
Politechnical University of Valencia
University of Valencia

Master’s Thesis

Signal fitting using Genetic
Algorithms

Santiago Pérez Romero

supervised by
LLúıs Miquel Garćıa Raffi

José Manuel Calabuig Rodŕıguez

Abstract

In this paper is dealt the classical curve fitting problem, specifically with acoustic
signals. The pattern of this type of signals is analyzed. As a non-linear problem
we have chosen one non-linear method to solve it. Genetic algorithm is the method
selected, which can give us full freedom at the time of find solutions. It is shown the
design and configuration of the algorithm. At the end is tried with different data, and
are explained some problems and how can be dealt.

1

Contents

1 Introduction 3
1.1 Context . 3
1.2 Objective . 4
1.3 Problem . 4
1.4 Genetic Algorithms . 5

2 Design 7
2.1 Gen format . 7
2.2 Fitting function . 7
2.3 Elitism, crossover and mutation . 8
2.4 Population . 8
2.5 Initialization . 8
2.6 Algorithm . 8
2.7 Stopping criteria . 9
2.8 Output . 9

3 Results 11
3.1 Simple peak . 11
3.2 Two peaks . 13
3.3 Double-peak . 15
3.4 5 peaks . 18
3.5 Real signal . 20
3.6 Error . 22
3.7 Population . 24
3.8 Stability . 24

4 Conclusion 25

5 Scripts and functions in Matlab 26
5.1 Genetic algorithm . 26
5.2 Calculate default gen . 27
5.3 Fitting function . 28
5.4 Stability study . 29
5.5 Study of error by peaks . 30
5.6 Study of error by population . 31

6 References 32

2

1 Introduction

Curve fitting is a known problem in engineering and science. It consist in finding an ap-
proximated compact representation from a given data set. The literature about this topic is
extensive, with papers since the second half of the past century [1] (1959). Automatic curve
fitting is an alive research subject as shows, for example, the reference [2] form three years
ago. Roughly speaking the objective of curve fitting is to find a set of functions which span
approaches the original function. If we only consider the problem for finding the coefficients
for the linear combination of functions from the set that minimize the error, the problem
has a well-known solution. But in most situations, the functions from the set can depend on
parameters in a non-linear manner in such way that our problem consists in both determine
the coefficients of the span and the values of the parameters of the functions in order to
minimize the difference between the original data and the representation. Fitting is used in
many situation as simulation or statistical inference. The first challenge is modeling data, is
necessary to analyze how is our dataset and what we want to get of it. Because the useful
information depends on the data and our objectives. For example, for a research about
arrhythmia using the signal of an electrocardiogram it could be more important to get the
frequency than the power. In this study we dealt with an specific signals, but using a general
method, which would be useful in other environment focusing in the modeling of the peaks.
The motivation of this research is to develop and study a general tool to get an accurate
information from a signal without the support of an expert.

1.1 Context

Our data set correspond to acoustic signals. Active control of sound and vibration is a rela-
tively new and fast growing field of research and application. The control of low-frequency
noise and vibration has traditionally been difficult and expensive. The passive control of
noise makes necessary the use of large mufflers, enclosures for noise control and isolation
systems and/ or structural damping treatment (vibration absorbers) for vibration control.
The idea of using active sound cancellation as an alternative to passive control of sound was
first proposed in the 30’s of the past century. The basic idea is to use an acoustic/vibra-
tional controlled source to introduce a secondary (control) disturbance into the system to
cancel the existing (primary) disturbance, thus resulting in an attenuation of the original
sound/vibration. The cancelling disturbance was to be derived electronically based upon a
measurement of the primary disturbance. The identification of the frequencies composing
the primary disturbance is fundamental for the effectiveness of the method.[3]

Then, the processing of this type of data is important. Of course, peak identification and
fitting have applications also in, for example, music, nuclear spectroscopic or mechanics.
As we can see in [8] this type of data is composed by peaks with different height and
width. Calculate the parameters of that peaks is fundamental to recognize some physical
characteristic of the system analyzed.

3

Figure 1: An example of acoustic signal

1.2 Objective

Our objective is to design an algorithm which is going to give us these parameters of the
signal, that basically consists of determining both the number of peaks contained in the
spectrum and the relevant characteristics of them from the point of view of frequency iden-
tification: the centroid and the width of the peak are the most relevant parameters (there
are others as the asymmetry, the existence of queues,...).

1.3 Problem

This type of problem consist in solving the equations system

F (x1) = S(x1)
F (x2) = S(x2)
F (x3) = S(x3)
...
F (xn) = S(xn)

where n is the size of the data, S the signal and F the objective function. For modeling
this function, we consider that it can be expressed as a combination of other functions that
represent the peaks. For modeling peaks we are going to consider the next three functions.

4

Gaussian

f(x) = a ∗ e−
(µ−x)2

2σ2

Cauchy

f(x) = 1
π

γ
(x−µ)2+γ2

Laplace

f(x) = 1
2a
∗ e−

|x−µ|
a

The reason to use different types of peaks is to consider different shapes of them but as we
will see later gaussian shape is a very good approach in most situations. This system is not
lineal because variables appears in the argument of a function which is not linear. Nonlinear
systems are difficult to solve. Can be approximated by linear equations (linearization) but
in this work we will use an optimization technique Genetic Algorithms (GA). GA belongs
to the larger class of evolutionary algorithms (EA).

1.4 Genetic Algorithms

For solving the system we propose genetic algorithm. Genetic Algorithm is a technique
whose main ideas are inspired by the process of natural selection. Thanks to this can achieve
complex objectives that traditional search tools cannot. The first reference we have about
genetic algorithms was from John Holland by the University of Michigan in 1970. Since then,
this tool had been used until our days in science, design and engineering. The main idea of
GA is that the organisms that are more capable will survive while the others will disappear.

Figure 2: Initial population

Here we have two solutions designing crosswalks. Can been imagined as organisms that
are evolving. First population can be made randomly or using another methods, we know is
improbable that one of them to be the best solution or at least a good solution. We model
the crosswalk as a vector of 1’s and 0’s, 1 for black and 0 for white. But with a simple genetic
algorithm we can get it. First of all we need is a fitness function, is the function which score
the solutions. In this case, f(x) =

∑
i |(xi − xi−1)|. That means that every change of color

over the crosswalk give it 1 point.

That means first solution is a better crosswalk. Now is the time of the evolution.
The evolution of solutions consist basically in two methods, mutation and crossover. The

5

Figure 3: Initial population scored with fitting function

mutation process consist in change randomly some characteristic of a gen, allowing the
algorithm to get values that can’t be gotten with the initial population value, compared with
crossover mutation process try to reach the nearer local maximum. The crossover operator
combine two, or more, solutions randomly in a new one. Represents the sexual reproduction,
the ”child” has characteristics of both ”fathers”, it allows to ”jump” to another part of the
function, avoiding to stay in the same local maximum.

Figure 4: Crossover process

There it can seen an example of crossover, this is an educational prove, actually in a
generation the number of child with lower fitting value compared with them father is higher.
Mutation and crossover are stochastic process. Both change randomly the organisms, this
brings a certain instability to the technique, which will be corrected with the selection
process.
The selection process choose which elements are gonna survive to the next generation and
which will be deleted. The test must not be so elitist, because the key in genetic algorithm is
the diversity of solutions and reject similar solutions although they have good fitting value.
Usually are selected a little number of top solutions, mutations from them and the crossover
between all the population. Although the selection strategy depends on the problem as
all the other configurations (mutation, crossover) it can be set by default, because it only
affect notoriously to computation time. In a new generation all the organisms are not gotten
thanks to mutation or crossover, some individuals jump to the next generation without any
change. It use to be called the elite, a minimal proportion of the population with the best
scores in the fitting function. Is important to save a few of these organisms but not too
many to maintain diversity.

GA needs stopping criteria, which will select when stop the process. Stops condition
depends of the design. We can finish the process after a certain amount of time or number of
generations, or after some generations without find any better individual. When GA stops,
it can returns the best solution or entire generations. In this case we care about the best
individual.

6

2 Design

2.1 Gen format

For the problem we are dealing with we must first design a representation of the elements.
To simplify programming every organism are gonna to be a vector of real numbers.
φ = {a1a2a3.....an}
The first one is the baseline of the signal. The others are parameters of all the functions which
compose the signal in groups of 4, hence the number of variables is (number of peaks ∗ 4) + 1.
In this group of 4 parameters the first we have is the control parameter which selects if there
exists or not one peak at that position in the signal and the type of it (Gaussian, Laplace,
Cauchy). So, for the peak n:

• if a4n+1 < 0 then the peak n is rejected.

• if 0 ≤ a4n+1 < 0.25 then the peak n is modelled with Gaussian function.

• if 0.25 ≤ a4n+1 ≤ 0.5 then the peak n is modelled with Cauchy function.

• if a4n+1 > 0.5 then the peak n is modelled with Laplace function.

The remaining three are peak parameters n:

• Gaussian
a4n+2 = height of the peak
a4n+3 = position of the peak
a4n+4 = width of the peak

• Cauchy
a4n+2 = half-width at half-maximum
a4n+3 = position of the peak
a4n+4 = nothing

• Laplace
a4n+2 = scale parameter
a4n+3 = position of the peak
a4n+4 = nothing

It is possible to use any type of function and different baseline functions raising both the
number of variables and the computation time. But tests show us that the use of Gaussian
functions for representing peaks is a good candidate for the shape of peaks in the acoustic
case.

2.2 Fitting function

For evaluate if one solution is better than other, we have to calculate the error between the
solution proposed and the original signal. For doing that, we calculate the mean quadratic
error which looks useful for this purpose in [1][2][6][7][8][10].

7

f(X) =
∑

i(Xi−Yi)
2

n

where X is the evaluation at points xi of the approximation of signal obtained with our
procedure, Y the original signal and n the length of both signals that must be equal.
We use this function for penalizing big errors at some specific point. In the search of general
method the signal will be normalized to values between 0 and 1 allowing to use the same
stopping criteria, explained before, for inputs with different scales.

2.3 Elitism, crossover and mutation

For tests we use different setups. Although it doesn’t change the results however computation
time changes. We let the default Matlab configuration for crossover and mutation. About
elitism we save the 30% better gens of all generations.

2.4 Population

The size of the populations is one of the most important parameter in genetic algorithm.
The larger the population, the easier to explore the search space. But the time required by
a GA (complexity) to converge is O(n log(n)) being n the population size. If the number
of individuals is too high, too many fitness function evaluations are necessary and the CPU
time is too high. A small population can result in the algorithm being trapped at a local
minimum. For this purpose we put empirically this function for calculate it:

f(x) = min([max([50,4 ∗ numberOfVariables]),300])

It works well with the size of data used, but with data having more peaks, the size of the
population calculated with this formula is not enough.

2.5 Initialization

GA starts with an initial population of N potential solutions randomly generated, each one
being called individual. We saw that this generation is the most important. If is formed
totally random is gonna be hard to get and optimal solution in a affordable interval of time.
On another hand, is needed to put the maximum number of peaks. It should be bigger than
the number of possible real peaks in the signal, to let the algorithm select which peaks are
going to be left. For this reason, we analyze the signal to identify all the peaks that compose
it. Calculating the derivative to be zero we can get the position and the height of the peak.
Also, we can find the hypothetical baseline, finding the minimum value of the signal and
subtracting it to all peaks’ height.

2.6 Algorithm

For the algorithm we used the Optimization Toolbox of Matlab, which has a function called
ga which has a lot of parameters for been configured. Also we used Parallel Toolbox that
allow us to use multi-core characteristic.

8

2.7 Stopping criteria

GA is an iterative method that requires a stop condition. The stopping criteria in our
procedure depends of the number of variables are in the system. When new genes do not
improve more than 10−6 the value of the fitting function over a certain number of generations
the process is terminated. That number is calculated by the following function:

f(x) = max([10,40− (numberOfVariables/10)])

It is a decision for performance, giving more freedom to simple problems.

2.8 Output

When the algorithm stops, the output we get is the gen, or solution, that give us the
parameters of the peaks that compose the approached signal, being it the closer to the
original in terms of the error evaluated at points xi . For example, consider this signal.

Figure 5: Artificial signal as example

And the best individual sent by the genetical algorithm is:

0.096736 + 0.49301 ∗ e− x−103.6205
2∗139.81922 + 0.56646 ∗ e− x−489.78

2∗68.69072 + 0.14288 ∗ e− x−397.575
2∗112.30362

−10.1828 ∗ e
−x−1127.7537

2∗−36.66762 + 0.97027 ∗ e− x−700
2∗117.50372

With this visual representation:

9

Figure 6: Signal and its fitting with GA.

with an error of 0.0011. Analyzing the output function we know the position, height and
width of the peaks. Also can be seen that are five gaussian. In this example, is shown a
typical problem, there is a peak outside the range of the signal. Maybe its valleys affect the
signal. This fact is analyzed later.

10

3 Results

In order to analyze the efficiency of our procedure, we are going to test it in different
situations, starting with a signal with only one peak and finishing with true acoustic signals.

3.1 Simple peak

In this first example it is shown a gaussian.

Figure 7: Simple peak plot.

This signal was performed with this function:

f(x) = 1 ∗ e− x−500
2∗1002

We put the signal to the algorithm, but the algorithm does not know this information. The
information we get at the end of the execution is this:

f(x) = 2.687e−7 + 1.0423 ∗ e−x−501.2339
2∗97.96082

The error is 2.3002 ∗ e−4. In this table is shown a study with ten executions with the same
input data to show the stability with this example.

11

Figure 8: Fitting of simple peak.

Error N. Peaks Baseline Height Position Width
0.0014 1.0000 0.0000 0.8931 499.7574 106.9723
0.0095 1.0000 0.0000 0.7703 500.1724 137.5096
0.0008 1.0000 0.0171 0.9116 499.9749 103.8219
0.0000 1.0000 0.0000 1.0000 500.0000 98.2661
0.0000 1.0000 0.0000 0.9931 499.9245 99.9169
0.0038 1.0000 -0.0350 1.1766 498.0713 89.8397
0.0002 1.0000 0.0000 1.0449 500.0501 97.1972
0.0002 1.0000 0.0000 0.9566 500.3340 102.9381
0.0000 1.0000 0.0000 1.0000 500.0749 99.8548
0.0002 1.0000 0.0000 1.0000 500.0000 95.8739

This data show us how accurate is the algorithm with one peak example. The next table
represents mean deviation of the values.

Error N. Peaks Baseline Height Position Width
0.0002 0 0.0000 0.0441 0.0752 3.4942

We can see that width is the value that changes more, but is possible because there is
one result with a width too different from the average, the second one in the table, that
show the lower height and the higher width. This will be common in the plots, caused by
the stochastic nature of the genetic algorithms.

12

3.2 Two peaks

The second experiment use a signal with two peaks.

Figure 9: Artificial signal with two peaks

This signal was performed with two gaussian, but not composed, getting the maximum value
between both:

f(x) = max(1 ∗ e−x−200
2∗502 , 0.7 ∗ e−

x−700

2∗1002)

This is not normal in acoustic where different signals were added in the final signal. Although
in this example it does not have notorious effect in the final signal. When we put this signal,
we get for example this:

13

Figure 10: Signal fitting

f(x) = 0.00032943 + 0.99966 ∗ e− x−200
2∗52.60962 + 0.69966 ∗ e− x−700

2∗99.55512

The error is 1.8193e−4. The stability study with ten executions:

Error N. Peaks Baseline Height I Position I Width I Height II Position II Width II
0.0000 2.0000 0.0002 0.9997 200.0000 49.0501 0.6997 700.0000 98.9859
0.0001 2.0000 0.0003 0.9997 200.0000 50.4947 0.6997 700.0000 102.7855
0.0001 2.0000 0.0002 0.9997 200.0000 48.6014 0.6997 700.0000 100.3702
0.0003 2.0000 0.0003 0.9320 200.0000 52.5507 0.6997 700.0000 102.4726
0.0005 2.0000 0.0003 0.9997 200.0000 54.1819 0.6997 700.0000 96.5676
0.0001 2.0000 0.0002 0.9997 200.0000 49.5329 0.6997 700.0000 95.8793
0.0003 2.0000 0.0001 0.9997 200.0000 51.5253 0.6591 700.0000 104.0052
0.0009 2.0000 0.0000 0.9997 200.0000 52.8569 0.6362 700.0000 112.8173
0.0001 2.0000 0.0005 0.9997 200.0000 51.3586 0.6997 700.0000 100.4397
0.0017 2.0000 0.0003 0.8561 200.0000 58.7400 0.6997 700.0000 95.4120

This data show us how accurate is the algorithm with two peaks example. The next table
represents mean deviation of the values.

Error N. Peaks Baseline Height I Position I Width I Height II Position II Width II
0.0001 0 0.0001 0 0 1.6620 0 0 2.9903

14

This values looks so perfect, a little deviation between different executions and low error,
we will see it does not happens all the time. With complex data we will find some dataset so
unstable and another problems like overlapping peaks or peaks that will see in the function
but will be inappreciable in the plot compared, with all the signal.

3.3 Double-peak

In this test, we force a double-peak with the same technique as we used for built the previous
signal (getting the maximum), but with the peaks closer each other.

Figure 11: Artificial signal

This signal was performed with two gaussian, but not composed, getting the maximum value
between both:

f(x) = max(1 ∗ e− x−500
2∗1002 , 1 ∗ e−

x−550

2∗1002)

15

The solution we get is:

Figure 12: Signal fitting

f(x) = 1.3444e− 07 + 1.0755 ∗ e− x−525.0386
2∗112.79372

This is an interesting example, because the algorithm chose dataset represents only one peak.
This is one of the minor objectives, we found two peaks that perform one peak with an error
of 1.3122e−4. It may looks and error, but in a real signal where peaks does not perform
max functions as we use to create this artificial data it would be a simple peak with noise.
However, the stability study shows us, that sometimes the solution considers the existence
of two peaks.

Error N. Peaks Baseline Height I Position I Width I Height II Position II Width II
0.0005 1.0000 0.0000 0 0 0 1.0199 525.7247 116.7031
0.0033 2.0000 0.0000 0.6002 500.0000 135.4893 0.5869 547.5600 71.7288
0.0020 2.0000 0.0000 0.5896 574.6406 104.8461 0.6967 482.1267 88.5292
0.0026 1.0000 0.0000 0.9288 524.3041 121.7402 0 0 0
0.0005 2.0000 0.0000 1.0000 560.4279 90.2244 0.4512 412.6968 65.2211
0.0009 1.0000 0.0000 0 0 0 1.0000 527.0587 116.2537
0.0168 2.0000 0.0000 1.4074 487.6199 67.2472 0.6928 637.3801 -43.7918
0.0004 2.0000 0.0000 0.3241 498.9247 114.3668 0.7486 535.1035 111.9740
0.0020 2.0000 0.0000 0.0827 521.8876 134.2713 0.8624 526.0789 121.6984
0.0004 2.0000 0.0000 1.0000 522.8435 115.5955 0.0402 558.7550 130.1900

16

With this data we cannot calculate the mean deviation, and in this example it can be seen
that the 70% of the solutions contain two peaks instead of one. But showing all the signal
generated we realize that this is not true.

Figure 13: Plot of ten executions, showing the nature of the signal.

It is clear that the algorithm created one peak signal, but there is different ways to
perform one. For example,we have two functions:

f(x) = 1 ∗ e− x−500
2∗1002

g(x) = 0.5 ∗ e− x−500
2∗1002 + 0.5 ∗ e− x−500

2∗1002

But both functions plot the same function, f has one peak and g has two peaks.
In many situations, when working with signals obtained from experiments, it is very

difficult to discern when it is a single peak affected by noise or doppler shift and when it is
a real doublet. To distinguish a doublet, we need there exist a minimum distance between
peaks. This distance can also depend on the tail of the peaks, their shape, width and can
be different for each of them, etc.. In the example we have given we are going to assume

17

that it is a single peak and we are going to carry out the stability analysis. The decision of
assuming a single peak, can be automated with the data got from the stability analysis.

Error N. Peaks Baseline Height Position Width
0.0008 1.0000 0.0000 1.0000 526.5746 118.8617
0.0008 1.0000 0.0000 1.0000 524.2061 117.4391
0.0065 1.0000 0.0000 1.2668 525.2212 102.5614
0.0008 1.0000 0.0000 1.0000 525.0993 116.9149
0.0125 1.0000 0.0000 1.3580 522.9714 97.5706
0.0020 1.0000 0.0000 1.1545 525.3737 111.8290
0.0009 1.0000 0.0000 1.0000 525.5532 115.9231
0.0077 1.0000 0.0000 0.8327 524.8910 136.7485
0.0021 1.0000 0.0000 0.9633 534.1802 122.1127
0.0026 1.0000 0.0000 0.9294 523.4025 123.1473

With this data we can calculate deviation.

Error N. Peaks Baseline Height Position Width
0.0013 0 0.0000 0.0536 0.6735 5.1418

3.4 5 peaks

Finishing with artificial signal, we formed a signal more complex.

Figure 14: Artificial signal with 5 peaks

18

This signal was performed with this function:

f(x) = 0.5 ∗ e−x−100
2∗302 + 5 ∗ e−x−200

2∗202 + 5 ∗ e− x−400
2∗1002 + 0.5 ∗ e−x−500

2∗202 + 5 ∗ e− x−800
2∗1002 + 3 ∗ e−x−900

2∗12

We take the signal as input of the algorithm, but the algorithm does not know this informa-
tion. The information we get at the end of the execution is this:

Figure 15: Signal fitting

f(x) =

0.0036103+0.55468∗e−
x−90.4514

2∗−23.57512 +5.6822∗e−
x−201

2∗24.2062 +4.9981∗e−
x−400

2∗96.17712 +4.9981∗e−
x−800

2∗100.46332

The error is 0.0751 and the number of peaks is 4. Is important to remark that in spite of
the error is the highest we have showed in all the paper, the algorithm considers the signal
is formed with less peaks than the true signal, but comparing (Fig.14) and (Fig.15) looks
that the missing peaks are noise. So in this case, the algorithm works as noise cleaner,
although it was not originally designed for this purpose.

19

3.5 Real signal

The next example shows a true acoustic signal.

Figure 16: Acoustic signal

After taken the signal as input of the algorithm we got:

20

Figure 17: Signal fitting

f(x) = −0.019391 + 0.077991 ∗ e−
x−8

2∗4.03082 + 0.029313 ∗ e−
x−78.015

2∗−12.18332 + 0.074475 ∗ e−
x−68.644

2∗2.09042

+0.062723*e−
x−136

2∗8.87072 + 0.030304 ∗ e−
x−358.3129

2∗−9.01172 + 0.062352 ∗ e−
x−195.0757

2∗9.46362 + 0.074891 ∗
e−

x−288

2∗5.93292 + 0.080343 ∗ e−
x−328

2∗13.43472 + 0.12219 ∗ e−
x−408

2∗17.01222 + 0.15846 ∗ e−
x−516.7863

2∗33.35712 + 0.25879 ∗
e−

x−643.4006

2∗47.85532 + 0.10977 ∗ e−
x−1203.739

2∗6.45592 + 0.12766 ∗ e−
x−810.32

2∗43.66172 + 0.18487 ∗ e−
x−928

2∗25.76392 + 0.2762 ∗
e
− x−1003.6482

2∗−10.49942 + 0.45615 ∗ e−
x−1072

2∗49.97952 + 0.24036 ∗ e−
x−1172.8112

2∗−9.60082 + 0.18763 ∗ e−
x−1248

2∗25.89762 + 0.20467 ∗
e−

x−1334.9624

2∗19.87232 + 0.32454 ∗ e−
x−1424

2∗22.26612 + 0.27469 ∗ e−
x−1520

2∗38.22192 + 0.4226 ∗ e−
x−1606.8799

2∗24.02392 + 0.90225 ∗
e−

x−1690.0612

2∗29.29772 + 0.015947 ∗ e−
x−1761.3146

2∗22.43532 + 0.018299 ∗ e−
x−2291.0196

2∗3.3752

The error is 0.0014 and the number of peaks fitted is 25.

21

3.6 Error

At the text we remarked importance of the number of peaks. If we fix the number of peaks
error raise as we can see in next figure.

Figure 18: Error by maximum peaks with the 5 peaks signal

In the other hand we show that is useful to fix the number of peaks to avoid the overlapping.
So this type of studies, can calculate the minimum number of peaks that the algorithm needs
to work. Using the real signal we can get this error curve shown in (Fig.19)

This curve shows us that the error stabilized at 20 peaks. Remember that the execution
without limitation of this signal gave us 25 peaks, and error of 0.0014. With the new
configuration, limiting the number of peaks to 20, we get from the optimization a lower
number of peaks, only 14 and with exactly the same error. Of course this is not going to
happen all the time. It uses to give us more error because fixing the maximum number of
peaks we restrict the degrees of freedom of the algorithm . The signal fitted with maximum
20 peaks can be seen in (Fig.20)

22

Figure 19: Error by maximum peaks with the real signal

Figure 20: Real signal fit with maximum of 20 peaks

23

3.7 Population

During all the tests, we used dynamic population size. But we notice that a change in the
population affects a lot in the final result, because as K.Messa and M.Lybannon point of in
[7], with a small population the convergence is going to be slow, and our stop conditions are
limit time or number of generations with a minimum improvement. So the population has a
number of individuals with which the error would be stabilized. So we have made the next
script, for test it. We are going to use the 5 peaks signals for this test.

Population Error
1 0.0153
11 0.0077
21 0.0021
31 0.0031
41 0.0014
51 0.0012
61 0.0011
71 0.0012
81 0.0011
91 0.0018

Figure 21: Error by population

3.8 Stability

In genetic algorithm the stability is a weakness comparing to another techniques. For an-
alyzing the stability, first is needed to fix some problems we can have. First one is the
overlapping peaks. It can be seen in the double-peak analysis we did above. Second one is
the small peaks, that show us a plot with 25 peaks in the real signal (see Fig.14), when
there are only 20 peaks visible. Another is the extra-range peaks. Both problems can be
resolved relaunching the algorithm with the generated signal as input. The error can raise
in the new evaluation, but the solution represents graphically the same signal.

24

4 Conclusion

In this Master’s Thesis we designed and developed a method for automatically fitting a
acoustic signal, or any type, getting the parameters of the peaks existing in the signal.
On the first hand we analyzed the problem, finding the type of model we will use. We
choose to make an approximation using the composition of different functions that represent
peaks. With this model the system becomes in a non-linear problem. So, we select genetic
algorithm techniques for our purpose. First of all we model the system in the way to make
it feasible to operate with genetic algorithms. Matlab was chosen as a tool to develop the
solution because is the standard programming in most engineering areas. The algorithm
was executed in different situations with both artificial signals and real data, in this case
coming from acoustics, getting small error values and all the information of the representative
peaks of the datasets. Also, it has been found some problems in the stability and in the
representation of the solution given by the algorithm. We have supplied a fix for them. In
summary, the objective of the work has been achieved designing a set of routines bases in
Genetic Algorithms that provide an automatic fitting for peaks in a spectrum.

25

5 Scripts and functions in Matlab

5.1 Genetic algorithm

%INPUT
%S: entrada en formato dos columnas X,Y.
%fixedPeaks: fijar picos m ximos , si pones 0 no se activa
%population: nmero de poblacin si 0, se calcula dinmicamente
%OUTPUT
%solGen: la solucin en el formato especficado en la memoria
%numberOfPeaks: el nmero de picos no anulados en la solucin
%error: el error de la solucin
%str: el string de la funcin resultante listo para latex
function [solGen,numberOfPeaks,error,str] = geneticalFitting(S, fixedpeaks,population)

inputX = S(:,1);
inputY = S(:,2);
%Normalizamos la entrada a valores entre [-1 1].
norm = max(abs(inputY));
inputY = inputY/norm;
Y = inputY;
X = inputX;
%El gen es un array que se agrupa cada 4 elementos.
%El primer elemento del array es el stand y va s lo.
%Los demas son un valor para saber si existe el pico y la funcin
%que usa y a, mu y sigma de cada gausiana (o otra)
%Usamos una funcin para aportar un primer gen, que se acerque a una
%solucin. (para mejorar el rendimiento)
[defaultGen,numberOfVariables] = calculeDefaultGen(inputX,inputY,fixedpeaks);
%El nmero de variables es 4 m s 1 para el stand.
numberOfVariables =(numberOfVariables*4)+1;
options = gaoptimset(@ga);
%El tamao de la poblacin m nimo es 50 y el m ximo 300. El valor
%depende del numero de variables siendo multiplicado por 4. Si se
%tuviera un pc m s potente se puede subir el tamao de la poblacin.

if population~=0
options.PopulationSize = population;

else
options.PopulationSize = min([max([50,4*numberOfVariables]),300]);

end
%options.Display = 'iter';
%options.Display = 'none';
%Parallel Computing Toolbox necesario
options.UseParallel = 1;
%Las generaciones sin conseguir mejora antes de para el algoritmo. He
%pues un valor mayor para problemas pequeos, aprovechando que a m s
%pequeo m s r pido se ejecuta.
options.StallGenerations = max([10,40-floor(numberOfVariables/10)]);
%El cambio necesario para contar c mo mejora, es cercano a 0. Pero
%mejora poner un valor para que no se estanque con mejoras diminutas.
options.TolFun = 0.000001;
%Tiempo l mite del algoritmo para parar. Con los ejemplos aportados no

26

%se llega.
options.TimeLimit = 120;
options.EliteCount = floor(options.PopulationSize * 0.3);

%La poblacin inicial consiste en el gen calculado repetido, y
%modificado aleatoriamente.
initialPopulation =repelem(defaultGen,options.PopulationSize,1);
% Multiplicamos todos los valores de la poblacin inicial por valores
% aleatorios E [-2,2];
aleat = [ones(1,numberOfVariables);2-(rand(options.PopulationSize-1,numberOfVariables)*2)];
options.InitialPopulation = initialPopulation.*aleat;
tic
[solGen,error] = ga(@(gen)fitting(X,Y,gen),numberOfVariables,[],[],[],[],[],[],[],options);
toc
[str,numberOfPeaks] = writef(solGen);

end

5.2 Calculate default gen

%INPUT
%X: la frecuencia de la seal
%Y: los valores de la seal
%fixedPeaks: nmero m ximo de picos, 0 no se usa
%OUTPUT
%gen: el gen resultante con el que generamos la primera generacin
%numberOfPeaks: nmero de picos que tiene el gen
function [gen,numberOfPeaks] = calculeDefaultGen(X,Y,fixedPeaks)

%Calculamos el stand con el valor m nimo , y lo aplicamos a toda la
%onda.
stand = min(Y);
Y = Y-stand;
gen = [stand];
%Usamos la funcin nativa findpeaks de matlab. Nos devuelve todos los
%picos con la altura, la posicin y una anchura supuesta (este valor no
%nos sirve).
[peaks, locs, width, proms]= findpeaks(Y,X);
numberOfPeaks = length(locs);
%Si el nmero de picos est fijo, cogemos los que tienen m s valor.
if fixedPeaks~=0

[out,indexMax] = sort(peaks);
indexMax = indexMax(1:min(numberOfPeaks,fixedPeaks));
peaks = peaks(indexMax);
locs = locs(indexMax);
width = width(indexMax);
proms = proms(indexMax);
numberOfPeaks = fixedPeaks;

end
%Transformamos la informacin que tenemos en el formato del gen.
for i = 1:numberOfPeaks

gen = [gen,[0.01,peaks(i),locs(i),width(i)*0.5]];
end

27

5.3 Fitting function

%INPUT
%X: frecuencia de la seal original
%Y: valores seal original
%gen: el gen a evalar
function error = fitting(X,Y,gen)

%f es la funcin que transforma el gen en seal.
yGen = arrayfun(@(x) f(x,gen),X);
%se calcula el error cuadrtico medio
error = sum((Y-yGen).ˆ2)/length(X);

end

%INPUT
%x: valor de x a valorar en ese instante
%g: gen a evaluar
%OUTPUT
%y: el valor de x para el gen actual
function y = f(x,g)

%Separamos el stand (pedestal)
y = g(1);
%Seleccionamos seg n el valor de la cifra de control
for i=2:4:size(g,2)

if g(i)>=0
if g(i) <= 0.5

if g(i) < 0.25
% Gausiana

y = y + (g(i+1)*exp((-((x-g(i+2))ˆ2/(2*g(i+3)ˆ2)))));
else

% Laplace
y = y + (1/(2*g(i+1)))*exp(-abs(g(i+2)-x)/g(i+1));

end
else

% Cauchy
y = y + ((1/pi)*(g(i+1)/((x-g(i+2))ˆ2)+g(i+1)ˆ2));

end
end

end
end

28

5.4 Stability study

%INPUT
%S: entrada en formato dos columnas X,Y.
%fixedPeaks: fijar picos m ximos , si pones 0 no se activa
%OUTPUT
%data: Matriz de 10 columnas con los datos mostrados en los estudios de
%estabilidad de la memoria.
% C mo plot muestras las muestras que elijas en dos columnas.
function [data] = stabilityStudy(S,fixedpeaks)

muestras = 10;
[defaultGen,numberOfPeaksDefault] = calculeDefaultGen(S(:,1),S(:,2),fixedpeaks);
data = zeros(muestras, numberOfPeaksDefault+3);
for i =1:muestras

[gen,data(i,2),data(i,1)] = geneticalFitting(S,fixedpeaks);
data(i,3) = gen(1);
for j=2:4:length(gen)

if gen(j)>=0
data(i,j+2:j+5) = gen(j:j+3);

end
end
subplot(muestras/2,2,i);
plot(arrayfun(@(x) f(x,gen),S(:,1)));
title(strcat('Error: ',num2str(data(i,1)),' Peaks: ',num2str(data(i,2))));

end
end

29

5.5 Study of error by peaks

%INPUT
%S: entrada en formato dos columnas X,Y.
%fixedPeaks: fijar picos m ximos , si pones 0 no se activa
%OUTPUT
%error: Array de longitud la cantidad picos de S, cada celda significa un
%pico m s. Contiene la media de las muestras para esa configuracin de
%picos.
function [error] = errorByPeaks(S)

muestras = 4;
[defaultGen,numberOfPeaksDefault] = calculeDefaultGen(S(:,1),S(:,2),0);
error = zeros(numberOfPeaksDefault,1);
for numberOfPeaks =1:numberOfPeaksDefault

data = zeros(muestras, numberOfPeaksDefault);
for i =1:muestras

[gen,data(i,2),data(i,1)] = geneticalFitting(S,numberOfPeaks,0);
data(i,3) = gen(1);
for j=3:4:length(gen)

if gen(j-1)>=0
data(i,j:j+3) = gen(j-1:j+2);

end
end

end
mediError = mean(data(:,1));
error(numberOfPeaks) =mediError(1);

end
end

30

5.6 Study of error by population

%INPUT
%S: entrada en formato dos columnas X,Y.
%max: fijar picos m ximos , si pones 0 no se activa
%step: el aumento de poblacin en cada ciclo
%OUTPUT
%error: Array de longitud max, cada celda significa un
%step m s por poblacin. Contiene la media de las muestras para esa configuracin de
%poblacin.
function [error] = errorByPopulation(S,step,max)

muestras = 4;
[defaultGen,numberOfPeaksDefault] = calculeDefaultGen(S(:,1),S(:,2),0);
error = zeros(numberOfPeaksDefault,1);
for numberOfPop =1:step:max

data = zeros(muestras, numberOfPeaksDefault);
for i =1:muestras

[gen,data(i,2),data(i,1)] = geneticalFitting(S,0,numberOfPop);
data(i,3) = gen(1);
for j=3:4:length(gen)

if gen(j-1)>=0
data(i,j:j+3) = gen(j-1:j+2);

end
end

end
mediError = mean(data(:,1));
error(numberOfPop) =mediError(1);

end
end

31

6 References

[1] Levy, E. C. (1959). Complex-curve fitting. IRE transactions on automatic control, (1).

[2] G. Trejo-Caballero, H. Rostro-Gonzalez, C. H. Garcia-Capulin, O. G. Ibarra-Manzano,
J. G. Avina-Cervantes, and C. Torres-Huitzil (2015). Automatic Curve Fitting Based on
Radial Basis Functions and a Hierarchical Genetic Algorithm. 2015 Hindawi Publishing
Corporation

[3] Colin Hansen, Scott Snyder, Xiaojun Qiu, Laura Brooks, Danielle Moreau. (2012) Active
Control of Noise and Vibration. Volume I, CRC Press. USA

[4] Guo, Hongwei. (2011). A Simple Algorithm for Fitting a Gaussian Function [DSP
Tips and Tricks]. IEEE Signal Processing Magazine - IEEE SIGNAL PROCESS MAG. 28.
134-137. 10.1109/MSP.2011.941846.

[5] Alvarado-Durán, Pablo A., Álvarez-López, Mauricio A., Orozco-Gutiérrez, Álvaro A.
(2013). Detección de Eventos Sonoros en Señales de Música Usando Procesos Gaussianos.
Tecno Lógicas, (31), 93-122. Retrieved August 22, 2018, from
http://www.scielo.org.co/scielo.php?script=sci arttext&pid=S0123-77992013000200006
&lng=en&tlng=es.

[6] Deb, K. Sadhana (1999) An introduction to genetic algorithms.
https://doi.org/10.1007/BF02823145

[7] M.Gulsen, A.E.Smith and D.M.Tate (1995) A genetic algorithm approach to curve fitting.
INT.J.PROD.RES, VOL.33, No.7, 1911-1923

[8] K.Messa, M.Lybanon (1992) Curve fitting using genetic algorithms. Naval Oceanographic
and Atnospheric Research Laboratory, Stennis Space Center.

[9] Felix Scholkmann, Jens Boss and Martin Wolf (2012) An Efficient Algorithm for Au-
tomatic Peak Detection in Noisy Periodic and Quasi-Periodic Signals. Biomedical Optics
Research Laboratory, Division of Neonatology, University Hospital Zurich.

[10] C. L Karr, D. A. Stanley, and B. J. Scheiner (1991) Genetic Algorithm Applied to Least
Squares Curve Fitting. U.S.Bureau of Mines. Spokane Research Center.

32

