

TRABAJO FIN DE GRADO

FLAMEO DE UN PERFIL CON UN GRADO DE LIBERTAD

Diseño de experimento y análisis teórico

Autora: Henriette Merle Bolufer

Tutor: Mario Lázaro Navarro

Valencia, septiembre de 2018

ÍNDICE

- Introducción
- Antecedentes
- Objetivos
- Fase de prediseño
- Estudio experimental
- Trabajos futuros
- Conclusiones

INTRODUCCIÓN

--- Problema de inestabilidad dinámica --- Fallo estructural del ala

Estudio para poder evitar o controlar el fenómeno

Velocidad crítica de flameo: coinciden la frecuencia natural del sistema y la frecuencia de excitación, provocando la resonancia de la estructura

Figura 1. Colapso del puente de Tacoma.

FLAMEO

ANTECEDENTES

ESTUDIO DE KIERGAN Y TOMAMICHEL, 1942

INSTITUTO DE TECNOLOGÍA DE CALIFORNIA

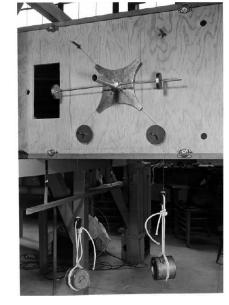


Figura 2. Experimento de Kiergan y Tomamichel.

ESTUDIO DE RUNYAN, 1952

LABORAOTRIO AERONÁUTICO DE LANGLEY

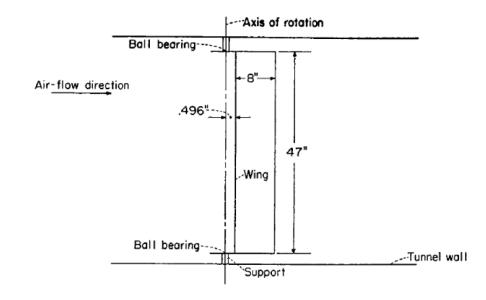


Figura 3. Experimento de Runyan.

OBJETIVOS

- 1. Estudio del fenómeno de flameo para el grado de libertad de giro
 - Hallar la velocidad crítica de flameo

- 2. Diseñar y construir un modelo capaz de representar este sistema
- 3. Comparar resultados teóricos y experimentales
 - identificar factores relevantes
 - analizar similitudes y discrepancias

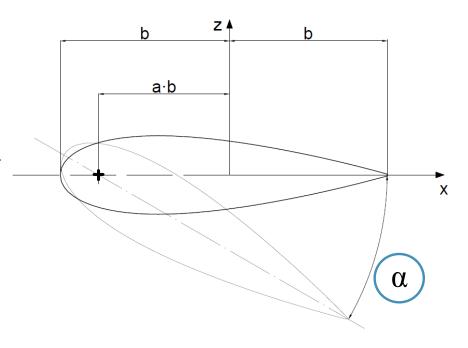
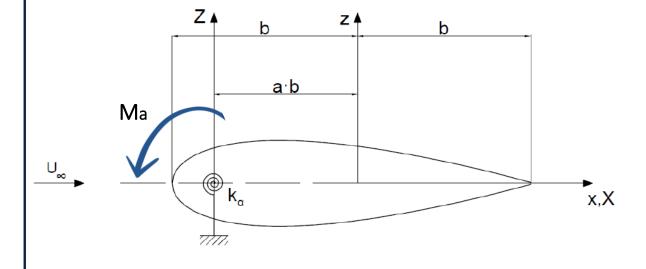


Figura 4. Perfil con un gdl: giro.

Es posible que no exista flameo cuando hay una rótula cerca del borde de ataque (recordar Antecedentes)



HIPÓTESIS ASUMIDAS

- Flujo incompresible y no viscoso
- Condiciones no-estacionarias
- Principio de pequeñas perturbaciones
- Condición de contorno de Kutta

SISTEMA DE FLAMEO DE UN PERFIL CON UN GRADO DE LIBERTAD

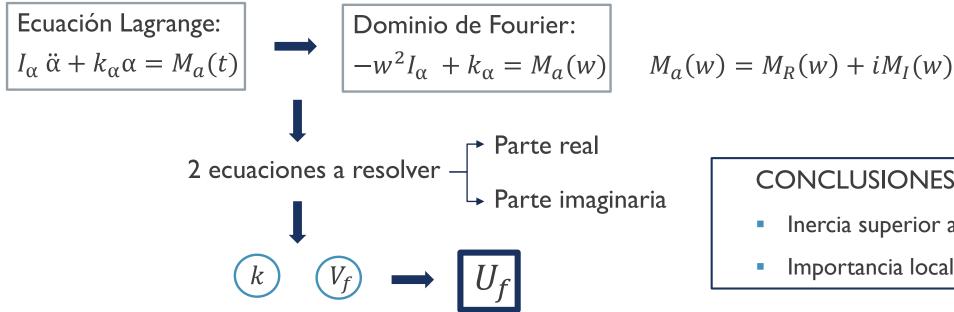
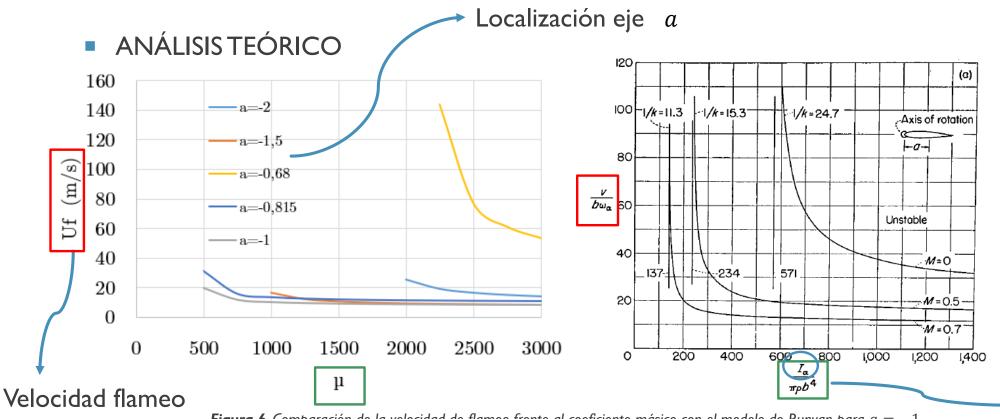


Figura 5. Sistema de un perfil con gdl el giro α .

- Perfil bidimensional de cuerda 2b
- Gdl el giro α
- Giro sobre el eje en x = ab
- Rigidez equivalente a torsión k_{α}
- Inercia I_{α}
- Momento aerodinámico M_a



ANÁLISIS TEÓRICO

CONCLUSIONES

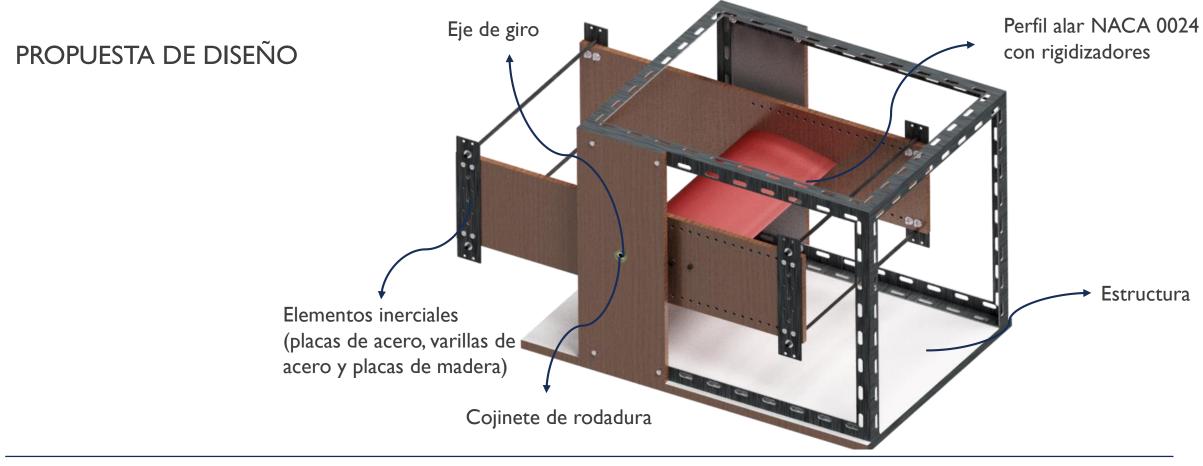
- Inercia superior a la mínima necesaria
- Importancia localización eje de giro



Figura 6. Comparación de la velocidad de flameo frente al coeficiente másico con el modelo de Runyan para a=-1.

Coeficiente másico

PROPUESTA DE DISEÑO


Perfil alar NACA 0024 con rigidizadores

Eje de giro PROPUESTA DE DISEÑO Elementos inerciales (placas de acero, varillas de acero y placas de madera)

Perfil alar NACA 0024 con rigidizadores

PROPUESTA DE DISEÑO

Datos inerciales	
Coeficiente másico μ	1424
Datos de rigidez	
Nº muelles n	4
Rigidez de un muelle k (N/m)	10
Distancia del muelle r (m) 0,2	
Datos geométricos	
Localización del eje a	-0,815

V_f	32,47
$U_r \text{ (m/s)}$	0,361
U_f (m/s)	11,72

TÚNEL DE VIENTO

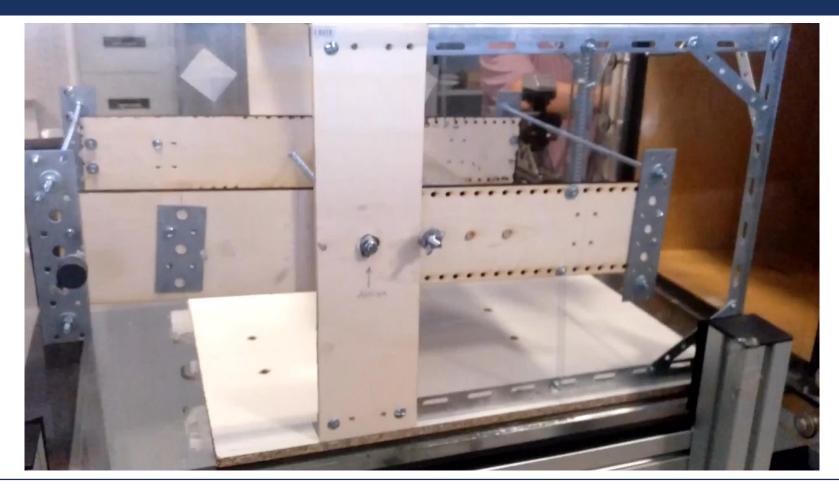

- Rango de velocidades entre 11 y 18 m/s
 (sin modelo en su interior). Con el modelo
 dentro hay que medir velocidades con tubo
 de Pitot.
- Túnel de viento abierto del hangar de la UPV

Figura 9. Túnel de viento abierto del hangar de la UPV.

ESTUDIO EXPERIMENTAL

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5.87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

■ ENSAYO DEL PERFIL EN ELTÚNEL DE VIENTO ————— El perfil no flamea ———— ¿Por qué?

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5.87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

TRABAJO FIN DE GRADO 13

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR=5.87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5,87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

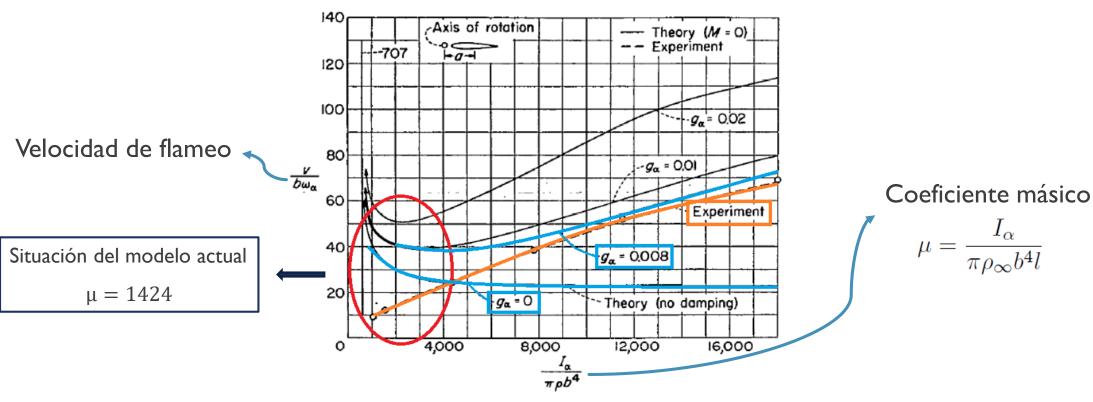


Figura 8. Comparación de la velocidad de flameo teórica y experimental en el estudio de Runyan.

■ ENSAYO DEL PERFIL EN EL TÚNEL DE VIENTO ———— El perfil no flamea ——— ¿Por qué?

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5,87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
No se ha considerado amortiguamiento en los cálculos Expresión del momento aerodinámico no se aproxima a la realidad	Realizar nuevos cálculos con amortiguamiento estructural (bajo) Buscar más bibliografía sobre esta expresión
-	
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión

POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Diseñar ala con alargamiento alar mayor (Runyan $AR = 5.87$)
Insertar más elementos inerciales (añadir placas, masas colgantes)
Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Buscar más bibliografía sobre esta expresión
Probar en un túnel de viento más grande
Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5.87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5,87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

Henriette Merle Bolufer

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5,87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

13

Henriette Merle Bolufer

POSIBLES CAUSAS DE FALLO	POSIBLES SOLUCIONES.TRABAJOS FUTUROS
Perfil demasiado grueso (NACA 0024)	Utilizar otro perfil alar más fino (Kiergan NACA 0009)
Elementos estructurales e inerciales dentro del túnel de viento	Rediseñar con elementos estructurales fuera del túnel (Kiergan)
Alargamiento alar AR insuficiente ($AR = 2,19$)	Diseñar ala con alargamiento alar mayor (Runyan $AR = 5.87$)
Inercia insuficiente	Insertar más elementos inerciales (añadir placas, masas colgantes)
No se ha considerado amortiguamiento en los cálculos	Realizar nuevos cálculos con amortiguamiento estructural (bajo)
Expresión del momento aerodinámico no se aproxima a la realidad	Buscar más bibliografía sobre esta expresión
Paredes del túnel de viento demasiado cercanas al modelo	Probar en un túnel de viento más grande
Posición incorrecta del eje de giro	Probar con posición del eje de giro en $a \ge 1$ y $a \le 1,5$
No hay ángulo de ataque inicial	Colocar perfil a ángulo de ataque máximo para incitar flameo (12°)

UNIVERSIDAD POLITÉCNICA DE VALENCIA

Estudio condicionado por gran incertidumbre

Pocos estudios similares que puedan aportar información para diseñar un modelo de flameo de 1 gdl

Objetivos: calcular la velocidad de flameo y comprobar experimentalmente

identificar factores relevantes

- Cambios a realizar en el modelo para conseguir el flameo en el perfil
 - Mayor inercia
 - Elementos estructurales exteriores
 - Cálculos con amortiguamiento
 - Perfil aerodinámico más fino

TRABAJO FIN DE GRADO

FLAMEO DE UN PERFIL CON UN GRADO DE LIBERTAD

Diseño de experimento y análisis teórico

Muchas gracias por su atención

ANÁLISIS TEÓRICO

Energía cinética. Matriz de masas

$$T = \frac{1}{2} \int \dot{z}^2 dm = \frac{1}{2} \dot{u}^T M \dot{u} = \frac{1}{2} I_\alpha \dot{\alpha}^2$$

$$z = -\alpha x$$

Relaciones entre variables

$$w_n^2 = \frac{k_\alpha}{I_\alpha}$$
 $\mu = \frac{I_\alpha}{\pi \rho_\infty b^4 l}$

$$w = \lambda w_n \qquad k = \frac{wb}{U_{\infty}}$$

Ecuación de Lagrange

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{u}}\right) + \frac{\partial D}{\partial \dot{u}} + \frac{\partial U}{\partial u} = Q(t) \longrightarrow \delta W = \delta u^T Q \longrightarrow M_{a'} = Q$$

$$I_{\alpha}\ddot{\alpha} + k_{\alpha}\alpha = M_a$$

$$-1 + \frac{1}{\lambda^2} = \frac{1}{\mu} \frac{f(k, a)}{k^2}$$

Fuerzas generalizadas

$$\delta W = \delta u^T Q \longrightarrow M_a = Q$$

Energía potencial. Matriz de rigidez

$$U = \frac{1}{2}k_{\alpha}z_{\alpha}^2 = \frac{1}{2}u^T K u \qquad k_{\alpha} = 4k_m x_m^2 = K$$

Momento aerodinámico

$$M_{a} = \int_{x=-b}^{x=b} \Delta p(x,t)(x_{a} - x)dx =$$

$$-\pi \rho_{\infty} b^{2} \left[U_{\infty} b \left(\frac{1}{2} - a \right) \dot{\alpha} + b^{2} \left(\frac{1}{8} + a^{2} \right) \ddot{\alpha} \right] +$$

$$+ 2\pi \rho_{\infty} U_{\infty} b^{2} \left(\frac{1}{2} + a \right) C(\kappa) \left[U_{\infty} \alpha + b \left(\frac{1}{2} - a \right) \dot{\alpha} \right] =$$

$$= M_{\alpha 0} \alpha + M_{\alpha 1} \dot{\alpha} + M_{\alpha 2} \ddot{\alpha}$$

$$M_{a} = \pi \rho_{\infty} U_{\infty}^{2} b^{2} f(k) l$$

ANÁLISIS TEÓRICO

Se resuelve la ecuación de Lagrange para la parte real e imaginaria

$$-1 + \frac{1}{\lambda^2} = \frac{1}{\mu} \frac{f(k, a)}{k^2} \qquad \qquad f(k) = f_R(k) + i f_I(k) \qquad \qquad \lambda = \frac{1}{\sqrt{1 + \frac{f_R(k)}{\mu k^2}}} \longrightarrow \mu_{min}$$

Obtención de la velocidad de flameo

PRESUPUESTO

Modelo					
N^{o}	Elemento	Precio (€/ud.)	Coste (€)		
1	Caja tornillos, roscas y arandelas	30,00	30,00		
1	Estructura (placas madera+metal)	50,00	50,00		
1	Perfil alar	10,00	10,00		
5	Varilla M6 y M8 metal	2,00	10,00		
3	Varilla M8 madera	1,00	3,00		
4	Caja de muelles	11,00	44,00		
2	Cojinete de rodadura	8,00	16,00		
		TOTAL	163,00 €		

Equipamiento					
Tiempo (h)	Elemento	Precio (euro/h)	Coste (€)		
30	Túnel de viento abierto	40,00	1.200,00		
1	Túnel de viento cerrado	50,00	50,00		
5	Taller+material	30,00	150,00		
Cantidad	Elemento	Precio (€/h)	Coste (€)		
1	Ordenador	800,00	800,00		
1	Programas informáticos	2.942,00	2.942,00		
		TOTAL	5.142,00€		

Equipamiento					
Tiempo (h)	Elemento	Precio (€/h)	Coste (€)		
400	Proyecto	40,00	16.000,00		
10	Horas extra del proyecto	50,00	500,00		
60	Trabajo del tutor	50,00	3.000,00		
	-	TOTAL	19.500,00€		

PRESUPUESTO

Presupuesto		
Elemento	Coste (€)	
Modelo	163,00	
Equipamiento	5.142,00	
Salarios	19.500,00	
Subtotal	24.805,00	
IVA (21%)	5.209,05	
TOTAL	30.014,05€	