group reported that when the polysaccharide contains a precursor of boron 

nitride or molybdenum dichalcogenide, the pyrolysis of these material results in the 

spontaneous segregation of two independent phases consisting in the defective 

graphene, as indicated in the previous section, and a second phase. Scheme 1.4 

illustrates this strategy forming heterojunctions of graphene-boron nitride and 

graphene-molybdenum disulfide that have been reported in the literature by our 

group. 

Aginate acid Graphene-MoS2

Graphene-BN

(a)

(b)

Aginate acid Graphene-MoS2

Graphene-BN

(a)

(b)

Alginic acid Graphene-MoS2 

 

Scheme 1.4. Procedure for the preparation of molybdenum disulfide domains (MoS2) 

on graphene (a)[92] boron nitride on sheets of graphene (b).[93] 

 

However, the present procedures were used either for powders (case of the 

heterojunction of MoS2 on graphene) or to obtain the 2D material different from 

graphene (case of boron nitride). One step forward in this area would be to show 

that it is possible to prepare films of heterojunctions by applying the method based 

on the pyrolysis of modified polysaccharides. This is the purpose of Chapters 5 and 6 

in where the formation of films of defective graphene/ boron-nitride heterojunctions 

(Chapter 4) and defective graphene/molybdenum disulfide heterojunctions (Chapter 

5) will be described together with the study of their physical and electrochemical 

properties. 



        

 Chapter 1 

27 

 

Another different type of junction refers to metal nanoparticles deposited on 

graphene. As it is well known, when the sizes of the metal particles decreased to 

values of a few nanometers, the catalytic activity of these metal NPs will be improved 

significantly, due to the high percentage of surface atoms with respect to the total 

number of atoms. These surface atoms contained unsaturated coordination positions 

in vertices and edges preferably on the surface which make them available to interact 

with substrates and reagents, promoting the reactions.[94-96] 

Also, as a result of the presence of these unsaturated atoms, these metal NPs 

have a high surface energy that makes these particles to tend to suffer agglomeration, 

which will result in the increase of their size and decrease of the percentage of atoms 

located on the outer surface. For this reason, most metal particles have sizes in the 

range of micrometers instead of nanometers. And in this situation the metals in most 

cases show a low catalytic activity. A paradigmatic example to show this obvious 

influence of the size of NPs on the catalytic activity is the case of gold metal. The Au 

NPs with a size of several nanometers are a highly efficient and selective catalyst for 

some reactions, however, the activity decreases drastically when the particle size 

turns to higher than 10 nm.[97-99] 

In order to stabilize the nanometric dimensions of metal NPs, a common strategy 

is to deposit the metal NPs on an insoluble support in the reaction medium. This 

suitable support is supposed to have the characteristics with a high specific surface 

area and also a strong interaction with the metal NPs to immobilize the NPs and 

avoid the bleeding of the metal atoms to the reaction medium, as well as the 

agglomeration of them. 

In view of these two considerations, high surface area and strong interaction, it is 

reasonable to consider the use of graphene as an evolution of the use of active 

carbons as supports. As indicated before, the graphene has a lager specific surface 

area which is currently only surpassed by some MOFs. It also has commented that 

the existence of a π cloud extended on the graphene sheet is suitable for interacting 

with d orbitals of the transition metals. Moreover, the graphene materials may 

javascript:;
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provide the additional catalytic sites which have been proposed in a number of 

researches by showing that graphene in the absence of any matal exhibited certain 

catalytic activity during oxidation, reduction, acid and base reactions, etc.[26,100-103] 

Thus, it has been demonstrated both theoretically and experimentally that graphene 

is a suitable support for metal NPs, including NPs of Pt, Pd, Au, Ru, Ni, Cu, as well as 

their oxides.[104-107] Figure 1.21 depicts the possible effects for metal NPs from the 

use of graphene as support. 

 

Figure 1.21. Representation of the main effects from graphene when it is used as 

support for metal NPs in catalysis.[13] 

 

The metal NPs supported on G have proven to be better catalysts than other 

alternatives, using other supports, in oxidation, reduction, coupling, hydrogen 

release/storage, miscellaneous reactions, and so on.[13] Figure 1.22 shows the results 

comparing the catalytic activities in various organic reactions from metal NPs 

supported on graphene with those from metal NPs supported on other types of 

materials including active carbons, graphite, carbon nanotubes, high surface area 

metal oxides, or without any support. 

Our group has also used the pyrolysis of polysaccharides containing metal salts 

as a procedure to prepare in one step metal nanoparticles strongly grafted on 

graphene in those cases in where the formation of metal carbides is not possible. 
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Metal carbides are not easily formed in general for late transition metals. This is the 

case of noble metal (Pt and Au) and seminoble metals (Ag and Cu) that also do not 

dissolve carbon. In the pyrolytic process, not only carbides are not formed, but also 

carbon becomes segregated from the metal nanoparticles.[94-100] Scheme 1.5 

illustrates the metal nanoparticles-defective graphene materials that have been 

reported by our group. 

These materials containing metals interacting strongly with graphene have very 

interesting physical and catalytic properties. For instance, it was observed that the 

morphology of the particles is more like a thin platelet of a few nm height with 20-40 

nm lateral dimension and that they develop preferentially a 111 facet.[114-119] This 

shape of nanoplatelet has been interpreted as indicative of the favorable interaction 

between the metal and the graphene maximizing the contact area. The preferential 

growth of the 111 facet that matches the graphene sheet could indicate an epitaxial 

growth of the metal on the graphene sheet, reflecting again a positive interaction. 

The consequence of this strong metal-graphene interaction is a (photo)catalytic 

activity that is frequently several orders of magnitude higher than analogous 

materials prepared by deposition of preformed metal nanoparticles on preformed 

graphene. Scheme 1.6 shows the preparation process for oriented metal nanplatelets 

supported on defective graphenes based on the pyrolytic formation from 

polysaccharides while as an example, Scheme 1.7 demonstrates the proposed 

mechanism of preferential growth of Cu nanoparticles on graphene.  
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(c ) Dehydrogenative coupling reaction

(d ) Suzuki–Miyaura cross-coupling reaction 

(e ) Three-component coupling of aldehyde, a secondary amine, and a terminal alkyne

(a ) Aerobic oxidation of methanol to methyl formate

(b ) Hydrogenation of isophorone to dihydroisophorone

Catalyst Conversion (%) Selectivity (%) TOF (s

Au -Pd /rGO 90.2 100 0.377

Au -Pd /Al O 74.9 41.2 0.011

Au -Pd /CNTs 17.1 100 0.072

Au -Pd /TiO 33.8 19.7 0.002

-1)

2

2

2

2

1

1 2 3

1

1 2

Catalyst Conversion (%) Selectivity (%) TOF (s

Pd/rGO 99 93.1 158,465

Pd/AC 9 99

Pd/Graphite 35 93.9

Pd/SiO 7.4 99

-1)

2

Catalyst Yield (%) TOF (h

Pd-Ni O /rGO 99 38,750

Pd/rGO 54

Ni O /rGO 0

PdCl 57

PdCl (PPh ) 92

-1)

2 3

2 3

2

2 3 2

Catalyst Yield (%)

RuO /rGO-ArSO H 78

RuCl nH O 43

RuO nH O 54

2 3

3 2

3 2

▪

▪

Catalyst Yield (%)

Fe O /rGO 90

Fe O 45

γ-Fe O 48

3 4

3 4

2 3

(f ) Miscellaneous coupling reaction

Catalyst Time (h) Yield (%)

Fe O /rGO 4 96-98

 Fe O  NPs 24 60-63

3 4

3 4  

Figure 1.22. Different types of reactions catalyzed by metal NPs supported on 

graphene which present greater catalytic activity with respect to the same metal NPs 

on other supports or without support. (a) Aerobic oxidation of methanol to methyl 

formate,[108] (b) hydrogenation of isophorone to dihydroisophorone,[109] (c) 

dehydrogenative coupling reaction,[110] (d) suzuki–Miyaura cross-coupling 

reaction,[111] (e) three-component coupling[112] and (f) miscellaneous coupling 

reaction.[113] 
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PyrolysisMetal precursors 
(HAuCl4, H2PtCl6, 
CuS04, AgNO3, etc)

Metal-graphene 

Chitosan

or Alginate

M-NPs

+

 

Scheme 1.5. Preparation procedure for various metal nanoparticles supported on 

defective graphene by pyrolysis of polysaccharides containing metal salts. 

Metal  solution Oriented M/G 

1.1.1 facet

M
M

MM
M

 

Scheme 1.6. Film preparation process of oriented metals (Cu, Au, Pt, Ag, etc) 

supported on G. (i) spin coating on a quartz crystal (dimensions, 2x2 cm2) with an 

aqueous solution of chitosan; (ii) adsorption of metal solution on the film of chitosan, 

followed by (iii) pyrolysis under an inert atmosphere at 900 ° C. 
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Scheme 1.7. Graphic illustration of the mechanism of oriented Cu/G formation. (a) 

Individual Cu bivalent ions interacting with the fibrils of chitosan. (b) Cu bivalent ions 

being reduced to Cu(0) that is accommodated within the hexagonal arrangement of 

synchronously formed graphene sheet. (c) The preferential growth of Cu particles 

along the 1.1.1 facet templated by G sheet.[117] 

 

A logical evolution in this research line would be to carry out and study the 

properties of these metal-graphene materials for other transition metals including 

those that can form carbides under high temperature conditions. A study for the case 

of iron and cobalt has been carried out in the present Doctoral Thesis and is 

described in Chapters 6 and 7. In the first case, the Fe nanoplatelets on carbon matrix 

have been used as catalysts for the oxidative C-N coupling of amides (Chapter 6), 

while in the second case, the formation of Fe and Co nanoplatelets and their alloys 

have been prepared in a single step by pyrolysis and the resulting materials have 

been used as catalysts for CO2 hydrogenation (Chapter 7). It appears that higher 

temperatures or different conditions are required for the formation of these 

unwanted carbides. As consequence, the iron, cobalt or iron-cobalt nanoparticles 

embedded within a carbonaceous matrix exhibit remarkable catalytic activity in 

oxidation and reduction reactions. 
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The general objective of the present Doctoral Thesis is to develop heterojunctions of 

defective graphenes with other different 2D materials and metal nanoparticles by 

applying natural polysaccharides as precursors of defective graphenes. Within this 

general context, the specific objectives of each of the Chapters that report original 

research in the field are the following: 

1. Improvement of the quality of defective graphenes by determining the 

influence of the presence of hydrogen during the pyrolysis at different temperatures. 

Given the importance of alginate and chitosan in the formation of defective 

graphenes by pyrolysis, the influence of the presence of hydrogen at different 

pyrolysis temperatures will be studied for these two natural biopolymers. The 

purpose is to determine the improvement in conductivity that can be gained by 

deeper removal of the oxygenated groups during the pyrolysis. Accomplishment of 

this objective will represent an additional valorization of the process.  

2. Formation of films of defective graphene/boron nitride heterojunction. This 

type of heterojunction is supposed to exhibit an enhanced conductivity as 

consequence of the favorable electron mobility on graphene when it is supported on 

boron nitride. Also the possibility to use this heterojunction to store electrostatic 

charge like in a microcapacitor will be assessed by using microelectrodes to contact 

the thin film and measuring the current as a function of the applied voltage. 

3. Formation of films of defective graphene/MoS2 heterojunctions that could be 

used as electrocatalysts without the need of any further conductive material. MoS2 

on graphene has been reported as an electrocatalyst with activity close to that of Pt 

for hydrogen generation. This electrochemical reaction is considered one of the 

simplest and more convenient reactions to store renewable electricity surplus 

production into chemicals and it is important to evaluate the performance of the 

heterojunction obtained by the pyrolysis method starting from natural biopolymers. 

4. Formation of metal nanoparticles of iron and cobalt and their alloys supported 

on defective graphene in one step by pyrolysis of polysaccharides adsorbing salts of 
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these two metal in different proportions and characterization of their activity as 

oxidation catalysts in the oxidative C-N coupling of N-methyl amides and aromatic 

N-H compounds. The influence of the composition of the metal nanoparticles in the 

catalytic activity will be determined. 

5. Determination of the catalytic activity of the iron and cobalt nanoparticles and 

their alloys in various proportions supported on defective graphene as catalysts for 

CO2 hydrogenation. In the context of the change in the current scheme of energy 

sources from fossil fuels to renewable energies, there is much interest in 

implementing a circular economy in which CO2 becomes the feedstock for the 

production of fuels. The process can be catalyzed by Fe and Co catalysts and it is of 

interest to compare the activity of materials based on Fe, Co and their alloys 

supported on defective graphenes with other types of Fe and Co based catalysts 

reported in the literature. 

In case that the specific objectives of the present Doctoral Thesis are achieved, they 

will represent a considerable advance in the field, since in general, the results will 

serve to exemplify the valorization of biomass wastes into graphene materials and 

heterojunctions with higher performance and the current materials or catalysts will 

show a certain value in organic synthesis or in future renewable energies.
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3.1. Introduction 

There is a considerable interest in the development of different graphene 

preparation methods that, on one hand, can serve to valorize wastes, while at the 

same time can render materials with adequate properties for a given application.[1-4] 

In this context, as it has been commented in the introduction our group reported a 

few years ago that pyrolysis at temperatures above 900 oC of alginate and chitosan 

affords carbon residues that undergo easy exfoliation in high yields to form defective 

graphenes.[5-7] Starting from certain natural filmogenic polysaccharides as precursors, 

pyrolysis can serve for the preparation of defective graphenes either as films or as 

suspensions.[6,7] This procedure can be adapted also to the preparation of other 

doped graphenes, either by using a precursor that contains already the heteroatom, 

like chitosan and -carrageen for the preparation of N- and S-doped defective 

graphene,[7,8] respectively, or alternatively the polysaccharide can be derivatized by 

reaction with inorganic acids that contain the required heteroatom.[9] Moreover, as it 

has been explained earlier the method can also be adapted to the one-step 

preparation of heterojunctions of differently doped defective graphenes, or 

heterojunctions of graphene with other 2D materials and even to the preparation of 

graphenes having strongly grafted metal nanoparticles (Scheme 3.1).[10-12] 

Metal or 
Heteroatom 
Precusor

Chitosan

or Alginate

Doped-Graphene

Substrate

Metal-Graphene

p-n Heterojunction
G(N)/n-type

Pyrolysis

G(B)/p-type
M NPs/G 

M
M

MM
M

G/h-BN Heterojunctionh-BN
G

 

Scheme 3.1. Pictorial illustration of the one-step preparation of doped graphene and 

various types of graphene heterojunctions. 

 

Some of the defects in this type of graphenes derive from the presence of a 
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residual oxygen content, about 20 %, remaining from the incomplete carbonization 

of the polysaccharide precursors that initially contain above 50 % oxygen in their 

composition. Among the various characterization techniques, it has already been 

indicated that the presence of defects, including oxygenated functional groups, can 

be easily monitored by Raman spectroscopy and quantitatively assessed by the shape 

and relative intensities of the G vs. the D bands appearing at about 1600 and 1350 

cm-1, respectively. Typical values of IG/ID in defective graphenes obtained from natural 

polysaccharide pyrolysis are about 1.15.[7]  

Besides Raman spectroscopy, the presence of these defects is typically also 

reflected in the electrical conductivity of the graphene material. As already 

commented, high electrical conductivity is relevant for different applications of 

graphenes related to microelectronics and to the preparation of transparent and 

conductive displays, among others.[13,14] In the case of defective graphenes obtained 

from biomass pyrolysis, it has been reported that the electrical conductivity 

measured by the four-tips head method on quartz substrates is in the range of a few 

k/sq, typically from 3 to 10 k/sq, significantly lower than the values reported for 

ideal graphene on other supports.[6]  

In this context, considering the added value of the conversion of alginate, 

chitosan and other natural polysaccharides into graphenes, it would be of interest to 

improve further the electrical conductivity of these defective graphenes obtained by 

the pyrolysis of biopolymers by introducing some optimization in the preparation 

procedure. This could open additional applications for this type of graphene 

materials. Since oxygen functionalities are one type of defect, it was considered that 

decrease in the oxygen content of these materials should also be reflected in a 

diminution of the density of defects, at least those caused by oxygenated functional 

groups. 

 Aimed at this purpose, it is well-known that the preparation method of 

graphenes by chemical vapor deposition, as well as some other procedures, are 

carried out under H2 atmosphere.[15,16] During the high temperature pyrolysis, H2 can 
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act as chemical reducing agent and it could produce an additional decrease in the 

oxygen content of the resulting defective graphene by formation of H2O or other 

hydrogenation volatile compounds and, therefore, its presence during the pyrolytic 

process could be reflected in an improvement of quality of the films obtained in this 

way that could be accompanied by an increase in the electrical conductivity. However, 

the details of the influence of the presence of H2 during the pyrolysis of natural 

polysaccharides remain unexplored. 

In the present Chapter, it will be shown that by carrying out the pyrolysis of 

alginic acidand chitosan at increasing temperatures in the presence of H2 gas, 

defective graphenes with lower oxygen content, lower density of defects and 

improved electrical conductivity and photoelectric catalytic activity can be obtained. 

The present study represents a step forward in the direction of valorization of 

biomass wastes by obtaining high added-value graphene films. 

 

 

3.2. Results and discussion 

Films of ammonium alginate and chitosan on clean quartz substrates were 

prepared by spin coating and their pyrolysis was carried out at temperatures in the 

range from 900 to 1200 oC, either under a flow of Ar or under Ar containing 5 or 

10 vol% H2 (see Chapter 8 for the details of experimental procedures) (Scheme 3.2). 

Preliminary controls revealed that higher pyrolysis temperatures result in an almost 

complete volatilization of the biopolymer with no graphene material remaining, 

while higher H2 proportions do not apparently play any additional beneficial role in 

the quality of the resulting graphene. As commented above, the rationale was to 

increase the reductive conditions of the carbonization process, leading to a decrease 

of the residual oxygen content of the defective graphene films formed in the process 

by evolution of H2O or other gases.  
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Chitosan or 

aginic acid 
solution 

or Ar/H2 (5%)

or Ar/H2 (10%)

Ar/H2

iii)i), ii)

Tube furnace 

900-1200 oC

Film

 

Scheme 3.2. Steps in the preparation of the graphene or N-doped graphene film on 

quartz: i) dissolution of chitosan or alginic acid in aqueous solution of acetic acid or 

ammonia; ii) spin coating and water evaporation; iii) pyrolysis of the sample at 

different temperatures (900-1200oC) under Ar, or Ar/H2 (5%), or Ar/H2 (10%) flow.  

 

To assess the influence of the pyrolysis temperature and presence of H2 and its 

concentration, the resulting films were characterized by Raman spectroscopy, XPS 

analysis and electrical measurements and tested as electrodes for H2 

evolutionreaction. The morphology and thickness of the films were studied by AFM 

and SEM of the films, as well as TEM of small pieces scratched from the films. 

As it was expected in view of the abundant literature data, Raman spectroscopy 

was a useful and convenient technique to follow the influence of the pyrolysis 

temperature and H2 concentration on the density of defects present on the resulting 

graphene film samples.[17-19] Figure 3.1 shows a set of Raman spectra to illustrate the 

type of changes observed in the characteristic graphene peaks by presenting two 

extreme cases, while Figures 3.2 and 3.3 include a complete set of Raman spectra for 

other films prepared in this Chapter.  

There are several parameters used to assess the spectral changes occurring 

under the various preparation conditions, namely, the ratio between the intensity of 

the G vs. the D bands (IG/ID), the full width at half height of the G and D peaks (fwhpG 

and fwhpD) and the resolution of the peaks measured by the ratio between the 

maximum intensity of the G band and the valley between the G and D bands (R). The 

higher the IG/ID ratio, the narrower the G and D peaks and the higher the resolution 
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between the peak and the valley, the higher was assumed to be the quality of the 

resulting graphene film, according to Raman spectroscopy. The corresponding values 

of the three parameters determined from the experimental Raman spectra are 

tabulated in Table 3.1.  
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Figure 3.1. Raman spectra of (N)G prepared from chitosan (a) and G prepared from 

alginic acid(b) pyrolyzed at 900, 1200 °C under Ar or Ar/H2 (5%) flow respectively.  
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Figure 3.2. Raman spectra of (N)G prepared from chitosan pyrolyzed at 900, 1000, 

1100, 1200 °C under Ar (a) or Ar/H2 (5%) (b) flow respectively.  
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Figure 3.3. Raman spectra of G prepared from alginic acidpyrolyzed at 900, 1000, 

1100, 1200 °C under Ar (a) or Ar/H2 (5%) (b) flow respectively.  



 

Chapter 3 

57 

 

As it can be seen in Table 3.1 and also visually in Figure 3.1, most of the 

parameters determined by Raman indicate that the highest quality samples, both for 

alginic acidand chitosan, are achieved when the pyrolysis was carried out at 1200 oC 

in the presence of 10 % H2. As shown in Table 3.1, IG/ID ratio is not the most useful 

parameter to follow these spectroscopic changes (see entries 2 and 3 in Table 3.1) 

that can be better assessed by fwhp of the G and D peaks and the resolution 

between peak and valley. It should be noted that a H2 concentration increase from 5 

to 10 % during the 12 h experiment does not substantially improve the Raman 

quality parameters (see Table 3.1 and Figure 3.4), while it represents twice H2 

consumption. On the other hand, temperatures higher than 1200 oC lead to the 

complete volatilization of the precursor without any residual graphene film 

remaining on the quartz plate and, therefore, it appears to be an upper limit on the 

temperature of the process.  

It is particularly worth noting that the spectroscopic changes recorded for alginic 

acid compared to chitosan, probably reflect that in the last case, N atoms are still 

present as dopant element on the resulting graphene ((N)G). The presence of dopant 

N heteroatoms should introduce some features (defects) in the Raman spectrum that 

limit possible decreases in the intensity and/or width of the D band. Accordingly, in 

the case of graphene derived from alginic acid, much sharper G and D bands were 

recorded, while the presence of the 2D and D+G overtones appeared also well 

resolved in the higher frequency region of the spectrum. The results presented in 

Figures 3.1 to 3.4 and Table 3.1 clearly document the positive influence of 

optimization of pyrolysis temperature and the presence of H2 on the Raman spectra 

of the resulting graphene films. These spectral changes are associated to an 

improvement on the quality of the graphene films as consequence of their lower 

oxygen content. 
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Table 3.1. Parameters determined from the Raman spectra to assess the influence of 

the pyrolysis temperature and H2 concentration on the defect density on the 

resulting graphene films.a 

   (N)G G 

Entry T(°C) Gas IG/ID fwhpG  fwhpD R IG/ID fwhpG  fwhpD R 

1 900 Ar 1.26 176.2   331.0 1.57 1.26 155.3   330.1 1.70 

2 900 Ar/H2 (5%) 1.27 156.6   291.9 1.68 1.31 114.2   275.9 2.03 

3 1000 Ar 1.26 161.6   304.2 1.75 1.31 141.5   301.9 1.82 

4 1000 Ar/H2 (5%) 1.26 149.4   247.1 1.76 1.28 113.6   254.0 2.07 

5 1100 Ar 1.30 144.0   307.1 1.76 1.28 135.9   257.3 1.93 

6 1100 Ar/H2 (5%) 1.29 119.0   214.3 2.03 1.26 105.2   216.9 2.31 

7 1100 Ar/H2 10%) 1.29 115.2   208.1 2.07 1.29 98.9    208.5 2.36 

8 1200 Ar 1.31 138.2   296.2 1.79 1.30 120.2   221.2 2.07 

9 1200 Ar/H2 (5%) 1.31 116.5   214.6 2.15 1.08 89.6    122.4 3.18 

10 1200 Ar/H2 10%) 1.31 112.6   216.8 2.21 1.13 87.4    121.4 3.22 

[a] fwhp: full width at half peak height; R: resolution between the G and the D peak. 

The gray cells highlight the best values according to each quality indicator. 
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Figure 3.4. Raman spectra of (N)G prepared from chitosan (a) and G prepared from 

alginic acid(b) pyrolyzed at 1100, 1200 °C under Ar/H2 (5%) or (10%) flow, 

respectively.  

 

The beneficial influence of the optimal pyrolysis temperature and the presence 

of H2 on the decrease on the oxygen content of the resulting films were also 

confirmed by XPS analysis. The carbon, oxygen and nitrogen content for each of the 

films prepared starting from alginic acidand chitosan under the various preparation 

conditions are summarized in Table 3.2.  

As it can be seen in Table 3.2, the oxygen content determined from the atomic 

percentage measured by XPS depends on the nature of the biopolymer, being higher 

for chitosan than for alginic acid, and decreases gradually with the pyrolysis 

temperature up to the 1200 oC, reaching the lowest values of 6.64, 6.92 at%, for G or 

(N)G, respectively, under a flow of Ar/H2.  

The presence of H2 during the pyrolysis produces defective graphene samples in 
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where the oxygen content is consistently lower than that of the analogous samples 

prepared in the absence of H2. These analytical XPS data agree with the hypothesis 

that the H2 can react with the oxygen from the residual oxygenated functional groups 

during pyrolysis, resulting in the removal of some reactive oxygen atoms or 

functional groups from the resulting graphene samples. However, comparing with 

the samples obtained in the absence of H2, the difference in the oxygen content is 

very minor, indicating that only a small amount of oxygen is eliminated due to H2. 

Also, the carbon content shows a trend with the pyrolysis temperature and becomes 

slightly higher by introducing H2 during the process. Thus, the carbon content of 

79.68 at% from (N)G and 87.40 at% from G achieved at a pyrolysis temperature of 

900 oC under Ar increased gradually to 92.22 and 93.36 at%, respectively, when the 

pyrolysis temperature was 1200 oC and H2 gas was present. As it is known, the carbon 

to oxygen atomic ratio (C/O ratio), which relates to the degree of oxidation, is one of 

the important factors determining the graphene quality. The highest C/O ratio for 

(N)G and G obtained at a pyrolysis temperature of 1200 °C under Ar/H2 is 13.33 and 

14.06, respectively. These C/O ratios compared favorably with the values of 4.43 and 

6.94 obtained at 900 °C under Ar.  

It is worth noting that there was a jump of C/O ratio in G from 6.94 to 10.24 

when H2 was introduced into the system at a pyrolysis temperature of 900 °C. It 

should also be noted that these values obtained at the high pyrolysis temperature of 

1100 or 1200 °C, no matter whether or not H2 is present, are higher than the most of 

the C/O ratios achieved for rGO prepared with different reduction methods.[20]  

For (N)G, the presence of H2 resulted in a slightly decreased nitrogen content in 

the samples, having a similar influence on this heteroatom as the increase in the 

pyrolysis temperature. This probably reflects the higher graphitization of carbon in 

these conditions. The highest N doping level of 2.32 at% was achieved at a pyrolysis 

temperature of 900 °C under Ar and then diminished to 2.06 at% in the presence of 

H2, which finally decreased to 0.86 at% at a pyrolysis temperature of 1200 °C under 

Ar/H2.  



 

Chapter 3 

61 

 

Tables 3.3 and 3.4 show the detailed bonding information of C 1s for all the G 

samples as well as also that of N 1s for the (N)G. Some representative high-resolution 

XPS C 1s peaks for (N)G and G samples are presented in Figures 3.5 and 3.6 

respectively, while some high-resolution XPS N1s peaks for (N)G samples are 

presented in Figure 3.7.  

Table 3.2. Elemental composition of graphene films prepared from chitosan or alginic 

acidaccording to the XPS data. 

 (N)G G 

Entry T (°C) Gas C (at%) O (at%) N (at%) C/O ratio C (at%) O (at%) C/O ratio 

1 900 Ar 79.68 18.00 2.32 4.43 87.40 12.60 6.94 

2 900 Ar/H2 84.49 13.46 2.06 6.28 91.10 8.90 10.24 

3 1000 Ar 87.79 10.17 2.03 8.631 91.50 8.50 10.76 

4 1000 Ar/H2 90.70 7.45 1.86 12.17 92.18 7.82 11.79 

5 1100 Ar 89.67 8.51 1.81 10.54 91.53 8.47 10.81 

6 1100 Ar/H2 91.55 7.09 1.35 12.91 92.26 7.74 11.92 

7 1200 Ar 91.41 7.44 1.16 12.29 92.06 8.05 11.59 

8 1200 Ar/H2 92.22 6.92 0.86 13.33 93.36 6.64 14.06 
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Table 3.3. Distribution of C atoms among different chemical environments as 

determined by deconvolution of the high resolution XPS C 1s peak for all samples 

under study. 

 (N)G G 

Entry T (°C) Gas C-C C-O/C-N C=O C(=O)-O C-C C-O C=O C(=O)-O 

1 900 Ar 66.36 26.33 5.33 1.99 63.91 25.73 6.20 4.16 

2 900 Ar/H2 67.46 23.57 5.06 3.92 66.25 22.95 5.20 5.60 

3 1000 Ar 67.17 23.46 4.09 5.28 67.10 22.23 5.85 4.82 

4 1000 Ar/H2 68.14 23.84 3.30 4.72 67.35 23.13 3.43 6.09 

5 1100 Ar 68.19 22.53 4.63 4.66 67.62 24.12 3.35 4.91 

6 1100 Ar/H2 68.60 22.81 2.81 5.78 67.67 22.63 4.23 5.47 

7 1200 Ar 68.91 23.68 3.67 3.74 68.44 22.05 3.83 5.67 

8 1200 Ar/H2 69.68 20.80 5.20 4.32 70.44 21.39 3.61 4.57 

 

In general, for the high-resolution XPS C 1s peak of all the graphene samples, 

the peaks can be deconvoluted into four individual components appearing at binding 

energy values 284.5, 285.9, 288.3 and 290.2 eV, which should correspond to graphitic 

C, C-O/C-N, C=O and C(=O)-O, respectively. It seems that increasing pyrolysis 

temperature as well as the presence of H2 during process have a positive influence on 

the quality of G and (N)G samples, resulting in the materials having slightly higher 

percentage of graphitic C and lower percentages of C-O/C-N and C=O bonds. Thus, it 

was observed that the C 1s peak becomes narrower with these two parameters. As 

an example, (N)G prepared at 1200 oC under Ar/H2 contains, according to the best 

fitting, a 69.68 % of graphitic C, and a 20.80 % of C-O/C-N, 5.20 % of C=O and 4.32 % 

of C(=O)-O. In comparison, (N)G obtained at 900 oC under Ar contains a 66.36 % of 
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graphitic C, and percentages of 26.33, 5.33 and 1.99 % of C-O/C-N, C=O and C(=O)-O, 

respectively. 

Table 3.4. Distribution of N atoms among different chemical environments as 

determined by deconvolution of the high resolution XPS N 1s peak for the (N)G 

samples under study. 

 (N)G 

Entry T (°C) Gas Graphitic  Pyrrolic  Pyridinic   

1 900 Ar 17.21 47.37 35.43 

2 900 Ar/H2  19.82 51.63 28.55 

3 1000 Ar 20.82   50.31 28.87 

4 1000 Ar/H2  22.76 51.26 25.98 

5 1100 Ar 23.05 55.18 21.77 

6 1100 Ar/H2  26.73 57.08 16.18 

7 1200 Ar 36.93 41.44 21.63 

8 1200 Ar/H2 38.24 40.80   20.95 

 

In contrast for the (N)G sample prepared at 900 °C under Ar, the XPS N 1s peak 

shown in Figure 3.5 can be fitted to three main peaks, centered at 398.5, 400.6, 

401.6 eV, corresponding to pyridinic, pyrrolic and graphitic N, respectively. The 

contents of these three N components are 35.43, 47.37 and 19.21 %, respectively. 

This peak analysis indicates that the prevalent families of N atoms incorporated into 

the graphene are pyridinic and pyrrolic N.  
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Figure 3.5. High resolution XPS C 1s peak of (N)G pyrolyzed at 900 oC under Ar (a) or 

Ar/H2 (5 %) (b) and pyrolyzed at 1200 oC under Ar (c) or Ar/H2 (5 %) (d). 
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Figure 3.6. High resolution XPS C1s peak of G pyrolyzed at 900 oC under Ar (a) or 

Ar/H2 (5 %) (b) and G pyrolyzed at 1200 oC under Ar (c) or Ar/H2 (5 %) (d). 
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Figure 3.7. High resolution XPS N 1s peak of (N)G prepared at the pyrolysis 

temperature of 900, 1000, 1100, 1200 oC under Ar (left side) or Ar/H2 (5 %) (right 

side), respectively. 
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As it can be seen in Table 3.4 and Figure 3.7, with the increase of pyrolysis 

temperature, the general tendency observed is a gradual decrease in the percentage 

of pyridinic N, while the proportion of pyrrolic N is maintained and the contribution 

of graphitic N increases. This trend indicates that the thermodynamically more stable 

form of N atoms in (N)G is graphitic N, while that of pyridinic N appears to be the 

weakest, disappearing as the pyrolysis temperature increases. On the other hand, 

following a similar trend with the influence of pyrolysis temperature, the presence of 

H2 slightly decreases the N content and at the same time changes also the 

distribution of this element among the three major N families, increasing the 

contribution of graphitic N in the (N)G samples. 

Since, as just commented, Raman spectroscopy and XPS analysis can report on 

the quality of the defective graphene samples as a function of the preparation 

conditions, based on the density of defects and oxygen content, additional 

experiments were carried out at 1100 oC using 10 % H2 in the gas flow during the 

pyrolysis step. As indicated above, it seems that, in the presence of H2, the 

differences in the samples pyrolyzed at 1100 or 1200 oC are minimal, although the 

films become thinner when the concentration of H2 increased. It was observed that 

the samples prepared at 1100 oC under 10 % H2 have almost identical Raman spectra 

and XPS data with the analogous samples prepared with 5 % H2. These data indicate 

that 5 % of H2 content during the pyrolysis step meets a compromise between better 

quality films and low H2 consumption. 

The morphology of the defective films was studied by SEM and TEM and the 

thickness was determined by AFM. No obvious differences among the various films 

as a function of the pyrolysis temperature in the range of 900-1200 oC or prepared in 

the absence and presence of 5 % H2 were observed by SEM. Nevertheless, the films 

prepared from chitosan appeared consistently in SEM with much lesser roughness 

than those from alginic acid. Perusal of the TEM images clearly indicates that the 

degree of ordering and graphitization of the films prepared at 1200 oC in the 

presence of H2 was higher than those obtained at 900 oC in its absence. Figure 3.8 
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shows representative TEM images and Fourier-transformed electron diffraction 

pattern to illustrate the improvement in the crystallinity of the sheets upon 

optimization of the preparation conditions. 

ba

c d

 

Figure 3.8. TEM images of (N)G pyrolyzed at 900 °C under Ar (a) or at 1200 °C under 

Ar/H2 (5 %) (b) and G pyrolyzed at 900 °C under Ar (c) or at 1200 °C under Ar/H2 (5 %) 

(d). The hexagonal arrangement observed in the high-resolution images has been 

highlighted in red. The inset shows the Fourier-transformed electron diffraction 

pattern of image d. 

 

AFM measurements indicate that starting from alginic acid or chitosan films of 

the same thickness, the resulting graphene film becomes thinner upon increasing the 

pyrolysis temperature and when H2 was present in the atmosphere during the 
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process. As an example, Figure 3.9 presents representative AFM images and the 

corresponding film thicknesses for two (N)G films prepared under different 

conditions. 

a b

c

d
4 nm

24 nm

 

Figure 3.9. AFM images of two (N)G films prepared from chitosan pyrolyzed at 1100 

(a) and 1200 °C under Ar/H2 (5 %) flow (b). Images (c, d) show the section profiles of 

images a and b, respectively, along the blue lines indicated in the frames a and b. 

Thicknesses about 24 and 4 nm were determined for the films prepared at 1100 and 

1200 °C, respectively. 

 

As commented at the beginning of the Chapter, the purpose of the present 

study was to determine if there is an increase in the conductivity of the graphene 

films upon optimization of the preparation conditions and, particularly, by 

optimization of the pyrolysis temperature and introduction of H2 in the gas flow. The 
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results of the conductivity measurement are presented in Figure 3.10, where plots of 

the electrical conductivity measured using a four-tips head vs. the pyrolysis 

temperature in the absence and presence of H2 are presented.  

As one can see in this Figure 3.10, the electrical resistance of the defective 

graphene films prepared from alginic acidand chitosan follows a similar trend with 

the pyrolysis temperature and in the presence of H2 although it was somewhat more 

remarkable in the case of chitosan.  

The electrical resistance of the defective graphene films decreases with the 

temperature from 900 to 1100 oC and it increases beyond this temperature. The 

presence of 5 % H2 during the pyrolysis has always a beneficial influence decreasing 

the electrical resistance at all temperatures and for both precursors. By optimization 

of the pyrolysis conditions, the electrical resistance could be decreased by a factor of 

about 3 and 5 for alginic acidand chitosan, respectively. The minimum electrical 

resistance measured in the present study was 1000 and 1100 /sq for defective films 

from alginic acidand chitosan, respectively. 

900 1000 1100 1200

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

 

 

 Ar/H
2

 Ar

R
e

si
st

an
ce

 (
kΩ

/s
q

) 

T (°C)

900 1000 1100 1200

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

 

 

 Ar/H
2

 Ar

R
e

si
st

an
ce

 (
kΩ

/s
q

) 

T (°C)

a b

 

Figure 3.10. Plots of the electrical resistance for (N)G (a) and G (b) films on quartz 

substrate prepared at different pyrolysis temperatures under Ar or Ar/H2 (5 %) flow. 

 

The most probable reason why the electrical resistance increases at high 

temperature is the inappropriateness of the four-tips head to measure the electrical 
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conductivity of the thinnest films of just a few nanometers thickness that are 

obtained at 1200 oC. It may also happen that these films are also not totally 

continuous at the millimetric length scale needed for the electrical resistance 

measurements due to volatilization of the biopolymer. 

The (N)G and G films were used as photoelctrodes for hydrogen 

evolutionreaction. The similar test was carried out in previous work from the group, 

using (N)G film as the working electrode and aqueous Na2S/Na2SO3 solution as 

electrolyte under illumination of a UV/Vis 300 W Xe lamp.[21] In the present work, 

line-sweep voltammgrams (LSV) were performed with the graphene electrodes at a 

scan rate of 50 mV/s in darkness or under LED lighting, using a 1 M LiClO4 aqueous 

solution as electrolyte. The results are shown in Figure 3.11. As we can see, for both 

(N)G and G, the film prepared at 1100 oC, Ar/H2 flow shows a smaller difference in 

the current density between light and dark, comparing with the film prepared at 900 

oC under Ar/H2 or Ar flow. Since the defective graphenes with bandgap are able to 

photogenerate charges under light irradiation, making the current a little higher than 

the value in darkness, the degree of the difference between these two curves can 

somewhat indicate the defective level of the films. These results from the 

experimental samples demonstrate that the film prepared at higher pyrolysis 

temperature and in the presence of H2 shows a more perfect graphene structure 

with lower density of defects, which is in good agreement with the characterization 

results from Raman, XPS, TEM. 
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Figure 3.11. LSV curves measured at a scan rate of 50 mV/s in darkness or under LED 

illumination from the electrodes made of (N)G prepared at 900 oC under Ar (a) or 

Ar/H2 (5 %) (c), at 1100 oC under Ar/H2 (5 %) (e) or G prepared at 900 oC under Ar (b) 

or Ar/H2 (5 %) (d), at 1100 oC under Ar/H2 (5 %) (f), respectively. 

 

Also, the production of H2 under light or dark condition was measured during 

the photoelectric test with an applied bias of +1.1 V. The results are presented in 

Figure 3.12. As it can be seen, G films exhibit better photocatalytic activity than (N)G 

films, although the activities of both two types of films are very low, considering the 

composition of the carbonaceous materials and the absence of any sacrificial reagent. 

The most perfect film, G film prepared at 1100 oC under Ar/H2, shows the best 
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catalytic activity, achieving a H2 production of 3.62 µmol after 16 h under LED 

illumination, while the values for G films pyrolyzed at 900 oC under Ar or Ar/H2 

condition are 0.75 and 1.91 µmol respectively. Control experiment for the G film 

prepared at 1100 oC under Ar/H2 was performed under dark condition and the 

sample exhibited lower activity, with a H2 yield of 1.44 µmol. In the case of N-doped 

graphene, although the activity for the experimental films is very low even under LED 

light irradiation, it still could be seen that the film prepared at 1100 oC under Ar/H2 

shows slightly higher activity than the film prepared at 900 oC under Ar. The more 

efficient performance of the graphene film should be due to the decrease in the 

intensity of defects on the structure, resulting from the higher pyrolysis temperature 

and the presence of H2. Similar with the photoelectrocatalysis based on other typical 

semiconductors,[22] a proposed mechanism for the reaction using the graphene film 

as electrode is presented in Scheme 3.3. The electrode made of the graphene film is 

supposed to act as photoanode, where the photogenerated charges can be separated 

efficiently with the external bias of +1.1 V. 
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Figure 3.12. H2 evolutionobtained in darkness or under LED illumination using the 

electrodes made of (N)G or G films prepared at 900 or 1100 oC under Ar or Ar/H2 (5 %) 

flow. 
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Scheme 3.3. A schematic representation of the possible mechanism of 

photoelectrocatalysis for the graphene film used as electrode under LED illumination 

with a positive 1.1 V applied bias. The test was performed using an aqueous solution 

of 1 M LiClO4 as electrolyte, a Pt foil as counter electrode and Ag/AgCl as reference 

electrode. 

 

 

3.3. Conclusions 

The present Chapter has shown that the presence of a small percentage of H2 

during the pyrolysis of natural filmogenic polysaccharides decreases the density of 

defects on the resulting undoped and doped graphenes, although it was not possible 

to remove completely the presence of oxygen in the samples, even at the highest 

pyrolysis temperatures. This incomplete decrease of the oxygen functionalities is 

reflected in an improvement of the electrical conductivity of the samples that can 

reach a value of 1000 /sq by pyrolysing alginic acidat 1100 °C under 5% H2. The 

electrode made of less defective graphene film exhibits photoelectrocatalytic activity 

for H2 evolutionat a positive applied bias under LED illumination. In the context of 

valorization of biomass waste, the present study shows that the properties of 

graphenes obtained from these residues can be easily improved by adequate 
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optimization of the pyrolysis conditions, the challenge of complete oxygen removal 

still remaining.  
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Catalyst-free one step synthesis of large area, vertically 

stacked N-doped graphene-boron nitride 

heterostructures from biomass precursors 
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4.1. Introduction 

Due to the numerous potential applications in various fields from 

microelectronics[1-3] to optical materials,[4-7] there is much current interest in 

developing novel procedures for the preparation of large-area films of graphene and 

related materials.[8-10] As commented in the Introduction, we have been reporting in 

a series of papers[11-17] that pyrolysis of filmogenic natural polysaccharides, such as 

chitosan and alginate, at temperatures of 900 oC or above in the absence of oxygen 

forms films of defective undoped or doped graphenes. The key features responsible 

for the formation of defective graphene films are the tendency of polysaccharides to 

decompose into turbostratic graphitic carbon residues and their ability to form thin 

nanometric, defectless, continuous, conformal films on arbitrary surfaces with 

subnanometric rugosity. Upon pyrolysis, these films of filmogenic polysaccharides of 

about 10 nm thickness undergo shrinking and transformation into mono- or few 

layers graphene films.[15] The procedure can be modified using derivatives of these 

polysaccharides with inorganic acids to form defective graphene films containing 

dopant elements, including S, B and P as well as co-doping of these 

elements.[13,14,16,18-22] 

In previous work from our group, following a similar procedure, the pyrolytic 

process of polysaccharide films was modified to afford graphene films having 

oriented MNPs as well as metal oxides and sulfides.[18,23-33] In the last case, the 

precursors of these films are the filmogenic polysaccharides whose fibrils contain a 

salt of the transition metal or a polysulfide that undergo chemical reduction under 

pyrolysis conditions in the absence of oxygen. Spontaneous segregation of two 

separate phases, graphene and the metal or metal sulfide, can take place in those 

cases in which the metal does not form the corresponding carbides. Besides films, a 

similar procedure can be adapted for the preparation of graphitic carbon residues as 

powders that upon sonication in a liquid media give rise to doped graphenes and 

graphenes supporting NPs.  
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Continuing this research line, the present Chapter reports the one-step 

preparation of films of defective N-doped graphene on a nanometric layer of boron 

nitride ((N)graphene/h-BN) on quartz. Characterization data based on optical and 

electronic microscopy as well as XPS with angular resolution shows that graphene 

sheet covers the bottom boron nitride layer, the latter exhibiting the typical cracked 

morphology[34-36] originated as consequence of the vitreous nature of boron nitride 

and thermal stress suffered by (N)graphene/h-BN during the pyrolysis. 

 

 

4.2. Results and discussion 

The process of the formation of films is illustrated in Scheme 4.1. A thin film of 

chitosan containing ammonium borate was spin cast on a freshly cleaned quartz 

surface (see Chapter 8 for the experimental representative weights and procedures). 

The ability of chitosan to adsorb ions from aqueous solution has been exploited in 

fields like water purification.[37-39] Similarly, in the present Chapter (NH4)3BO3 was 

adsorbed on chitosan. Up to 20 wt% of (NH4)3BO3 could be adsorbed on chitosan. 

 

Scheme 4.1. Preparation procedure for (N)graphene/h-BN film on quartz. i) spin 

coating; ii) pyrolysis at 900 °C under Ar atmosphere. 

 

Formation of single-layer boron nitride films has been reported in the pyrolysis 

of aminoborane.[40-42] However, since aminoborane is volatile and inadequate for our 
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pyrolytic process, a salt as ammonium borate was considered as a more suitable 

precursor to be combined with chitosan. Precedents have allowed the preparation of 

suspended boron nitride NPs in aqueous phase by pyrolysis of (NH4)3BO3 adsorbed 

on chitosan, followed by combustion of carbonaceous materials and sonication.[43-44] 

An analogous process resulting in the formation of boron nitride was expected to 

occur in the present case, but the configuration of the precursor as a film, rather 

than as powder, could allow the spontaneous segregation of the material during the 

pyrolysis in two independent phases.  

Our hypotheses were confirmed as evidenced by optical microscopy. Figure 4.1 

shows optical microscopy images of the (N)graphene/h-BN film resulting upon 

pyrolysis of chitosan embedding (NH4)3BO3 and the corresponding h-BN film that can 

be obtained by subsequent air calcination at 1000 °C to remove graphene. As it can 

be seen there, the (N)graphene/h-BN film clearly exhibits two-layers 

heterostructures, in which a thin film of graphene with the gray appearance is 

observed on top of a denser layer full of cracks. It is likely that during the pyrolysis 

and phase segregation the two independent phases with different density become 

spatially arranged in the way that the less dense phase appears on the top of the 

densest phase. The interaction between the two independent layers will be mainly 

van der Waals forces and π-π interactions. Although graphene films on BN have been 

prepared by CVD, micromanipulation and other methods, the present procedure has 

the advantage of using biomass precursors and ammonium borate salt and can be 

applied to obtain large area films (1×1 cm2) on arbitrary substrates. 

Besides, the image of h-BN sample resulting after air calcination and removal of 

the graphene overlayer shows white, smooth and highly cracked films deposited on 

quartz. In the existing precedents in the literature on the preparation of boron nitride 

films,[45] similar images of a fully cracked layer have been reported as typical of boron 

nitride. Notice that while graphene is a highly elastic material, the thermal stress 

originated in the high-temperature formation of boron nitride with vitreous nature 

and subsequent cooling at room temperature is responsible for the cracking of the 
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boron nitride film. This behavior is in contrast with the high elastic properties of 

graphene that does not undergo film cracking upon similar thermal treatments.[46-47] 

 

Figure 4.1. Optical microscopy images of the (N)graphene/h-BN film (a) with a 

handmade scratch at the center and h-BN film (b) on quartz after combustion of 

graphene. Notice in the image a that the gray tint at the upper right and lower left 

corners is due to the presence of graphene and in those parts in which the graphene 

layer has been detached by the scratch, the color of the boron nitride layer 

underneath is white. Frame c shows the Raman spectra of (N)graphene/h-BN 

obtained upon excitation at 514 nm. 

 

Convincing evidence of the formation of (N)graphene was obtained by Raman 

spectroscopy of the films. While boron nitride has a very weak Raman signal, it is 

known[48-50] that Raman spectroscopy is a highly sensitive technique to detect and 

characterize even single-layer graphene. In the present case, Raman spectra of the 

(N)graphene film on boron nitride layer show the characteristic 2D, G and D peaks 

appearing at 2900, 1580 and 1354 cm-1, respectively, expected for defective 
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graphenes derived from chitosan (Figure 4.1a, inset). Observation of those signals in 

Raman spectroscopy is a strong evidence that graphene films have been formed in 

agreement with the known behavior of chitosan.  

The thickness and roughness of the graphene and boron nitride layers were 

determined by AFM measurements. To check the layered structure of the stacked 

(N)graphene/h-BN film, a scratch on the as-synthesized film was made with a sharp 

blade. The representative AFM image of a relatively large area (1x1 μm2) centered on 

the scratch is shown in Figure 4.2a. The flat film monitored by AFM is in accordance 

with the existence of a smooth upper graphene film on top of the cracked boron 

nitride layer. The section profile throughout the films to the quartz substrate is 

shown in Figure 4.2c, from which the thicknesses of graphene and boron nitride layer 

can be easily determined as about 3 and 2 nm, respectively, corresponding to 

few-layers graphene and h-BN. Also, a frontal AFM image of the h-BN film after 

removal of graphene by combustion shows a uniform surface with the cracks and 

crevices that are observed in optical microscopy. 
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a b

c

 

Figure 4.2. Frontal AFM images around a scratch of the graphene/h-BN film (a) 

showing the different phases of (N)graphene, h-BN, and quartz and (b) a frontal view 

of the h-BN film after graphene combustion showing the morphology of the surface. 

Frame c presents the measurement of the thickness of (N)graphene/h-BN film along 

the blue, red and green lines indicated with the same colors in image a. 

 

Scanning electron microscopy (SEM) can also provide useful information about 

the (N)graphene/h-BN heterostructures. To get better images of (N)graphene/h-BN 

films, the surface of the film was slightly damaged with a spatula. As show in Figure 

4.3, this debris detached from the quartz substrate scratch of h-BN exhibits a 

characteristic morphology of thin platelets having straight periphery in accordance 

with the images by optical microscopy attributed to h-BN.  
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Figure 4.3. (a and b) SEM images of (N)graphene/h-BN heterostructures on quartz 

substrate at two different magnifications. (c) Images of the region of the 

graphene/h-BN film damaged with a spatula. (d) Image at higher magnification of the 

rectangular region marked in blue in image c showing well detached h-BN platelets.  

 

SEM images were complemented by cross-sectional views obtained applying 

fast ion bombardment (FIB) technique. The FIB treatment uses a finely focused beam 

of high energetic gallium ions operating at high currents that produce a sharp cut in 

the material allowing to obtain an image of the film profile. The resulting 

cross-section image obtained by FIB-SEM for a special (N)graphene/h-BN film is 

shown in Figure 4.4. Notice that in order to obtain a clearer cross-section image, the 

graphene/h-BN film submitted to FIB was somewhat thicker than the one 

corresponding to the AFM measurements shown in Figure 4.2 that was much thinner. 

Two layers of different materials can be observed in this cross-sectional image. 

javascript:void(0);
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Figure 4.4. a) SEM image of a (N)graphene/h-BN film that has been submitted to FIB. 

b) Magnification of the cross-section obtained by FIB in which two layers 

corresponding to graphene and h-BN can be observed from the somewhat different 

contrast. 

 

By scratching small debris of the heterostructure present on the film onto the 

grid suitable as sample holder for TEM, high-resolution transition electron 

microscopy (HRTEM) images of the heterostructure could be taken. Figure 4.5 shows 

representative images of the morphology of (N)graphene/h-BN sample detached 

from the film. It should be remarked that the sheet structures of graphene and h-BN 

are very similar, which makes it difficult to distinguish them by this technique.  

a b

 

Figure 4.5. HRTEM images of the (N)graphene/h-BN heterostructures detached from 

the films showing the morphology of the sheet structure at different magnifications. 
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Further evidence that (N)graphene film is overlaying boron nitride could be 

obtained by XPS analysis measuring the spectra at different monitoring angles. Thus, 

in accordance with the film morphology, X-ray excitation perpendicular to the film at 

0 o monitoring angle revealed the presence of C, B and N in an approximately relative 

atomic proportion of 16.5:1:1. Analysis of the high resolution XPS peaks 

corresponding to the C1s, B1s and N1s peaks were in agreement with the reported 

values for defective graphene derived from chitosan and for boron nitride, 

respectively. Figure 4.6(a-c) presents the experimental XPS peaks for these elements 

and their best deconvolution to individual components. As it can be seen there, 

besides graphenic C in 68 %, the presence of C atoms bonded to N or O and 

carboxylic acid groups with binding energy values of 285.9 and 288.4 eV were also 

observed.  

On the contrary, the XPS B1s peak deconvolution indicates that this peak 

corresponds to a single component at a binding energy of 190.7 eV that agrees with 

the expected value for B atoms in boron nitride.[51-53] This binding energy and the 

symmetry of the B1s peak rules out the formation of B-doped graphene in a 

measurable extent. In the case of N1s, the XPS peak can also be fit to one single 

component with a binding energy value of 398.3 eV that also agrees with the 

expected value for N atoms of boron nitride. Additional contribution of N atoms on 

N-doped graphene were very minor compared to that of boron nitride and could not 

be determined adequately from the experimental N1s peak. 
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Figure 4.6. High-resolution XPS peaks of C1s, N1s, B1s obtained by analysis at a 

monitoring angle of 0° (a-c) and 50° (d-f) for (N)graphene/h-BN film, respectively. (g) 

Plot of the graphitic carbon vs B atomic ratio as a function of the detector angle. The 

inset presents the relative geometry of exciting X-ray and detection angle (θ) vs the 

surface of the (N)graphene/h-BN film. 

 

By changing the monitoring angle of the ejected electrons in XPS, the atomic 

proportion of B and N vs. C atoms decreased simultaneously in identical magnitude. 

A minimal relative atomic value of approximately 10.5:0.1:0.1 for C, B and N 
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elements at a monitoring angle of 50° was obtained. Figure 4.6(d-f) presents the XPS 

peaks of these elements obtained with a θ tilt angle of 50° as well as the best 

deconvolution to the individual components. These XPS measurements at different 

tilt angles are in agreement with the images of optical microscopy showing that 

graphene forms an upper layer over boron nitride in (N)graphene/h-BN. Thus, when 

analysis is perpendicular to the surface, all the elements in the corresponding 

proportion were detectable by XPS, while moving the detector in the direction 

parallel to the surface, an increase in the proportion of graphene over that of boron 

nitride was observed. Figure 4.6g presents a plot of the graphitic C vs B atomic ratio 

as a function of the detector θ tilt angle from the surface perpendicular in which a 

linear relationship can be observed. 

It is well-known that electrical conductivity of graphenes depends on many 

different chemical and experimental factors, including the substrate on which it is 

supported. The record of maximal electron mobility for graphenes has been reported 

for defectless graphene deposited on boron nitride forming an aligned 

superlattice.[54-58] It seems that the excellent matching between the lattices of two 

2D materials and their alignment weak interaction through van der Waals forces are 

among the main reason for this high electron mobility. In the present 

(N)graphene/h-BN material, it is clear that the defective nature of graphene prepared 

from pyrolysis of chitosan containing N-dopant atoms, as well as residual oxygenated 

functional groups and carbon vacancies decreases considerably its electrical 

conductivity compared to that of ideal graphene. However, this type of 

measurements of electrical conductivity are of large importance to understand the 

properties of this N-doped graphene on top of boron nitride, particularly compared 

to the behavior of the same type of defective N-doped graphene on quartz substrate. 

The maximal electrical conductivity measured by the four tips head was 10 kΩ/sq (sq, 

meaning square) that is even lower than the value that has been measured for 

N-doped graphene on quartz (2 kΩ/sq). Thus, it seems that the presence of cracks on 

the h-BN layer and/or the interaction between the (N)graphene and h-BN layers do 
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not allow an improvement of the surface electrical conductivity at the millimetric 

length scale. Graphene and BN layers can interact in various ways and when the 

alignment of the hexagons of both materials match perfectly a superlattice structure 

may appear.[59] The presence of cracks in BN and N-doping in graphene, the various 

ways of interaction between these two layers and the match or disorder between the 

two layers should be responsible for the differences in the electrical conductivity 

measured for the assembly compared to the independent N-doped graphene. 

To gain further insight on the electrical behavior of (N)-graphene/h-BN films, 

additional electrical measurements using a micrometric tip electrode were carried 

out (see schematic of the setup in Figure 4.7a). The purpose was to determine the 

electrical conductivity at dimensions commensurate with the h-BN islands, several of 

which have a submillimetric dimensions, according to optical microscopy. When 

performing the initial screening with mA currents, complete combustion of the 

(N)graphene layer was observed. This indicates that the internal resistance of the 

(N)graphene causes heating of the material, reaching the high temperatures needed 

to cause combustion of the material. 

Independent thermogravimetric analysis of the (N)graphene/h-BN film shows 

an initial weight loss of about 4 % at temperatures below 200 oC corresponding to 

the desorption of water and other adsorbates, followed by a 14 % weight loss in the 

range of temperatures between 600 and 800 oC that is due to the combustion of the 

(N)graphene layer. Figure 4.7b presents the weight loss profile as a function of the 

temperature corresponding to the thermogravimetric analysis of (N)graphene/h-BN 

film. Therefore, it seems that these high electrical currents should heat the 

(N)graphene layer enough to reach locally the high temperatures needed to trigger 

the combustion of the graphene materials that is estimated about 600 oC. Lowering 

the current intensity to nA values allowed to confirm a poor electrical conductivity 

for the (N)graphene/h-BN films in the range of a few kΩ/sq, even at these 

submicrometric distances, measuring on various positions of the 1×1 cm2 area of the 

film, with relatively minor dispersion on the values. However, these electrical 
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measurements allowed to monitor a capacitative behavior of the (N)graphene/h-BN 

heterostructure in the positive potential region. Figure 4.7d shows the current 

intensity vs. applied voltage from which resistance was determined and how at 

positive voltages a hysteresis loop is observed. The I-V plot shown in Figure 4.7d was 

reproducible in several cycles at the same position of the electrode or in different 

parts of the (N)graphene/h-BN film, indicating that the process of charge and 

discharge at these current densities, voltages and scan rates is reversible and does 

not cause any apparent damage to the film. 
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Figure 4.7. a) Schematic representation of the setup used for measuring the 

current-voltage curves at submillimetric scale. b) TG measurement of the 

(N)graphene/h-BN. c) I-V curves measured for (N)graphene on quartz and (d) 

(N)graphene/h-BN. The I-V curves were measured at a scan rate of 200 mV/s 

between -2 to 2 V. 

 

The most reasonable explanation for the hysteresis is that the 

(N)graphene/h-BN heterostructure exhibits a capacitative behavior storing charge 

upon scanning at positive potentials. The specific accumulated charge as Faraday 
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divided per gram of material could be determined from the I-V plots presented in 

Figure 4.7d, giving a value of 117 F×g-1 that is in line with the charge accumulation 

data reported for single layer BN prepared by exfoliation of commercial bulk h-BN.[60] 

This indicates that our (N)graphene/h-BN film can act as a capacitor storing charge 

and this film can be used in microchips and devices with micrometric dimensions as 

reversible charge accumulation system.  

 

 

4.3. Conclusions 

The present Chapter has shown the one-step procedure for the preparation of 

defective N-doped graphene on top of a boron nitride layer that can be applied for 

the preparation of large (cm2) areas of this composite film on arbitrary substrates. 

Formation of the film derives from the spontaneous segregation of independent 

layers of graphene and boron nitride as the chitosan precursor embedding a high 

percentage of ammonium borate is submitted to pyrolysis. The procedure disclosed 

in the present Chapter illustrates the adaptability of defective graphene synthesis 

based on the use of filmogenic natural polysaccharides in the preparation of various 

graphene heterojunctions. The film exhibits high electrical resistance in the range of 

10 kΩ/sq with no improvement in electrical conductivity with respect to the 

conductivity values of (N)graphene. This high electrical resistance is responsible for 

the combustion of the (N)graphene layer when the film is submitted to currents in 

the mA range. In contrast, the film can be submitted to nA currents without causing 

its combustion. In this current range, the (N)graphene/h-BN film exhibits a reversible 

and stable capacitative behavior, with a charge accumulation estimated in 117 F×g-1. 

The above results represent a step forward towards the preparation of 

graphene-boron nitride superlattices in a single pyrolytic process of a precursor 

mainly constituted by biomass waste. 

 



 

Chapter 4 

95 

 

4.4. References 

[1]   Frazier, R. M.; Daly, D. T.; Swatloski, R. P.; Hathcock, K. W.; South, C. R. Recent 

progress in graphene-related nanotechnologies. Recent Patents on Nanotechnology 

2009, 3(3), 164-176. 

[2]   Mattevi, C.; Colleaux, F.; Kim, H. K.; Lin, Y. H.; Park, K. T.; Chhowalla, M.; 

Anthopoulos, T. D. Solution-processable organic dielectrics for graphene electronics 

Nanotechnology 2012, 23(34), 344017-344026. 

[3]   Vaziri, S.; Lupina, G.; Paussa, A.; Smith, A. D.; Henkel, C.; Lippert, G.; Dabrowski, 

J.; Mehr, W.; Oestling, M.; Lemme, M. C. A graphene-based hot electron transistor. 

Nano Letters 2013, 13(4), 1435-1439. 

[4]   Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E. All-optical generation of 

surface plasmons in graphene. Nature Physics 2016, 12(2), 124-127. 

[5]   Gu, M.; Zhang, Q.; Lamon, S. Nanomaterials for optical data storage. 

Nature Reviews Materials 2016, 1(12), 16070. 

[6]   He, Z.; Zhong, C.; Huang, X.; Wong, W. Y.; Wu, H.; Chen, L.; Cao, Y.  

Simultaneous enhancement of open-circuit voltage, short-circuit current density, and 

fill factor in polymer solar cells. Advanced Materials 2011, 23(40), 4636-4643. 

[7]   Yu, X.; Cheng, H.; Zhang, M.; Zhao, Y.; Qu, L.; Shi, G. Graphene-based smart 

materials. Nature Reviews Materials 2017, 2(9), 17046. 

[8]   Guo, S.; Dong, S. Graphene nanosheet: synthesis, molecular engineering, thin 

film, hybrids, and energy and analytical applications. Chemical Society Reviews 2011, 

40(5), 2644-2672. 

[9]   Tan, L.; Zeng, M.; Zhang, T.; Fu, L. Design of catalytic substrates for uniform 

graphene films: from solid-metal to liquid-metal. Nanoscale 2015, 7(20), 9105-9121.  

[10]  Xu, M.; Liang, T.; Shi, M.; Chen, H. Graphene-like two-dimensional materials. 

Chemical Reviews 2013, 113(5), 3766-3798. 

[11]  Atienzar, P.; Primo, A.; Lavorato, C.; Molinari, R.; Garcia, H. Preparation of 

graphene quantum dots from pyrolyzed alginate. Langmuir 2013, 29(20), 6141-6146. 

[12]  Primo, A.; Forneli, A.; Corma, A.; Garcia, H. From biomass wastes to highly 

javascript:popupOBO('CHEBI:36973','C0CS00079E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=36973')
javascript:popupOBO('CHEBI:52531','C0CS00079E','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=52531')


 

Chapter 4 

96 

 

efficient CO2 adsorbents: graphitisation of chitosan and alginate biopolymers. 

ChemSusChem 2012, 5(11), 2207-2214. 

[13]  Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Doped 

graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic 

hydrocarbons, cyclooctane and styrene. Chemistry - A European Journal 2013, 

19(23), 7547-7554. 

[14]  Latorre-Sanchez, M.; Primo, A.; Garcia, H. P-doped graphene obtained by 

pyrolysis of modified alginate as a photocatalyst for hydrogen generation from 

water-methanol mixtures. Angewandte Chemie - International Edition 2013, 52(45), 

11813-11816. 

[15]  Primo, A.; Atienzar, P.; Sanchez, E.; Delgado, J. M.; Garcia, H. From biomass 

wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of 

chitosan coatings on arbitrary substrates. Chemical Communications 2012, 48(74), 

9254-9256. 

[16]  Primo, A.; Sanchez, E.; Delgado, J. M.; Garcia, H. High-yield production of 

N-doped graphitic platelets by aqueous exfoliation of pyrolyzed chitosan. Carbon 

2014, 68, 777-783. 

[17]  Dhakshinamoorthy, A.; Primo, A.; Concepcion, P.; Alvaro, M.; Garcia, H. Doped 

graphene as a metal-free carbocatalyst for the selective aerobic oxidation of benzylic 

hydrocarbons, cyclooctane and styrene. Chemistry - A European Journal 2013, 

19(23), 7547-7554. 

[18]  Blez, J. F.; Primo, A.; Asiri, A. M.; Alvaro, M.; Garcia, H. Copper nanoparticles 

supported on doped graphenes as catalyst for the dehydrogenative coupling of 

silanes and alcohols. Angewandte Chemie - International Edition 2014, 53(46), 

12581-12586. 

[19]  Dhakshinamoorthy, A.; Latorre-Sanchez, M.; Asiri, A. M.; Primo, A.; Garcia, H. 

Sulphur-doped graphene as metal-free carbocatalysts for the solventless aerobic 

oxidation of styrenes. Catalysis Communications 2015, 65, 10-13. 

[20]  Esteve-Adell, I.; Crapart, B.; Primo, A.; Serp, P.; Garcia, H. Aqueous phase 

reforming of glycerol using doped graphenes as metal-free catalysts. Green 



 

Chapter 4 

97 

 

Chemistry 2017, 19(13), 3061-3068. 

[21]  Latorre-Sanchez, M.; Primo, A.; Atienzar, P.; Forneli, A.; Garcia, H. P-n 

heterojunction of doped graphene films obtained by pyrolysis of biomass precursors. 

Small 2015, 11(8), 970-975. 

[22]  Lavorato, C.; Primo, A.; Molinari, R.; Garcia, H. N-doped graphene derived 

from biomass as a visible-light photocatalyst for hydrogen generation from 

water/methanol mixtures. Chemistry - A European Journal 2014, 20(1), 187-194. 

[23]  Blandez, J. F.; Esteve-Adell, I.; Primo, A.; Alvaro, M.; Garcia, H. Nickel 

nanoparticles supported on graphene as catalysts for aldehyde hydrosilylation. 

Journal of Molecular Catalysis A: Chemical 2016, 412, 13-19. 

[24]  Dhakshinamoorthy, A.; Esteve Adell, I.; Primo, A.; Garcia, H. Enhanced activity 

of Ag nanoplatelets on few layers of graphene film with preferential orientation for 

dehydrogenative silane-alcohol coupling. ACS Sustainable Chemistry and Engineering 

2017, 5(3), 2400-2406. 

[25]  Esteve-Adell, I.; Bakker, N.; Primo, A.; Hensen, E.; Garcia, H. Oriented Pt 

nanoparticles supported on few-layers graphene as highly active catalyst for 

aqueous-phase reforming of ethylene glycol. ACS Applied Materials and Interfaces 

2016, 8(49), 33690-33696. 

[26]  Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; Garcia, H. Copper nanoparticles 

stabilized in a porous chitosan aerogel as a heterogeneous catalyst for C-S 

cross-coupling. ChemCatChem 2015, 7(20), 3307-3315. 

[27]  Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; Garcia, H. Nanosized copper 

supported on graphene as catalyst for the oxidative C-O cross-coupling of phenols. 

Chemistry Select 2016, 1(2), 157-162. 

[28]  Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; Garcia, H. Isotropic and oriented 

copper nanoparticles supported on graphene as aniline guanylation catalysts. ACS 

Catalysis 2016, 6(6), 3863-3869. 

[29]  Frindy, S.; El Kadib, A.; Lahcini, M.; Primo, A.; Garcia, H. Copper nanoparticles 

supported on graphene as an efficient catalyst for A3 coupling of benzaldehydes. 

Catalysis Science & Technology 2016, 6(12), 4306-4317. 



 

Chapter 4 

98 

 

[30]  He, J.; Dhakshinamoorthy, A.; Primo, A.; Garcia, H. Iron nanoparticles 

embedded in graphitic carbon matrix as heterogeneous catalysts for the oxidative 

C−N coupling of aromatic N−H compounds and amides. ChemCatChem 2017, 9(15), 

3003-3012. 

[31]  Latorre-Sanchez, M.; Esteve-Adell, I.; Primo, A.; Garcia, H. Innovative 

preparation of MoS2-graphene heterostructures based on alginate containing 

(NH4)2MoS4 and their photocatalytic activity for H2 generation. Carbon 2015, 81(1), 

587-596.  

[32]  Mateo, D.; Esteve-Adell, I.; Albero, J.; Primo, A.; Garcia, H. Oriented 2.0.0 Cu2O 

nanoplatelets supported on few-layers graphene as efficient visible light 

photocatalyst for overall water splitting. Applied Catalysis B: Environmental 2017, 

201, 582-590. 

[33]  Primo, A.; Esteve-Adell, I.; Coman, S. N.; Candu, N.; Parvulescu, V. I.; Garcia, H. 

One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on 

graphene and six orders of magnitude enhancement of the resulting catalytic 

activity. Angewandte Chemie - International Edition 2016, 55(2), 607-612. 

[34]  Mortazavi, B.; Pereira, L. F. C.; Jiang, J. W.; Rabczuk, T. Modelling heat 

conduction in polycrystalline hexagonal boron-nitride films. Scientific Reports 2015, 

5, 1-11. 

[35]  Guo, N.; Wei, J.; Jia, Y.; Sun, H.; Wang, Y.; Zhao, K.; Wu, D. Fabrication of large 

area hexagonal boron nitride thin films for bendable capacitors. Nano Research 

2013, 6(8), 602-610. 

[36]  Bresnehan, M. S.; Bhimanapati, G. R.; Wang, K.; Snyder, D. W.; Robinson, J. A. 

Impact of copper overpressure on the synthesis of hexagonal boron nitride atomic 

layers. ACS Applied Materials and Interfaces 2014, 6(19), 16755-16762. 

[37]  Kim, H. B.; Kim, J. S.; Hyun, S. Y. Water purification filter using chitosan water 

purification module, and composite filter system comprising thereof. 

KR2017006222A 2017. 

[38]  Theivendran, S.; Hein, S.; Pettibone, M.; Kubinec, J. J. Methods of improving 

chitosan for water purification in a halogen water treatment system. 



 

Chapter 4 

99 

 

US20130200008A1 2013. 

[39]  Theivendran, S.; Kubinec, J. J.; Snelling, J. Filter comprising a halogen release 

system and chitosan for water purification. US20110226706A1 2011. 

[40]  Behura, S.; Nguyen, P.; Che, S.; Debbarma, R.; Berry, V. Large-area, 

transfer-free, oxide-assisted synthesis of hexagonal boron nitride films and their 

heterostructures with MoS2 and WS2. Journal of the American Chemical Society 2015, 

137(40), 13060-13065. 

[41]  Maya, L. Boron nitride precursors: a perspective. Applied Organometallic 

Chemistry 1996, 10(3-4), 175-182. 

[42]  Chang, R. J.; Wang, X.; Wang, S.; Sheng, Y.; Porter, B.; Bhaskaran, H.; Warner, J. 

H. Growth of large single-crystalline monolayer hexagonal boron nitride by 

oxide-assisted chemical vapor deposition. Chemistry of Materials 2017, 29(15), 

6252-6260. 

[43]  Dhakshinamoorthy, A.; Primo, A.; Esteve-Adell, I.; Alvaro, M.; Garcia, H. Boron 

nitride nanoplatelets as a solid radical initiator for the aerobic oxidation of 

thiophenol to diphenyldisulfide. ChemCatChem 2015, 7(5), 776-780. 

[44]  Primo, A.; Navalon, S.; Asiri, A. M.; Garcia, H. Chitosan-templated synthesis of 

few-layers boron nitride and its unforeseen activity as a Fenton catalyst. Chemistry - 

A European Journal 2015, 21(1), 324-330. 

[45]  Shi, Y.; Hamsen, C.; Jia, X.; Kim, K. K.; Reina, A.; Hofmann, M.; Kong, J. 

Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor 

deposition. Nano Letters 2010, 10(10), 4134-4139. 

[46]  Le, M. Q.; Nguyen, D. T. Determination of elastic properties of hexagonal 

sheets by atomistic finite element method. Journal of Computational and Theoretical 

Nanoscience 2015, 12(4), 566-574. 

[47]   Liu, K.; Wu, J. Mechanical properties of two-dimensional materials and 

heterostructures. Journal of Materials Research 2016, 31(7), 832-844. 

[48]  Jiang, J.; Pachter, R.; Islam, A. E.; Maruyama, B.; Boeckl, J. J. Defect-induced 

Raman spectroscopy in single-layer graphene with boron and nitrogen substitutional 

defects by theoretical investigation. Chemical Physics Letters 2016, 663, 79-83. 



 

Chapter 4 

100 

 

[49]  Kim, A.; Lee, M.; Han, S.; Kang, S. J.; Song, K. Raman spectroscopic studies of 

doped graphene. Polymer (Korea) 2015, 39(6), 956-960. 

[50]  Koivistoinen, J.; Myllyperkiö, P.; Pettersson, M. Time-resolved coherent 

anti-stokes Raman scattering of graphene: dephasing dynamics of optical phonon. 

The Journal of Physical Chemistry Letters 2017, 8(17), 4108-4112. 

[51]  Ingo, G. M.; Brown, A.; Cossu, G.; Mattogno, G.; Scoppio, L. Second. Ion Mass 

Spectrom., SIMS 8, Proc. Int. Conf., 8th, 1991, (Pub. 1992), 605. 

[52]  Millon, E.; Lobstein, N.; Muller, J. F.; Alnot, M. Analyse par spectrometrie de 

masse et spectroscopie de photoelectrons X de films de nitrure de bore (BN) sur 

substrat en silicium. Analusis 1995, 1(23), 35-40. 

[53]  Nemoshkalenko, V. V.; Bochko, A. V.; Senkevich, A. I. Dopov. Akad. Nauk Ukr. 

RSR, Ser. A: Fiz.-Mat. Tekh. Nauki 1986, 76-78. 

[54]  Da Silva, A. M.; Jung, J.; Adam, S.; MacDonald, A. H. Fractional hofstadter 

states in graphene on hexagonal boron nitride. Physical review letters 2016, 117(3), 

036802. 

[55]  Hirai, H.; Tsuchiya, H.; Kamakura, Y.; Mori, N.; Ogawa, M. Electron mobility 

calculation for graphene on substrates. Journal of Applied Physics 2014, 116(8), 

083703-083706. 

[56]  Kamalakar, M. V.; Dankert, A.; Bergsten, J.; Ive, T.; Dash, S. P. Enhanced tunnel 

spin injection into graphene using chemical vapor deposited hexagonal boron 

nitride. Scientific Reports 2014, 4, 1-8. 

[57]  Lee, M.; Wallbank, J. R.; Gallagher, P.; Watanabe, K.; Taniguchi, T.; Fal'ko, V. I.; 

Goldhaber-Gordon, D. Ballistic miniband conduction in a graphene superlattice. 

Science 2016, 353(6307), 1526-1529. 

[58]  Uddin, M. A.; Glavin, N.; Singh, A.; Naguy, R.; Jespersen, M.; Voevodin, A.;  

Koley, G. Mobility enhancement in graphene transistors on low temperature pulsed 

laser deposited boron nitride. Applied Physics Letters 2015, 107(20), 203110-203115. 

[59]  Song, Y.; Zhang, C.; Li, B.; Ding, G.; Jiang, D.; Wang, H.; Xie, X. Van der Waals 

epitaxy and characterization of hexagonal boron nitride nanosheets on graphene. 

Nanoscale Research Letters 2014, 9(1), 1-7. 



 

Chapter 4 

101 

 

[60]  Khan, A. F.; Down, M. P.; Smith, G. C.; Foster, C. W.; Banks, C. E. 

Surfactant-exfoliated 2D hexagonal boron nitride (2D-hBN): role of surfactant upon 

the electrochemical reduction of oxygen and capacitance applications. Journal of 

Materials Chemistry A 2017, 5(8), 4103-4113. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Chapter 5 

 

 

 One-step preparation of large area films of oriented 

MoS2 nanoparticles on multilayer graphene and its 

electrocatalytic activity for hydrogen evolution 

 

 

ⅰ)ⅱ) ⅲ)

(NH4)2MoS4 + alginate acid

Fe /Co NP @C

/fl-G

 

 

 

 

 

 

 



 

 

 



 

Chapter 5 

105 

 

5.1. Introduction 

Molybdenum disulfide (MoS2) is among the most efficient non-noble metal 

electrocatalysts for water oxidation and reduction, and it has been proposed as an 

economically-viable alternative to the use of platinum in electrocatalysis for water 

splitting.[1–3] MoS2 is a 2D layered material that upon exfoliation can be supported on 

G, and in this way, electrodes with high performance for hydrogen generation from 

water have been developed.[4,5] It has been found that the electrocatalytic activity for 

the hydrogen evolution reaction of MoS2 increases as the particles become thinner 

and with the presence of steps, edges and defects on the particles.[4,5] The most 

active sites on MoS2 have been proposed S vacancies at steps, followed by S 

vacancies on terraces and crystal planes.[4,5] 

Our previous works have showed an innovative method for the preparation of 

hybrid MoS2/G materials as powders.[6] The method is based on the simultaneous 

formation of G and MoS2 by pyrolysis at temperatures above 900 °C of a mixture of 

alginate containing (NH4)2MoS4. As already commented it is sufficiently known that 

the pyrolysis of certain natural polysaccharides such as alginate and chitosan gives 

rise to the formation of turbostratic graphitic carbon residues that can be easily 

exfoliated with high efficiency to form G suspensions.[7] Since these polysaccharides 

are good adsorbents, if the biopolymer contains metal ions or some other 

component, spontaneous phase segregation during the pyrolysis may lead to the 

formation of G having metal nanoparticles (NPs) or some other metal compound 

present on the G surface.[8–10] This was the case of powders of alginate containing 

(NH4)2MoS4 that upon pyrolysis and subsequent exfoliation of the carbon residue led 

to the formation of MoS2 platelets deposited on G by carbochemical reduction of 

MoVI to MoIV under the conditions of the pyrolysis.[6] The simultaneous formation of 

MoS2 and G in the process was assessed by XRD and Raman spectroscopy of the 

powders, recording the characteristic signature of both materials and also by 

transmission electron microscopy (TEM) and atomic force microscope (AFM) images 
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of the resulting particles in suspension upon sonication of the powders.[6] The 

MoS2/G material suspended in water was used as the catalyst for the visible light 

hydrogen generation using Eosin Y as the photosensitizer and methanol as the 

sacrificial electron donor.[6]  

We have already presented that besides as powders, some of these natural 

polysaccharides such as alginates and chitosan are able to form defectless films of 

nanometric thickness and subnanometric rugosity that upon pyrolysis are converted 

into films of G or few-layer G.[11] The ability of some of these natural biopolymers to 

form films of nanometric thickness is directly responsible for the generation of the 

corresponding single or few-layer G films upon graphitization. When the film of 

polysaccharide contains some adsorbed metal ion that does not form metal carbides, 

such as Au, Pt and Cu, their pyrolysis leads to the formation of G films having strongly 

anchored metal NPs exposing in several cases some preferential facet 

orientation.[8–10,12] Continuing with this line of research, it would be of interest to 

exploit further this innovative film preparation procedure based on the pyrolysis of 

polysaccharide precursors for the one-step preparation of films of MoS2 supported 

on few-layer G that could be used directly as electrodes and determine their activity 

as electrocatalysts for hydrogen generation from water.  

The present Chapter presents this type of electrocatalytic measurements on 

large area films (2×2 cm2) of MoS2 supported on G prepared by pyrolysis of films of 

ammonium alginate containing adsorbed (NH4)2MoS4. It will be shown here that as a 

consequence of the preparation procedure, the resulting MoS2 particles exhibit a 

preferential 002 facet orientation and present electrocatalytic activity for H2 

evolution without the need for an additional conductive electrode, thus, 

representing a competitive advantage respect to the current MoS2 based 

electrocatalysts that require the presence of a conductive electrode to allow 

measurable current densities. 
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5.2. Results and discussion 

 

5.2.1. Sample preparation and characterization 

Scheme 5.1 illustrates the preparation procedure of /ml-G (  meaning 

002 oriented MoS2, ml meaning multilayer). The process starts by dissolving alginic 

acid in an aqueous solution with the aid of ammonia. To this ammonium alginate 

solution, the required amount of (NH4)2MoS4 was added. These solutions containing 

(NH4)2MoS4 adsorbed on ammonium alginate were spin cast on a clean glass 

substrate, and the resulting ammonium alginate film was pyrolyzed under Ar at 

900 °C (experimental details are provided in Chapter 8). Several films, where the 

loading of (NH4)2MoS4 was varied by using initial (NH4)2MoS4 concentrations in the 

range from 1 to 60 mM, were used. This process resulted in a set of /ml-G-χ 

samples, where the χ value denotes the initial (NH4)2MoS4 concentration used in the 

preparation of the films. 

ⅰ)ⅱ) ⅲ)

(NH4)2MoS4 + alginate acid

Fe /Co NP @C

/fl-G

 

Scheme 5.1. Preparation procedure for /ml-G films supported on quartz: 

(i) filtration of the aqueous solution of ammonium alginate containing (NH4)2MoS4; 

(ii) spin coating of alginate solution on clean quartz, and (iii) pyrolysis at 900 °C under 

Ar atmosphere. 

 

The films resulting after the pyrolysis were initially characterized by XRD. As 

expected in view of related precedents, only the samples prepared with the highest 

(NH4)2MoS4 concentrations showed some XRD peaks characteristic of MoS2. Figure 
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5.1 presents the XRD pattern recorded for commercial MoS2 powder and for a 

sample prepared using (NH4)2MoS4 as the precursor with a concentration of 60 mM, 

where in addition to a broad band corresponding to graphitic carbon (multilayer G) 

of about 24°, a reflection at 14° corresponding to the 002 diffraction of MoS2 could 

also be recorded. No other diffraction peaks expected also for MoS2 crystallites were 

present. The absence of the peaks corresponding to other diffraction planes 

indicates that MoS2 particles are formed exhibiting a preferential 002 facet 

orientation. Earlier precedents have shown that pyrolysis of thin films of alginate and 

chitosan containing Au, Pt, Ag and Cu among other metals can result in metal 

nanoplatelets supported on G exhibiting preferential 111 facet orientation.[8,10,12] 

The case presented in this Chapter constitutes an additional example of the 

formation of nanoparticles with a preferential crystallographic orientation, the 002 

facet in the MoS2 particles. In accordance with earlier proposals, the most likely 

reasons for this preferential particle growth are the template effect of graphene 

layer on the nascent MoS2 nanoparticles and/or the higher thermodynamic stability 

of the 002 surface respect to other crystal facets. 
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Figure 5.1. XRD patterns of /ml-G-60 film (a) and the commercial MoS2 powder 

(b).  

 

The morphology of MoS2 nanoplatelets and their average particle size on the 

samples were determined by scanning electron microscopy (SEM). Figure 5.2 
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presents the images of the films prepared with initial (NH4)2MoS4 concentrations of 

0.5, 2, 5 and 10 mM, showing that the /ml-G samples contain particles of MoS2 

distributed homogeneously all over the G film with a broad particle size distribution 

ranging approximately from 10–200 nm. Quantitative analysis of the particles 

observed in the SEM images by energy dispersive X-ray spectroscopy (EDX) 

confirmed that these particles are constituted by Mo and S in an approximate atomic 

1:2 ratio, providing firm evidence of the composition of the particles seen in the 

images. The most important conclusion of this SEM study is that there was a clear 

relationship between the average MoS2 particle size and the concentration of 

(NH4)2MoS4 used in the preparation, the average particle size increasing along the 

concentration of (NH4)2MoS4 used in the preparation of the /ml-G films. In this 

way, the /ml-G-x with the smallest average particle size of 15 nm corresponded 

to /ml-G-0.5, while the average particle size grows to 37, 78 and 105 nm for 

/ml-G-2, /ml-G-5 and /ml-G-10, respectively. It is known that an 

increase in particle size has generally a detrimental influence on the electrocatalytic 

performance that decreases as the particles become larger. 

The synthesized samples composed of MoS2 nanoplates embedded in graphene 

are quite different with the G(N)/h-BN heterostructures in Chapter 4 where 

segregated layers of h-BN and graphene were formed, as the similar preparation 

methods for these two materials were used. Actually, it could be due to the different 

contributions of graphene to the synthetic process of these two heterostructures. 

For the (N)G/h-BN heterostructures, the N-doped graphene behaved more like an 

internal template where B, N gradually doped into the layer structure and this finally 

resulted in the formation of segregated h-BN layer based on the graphene sheet. 

However, for the graphene/MoS2 materials, the graphene behaved more like an 

external template where MoS2 were formed on the surface of the hexagonal 

structure. This contributed to the oriented growth of MoS2 nanoplates on the 

graphene layer and led to the formation of a composite of MoS2 nanoplates 

embedded in graphene. 
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Figure 5.2. Representative SEM images of /ml-G-0.5 (a), /ml-G-2 (b), 

/ml-G-5 (c), /ml-G-10 (d), as well as the different histograms of MoS2 

particle size distribution and the EDX analysis of the /ml-G-2 (e) confirming that 

the particles correspond to MoS2 supported on ml-G. Note that the presence of Zr 

and Si is due to the sample holder used for SEM and the quartz substrate, 

respectively. 

 

Unfortunately, TEM images of the /ml-G films cannot be obtained without 

detaching them from the quartz substrate. Accordingly, TEM images of the 

/ml-G-2 could only be obtained after scratching debris of the /ml-G film 

from the quartz substrate. Figure 5.3 provides a set of TEM images of pieces of the 

/ml-G film detached from the quartz substrate. Figure 5.3a shows a wide view 
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image of the /ml-G film showing the presence of  particles (darker 

particles) surrounded by graphene characterized by lighter contrast. Figure 5.3(b,c) 

focuses on  particles. In Panel c, the presence of graphene layers (lighter 

contrast) wrapping the MoS2 particle is clearly observed. High resolution TEM 

measurements of the interlayer distance of the particles give a value of 0.62 nm, 

which agrees with the value for the 002 interplanar distance in MoS2, thus providing 

an additional confirmation of the preferential 002 orientation of the MoS2 particles 

determined by XRD for those samples with high MoS2 loading.[13] Fast Fourier 

transformed (FFT) electron diffraction showed that the MoS2 particles were highly 

crystalline. Figure 5.3 shows three selected TEM images at different magnifications, 

as well as the measurement of the interplanar distance and the FFT electron 

diffraction pattern taken from the image. 

By using the AFM technique with subnanometric vertical resolution, the 

thickness of the /ml-G-2 film and the nanoplatelet morphology of MoS2 

particles grafted on G were confirmed. Figure 5.4 presents the measurement of the 

heights for three representative large MoS2 nanoplatelets with a lateral area of 

about 80 nm, showing that these particles are flat and thin, with heights between 5 

and 15 nm. The thickness of the graphene film could also be measured at the edge of 

the scratch. It was determined that the average thickness of /ml-G-2 film was 

about 20 nm (Figure 4d). 
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a b

c d

 

Figure 5.3. TEM images at different magnifications of /ml-G-2 after scratching 

the film from the quartz substrate (a, b, c). Image a shows a general view where the 

presence of MoS2 as darker particles can be seen embedded within the multilayer 

graphene film in lighter contrast. The inset of panel c shows the FFT electron 

diffraction pattern, and image d shows the measurement of the distance between 

different planes.  
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c

d

a b

 

Figure 5.4. Top views of the AFM images at the central (a) and border (b) part of the 

/ml-G-2 sample. Frame c shows the height and lateral dimensions of three 

representative MoS2 nanoparticles marked in the image with the corresponding red, 

green and blue color. Frame d shows the section profile at two points of the edge of 

the film (red and blue lines in panel b) from which it can be determined that the 

thickness of the ml-G film is about 20 nm. 

 

Raman spectra of /ml-G samples show the characteristic 2D, G and D 

peaks appearing at 2912, 1602 and 1367 cm−1, respectively, expected for defective 

G. As an example, Figure 5.5 shows the Raman spectra for /ml-G-2 film. The 

intensity of the G vs. the D band (IG/ID) gives a quantitative indication of the density 

of defects of the G layers. In the present case, the IG/ID value is about 1.26, which is 

higher than those IG/ID values typically reported for reduced graphene oxide (rGO) 

samples, which are generally about 0.9.[14] This indicates that G in the /ml-G 

samples should have somewhat lower defect density than conventional rGO 

samples. No peaks due to the presence of MoS2 could be observed. MoS2 exhibits in 
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Raman spectroscopy two characteristic A1g and E1g vibration modes at about 400 

and 380 cm−1 [15] that could not be recorded in the present /ml-G films. The low 

MoS2 loading, together with the low intensity of their Raman bands are the two 

most probable reasons for the lack of MoS2 detection, as was already discussed 

when commenting on the XRD patterns that could be only observed for the 

/ml-G sample prepared at the highest (NH4)2MoS4 concentration. 
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Figure 5.5. Raman spectrum of the /ml-G-2 sample. 

 

The chemical states of Mo, S and C in the /ml-G sample and the 

distribution among various coordination environments were investigated by carrying 

out the X-ray photoelectron spectroscopy (XPS) measurements (Figure 5.6). The 

survey XPS spectrum of /ml-G film shows the presence of the expected C, O, 

Mo and S elements, the latter two with very low intensity. In addition to the lower 

response factor of these two elements with respect to C and O, the low intensity of 

Mo and S peaks could indicate that  particles are not well exposed to the 

external surface and that they could be partially wrapped by G layers.  
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Figure 5.6. High-resolution XPS spectra of the /ml-G-2 material. (a) Survey 

spectrum; (b) C 1s spectrum; (c) Mo 3d spectrum and S 2s; (d) region corresponding 

to the S 2p peak. Note that Mo and the main S 2s peaks appear in (c), where some 

components corresponding to Mo (6+) have been marked for clarity.  

 

The high resolution XPS spectra show that the C 1s peak can be resolved into 

three peaks centered at 284.5 (68.1 %), 285.9 (10.2 %) and 288.4 eV (21.7 %), which 

could correspond to graphitic carbons, C–O/C–N and C=O, respectively. The Mo 3d 

spectrum spectra shows the existence of the Mo (4+) oxidation state (73.4 %), as 

well as the Mo (6+) oxidation state (26.6 %), the latter probably due to the formation 

of some MoO3 (about 20 %) on the surface of the MoS2 nanoparticles upon exposure 

of the sample to air.[16] It should be noted that the presence of some MoO3 only 

corresponds to the outermost surface of the sample probed by XPS and that 

elemental analysis by SEM confirms the MoS2 stoichiometry. The presence of a high 

proportion of MoS2 on the surface of the material is also confirmed by the 

observation of the corresponding S 2s peak at 226.5 eV binding energy, appearing 
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near to the Mo peak (Figure 5.6c) corresponding to about 80 % of all the S atoms. 

The presence of some S–O band (18 %) and a small amount of bridging S2
2− (4 %) 

were also detected in a different binding energy value region by the corresponding S 

2p at 164.0 and 163.2 eV (Figure 5.6d).[17] 

 

5.2.2. Electrocatalytic measurements 

Square /ml-G films supported on quartz of a surface of 2×2 cm2 resulting 

from the pyrolysis of alginate precursors were directly used as electrodes for H2 

generation. Note that /ml-G films are not coating the glassy carbon electrode 

or any other conductive substrate and that the electrical conductivity in /ml-G 

derives from the intrinsic properties of the multilayer graphene forming the film. 

Previous reports in the literature have established that films of defective Gs obtained 

by pyrolysis of natural polysaccharides on quartz substrates exhibit notable electrical 

conductivity, with surface resistivity values in the range of a few kΩ/sq (sq meaning 

square).[7,11] The fact that no conductive electrode is needed in the case of 

/ml-G is one important advantage derived from the preparation procedure and 

from the composition of the samples.  

Representative measurements of the electrocatalytic behavior of the 

/ml-G films for H2 generation are presented in Figure 5.7, where the 

performance of /ml-G films is compared to that of Pt nanoparticles deposited 

on glassy carbon. As can be seen there, differences in the onset for H2 generation 

and in the current density of the /ml-G electrodes as a function of the 

concentration of (NH4)2MoS4 used in the preparation of the electrodes were 

observed, there being an optimal loading corresponding to (NH4)2MoS4 close to 2 

mM. The observation of an optimal loading typically occurs when there are two 

opposite factors related to the amount of MoS2 deposited on the support influencing 

the electrocatalytic activity. We propose that these two opposite factors are: i) the 

catalytic activity of MoS2 for H2 evolution that should increase as the loading of MoS2 

increases, and ii) the increase in the particle size of MoS2 with lesser density of 

defects that should disfavor the catalytic activity as MoS2 loading increases. As 
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commented at the beginning of this Chapter, it is known that the electrocatalytic 

activity of MoS2 derives from steps and defects on the nanoparticles,[18,19] and these 

defects should be more abundant when the particle size is smaller, a fact that should 

occur at low MoS2 loadings. As mentioned earlier, SEM images clearly indicate that 

the particle size grows from 15–105 nm upon increasing (NH4)2MoS4 concentration. 

On the other hand, for low MoS2 loadings, the density of active sites in 2×2 cm2 

should be low, resulting in low activity, as it was actually the case of the 

/ml-G-1 film prepared using the 0.5 M (NH4)2MoS4 concentration. As a result, a 

compromise should be reached at an optimal MoS2 loading close to a 2 mM 

(NH4)2MoS4 concentration during the preparation of the /ml-G films. 
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Figure 5.7. Polarization curves of the /ml-G films and Pt nanoparticles on glassy 

carbon electrode for hydrogen evolution reaction (HER) activity.  

 

By performing a series of independent electrode preparations, it was observed 

that the electrocatalytic response of the /ml-G films was not exactly 

reproducible from one batch to the other, there being a dispersion on the potential 

onset of H2 generation and on the current density achieved at different potentials 

for the /ml-G films as a function of the (NH4)2MoS4 concentration. Figure 5.8 

presents data of three sets of /ml-G film prepared independently, showing the 

variability in the response of the electrodes. We suggest that this lack of complete 
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reproducibility derives in a large extent from the difficulty to make electrical 

contacts on films of nanometric thickness and on the random growth of MoS2 

particles during the pyrolysis, particularly in the low concentration range. In any 

case, whatever the reason, independent preparation of several series of 

/ml-G-X films showed that the optimal concentration values were in the range 

between 1 and 2 mM (see Figure 5.8), for which an onset potential of −0.2/−0.3 V is 

consistently measured, with Tafel slopes of 180 mV/decade. Thus, the dispersion in 

the behavior of the electrodes, although existing, allows a degree of confidence on 

the performance of /ml-G films. In the literature, an onset potential for MoS2 

supported on reduced graphene oxide deposited on a conductive glassy carbon 

electrode of 100 mV with a rise of 41 mV/decade was reported on a 0.5 M H2SO4 

aqueous solution.[4] Note, however, that although the electrolyte solutions in the 

reported data and the present study are the same, other conditions and, particularly, 

the absence of a conductive electrode and the use of flat quartz substrate as the 

electrode are remarkably different from those used in the literature.[4] 

 

Figure 5.8. The electrocatalytic performance characterized by the onset potential for 

H2 evolution of three independent batches of samples (in different colors) as a 

function of the concentration of (NH4)2MoS4 precursor.  

 

Regarding stability, it was observed that /ml-G films undergo easily peeling 

off from the quartz substrate upon a few electrocatalytic measurements. This 
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reflects poor adherence of /ml-G films to the quartz substrate. This 

detachment of the /ml-G films from the electrical contacts preclude a more 

realistic determination of the stability of /ml-G films as electrocatalysts for the 

H2 evolution reaction. 

 

 

5.3. Conclusions 

In the present Chapter, it is reported that large surface area films of /ml-G 

on arbitrary, non-conductive substrates can be prepared in one step by pyrolysis at 

900 °C under Ar of ammonium alginate films containing (NH4)2MoS4. During the 

pyrolytic process, two separate phases corresponding to graphitic carbon (multilayer 

graphene) and MoS2 develop spontaneously. MoS2 platelets exhibit a preferential 

002 facet orientation and they have affinity for graphene as deduced from the 

relative lateral surface area to height ratio, which is large. The /ml-G films act 

as electrocatalysts for H2 generation without the need for any conductive electrode, 

exhibiting a potential onset between −0.2 and −0.3 V depending on the 

concentration of (NH4)2MoS4 used in the preparation, with certain variability on the 

electrocatalytic performance from batch to batch. Considering the simplicity of the 

one-step preparation procedure and the precursors, the present protocol is 

advantageous for the preparation of /ml-G films as electrocatalysts in an easily 

scalable way without the need of conductive electrode.  
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6.1. Introduction 

As it has been commented in the Introduction, MNPs are catalysts for a wide 

range of organic reactions including oxidations, reductions, homo- and cross 

couplings, and rearrangements among other transformations.[1–4] It has been already 

indicated that one general problem of MNPs that limits its application in catalysis is 

their low stability under the reaction conditions due to the tendency of the most 

active small MNPs to increase their particle size.[4] Large particle size is generally 

associated to low or negligible catalytic activity.[2,5,6]  

A general strategy to minimize particle growth is incorporation of MNPs in 

porous polymeric or inorganic matrices that by interaction with the particle or by 

confinement stabilizes their size.[7–10] Besides the stabilization of particle-size 

distribution, the matrix can assist the catalytic reaction by adsorption or 

preactivation of the substrates. For these reasons, it is commonly observed that the 

nature and structure of the matrix exerts a strong influence on the intrinsic activity of 

the adsorbed or incorporated MNPs.[11–13] 

In the introduction, we have already indicated that MNPs and metal oxides 

obtained by pyrolysis of metal complexes can exhibit a unique catalytic activity due 

to the favorable influence of the carbonaceous matrix surrounding the MNPs, which 

is formed in the process.[14,15] In an analogous procedure, MNPs and metal oxide NPs 

wrapped with carbon have been obtained by pyrolysis of metal organic 

frameworks.[16–21] 

Another aspect to be considered in the catalysis by transition MNPs is the nature 

of the metal. Although NPs of noble metals are widely used as catalysts, the interest 

in exploiting the potential of abundant, base transition metals as catalysts is 

increasing with regard to sustainability and affordability.[25,26] In this context, Fe, the 

most abundant metal, has been under the spotlight because of its ability to promote 

organic reactions and couplings in particular.[26,27]                                                                                                                   

This Chapter describes a general procedure to prepare MNPs of Fe, Co and Fe-Co 
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alloys embedded in a graphitic carbon matrix (denoted as MNP@C) derived from 

natural biopolymers. Although active carbons and other types of carbons are among 

the preferred supports of MNPs,[22–24] the carbon-wrapped MNPs reported herein 

stand out by their pyrolytic formation procedure, the type of carbon that surrounds 

the MNPs, and the unique stability of MNPs that can be achieved. 

The catalytic activity of these MNP@C samples has been determined for the 

oxidative C–N cross coupling of aromatic N–H compounds and amides, gaining some 

information on the operating reaction mechanism involving radicals. Related 

precedents have reported the oxidative C–N coupling of aromatic N–H compounds 

with amides using di-tert-butyl peroxide (DTBP) or tertiary-butyl hydro peroxide 

(TBHP) as oxidizing agent and homogeneous Fe2+ catalysts[28,29] as well as a Cu metal 

organic framework as heterogeneous catalyst.[30] However, MNPs wrapped in 

graphitic carbon, which are currently under intense investigation because of their 

unique catalytic activity that has frequently been observed,[31–34] have not yet been 

reported as catalysts for this reaction.  

 

 

6.2. Results and discussion 

 

6.2.1. Catalyst preparation and characterization 

Preparation of MNP@C was performed by pyrolyzing at 900 oC under inert 

atmosphere powdered samples of chitosan-containing adsorbed Fe2+ or Co2+ metal 

ions or the corresponding Fe2+–Co2+ mixture. The chitosan samples containing 

Fe2+/Co2+ metal ions were obtained by water evaporation of acid aqueous solutions 

of chitosan to which the appropriate amounts of the corresponding transition-metal 

ions (5 wt% of metal ion with respect to dry chitosan weight) were added. The 
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preparation procedure is illustrated in Scheme 6.1. As it has been presented in the 

introduction, our group has shown in a series of prior studies that pyrolysis of 

chitosan under inert atmosphere produces a N-doped turbostratic graphitic carbon 

residue with some residual oxygen content (about 8 wt%) that can be easily 

exfoliated by sonication.[35,36] If these samples contain metals, they can be reduced to 

their metallic state by the so-called carbochemical reduction, while spontaneously 

undergoing simultaneous segregation in a different phase.[37] Upon heating a mixture 

of metal oxide and carbon at high temperature, the oxide becomes reduced to metal 

and the carbon becomes oxidized to CO2.[38] The same behavior was expected to 

occur in the pyrolysis of Fe2+/Co2+-containing chitosan samples, resulting in the 

formation of MNP@C. Herein, a series of four MNP@C samples were prepared, and 

their elemental compositions according to chemical analysis are presented in Table 

6.1. The “x” in Fe-CoxNP@C denotes the Fe/Co atomic ratio. 

 

Scheme 6.1. Steps in the preparation of the MNP@C samples: (i) dissolution in acetic 

acid aqueous solutions; (ii) water evaporation and sample drying; (iii) pyrolysis at 

900 oC under Ar flow.  
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Table 6.1. Chemical analysis of the MNP@C samples. The percentage of metals was 

determined by ICP analysis and the percentage of N, C, H was determined by 

combustion analysis (experimental conditions are provided in Chapter 8). All values 

are in wt%, and it is assumed that the difference to 100 % is due to O content.  

Sample N C H Fe Co 

FeNP@C 0.98 89.76 0.14 1.02 - 

Fe-Co1.42NP@C 0.97 85.23 0.16 0.37 0.26 

Fe-Co0.86NP@C 1.04 86.02 0.16 0.62 0.72 

CoNP@C  1.36 87.50 0.17 - 0.61  

 

Besides chemical analysis, the samples obtained according to Scheme 6.1 were 

characterized by their XRD patterns, Raman spectroscopy, and electron microscopy. 

XRD patterns of three selected MNP@C samples are shown in Figure 6.1. From the 

XRD patterns, the presence of a significant proportion of the corresponding metal 

carbides or metal oxides was ruled out, because the expected diffraction peaks for 

these metal carbides were either absent or they had very low intensity. Particularly 

for FeNP@C, weak diffraction peaks at 2θ 37o (112) and 39o (200) were recorded that 

are compatible with the presence of cementite (Fe3C),[39] but their intensity was very 

low. In contrast, those peaks indicating the presence of Fe or Co metals were in all 

cases very intense. For the mixtures of Fe and Co, the minor variation in the position 

of the diffraction peaks at about 2θ 44o supports the assumption that the NPs are 

real Fe–Co alloys, rather than independent Fe and CoNPs. By using the Scherrer 

equation, the average sizes of MNPs of the four samples were estimated to be 26.5, 

16.3, 17.0, 10.9 nm for FeNP@C, Fe–Co1.42NP@C, Fe-Co0.86NP@C, CoNP@C, 

respectively, which agree well with the statistical average particle sizes obtained from 

TEM measurements. It should be commented that although no changes were 
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observed in the XRD patterns, it is very likely that, after sample preparation and 

storage of the solids in vials at the ambient atmosphere, the outermost external part 

of the metal surface can become partially oxidized. 
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Figure 6.1. XRD patterns of the MNP@C samples prepared according to Scheme 6.1: 

(a) FeNP@C; (b) Fe-Co1.42NP@C; (c) CoNP@C. The broad peak at 2θ 27o corresponds 

to the graphitic carbon residue and some weak peaks in plot (a) could indicate the 

presence of some Fe3C (see text).  

 

The nature of carbon residue derived from chitosan was determined by Raman 

spectroscopy. The Raman spectrum for FeNP@C is shown in Figure 6.2a. Very similar 

Raman spectra to those previously reported for turbostratic graphitic carbons lacking 

any metal were recorded for all the samples.[36] Thus, the expected G and D bands 

appearing at 1596 and 1354 cm-1, respectively, were recorded together with two 2D 

defined peaks at 2940 and 2686 cm-1. This is in accordance with the presence in the 

graphene sheet of defects consisting in carbon vacancies, holes, and the residual N 

atoms from the chitosan precursor.[36] A quantitative indicator of the defect level of 

graphenic sheets can be given by determining the relative intensity of G versus D 

band (IG/ID), which, in the present case, was 1.26 for the four MNP@C samples, 
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corresponding to a defective, doped G. Interestingly, no vibration peaks attributable 

to the presence of metal oxides that should appear at low wavenumber values were 

observed for any of the MNP@C samples before their use as catalyst. This lack of 

metal oxide detection in Raman spectroscopy is in good agreement with the XRD 

patterns in which no oxides are detectable. In contrast, the recovered FeNP@C 

catalyst after the C–N coupling between benzimidazole (BIM) and 

N,N-dimethylacetamide (DMA) showed the presence of iron oxide indicating that the 

oxidation by TBHP takes place under the experimental conditions (Figure 6.2b). 
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Figure 6.2. Raman spectra of fresh (a) and recovered (b) FeNP@C catalyst after the 

C-N coupling reaction. 

 

To prove the accessibility to Fe and Co NPs even if they are embedded within the 

graphitic carbon matrix, the FeNP@C and CoNP@C samples were treated with an 

aqueous solution of diluted HCl. To check the accessibility to the MNPs, portions of 

the as-synthesized samples (FeNP@C, Fe-Co0.86NP@C or CoNP@C, respectively) were 

treated in 0.5 M HCl at room temperature under stirring for sufficiently long time. 

Then, the samples were filtrated and the amounts of leached metals were 

determined by ICP–OES. Relative to the total metal content, 87.3 % of total iron 
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content in FeNP@C and 85.5 % of total iron content and 87.5 % of total cobalt 

content in Fe-CoNP0.86@C, and 88.4 % of total cobalt content in CoNP@C were 

dissolved under these conditions. It is assumed that acid leaching under diluted HCl 

can remove the accessible Fe and Co NPs embedded in the graphite shells. From 

these results, it seems that the Fe and Co NPs in the as-synthesized catalysts have 

similar metal accessibility. This acid leaching test supports that the surfaces of Fe and 

Co metals should be accessible to interact with TBHP and reagents despite their 

embedment in a carbon matrix. 

The presence of MNPs embedded in a carbonaceous matrix was confirmed by 

TEM images of the MNP@C samples. A set of images illustrating the structure and 

morphology of the FeNP@C samples are shown in Figure 6.3 while images of other 

samples are presented in the Figures 6.4-6.6. MNPs were clearly distinguished in dark 

field that also allows the estimation of the particle size distribution. From these 

images, it was clear that the MNP size was not homogeneous and that there was a 

broad dispersion of sizes below 50 nm. However, the corresponding histogram of 

particle sizes counting a statistically relevant number of particles shows that particles 

of sizes between 5 and 10 nm are the most abundant in the MNP@C samples. 
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Figure 6.3. TEM images of FeNP@C samples at (a,b) low (scale bar 200 and 100 nm, 

respectively) and (c) high magnification (scale bar 20 nm). (d) Dark field image, the 

inset shows the statistical particle size distribution of FeNPs (scale bar 100 nm). 

 

Figure 6.4. TEM images of Fe-Co1.42NP@C under bright (a) and dark (b) fields. The 

inset in image b shows the particle size distribution. 
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Figure 6.5. TEM images of Fe-Co0.86NP@C under bright (a) and dark (b) fields. The 

inset in image b shows the particle size distribution. 

     

Figure 6.6. TEM images of CoNP@C under bright (a) and dark (b) fields. The inset in 

image b shows the particle size distribution. 

 

EDX analysis of the location marked in the TEM image of Fe-Co0.86NP@C shows 

that the main metals in the sample are Fe and Co (see Figure 6.7). Furthermore, 

Elemental mapping of Fe and Co reveals that the locations of these two elements 

coincide (see Figure 6.8), thus, confirming the XRD results that the MNPs are real 

Fe–Co alloys. 



 

Chapter 6 

134 

 

 

Figure 6.7. TEM image of Fe-Co0.86NP@C under dark field (a) and EDX analysis result 

of the marked location (b).  

 

Figure 6.8. Images obtained from elemental mapping for Fe-Co0.86NP@C showing the 

elemental distribution of Fe and Co overlapped in one image (a) and in two separate 

images (b and c). The elemental mapping images of Fe and Co are very similar, 

proving that the MNPs embedded in the graphitic matrix are Fe-Co alloys. 
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The relatively small particle size measured for these MNPs is remarkable 

considering the high temperature (900 oC) to which the MNP@C samples are 

submitted during the preparation procedure and the time taken in the pyrolysis (6 h). 

In one of the most common procedures to obtain FeNPs of small particle size 

similar to those obtained herein, these FeNPs were obtained by chemical reduction 

using reverse phase emulsions employing oleylamine–water emulsions.[40] In this 

regard, although particles of much larger size are also detected, the present 

procedure allows obtaining in a single step Fe/CoNPs of small diameters and the 

carbon matrix in which the NPs are embedded. It is suggested that, as claimed 

previously, chitosan and the carbonaceous residues derived therefrom during the 

different phases of the pyrolysis are thwarting and restricting the growth of the 

Fe/CoNPs by interacting with them.[41] In related precedents, it has been found that 

Au,[42,43] Cu,[41] and even TiO2
[44] and CeO2

[45] NPs of relatively small size are formed if 

the procedure starts with the corresponding metal ions embedded in chitosan. 

The composition of the uppermost part of the FeNP@C catalyst was also 

characterized by XPS. The observed peaks as well as the best fitting to individual 

components are given in Figure 6.9. The deconvoluted C1s spectrum (Figure 6.9, left) 

can be fitted to three main peaks at 283.0, 284.5, and 288.5 eV that can be assigned 

to C at defects, graphenic C atoms, and sp3 C atoms bonded to oxygen, respectively. 

Furthermore, analysis of the Fe2p spectrum (Figure 6.9, right) reveals the existence 

of Fe2+ and Fe3+ at the binding energies of 709 and 711 eV, respectively. The presence 

of Fe2+/3+ on the outermost part of FeNPs is relevant from a catalytic point of view 

and complements the information by XRD that indicates that the predominant 

oxidation state of Fe is Fe0. Notably, XPS analysis probes the composition of the 

outermost surface of the NPs, whereas XRD probes the whole sample. 
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Figure 6.9. C 1s (left) and Fe 2p (right) peaks of the high-resolution XPS of FeNP@C. 

 

6.2.2. Oxidative C–N coupling 

The purpose of the present study was to evaluate the catalytic activity of the 

Fe/CoNP@C samples as heterogeneous catalysts for the oxidative C–N coupling. 

Oxidative C–N couplings have the advantages that they do not require halide 

derivatives as substrates. Preliminary catalytic screenings were performed by using 

FeNP@C as catalyst, optimizing the amount of TBHP, the solvent, and the 

temperature for the coupling of benzimidazole (BIM) and N,N-Dimethylacetamide 

(DMA). The reaction is indicated in Scheme 6.2. 

 

Scheme 6.2. Oxidative C-N coupling of benzimidazole (BIM) and 

N,N-dimethylacetamide (DMA) promoted by TBHP and FeNP@C. 

 

 Initially, 1,2-dichloroethane (DCE) was used as a solvent because literature data 

suggested that this could be one of the most suitable solvents for the reaction.[28] 

However, in contrast to the report in the literature,[28] under our reaction conditions 
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the C–N coupling product (BIM-DMa) was observed as a primary, but instable 

product, undergoing a subsequent conversion to N-(2-chloroethyl)benzimidazole 

(BIM-DC) as final and stable product. A time–conversion plot of the catalytic 

oxidative C–N coupling using DCE as a solvent is shown in Figure 6.10. The product 

BIM-DC clearly derives from the reaction of BIM with the solvent. Thus, to avoid the 

decomposition of BIM-DMa, the reaction was attempted in other solvents. It was 

observed, however, that the reaction completely failed using tert-butanol, toluene, 

acetonitrile, or ethyl acetate as solvents. 
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Figure 6.10. Time-yield plots determined by GC for the oxidative C-N coupling 

promoted by FeNP@C in DCE solvent: (■) BIM-DMa; (●) BIM-DC. Reaction conditions: 

BIM (0.1 mmol), FeNP@C (1.6 mol%), 2.5 equiv. oxidant (5 M solution of TBHP in 

decane), DCE (2 mL), Ar (2.5 bar), 110 oC. 

 

In contrast to the negative results in some solvents, C–N coupling between BIM 

and DMA could be also observed by using an excess of DMA that was acting under 

these conditions as reagent and solvent. In DMA, however, although the selectivity 

to BIM-DMa was almost complete, conversion of BIM was unsatisfactorily low, 

approximately 35 %. The temporal evolution of the formation of BIM-DMa under 

these conditions is shown in Figure 6.11. 
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A reason for the low yield of BIM-DMa could be the spurious decomposition of 

TBHP without promoting C–N coupling. This possibility was confirmed by performing 

an additional experiment in which the oxidative C–N coupling reaction was initially 

started under the normal conditions, but as soon as the reaction rate decreased 

considerably, at approximately 4 h reaction time, 1.5 equivalents of TBHP were 

added (see Figure 6.11). Upon addition of the second amount of TBHP, a significant 

increase in the yield of BIM-DMa from approximately 30 to 50 % was quickly 

achieved, reaching a final BIM-DMa yield of 65 % at 20 h. Interestingly, under the 

present experimental conditions, no other product besides BIM-DMa was observed 

and unreacted starting material BIM was also recovered at final reaction time. Thus, 

the incomplete yield probably results from the spurious decomposition of TBHP.  

Considering the chemical structure of DMA and its reactivity through a N-methyl 

substituent, a structurally related solvent that could also be suitable to overcome the 

limitation of other solvents would be acetamide. Surprisingly, no BIM conversion was 

observed by using acetamide. Titration of TBHP after 24 h reaction time indicates 

that only a residual percentage of 11 % of the initial TBHP remains, even though no 

BIM-DMa was formed. A reason for this could be that acetamide acts as a poison of 

FeNP@C catalyst by strong hydrogen bonding of acetamide to the metal surface. This 

possibility was checked by performing an experiment in which FeNP@C was boiled 

first in acetamide at 110 oC for 4 h, then, it was recovered, washed with DMA, and 

used as catalyst in DMA as solvent. It was observed that the catalytic activity of 

acetamide-treated FeNP@C was much lower than that of the fresh untreated sample 

(see Figure 6.11). This decrease in catalytic activity after contacting with acetamide 

suggests that the material becomes deactivated by this solvent, thus, providing some 

hints to rationalize the negative results observed in acetamide, in spite of its 

similarity with DMA. 
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Figure 6.11. Time-yield plots determined by GC for two twin coupling reactions using 

the same reaction conditions; (■) adding an extra amount of TBHP (1.5 equiv. TBHP 

from a 5 M solution of TBHP in decane) after 4 h reaction time; (▼) without addition; 

control experiment without any catalyst (▲) and with deactived catalyst obtained by 

boiling FeNP@C in acetamide before use (●). Reaction conditions: BIM (0.1 mmol), 

FeNP@C (1.6 mol%), DMA (2 mL), Ar (2.5 bar), 110 oC, 2.5 (or 4.0) equiv. of TBHP 

from a 5 M TBHP solution in decane. 

 

After having found that an excess of DMA is a suitable medium to perform the 

oxidative coupling and optimized reaction conditions, the influence on the catalytic 

performance of the percentage of Co on the Fe/CoNP@C catalyst was checked by 

performing a series of reactions under the same conditions, but using the other 

MNP@C catalysts of the series. As shown in Figure 6.12, the presence of Co in the 

catalyst is detrimental for the activity that undergoes a gradual decrease as the 

percentage of Co increases. 
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Figure 6.12. Time-yield plots determined by GC for the oxidative C-N coupling of BIM 

and DMA in the presence of a series of catalysts: (■) Fe P@C; (●) Fe-Co1.42NP@C; (▲) 

Fe-Co0.86NP@C; (▼) CoNP@C. Reaction conditions: BIM (0.1 mmol), catalyst (1.6 

mol%), two consecutive additions of 2.5 and 1.5 equiv. of TBHP (5 M solution in 

decane), DMA (2 mL), Ar (2.5 bar), 110 oC. 

 

To gain insight into the heterogeneity of the MNP@C-catalyzed reaction, the 

solid catalysts were removed by filtration after 24 h reaction, and the clear solutions 

were analyzed by inductively coupled plasma optical emission spectroscopy 

(ICP–OES). Irrespective of the MNP@C material used, the Fe amount leached to the 

solution was 0.72 mg, whereas, for instance, the initial Fe amount of the FeNP@C 

(1.6 mol%) with a Fe loading of 1.02 wt% was 93 mg. Thus, more than 99.2 % of the 

Fe initially present was retained in the catalyst. It was, however, observed that 

filtration of the FeNP@C catalyst did not completely stop the reaction. Once initiated 

the reaction, formation of C–N coupling products also occurred even after filtration 

of the FeNP@C catalyst at 4 h, although in approximately 40 % lower percentage 

than without filtration of the catalyst. This formation of product BIM-DMa in the 

absence of catalyst is proposed to be related to the reaction mechanism involving 
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C-centered radicals as reaction intermediates and the role of FeNP@C as radical 

initiator as discussed below. 

To learn more about the role of leached Fe species as a homogeneous catalyst, 

three control experiments using soluble precursors with Fe in different initial 

oxidation states were performed. Specifically, the compounds used were Fe(CO)5, 

FeCl2, and Fe(OAc)3, with Fe in 0, +2, and +3 oxidation state, respectively. The amount 

of these materials used was such as to provide a weight of Fe approximately twice 

(1.5 mg) of the leached Fe as determined by ICP at the final reaction time. It was, 

however, observed that although compound BIM-DMa was detected at final reaction 

time, the percentage of C–N coupling was in all cases below 5 %, indicating that the 

contribution of the leached Fe to the observed yield of BIM-DMa should be 

negligible. 

 

6.2.3. Reusability and catalyst stability 

Reusability and catalyst stability are important issues in heterogeneous catalysis 

and have to be addressed. Aimed at determining catalyst stability, the same FeNP@C 

sample was submitted to a series of consecutive uses under the optimal reaction 

conditions. As shown in Figure 6.13, a gradual decrease in the catalytic activity was 

observed. Careful perusal of the time-conversion plots indicates, however, that the 

decay in the catalytic activity is mainly caused by the lower BIM-DMa yield achieved 

in the first TBHP addition (see data points at times shorter than 4 h in Figure 6.13), 

and the profile corresponding to the second addition is very similar with no decay in 

the reaction rates for five reuses. Thus, the decay observed in the yield at final 

reaction time seems to be owing to the operation of a very fast spurious 

decomposition of TBHP occurring for the used FeNP@C sample at the initial stages of 

the recycling and to some unavoidable losses of catalyst mass during reuse. It seems, 

however, that after this variation at initial times, the time–conversion plots are 

parallel upon reuse, indicating that the reaction rates for the oxidative C–N coupling 
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do not change upon reuse and that the activity of FeNP@C sample remains constant 

besides the spurious TBHP decomposition. It could be that this fast TBHP 

decomposition is an artifact caused by the recycling procedure. 
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Figure 6.13. Time-yield plots determined by GC for the reusability test of the catalyst:  

(■) first use; (●) second use; (▲) third use; (★) fourth use; (◆) fifth use. Reaction 

conditions: BIM (0.1 mmol), FeNP@C (1.6 mol%), two consecutive additions of 2.5 

and 1.5 equiv. of TBHP (5 M solution in decane), DMA (2 mL), Ar (2.5 bar), 110 oC. 

 

Furthermore, the FeNP@C sample resulting after five consecutive reuses was 

again imaged by TEM trying to determine variations of Fe particle size. It was, 

however, determined that the average Fe particle size did not undergo any clear 

variation upon use of the sample as catalyst. In addition, also the morphology of the 

C matrix remained unaltered. Images of one of the used samples are presented in 

Figure 6.14, together with the corresponding particle size histogram. 
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Figure 6.14. TEM images of five times-used FeNP@C under bright (a) and dark (b) 

field. The inset shows the particle size distribution of this used FeNP@C sample. 

Scale bars 200 nm. 

 

6.2.4. Role of Cu impurities 

An additional point of concern using Fe as catalyst is the role of impurities on 

the observed catalytic activity. It should be noted that the samples in the present 

study were prepared by using a Fe salt precursor with a nominal purity of 99.99 % 

and, therefore, the maximum expected proportion of metal impurities should be 

below 100 ppm. Considering the precedents that have shown that Cu is the most 

common Fe impurity that could contribute to the apparent catalytic activity of Fe in 

other cross-coupling reactions,[27,46] the influence of the presence of Cu on the 

catalytic activity of FeNP@C was investigated by preparing two additional FeNP@C 

samples purposely containing 10 and 20 ppm of Cu. The results are presented in 

Figure 6.15. The presence of Cu even in minute amounts has a detrimental influence, 

decreasing the initial reaction rate of FeNP@C from 1.23 to 0.98 mmol g-1 h -1, and 

the yield at final time from 66.4 to 64.3 %. Extrapolation at 0 ppm of Cu content of 

the plot of the initial reaction rate against the level of Cu impurity strongly supports 

that Fe has intrinsic catalytic activity for the oxidative C–N coupling. 
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Figure 6.15. Time-yield plots determined by GC for the oxidative C-N coupling with 

Fe salt precursor containing two different proportions of Cu impurities: (■) Fe salt 

precursor with a purity of 99.99 %; (▲) Fe salt precursor with a purity of 99.99 % 

contaminated with 10 ppm of Cu; (●) Fe salt precursor with a purity of 99.99 % 

contaminated with 20 ppm of Cu. Reaction conditions: BIM (0.1 mmol), FeNP@C (1.6 

mol%), two consecutive additions of 2.5 and 1.5 equiv. of TBHP (5 M solution in 

decane), DMA (2 mL), Ar (2.5 bar), 110 oC. 

 

6.2.5. Reaction mechanism 

The reaction mechanism of the oxidative C-N coupling, even in homogeneous 

phase, has not been yet disclosed.[28] In order to gain some insights on the reaction 

mechanism, a series of control experiments were performed in the presence of 

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) as a quencher of possible C-centered 

radical intermediates. In this way, the reaction of DMA with BIM using FeNP@C as 

catalyst in the presence of TEMPO did not afford the expected product BIM-DMa 

(Scheme 6.3). In contrast, adducts between DMA with TEMPO (A) and the C-N 

coupling product with TEMPO (B) were observed from the analysis of the reaction 

mixture by GC-MS. On the other hand, a similar control experiment of DMA, TBHP 

and TEMPO in the absence of BIM resulted exclusively in the formation of adduct A 
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between DMA and TEMPO. These experiments strongly support that the reaction 

proceeds through the formation of the radical from DMA.  

 

Scheme 6.3. Possible reaction mechanism, role of FeNP@C catalyst and quenching of 

intermediates by TEMPO. 

 

Furthermore, if the adduct of DMA and TEMPO is first generated by TBHP in the 
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presence of FeNP@C, and, then, the FeNP@C is removed, BIM is added and the 

mixture heated at 140 oC, formation of the C-N coupling product BIM-DMa was again 

observed concomitantly with the disappearance of the DMA-TEMPO adduct A. This 

experiment is interpreted considering that the DMA–TEMPO adduct is acting as a 

dormant radical of DMA and upon heating, it would reversibly release some DMA 

and TEMPO radicals. This DMA radical would, then, couple with BIM without the 

need of any catalyst. In this way, the role of FeNP@C catalyst would be merely to act 

as initiator decomposing TBHP, generating the first radicals that would form 

C-centered DMA radicals.  

As the homogeneous catalysts reported for this reaction are Fe(OAc)2 and FeCl2, 

and the XPS results reveal that the surface of FeNPs has a +2 and +3 oxidation state, 

it is probably that these surface species act similarly to the homogeneous 

counterparts coordinating to TBHP and, then, splitting the reagent in the initial 

oxygen-centered radicals (Scheme 6.3). This role of Fe generating radicals and the 

intermediacy of radicals is compatible with the observation indicated above that 

filtration of FeNP@C does not completely stop the reaction. As most radical reactions 

occur through radical chain mechanism, depending on the length of the propagation 

chain, some product formation can be observed even upon removal of the initiator, 

although the initiator can generate new radicals at any reaction time. 

 

6.2.6. Scope of the reaction 

Finally the scope of the reaction was screened by using FeNP@C as catalyst to 

promote the oxidative C-N coupling of amides with other N-H substrates. The results 

are presented in Table 6.2. As it can be seen there, high to moderate yields were 

obtained in all cases, except in the case of 2-phenylbenzimidazole, where low yields 

were attained. It seems that for 2-phenylbenzimidazole steric encumbrance due to 

the presence of a 2-phenyl substituent at the neighbor position should make C-N 

coupling more difficult. In contrast, 2-methylbenzimidazole affords the expected C-N 
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coupling product in even higher yields than the parent BIM. Similar increase in the 

yield of the coupling product is observed comparing the results obtained with 

pyrazole and 3,5-dimethylpyrazole. Besides using DMA, the scope of the oxidative 

C-N coupling was also expanded by using two other amides, namely, ε-caprolactam 

(CPL) and γ-butyrolactam (BUL), reaching good to moderate yields under the general 

reaction conditions.  

Table 6.2. Products formed in the oxidative C-N coupling of amides with N-H 

substrates catalyzed by FeNP@C.[a]  

Products (Yield %) 

 

[a] Reaction conditions: N compound (0.1 mmol), FeNP@C (1.6 mol%), two 

consecutive additions of 2.5 and 1.5 equiv. of TBHP (5 M solution in decane), amide 

(2 mL), Ar (2.5 bar), 110 oC, 24 h; [b] the numbers in brackets correspond to the 

values determined by GC and if there is a second value, it corresponds to the isolated 

yield; [c] the reaction was performed with 5 mol% of FeNP@C. 

 

 

6.3. Conclusions 

It is shown in this Chapter that chitosan-containing first-row transition metal 

ions, Fe2+ and Co2+, are suitable precursors to form MNPs, either of a single metal or 



 

Chapter 6 

148 

 

as NP alloys, embedded within graphitic carbon matrix. The resulting carbonaceous 

MNP@C composites can be suitable materials to be used as heterogeneous catalysts. 

Their catalytic activity has been evaluated for the oxidative C–N coupling, observing a 

large influence of the nature of the metal catalyst and the solvent in the reaction. In 

spite of the apparent decrease in catalytic activity, FeNP@C appears as a stable 

catalyst for the process with a broad scope. The reaction mechanism involves the 

generation of amide radicals originated from oxygen-centred radicals formed in the 

decomposition of TBHP promoted by the FeNP@C catalyst.  
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Extremely high selectivity towards isobutane in CO2 

hydrogenation catalyzed by Fe-Co alloy nanoparticles 

embedded in graphitic carbon matrix 
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7.1. Introduction 

The massive consumption of fossil fuels as primary energy source and, as a 

result, the corresponding atmospheric CO2 emissions, is considered the most 

important anthropogenic cause responsible for the global warming and climate 

change.[1] For this reason, there is a strong international commitment to considerably 

decrease CO2 release into the atmosphere,[2-7] there being a strong incentive for 

using CO2 as feedstock. The aim is the implementation of a circular economy in which 

CO2 is used in processes that can be carried out at commensurate scales as the 

current emission volumes.[8,9] 

One of the main problems encountered in this strategy is the high stability of 

CO2 that makes most of the reactions involving this molecule thermodynamically 

uphill.[8,10-12] Among the few exceptions to this general rule, one of the most 

appealing reactions is CO2 hydrogenation, since it renders hydrocarbons and other 

compounds that can be used as fuels, allowing CO2 recyclability.[9,13] H2 can become 

available in large amounts through water electrolysis using renewable electricity.[14] 

The reaction of CO2 and H2 can be carried out at convenient rates and 

conversions at temperatures above 400 oC to yield either CO (reverse water gas shift), 

CH4 (the Sabatier reaction), hydrocarbons (Fischer-Tropsch) or CH3OH, among other 

possible products, depending on the catalyst and the reaction conditions.[8,12,13] Due 

to their general activity in Fischer-Tropsch and water gas shift, materials based on 

supported Fe and Co nanoparticles (NPs), either in the metallic state or as their 

oxides, are among the most intensely studied heterogeneous catalysts for CO2 

hydrogenation.[8,12,15,16] However, it has been shown conclusively that Fe and Co NPs 

deposited on Al2O3, SiO2 and other supports render predominantly methane with a 

selectivity over 70 %, accompanied by much lesser amounts of mixtures of 

short-chain hydrocarbons.[13] There is a remarkable difference in the hydrocarbon 

distribution in favor of methane when CO2 is the starting material compared to the  

Fischer-Tropsch process using CO as feedstock for the same or analogous Fe and Co 
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catalysts.[13]  

Regarding the reaction mechanism, it has been shown that Fe and Co oxides 

undergo partial or total reduction to the corresponding metal states and that during 

the initial stages of the reaction they form in some extent certain metal carbides that 

have been proposed in some cases as active sites for the reaction.[17,18] For this 

reason, most probably, these Fe and Co NPs have also been supported on carbon 

materials,[19,20] including carbon nanotubes.[21,22] More recently, it has been reported 

that carbon-coated Fe and Co NPs, in which these metal NPs are surrounded by 

amorphous or graphitic carbon, can catalyze CO2 hydrogenation.[20] However, the 

selective formation of isobutane has never been observed in any of these 

precedents.  

In some of the reports about the preparation of these metal NPs wrapped by 

carbon, the procedure involves the pyrolysis of the appropriate metal complexes or 

crystalline metal organic frameworks.[23,24] One possible disadvantage of these 

methods is the need of preparation of costly precursors following dedicated 

syntheses that afterwards are decomposed to a carbon residue. It would be more 

convenient to employ easy-to-make, available metal containing precursors that can 

be transformed into carbon surrounded metal NPs.[25,26]  

In the previous Chapter we have reported that pyrolysis of iron chitosan 

hydrogel simply obtained by adding a Fe2+ salt to an aqueous solution of chitosan 

renders a Fe@C material that shows catalytic activity for the oxidative C-N coupling 

of amides and N-H heterocycles.[27]  

Considering that Fe and Co, as well as their alloys, are well-known catalysts for 

CO2 hydrogenation,[13,19,21,22] it was of interest to check the catalytic activity of small 

metal NPs of these metals and their alloys surrounded by N-doped graphitic carbon 

prepared through a procedure that produces a strong binding between the NPs and 

graphitic matrix.[28,29] Herein we present the outstanding isobutane selectivity, over 

92 % at over 87 % CO2 conversion, of Fe-Co alloy NPs strongly grafted on N-doped 
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graphitic carbon. Isobutane is a significantly more valuable chemical than methane 

and the present findings open new avenues in the valorization of CO2, by obtaining 

selectively this C4 hydrocarbon. Furthermore, the catalyst is remarkably stable and 

does not undergo deactivation upon a prolonged time on stream (over 500 h). 

Theoretical calculations suggest that this unprecedented selectivity arises from the 

unique metal-support interaction. 

 

 

7.2. Results and discussion 

Preparation of the samples under study is summarized in Scheme 7.1. The 

process starts with the mixing of an acidic aqueous solution of chitosan with another 

containing the required amounts of iron or cobalt acetates. Subsequently, the acid 

gel is precipitated as millimetric beads by dropwise addition with a syringe into an 

aqueous NaOH solution. A well-known property of chitosan is its ability to adsorb 

metal salts from water due to strong Coulombic interactions and hydrogen bridges 

with the aquated metal cations.[30,31] 

 

Scheme 7.1. Illustration of the preparation procedure of Fe/Co alloy NPs wrapped on 

N-doped graphitic carbon matrix. i) Precipitation of chitosan beads by neutralization 

of acidic chitosan-metal aqueous solution. ii) Drying of the hydrogel by gradual 

exchange with ethanol. iii) Supercritical CO2 drying and formation of chitosan-metal 

aerogel. iv) Pyrolysis of the chitosan-metal aerogel.  
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These hydrogel chitosan beads containing Fe3+ and Co2+ salts were dried by 

suspending them successively in five water-ethanol solutions having increasing 

ethanol percentage (90:10, 70:30, 50:50, 30:70 and 10:90 water:ethanol) and finally 

in pure ethanol. The resulting alcogel beads were submitted to supercritical CO2 

drying to obtain highly porous aerogel beads of the metal-containing chitosan. The 

above-procedure has been well described in the literature to obtain high-surface 

area, porous chitosan beads.[32,33] Other alternative drying procedures result in very 

low surface area chitosan samples as a consequence of the collapse of the porosity 

due to capillary forces and hydrogen bonding during the removal of water.[32,34] After 

supercritical CO2 drying, the resulting chitosan aerogel beads were finally pyrolyzed 

at 900 oC to render the metal NPs surrounded by N-doped graphitic carbon. Four 

different samples (denoted as FexCoy@(N)G) having Fe, Co or two alloys of Fe-Co with 

different atomic proportion were prepared. 

The synthetic procedure for FexCoy@(N)G in the Chapter was a little different 

from the procedure used for the similar materials in Chapter 6. In Chapter 6, Fe/Co 

NPs embedded in graphene were also prepared, but the sizes of the nanoparticles 

were quite large and the NPs were not well dispersed. To improve the quality of the 

samples, in the Chapter, aerogels of Fe/Co-chitosan were prepared by precipitating 

the metal-contained chitosan beads in a basic solution and then drying them in CO2 

supercritical atmosphere before the samples were submitted for pyrolysis. By using 

this improved method, a composite material of graphene with more well dispersed 

smaller sized particles was obtained and showed higher catalytic activity.  

The elemental composition of the Fe or Co containing graphitic samples after 

pyrolysis was determined by combustion chemical analysis to establish the carbon 

and nitrogen content and ICP/AOS analysis to quantify the content of each metal. 

Table 7.1 summarizes the main analytical and textural properties of the four samples 

prepared in the present study. 
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Table 7.1. Analytical and textural data of the as-synthesised samples. 

Sample C  

(wt%) 

N 

(wt%) 

Fe 

(wt%) 

Co 

(wt%) 

Total metal 

(wt. %) 

Particle 

size[a] (nm) 

SBET
[b] 

(m2/g) 

Fe@(N)G 1.18 73.06 2.44 — 2.44 5.4±2.8 252.4 

Fe0.46Co0.54@(N)G 0.50 76.55 4.10 5.15 9.25 8.6±4.2 306.6 

Fe0.29Co0.71@(N)G 0.51 67.02 3.82 9.92 13.74 14.4±7.0 297.3 

Co@(N)G 0.81 79.96 — 3.06 3.06 13.1±5.6 250.6 

[a] Calculated from the TEM images; [b] obtained from N2 adsorption for beads of the 

samples (experimental conditions are provided in Chapter 8) . 

    In a series of papers, it has been reported that pyrolysis of chitosan renders a 

carbon residue that upon sonication in different solvents yields N-doped 

graphene.[35,36] The process has been applied also for chitosan samples containing 

noble metals (Au, Pt and Ag), which, following a similar procedure, yield metal NPs 

supported on graphene.[37,38] However, in the present case the non-noble metal 

character of iron and cobalt could lead to formation in some proportion of the 

corresponding metal carbides. To address this issue, a high resolution XRD pattern 

was recorded for the Fe0.29Co0.71@(N)G sample and the experimental pattern was 

fitted by the Rietveld refinement. Figure 7.1 presents XRD patterns and the 

corresponding Rietveld fits of Fe0.29Co0.71@(N)G, while Figure 7.2 collects XRD 

patterns measured in a normal method for all samples and Table 7.2 summarizes the 

results of the analysis for the samples under study. 
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Figure 7.1. Experimental high-resolution XRD pattern of Fe0.29Co0.71@(N)G (dots) and 

the corresponding Rietveld refinement (continuous lines) for as-synthesised sample 

(a), after 30 h use as hydrogenation catalysts under the conditions indicated in Table 

7.4 (b) and after heating at 550 oC under CO2 atmosphere (c). The lines in the bottom 

part of the diffractogram correspond to the position of the peaks of the fcc (red) and 

bcc (blue) phases of Fe-Co alloy. The contribution of each phase is indicated in Table 

7.2. 
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Figure 7.2. XRD patterns of FexCoy@(N)G samples measured in a normal method in 

the 2θ region of 5-90° (a) and the 2θ region of 42-48° (b) where a peak shift at [110] 

facet is observed, proving the formation of the Fe-Co alloy. 

 

 



 

Chapter 7 

163 

 

Table 7.2. Crystallographic phase composition, unit cell parameters and interplanar 

distance (dhkl) values obtained from XRD. Weight composition obtained by XRD peak 

analysis refers only to the metal-containing phases excluding the graphene support. 

Sample Phase wt. (%) 
a 

(Å) 
b 

(Å) 
c 

(Å) 
(hkl) 

dhkl XRD 
(Å) 

Fe@(N)G 
 

Fe3C (cementite) 
orthorombic Pnma 

44.(0) 5.09(7) 6.76(3) 4.53(0)   

γ-Fe (austenite) 
cubic Fm-3m 

25.(6) 3.58(9)   (111) 2.073 

α-Fe 
cubic Im-3m 

30.(4) 2.87(1)   (110) 2.030 

Co@(N)G 
Co 

cubic Fm-3m 
100 3.54(7)   (111) 2.047 

Fe0.46Co0.54@(N)G 
FeCo alloy 

cubic Pm-3m 
100 2.85(5)   (110) 2.019 

Fe0.29Co0.71@(N)G 

metallic (fcc) phase 

cubic Fm-3m 
32.(6) 3.57(2)     

metallic (bcc) phase 

cubic Im-3m 
67.(4) 2.84(5)   (110) 2.012 

 
 

Spontaneous carbochemical reduction of the Fe3+ and Co2+ ions occurs under 

the reductive conditions of the pyrolysis. There are precedents in the literature 

reporting this spontaneous reduction for Ni2+ and Cu2+ in the pyrolysis of chitosan.[39] 

Only in the case of Fe@(N)G the presence of some Fe3C carbides (cementite) was 

observed, the preferential Fe contributors in the sample being cubic Fm-3m γ-Fe 

(austenite) and cubic Im-3m α-Fe phase (Table 7.2). In the case of Co@(N)C the 

presence of Co2C was not observed in detectable amounts. The experimental pattern 

for Co@(N)C indicates the presence of a single fcc phase of Co that presents a strong 

preferential orientation growth in the [111] direction (March-Dollase coefficient R0 

refined to 0.68, characteristic for plate-shaped crystals). The [111] plane of the fcc Co 

phase is a honeycomb lattice of atoms separated by distances of 2.50 Å close to 2.46 

Å corresponding to the distance between the centers of the hexagons of ideal 

graphene sheet. Such a geometric match could be at the origin of the preferential 

growth of the [111] plane of Co NPs on the graphene support. A similar claim has 

been proposed before to justify the preferential growth [111] planes of Cu, Au, Pt 
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and Ag nanoplatelets on graphene films.[37,38] 

The Fe0.46Co0.54@(N)G fresh sample contains a single bcc phase of Fe-Co alloy 

(Table 7.2) without detectable amounts of metal carbides.[40] In contrast, the 

Fe0.29Co0.71@(N)G sample containing a higher Co loading falls in a region of the Fe-Co 

phase diagram where both bcc and fcc phases coexist. This is also shown by our 

results (Table 7.2) obtained from Rietveld analysis of the diffraction data (Figure 7.1). 

The Fe/Co distribution between the bcc and fcc phases cannot be determined by 

Rietveld refinement due to the close values of the atomic scattering factors of Fe and 

Co (1 e- difference) and the similarity between atomic radii (Fe-1.26 Å, Co-1.25 Å).[41] 

The presence and morphology of the metal NPs embedded in a graphitic matrix 

can be observed by scanning and transmission electron microscopy (SEM and TEM) 

that also allows to estimate the metal NPs size distribution. Figure 7.3 shows the SEM 

images of beads of Fe0.29Co0.71@(N)G where lots of regular tubes with highly 

dispersed metal nanoparticles were clearly seen. As we have commented, the 

formation of the tubes should be due to the contribution of the CO2 supercritical dry 

to have beads of metal-containing chitosan with porous construction before the 

pyrolysis. Figure 7.4 shows selected TEM images of Fe0.29Co0.71@(N)G, while Figures 

7.5-7.7 contain a set of TEM images and histograms corresponding to particle size 

distributions for Fe@(N)G, Fe0.46Co0.54@(N)G, Co@(N)G, respectively. From these 

images it can be determined that there is an important contribution of particles with 

sizes between 5 and 15 nm with a few occasionally larger metal NPs (see Table 7.1). 

These average particle size values for Fe and Co NPs are remarkable considering that 

the samples have been subjected to heating at 900 oC for 2 h and probably reflect the 

strong metal-graphene interaction. These images show that the metal NPs are 

embedded into a graphitic matrix formed from chitosan.[35] 
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Figure 7.3. (a) SEM image of sphere of Fe0.29Co0.71@(N)G; (b) cross-section of the wall 

of the bead; (c,d) SEM images of the front showing the tubes and well dispersed 

nanoparticles embedded in the inner wall. 
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Figure 7.4. (a, b, c) Bright-field TEM images at three different magnifications of 

Fe0.29Co0.71@(N)G sample. The interplanar distance for the Fe-Co alloy nanoparticle 

measured by TEM is indicated in image c. The inset in image c corresponds to the 

Fast Fourier transformed (FFT) electron diffraction of the particle. (d) Dark-field 

image of the sample as well as the particle size distribution shown as inset. 
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Figure 7.5. (a, b) Bright-field TEM images at two different magnifications of Fe@(N)G 

sample. (c) Dark-field TEM image of the sample as well as the particle size 

distribution shown as inset. 
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Figure 7.6. (a, b) Bright-field TEM images at two different magnifications of 

Fe0.46Co0.54@(N)G sample. (c) Dark-field TEM image of the sample as well as the 

particle size distribution shown as inset. 
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Figure 7.7. (a, b) Bright-field TEM images at two different magnifications of Co@(N)G 

sample. (c) Dark-field TEM image of the sample used to measure the particle size 

distribution shown as inset. 

EDX analysis as well as elemental C, Fe and Co mapping by TEM for the 

Fe0.46Co0.54@(N)G and Fe0.29Co0.71@(N)G samples were performed and the results are 

provided in Figures 7.8-7.11, respectively.  
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Figure 7.8. TEM image of Fe0.46Co0.54@(N)G under dark field (a) and EDX spectrum of 

the location marked in the image (b). The result shows that Co and Fe are the main 

metals in the sample with an approximate atomic ratio of 1:1. The strong Cu signal is 

from the Cu grid. 

b

a

Spectrum 2

 

Figure 7.9. TEM image of Fe0.29Co0.71@(N)G under dark field (a) and EDX spectrum of 

the location marked in the image (b). The result shows that Co and Fe are the main 

metals in the sample with an approximate atomic ratio of 2:1. The strong Cu signal is 

from the Cu grid. 
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Figure 7.10. Elemental mapping results of Fe0.46Co0.54@(N)G indicating the 

distribution of C, Fe and Co in one image (a) and in separate images (b, c, d) marked 

with different colors. 
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a b

c d

 

Figure 7.11. Elemental mapping results of Fe0.29Co0.71@(N)G indicating the 

distribution of C, Fe and Co in one image (a) and in separate images (b, c, d) marked 

with different colors. 

 

Formation of graphitic carbon during the pyrolysis of chitosan aerogels 

containing the Fe3+/Co2+ salts was confirmed by Raman spectroscopy, where the 

characteristic 2D, G and D peaks appearing at about 2700, 1600 and 1350 cm-1, 

respectively, were observed. The intensity ratio between the G and the D peak for 

the samples was about 1.15 that is a normal value for defective N-doped graphene 

formed for chitosan.[35] The absence of iron or cobalt oxides in the FexCoy@(N)G 

samples after preparation and prior to their use as catalysts could also be inferred 

from the absence of the Fe-O and Co-O vibrations peaks appearing below 1000 cm-1 

in the low frequency region of the Raman spectra. Figure 7.12 presents the Raman 
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spectra of fresh (a) and recovered (b) Fe0.29Co0.71@(N)G sample for CO2 

hydrogenation, while Figure 7.13 contains the full set of Raman spectra for all 

as–synthesised samples. 

 

Figure 7.12. Raman spectra recorded with 514 nm excitation for the as-synthesised 

Fe0.29Co0.71@(N)G sample (a) and after its use for 30 h as CO2 hydrogenation catalyst 

(b) under the conditions indicated in Table 7.4.  
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Figure 7.13. Raman spectra recorded with 514 nm excitation for Co@(N)G (a), 

Fe0.29Co0.71@(N)G (b), Fe0.46Co0.54@(N)G (c) and Fe@(N)G (d). 
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The presence of Fe or Co NPs in the metallic state as well as the predominant 

graphitic nature of the carbon were also confirmed by XPS, although this specific 

surface technique reveals the presence of oxidized metals that could not be detected 

by XRD. Figure 7.14 shows Fe 2p, Co 2p and C 1s peaks. Interestingly the presence of 

some residual N atoms forming part of a graphene sheet was also detected by XPS, in 

agreement with elemental analysis and precedents in the literature reporting the 

formation of N-doped graphene in the pyrolysis of chitosan.[35] Analysis of these 

spectra indicated that both Fe and Co coexists in various oxidation states. In the case 

of Fe, the components can be attributed to metallic (706.7 eV[42]), Fe carbide (708 

eV[43]), FeO (about 710 eV), Fe2O3 (between 710-711 eV[42]) and Fe3O4 or over 

oxidized iron oxide (at 712 eV[44]). Important to notice, the binding energies of Fe in 

alloys do not differ much from the values of metallic iron.[45] While for Fe@(N)G the 

percentage of the reduced iron is in between 51-57 %, for Fe0.46Co0.54@(N)G and 

Fe0.29Co0.71@(N)G this percentage is significantly lower around 16 and 24 %, 

respectively.   

For Co, the species present on the surface according to the analysis of the Co 2p 

peak are metallic (708 eV[46]), Co3O4 (780 eV[47]) and Co2O3 (781-782 eV[48]). The 

components of binding energy between 783 and 785 eV could also correspond 

according to the literature[49] to Co(CO)x species obtained as pyrolysis by-products, 

while the signal at 787-788 eV corresponds to shake-up characteristic of Co3O4 and 

CoO peaks.[49] For Fe0.46Co0.54@(N)G and Fe0.29Co0.71@(N)G catalysts the shift of the 

band to 778.5 eV might be an indication of the formation of the Co-Fe alloy.[50] 

According to literature metallic and cobalt carbide appear at the same binding energy 

position in the Co2p region.[51] However, this carbide is metastable and its 

decomposition to metal Co and graphite is thermodynamically favorable.[52]  

The C1s peaks, presented in Figure 7.14c, feature the main graphene peak, 

narrow and asymmetric. Although the presence of carbides has been detected in 

other precedents by observation of a component in the C1s peak at lower binding 

energy than the typical graphene peak,[52] this component was not observed in the 
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XPS spectra of the samples under study. 

 

 

Figure 7.14. X-ray photoelectron spectroscopy (a) Fe 2p; (b) Co 2p; (c) C 1s (d) N 1s 

for fresh catalysts and after in situ reactions. 

 

Table 7.3 summarizes a comparison of the atomic ratios determined either by 

XPS or chemical analysis. Fe0.46Co0.54@(N)G catalyst shows an enrichment of the 

surface in Co according XPS data compared with the result from chemical analysis, 

while for Fe0.29Co0.71@(N)G no difference has been determined between the XPS and 

chemical analysis. For both catalysts, the Fe/Co and the total metal (Fe, Co)/C ratios 

have been not affected by their use as CO2 hydrogenation catalyst for 60 h, providing 

another proof for the stability of the graphene supported catalysts under the 
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catalytic conditions. However, for all catalysts the XPS O/Fe and O/Co ratios 

diminished in the first 2 h during the reaction and these can be attributed to the 

reduction of the oxygenated functional groups in graphene under the reaction 

conditions.  

Table 7.3. Comparative XPS and analytic atomic ratios. 

Catalyst Comparative XPS and analytic atomic ratios 

 XPS Chemical 
analysis 

 Fe/Co O/Fe O/Co Fe/C Co/C Fe/Co 

Fe@(N)G fresh  25.7  0.0017   

Fe@(N)G post reaction  21.4  0.0016   

Co@(N)G fresh   24.1  0.0015  

Co@(N)G post reaction   20.4  0.0017  

Fe0.46Co0.54@(N)G fresh 0.51 26.0 13.3 0.0014 0.0028 0.87 

Fe0.46Co0.54@(N)G post 

reaction 

0.47 18.6 8.8 0.0018 0.0037 0.87 

Fe0.29Co0.71@(N)Gfresh 0.42 22.0 6.5 0.0003 0.0070 0.43 

Fe0.29Co0.71@(N)G post 

reaction 

0.35 15.4 6.6 0.0016 0,0051 0.43 

 

    Accessibility of the metal NPs, even though they are mostly embedded into a 

carbon matrix, was confirmed by treating these samples with concentrated aqueous 

HCl solutions. It was observed that upon treating the samples with this acid, most of 

the iron or cobalt (above 80 %) becomes dissolved, although a significant proportion 

of the Fe and Co still remains on the carbon matrix. These experiments suggest that 

about 80 % of the total metal content should be considered accessible to interact 

with substrates and reagents, due to their imperfect wrapping by the graphene 

matrix, while about 20 % of these NPs would probably not be able to establish direct 

contact with substrates or reagents. 

 

 

7.3. Catalytic activity 

The set of samples prepared containing Fe and/or Co NPs in a carbon matrix 
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were initially tested with respect to their catalytic activity for CO2 hydrogenation 

under continuous flow operation using a H2/CO2 mol ratio of 3 at 10 bar. Blank 

experiments in the absence of any catalyst indicate that CO2 conversion at the 

highest temperature (550 oC) was below 6 %, methane accompanied by a small 

percentage of CO being the only products detected. Another control using graphene 

in the absence of metal NPs in the same range of temperatures showed some CO2 

conversion that increased abruptly in the range of temperatures above 400 oC, being 

12.9 % at 500 oC with a selectivity to methane of 94.5 %.  

Experiments in the presence of FexCoy@(N)G samples were carried out using a 

constant mass of 20 mg of powdered catalyst in the absence of binder and a flow of 1  

and 3 mL×min-1 for CO2 and H2, respectively. Besides methane and CO, the products 

detected in the presence of metallic catalyst were ethane, propane, i-butane and 

methanol in very different proportions depending on the catalyst and reaction 

conditions. The results achieved in the CO2 hydrogenation by the four samples under 

study are summarized in Table 7.4. 

For each sample, the catalytic tests were performed starting at 300 oC for 1 h 

and increasing the reactor temperature by 50 oC increments every 1 h up to 550 oC 

and, then, decreasing the temperature by 50 oC decrements every 1 h up to returning 

to 300 oC. Thus, each experiment corresponds to 11 steps of 1 h of continuous 

reaction. This sequence allows establishing catalyst stability by comparing conversion 

and product distribution at a given temperature during the step of increasing and 

decreasing temperature. In the case of Fe@(N)G, it is known that the gradual 

formation of inactive θ-Fe3C phase is the main reason for the catalyst deactivation 

during CO2 hydrogenation.[53] The initial presence of a high percentage of iron 

caribide (θ-Fe3C) in the as-synthesized Fe@(N)G should be responsible for the low 

catalytic activity in the reaction for synthesis of hydrocarbons. Also, in the present 

case evidence of the presence of χ-Fe5C2 in Fe@(N)G catalyst after extensive use 

could not be obtained from XRD peaks analysis. Additionally, when a used 

Fe0.46Co0.54@(N)G sample after a complete evaluation test from 300 to 550 oC and 



 

Chapter 7 

176 

 

then back to 300 oC was submitted to a second cycle, a notable coincidence in the 

conversion and product distribution of this reused sample was observed with respect 

to the performance of the fresh Fe0.46Co0.54@(N)G sample.  

As it could be anticipated, Table 7.4 shows that, for the set of four samples 

under study, CO2 conversion increases with the temperature in the range of 300 to 

550 oC. Fe-Co alloys exhibit somewhat higher CO2 conversions than the reference 

catalysts containing exclusively either Fe or Co, the highest conversion being 

measured for Fe0.29Co0.71@(N)G that reaches 87 % under standard conditions. In the 

case of Fe@(N)G the main product formed at any temperature was methane in a 

very high percentage (over 89 %) and at the highest temperatures close to 100 % 

selectivity. In contrast, the presence of Co, either as single metallic element or 

alloyed with Fe, changed completely the selectivity in favor of i-butane (Equation 7.1). 

i-Butane selectivity increased with the temperature and for an optimal Fe/Co atomic 

ratio. In the best present case using Fe0.29Co0.71@(N)G as catalyst at 550 oC, a 

selectivity to i-butane over 92 % at a CO2 conversion of 87 % was measured. 

Comparison of the catalytic performance of the four samples indicates that the 

outstanding selectivity towards i-butane derives from Co, but it increases somewhat, 

as well as CO2 conversion, with the appropriate proportion of Fe in the alloy.  

CO2 + H2 →i-C4H10 + H2O 

Equation 7.1. The equation for describing the formation of i-butane in the CO2 

hydrogenation process. 

 

 

 

 

 

 



 

Chapter 7 

177 

 

Table 7.4. Activity data for the FexCoy@(N)G samples under study.[a] 

 Fe@(N)G Fe0.46Co054@(N)G 
Fe0.46Co054@(N)G 

- 2nd run (same cat. load) 

T (oC) 

Conv. 

(%) CO2 

Selec.(%) 

i-C4H10 

Selec. 

(%) CH4 

Conv. 

(%) CO2 

Selec. (%) 

i-C4H10 

Selec. 

(%) CH4 

Conv. 

(%) CO2 

Selec. (%) 

i-C4H10 

Selec. 

(%) CH4 

300 0.50 10.59 89.2 16.93 74.49 24.37 11.30 27.95 70.60 

350 3.10 6.79 92.93 28.10 74.62 22.28 27.11 33.41 61.98 

400 11.62 1.58 98.24 46.02[b] 61.79 31.13 47.41[d] 49.56 41.19 

450 31.71 1.87 97.93 62.67[c] 65.15 25.44 67.50 68.99 22.09 

500 51.55 3.01 96.79 76.30 79.96 16.61 79.45 83.36 13.72 

550 62.10 5.95 93.73 81.16 85.58 13.32 83.33 86.52 12.51 

500 51.73 3.08 96.71 79.96 83.13 13.83 79.26 84.10 13.10 

450 35.00 1.92 97.86 67.13 69.12 21.85 71.11 71.20 20.68 

400 14.72 1.13 98.65 49.96 50.99 39.40 53.93 52.15 38.88 

350 4.88 0.06 99.77 31.15 33.35 61.66 36.75 33.02 62.32 

300 1.25 0.25 99.75 12.95 23.63 75.07 17.07 21.08 77.26 

 

 Fe0.29Co0.71@(N)G Co@(N)G 

T (oC) 

Conv. 

(%) CO2 

Selec. (%) 

i-C4H10 

Selec. 

(%) CH4 

Conv. 

(%) CO2 

Selec. (%) 

i-C4H10 

Selec. 

(%) CH4 

300 14.88 30.65 65.77 6.55 66.18 33.69 

350 32.61 50.01 44.66 18.03 60.61 39.24 

400 58.53[e] 70.28 18.58 29.16 44.79 54.88 

450 77.12 84.17 9.05 53.74 66.58 31.43 

500 84.15 91.44 6.80 74.08 84.59 14.74 

550 87.16 92.50 6.85 80.01 86.86 12.90 

500 85.16 92.29 6.28 68.42 78.89 20.40 

450 79.41 86.91 7.31 46.94 58.62 39.53 

400 62.44[f,g] 72.83 14.38 25.98 38.16 60.65 

350 36.34 51.91 37.64 11.75 28.15 71.57 

300 15.01 30.31 65.27 3.70 5.20 94.78 

[a] Reaction conditions: pressure (10 bar), flow rates (H2: 3 mL/min, CO2: 1 mL/min), 

catalyst amount (20 mg). The selectivity (%) for each other product (CO, C2H6, CH3OH) 

is below 4.0 except in these cases: [b] 4.38 selectivity (%) to C2H6; [c] 4.80 selectivity 

(%) to C2H6; [d] 4.14 selectivity (%) to C2H6; [e] 4.02 selectivity (%) to CH3OH; [f] 4.82 

selectivity (%) to CH3OH; [g] 4.57 selectivity (%) to C2H6. 
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As far as we know, the results presented in Table 7.4 combined with the high 

catalytic stability for Fe and Co catalysts are without precedent. In general, 

hydrocarbon distribution in CO2 hydrogenation by Co catalysts gives methane 

selectively.[13] Similarly, catalysts based on Fe render a hydrocarbon distribution 

favoring methane and short hydrocarbons up to C4, far from the typical 

Anderson-Schultz-Flory hydrocarbon distribution generally observed for analogous 

catalysts for the Fischer-Tropsch hydrogenation of CO.[54] It has been proposed that 

disfavored CO2 adsorption on the surface of the metal catalyst with respect to that of 

CO makes the suite of hydrogenation steps of the surface species more favorable 

than chain growth, resulting in the preferential formation of methane and alkanes 

with short chain length.[54]  

Regarding stability, characterization of a Fe0.29Co0.71@(N)G sample after 30 h 

operation as catalyst under the conditions of Table 7.4 showed some changes in the 

phase composition by high resolution XRD, increasing the proportion of the bcc 

phase to 88 %, but without detectable formation of any carbide (Figure 7.1). Raman 

spectroscopy shows the formation of some iron and cobalt oxides in the catalyst 

(Figure 7.12), but these species must be only on the surface, since otherwise they 

would be detectable by XRD as well. Also XPS detects some changes in the shape of 

the Fe2p and Co2p peaks, probably related to the decrease in the surface oxides as 

commented earlier (see Table 7.3). However, in the case of the best 

Fe0.29Co0.71@(N)G catalyst, the changes after in situ reaction were much lower than 

for the other catalysts, and note that XPS is extremely surface sensitive. To confirm 

catalyst stability, Fe0.29Co0.71@(N)G was used as catalyst for an extended period of 

500 h (three weeks) of continuous operation observing that the catalyst maintains 

over 85 % the activity of the fresh Fe0.29Co0.71@(N)G sample, with i-butane selectivity 

still over 90 %. 

 

 



 

Chapter 7 

179 

 

7.4. Theoretical calculations 

In order to shed some light on the reasons of the remarkable differences in 

selectivity and to clarify the role of graphene as support of metallic nanoparticles in 

the activation of CO2, periodic DFT calculations were undertaken. The differences 

between the metals Co, Fe and Co-Fe alloy were evaluated using three optimized 

(Perdew, Burke and Ernzerhof functional, PBE[55]) models containing Co4 (G1), Fe4 (G2) 

and Co2Fe2 (G3) clusters on the graphene surface (Figure 7.15) in comparison with 

single metallic clusters (M1, M2 and M3, Figure 7.16).    

All the metal clusters supported on graphene proved to be stable due to the 

occurrence of a favorable interaction between the metal atoms and the graphene 

model with a characteristic hapticity (η) being indicative of a coordination with the 

aromatic ring of graphene. The calculated hapticity values were η4 for Co (G1 and G3 

clusters) and η2 and η3 for Fe (G2 and G3 clusters, respectively). 

(a)

Top

Side

(b)

Side

Top

Side

(c)

Top

 

Figure 7.15. Top and lateral views of the optimized models for: (a) Co4@G (G1) 

catalyst; (b) Fe4@G (G2) catalyst and (c) Co2Fe2@G (G3) catalyst. Color codes: carbon 

is gray, cobalt is blue and iron is pale violet. 
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(a) (b) (c)

 

Figure 7.16. Theoretical models for nanoparticles based on metallic clusters: (a) Co6 

(M1); (b) Fe6 (M2) and (c) Co2Fe4 (M3) optimized at PBE level of theory. 

 

The main difference between supported-metals (G1, G2 and G3) and the 

corresponding clusters (M1, M2 and M3) arises from the calculated Mulliken charges 

(Table 7.5). In this context, all three metal atoms attached to the graphene surface 

have a large positive electron density (δ+ from 0.63 to 1.41). However, a different 

electron density was observed for the atoms which are involved in the activation of 

both CO and CO2 species. Thus, the metal atom in Co4@G (G1) and Fe4@G (G2) 

models binding to CO or CO2 have a slight negative charge (δ- = – 0.02 and – 0.20, 

respectively), contrary to the alloy Co2Fe2@G (G3, δ+=0.03). Regarding M1, M2 and 

M3 clusters, slight variations in electron densities among the four metal atoms were 

obtained revealing that graphene as platform for nanoparticles is essential for 

generating more reactive positions.  

One important piece of information was obtained from the interaction of these 

model clusters with CO and CO2. In both cases, adsorption of these gases was 

favorable (Figure 7.17). In the case of CO, the computed adsorption energy for the G3 

cluster was 3.2 eV (Figure 7.17a). These calculations also indicate that interaction of 

Co-Fe alloy supported on graphene with CO2 should provoke its dissociative 

adsorption, resulting in adsorbed CO and a highly reactive oxirane species (Eads,CO2 

(G3) = – 4.2 eV, Figure 7.17b). This oxirane ring could be involved in the activation of 

H2 molecules generating H−C−O and O−H species on the cluster, and therefore, acting 

as the first step in the production of i-butane. Thus, the results of the modelling 

support that CO2 hydrogenation in the case of Fe-Co alloys on graphene follows a 
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reverse water gas shift mechanism, followed by subsequent Fischer–Tropsch. This 

proposal would be in agreement with mechanistic data for CO2 hydrogenation on 

other supported Fe or Co catalysts.[13] 

Table 7.5. Calculated Mulliken charges for models used herein. Only electron 

densities of metal cores are shown. 

 

Model Cluster G1 Cluster G2 

Electron density (δ) 

  

Model  Cluster G3  Cluster M1 

Electron density (δ) 

 
 

Model  Cluster M2 Cluster M3 

Electron density (δ) 
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(a) (b)

 

Figure 7.17. PBE-DFT models for adsorption of: (a) carbonyl (CO) group on Co2Fe2@G 

and (b) dissociative absorption of CO2 on Co2Fe2@G. Color codes: carbon is gray, 

oxygen is red, cobalt is blue and iron is violet pale.  

 

 

7.5. Conclusions 

Fe-Co alloy nanoparticles embedded in a (N)-doped graphitic carbon matrix 

prepared by pyrolysis exhibit a strong metal-support interaction that is manifested in 

the small average particle size. These materials exhibit a remarkable catalytic activity 

for CO2 hydrogenation, leading those containing Co to an unprecedented outstanding 

selectivity to i-butane over 92 % at 87 % CO2 conversion in some cases. This catalytic 

activity is in sharp contrast with the current state of the art in which methane is the 

prevalent product, generally with selectivity values over 70 %. i-Butane is a much 

more valuable product than methane and, therefore, the present results open an 

unforeseen avenue on the control of CO2 hydrogenation towards other products 

higher than C1. Theoretical calculations indicate that the interaction between the 

metals and graphene, resulting in a charge transfer and differentiation among the 

charge density of the various atoms in the cluster, is the main reason for this 

remarkable behavior.  
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8.1. Synthesis of materials 

 

8.1.1. Synthesis of (N)G films 

Chitosan (250 mg) from Aldrich was dissolved in a 12.5 mL aqueous solution. 

250 µL of HOAc solution was added to dissolve chitosan completely. After 2 h under 

magnetic string at room temperature, the solutions were filtered through a syringe of 

0.45 µm pore size to remove the impurities present in the commercial chitosan. The 

films were prepared on a previously cleaned quartz plate (2×2 cm2) by casting 500 µL 

of the filtered chitosan solution at 4000 rpm in 45 s. Once dried on a hot plate, the 

films were pyrolyzed under Ar flow or Ar/H2 (5 vol%) or Ar/H2 (10 vol%) flow (200 mL 

min−1), increasing the temperature at a rate of 5 °C min−1 up to 900, 1000, 1100 and 

1200 °C, respectively, and holding the final temperature for 1 h. The sample was 

allowed to cool at room temperature under inert atmosphere by stopping electrical 

heating. 

 

8.1.2. Synthesis of G films 

Alginic acid (800 mg) from Aldrich was dissolved in a 10 mL aqueous solution. 

1.6 mL of NH4OH solution (28-30 % NH3 in water) was added to assist dissolution of 

alginic acid completely. After 2 h under magnetic string at room temperature, the 

solutions were filtered through a syringe of 0.45 µm pore size to remove the 

impurities present in the commercial alginic acid. The films were prepared on a 

previously cleaned quartz plate (2×2 cm2) by casting 500 µL of filtered solution at 

4000 rpm in 45 s. Once dried on a hot plate, the films were pyrolyzed under Ar flow 

or Ar/H2 (5 vol%) or Ar/H2 (10 vol%) flow (200 mL min−1), increasing the temperature 

at a rate of 5 °C min−1 up to 900, 1000, 1100 and 1200 °C, respectively, holding the 

final temperature for 1 h. The sample was allowed to cool at room temperature 
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under inert atmosphere by stopping electrical heating. 

 

8.1.3. Synthesis of (N)G/h-BN and h-BN 

In a general preparation procedure, chitosan (1.12 g) from Aldrich was dissolved 

in 25 mL of aqueous solution contained (NH4)3BO3 (0.45 g). After 2 h of magnetic 

stirring at room temperature, the solutions were filtered through syringe of 0.45 µm 

pore size to remove possible insoluble particles present in the commercial chitosan. 

Then, the films were deposited on a previously cleaned quartz plate (2×2 cm2) by 

spin casting 500 µL of filtered solution at 4000 rpm in 45 s. Once dried on a hot plate, 

the (NH4)3BO3-chitosan films were pyrolyzed under Ar flow (200 mL min-1), increasing 

the temperature at a rate of 0.9 °C min-1 up to 900 °C and holding for 2 h. To get the 

h-BN films, the pyrolyzed films (graphene/h-BN) were calcined up to 1000 °C in air 

with a heating rate of 8 °C min-1 to remove the defective graphene layer. Thicker 

layers were obtained by decreasing the volume of the aqueous solution to 10 mL.  

 

8.1.4. Synthesis of oriented MoS2/ml-G films 

Alginic acid (1200 mg) from Aldrich (St. Louis, MO, USA) was suspended in 

aqueous solutions containing different concentrations of (NH4)2MoS4 (0.5, 1, 2, 3, 5, 

10 or 60 mM). Two milliliters of NH4OH solution (28–30 % NH3 in water) were added 

to dissolve alginic acid completely. After 2 h under magnetic stirring at room 

temperature, the solutions were filtered through a syringe of 0.45 µm pore size to 

remove insoluble impurities possibly present in commercial alginic acid. The films 

were cast on a previously cleaned quartz plate (2×2 cm2) by spin coating 500 µL of 

filtered ammonium alginate solution at 4000 rpm for 45 s. Once dried on a hot plate, 

the films were pyrolyzed under Ar flow (200 mL min−1), increasing the temperature 

at a rate of 5 °C min−1 up to 900 °C and a holding time of 1 h. After this time, the films 

were cooled down at room temperature maintaining the Ar flow. 
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8.1.5. Synthesis of Fe/CoNP@C  

Briefly, Fe-Co1.42NP@C, Fe-Co0.86NP@C were prepared by mixing chitosan (400 

mg) in a 20 mL aqueous solution of Fe(OAc)2 (20.5 mg) and Co(OAc)2·H20 (20.0 or 

28.3 mg for preparation of each of the two samples). HOAc (250 μl) was added to 

dissolve chitosan completely. Samples of FeNP@C and CoNP@C were 

prepared following the same procedure, but using only Fe(OAc)2 (20.5 mg) or 

Co(OAc)2·H20 (28.3 mg), respectively. After 2 h under magnetic string at room 

temperature, the solutions were dried by removing the water by heating the solution 

at 70 oC overnight. The resulting samples were pyrolyzed under Ar flow (200 mL 

min-1), increasing the temperature at a rate of 10 oC min-1 up to 900 oC with a holding 

time of 2 h. The samples were allowed to cool at room temperature under inert 

atmosphere by stopping electrical heating. 

 

8.1.6. Synthesis of FexCoy@(N)G 

Briefly, Fe0.46Co0.54@(N)G and Fe0.21Co0.79@(N)G were prepared by mixing 

chitosan (1000 mg) in a 50 ml aqueous solution of Fe(OAc)3 (75mg) and Co(OAc)2 (75 

or 150 mg, respectively). 625 µL HAc was added to dissolve chitosan completely. 

Fe@(N)G and Co@(N)G were prepared following the same produce, but using only 

Fe(OAc)3 (75 mg) or Co(OAc)2 (75 mg). After that, the solutions were added dropwise 

to a NaOH solution (0.1 M) by using a syringe (0.8 mm needle diameter) with a slow 

stirring at the same time. The gel microspheres were formed on the bottom of the 

solution. After immersing them in the solution for 1 h, the gel microspheres were 

washed with distilled water. The resulting hydrogel beads were then immersed into a 

series of ethanol/water baths with an increasing concentration of ethanol (10, 30, 50, 

70, 90 and 100 vol%, respectively) for 15 minutes each. The beads were dried in the 

condition of superficial CO2 with a pressure of above 75 bar and a temperature of 

40 °C for 20 minutes to yield aerogel beads. The resulting beads were then pyrolyzed 

under Ar flow (200 mL/min), increasing the temperature at a rate of 1 °C/min up to 

file:///C:/Users/Administrator/AppData/Roaming/AppData/hgarcia/AppData/Local/Microsoft/Windows/hgarcia/AppData/Local/Microsoft/Windows/INetCache/AppData/Local/Yodao/DeskDict/frame/20160217234034/javascript:void(0);
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200 °C for 2 h and then to 900 °C with a holding time of 2 h. The beads were finally 

grinded into powders for some characterizations and catalytic tests. 

 

 

8.2. Experimental procedures  

 

8.2.1. Photoelectronic tests for (N)G and G films used as electrodes 

The experiments were carried out in a quartz cylindrical three-electrode cell 

on a Versastat electrochemical workstation with an (N)G or G photoelectrode as the 

working electrode, a platinum foil as the counter electrode and Ag/AgCl (saturated 

KCl) as the reference electrode. The working electrode was irradiated using a LED 

lamp as the light source through an optical fibre that indicates the photoelectrode 

from the front. Line-sweep voltammgrams were measured at a scan rate of 50 mV/s 

in an aqueous solution of 1 M LiClO4 which had been previously purged with argon 

gas for 30 mins. The photoelectric experiments were performed with a positive 1.1 V 

applied bias, and the production of H2 envolved in the photoreactor was determined 

by gas chromatography using GS-MOL column of 15 meters and 0.55 mm ID with 

TCD. 

 

8.2.2. Electrical measurements for (N)G/h-BN and (N)G films 

The current-voltage curves were measured with a home-made Kelvin probe 

system.  One of the electrical contacts of the sample was done by evaporating 

metallic gold through a shadow mask in a specific region of the sample. The second 

contact was made with a tungsten probe tip with a radius of 0.5 μm (PTG20-0.5, 

Microword). The position of the tungsten probe was controlled with a nanopositioner. 

The electrical measurements were carried out using a Keithley 2450 Sourcemeter 
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with a resolution of fA and using low noise triaxial cables. The scan rate was 

200 mV/s. The charge accumulated was calculated by subtracting the difference of 

the integrated area in the forward and reverse bias with respect at the scan rate in 

the first quadrant. 

 

8.2.3. Electrochemical measurements for oriented MoS2/ml-G films 

Electrocatalytic measurements of /ml-G electrodes were carried out using 

a potentiostat/galvanostat (VersaSTAT 3, Princeton Applied Research, Oak Ridge, TN, 

USA) with a standard three-electrode cell configuration. /ml-G films were used 

as the working electrode. Ag/AgCl/KCl (3 M) and Pt wire were used as the reference 

and counter electrode, respectively. An aqueous solution of 0.5 M of H2SO4 was used 

as the electrolyte and was degassed using argon. Onset potentials were measured by 

extrapolating to zero current density the initial linear part of the V-I plot. The 

standard error of the measurement, based on three independent batches, was 

estimated to be 20 %. 

 

8.2.4. General procedure for the oxidative C-N coupling 

Typically, 1.6 mol% (total metal vs. substrate) of metal catalyst was added to a 

reaction mixture of benzimidazole (0.1 mmol) in DMA (2 mL) inside a reinforced glass 

reactor. Then, the suspension was magnetically stirred, while purging with Ar and 

heated at 110 oC using a preheated silicone bath. Once the reaction temperature was 

reached, the system was closed and pressurized with Ar (2.5 bar). Then, TBHP (5 M 

solution in decane) was introduced to the reaction mixture in two steps, 0.25 mmol 

at the starting time, and 0.15 mmol at 4 h reaction time. The temporal evolution of 

the reaction was followed by analyzing periodically known aliquots of the reaction 

mixture taken with a syringe provided with a filter (0.2 μm) to remove the solid 

catalyst. The aliquots were immediately analyzed by GC. Yields were based on GC 

analysis of the reaction mixture containing weight amounts of indole as external 
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standard. Experiments using Fe(CO)5, FeCl2 or Fe(OAc)3 as homogeneous catalysts 

were conducted in the same conditions as indicated above with 5.3, 3.4, 6.5 mg for 

each of this catalyst, respectively, corresponding to 1.5 mg of Fe. The amounts were 

taken by weighing the amounts in mg dissolving in 1 mL of DMA and taking 1 mL of 

the solution with a syringe. Formation of C-N coupling product in yields below 5 % 

was observed after 24 h. 

 

8.2.5. Reuse experiment for the oxidative C-N coupling 

Once the reaction performed as indicated in the point 8.2.4 was finished, the 

catalyst was recovered from the reaction mixture by filtration (Nylon filter, 0.2 μm), 

washed three times with DMA (3×10 mL) and dried in an oven (70 oC) overnight. 

Then, the catalyst was used again in the next C-N coupling reaction under the same 

conditions. 

 

8.2.6. Catalytic test procedure for the CO2 hydrogenation 

Experiments in the presence of FexCoy@(N)G samples were carried out using a 

constant mass of 20 mg of powdered catalyst in the absence of binder and a flow of 1  

and 3 mL min-1 for CO2 and H2 (pressure: 10 bar) respectively. For each sample, the 

catalytic tests were performed starting at 300 oC for 1 h and increasing the reactor 

temperature by 50 oC increments every 1 h up to 550 oC and, then, decreasing the 

temperature by 50 oC decrements every 1 h up to returning to 300 oC. Thus, each 

experiment corresponds to 11 steps of 1 h of continuous reaction. The products 

during the reaction were analyzed by using GC. 
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8.3. Characterization techniques 

 

8.3.1. Transmission electron microscopy (TEM) 

High resolution transmission electron microscopy (HR-TEM) is a technique that 

provides the image of a sample at the atomic scale (using a high-energy electron 

beam that interacts with the sample). Due to its resolution, it allows to study the 

characteristics of a material at a scale of a few nanometers or less. Currently the 

highest resolution is 0.8 Å, which has allowed the observation of individual atoms 

and structural defects. The theoretical principle under which an HR-TEM works is to 

measure the wave amplitude resulting from the interference between the incident 

electron and the surface of the sample. Transmission electron microscopy (TEM) 

images were taken here using a JEOL JEM-1010 microscope operating at 100 kV, 

while the HR-TEM was carried out with a JEOL JEM 2100F microscope operating with 

an acceleration voltage of 200 kV coupled with an X-Max 80 energy dispersive X-ray 

detector (EDX) (Oxford instruments). The microscope is equipped with the STEM unit, 

the dark-field and high-angle field image detectors (HAADF) that facilitate the 

observation of phase contrast with different atomic number.  

For the preparation of TEM samples of solids, a drop of a suspension of the 

material after sonicating the samples in an organic solvent (ethanol, methanol) for 1 

h was added on a copper or nickel grid coated with a carbon film. For the preparation 

of TEM samples for films, small debris of the films were placed on the grid by 

scratching the films with a sharp knife and dipping the grid on the surface.  

 

8.3.2. Scanning electron microscopy (SEM) 

Scanning electron microscope (SEM) is an instrument that allows observation 

and surface characterization of inorganic and organic materials that are 
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non-transparent to electrons. The technique gives morphological information about 

the particles of the analyzed material. SEM is used to acquire a series of images of 

the sample that are used to examine the morphology of microscopic areas, their 

homogeneity and to determine the particle size distribution, as well as a quantitative 

elemental analysis of the images obtained. The main characteristics of the SEM are 

its resolution (~100 Å), the depth of field that can give three-dimensional appearance 

to the images and the simple preparation of the samples. SEM images were taken 

with a JEOL JSM-5410 microscope, while the SEM images of emission of field (FESEM) 

were obtained with a Zeiss Ultra 55 instrument. The elemental analysis by energy 

dispersive X-ray spectroscopy (EDX) was performed with an Oxford instruments 

detector coupled to these microscopes. With fast ion bombardment (FIB) technique 

coupled to the FESEM, a sharp cut can be made in the film, allowing to obtain a 

cross-sectional image. The cut was done using focused beam of high energetic 

gallium ions operating at high currents. 

The samples for SEM were prepared by adhering the specimens on a sample 

holder that is covered with a double-sided conductive tape. The non-conductive 

samples were previously metalized with a nanometric gold film by sputtering. 

 

8.3.3. Atomic force microscopy (AFM) 

AFM is a technique that allows to study physical characteristics of the surface of 

a sample or film and is especially useful for determining the thickness of thin films on 

atomically flat substrate, measuring the difference of height between the substrate 

and the surface of the film. The AFM measurements were performed with a 

Multimode Nanoscope 3A instrument that has subnanometric vertical resolution and 

horizontal resolution of about 5 nm. The samples were introduced into the 

equipment, scanning in "tapping" mode consisting in intermittent tip-sample contact. 

This procedure produces less alteration of the surface of the materials. 

The graphene films deposited on quartz substrates containing or not 
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nanoparticles are directly glued on a metal support of 1×1 cm2 which is the suitable 

size for introducing the sample into the equipment. Images were obtained by 

scanning with the tip on the surface of samples. To prepare the samples for thickness 

measurement, graphene films were scratched mildly with a sharp knife without 

destroying the surface of substrates. The height information of the films can be 

obtained from the image focused on the scratch. 

 

8.3.4. Raman spectroscopy 

Raman spectroscopy is a very useful characterization technique for 

carbonaceous materials. Raman spectra can be recorded directly with the material to 

be analyzed either as powder or as film deposited on substrates, without the need 

for any sample pretreatment. Raman spectroscopy is based on the examination of 

scattered light from a material irradiated with a beam of monochromatic light. A 

small portion of the light is scattered inelastically, resulting in slight changes in the 

frequency. These changes are characteristic of the analyzed materials and 

independent of the frequency of the incident light. The Raman spectroscopy 

measurements were carried out using a Renishaw in Via Raman Microscope at room 

temperature using an argon ion laser of 514 nm as a source of excitation coupled to a 

microscope Leyca Optics that allows monitoring the sample exposed to the laser 

beam with a surface area resolution of 1×1 μm2. At each point of the sample, the 

Raman spectra were recorded in the region from 0 to 3500 cm-1, with a resolution <4 

cm-1, performing 10 scans in a total accumulation time of 100 s. The analysis requires 

the comparison and average of the spectra in several parts of the sample. 

 

8.3.5. X-ray diffraction (XRD) 

XRD is a characterization technique used to establish the crystallinity of the 

materials. It is a non-destructive technique so it allows the recovery of the sample. 
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The XRD patterns in this Doctoral Thesis were obtained using a PANalytical Cubix-Pro 

diffractometer, which is equipped with a PANalytical X'Celerator detector. It employs 

a monochromatic X-ray radiation of Cu Kα (ʎ1=1.5406 Å, ʎ2=1.5444 Å, I2/I=0.5), a 

voltage of 45 kV and a tube current of 40 mA. The length of the goniometer arm is 

200 mm. The diffractograms are obtained at room temperature in the 2θ angle range 

between 2 and 90o, with a step increase of 0.02o (2θ) in continuous mode. In addition, 

the width of the diffraction peaks is related to the distribution of the particle size. 

The calculation of average sizes of the nanoparticles by XRD patterns is based on the 

Scherrer equation: 

 

where: 

• D is the calculated mean size of the ordered domains, which may be smaller 

or equal to the grain size; 

• K is a dimensionless shape factor, with a typical value of about 0.9; 

• Ƴ is the X-ray wavelength; 

• B is the line broadening at half the maximum intensity (FWHM) (in radians); 

• θ is the Bragg angle (in degrees). 

 

8.3.6. X-ray photoelectron spectroscopy (XPS) 

XPS is a technique of characterization of surfaces that is commonly used to 

estimate the stoichiometry (with an error of approximately 10 %), chemical status 

and electronic structure of the elements that exist in a material. The XP spectra are 

obtained by irradiating with X-rays (usually from an anode of Al or Mg), measuring at 

the same time the kinetic energy and the number of electrons that escape from the 

surface of the material. The XPS were taken in a SPECS spectrometer equipped with a 

Phoibos 150-9MCD detector using a non-monochromatic X-ray source of Al Kα 

(1483.6 eV) operating at 50 W. The samples were evacuated in a pre-chamber of the 

spectrometer at 10-9 mbar. Quantification and treatment of the spectra were carried 

https://en.wikipedia.org/wiki/X-ray
https://en.wikipedia.org/wiki/Wavelength
https://en.wikipedia.org/wiki/Intensity_(physics)
https://en.wikipedia.org/wiki/Full_width_at_half_maximum
https://en.wikipedia.org/wiki/Radian
https://en.wikipedia.org/wiki/Bragg_diffraction
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out with the software CASA, and the correction is made based on the carbon signal 

C1s, whose bonding energy corresponds to the value of 284.5 eV. 

 

8.3.7. Combustion elemental analysis 

Combustioin elemental analysis is a technique that allows determining the 

percentages of C, H, N and S present in the sample. It is a destructive 

micro-combustion technique. The sample with a weight of 2-4 mg is subjected to 

thermal oxidation at temperatures between 166-1800 °C in an O2 environment, 

resulting in the total conversion of the components to CO2 (carbon), H2O (hydrogen) 

NO or NO2 (nitrogen), and SO2 (sulfur). The contents of these elements can be 

determined by quantitative analysis of the resulting combustion products. The 

analyzer that has been used to carry out the analysis in the present Doctoral Thesis is 

Euro EA3000 Elemental Analyzer (EuroVector), using sulfanilamide as a reference to 

check the accuracy of measurements. The accuracy of the instrument is on the order 

of 0.01 %. 

 

8.3.8. ICP-OES plasma spectroscopy 

The inductively coupled plasma optical emission spectrometry (ICP-OES) is used 

to determine the composition and content of metals and some other elements in 

samples. The technique is based on the excitation of atoms in solution that is 

nebulized in high temperature plasma. When the excited atoms fall to the ground 

state, a photon of characteristic energy for each atom is emitted. The concentration 

of the element in the sample is determined from the intensity of this emission, 

comparing the intensity with the values from the calibration curve for each element. 

The samples have been analyzed on a Varian 715-ES ICP-Optical Emission 

Spectrophotometer.  

The general procedure used to analyze the samples is as follows: 20 mg of a 
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sample was dissolved by treatment of the sample with 10 mL of aqua regia solution 

(HCl/HNO3 3:1) for 3 h at room temperature. After filtering the resulting suspension 

to separate any possible remaining solid waste, the solution was diluted to 50 mL 

with milli-Q water. Then the solution was injected into the spectrophotometer. 

 

8.3.9. Thermogravimetric analysis (TGA) 

This type of analysis aims to study the processes of decomposition of organic 

matter and its stability depending on the temperature and atmosphere to which it is 

exposed. TGA were performed with a Mettler Toledo TGA/SDTA 851e device in the 

temperature range from 20 to 900 oC at a speed of 10 oC min-1 and an air flow of 20 

mL min-1. The amount of sample required for an analysis is approximately 1 mg. 

 

8.3.10. Gas Chromatography (GC) 

GC is one of the most used techniques for analysis of the composition of volatile 

compounds in a sample. Common with all the chromatographic techniques, a gas 

chromatograph contains a stationary phase consisting frequently of a polysiloxane 

that coats as a thin micrometric layer a capillary column and a mobile phase 

responsible for dragging the analyte or compound to be analyzed from the injector to 

the detector through the stationary phase. Analyzes by GC in this project, were 

carried out on a Thermo Trace GC Ultra instrument equipped with a TraceGOLD 

TG-5SilMS column (30 m x 0.25 mm x 0.25 μm) and with a flame ionization detector 

(FID). Taking into account that the ionization detectors give a signal proportional to 

the mass of the product analyzed by determining the chromatographic peak area and 

calibrating the response of each analyte with respect to a standard, it is possible to 

calculate the concentration of each component in the reaction mixture. 
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8.3.11. Gas Chromatography coupled to mass spectrometry (GC-MS) 

The gas chromatography technique coupled to mass spectrometry (GC-MS) 

consists of the combination of a gas chromatograph and a mass spectrometer that 

acts as detector. The mass spectrometry (MS) is a widely used microanalytical 

technique for identification of compounds and to elucidate their possible structures. 

Gas chromatography-mass spectrometry analysis in the project were carried out in a 

Thermo Trace GC Ultra instrument equipped with a column TraceGOLD TG-5SilMS 

(30 m x 0.25 mm x 0.25 μm) and coupled to a mass spectrometer Thermo DSQ 

quadrupole. 

 

8.1.12. Optical microscopy 

This technique is used primarily for the observation of objects in the scale of 

micrometers. Pictures in the dark field can be taken after exciting the sample with 

three different wavelengths (400, 450 and 500 nm), allowing to observe the 

fluorescence emission of the object. The apparatus used was a Leica DM 4000B 

optical microscope connected to an ebq 100 ISOLATED power module, whose 

resolution is around a micron. 

 

8.1.13. Brunauer–Emmett–Teller (BET) surface area analysis 

The BET surface area analysis is based on the physical adsorption of gas 

molecules on the surface of the solids and is an important technique to determine 

the special surface areas of materials. The gases that do not have the chemical 

reaction with the surface of materials are used as adsorbates to quantify specific 

surface area. The most commomly used gas for the measurement is N2. In the 

present work, the surface areas of the solids were determined by the 

Brunauer-Emmet-Teller method (BET) analyzing the nitrogen adsorption isotherms 
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measured at 77 K of the previously degassed samples in a Micromeritics ASAP-2420 

equipment. 
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Overall the results achieved in the present Doctoral Thesis represent a notable jump 

in the development of graphene–based heterojunctions by applying natural 

polysaccharides as graphene precursors. Thus, it has been shown that the process 

can serve to prepare conductive films as well as a large variety of heterojunctions of 

these defective graphenes with other different 2D materials. It has also been shown 

that there is a range of experimental conditions in which the junctions of defective 

graphenes and metal nanoparticles can be formed, even for these non-noble metals 

that could form carbides. More specifically the conclusions of each of the Chapters of 

the Thesis where original research has been carried out are the following: 

1. It has been shown that the presence of hydrogen in proportions about 5 or 

10 % increases the quality of the resulting defective graphene according to Raman 

spectroscopy and there is a decrease in the proportion of the residual oxygen of the 

material. This quality improvement is reflected in some increase in the electrical 

conductivity and the photoelectric activity of the films, although there is still room 

for improvement. 

2. It has been shown that it is possible to form films of heterojunction of boron 

nitride and defective graphene in one-step pyrolysis of ammonium borate adsorbed 

on chitosan. The resulting defective graphene-boron nitride heterojunction prepared 

in this way does not exhibit, however, higher electrical conductivity than the values 

measured for the corresponding defective graphene on quartz. It has been observed, 

however, that the defective graphene-boron nitride heterojunction works as 

microcapacitor upon charge and discharge cycle. 

3. It has been shown that the one-step pyrolysis of chitosan containing 

diammonium molybdotetrasulfide can be used to form films of defective graphene/ 

oriented MoS2 heterojunction. The resulting film exhibits electrocatalytic activity for 

hydrogen generation, although it was observed that there is a dispersion on the 

performance for batches prepared following the same procedure. 

4. Pyrolysis of chitosan powders containing iron or cobalt acetate or mixture of 
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both results in iron or cobalt or the corresponding alloys as nanoparticles embedded 

within a graphitic carbon residue. These carbons embedded metal nanoparticles 

exhibit activity as heterogeneous catalysts for the oxidative coupling of N-methyl 

amides and N-H aromatic heterocycles. The reaction requires an excess of 

tert-butylhydroperoxide, reaching higher yields upon addition of the reagent in two 

steps. 

5. It has been shown that Fe-Co alloy nanoparticles embedded within a graphitic 

carbon matrix prepared by pyrolysis of chitosan beads with adsorbed iron and cobalt 

acetates catalyse hydrogenation of CO2 to form isobutane, reaching a high selectivity 

to methane (above 92%) at a high CO2 conversion (about 87%). Theoretical 

calculations show that the possible reason for the remarkable activity is the strong 

interaction between the metals and defective graphene, resulting in a charge transfer 

and differentiation among the charge density of the various atoms in the cluster. 

 

The candidate’s contributions to Chapters 3-7: 

Chapter 3: the main works are from the candidate.  

Chapter 4: the candidate took part in the synthesis of the materials and performed 

some of the sample characterizations. 

Chapter 5: the main works are from the candidate, except the electrochemical tests. 

Chapter 6: the main works are from the candidate, except the analysis of reaction 

mechanism. 

Chapter 7: the candidate synthesized the samples and performed some of the sample 

characterizations.  
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Abstract 

In this Doctoral Thesis, the heterojunctions of graphenes with other 2D materials and 

metal nanoparticles, including (N)graphene/h-BN, graphene/MoS2 and Fe/Co 

deposited graphene, were synthesized based on using natural polysaccharides as 

graphene precursors. These materials were characterized using various analytical 

methods and were tested for oxidative C-N coupling of amides, CO2 hydrogenation or 

physical and photoelectric catalytic application. 

In the first stage of the thesis, the influence of temperature and the presence of 

H2 during pyrolysis on the quality of graphene was studied. It was observed that a 

significant decrease in the density of defects related to the presence of residual 

oxygen can be achieved when the produce was performed at the optimal 

temperature (1100 oC) under a low percentage of H2 (5%). This improvement in the 

quality of the resulting defective graphene was reflected in a decrease in the 

electrical resistance and increased photoelectric activity. 

In the case of N-doped graphene/h-BN heterostructures, it has been revealed 

that a spontaneous segregation (N)graphene and boron nitride layers took place 

during the pyrolysis. Although the resulting heterostructures did not show an 

improvement in the conductivity, the material could behavior as capacitor storing 

charge in the range of positive voltages. 

Graphene/MoS2 was prepared by pyrolysis of alginic acid containing adsorbed 

(NH4)2MoS4. The MoS2 nanoparticles exhibited a preferential 002 facet orientation, as 

a result of the template effect of graphene layers. This material exhibited activity for 

H2 evolution reaction, although some variation of the electrocatalytic activity has 

been observed from batch to batch. 

Fe, Co NPs or Fe-Co alloys embedded in carbonaceous matrix were also 

prepared by pyrolysis of chitosan powders containing Fe2+ and Co2+ ions at 900 oC 

under Ar atmosphere and used for the oxidative C-N coupling of amides and 
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aromatic N-H compounds. It was observed that sequential addition of two aliquots of 

tert-butyl hydroperoxide (TBHP) in an excess of N,N-dimethylacetamide (DMA) as 

solvent afforded the corresponding coupling product in high yields, and the most 

efficient catalyst was FeNP@C with high reusability and a wide scope.  

Finally, beads of graphitic carbon matrix containing Fe, Co NPs or Fe-Co alloys 

were sequentially synthesized by one-step pyrolysis at 900 oC of chitosan beads 

having adsorbed iron and cobalt acetates. The best sample, Fe-Co alloy/G (Fe/Co 

about 0.4), showed high activity for the hydrogenation of CO2 to isobutane with a 

selectivity higher than 92 % and a CO2 conversion about 87%. 
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Resumen 

En esta Tesis Doctoral, las heterouniones de grafeno con otros materiales 2D y 

nanopartículas metálicas, incluyendo (N)grafeno/h-BN, grafeno/MoS2 y grafeno 

depositado Fe/Co, se sintetizaron en base al uso de polisacáridos naturales como 

precursors de grafeno. Estos materials se caracterizaron usando diversos métodos 

analíticos y se ensayaron para determinar el acoplamiento C-N oxidativo de las 

amidas, la hidrogenación de CO2 o la aplicación catalítica fotoeléctrica y física.  

En la primera etapa de la tesis, se estudió la influencia de la temperatura y la 

presencia de H2 durante la pirólisis en la calidad del grafeno. Se observó que una 

disminución significativa en la densidad de defectos relacionados con la presencia de 

oxígeno residual se puede lograr cuando el producto se preparó a la temperatura 

óptima (1100 oC) bajo un bajo porcentaje de H2 (5%). Esta mejora en la calidad del 

grafeno defectuoso resultante se reflejó en una disminución de la resistencia eléctrica 

y una mayor actividad fotoeléctrica.  

En el caso de las heteroestructuras de grafeno dopadas con N/h-BN, se ha 

revelado que se produjeron capas de segregación espontánea (N)grafeno y nitruro de 

boro durante la pirólisis. Aunque las heteroestructuras resultantes no mostraron una 

mejora en la conductividad, el material podría comportarse como un condensador que 

almacena carga en el rango de voltajes positivos. 

El grafeno/MoS2 se preparó por pirólisis de ácido algínico que contenía 

(NH4)2MoS4 adsorbido. Las nanopartículas de MoS2 exhibieron una orientación 

preferencial en la cara 002, como resultado del efecto de plantilla de las capas de 

grafeno. Este material exhibió actividad para la reacción de evolución H2, aunque se 

ha observado alguna variación de la actividad electrocatalítica de un lote a otro. 

También se prepararon Fe, Co NP o aleaciones Fe-Co incrustadas en matriz 

carbonosa por pirólisis de polvos de quitosano que contenían iones Fe2+ y Co2+ a 900 

oC en atmósfera de Ar y se usaron para el acoplamiento oxidativo de C-N de amidas y 

compuestos aromáticos de N-H. Se observó que la adición secuencial de dos alícuotas 
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de hidroperóxido de terc-butilo (TBHP) en un exceso de N,N-dimetilacetamida 

(DMA) como disolvente proporcionaba el correspondiente producto de acoplamiento 

en altos rendimientos, y el catalizador más eficiente era FeNP@C con alta 

reutilización y un amplio alcance. 

Finalmente, las perlas de matriz de carbono grafítico que contienen Fe, Co NPs o 

aleaciones de Fe-Co se sintetizaron secuencialmente mediante pirólisis en una etapa a 

900 oC de perlas de quitosano que tenían acetatos de hierro y cobalto adsorbidos. La 

mejor muestra, Fe-Co aleación/G (Fe/Co alrededor de 0.4), mostró alta actividad para 

la hidrogenación de CO2 a isobutano con una selectividad superior al 92% y una 

conversión de CO2 de aproximadamente el 87%. 
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Resum 

En esta Tesi Doctoral, les heterounions de grafeno amb altres materials 2D i 

nanopartícules metàl·liques, incloent (N)grafé/h-BN, grafé/MoS2 i grafé depositat 

Fe/Co, es van sintetitzar basant-se en l'ús de polisacàrids naturals com precursors de 

grafé. Estos materials es van caracteritzar usant diversos mètodes analítics i es van 

assajar per a determinar l'adaptament C-N oxidatiu de les amides, la hidrogenació de 

CO2 o l'aplicació catalítica fotoelèctrica i física.  

En la primera etapa de la tesi, es va estudiar la influència de la temperatura i la 

presència de H2 durant la piròlisi en la qualitat del grafé. Es va observar que una 

disminució significativa en la densitat de defectes relacionats amb la presència 

d'oxigen residual es pot aconseguir quan el producte es va preparar a la temperatura 

òptima (1100 oC) davall un baix percentatge de H2 (5%) . Esta millora en la qualitat 

del grafé defectuós resultant es va reflectir en una disminució de la resistència 

elèctrica i una major activitat fotoelèctrica. 

En el cas de les heteroestructures de grafé dopades amb N/h-BN, s'ha revelat que 

es van produir capes de segregació espontània (N)grafé i nitrur de bor durant la 

piròlisi. Encara que les heteroestructures resultants no van mostrar una millora en la 

conductivitat, el material podria comportar-se com un condensador que emmagatzema 

càrrega en el rang de voltatges positius. 

El grafé/MoS2 es va preparar per piròlisi d'àcid algínic que contenia (NH4)2MoS4 

adsorbit. Les nanopartícules de MoS2 van exhibir una orientació preferencial en la 

cara 002, com resultat de l'efecte de plantilla de les capes de grafé. Este material va 

exhibir activitat per a la reacció d'evolució H2, encara que s'ha observat alguna 

variació de l'activitat electrocatalítica d'un lot a un altre. 

També es van preparar Fe, Co NP o aliatges Fe-Co incrustades en matriu 

carbonosa per piròlisi de pols de quitosano que contenien ions Fe2+ i Co2+ a 900 oC en 

atmosfera d'Ar i es van usar per a l'acoblament oxidatiu de C-N d'amides i compostos 

aromàtics de NH. Es va observar que l'addició seqüencial de dos alíquotes de 
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hidroperóxid de terc-butil (TBHP) en un excés de N,N-dimetilacetamida (DMA) com 

a dissolvent proporcionava el corresponent producte d'acoblament en alts rendiments, 

i el catalitzador més eficient era FeNP@C amb alta reutilització i un ampli abast. 

Finalment, les perles de matriu de carboni grafític que contenen Fe, Co NPs o 

aliatges de Fe-Co es van sintetitzar seqüencialment per mitjà de piròlisi en una etapa a 

900 oC de perles de quitosano que tenien acetats de ferro i cobalt adsorbits. La millor 

mostra, Fe-Co aliatge/G (Fe/Co al voltant de 0.4), va mostrar alta activitat per a la 

hidrogenació de CO2 a isobutà amb una selectivitat superior al 92% i una conversió de 

CO2 d'aproximadament el 87%. 
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