
PhD THESIS

Development of a 3D Modal Neutron Code with the
Finite Volume Method for the Diffusion and Discrete

Ordinates Transport Equations. Application to
Nuclear Safety Analyses.

September 2018

Author: Álvaro Bernal García

Supervisors: Dr. Gumersindo Jesús Verdú Martín
Dr. Rafael Miró Herrero

Abstract
The main objective of this thesis is the development of a Modal Method to solve
two equations: the Neutron Diffusion Equation and the Discrete Ordinates
Neutron Transport Equation. Moreover, this method uses the Finite Volume
Method to discretize the spatial variables. The solution of these equations gives
the neutron flux, which is related to the power produced in nuclear reactors;
thus, the neutron flux is a paramount variable in Nuclear Safety Analyses. On
the one hand, the use of Modal Methods is justified because one uses them to
perform instability analyses in nuclear reactors. On the other hand, it is worth
using the Finite Volume Method because one uses it to solve thermalhydraulic
equations, which are strongly coupled with the energy generation in the nuclear
fuel.

First, this thesis defines the equations mentioned above and the main methods
to solve these equations. Furthermore, the thesis describes the major schemes
and features of the Finite Volume Method. In addition, the author also in-
troduces the major methods used in the Modal Method, which include the
methods used to solve the eigenvalue problem, as well as those used to solve
the time dependent Ordinary Differential Equations.

Next, the author develops several algorithms of the Finite Volume Method
applied to the Steady State Neutron Diffusion Equation. In addition, the
thesis includes an improvement of the multigroup formulation, which solves
problems involving upscattering and fission terms in several energy groups.
Moreover, the author optimizes the algorithms to do calculations with parallel
computing.

The previous solution is used as initial condition to solve the time dependent
Neutron Diffusion Equation. The author uses a Modal Method to do so, which
transforms the Ordinary Differential Equations System into a smaller system
that is solved by using the Exponential Matrix Method. Furthermore, the
author developed a computationally efficient method to estimate the adjoint
flux from the forward one, because the Modal Method uses the adjoint flux.

Additionally, the thesis also presents an algorithm to solve the eigenvalue prob-
lem of the Neutron Transport Equation. This algorithm uses the Discrete Or-
dinates formulation and the Finite Volume Method. In particular, the author
uses two types of quadratures for the Discrete Ordinates and two interpolation
schemes for the Finite Volume Method.

iii

Finally, the author tested the developed methods in different types of nuclear
reactors, including commercial ones. The author checks the accuracy of the
values of the crucial variables in Nuclear Safety Analyses, which are the mul-
tiplication factor and the power distribution. Furthermore, the thesis includes
a sensitivity analysis of several parameters, such as the mesh and numerical
methods. In conclusion, excellent results are reported in both accuracy and
computational cost.

iv

Resumen
El principal objetivo de esta tesis es el desarrollo de un Método Modal para
resolver dos ecuaciones: la Ecuación de la Difusión de Neutrones y la de las
Ordenadas Discretas del Transporte de Neutrones. Además, este método está
basado en el Método de Volúmenes Finitos para discretizar las variables es-
paciales. La solución de estas ecuaciones proporciona el flujo de neutrones,
que está relacionado con la potencia que se produce en los reactores nucleares,
por lo que es un factor fundamental para los Análisis de Seguridad Nuclear.
Por una parte, la utilización del Método Modal está justificada para realizar
análisis de inestabilidades en reactores. Por otra parte, el uso del Método de
Volúmenes Finitos está justificado por la utilización de este método para re-
solver las ecuaciones termohidráulicas, que están fuertemente acopladas con la
generación de energía en el combustible nuclear.

En primer lugar, esta tesis incluye la definición de estas ecuaciones y los prin-
cipales métodos utilizados para resolverlas. Además, se introducen los princi-
pales esquemas y características del Método de Volúmenes Finitos. También se
describen los principales métodos numéricos para el Método Modal, que incluye
tanto la solución de problemas de autovalores como la solución de Ecuaciones
Diferenciales Ordinarias dependientes del tiempo.

A continuación, se desarrollan varios algoritmos del Método de Volúmenes Fini-
tos para el Estado Estacionario de la Ecuación de la Difusión de Neutrones. Se
consigue desarrollar una formulación multigrupo, que permite resolver el prob-
lema de autovalores para cualquier número de grupos de energía, incluyendo
términos de upscattering y de fisión en varios grupos de energía. Además, se
desarrollan los algoritmos para realizar la computación en paralelo.

La solución anterior es la condición inicial para resolver la Ecuación de Difusión
de Neutrones dependiente del tiempo. En esta tesis se utiliza un Método
Modal, que transforma el Sistema de Ecuaciones Diferenciales Ordinarias en
uno de mucho menor tamaño, que se resuelve con el Método de la Matriz
Exponencial. Además, se ha desarrollado un método rápido para estimar el
flujo adjunto a partir del directo, ya que se necesita en el Método Modal.

Por otra parte, se ha desarrollado un algoritmo que resuelve el problema de au-
tovalores de la Ecuación del Transporte de Neutrones. Este algoritmo es para
la formulación de Ordenadas Discretas y el Método de Volúmenes Finitos. En
concreto, se han aplicado dos tipos de cuadraturas para las Ordenadas Discre-
tas y dos esquemas de interpolación para el Método de Volúmenes Finitos.

v

Finalmente, se han aplicado estos métodos a diferentes tipos de reactores nu-
cleares, incluyendo reactores comerciales. Se han evaluado los valores de la
constante de multiplicación y de la potencia, ya que son las variables fun-
damentales en los Análisis de Seguridad Nuclear. Además, se ha realizado
un análisis de sensibilidad de diferentes parámetros como la malla y métodos
numéricos. En conclusión, se obtienen excelentes resultados, tanto en precisión
como en coste computacional.

vi

Resum
El principal objectiu d’esta tesi és el desenvolupament d’un Mètode Modal per
a resoldre dos equacions: l’Equació de Difusió de Neutrons i la de les Orde-
nades Discretes del Transport de Neutrons. A més a més, este mètode està
basat en el Mètode de Volums Finits per a discretitzar les variables espacials.
La solució d’estes equacions proporcionen el flux de neutrons, que està rela-
cionat amb la potència que es produïx en els reactors nuclears; per tant, el
flux de neutrons és un factor fonamental en els Anàlisis de Seguretat Nuclear.
Per una banda, la utilització del Mètode Modal està justificada per a real-
itzar anàlisis d’inestabilitats en reactors. Per altra banda, l’ús del Mètode de
Volums Finits està justificat per l’ús d’este mètode per a resoldre les equacions
termohidràuliques, que estan fortament acoblades amb la generació d’energia
en el combustible nuclear.

En primer lloc, esta tesi inclou la definició d’estes equacions i els principals
mètodes utilitzats per a resoldre-les. A més d’això, s’introduïxen els principals
esquemes i característiques del Mètode de Volums Finits. Endemés, es de-
scriuen els principals mètodes numèrics per al Mètode Modal, que inclou tant
la solució del problema d’autovalors com la solució d’Equacions Diferencials
Ordinàries dependents del temps.

A continuació, es desenvolupa diversos algoritmes del Mètode de Volums Finits
per a l’Estat Estacionari de l’Equació de Difusió de Neutrons. Es conseguix
desenvolupar una formulació multigrup, que permetre resoldre el problema
d’autovalors per a qualsevol nombre de grups d’energia, incloent termes d’ up-
scattering i de fissió en diversos grups d’energia. A més a més, es desenvolupen
els algoritmes per a realitzar la computació en paral·lel.

La solució anterior és la condició inicial per a resoldre l’Equació de Difusió de
Neutrons dependent del temps. En esta tesi s’utilitza un Mètode Modal, que
transforma el Sistema d’Equacions Diferencials Ordinàries en un problema de
menor tamany, que es resol amb el Mètode de la Matriu Exponencial. Endemés,
s’ha desenvolupat un mètode ràpid per a estimar el flux adjunt a partir del
directe, perquè es necessita en el Mètode Modal.

Per altra banda, s’ha desenvolupat un algoritme que resol el problema d’autovalors
de l’Equació de Transport de Neutrons. Este algoritme és per a la formulació
d’Ordenades Discretes i el Mètode de Volums Finits. En concret, s’han apli-
cat dos tipos de quadratures per a les Ordenades Discretes i dos esquemes
d’interpolació per al Mètode de Volums Finits.

vii

Finalment, s’han aplicat estos mètodes a diversos tipos de reactors nuclears,
incloent reactors comercials. S’han avaluat els valor de la constat de multi-
plicació i de la potència, perquè són variables fonamentals en els Anàlisis de
Seguretat Nuclear. Endemés, s’ha realitzat un anàlisi de sensibilitat de diver-
sos paràmetres com la malla i mètodes numèrics. En conclusió, es conseguix
obtenir excel·lents resultats, tant en precisió com en cost computacional.

viii

Acknowledgments
First, I would like to thank the support and academic training of three persons.
On the one hand, my supervisors, Rafael Miró and Gumersindo Verdú, who
gave me an excellent training in Reactor Physics and numerical methods. On
the other hand, José Román, because he trained me in parallel computing and
solving eigenvalue problems. Without the knowledge in these areas, I would
not have performed this thesis.

Second, I am grateful to the Spanish Ministry of Education, Culture and Sport,
because of the grant University Professor Training Program. This grant funded
the development of this thesis and two internships. Likewise, I would like
to extend the acknowledgments to the supervisors of these two stays: Alain
Hébert and Matthew Jessee, since they gave me the opportunity to work with
them in École Polytechnique de Montréal and Oak Ridge National Laboratory.

Moreover, I also appreciated the academic training in Nuclear Engineering of
all my professors of the Chemical and Nuclear Engineering Department, at the
Universitat Politècnica de València.

On the other hand, I would like to show my gratitude to all my work partners
because of the excellent work environment. Unfortunately, the list is so long
that I cannot write everyone, but I would like to highlight Carles Mesado,
Carlos Peña and Sergio Morató, since we had a fantastic time.

Finally, I would like to express my gratitude to all my friends of Valencia
and Alicante, as they have always been close to me, both the good and bad
moments. In addition, I appreciate all the love and support of my family. In
particular, I would like to point out my parents and brother, because they gave
me the best moments of my life and they have demonstrated me that they are
always close to me when I need them.

ix

Agradecimientos
En primer lugar, me gustaría agradecer el apoyo y formación de tres personas.
Por una parte, mis directores de tesis, Rafael Miró y Gumersindo Verdú, que
me dieron una excelente formación en Física de Reactores y métodos numéricos.
Por otra parte, José Román, por su instrucción en la computación en paralelo
y en el cálculo de autovalores. Sin el conocimiento de estos campos, no habría
podido realizar esta tesis.

En segundo lugar, me gustaría agradecer al Ministerio de Educación, Cultura
y Deporte la concesión del contrato predoctoral de Formación de Profesorado
Universitario. Este contrato sirvió para financiar el desarrollo de esta tesis
y para realizar dos estancias. Del mismo modo, me gustaría extender mis
agradecimientos a los supervisores de mis estancias: Alain Hébert y Matthew
Jessee, que me acogieron en la École Polytechnique de Montréal y Oak Ridge
National Laboratory, respectivamente.

Además, me gustaría agradecer también la formación en Ingeniería Nuclear a
todos los profesores del Departamento de Ingeniería Química y Nuclear de la
Universitat Politècnica de València.

Por otra parte, quiero agradecer a todos mis compañeros el excelente ambiente
de trabajo, que han hecho que esta experiencia haya sido tan agradable. Des-
graciadamente, la lista es muy larga y no puedo escribir el nombre de todos,
pero me gustaría hacer una mención especial a Carles Mesado, Carlos Peña y
Sergio Morató, por los buenos momentos que hemos pasado.

Para finalizar, me gustaría agradecer el apoyo de mis amigos de Valencia y
Alicante, que han estado a mi lado, tanto en los momentos buenos como malos.
Finalmente, agradezco todo el cariño y apoyo de mi familia. En particular,
querría resaltar a mis padres y mi hermano, pues me han dado los mejores
momentos de mi vida y me han demostrado que siempre están cuando los
necesito.

xi

Contents

Abstract iii

Resumen v

Resum vii

Acknowledgments ix

Agradecimientos xi

Contents xiii

List of Symbols xvii

1 Introduction 1
1.1 Motivation and objectives . 1

1.2 Thesis outline . 3

xiii

Contents

2 State of the art 5
2.1 Neutron Diffusion Equation . 5

2.2 Neutron Transport Equation . 13

2.3 Spatial Discretization . 24

2.4 Finite Volume Method . 28

2.5 Calculation of Eigenvalue Problems. 34

2.6 Time dependent Ordinary Differential Equations . 41

3 Steady State of the Neutron Diffusion Equation with the Finite
Volume Method 47

3.1 Two-energy group Neutron Diffusion Equation . 47

3.2 Calculation of the face averaged values of fluxes and currents 50

3.3 Multigroup formulation . 69

3.4 Solution of the Eigenvalue Problem . 72

3.5 Parallelization . 75

4 Modal Method for the time dependent Neutron Diffusion Equa-
tion 79

4.1 Modal Method. 79

4.2 Adjoint calculation . 88

4.3 Updating modes. 95

5 Steady State of the Neutron Transport Equation with the Discrete
Ordinates formulation and the Finite Volume Method 97

5.1 Discrete Ordinates formulation . 97

5.2 Gauss-Legendre Product Quadrature. 108

5.3 Interpolation schemes for the face values . 110

6 Results 115
6.1 Evaluation of the results . 115

6.2 Moving Least Squares method . 118

6.3 Inter-cells polynomial expansion method . 135

xiv

Contents

6.4 Improved inter-cells polynomial expansion method. 143

6.5 Multigroup formulation . 157

6.6 Parallelization . 170

6.7 Adjoint calculation . 177

6.8 Modal method . 180

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM 184

7 Conclusions 207
7.1 Conclusions. 207

7.2 Future work . 214

7.3 Scientific contribution . 216

Bibliography 221

xv

List of Symbols

Acronyms

ADF Assembly Discontinuity Factor
ANM Analytic Nodal Method
BiCG Bi-Conjugate Gradient
BiCGSTAB Bi-Conjugate Gradient stabilized
BWR Boiling Water Reactor
CGS Conjugate Gradients Squared
CMFD Coarse Mesh Finite Difference Method
CPU Central Processing Unit
DF Discontinuity Factor
FDM Finite Difference Method
FEM Finite Element Method
FVM Finite Volume Method
GCR Generalized Conjugate Residual
GMRES Generalized Minimal Residual
LWR Light Water Reactor
MPI Message Passing Interface
NCM Nodal Collocation Method
NEM Nodal Expansion Method
NM Nodal Method
PETSc Portable, Extensible Toolkit for Scientific Computation
PWR Pressurized Water Reactor
SLEPc Scalable Library for Eigenvalue Problem Computations
VVER Water Water Energetic Reactor

xvii

Contents

Symbols

E Energy variable
~r Spatial variable
t Time variable
v Velocity of neutrons
~Ω Direction variable
θ Polar angle
ϕ Azimuthal angle
φ Scalar neutron flux
ψ Angular neutron flux
~J Neutron current
~Jin Incoming neutron current
~Jout Outgoing neutron current
N Neutron density
Σt Total macroscopic cross section
Σa Absorption macroscopic cross section
Σs(E

′ → E) Scattering macroscopic cross section from energy E’ to energy
E

νΣf Nu-fission macroscopic cross section
βk Yield of delayed neutrons of the precursors group k
β Total yield of delayed neutrons
χ Fission spectrum of prompt neutrons
χdelk Fission spectrum of delayed neutrons of the precursors group

k
λk Decay constant of the precursors group k
Ck Concentration of precursors of the group k
K Number of groups of precursors
G Number of energy groups
vg Velocity of neutrons for the energy group g
ψg Angular neutron flux for the energy group g
φg Scalar neutron flux for the energy group g
~Jg Neutron current for the energy group g
Σt,g Total macroscopic cross section for the energy group g
Σa,g Absorption macroscopic cross section for the energy group g
Σs,g′→g Scattering macroscopic cross section from energy g’ to energy

g
νΣf,g Nu-fission macroscopic cross section for the energy group g
χg Fission spectrum of prompt neutrons for the energy group g
χdelg,k Fission spectrum of delayed neutrons of the precursors group

k and for the energy group g

xviii

Contents

α Albedo
k Eigenvalue
Y m
l Spherical Harmonics of orders l and m
Pl Legendre polynomial of order l
Pm
l Associated Legendre polynomial of orders l and m
L Order of the expansion with Legendre polynomials
Nc Number of cells
Nf Number of inner faces
Nb Number of boundary faces
Nd Number of directions
nf Number of faces of each cell
C Condition number
φg,i Cell averaged value of the scalar neutron flux for the energy

group g and cell i
Jg,i,j Face averaged value of the neutron current for the energy group

g, cell i and face j, with outgoing direction from cell i
Σi
a,g Absorption macroscopic cross section for the energy group g

and cell i
Σi
s,g′→g Scattering macroscopic cross section from energy g’ to energy

g and cell i
νΣi

f,g Nu-fission macroscopic cross section for the energy group g and
cell i

χig Fission spectrum of prompt neutrons for the energy group g
and cell i

αg,j Albedo for the energy group g and face j
ki,j Kernel used to calculate the neutron flux at face j, which is

calculated by multiplying this kernel by the neutron flux of cell
i

kgradi,j Kernel used to calculate the gradient of the neutron flux at face
j. The gradient is calculated by multiplying this kernel by the
neutron flux of cell i

pt(x, y, z) Polynomial term t of the expansion of the neutron flux
ag,i,t Coefficient of the expansion of the neutron flux for the energy

group g, cell i and polynomial term pt(x, y, z)
pVit Cell averaged value of the polynomial term pt(x, y, z) in cell i
p
Si,j
t Face averaged value of the polynomial term pt(x, y, z) in cell i

and face j
ui,j,x X-Direction cosine of the normal of face j, in the outgoing

direction of cell i
ui,j,y Y-Direction cosine of the normal of face j, in the outgoing

direction of cell i

xix

Contents

ui,j,z Z-Direction cosine of the normal of face j, in the outgoing di-
rection of cell i

~∇pt
Si,j

Face averaged value of the gradient of the polynomial term
pt(x, y, z) in cell i and face j

vig Velocity of neutrons for the energy group g and cell i
χdel,ig,k Fission spectrum of delayed neutrons of the precursors group

k and for the energy group g and cell i
Ci
k Cell averaged value of the concentration of precursors of the

group k in cell i
ri,j Distance from the centroid of cell i to the centroid of face j
ri1,i2 Distance from the centroid of cell i1 to the centroid of cell i2
Pi Power in the cell i
MP Mean Power
PEi Power Error of Pi
EEi Eigenvalue Error of ki

MPE Mean Power Error

xx

Chapter 1

Introduction

1.1 Motivation and objectives

One of the most important variables in Nuclear Safety Analyses is the power
generated inside nuclear reactor cores. This power comes from the energy
released in each fission of the nuclear fuel, which is proportional to the neutron
flux. Therefore, one can determine the spatial and time distribution of the
power by calculating the distribution of the neutron flux.

The most accurate way of calculating the neutron population is by solving the
Neutron Transport Equation. Although the explanation of this equation is not
the goal of this section, the author would like to highlight some features of
this equation to justify the development of this thesis. First, it is an integral-
differential equation depending on several variables concerning the space, time,
neutron energy and neutron direction. Second, the coefficients of this equation
are strongly dependent on boron, control rods, burnup and thermal-hydraulic
variables, such as the temperature and density. The full explanation of this
equation is given in Chapter 2.

The solution of the Neutron Transport Equation in commercial nuclear reactor
cores is not straightforward, basically because of two reasons. First, these cores
are complex systems containing different components composed of different

1

Chapter 1. Introduction

materials and geometries. Second, the coefficients of the equation change over
time, since the temperature and density distribution might change during the
reactor operation. Consequently, one has to use numerical methods.

There is a large number of numerical methods to solve the Neutron Transport
Equation, but computationally efficient methods are of great interest in Nuclear
Safety Analyses. There is a faster way to calculate the neutron population in
nuclear reactor cores by solving the Neutron Diffusion Equation. This equation
is a simplification of the Neutron Transport Equation, and consequently its
use is limited to certain conditions and is less accurate. Nevertheless, the
Neutron Diffusion Equations is sufficiently accurate and efficient to be applied
in Nuclear Safety Analyses. Therefore, it is worth developing and optimizing
algorithms to solve both the Neutron Transport and Diffusion Equations.

Among the large number of numerical methods, the author of this thesis chose
the Modal Method for the time discretization because of two reasons. First,
this method can be used for modal and instability analyses of nuclear reactors,
which are particularly interesting in Boiling Water Reactors. Second, this
method might be fast for solving the time variables. As regards the spatial
discretization, the Finite Volume Method was chosen due to three reasons.
First, it can be easily applied to unstructured meshes, which can model any
kind of geometry. Second, it is typically used in transport equations due to
the conservation of the transported quantity. Third, it is the method most
commonly used in thermal-hydraulics and the Neutron Transport and Diffusion
Equations are strongly dependent on the thermal-hydraulic variables. Thereby,
one could use the same method and meshes to solve this coupled problem.

All in all, the thesis objectives can be summarized as follows.

1. To develop a Finite Volume Method for the Steady State Neutron Diffu-
sion Equation.

2. To develop a Modal Method for the Time dependent Neutron Diffusion
Equation.

3. To develop a Finite Volume Method for the Steady State Neutron Trans-
port Equation.

4. To optimize the algorithms for calculating large and complex problems
in parallel computers with the state of the art methods.

2

1.2 Thesis outline

1.2 Thesis outline

The thesis is organized in seven chapters. Next chapter introduces the state
of the art concerning the main subjects of this thesis, which are classified in
six sections. Section 2.1 explains the Neutron Diffusion Equation and high-
lights the major methods and codes used for solving it. Section 2.2 gives an
explanation of the Neutron Transport Equation, summarizes the major meth-
ods applied to this equation and points out the most used codes to solve this
equation. Section 2.3 gives a short introduction about geometry discretization.
In particular, this section presents the typical geometry of commercial nuclear
reactors and the different meshes to discretize it. Section 2.4 defines the Finite
Volume Method and gives some background information of different schemes
that are commonly used. Section 2.5 points out different methods for solving
eigenvalue problems and linear systems. Moreover, this section summarizes
the state of the art libraries containing these methods. The goal of this section
is to introduce the main tools used for calculating the Steady State of both
Neutron Diffusion and Transport Equations. Finally, Section 2.6 presents the
major methods used for solving time dependent Ordinary Differential Equa-
tions. In addition, this section highlights several libraries containing these
methods.

Chapter 3 develops the first objective of this thesis. This chapter is organized
in five sections. In Section 3.1, the author applies the Finite Volume Method
to the 2-energy group Neutron Diffusion Equation and defines its eigenvalue
problem. Section 3.2 explains three methods for calculating the neutron cur-
rents. Section 3.3 extends the application of the Finite Volume Method to
any multigroup formulation. Section 3.4 explains the algorithm for solving the
eigenvalue problem. Section 3.5 explains the parallelization of the method, for
fulfilling the fourth objective of this thesis.

Chapter 4 accomplishes the second objective of the thesis. It is divided in
three sections. Section 4.1 explains the Modal Method used in this thesis for
solving the time dependent Neutron Diffusion Equation. Section 4.2 describes
an easy and fast method for estimating the adjoint flux from the forward one,
because the adjoint flux is needed in the Modal Method. Finally, Section 4.3
presents a method for updating the modes, because these modes might change
over time.

Chapter 5 achieves the third objective of the thesis. It is classified in three
sections. Section 5.1 defines the Discrete Ordinates formulation of the Neutron
Transport Equation with the Finite Volume Method. Section 5.2 summarizes
several quadratures used for the Discrete Ordinates. Section 5.3 defines two in-

3

Chapter 1. Introduction

terpolation schemes for calculating the leakage terms of the Neutron Transport
Equation with the Finite Volume Method.

Chapter 6 shows several benchmarks and analyses of the results for the different
methods developed in this thesis. These benchmarks includes mock-up and
commercial nuclear reactors. Finally, Chapter 7 not only summarizes the major
conclusions, but also highlights the future work.

4

Chapter 2

State of the art

2.1 Neutron Diffusion Equation

Many authors have highlighted the importance of the Neutron Diffusion Equa-
tion for obtaining the neutron distribution in full-core calculations. This
equation is accurate enough to provide a quantitative understanding of many
physics features of nuclear reactors, as discussed in Stacey 2007. Stacey also
states that the Neutron Diffusion Equation is the simplest and most widely
used mathematical description for obtaining the neutron distribution in nu-
clear reactors, and consequently it is the workhorse computational method of
Nuclear Reactor Physics. It is true that the Neutron Diffusion Equation was
used for the design of most of the early reactors, as explained in Lamarsh
and Baratta 2001. Now more sophisticated methods have been developed,
but Lamarsh and Baratta also assert that the Neutron Diffusion Equation is
still widely used to provide first estimates of reactor properties. Furthermore,
the Neutron Diffusion Equation is widely used for core follow and monitoring
commercial Light Water Reactors (LWRs).

One can obtain the Neutron Diffusion Equation from the Neutron Transport
Equation, or from a Neutron Balance Equation, applied over a control domain,
as discussed in Lamarsh and Baratta 2001, Cacuci 2010 or Hébert 2009. In
this balance equation, one calculates the rate of change in number of neutrons

5

Chapter 2. State of the art

as the rate of production minus the rate of loss of neutrons. The rate of
neutron production includes the rate of fission and scattering interactions and
the decay of neutron precursors; the rate of neutron loss involves the rate of
total interactions and the leakage of the control domain. Equation 2.1 shows
the mathematical expression of this balance.

1

v(E)

dφ(E,~r, t)

dt
= −∇ ~J(E,~r, t)− Σt(E,~r, t)φ(E,~r, t) +

+

∫ ∞
0

Σs(E
′ → E,~r, t)φ(E′, ~r, t)dE′ +

+(1− β)χ(E,~r, t)

∫ ∞
0

νΣf (E′, ~r, t)φ(E′, ~r, t)dE′ +

+
K∑
k=1

χdelk (E,~r, t)λkCk(~r, t) (2.1)

In this equation, E is the energy variable, ~r is the spatial variable, t is the time
variable, v is the velocity of neutrons, φ is the scalar neutron flux, ~J is the
neutron current, Σt is the total macroscopic cross section, Σs(E

′ → E) is the
scattering macroscopic cross section from the energy E′ to E, β is the total
yield of delayed neutrons, χ is the fission spectrum of prompt neutrons, νΣf is
the nu-fission macroscopic cross section, ν is the average number of neutrons
produced in each fission, χdelk is the fission spectrum of the delayed neutrons
of the precursors group k, λk is the decay constant of the precursors group k,
Ck is the concentration of precursors of the group k, K is the total number of
neutron precursors groups.

The scalar neutron flux is defined as φ(E,~r, t) = v(E,~r, t)N(E,~r, t), where
N is the neutron density, that is, the number of neutrons in a differential
volume; thus, the units of N are cm−3 and those of φ are cm2 · s−1, since
the units of v are cm · s−1. Therefore, one can use φ or N to define the
neutron distribution; in Reactor Physics, one typically uses φ because one
calculates the interaction rates of the neutrons as the product of φ and the
macroscopic cross section corresponding to that interaction. The macroscopic
cross section of certain type of interaction can be defined as the probability
of that interaction to take place; its units are cm−1. Further mathematical
definitions of the macroscopic cross sections are beyond the scope of this thesis,
yet one can look for them in the literature for Reactor Physics, for example
in Stacey 2007, Hébert 2009, Lamarsh and Baratta 2001 or Cacuci 2010. As
regards neutron interactions, the most important ones in Reactor Physics are

6

2.1 Neutron Diffusion Equation

the total interaction, scattering interaction from E to E′, fission interaction
and absorption interaction. The total interaction can be calculated as the sum
of the absorption and the scattering interaction, so one can calculate the total
cross section as in Equation 2.2, in which Σa is the absorption macroscopic
cross section. On the other hand, the units of Ck and λk are cm−3 and s−1

respectively. There are three non dimensional variables in Equation 2.1: β, χ
and χdelk . The value of β might range from 0 to 1, but it is usually much lower
than 1; χ and χdelk are probabilities of neutrons to be produced with certain
energy.

Σt(E,~r, t) = Σa(E,~r, t) +

∫ ∞
0

Σs(E → E′, ~r, t)dE′ (2.2)

It is worth mentioning two things related with Ck and λk. First, λk is the
probability of decay per unit time of the precursor of group k. Second, λkCk
is the rate of neutrons per volume produced by the decay of the precursors
of group k. Moreover, the concentration of precursors, Ck, changes over time,
which can be calculated with Equation 2.3, in which βk is the yield of delayed
neutrons of the precursors group k.

dCk(~r, t)

dt
= βk

∫ ∞
0

νΣf (E′, ~r, t)φ(E′, ~r, t)dE′ − λkCk(~r, t), k = 1, ...,K

(2.3)

The energy dependence of the previous variables complicates the solution of
the Neutron Diffusion Equation, because the energy is a continuous variable
and the cross sections depend continuously on the energy. For this reason, one
typically uses a multigroup formulation, which discretizes the energy variable
in a set of groups of energy. In this formulation, one habitually numbers the
energy groups from the highest to the lowest energy. For example, for each
energy group g, the energy ranges from Eg to Eg−1. The goal of this method
is to obtain energy-averaged values in each group, which are expressed with
the sub-index g. Equations 2.4-2.11 show these energy-averaged values, for
certain function f(E). However, one does not know f(E), so one has to guess
this function to obtain accurate multigroup cross sections. For example, the
following function fg(E) = φ(E)/φg would be a great function for the energy
group g, if φ(E) is a good guess of the real scalar neutron flux, because it would
conserve the interaction rate, as shown in Equation 2.12 for the absorption
interaction.

7

Chapter 2. State of the art

φg(~r, t) =

∫ Eg−1

Eg

φ(E,~r, t)dE (2.4)

~Jg(~r, t) =

∫ Eg−1

Eg

~J(E,~r, t)dE (2.5)

1

vg
=

∫ Eg−1

Eg

1

v(E)
f(E)dE (2.6)

Σa,g(~r, t) =

∫ Eg−1

Eg

Σa(E,~r, t)f(E)dE (2.7)

Σs,g→g′(~r, t) =

∫ Eg′−1

Eg′

dE′
∫ Eg−1

Eg

Σs(E → E′, ~r, t)f(E)dE (2.8)

νΣf,g(~r, t) =

∫ Eg−1

Eg

νΣf (E,~r, t)f(E)dE (2.9)

χg(~r, t) =

∫ Eg−1

Eg

χ(E,~r, t)dE (2.10)

χdelg,k(~r, t) =

∫ Eg−1

Eg

χdelk (E,~r, t)dE (2.11)

Σa,g(~r, t) =

∫ Eg−1

Eg
Σa(E,~r, t)φ(E,~r, t)dE

φg(~r, t)
(2.12)

If ones applies the multigroup formulation of G energy groups to Equations
2.1-2.3, one obtains Equations 2.13 and 2.14, for each energy group g.

8

2.1 Neutron Diffusion Equation

1

vg

dφg(~r, t)

dt
= −∇ ~Jg(~r, t)−

Σa,g(~r, t) +
G∑

g′=1
g′ 6=g

Σs,g→g′(~r, t)

φg(~r, t) +

+
G∑

g′=1
g′ 6=g

Σs,g′→g(~r, t)φg′(~r, t) +

+(1− β)χg(~r, t)
G∑

g′=1

νΣf,g′(~r, t)φg′(~r, t) +

+
K∑
k=1

χdelg,k(~r, t)λkCk(~r, t) (2.13)

dCk(~r, t)

dt
= βk

G∑
g′=1

νΣf,g′(~r, t)φg′(~r, t)− λkCk(~r, t), k = 1, ...,K (2.14)

In Neutron Diffusion Theory, one calculates the neutron current from the neu-
tron flux. To do so, one uses Fick’s Law. This law states there is a flow of
neutrons from regions with higher neutron flux to regions with less neutron
flux. Thus, one can calculate the neutron current as a proportional value of
the gradient of the neutron flux, as shown in Equation 2.15. In this equation,
the proportional constant Dg is called diffusion coefficient and has units of cm.

~Jg(~r, t) = −Dg(~r, t)~∇φg(~r, t) (2.15)

The Neutron Diffusion Equation provides valid results of the neutron flux under
three assumptions, as discussed in Stacey 2007. First, the absorption is much
less likely than the scattering. Second, the flux is assumed to be sufficiently
slowly varying in space that it can be approximated by a linear spatial varia-
tion. Third, neutrons are scattered isotropically. The first condition is satisfied
for most of the moderating and structural materials found in a nuclear reactor,
but not for the fuel and control elements. The second condition is satisfied a
few mean free paths away from the boundary of large (relative to the mean
free path) homogeneous media with relatively uniform source distributions.
The third condition is satisfied for scattering from heavy atomic mass nuclei.
As nuclear reactors are highly heterogeneous, the Neutron Diffusion Equation
might not provide an accurate solution of the neutron flux. However, one can

9

Chapter 2. State of the art

replace these highly heterogeneous materials by homogenized materials with
averaged values of cross sections and diffusion coefficients, which reproduce the
transport interaction rates, providing an accurate solution of the neutron flux.

The most accurate solution of the Neutron Diffusion Equation is the analytical
one, which one can calculate for homogeneous reactors with simple geometries.
Unfortunately, commercial nuclear reactors like Light Water Reactors (LWRs)
are composed of different materials and geometries, as mentioned in the pre-
vious paragraph. Consequently, one has to discretize the geometry and use
numerical methods to solve the Neutron Diffusion Equation.

The discretization of the geometry is explained in Section 2.3, but it is im-
portant to highlight the effects of this discretization on the Neutron Diffusion
Equation. Basically, the geometry is discretized in different regions, in which
one applies the Neutron Diffusion Equation, obtaining φ and ~J in each region.
These variables might be discontinuous in the interface of two adjacent cells,
which should not be. Therefore, one has to make sure that the continuity of
φ and ~J is preserved in each interface. Equations 2.16 and 2.17 show these
continuity conditions, for two adjacent regions V1 and V2 and the interface of
them ~rV1∩V2

.

φ(~rV1∩V2
∈ V1) = φ(~rV1∩V2

∈ V2) (2.16)

~J(~rV1∩V2
∈ V1) = ~J(~rV1∩V2

∈ V2) (2.17)

Moreover, one needs boundary conditions to solve the Neutron Diffusion Equa-
tion. The boundary conditions most used are zero flux, reflective, zero incom-
ing current and albedo (α), as discussed in Hébert 2009. Equations 2.18 and
2.19 show the zero flux and reflective conditions, in which ~rb is the region of
the boundary. With respect to the albedo condition, one can use two equations
depending on the type of reactor. For Pressurized Water Reactors (PWRs) and
Boiling Water Reactors (BWRs), one uses Equation 2.20; in this equation, ~Jin
is the incoming neutron current and ~Jout is the outgoing neutron current, which
are defined in the same equation. In addition, one can use Equation 2.20 with
α = 0 to define the boundary condition of zero incoming current. On the other
hand, one uses Equation 2.21 for Water Water Energetic Reactors (VVERs).

φ(~rb) = 0 (2.18)

10

2.1 Neutron Diffusion Equation

~∇φ(~rb) = 0→ ~J(~rb) = 0 (2.19)

α =
~Jin(~rb)

~Jout(~rb)
=

1
4
φ(~rb)− 1

2
~J(~rb)

1
4
φ(~rb) + 1

2
~J(~rb)

→ ~J(~rb)−
1− α

2(1 + α)
φ(~rb) = 0 (2.20)

α =
~J(~rb)

φ(~rb)
→ ~J(~rb)− αφ(~rb) = 0 (2.21)

With respect to the numerical methods, one should apply them for the spatial
and time variables. First, one has to find the steady state solution, because this
will be the initial condition of the transient calculation. This steady state is
calculated by setting the time derivatives to 0. Nonetheless, this steady state
is only accomplished for a specific condition of the geometry and materials
(cross sections), which are not known a priori. As a consequence, one has
to transform Equations 2.13 and 2.14 into an eigenvalue problem, as that of
Equation 2.22, where k is the eigenvalue. If χg = χdelg,k, Equation 2.22 is
simplified into Equation 2.23, because β =

∑K
k=1 βk.

0 = −∇ ~Jg(~r)−

Σa,g(~r) +
G∑

g′=1
g′ 6=g

Σs,g→g′(~r)

φg(~r) +

+
G∑

g′=1
g′ 6=g

Σs,g′→g(~r)φg′(~r) +

+
1

k

(
(1− β)χg(~r) +

K∑
k=1

χdelg,k(~r)βk

)
G∑

g′=1

νΣf,g′(~r)φg′(~r)

(2.22)

11

Chapter 2. State of the art

0 = −∇ ~Jg(~r)−

Σa,g(~r) +
G∑

g′=1
g′ 6=g

Σs,g→g′(~r)

φg(~r) +

+
G∑

g′=1
g′ 6=g

Σs,g′→g(~r)φg′(~r) +
1

k
χg(~r)

G∑
g′=1

νΣf,g′(~r)φg′(~r) (2.23)

The solution of the eigenvalue problem of Equation 2.23, using Fick’s Law de-
fined in Equation 2.15, gives the spatial distribution of the neutron flux. Ac-
tually, one could also include Fick’s Law in Equation 2.23, obtaining Equation
2.24. However, these equations also contain spatial derivatives terms. There-
fore, one has to apply numerical methods to these terms too. The methods
most used for solving these equations are Nodal Methods (NMs), Finite Dif-
ference Methods (FDMs) and Finite Element Methods (FEMs), as explained
in Hébert 2009.

0 = −∇
(
−Dg(~r)~∇φg(~r)

)
−

Σa,g(~r) +
G∑

g′=1
g′ 6=g

Σs,g→g′(~r)

φg(~r) +

+
G∑

g′=1
g′ 6=g

Σs,g′→g(~r)φg′(~r) +
1

k
χg(~r)

G∑
g′=1

νΣf,g′(~r)φg′(~r) (2.24)

FDMs are easily applied, but they have two major drawbacks. First, FDMs
might produce large matrices to obtain accurate results. Second, the applica-
tion of these methods is limited to certain type of discretizations, particularly
to structured meshes.

NMs use high order schemes to give accurate results in coarse meshes, by
using for example Coarse Mesh Finite Difference (CMFD) methods. Examples
of NMs are the Analytic Nodal Method (ANM), developed in Smith 1979,
the Nodal Expansion Method (NEM), developed in Bennewitz, Finnemann,
and Moldaschl 1975, and the Nodal Collocation Method (NCM), developed in
Hébert 1987. On the one hand, ANM transforms the 3D Neutron Diffusion
Equation into three 1D Neutron Diffusion Equations along each of the three
directions, which one can solve analytically for certain approximations of the

12

2.2 Neutron Transport Equation

leakages terms of these 1D equations. Likewise, NEM also transforms the
3D Neutron Diffusion Equation into three 1D equations, but one expands the
neutron flux in each direction with 1D polynomial functions (typically quartic
functions) to determine the leakage terms of the 1D equations. Although the
analytic solution is more accurate than a polynomial expansion, NEM has two
main advantages in comparison with ANM. First, it can be used in general
multigroup formulations of the Neutron Diffusion Equation, whereas ANM is
only applied to the 2 energy group formulation. Second, NEM can be applied
to hexagonal geometries, while ANM is limited to Cartesian geometries. On
the other hand, NCM expands φ(x, y, z) with product of Legendre Polynomials
in each direction, that is, φ(x, y, z) =

∑
k1

∑
k2

∑
k3
Pk1(x)Pk2(y)Pk3(z); then,

the method obtains different equations by multiplying the Neutron Diffusion
Equation by each Pk1(x)Pk2(y)Pk3(z). The main advantage of NCM is that it
gives excellent results in coarse meshes. However, the main drawback is that it
can be only applied in Cartesian meshes. One can find the application of the
NCM for the Neutron Diffusion Equation in Verdú et al. 1994, Ginestar et al.
1998 and Miró et al. 2002.

With respect to FEMs, one can use them in any kind of discretization, but they
might produce large matrices and solve the weak formulation of the Neutron
Diffusion Equation. A large number of FEMs have been applied to the Neutron
Diffusion Equation, for example those shown in Hébert 1993, Hébert 2008 and
Vidal-Ferrandiz et al. 2014.

There is a large number of codes for solving the Neutron Diffusion Equation by
means of different methods, based on FDMs, NMs and FEMs. Some examples
are: SIMULATE-3 (DiGiovine et al. 1995), PARCS (Downar et al. 2006),
TRIVAC (Hébert and Sekki 2010), VALKIN (Verdú et al. 1994, Miró et al.
2002), DIFF-3D (Derstine 2011), NESTLE (Turinsky et al. 1994), COBAYA
(Aragonés and Ahnert 1986, Aragonés, Ahnert, and García-Herranz 2007),
SKETCH-N (Zimin 2002) and DYN3D (Grundmann et al. 2005).

2.2 Neutron Transport Equation

Neutron transport is the process in which neutrons propagate through the
atoms in a physical system. This includes the streaming of neutrons from one
collision site to the next, the loss of neutrons by scattering and absorption inter-
actions, and the production of neutrons by scattering and fission interactions.
The Neutron Transport Equation is an accurate mathematical formulation for
describing this neutron process and obtaining the neutron population in closed

13

Chapter 2. State of the art

domains. The derivation of this equation is based on the principle of neutron
conservation, that is, a balance equation.

One should use seven independent variables to characterize a general 3D neu-
tron transport process, wich are: three variables for the space domain (~r =

x~i+ y~j + z~k), two variables for the direction domain (~Ω = ~Ω(θ, ϕ)), one vari-
able for the energy domain (E) and one variable for the time domain (t). The
direction variable is defined by three direction cosines, as one can see in Figure
2.1 and Equation 2.25. Nonetheless, ~Ω only has two independent variables,
because of Equation 2.26. In addition, one can define these two variables with
the polar (θ) and azimuthal (ϕ) angles shown in Figure 2.1. These seven vari-
ables enable one to specify the neutron density N(~Ω, E, ~r, t) at a certain space
position in the system ~r, traveling in a certain direction ~Ω, with an energy E,
and at a time t. It is worth using the neutron flux instead of N , as justified in
Section 2.1. The neutron flux considering the direction variables is defined in
Equation 2.27, it is called angular neutron flux and has the same units as the
scalar neutron flux.

Figure 2.1: Direction variable

~Ω = µ~i+ η~j + ξ~k (2.25)

µ2 + η2 + ξ2 = 1 (2.26)

ψ(~Ω, E, ~r, t) = v(E) ·N(~Ω, E, ~r, t) (2.27)

14

2.2 Neutron Transport Equation

The derivation of the Neutron Transport Equation is beyond the scope of
this thesis, but one can look for this derivation in Cacuci 2010 or Hébert
2009. Equation 2.28 shows the Neutron Transport Equation. This equation
has similar terms to those of Equation 2.1. Nevertheless, in Equation 2.28,
ψ is the angular neutron flux, Σs(~Ω

′ → ~Ω, E′ → E) is the double differential
scattering cross section from direction ~Ω′ to direction ~Ω and from energy E′ to
energy E. In addition, if one compares Equations 2.1 and 2.28, one concludes
that the scalar neutron flux and the current can be calculated as in Equations
2.29 and 2.30. One can also realize that the neutrons produced by fission
events and decay of precursors are divided by 4π, because these events are
considered to produce neutrons isotropically. Likewise the previous section,
the concentration of precursors, Ck, changes over time and can be calculated
with Equation 2.31.

1

v(E)

dψ(~Ω, E, ~r, t)

dt
= −∇~Ωψ(~Ω, E, ~r, t)− Σt(E,~r, t)ψ(~Ω, E, ~r, t) +

+

∫ ∞
0

∫
4π

Σs(~Ω
′ → ~Ω, E′ → E,~r, t)ψ(~Ω′, E′, ~r, t)d~Ω′dE′ +

+ (1− β)
χ(E,~r, t)

4π

∫ ∞
0

νΣf (E′, ~r, t)

∫
4π

ψ(~Ω′, E′, ~r, t)d~Ω′dE′ +

+
1

4π

K∑
k=1

χdelk (E,~r, t)λkCk(~r, t) (2.28)

φ(E′, ~r, t) =

∫
4π

ψ(~Ω′, E′, ~r, t)d~Ω′ (2.29)

~J(E′, ~r, t) =

∫
4π

~Ω′ψ(~Ω′, E′, ~r, t)d~Ω′ (2.30)

dCk(~r,t)

dt
= βk

∫∞
0

∫
4π
νΣf (E′, ~r, t)ψ(~Ω′, E′, ~r, t)d~Ω′dE′ − λkCk(~r, t), k = 1, ...,K

(2.31)

One can also use the multigroup approach in the previous equations to deal
with the energy variables. As explained in Section 2.1, the multigroup ap-
proach obtains energy-averaged values in each group, which are expressed with
the sub-index g, by integrating each variable with a weighting function f(E).
This function should be a good guess of the energy distribution of neutron flux
to conserve the interaction rates. Actually, this function might also take into

15

Chapter 2. State of the art

account the angular distribution for cross sections depending on directional
variables, which makes more difficult to find out the suitable functions. If
one considers that these functions f(E) are known, one can apply the multi-
group approach to Equations 2.28 and 2.31, which gives Equations 2.32 and
2.33. There are only two different terms in these equations with respect to
the multrigroup Neutron Diffusion Equation: ψg, which is the angular neutron
flux, and Σs,g′→g(~Ω

′ → ~Ω, ~r, t), which is the scattering cross section from the
energy group g′ to g and from the direction ~Ω′ to ~Ω. These terms, ψg and
Σs,g′→g(~Ω

′ → ~Ω, ~r, t), are defined in Equations 2.34 and 2.35.

1

vg

dψg(~Ω, ~r, t)

dt
= −∇~Ωψg(~Ω, ~r, t)− Σt,g(~r, t)ψg(~Ω, ~r, t) +

+
G∑

g′=1

∫
4π

Σs,g′→g(~Ω
′ → ~Ω, ~r, t)ψg′(~Ω

′, ~r, t)d~Ω′ +

+(1− β)
χg(~r, t)

4π

G∑
g′=1

νΣf,g′(~r, t)

∫
4π

ψg′(~Ω
′, ~r, t)d~Ω′ +

+
1

4π

K∑
k=1

χdelg,k(~r, t)λkCk(~r, t) (2.32)

dCk(~r, t)

dt
= βk

G∑
g′=1

νΣf,g′(~r, t)

∫
4π

ψg′(~Ω
′, ~r, t)d~Ω′ − λkCk(~r, t), k = 1, ...,K

(2.33)

ψg(~Ω, ~r, t) =

∫ Eg−1

Eg

ψ(~Ω, E, ~r, t)dE (2.34)

Σs,g′→g(~Ω
′ → ~Ω, ~r, t) =

∫ Eg′−1

Eg′

dE′
∫ Eg−1

Eg

Σs(~Ω
′ → ~Ω, E′ → E,~r, t)f(E′)dE

(2.35)

Currently, the analytical solution of Equations 2.32 and 2.33 in any geometry
composed of different materials is not possible. Therefore, one has to discretize
the geometry and apply numerical methods, as stated in Section 2.1. In the
same way, one has to ensure that ψ is continuous in the whole domain. Conse-
quently, for any adjacent regions V1 and V2, whose interface is ~rV1∩V2

, Equation
2.36 must be accomplished.

16

2.2 Neutron Transport Equation

ψ(~rV1∩V2
∈ V1) = ψ(~rV1∩V2

∈ V2) (2.36)

As regards the boundary conditions, one has to define them only for the in-
coming neutrons. The boundary conditions most used are: vacuum, specular
reflection, albedo and white boundary, which are defined in Equations 2.37-2.40
respectively. In these equations, ~Ωin and ~Ωout are incoming and outgoing direc-
tions with respect to the boundary ~rb; ~n~rb is the normal direction to boundary
~rb. The white boundary condition means the following: all neutrons leaving
the system through the boundary are isotropically emitted back into the do-
main. The code developed in this thesis does not include the white boundary
condition.

ψ(~Ωin, ~rb) = 0 (2.37)

ψ(~Ωin, ~rb) = ψ(~Ωout, ~rb) (2.38)

ψ(~Ωin, ~rb) = αψ(~Ωout, ~rb) (2.39)

ψ(~Ωin, ~rb) =

∫
~Ω·~n~rb

d~Ω|~Ω · ~n~rb |ψ(~Ω, ~rb)∫
~Ω·~n~rb

d~Ω|~Ω · ~n~rb |
(2.40)

Likewise the steady state of the Neutron Diffusion Equation, one obtains the
steady state of the Neutron Transport Equation by transforming Equations
2.32 and 2.33 into an eigenvalue problem, which is shown in Equation 2.41. In
addition, one can simplify this equation if χg = χdelg,k, obtaining Equation 2.42.

0 = −∇~Ωψg(~Ω, ~r)− Σt,g(~r)ψg(~Ω, ~r) +

+
G∑

g′=1

∫
4π

Σs,g′→g(~Ω
′ → ~Ω, ~r)ψg′(~Ω

′, ~r)d~Ω′ +

+
1

4π k

(
(1− β)χg(~r) +

K∑
k=1

χdelg,k(~r)βk

)
G∑

g′=1

νΣf,g′(~r)

∫
4π

ψg′(~Ω
′, ~r)d~Ω′

(2.41)

17

Chapter 2. State of the art

0 = −∇~Ωψg(~Ω, ~r)− Σt,g(~r)ψg(~Ω, ~r) +

+
G∑

g′=1

∫
4π

Σs,g′→g(~Ω
′ → ~Ω, ~r)ψg′(~Ω

′, ~r)d~Ω′ +

+
χg(~r)

4π k

G∑
g′=1

νΣf,g′(~r)

∫
4π

ψg′(~Ω
′, ~r)d~Ω′

(2.42)

Equations 2.41 or 2.42 contain not only spatial derivatives terms, but also inte-
gral terms depending on the direction variable. Thus, one has to use numerical
methods to discretize the direction variables, besides the numerical methods
for the spatial variables. There are two methods for dealing with the direction
variable: Spherical Harmonics (Pn) and Discrete Ordinates (Sn) methods.

The Spherical Harmonics method is based on the expansion of ψg with spherical
harmonics, but truncating the expansion up to term n, as shown in Equation
2.43. In this equation, Y m

l (~Ω) are the spherical harmonics functions and ψmg,l(~r)
are the moments of ψg, which are calculated as shown in Equation 2.44. In
this equation, Y

m

l (~Ω) is the complex conjugate of Y m
l (~Ω). However, one cannot

calculate ψmg,l(~r), because one does not know the angular distribution of ψg.
Instead, the Spherical Harmonics method consists in substituting Equation
2.43 into Equation 2.45, so one can determine ψmg,l(~r). The reader can find
further details of this method in the literature, for example in Henry 1975.

ψg(~Ω, ~r) =
∞∑
l=0

l∑
m=−l

ψmg,l(~r)Y
m
l (~Ω) ≈

n∑
l=0

l∑
m=−l

ψmg,l(~r)Y
m
l (~Ω) (2.43)

ψmg,l(~r) =

∫
4π

Y
m

l (~Ω)ψg(~Ω, ~r)d~Ω (2.44)

18

2.2 Neutron Transport Equation

0 =

∫
4π

Y
m

l (~Ω)

(
−∇~Ωψg(~Ω, ~r)− Σt,g(~r)ψg(~Ω, ~r) +

+
G∑

g′=1

∫
4π

Σs,g′→g(~Ω
′ → ~Ω, ~r)ψg′(~Ω

′, ~r)d~Ω′ +

+
χg(~r)

4π k

G∑
g′=1

νΣf,g′(~r)

∫
4π

ψg′(~Ω
′, ~r)d~Ω′)

)
d~Ω

, l = 0, · · · , n; m = −l, · · · , l (2.45)

On the other hand, the Discrete Ordinates method is based on a discretiza-
tion of ~Ω in a set of discrete directions ~Ωn, which are also called quadrature
sets. One has to choose these ~Ωn to obtain the maximum accuracy in the in-
tegrals containing ~Ω. For an arbitrary function f(~Ω), the goal of this method
is to obtain the weights wn and the directions ~Ωn to solve with the highest
accuracy the integration of Equation 2.46. A number of quadrature sets has
been developed for calculating this integration. The ones most used are: level-
symmetric, Legendre-Chebyshev and product quadrature. The explanation of
how one obtains these quadrature sets is beyond the scope of this document,
but the author will describe its main features and show some examples. In the
level-symmetric quadrature, one selects point on the unit sphere in such a way
to preserve the symmetry of the eight octants with respect to π/2 rotations
and conserve the odd and even moments of µ, η and ξ. Figure 2.2 shows an
example of the level-symmetric quadrature. The Legendre-Chebyshev quadra-
ture aims to conserve moments to a maximum order without the constraints
of the symmetry condition. This quadrature has a similar triangle-shaped di-
rection layout on the unit sphere, such as that of level-symmetric. Although
the lack of symmetry, this quadrature is the best choice for mathematically
conserving higher moments. As regards the product quadrature, it is based on
the separation of variables: f(~Ω) = fµ(µ)fϕ(ϕ). Then, the integration of f is
performed as in Equation 2.47.

∫
4π

f(~Ω)d~Ω ≈
Nd∑
n=1

wnf(~Ωn) (2.46)

19

Chapter 2. State of the art

Figure 2.2: S6 level-symmetric quadrature

∫
4π

f(~Ω)d~Ω =

∫ 1

−1

fµ(µ)dµ

∫ 2π

0

fϕ(ϕ)dϕ ≈

≈
Nµ∑
nµ=1

wnµfµ(µnµ)

Nϕ∑
nϕ=1

wnϕfϕ(ϕnϕ) =

=

Nµ∑
nµ=1

Nϕ∑
nϕ=1

wnµwnϕfµ(µnµ)fϕ(ϕnϕ) =
Nd∑
n=1

wnf(µn, ϕn)

(2.47)

One can directly apply the integration of Equation 2.46 to Equation 2.42, but
it is better to expand the scattering with spherical harmonics, as explained
in Hébert 2009. This involves expanding ψ of the scattering terms, as in
Equation 2.43, and expanding Σs,g′→g(~Ω

′ → ~Ω) with Legendre polynomials
(Pl), as shown in Equation 2.48, in which Σs,g′→g,l is defined in Equation 2.49
and L is the order of the expansion. These two expansions might provide a long
and difficult expression of the scattering terms. However, one could simplify
the integration of the scattering term, obtaining the expression of Equation

20

2.2 Neutron Transport Equation

2.50, as explained in Appendix A of Yi 2009. In this equation, φg′,l, φkC,g′,l and
φkS,g′,l are defined in Equations 2.51-2.53. In addition, in these last equations
Pl is the Legendre polynomial of order l and P k

l is the associated Legendre
polynomial of orders l and k.

Σs,g′→g(~Ω
′ → ~Ω) = Σs,g′→g(~Ω

′ · ~Ω) = Σs,g′→g(µ0) ≈
L∑
l=0

2l + 1

2
Σs,g′→g,lPl(µ0)

(2.48)

Σs,g′→g,l =

∫ 1

−1

Pl(µ0)Σs,g′→g(µ0)dµ0 (2.49)

∫
4π

Σs,g′→g(~Ω
′ → ~Ω, ~r)ψg′(~Ω

′, ~r)d~Ω′ =
L∑
l=0

(2l + 1)Σs,g′→g,l

{
Pl(µ)φg′,l +

+2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µ) ·

[
φkC,g′,l cos(kϕ) + φkS,g′,l sin(kϕ)

]}
(2.50)

φg′,l =
1

4π

∫ 1

−1

∫ 2π

0

Pl(µ
′)ψg′(µ

′, ϕ′)dµ′dϕ′ (2.51)

φkC,g′,l =
1

4π

∫ 1

−1

∫ 2π

0

P k
l (µ′) cos(kϕ′)ψg′(µ

′, ϕ′)dµ′dϕ′ (2.52)

φkS,g′,l =
1

4π

∫ 1

−1

∫ 2π

0

P k
l (µ′) sin(kϕ′)ψg′(µ

′, ϕ′)dµ′dϕ′ (2.53)

If one substitutes Equations 2.50 and 2.51 in Equation 2.42, one obtains Equa-
tion 2.54. Finally, one obtains the Discrete Ordinates formulation of this equa-
tion by setting ~Ω = ~Ωn = ~Ωn(µn, ϕn), obtaining Equation 2.55. In this equa-
tion φg′,l, φkC,g′,l and φkS,g′,l are integrated with Equation 2.46, as shown in
Equations 2.56-2.58.

21

Chapter 2. State of the art

0 = −∇~Ωψg(~Ω, ~r)− Σt,g(~r)ψg(~Ω, ~r) +

+
G∑

g′=1

L∑
l=0

(2l + 1)Σs,g′→g,l

{
Pl(µ)φg′,l +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µ) ·

[
φkC,g′,l cos(kϕ) + φkS,g′,l sin(kϕ)

]}
+

+
χg(~r)

k

G∑
g′=1

νΣf,g′(~r)φg′,0

(2.54)

0 = −∇~Ωnψg(~Ωn, ~r)− Σt,g(~r)ψg(~Ωn, ~r) +

+
G∑

g′=1

L∑
l=0

(2l + 1)Σs,g′→g,l

{
Pl(µn)φg′,l +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µn) ·

[
φkC,g′,l cos(kϕn) + φkS,g′,l sin(kϕn)

]}
+

+
χg(~r)

k

G∑
g′=1

νΣf,g′(~r)φg′,0

(2.55)

φg′,l ≈
Nd∑
m=1

wmPl(µm)ψg′(µm, ϕm) (2.56)

φkC,g′,l ≈
Nd∑
m=1

wmP
k
l (µm) cos(kϕm)ψg′(µm, ϕm) (2.57)

φkS,g′,l ≈
Nd∑
m=1

wmP
k
l (µm) sin(kϕm)ψg′(µm, ϕm) (2.58)

Although the Discrete Ordinates method might be the simplest method, this
method suffers from a limitation called ray effect in 2D and 3D geometries

22

2.2 Neutron Transport Equation

(Lathrop 1968). The ray effect is an oscillation of the flux distribution about
its exact value that can be observed in cases with very little scattering and
localized sources. This is caused by the discretization of the angular variable
over the directions of the quadrature, producing a numerical solution which is
represented as a sum of delta distributions in angle, though the exact solution
is a continuous distribution in angle.

Furthermore, there are other methods to deal with the Neutron Transport
Equation, such as the Method of Characteristics and the Collision Probabil-
ity, but they solve other formulations of Equation 2.42. On the one hand,
the Method Of Characteristics solves the characteristic form of the transport
equation by following the straight neutron paths of the neutron as it moves
across the complete domain, as discussed in Askew 1972. The explanation of
the characteristic formulation is beyond the scope of this work, but it corre-
sponds to an integration of ∇~Ωψ over the characteristic, which is a straight
line direction ~Ω corresponding to the particle trajectory. On the other hand,
the Collision Probability method is obtained from the spatial discretization of
the integral formulation of the Neutron Transport Equation assuming isotropic
particle sources. One obtains this integral formulation by integrating the an-
gular flux along its characteristic, for a given value of the source density. The
interested reader might find further details in the literature, for example in
Hébert 2009.

All the methods mentioned in this section are deterministic methods, that is,
they discretize the independent variables of the Neutron Transport Equation
in order to obtain the neutron distribution. By contrast, there is one method
which does not need to discretize this equation, the Monte Carlo method. This
method obtains the neutron distribution by simulating the different events that
can occur in the domain, which are the nuclear interactions and reactions. In
this method, these events are simulated in a sequential form by taking into
account the probabilities of occurrence and using random numbers, thus, it is
a stochastic method. Therefore, the solution of the problem is equivalent to
a sampling of the different events. The major capability of the Monte Carlo
method is the solution of complex problems in terms of energy and geometry.
It can solve continuous energy problems and different types of geometry due to
the fact that it does not deal with the integral form of the Transport Equation.
Nevertheless, this method implies errors because of the statistical resolution,
which can be reduced by increasing the number of events simulated, thereby,
increasing the computational time.

23

Chapter 2. State of the art

Finally there is a large number of codes for solving the Neutron Transport
Equation by means of the deterministic methods described in this section. Ex-
amples of these are: CASMO (Edenius et al. 1995), NEWT (DeHart and Jessee
2005), Polaris (Jessee et al. 2014), Denovo (Evans et al. 2010), DRAGON (Mar-
leau, Hébert, and Roy 2011), TORT (Rhoades and Simpson 1997), APOLLO2
(Sanchez et al. 1988), CRONOS2 (Lautard, Loubiere, and Fedon-Magnaud
1990), MPACT (Kochunas et al. 2013), PARTISN (Alcouffe et al. 2005), TI-
TAN (Yi 2009), DANTSYS (Alcouffe et al. 1995), VARIANT (Palmiotti,
Lewis, and Carrico 1995), DeCART (Cho et al. 2003), ATILLA (Wareing,
McGhee, and Morel 1996), etc. There are also several Monte Carlo codes,
such as: MCNP (Brown 2003), KENO (Goluoglu et al. 2011), SERPENT
(Leppänen 2013), etc.

2.3 Spatial Discretization

The spatial discretization of some domain consists in transforming the domain
into a set of elements with simple geometry and composed of only one material.
This set of elements is called a mesh, which can be classified in two types:
structured and unstructured meshes.

Structured meshes are those whose elements have a regular connectivity, so one
can store them in 2D or 3D dimensional arrays. The main advantage of the
structured meshes is that the neighborhood relations are defined by storage
arrangement, and consequently they required less pre-processing operations.
The major drawback of structured meshes is that they cannot model accurately
realistic reactor geometry. Examples of 3D structured meshes are: Cartesian,
cylindrical and spherical meshes. Each of these meshes divides the domain in
each of their 3 independent variables: (x, y, z) for Cartesian meshes, (r, ϕ, z)
for cylindrical meshes and (r, ϕ, θ) for spherical meshes. In addition, some
hexagonal meshes could have a regular connectivity, so one could consider
these particular meshes as structured meshes too.

By contrast, unstructured meshes are those whose elements do not have a reg-
ular connectivity. These meshes can have any and several kind of elements,
like triangles, quadrangles or any polygon in 2D; tetrahedra, pyramids, hexa-
hedra or any polyhedron in 3D. The main advantage of these meshes is that
they can model any kind of geometry. However, the major downside is that
they require more pre-processing operations than the structured meshes. In
unstructured meshes, elements are numbered sequentially, as are faces, nodes,
and other geometric quantities. This means that there is no direct way to link

24

2.3 Spatial Discretization

various entities together based on their indices alone. Thus local connectivity
has to be defined explicitly starting with determining the geometric quantities
for a particular element, as explained in Moukalled, Mangani, and Darwish
2015.

The disctretization of the geometry with structured meshes is straightforward,
but one should use grid generators to discretize efficiently the domain with
unstructured meshes. There is a large number of free and open-source or com-
mercial mesh generators, such as Gmsh, enGrid, Netgen, Discretizer, snappy-
HexMesh, ICEM-CFSD, CUBIT, etc. In this work, the author used Gmsh
(Geuzaine and Remacle 2009), which is a free 3D finite element grid generator
with a built-in Computer-aided design engine and post-processor. The author
chose this grid generator due to four reasons. First, it is fast and user-friendly.
Second, it can generate tetrahedral and hexahedral meshes. Third, it is free
and open-source. Fourth, the developers keep it up to date.

As regards the geometry of nuclear reactor cores, these cores are composed of
a number of fuel assemblies arranged in a certain configuration. The geometry
of the fuel assemblies and the configuration depends on the type of reactors.
Figure 2.3 shows some fuel assemblies for PWR and VVER. As a commercial
nuclear reactor core might have hundreds of fuel assemblies, one habitually
homogenizes each fuel assembly to perform full reactor core calculations. Con-
sequently, one obtains homogenized parallelepipeds for PWR or BWR and
homogenized hexagonal prisms for VVER, as shown in Figure 2.4. So, one can
conclude that one can apply structured meshes for modeling LWR, but it is not
straightforward for VVER. Finally, the calculations without homogenization
might require unstructured meshes to deal with the details of the geometry.

PWR VVER

Figure 2.3: Fuel assemblies [www.world-nuclear.org]

25

Chapter 2. State of the art

PWR VVER

Figure 2.4: Configuration of fuel assemblies within typical cores

When one performs the homogenization of each assembly, one has to define
cross sections, and also diffusion coefficients for the Neutron Diffusion Equa-
tion, for the homogenized assembly. These homogenized cross sections should
be calculated to conserve in each assembly not only the interaction rates, but
also the leakage rates.

Next, the homogenization problem and the main methods are presented, al-
though the goal of this section is not to fully explain the homogenization meth-
ods. As regards the conservation of the interaction rates, one can define the
conservation of certain interaction rate of type x, energy group g, in the as-
sembly i as shown in Equation 2.59. In this equation, φg(~r) is the neutron
flux distribution, for the energy group g, of the assembly without homogeniza-
tion, whereas φ̂g(~r) is the neutron flux distribution, for the energy group g, of
the homogenized assembly. Thus, one could calculate the homogenized cross
section for this assembly (Σi

x,g) with Equation 2.60, if one knew φg(~r) and
φ̂g(~r).

Σi
x,g

∫
Vi

φ̂g(~r)dV =

∫
Vi

Σx,g(~r)φg(~r)dV (2.59)

Σi
x,g =

∫
Vi

Σx,g(~r)φ(~r)dV∫
Vi
φ̂(~r)dV

(2.60)

On the other hand, one can define the conservation of the leakage rates for the
Neutron Diffusion Equation as in Equation 2.61. In this equation, Di

g is the

26

2.3 Spatial Discretization

diffusion coefficient for the homogenized assembly i and energy group g, and
Sj is the face j of the assembly. Similarly, if ~Jg(~r) is known, one can calculate
Di
g as in Equation 2.62. However, in this equation one can appreciate that

Di
g might have different values depending on the face j, but one needs cell

averaged values of Di
g for the homogenized assembly. This issue introduces

the first problem of the homogenization process: one cannot guarantee the
conservation of the leakage rates, if one uses a cell averaged diffusion coefficient
without adding additional equations. The second problem is that φ̂g(~r) is not
known, and clearly the spatial distribution might be different from the spatial
distribution of φg(~r).

Di
g

∫
Sj

~∇φ̂(~r)dS =

∫
Sj

~Jg(~r)dS (2.61)

Di
g =

∫
Sj
~Jg(~r)dS∫

Sj
~∇φ̂(~r)dS

(2.62)

There are two main class of methods for calculating these homogenized cross
sections and diffusion coefficients, while conserving the interaction and leakage
rates: Discontinuity Factors (DFs) and SPH factors. The Discontinuity Fac-
tors were introduced in the Equivalence Theory (Wagner and Koebke 1983,
Smith 1986). The Equivalence Theory is based on three points. First, the
conservation of the neutron flux in each assembly (

∫
Vi
φ̂g(~r)dV =

∫
Vi
φg(~r)dV)

to obtain the homogenized cross sections in each assembly. Second, the con-
servation of the leakage rate in the whole assembly to calculate a homogenized
diffusion coefficient for each assembly. Third, use of DFs in each face of the
assembly to take into account the conservation of the leakage rates at each
face. The DFs proposed in Smith 1986 add extra equations in the faces by
considering that φ̂g(~r) might be discontinuous at the interfaces of different as-
semblies. Equation 2.63 defines these DFs for the energy group g, region V1

and the interface ~rV1∩V2
. Once these DFs are known, one uses them to redefine

the flux continuity of the homogenized problem, as shown in Equation 2.64.
This equation guarantees the continuity of the neutron flux for the assembly
without homogenization. Although this DFs are widely used, other authors
have used other definitions, such as Current Discontinuity Factors (Sanchez
2009).

27

Chapter 2. State of the art

DFg(~rV1∩V2
∈ V1) =

φg(~rV1∩V2
∈ V1)

φ̂g(~rV1∩V2
∈ V1)

(2.63)

DFg(~rV1∩V2
∈ V1)·φ̂g(~rV1∩V2

∈ V1) = DFg(~rV1∩V2
∈ V2)·φ̂g(~rV1∩V2

∈ V2) (2.64)

The SPH factors were introduced in the superhomogenization method (Kavenoky
1980, Hébert and Kavenoky 1981). These factors are calculated to conserve
the interaction and leakage rates in the homogenized assembly. The method
consists in calculating the SPH factor µg,i for each energy group g and assem-
bly i, as shown in Equation 2.65. By means of this SPH factor, one calculates
the homogenized cross sections as in Equation 2.66. Since φ̂(~r) depends on
the homogenized cross section, one has to determine this factor by iterative
calculations. Further details about this calculation can be found in Hébert and
Kavenoky 1981 and Hébert 2009.

µg,i =

∫
Vi
φ(~r)dV∫

Vi
φ̂(~r)dV

(2.65)

Σi
x,g =

∫
Vi

Σx,g(~r)φ(~r)dV∫
Vi
φ̂(~r)dV

= µg,i

∫
Vi

Σx,g(~r)φ(~r)dV∫
Vi
φ(~r)dV

(2.66)

2.4 Finite Volume Method

The Finite Volume Method (FVM) is a numerical method that transforms
the partial differential equations representing conservation laws over differ-
ential volumes into discrete algebraic equations over finite cells or elements,
as discussed in Moukalled, Mangani, and Darwish 2015. Basically, the FVM
transforms the partial differential equations into algebraic equations by inte-
grating them over each discrete element (Vi), obtaining cell averaged values of
the unknowns and face averaged values of the divergence terms, as stated in
Moukalled, Mangani, and Darwish 2015 or Hoffmann and Chiang 2000.

Next, the author will give an example of the FVM for the partial differential
equation of Equation 2.67, in which f(~r) is an arbitrary function and a is a
constant coefficient. Equation 2.68 shows the application of the FVM to the
previous partial differential equation. One can see in Equation 2.68 the use
of the Divergence theorem for transforming the cell integrals (Vi) into face

28

2.4 Finite Volume Method

integrals (S). In addition, the example considers that the face S of the cell
Vi is composed of nf faces Si,j. Finally, one can see the use of cell averaged
values fi, defined in Equation 2.69, and face averaged values fi,j, defined in
Equation 2.70.

0 = ∇f(~r) + af(~r) (2.67)

0 =

∫
Vi

∇f(~r)d~r +

∫
Vi

af(~r)d~r =

∮
S

f(~r)d~r +

∫
Vi

af(~r)d~r =

=

nf∑
j=1

∫
Si,j

f(~r)d~r +

∫
Vi

af(~r)d~r =

nf∑
j=1

fi,jSi,j + afiVi (2.68)

fi =

∫
Vi
f(~r)d~r

Vi
(2.69)

fi,j =

∫
Si,j

f(~r)d~r

Si,j
(2.70)

Once the geometry is discretized in Nc cells, one can apply Equation 2.68 to
each cell obtaining an algebraic system, which one has to solve to determine
the cell averaged values fi. The downside of the method is that the face
averaged values fi,j are not known, so one has to guess these values from the
cell averaged ones. However, FVM has two main strengths, as discussed in
Moukalled, Mangani, and Darwish 2015 and in Hoffmann and Chiang 2000.
First, it is strictly conservative, since the flux entering a given cell is identical
to that leaving the adjacent cell. Second, it can be formulated in the physical
space on unstructured polygonal meshes.

There is a number of interpolation schemes to determine the face averaged val-
ues, as discussed in Moukalled, Mangani, and Darwish 2015. The schemes most
known are: central difference (or linear interpolation), upwind, second order
upwind, QUICK (Quadratic Upstream Interpolation for Convective Kinemat-
ics), FROMM, least squares, moving least squares, High Resolution schemes
and Gudonov-type schemes.

Figures 2.5-2.9 display the first interpolation schemes, from central difference to
FROMM. In these figures, i1, i2 and i3 are the cells; fi is the cell averaged value
for cell i and fj is the face averaged value for face j, which is the interpolated

29

Chapter 2. State of the art

value; ~u is the direction of the flux. These figures show clearly the interpolation
for all schemes. Nevertheless, the author would like to point out that QUICK
obtains fj by considering a quadratic function of f in which fi = f(i). As
regards the accuracy, upwind is first order accurate, QUICK is third order
accurate, and the rest are second order accurate. Although upwind is the least
accurate, it is the most stable. The numerical stability is of great interest in the
numerical solution, because it is related with the production of oscillations in
the numerical solution, which are a non-physical behavior of the real solution.
Another important issue is the numerical diffusion due to the methods used
for discretizing the equations. These methods might model the diffusion terms
of the equations with a different behavior of the real system.

Figure 2.5: Central difference scheme

Figure 2.6: Upwind scheme

Other schemes are those based on least squares or moving least squares. Least
squares schemes consist in expanding f as a sum of n polynomial terms pk(x, y, z),
whose coefficients ak are not known, as shown in Equation 2.71. Then, one
calculates these coefficients by solving the least squares problem to minimize

30

2.4 Finite Volume Method

Figure 2.7: Second order upwind scheme

Figure 2.8: QUICK scheme

Figure 2.9: FROMM scheme

31

Chapter 2. State of the art

the error of Equation 2.72. In this equation, fil is the cell averaged value
of f in cell il, m is the number of cells considered for the interpolation, and
(xil , yil , zil) are the coordinates of the centroid of cell il. Likewise, moving least
squares schemes also expand the function in the same way, but one minimizes
the error of Equation 2.73. The only difference is that the error is weighted
by a function W (x, y, z), with the purpose of obtaining smooth interpolations.
One can find examples of this method in Cueto-Felgueroso et al. 2007.

f(x, y, z) ≈
n∑
k=1

akpk(x, y, z) (2.71)

error =
m∑
l=1

(f(xil , yil , zil)− fil)
2

=
m∑
l=1

(
n∑
k=1

akpk(xil , yil , zil)− fil

)2

(2.72)

error =
m∑
l=1

(f(xil , yil , zil)− fil)
2
W (x, y, z) (2.73)

On the other hand, High Resolution schemes were developed to obtain sec-
ond or higher order accuracy without oscillations. There is a number of these
schemes, but the most known and used are: MUSCL and WENO. MUSCL
(Monotonic Upwind Scheme for Conservation Laws) was first defined in Van
Leer 1997. Basically, MUSCL combines first and second order schemes in a
non-linear way to obtain a scheme which is stable second order accurate. For
example, one might combine upwind and central difference schemes of Figures
2.6 and 2.5 as in Equation 2.74, with a weight δ depending on the ratio of the
slopes sDi2,j and sUi2,j defined in Equations 2.75 and 2.76. Likewise, one may
combine upwind and second order upwind schemes as in Equation 2.77. There
could be a large number of combinations, but one can define a general formu-
lation of MUSCL as in Equation 2.78, in which h can be any function of fUi2,j
and fDi2,j, which are defined in Equations 2.79 and 2.80. In these last equations,
SL is a slope limiter function. There are a wide variety of slope limiters, such
as: CHARM (Zhou 1995), HCUS (Waterson and Deconinck 1995), HQUICK
(Waterson and Deconinck 1995), Koren (Koren 1993), minmod (Roe 1986), su-
perbee (Roe 1986), ospre(Waterson and Deconinck 1995), smart (Gaskell and
Lau 1988), Sweby (Sweby 1984), van Leer (Van Leer 1997), etc.

fj = δ

(
sUi2,j
sDi2,j

)
· fi2 +

[
1− δ

(
sUi2,j
sDi2,j

)]
·
[
fi2 +

rj − ri2
ri3 − ri2

(fi3 − fi2)
]

(2.74)

32

2.4 Finite Volume Method

sDi2,j =
fi3 − fi2
ri3 − ri2

(2.75)

sUi2,j =
fi2 − fi1
ri2 − ri1

(2.76)

fj = δ

(
sUi2,j
sDi2,j

)
· fi2 +

[
1− δ

(
sUi2,j
sDi2,j

)]
·
[
fi2 +

rj − ri2
ri2 − ri1

(fi2 − fi1)
]

(2.77)

fj = h
(
fUi2,j, f

D
i2,j

)
(2.78)

fUi2,j = fi2 + SL

(
sUi2,j
sDi2,j

)
· sUi2,j · (rj − ri2) (2.79)

fDi2,j = fi2 + SL

(
sUi2,j
sDi2,j

)
· sDi2,j · (rj − ri2) (2.80)

On the other hand, the general formulation of WENO (Weighted Essentially
Non Oscillatory) was developed in Shu 1998. The method consists in calculat-
ing fj as a weighted sum of different values f sj as shown in Equation 2.81, in
which the weights ws depend on the cell averaged values fi. First, these values
f sj are interpolated values of f , in face j, from certain set s containing ns cell
averaged values fi. To calculate f sj , one expands f as a sum of ns polynomials
ps,k with coefficients as,k, as shown in Equation 2.82. One can calculate these
coefficients as,k by substituting the coordinates and values of cells ik, so one
obtains f sj as a weighted sum of fi, as one can see in Equation 2.82. The author
does not include in this section the calculation of the weights ws because of the
extent of the explanation, but the interested reader can obtain the complete
definition in Shu 1998.

fj =
n−1∑
s=0

wsf
s
j (2.81)

f sj =
ns∑
k=1

as,kps,k(rj) =
ns∑
k=1

bs,kfik (2.82)

33

Chapter 2. State of the art

In addition, Godunov-type methods are an important class of numerical meth-
ods for hyperbolic conservation laws, since these equations contain time deriva-
tives terms. These methods use the exact solution of the Riemann problem
and do not produce oscillations around discontinuities (Berkenbosch, Kaasschi-
eter, and Thije Boonkkamp 1994). Basically, Godunov-type methods assume
a piecewise constant numerical solution in each cell and the time evolution of
the solution is obtained by solving an initial value Riemann problem in each
computational cell (Macian-Juan and Mahaffy 1998).

Finally, an excellent review of the different schemes is performed in Macian-
Juan and Mahaffy 1998. This work stated that simple second order methods
have a good behavior in smooth regions, yet these methods suffer from oscilla-
tory behavior around discontinuities. Moreover, the work highlights the use of
high order methods with flux limiters to increase the accuracy of the solution
and avoid the oscillations near the discontinuities. An important drawback of
these methods is that these limiter functions might depend on the flux, so one
has to perform an iterative calculation to solve the algebraic system.

2.5 Calculation of Eigenvalue Problems

Eigenvalue problems coming from discretized systems of equations are ex-
pressed in matrix form as in Equation 2.83, in which A and B are square
matrices, x is the eigenvector and λ is the eigenvalue. If matrix B is non-
singular, one can define the standard eigenvalue problem as in Equation 2.84,
in which A = B−1A. One might obtain the eigenvalues of 2.84 by finding the
roots of the characteristic polynomial or by diagonalizing A. However, these
operations are costly for large matrices. Fortunately, these matrices are sparse
and one might need only few eigenvalues. In this case, there are other kind
of methods solving this kind of eigenvalue problems in a more efficient way,
which are the iterative methods.

Ax = λBx (2.83)

Ax = λx (2.84)

The iterative methods for solving eigenvalue problems can be classified in: Sin-
gle Vector Iteration, Subspace Iteration, Krylov subspace, Davidson methods,
Newton Methods and Block Newton Methods. Single Vector Iteration methods

34

2.5 Calculation of Eigenvalue Problems

were the first ones employed in the sparse eigenvalue scenario. These methods
come from the observation that a vector that is repeatedly multiplied by ma-
trix A usually tends to align in the direction of the eigenvector associated to
its dominant eigenvalue. The ones most known are: Power Iteration, Inverse
Iteration and Rayleigh Quotient Iteration. Nevertheless, these methods might
be the least competitive for calculating multiple eigenvalues. More competitive
methods for calculating multiple eigenvalues are Subspace Iteration and Krylov
subspace methods, which are classed in the group of projection methods. A
great overview of projection methods is performed in Saad 1983, particularly
for large sparse eigenvalue problems. As regards Subspace Iteration methods,
they can be seen as a generalization of the Power Iteration Method in the sense
that they iterate simultaneously on m initial vectors, instead of just one. In
spite of this enhancement, Subspace Iteration methods are generally inferior to
Krylov subspace methods. Examples of Krylov subspace methods are: Arnoldi,
Lanczos and Krylov-Schur methods. Krylov subspace methods are widely used
to compute the eigenvalues in the extremes of the spectrum of standard eigen-
value problems, because they are the most competitive. Nonetheless, Davidson
methods may present better performance computing interior eigenvalues close
to a given target. The author will give a brief overview of each method in
the following paragraphs, except the Davidson methods, because the impor-
tant eigenvalues in Reactor Physics are those of the extremes of the spectrum.
Finally, Newton Methods can be very fast and suitable, particularly for non-
linear problems or generalized eigenvalue problems. A special case of Newton
Methods are the Block Newton Methods, which have the same features as the
Newton Methods, but they are used for calculating several eigenvalues in an
efficient way.

The Power Iteration method consists in premultiplying a vector x0 by matrix A
repeatedly, that is, generating the sequence of vectors Akx0. If A has a unique
eigenvalue of largest modulus λ1, and x0 is not deficient in the direction of the
corresponding eigenvector x1, the method converges to a multiple of x1. The
rate of convergence is linear and depends on the factor |λ1/λ2|, being λ2 the
next largest eigenvalue in magnitude. Therefore, convergence might be slow if
these two eigenvalues are close in magnitude and will not be achieved at all
in the case that there is no unique dominant eigenvalue. One can find some
algorithms of this method in Hernandez et al. 2005a.

The Inverse Iteration method is similar to the Power Iteration method, but one
iterates with the matrix A−1 instead of the original matrix A. The method is
often combined with shifts of origin so vectors are multiplied by (A − σI)−1,
obtaining the eigenvalue of A that is closest to scalar σ and the corresponding

35

Chapter 2. State of the art

eigenvector. The main advantage of this method is a faster convergence due to a
better separation of the eigenvalues, although it is still linear. The disadvantage
is that it has to deal with the inverse, but it is not necessary to compute
the inverse explicitly. Instead, a linear system of equations is solved at each
iteration. This issue will be discussed few paragraphs after. Some algorithms
of this method are given in Hernandez et al. 2005a.

The Rayleigh Quotient Iteration uses the same approach as that of the Inverse
Iteration method, but it changes σ during the iteration process, being σ the
Rayleigh quotient of the last approximate eigenvector (y), as shown in Equation
2.85. This method has two major drawbacks. First, it might converge to an
eigenvalue which is not the closest to the initial σ. Second, its higher cost
because it requires a factorization at every iteration. One could see some
algorithm of this method in Hernandez et al. 2005a.

σ =
y∗Ay
y∗y

(2.85)

Subspace Iteration methods compute approximations of the eigenvalues and
eigenvectors by projecting the problem onto the subspace spanned by the
columns of AkX0, where X0 is the initial set of vectors and k is the current
iteration number. The reader can find more information in Hernandez et al.
2005b.

Arnoldi methods compute an orthonormal basis of the Krylov subspace of order
m associated with matrixA and initial vector x0. This Krylov subspace is given
in Equation 2.86. Projection methods for eigenvalue problems are intended for
computing a partial eigensolution, that is, given a square matrix A of order N ,
the objective is to compute a small number of eigenpairs, λi , xi , i = 1, · · · ,m,
with m� N . The Arnoldi method computes not only this orthonormal basis
(Vm), but also the projected matrix H, the upper Hessenberg matrix, at the
same time and in an efficient and numerically stable way.

Km(A, x0) = span
{
x0,Ax0,A2x0, · · · ,Am−1x0

}
(2.86)

This projection method calculates the eigenvalue problem Hyi = θiyi, of order
m, instead of Axi = λixi, of order N . Taking into account that (H = V T

mAVm)
and (V T

mVm = Im), one concludes that the pair (λi,Vmyi) can be taken as an
approximation of the eigenpair (λi,xi) of matrix A. This method will converge
very fast, if the initial vector x0 is rich in the direction of the wanted eigen-

36

2.5 Calculation of Eigenvalue Problems

vectors, which is usually not the case. So, many iterations may be required,
which implies a growth in storage requirements and computational time. A so-
lution for this problem is to stop after some iterations and restart the method,
by using a new initial vector computed from the recently obtained spectral
approximations.

Different approaches can be used for the restart: explicit and implicit. Explicit
algorithms calculate the initial vector as a linear combination of the computed
eigenvectors, but it is difficult to choose the appropriate parameters. Implicit
algorithms combine the Arnoldi process with the implicitly shifted QR algo-
rithm, in which an m-step Arnoldi factorization is compacted into an (m -
d)-step Arnoldi factorization, which retains the relevant eigeninformation of
the large factorization. The implementation of the implicit restart in a numer-
ically stable way is difficult, but it could be solved by using a Krylov-Schur
decomposition, which is the one used in Krylov-Schur methods.

Lanczos methods are related to the Arnoldi methods, since Lanczos can be
seen as a particular case of Arnoldi when the matrix is symmetric. However,
Lanczos methods obtains a tridiagonal matrix, instead of the upper Hessenberg
matrix (H), by a simple three-term recurrence formula. One can find further
details of this formula in Hernandez et al. 2006.

Krylov-Schur methods are Arnoldi methods that use a Krylov-Schur decom-
position instead of Krylov decompositions. This means that one obtains the
real Schur form of A, instead of the upper Hessenberg matrix; this real Schur
form is an upper triangular matrix. The method is developed in Stewart 2002
and one can find several algorithms in Hernandez et al. 2007.

Newton methods are not specific methods for calculating eigenvalue problems,
but they can be very effective, particularly if one knows a close estimation
of the eigenvectors, or for non-linear eigenvalue problems (Anselone and Rall
1968), or for generalized eigenvalue problems. For the generalized eigenvalue
problem of Equation 2.83, one can define the function F = 0, which is used in
Newton methods, as in Equation 2.87. In this equation, fnorm is a normaliza-
tion function, which is not unique. Then, one performs an iterative calculation
for calculating the eigenpairs (xn+1, λn+1) by using Equation 2.88 and solving
the linear system of Equation 2.89, where J is the Jacobian of F . The main
drawback of Newton methods is the calculation of the Jacobian and the solu-
tion of the linear system of Equation 2.89. Nonetheless, one can overcome this
drawback by using Jacobian Free Newton Krylov methods (JFNK). Further
details about JFNK methods can be found in Knoll and Keyes 2004.

37

Chapter 2. State of the art

0 = F (x, λ) =

(
Ax− λBx
fnorm(x, λ)

)
=

(
Ax− λBx
xTx− 1

)
(2.87)

(
xn+1

λn+1

)
=

(
xn
λn

)
+

(
δxn
δλn

)
(2.88)

J(xn, λn)

(
δxn
δλn

)
= −F (xn, λn) (2.89)

Regarding the eigenvalue problems of the Neutron Diffusion and Transport
Equations, several eigenvalue problems can be defined, but the eigenvalue
problems most commonly used are: the λ-eigenvalue problem for commercial
reactors and the α-eigenvalue problem for sub-critical systems, like accelerator
driven sub-critical systems. Several authors used different projection methods
for calculating multiple eigenvalues of these problems.

On the one hand, several authors applied Subspace Iteration methods for calcu-
lating the λ-eigenvalue problem of the Neutron Diffusion Equation discretized
with different methods (Döring, Kalkkuhl, and Schröder 1993, Verdú et al.
1994, and Modak and Jain 1996). Another work applied Subspace Itera-
tion methods to the Neutron Diffusion Equation for the α-eigenvalue problem
(Singh et al. 2009). Moreover, other works applied Subspace Iteration methods
to the α-eigenvalue problem of the Neutron Transport Equation (Gupta and
Modak 2011, and Kophazi and Lathouwers 2012).

On the other hand, there are a number of works applying the Implicit Restarted
Arnoldi Method to the mentioned eigenvalue problems: λ-eigenvalue problem
of the Neutron Diffusion Equation (Verdú et al. 1999), α-eigenvalue problem
of the Neutron Diffusion Equation (Verdu et al. 2010), λ-eigenvalue problem
of the Neutron Transport Equation (Warsa et al. 2004) and α-eigenvalue prob-
lem of the Neutron Transport Equation (Lathouwers 2003, and Kophazi and
Lathouwers 2012). Actually, one can find a comparison of Subspace Iteration
and Implicit Restated Arnoldi methods, for the α-eigenvalue problem of the
Neutron Transport Equation, in Kophazi and Lathouwers 2012. This work
concluded that the Implicit Restated Arnoldi method was superior in terms of
computational time.

In the last years, a number of works has been published, which use Krylov-
Schur methods to calculate multiple eigenvalues of the λ-eigenvalue problem,
of the Neutron Diffusion Equation (Bernal et al. 2017a, Vidal-Ferrandiz et al.

38

2.5 Calculation of Eigenvalue Problems

2014, Bernal et al. 2018, Theler 2013, and Carreño et al. 2017). Actually, one
can find a great analysis of the application of Krylov-Schur methods for the
calculation of different kinds of eigenvalue problems of the Neutron Diffusion
Equation in Carreño et al. 2017.

As regards Newton methods, one can find several works applying JFNK meth-
ods for the calculation of the first eigenvalue for the Neutron Diffusion and
Transport Equations (Gill and Azmy 2011, and Gill et al. 2011), but one
might find only one work calculating multiple eigenvalues (Mahadevan and
Ragusa 2008). On the other hand, there are several works using Block Newton
Methods for calculating multiple eigenvectors (González-Pintor, Ginestar, and
Verdú 2011, and González-Pintor, Ginestar, and Verdú 2013).

Another important issue in the calculation of eigenvalues is the solution of
linear systems. This is particularly useful for calculating the product of the
inverse of a matrix and a vector. The calculation of the inverse of a matrix is
very costly, so it is better to solve a linear system as shown in Equation 2.90,
where b is a vector. For small matrices A, one can use Gaussian elimination,
Cramer’s rule or LU decomposition. These methods are called direct meth-
ods and they solve accurately the linear system, but they are costly for large
matrices. For larges matrices, it is worth using iterative methods, but their
use is limited depending on the condition number of the matrix of the system.
The use of iterative or direct solvers depends on the condition number and size
of the matrices. For well-conditioned and large matrices, iterative solvers are
faster and require less memory resources than direct solvers. By contrast, for
matrices with bad condition numbers, iterative solvers might not converge, so
one should use direct solvers.

x = A−1b→ Ax = b (2.90)

In linear systems, the condition number of a matrix can be seen as a bound
on how inaccurate the solution x will be after applying a numerical method.
This inaccuracy does not take into account the effects of round-off errors. In
addition, the condition number is a property of the matrix, not the numerical
method used to solve the corresponding system. One can calculate the condi-
tion number as the ratio of the largest singular value to the smallest one, as
shown in Equation 2.91.

C =
σlargest(A)

σsmallest(A)
(2.91)

39

Chapter 2. State of the art

There is a wide variety of iterative methods for solving linear systems, but the
state of the art are those combining Krylov subspace methods and a precondi-
tioner. Krylov subspace methods might be faster than direct methods, but the
rate of convergence of these methods for a particular linear system is strongly
dependent on their spectrum. A preconditioner is a matrix multiplying a lin-
ear system, which alters the spectrum of the linear system, and consequently
accelerates the convergence of the iterative method. The explanation of all the
methods is beyond the scope of this thesis, so the author will name the iterative
methods and preconditioners most used. The main methods are: Bi-Conjugate
Gradient (BiCG) (Fletcher 1976), BiCGSTAB (Bi-Conjugate Gradient stabi-
lized) (Vorst 1992), Conjugate Gradients Squared (CGS) (Sonneveld 1989),
Generalized Minimal Residual (GMRES) (Saad and Schultz 1986), Generalized
Conjugate Residual (GCR) (Eisenstat, Elman, and Schultz 1983), etc. The
major preconditioners are: Jacobi, Incomplete LU, SOR, Additive Schwarz,
etc.

One can use all the methods mentioned above for solving eigenvalue problems
and linear systems, because there is a number of libraries containing differ-
ent algorithms of these methods. The state of the art for solving eigenvalue
problems and linear systems are SLEPc and PETSc respectively.

SLEPc, the Scalable Library for Eigenvalue Problem Computations (Hernan-
dez, Roman, and Vidal 2005; Hernandez, Roman, and Vidal 2003; Roman
et al. 2017), is a software library for the solution of large, sparse eigenprob-
lems on parallel computers. It provides projection methods or other methods
with similar properties, such as Krylov-Schur or Jacobi-Davidson. SLEPc is
built on top of PETSc (Portable, Extensible Toolkit for Scientific Computa-
tion) (Balay et al. 2017) and extends it with all the functionality necessary
for the solution of eigenvalue problems, which includes matrix operations and
solution of linear systems. PETSc provides several algorithms for different it-
erative methods, but there are other libraries providing better algorithms for
direct solvers, such as MUMPS (MUltifrontal Massively Parallel sparse direct
Solver) (Amestoy, Duff, and L’excellent 2000).

Other important libraries for solving linear algebra problems are: BLAS (Law-
son et al. 1979), LAPACK (Anderson et al. 1999), ScaLAPACK (Blackford
et al. 1997), ARPACK (Lehoucq, Sorensen, and Yang 1998), etc. In addition,
Matlab (Shampine and Reichelt 1997) is a software containing a number of al-
gorithms for solving different kind of mathematical problems, and particularly,
linear systems and eigenvalue problems.

40

2.6 Time dependent Ordinary Differential Equations

The BLAS (Basic Linear Algebra Subprograms) are routines that provide stan-
dard building blocks for performing basic vector and matrix operations. Be-
cause the BLAS are efficient, portable, and widely available, they are commonly
used in the development of high quality linear algebra software, LAPACK for
example.

LAPACK (Linear Algebra PACKage) provides routines for solving systems
of simultaneous linear equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value problems. The associated
matrix factorizations (LU, Cholesky, QR, SVD, Schur, generalized Schur) are
also provided, as are related computations such as reordering of the Schur
factorizations and estimating condition numbers. Dense and banded matrices
are handled, but not general sparse matrices. In all areas, similar functionality
is provided for real and complex matrices, in both single and double precision.

The ScaLAPACK (or Scalable LAPACK) library includes a subset of LA-
PACK routines redesigned for distributed memory Multiple Instruction Mul-
tiple Data (MIMD) parallel computers. It is currently written in a Single-
Program-Multiple-Data style using explicit message passing for interprocessor
communication. It assumes matrices are laid out in a two-dimensional block
cyclic decomposition.

ARPACK (ARnoldi PACKage) is a numerical software library written in FOR-
TRAN for solving large scale eigenvalue problems. Actually, this library was
designed to compute a few eigenvalues and corresponding eigenvectors of large
sparse matrices, by using the Implicitly Restarted Arnoldi Method or, in the
case of symmetric matrices, the corresponding variant of the Lanczos algo-
rithm.

2.6 Time dependent Ordinary Differential Equations

The spatially discretized time dependent Ordinary Differential Equation in the
Neutron Transport and Diffusion Equations are first order Ordinary Differen-
tial Equations. One can define first order Ordinary Differential Equations as
in Equation 2.92, in which y(t) and f(t, y) could be either functions or vectors.
Since f(t, y(t)) could be any function, the analytical solution of Equation 2.92
is not straightforward, and therefore one has to apply numerical methods for
solving this equation.

Basically, numerical methods discretize the differential term for certain time
interval [ti−1, ti], where one knows y(ti−1) and wants to calculate y(ti). A

41

Chapter 2. State of the art

simple approach is to discretize the differential terms as in Equation 2.93.
Then, one substitutes Equation 2.93 in Equation 2.92, so one obtains Equation
2.94. This method is the Euler method. Moreover, one should take into account
two important issues of this approach. First, which time value t should be
used in f(t, y(t)). If ones uses ti−1, the method is called Forward Difference
method, whereas if ones uses ti, the method is called Backward Difference
method. Second, the accuracy of the approach of the differential term.

dy(t)

dt
= f(t, y(t)) (2.92)

dy(t)

dt
≈ y(ti)− y(ti−1)

ti − ti−1

=
yi − yi−1

ti − ti−1

(2.93)

yi = yi−1 + (ti − ti−1) · f(t, y(t)) (2.94)

According to the time value t used in f(t, y(t)), one can classify the numerical
methods for first order Ordinary Differential Equations as explicit or implicit
methods. Explicit methods use ti−1, whereas implicit methods use ti. Implicit
methods are most stable than explicit methods, but the solution of the implicit
methods is more difficult than that of the explicit ones.

One could also discretize Equation 2.92 in [ti−1, ti] as in Equation 2.95. In
this equation, one might use different approaches for integrating numerically
f(t, y(t)). If one considers that f is a constant value in [ti−1, ti], Equation
2.95 will be the same as Equation 2.94. However, one could use higher order
methods to integrate f(t, y(t)). On the one hand, one could use the values
of y calculated in previous steps to perform the integration. On the other
hand, one could use more collocation points to perform the numerical integra-
tion. Depending on this criterion, the numerical methods are grouped in linear
multistep methods or multistage methods, as discussed in Butcher 2008.∫ ti

ti−1

dy(t)

dt
dt =

∫ ti

ti−1

f(t, y(t))dt→ yi = yi−1 +

∫ ti

ti−1

f(t, y(t))dt (2.95)

Linear multistep methods use the values of y and f calculated in the previous
time intervals to obtain an accurate calculation of the integration. Thus, these
methods transform Equation 2.95 into Equation 2.96, for k previous steps. In
this equation, as and bs are coefficients, which are calculated depending on the

42

2.6 Time dependent Ordinary Differential Equations

linear multistep method used. As one cannot know the values of yn for n > i,
one has to use the information of the previous steps to increase the accuracy
of the solution.

yi =
k∑
s=1

asyi−s + (ti − ti−1) ·
k∑
s=0

bsf(ti−s, yi−s) (2.96)

Multistage methods do not use the values of previous time intervals, but they
increase the number of collocation points in [ti−1, ti] to solve the integration.
These methods are also known as Runge-Kutta methods. The collocation
points ȳr are calculated as in Equation 2.97, where ar,i and br,j are coefficients
and k is the number of collocation points. Then, one substitutes the collocation
points in Equation 2.98, in which cr are coefficients. All these coefficients
depend on the kind of multistage method.

ȳr = f

(
ar,1ti−1 + ar,2ti, br,0yi−1 +

r−1∑
j=1

br,j ȳj

)
, r = 1, ..., k (2.97)

yi = yi−1 + (ti − ti−1) ·
k∑
r=1

crȳr (2.98)

In addition, one might use a combination of linear multistep and multistage
methods. These kind of methods are called general linear methods, as stated
in Butcher 2008.

Another kind of method is the exponential method. This method consist in
integrating analytically Equation 2.92. One can easily perform this integration,
if one defines the Ordinary Differential Equation as in Equation 2.99, where y is
a vector and A is a constant matrix. In this case, Equation 2.100 provides the
analytical integration for any value of time, where y0 is the initial condition,
that is, y0 = y(t0). In addition, one can calculate y for any time ti with a
recurrence formula, as shown in Equation 2.101.

dy(t)

dt
= Ay(t) (2.99)

y(t) = eA·(t−t0)y0 (2.100)

43

Chapter 2. State of the art

yi = y(ti) = eA·(ti−t0)y0 = eA·(ti−ti−1)eA·(ti−1−t0)y0 = eA·(ti−ti−1)yi−1 (2.101)

Although the exponential method provides an analytical solution of the inte-
gration of Equation 2.92, this solution is not the analytical one, because A
might change over time and might depend on y(t). However, for a short time
interval [ti−1, ti], A(t) would not have a strong variation. Consequently, one
could use the approach of Equation 2.102 and perform the analytical integra-
tion as in Equation 2.101. Thus, one can perform the analytical integration in
several short time intervals as in Equation 2.103 and updating matrix Ai for
the next intervals with Equation 2.102.

A(t) ≈ A(ti) = Ai (2.102)

yi = eAi·(ti−ti−1)yi−1 , i = 1, ..., n (2.103)

There are a number of libraries and software containing different algorithms for
solving first order Ordinary Differential Equations. Some of them are: PETSc
(Balay et al. 2017), Trilinos (Heroux et al. 2003), SUNDIALS (Hindmarsh et
al. 2005), Matlab (Shampine and Reichelt 1997), etc. The author also includes
in this section SLEPc (Hernandez, Roman, and Vidal 2005), as this library
includes a solver for calculating the exponential matrix, which is needed in the
exponential method.

As regards the time dependent Neutron Diffusion and Transport Equations,
one should apply implicit methods, because these are the only ones stable
(Stacey 2007, Hébert 2009). In particular, the Backward Difference method is
the most commonly used. Even with implicit methods, one should use short
time steps for obtaining accurate results. However, one could use high order
implicit methods to obtain accurate results with reasonable time steps, such as
the high order Backward method developed in Ginestar et al. 1998. The main
drawback of the implicit methods is that one has to solve large linear systems
in each time step. Although one might accelerate the calculation of these
linear systems, as done in Ginestar et al. 1998, one could use other methods to
avoid the calculation of a large number of linear systems. For this reason, the
Point Kinetics method was developed. This method assumes that the spatial
distribution of the neutron flux does not change over time, but calculates the
time variation of an amplitude multiplying this spatial distribution. Although
this method is very simple, it is only valid for homogeneous changes of cross

44

2.6 Time dependent Ordinary Differential Equations

sections, which do not happen in commercial nuclear reactors (Stacey 2007,
Hébert 2009). An improvement of the Point Kinetics method is the Quasi-
Static method (Ott 1966). This method considers that the solution is composed
of a time amplitude which changes fast over time and a shape function, or
shape vector, changing slowly over time. Thus, one uses two time scales for
calculating the solution: a short-time scale and a long-time scale. For the
short-time scale one uses the Point Kinetics method, whereas for the long-
time scale one updates the shape function (or vector) with an implicit method.
Several authors demonstrated the feasibility and accuracy of the Quasi-Static
method (Verdú et al. 1995, Goluoglu and Dodds 2001, and Dulla, Mund, and
Ravetto 2008).

45

Chapter 3

Steady State of the Neutron
Diffusion Equation with the

Finite Volume Method

3.1 Two-energy group Neutron Diffusion Equation

There are several approaches of the Neutron Diffusion Equation depending
on the energy discretization. The most commonly used in commercial nuclear
reactors is the two energy group discretization, without upscattering terms and
with production of neutron from fissions only in the first energy group. If ones
applies this approach to Equation 2.23, one obtains Equations 3.1 and 3.2 for
each energy group.

0 = −∇ ~J1(~r)− (Σa,1(~r) + Σs,1→2(~r))φ1(~r) +

+
1

k
(νΣf,1(~r)φ1(~r) + νΣf,2(~r)φ2(~r)) (3.1)

0 = −∇ ~J2(~r)− Σa,2(~r)φ2(~r) + Σs,1→2(~r)φ1(~r) (3.2)

47

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

One should apply numerical methods to the previous equations to obtain alge-
braic terms instead of the differential ones. Firstly, the geometry is discretized
by using a mesh generator, in particular Gmsh (Geuzaine and Remacle 2009),
as mentioned in Section 2.3. The discretized geometry will be composed of
cells such as tetrahedra or hexahedra for 3D or triangles or quadrangles for 2D,
containing only one homogenized material. Secondly, one applies the FVM to
Equations 3.1 and 3.2, producing Equations 3.3 and 3.4 for each cell i. In these
equations, nf is the number of faces for each cell, Jg,i,j is the face averaged
value of ~Jg at face j of cell i, Σi

s,1→2 is the value of Σs,1→2 in cell i, νΣi
f,g is

the value of νΣf,g in cell i and φg,i is the cell averaged value of φg in cell i. In
addition, for 3D, Sj is the area of the face j of cell i and Vi is the volume of
cell i; for 2D, Sj is the length of the face j of cell i and Vi is the area of cell i.

nf∑
j=1

SjJ1,i,j + Vi
(
Σi
a,1 + Σi

s,1→2

)
φ1,i =

1

k
Vi
(
νΣi

f,1φ1,i + νΣi
f,2φ2,i

)
(3.3)

nf∑
j=1

SjJ2,i,j + ViΣ
i
a,2φ2,i − ViΣi

s,1→2φ1,i = 0 (3.4)

Equations 3.3 and 3.4 do not contain derivatives, but Jg,i,j is not known. These
values are obtained by applying the FVM to Equation 2.15 producing Equation
3.5. In this equation, Di

g is the value of Dg in cell i and ~∇φg,i,j is the face
averaged value of the gradient of the neutron flux at face j for cell i. Equation
3.5 does not contain derivatives, because ~∇φg,i,j is a face averaged value.

Jg,i,j = −Di
g
~∇φg,i,j (3.5)

Since the geometry is discretized and might not be homogeneous, additional
interfaces equations are required, as discussed in Section 2.1. These equations
are the neutron current continuity and the flux continuity for each energy
group, which are defined in Equations 2.17 and 2.64 respectively. Equation
2.64 defines the flux continuity by using the Discontinuity Factors (DFs). If one
calculates the face averaged values of these equations, one obtains Equations
3.6 and 3.7, for face j, which is adjacent to cells i and l. It is important
to point out that both currents of Equation 3.6 are defined with outgoing
direction from their respective cells, so Equation 3.6 must contain the negative
sign to accomplish the continuity of Equation 2.17. Furthermore, in Equation
3.7, DFg,i,j is the Discontinuity Factor for the face j of cell i for the energy
group g. Moreover, one typically uses Assembly Discontinuity Factors (ADFs)

48

3.1 Two-energy group Neutron Diffusion Equation

instead of DFs, as stated in Smith 1986. Therefore, one can formulate the
continuity of Equation 3.7 as in Equation 3.8.

Jg,i,j = −Jg,l,j → −Di
g
~∇φg,i,j = Dl

g
~∇φg,l,j (3.6)

DFg,i,jφg,i,j = DFg,l,jφg,l,j (3.7)

ADFg,i,jφg,i,j = ADFg,l,jφg,l,j (3.8)

Likewise the previous equations, one should obtain face averaged values of the
boundary conditions defined in Section 2.1, so one transforms Equations 2.18-
2.21 into Equations 3.9-3.12. In Equations 3.11 and 3.12, αg,j is the albedo for
the energy group g and face j. One can define these four types of boundary
conditions in a general formulation as in Equation 3.13, in which bj,1 and bj,2
depends on the boundary condition, as shown in Table 3.1.

φg,i,j = 0 (3.9)

~∇φg,i,j = 0→ Jg,i,j = 0 (3.10)

Jg,i,j −
1− αg,j

2(1 + αg,j)
φg,i,j = 0 (3.11)

Jg,i,j − αg,jφg,i,j = 0 (3.12)

bj,1Jg,i,j + bj,2φg,i,j = 0 (3.13)

Finally, let us consider the number of equations and the number of unknowns to
solve the problem defined by Nc number of cells, Nb number of boundary faces
and Nf number of inner faces. As regards the equations, for each energy group,
one has Nc cells equations corresponding to Equation 3.3 or 3.4 in each cell,
2Nf continuity equations corresponding to Equations 3.6 and 3.8 at each inner
face, Nb boundary conditions corresponding to Equation 3.13 at each boundary
face. These equations provide a total number of equations of Nc + 2Nf + Nb

49

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

Table 3.1: General definition of boundary conditions for the Neutron Diffusion Equation

Boundary condition bj,1 bj,2
Zero flux 0 1
Reflective 1 0

Albedo for LWRs 1 − 1−αg,j
2(1+αg,j)

Albedo for VVERs 1 −αg,j

for each energy group. With respect to the unknowns for each energy group,
one has Nc values corresponding to φg,i; 4Nf values corresponding to Jg,i,j,
Jg,l,j, φg,i,j,φg,l,j; and 2Nb boundary values corresponding to φg,i,j and Jg,i,j.
This gives a total number of unknowns of Nc + 4Nf + 2Nb for each energy
group. Therefore, one realizes that the number of unknowns is greater than
the number of equations. Consequently, one has to calculate some of the
unknowns from the others. What one does to solve this problem is to calculate
the face averaged values φg,i,j and Jg,i,j or ~∇φg,i,j from the cell averaged values
φg,i.

3.2 Calculation of the face averaged values of fluxes and
currents

In this section, the author has developed three methods for calculating the
face averaged values from the cell averaged values. The first one is based on
the Moving Least Squares method. The second one is a modification of the
first one, based on a polynomial expansion of the neutron flux. The third one
uses the same polynomial expansion, but reduces the number of unknowns and
improves the condition number of the system matrices. The next subsections
define each of these methods.

3.2.1 Moving Least Squares method

The method is based on the Moving Least Squares method used in a finite
volume framework called Arb. Arb, as explained in Harvie 2012, solves multi-
physics transport problems, in which the user defines the transport and bound-
ary conditions by means of pseudo-mathematical expressions. Then, Arb trans-
forms these expressions in algorithms written in Fortran code.

The method calculates the face averaged values as a weighted sum of the cell
averaged values of the cells surrounding the face j. On the one hand, the

50

3.2 Calculation of the face averaged values of fluxes and currents

method calculates the same face averaged value for the two adjacent cells to
face j, i and l, to guarantee the continuity: φg,i,j = φg,l,j and ~∇φg,i,j = ~∇φg,l,j.
As this method only calculates one face averaged value in face j for the flux
and the gradient of the flux, the author will name these values φg,j and ~∇φg,j.
On the other hand, the weights are calculated by means of the Moving Least
Squares method explained in Cueto-Felgueroso et al. 2007. If one uses this
method, one calculates φg,j and ~∇φg,j as in Equations 3.14 and 3.15. In these
equations, n is the number of cells surrounding the face j, and ki,j and kgradi,j are
the weights for calculating φg,j and ~∇φg,j, which are named kernels in Harvie
2012.

φg,j =
n∑
i=1

ki,jφg,i (3.14)

~∇φg,j =
n∑
i=1

kgradi,j φg,i (3.15)

Therefore, this method reduces the number of unknowns for each energy group
to Nc, because the unknowns are reduced to the cell averaged values of the
neutron flux. Moreover, if one considers thatADFg,i,j = ADFg,l,j andDi

g = Dl
g

for the inner face j, with adjacent cells i and l, this method guarantees the
continuity of Equations 3.6 and 3.8. Consequently, the number of equations for
each group is reduced to Nc +Nb, which are the Neutron Diffusion Equations
and boundary conditions. Since now there are more equations than unknowns,
this method adds unknowns at the boundaries to get the same number. These
extra unknowns are called virtual fluxes and are equivalent to φg,i, but they
are defined in virtual cells which are adjacent to the boundary faces. Figure
3.1 shows an example of these virtual fluxes for a 2D domain composed of
9 quadrangles, with 12 boundary faces. These virtual fluxes are taken into
account in Equations 3.14 and 3.15.

As regards the assumption ADFg,i,j = ADFg,l,j, this might be true for some
reactors. However, the supposition that Di

g = Dl
g may be only valid if cells

i and l are composed of the same material. Since in this method the values
~∇φg,i,j and ~∇φg,l,j are the same, Equation 3.6 will not be accomplished if
Di
g 6= Dl

g. To solve that, the author of this thesis proposed to build a new
diffusion coefficient for this face j: Dj

g. This value is the one used for calculating
Jg,i,j and Jg,l,j as shown in Equation 3.16. Although there is not a clear rule

51

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

Figure 3.1: Virtual fluxes

for defining Dj
g, the author proposed in this section four types of Dj

g, defined in
Equations 3.17-3.20, which are named: Cell i, Cell l, Homogenized and Linear.

Jg,i,j = −Jg,l,j = Dj
g
~∇φg,j = Dj

g

n∑
i=1

kgradi,j φg,i (3.16)

Dj
g = Di

g (3.17)

Dj
g = Dl

g (3.18)

Dj
g = Di

g

|kgradi,j |
|kgradi,j |+ |k

grad
l,j |

+Dl
g

|kgradl,j |
|kgradi,j |+ |k

grad
l,j |

(3.19)

Dj
g =

Di
gD

l
g

(
|kgradi,j |+ |k

grad
l,j |

)
Di
g|k

grad
l,j |+Dl

g|k
grad
i,j |

(3.20)

Finally, if one substitutes Equation 3.16 in Equations 3.3, 3.4 and 3.13, one
obtains Equations 3.21-3.23. In Equations 3.21 and 3.22, ui,j = 1 if cell i is
the first adjacent cell to face j, or ui,j = −1 if cell i is the second adjacent cell
to face j.

nf∑
j=1

Sjui,jD
j
1

n∑
l=1

kgradl,j φ1,l+Vi
(
Σi
a,1 + Σi

s,1→2

)
φ1,i =

1

k
Vi
(
νΣi

f,1φ1,i + νΣi
f,2φ2,i

)
(3.21)

52

3.2 Calculation of the face averaged values of fluxes and currents

nf∑
j=1

Sjui,jD
j
2

n∑
l=1

kgradl,j φ2,l + ViΣ
i
a,2φ2,i − ViΣi

s,1→2φ1,i = 0 (3.22)

bj,1D
i
g

n∑
l=1

kgradl,j φg,l + bj,2

n∑
l=1

kl,jφg,l = 0 (3.23)

One can build the eigenvalue problem in matrix form with Equations 3.21-3.23,
as shown in Equation 3.24. The eigenvector of this problem is composed of
vectors Φg for each energy group g, which is defined in Equation 3.25. In this
last equation, φg,i for Nc + 1 ≤ i ≤ Nc +Nb are the virtual fluxes.(

L1,1 0
L2,1 L2,2

)(
Φ1

Φ2

)
=

1

k

(
M1,1 M1,2

0 0

)(
Φ1

Φ2

)
(3.24)

Φg =



φg,1
...

φg,Nc
φg,Nc+1

...
φg,Nc+Nb


(3.25)

The matrix L1,1 contains the terms corresponding to
∑nf

j=1 Sjui,jD
j
1

∑n
l=1 k

grad
l,j

and Vi
(
Σi
a,1 + Σi

s,1→2

)
of Equation 3.21, and bj,1Di

1

∑n
l=1 k

grad
l,j + bj,2

∑n
l=1 kl,j

of Equation 3.23.

The matrix L2,2 contains the terms corresponding to
∑nf

j=1 Sjui,jD
j
2

∑n
l=1 k

grad
l,j

and ViΣi
a,2 of Equation 3.22, and bj,1Di

2

∑n
l=1 k

grad
l,j + bj,2

∑n
l=1 kl,j of Equation

3.23.

The matrix L2,1 contains the terms corresponding to −ViΣi
s,1→2 of Equation

3.22.

The matrixM1,1 contains the terms corresponding to ViνΣi
f,1 of Equation 3.21.

The matrixM1,2 contains the terms corresponding to ViνΣi
f,2 of Equation 3.21.

This method was applied in the Neutron Diffusion Equation and published in
Bernal et al. 2014.

53

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

3.2.2 Inter-cells polynomial expansion method

The previous method has two main drawbacks. First, one cannot include the
continuity condition of Equation 3.8. Second, one has to use fine meshes to
obtain accurate results. For this reason, the author developed this method.

The method is similar to the Least Squares method, since it expands the neu-
tron flux with a polynomial expansion and tries to find out the coefficients of
the expansion from the geometry information. However, there are two main
differences between this method and the previous one. First, instead of eval-
uating the polynomials at the centroid of the cells, it uses the cell and face
averaged values of the polynomials. Second, this method solves a linear sys-
tem instead of solving a least square problem.

This method proposes a polynomial expansion of the neutron flux for each en-
ergy group and cell. First, the number of terms of this expansion must equal
the number of equations for each energy group and cell. Figure 3.2 shows a
geometry discretized into two cells, where the Neutron Diffusion Equations,
boundary conditions, neutron flux continuity and current continuity are ap-
plied. In Figure 3.2, one can appreciate that the number of equations for
each energy group and cell is the number of faces plus one (nf + 1), so this
will be the number of terms of this expansion, which is exhibited in Equa-
tion 3.26. In this expansion, each polynomial term pt(x, y, z) is assumed to be
known, and is defined in Equation 3.26 as a simple 3D monomial xαtyβtzγt .
In contrast, the coefficients of the expansion (ag,i,t) are unknown and will be
determined by solving the eigenvalue problem. Since there are infinite polyno-
mial combinations, one has to perform a sensitivity analysis to determine the
best polynomial set.

φg,i(x, y, z) =

nf+1∑
t=1

ag,i,tpt(x, y, z) =

nf+1∑
t=1

ag,i,tx
αtyβtzγt (3.26)

Since the polynomial terms are known and depend exclusively on the geometry
of cells and faces and number of faces, one can easily calculate the cell and
face averaged values of the neutron flux, as shown in Equations 3.27 and 3.28.

φg,i =
1

Vi

∫
Vi

φg,i(x, y, z)dV =

nf+1∑
t=1

ag,i,t
1

Vi

∫
Vi

pt(x, y, z)dV =

nf+1∑
t=1

ag,i,tp
Vi
t

(3.27)

54

3.2 Calculation of the face averaged values of fluxes and currents

Figure 3.2: Equations applied to a discretized geometry

φg,i,j =
1

Sj

∫
Sj

φg,i(x, y, z)dS =

nf+1∑
t=1

ag,i,t
1

Sj

∫
Sj

pt(x, y, z)dS =

nf+1∑
t=1

ag,i,tp
Si,j
t

(3.28)

Furthermore, one can calculate analytically the gradient of the neutron flux
with Equations 3.29-3.32. Then, one obtains the face averaged value of the
gradient of the neutron flux with Equation 3.33, where ui,j,x, ui,j,y and ui,j,z
are the direction cosines of the normal of face Sj in the outgoing direction of
cell i. Therefore, one can calculate Jg,i,j by means of Fick’s Law (Equation
3.5) and this last equation, as shown in Equation 3.34.

~∇φg,i(x, y, z) =

nf+1∑
t=1

ag,i,t~∇pt(x, y, z)

=

nf+1∑
t=1

ag,i,t

(
dpt(x, y, z)

dx
~i+

dpt(x, y, z)

dy
~j +

dpt(x, y, z)

dz
~k

)
(3.29)

dpt(x, y, z)

dx
= αtx

αt−1yβtzγt (3.30)

55

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

dpt(x, y, z)

dy
= βtx

αtyβt−1zγt (3.31)

dpt(x, y, z)

dz
= γtx

αtyβtzγt−1 (3.32)

~∇φg,i,j =
1

Sj

∫
Sj

~∇φg,i(x, y, z)d~S =

=
1

Sj

∫
Sj

~∇φg,i(x, y, z) ·
(
ui,j,x~i+ ui,j,y~j + ui,j,z~k

)
dS

=

nf+1∑
t=1

ag,i,t

(
ui,j,x

1

Sj

∫
Sj

dpt(x, y, z)

dx
dS + ui,j,y

1

Sj

∫
Sj

dpt(x, y, z)

dy
dS

+ui,j,z
1

Sj

∫
Sj

dpt(x, y, z)

dz
dS

)
=

nf+1∑
t=1

ag,i,t~∇pt
Si,j

(3.33)

Jg,i,j = −Di
g

nf+1∑
t=1

ag,i,t~∇pt
Si,j

(3.34)

Regarding the cell averaged values of the polynomials (pVit), this method calcu-
lates them analytically. First, the method transforms the polynomials xαtyβtzγt ,
which are given in Cartesian coordinates, into a sum of polynomials with tri-
angular or tetrahedral coordinates. Second, the method integrates the poly-
nomials given in triangular or tetrahedral coordinates. This transformation
of coordinates is shown in Equation 3.35. If the element is a triangle, ζi are
the triangular coordinates, xi and yi are coordinates of the nodes, and n = 3,
which is the number of nodes. If the element is a tetrahedron, ζi are the tetra-
hedral coordinates, xi, yi and zi are coordinates of the nodes, and n = 4. If
one substitutes Equation 3.35 in xαtyβt and applies the multinomial theorem,
one obtains xαtyβt as a function of the triangular coordinates, as shown in
Equation 3.36. Likewise, for tetrahedra, one obtains xαtyβtzγt as a function
of the tetrahedral coordinates in Equation 3.37. The advantage of using these
transformations is that one can integrate the monomials ζi1ζ

j
2ζ

k
3 and ζi1ζ

j
2ζ

k
3 ζ

l
4

with Equations 3.38 and 3.39 respectively. In these equations, S is the area of
the triangle and V is the volume of the tetrahedron.

56

3.2 Calculation of the face averaged values of fluxes and currents

x =
n∑
i=1

xiζi y =
n∑
i=1

yiζi z =
n∑
i=1

ziζi (3.35)

xαtyβt =

(
3∑
i=1

xiζi

)αt (3∑
j=1

yjζj

)βt
=

=
αt∑
i1=0

i1∑
i2=0

βt∑
j1=0

j1∑
j2=0

αt! · xαt−i11 · xi1−i22 · xi23
(αt − i1)! · (i1 − i2)! · i2!

·

· βt! · y
βt−j1
1 · yj1−j22 · yj23

(βt − j1)! · (j1 − j2)! · j2!
· ζαt+βt−i1−j11 · ζi1+j1−i2−j2

2 · ζi2+j2
3 (3.36)

xαtyβtzγt =

(
4∑
i=1

xiζi

)αt (4∑
j=1

yjζj

)βt (4∑
k=1

zkζk

)γt
=

=
αt∑
i1=0

i1∑
i2=0

i2∑
i3=0

βt∑
j1=0

j1∑
j2=0

j2∑
j3=0

γt∑
k1=0

k1∑
k2=0

k2∑
k3=0

αt! · xαt−i11 · xi1−i22 · xi2−i33 · xi34
(αt − i1)! · (i1 − i2)! · (i2 − i3)! · i3!

·

· βt! · yβt−j11 · yj1−j22 · yj2−j33 · yj34

(βt − j1)! · (j1 − j2)! · (j2 − j3)! · j3!
· γt! · zγt−k11 · zk1−k22 · zk2−k33 · zk34

(γt − k1)! · (k1 − k2)! · (k2 − k3)! · k3!
·

· ζαt+βt+γt−i1−j1−k11 · ζi1+j1+k1−i2−j2−k2
2 · ζi2+j2+k2−i3−j3−k3

3 · ζi3+j3+k3
4 (3.37)

1

S

∫
S

ζi1ζ
j
2ζ

k
3 dS =

i! · j! · k!

(i+ j + k + 2)!
· 2 (3.38)

1

V

∫
V

ζi1ζ
j
2ζ

k
3 ζ

l
4dV =

i! · j! · k! · l!
(i+ j + k + l + 3)!

· 6 (3.39)

With respect to quadrangles, first, one can divide each quadrangle into two
triangles and calculate the cell averaged value in each triangle: pVt1t and pVt2t .
Second, one adds these values as in Equation 3.40, where Vt1 and Vt2 are the
areas of each triangle and Vi is the area of the quadrangle. Regarding the
hexahedra, first one can divide each hexahedron into five tetrahedra. If one
considers the number of the nodes of the hexahedron shown in Figure 3.3, one
can obtain five tetrahedra with the following nodes: the first tetrahedron is
composed of nodes 1, 2, 3 and 6; the second one is composed of nodes 1, 5,

57

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

8 and 6; the third one is composed of nodes 1, 3, 8 and 6; the fourth one is
composed of nodes 7, 3, 8 and 6; the fifth one is composed of nodes 1, 3, 8 and
4. Likewise the quadrangles, one can calculate the cell averaged values in each
tetrahedron and add the values as in Equation 3.41. In this equation, Vi is the
volume of the hexahedron, Vtk is the volume of each tetrahedron and p

Vtk
t is

the cell averaged value in each tetrahedron.

pVit =
1

Vi

2∑
k=1

p
Vtk
t Vtk (3.40)

Figure 3.3: Hexahedron

pVit =
1

Vi

5∑
k=1

p
Vtk
t Vtk (3.41)

Regarding the face averaged values, one can use similar equations as the pre-
vious ones, so one can use the same algorithms. However, one has to use local
axes for the faces. For tetrahedra, the faces are triangles and one can define
any coordinate in the local axes. These local axes have constant values for
any local Z-coordinate. In addition, one can transform any coordinate into
the local axes as shown in Equations 3.42-3.44. In these equations, xi is the
X-coordinate of the node i of the triangle, yi is the Y-coordinate of the node i
of the triangle, zi is the Z-coordinate of the node i of the triangle, xlocali is the
local X-coordinate of the node i of the triangle, ylocali is the local Y-coordinate
of the node i of the triangle, zlocal is the local Z-coordinate of the triangle and〈
x, xlocal

〉
is the dot product between the X-axis and the local X-axis.

xlocali =
〈
x, xlocal

〉
xi +

〈
y, xlocal

〉
yi +

〈
z, xlocal

〉
zi (3.42)

58

3.2 Calculation of the face averaged values of fluxes and currents

ylocali =
〈
x, ylocal

〉
xi +

〈
y, ylocal

〉
yi +

〈
z, ylocal

〉
zi (3.43)

zlocal =
〈
x, zlocal

〉
x3 +

〈
y, zlocal

〉
y3 +

〈
z, zlocal

〉
z3 (3.44)

For the local axes of the triangles (faces of the tetrahedra), one can define
triangular coordinates as shown in Equations 3.45 and 3.46. If one uses these
last equations, one can develop the monomial x as shown in Equation 3.47,
so x is expressed as a weighted sum of ζi. The final expression of Equation
3.47 is similar to that obtained with tetrahedral coordinates, but with xi and
ζ4 defined in Equation 3.48. One can use the same approach for y and z, by
using yi and zi defined in Equations 3.49 and 3.50.

xlocal =
3∑
i=1

xlocali ζi (3.45)

ylocal =
3∑
i=1

ylocali ζi (3.46)

x =
〈
xlocal, x

〉
xlocal +

〈
ylocal, x

〉
ylocal +

〈
zlocal, x

〉
zlocal =

=
〈
xlocal, x

〉 3∑
i=1

xlocali ζi +
〈
ylocal, x

〉 3∑
i=1

ylocali ζi +
〈
zlocal, x

〉
zlocal =

=
3∑
i=1

(〈
xlocal, x

〉
xlocali +

〈
ylocal, x

〉
ylocali

)
ζi +

〈
zlocal, x

〉
zlocalζ4 =

=
4∑
i=1

xiζi (3.47)

xi =
〈
xlocal, x

〉
xlocali +

〈
ylocal, x

〉
ylocali , 1 ≤ i ≤ 3

x4 =
〈
zlocal, x

〉 (〈
x, zlocal

〉
x3 +

〈
y, zlocal

〉
y3 +

〈
z, zlocal

〉
z3

)
ζ4 = 1 (3.48)

59

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

yi =
〈
xlocal, y

〉
xlocali +

〈
ylocal, y

〉
ylocali , 1 ≤ i ≤ 3

y4 =
〈
zlocal, y

〉 (〈
x, zlocal

〉
x3 +

〈
y, zlocal

〉
y3 +

〈
z, zlocal

〉
z3

)
ζ4 = 1 (3.49)

zi =
〈
xlocal, z

〉
xlocali +

〈
ylocal, z

〉
ylocali , 1 ≤ i ≤ 3

z4 =
〈
zlocal, z

〉 (〈
x, zlocal

〉
x3 +

〈
y, zlocal

〉
y3 +

〈
z, zlocal

〉
z3

)
ζ4 = 1 (3.50)

Then, one can develop xαtyβtzγt as in Equation 3.51, which is similar to the
development used for the cell averaged values. Finally, one can obtain the face
averaged values by integrating the terms ζi1ζ

j
2ζ

k
3 with Equation 3.38 for the

triangle.

xαtyβtzγt =

(
4∑
i=1

xζi

)αt (4∑
j=1

yjζj

)βt (4∑
k=1

zkζk

)γt
=

=
αt∑
i1=0

i1∑
i2=0

i2∑
i3=0

βt∑
j1=0

j1∑
j2=0

j2∑
j3=0

γt∑
k1=0

k1∑
k2=0

k2∑
k3=0

αt! · xαt−i11 · xi1−i22 · xi2−i33 · xi34
(αt − i1)! · (i1 − i2)! · (i2 − i3)! · i3!

·

· βt! · yβt−j11 · yj1−j22 · yj2−j33 · yj34
(βt − j1)! · (j1 − j2)! · (j2 − j3)! · j3!

· γt! · zγt−k11 · zk1−k22 · zk2−k33 · zk34

(γt − k1)! · (k1 − k2)! · (k2 − k3)! · k3!
·

· ζαt+βt+γt−i1−j1−k11 · ζi1+j1+k1−i2−j2−k2
2 · ζi2+j2+k2−i3−j3−k3

3 (3.51)

Likewise, one can use the same approach for the face averaged values of the
triangles. In this case, the faces are lines and one can define any coordinate in
the local axes. These local axes have constant values for any local Y-coordinate.
In addition, one can transform any coordinate into the local axes as shown in
Equations 3.52 and 3.53.

xlocali =
〈
x, xlocal

〉
xi +

〈
y, xlocal

〉
yi (3.52)

ylocal =
〈
x, ylocal

〉
x2 +

〈
y, ylocal

〉
y2 (3.53)

For the local axes of the lines (faces of the triangles), one can define the local
coordinates as shown in Equation 3.54. If one uses this last equation, one can

60

3.2 Calculation of the face averaged values of fluxes and currents

develop the monomial x as shown in Equation 3.55, so x is expressed as a
weighted sum of ζi. The final expression of Equation 3.55 is similar to that
obtained with triangular coordinates, but with xi and ζ3 defined in Equation
3.56. One can use the same approach for y, by using yi defined in Equation
3.57.

xlocal =
2∑
i=1

xlocali ζi (3.54)

x =
〈
xlocal, x

〉
xlocal +

〈
ylocal, x

〉
ylocal =

=
〈
xlocal, x

〉 2∑
i=1

xlocali ζi +
〈
ylocal, x

〉
ylocal =

=
2∑
i=1

〈
xlocal, x

〉
xlocali ζi +

〈
ylocal, x

〉
ylocalζ3 =

3∑
i=1

xiζi (3.55)

xi =
〈
xlocal, x

〉
xlocali , 1 ≤ i ≤ 2

x3 =
〈
ylocal, x

〉 (〈
x, ylocal

〉
x2 +

〈
y, ylocal

〉
y2

)
ζ3 = 1 (3.56)

yi =
〈
xlocal, y

〉
xlocali , 1 ≤ i ≤ 2

y3 =
〈
ylocal, y

〉 〈
x, ylocal

〉
x2 +

〈
y, ylocal

〉
y2

ζ3 = 1 (3.57)

Then, one can develop xαtyβt as in Equation 3.58, which is similar to the
development used for the cell averaged values. Finally, one can obtain the
face averaged values by integrating the terms ζi1ζ

j
2 with Equation 3.59. In this

equation, L is the length of the line (face of the triangle).

61

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

xαtyβt =

(
3∑
i=1

xiζi

)αt (3∑
j=1

yjζj

)βt
=

=
αt∑
i1=0

i1∑
i2=0

βt∑
j1=0

j1∑
j2=0

αt! · xαt−i11 · xi1−i22 · xi23
(αt − i1)! · (i1 − i2)! · i2!

·

· βt! · y
βt−j1 · yj1−j22 · yj23

(βt − j1)! · (j1 − j2)! · j2!
· ζαt+βt−i1−j11 · ζi1+j1−i2−j2

2 (3.58)

1

L

∫
L
ζi1ζ

j
2dL =

i! · j!
(i+ j + 1)!

(3.59)

As regards the polynomial expansion, there are infinitely many possible poly-
nomial sets, so the author restricted the sets to monomials xαtyβtzγt of order
2, that is, αt + βt + γt ≤ 2 . On the one hand, there are ten 3D monomials
of order 2: 1, x, y, z, x2, y2, z2, xy, xz and yz. On the other hand, there are
six 2D monomials of order 2, by considering only x and y: 1, x, y, x2, y2 and
xy. Depending of the number of faces of the elements (nf) and the number of
monomials (nm), one might obtain different number of (nf + 1)-combinations
of these monomials; this number is named nc. In fact, one can calculate the
number of possible combinations by means of the binomial coefficient, as shown
in Table 3.2. The author tested all these combinations for different geometries,
and concluded that there are only few combinations providing accurate results.
For triangles, there are two sets: [1, x, y, x2] and [1, x, y, y2]. For quadrangles,
there are three sets: [1, x, y, x2, y2], [1, x, y, x2, xy] and [1, x, y, y2, xy]. For
tetrahedra, there are three sets: [1, x, y, z, x2], [1, x, y, z, y2] and [1, x, y, z,
z2]. For hexahedra, there are three sets: [1, x, y, z, x2, y2, z2], [1, x, y, z, x2,
z2, xy] and [1, x, y, z, y2, z2, xy].

Table 3.2: Number of (nf + 1)-combinations of the monomials

Element Dimension nm nf nc =

(
nm

nf + 1

)
Triangle 2D 6 3 15

Quadrangle 2D 6 4 6
Tetrahedron 3D 10 4 252
Hexahedron 3D 10 6 120

Once the averaged values are calculated, one can substitute these values in the
equations. If one substitutes φg,i and Jg,i,j of Equations 3.27 and 3.34 in the

62

3.2 Calculation of the face averaged values of fluxes and currents

Neutron Diffusion Equations of Equations 3.3 and 3.4, one obtains Equations
3.60 and 3.61.

nf+1∑
t=1

a1,i,t

(
−Di

1

nf∑
j=1

Sj ~∇pt
Si,j

+ Vi
(
Σi
a,1 + Σi

s,1→2

)
pVit

)
=

=
1

k

(
nf+1∑
t=1

a1,i,tViνΣi
f,1p

Vi
t +

nf+1∑
t=1

a2,i,tViνΣi
f,2p

Vi
t

)
(3.60)

nf+1∑
t=1

a2,i,t

(
−Di

2

nf∑
j=1

Sj ~∇pt
Si,j

+ ViΣ
i
a,2p

Vi
t

)
−
nf+1∑
t=1

a1,i,tViΣ
i
s,1→2p

Vi
t = 0 (3.61)

For the current continuity equations, one has to substitute Jg,i,j of Equation
3.34 in Equation 3.6, so one obtains Equation 3.62. For the neutron flux
continuity, one has to substitute φg,i,j of Equation 3.28 in Equation 3.8, so one
obtains Equation 3.63.

nf+1∑
t=1

ag,i,tD
i
g
~∇pt

Si,j

+

nf+1∑
t=1

ag,l,tD
l
g
~∇pt

Sl,j

= 0 (3.62)

nf+1∑
t=1

ag,i,tADFg,i,jp
Si,j
t −

nf+1∑
t=1

ag,l,tADFg,l,jp
Sl,j
t = 0 (3.63)

As regards the boundary conditions equations, one has to substitute φg,i,j and
Jg,i,j of Equations 3.28 and 3.34 in Equation 3.13, so one obtains Equation
3.64.

nf+1∑
t=1

ag,i,t

(
−bj,1Di

g
~∇pt

Si,j

+ bj,2p
Si,j
t

)
= 0 (3.64)

Finally, one can build the eigenvalue problem defined in Section 3.2.1 (Equation
3.24), if one considers the following equations for each energy group: Nc Equa-
tions 3.60 or 3.61, Nf Equations 3.62, Nf Equations 3.63, and Nb Equations
3.64. Nonetheless, in this eigenvalue problem, the vectors Φg of the eigenvector
are those of Equation 3.65.

63

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

Φg =



ag,1,1
...

ag,1,nf+1

ag,2,1
...

ag,2,nf+1

...
ag,Nc,1

...
ag,Nc,nf+1



(3.65)

The matrix L1,1 contains the terms corresponding to −Di
1

∑nf
j=1 Sj

~∇pt
Si,j

+

Vi
(
Σi
a,1 + Σi

s,1→2

)
pVit of Equation 3.60, Di

1
~∇pt

Si,j

and Dl
1
~∇pt

Sl,j

of Equation

3.62, ADF1,i,jp
Si,j
t and −ADF1,l,jp

Sl,j
t of Equation 3.63, and −bj,1Di

1
~∇pt

Si,j

+

bj,2p
Si,j
t of Equation 3.64.

The matrix L2,2 contains the terms corresponding to −Di
2

∑nf
j=1 Sj

~∇pt
Si,j

+

ViΣ
i
a,2p

Vi
t of Equation 3.61,Di

2
~∇pt

Si,j

andDl
2
~∇pt

Sl,j

of Equation 3.62, ADF2,i,jp
Si,j
t

and −ADF2,l,jp
Sl,j
t of Equation 3.63, and −bj,1Di

2
~∇pt

Si,j

+ bj,2p
Si,j
t of Equation

3.64.

The matrix L2,1 contains the terms corresponding to −ViΣi
s,1→2p

Vi
t of Equation

3.61.

The matrix M1,1 contains the terms corresponding to ViνΣi
f,1p

Vi
t of Equation

3.60.

The matrix M1,2 contains the terms corresponding to ViνΣi
f,2p

Vi
t of Equation

3.60.

This method was applied in the Neutron Diffusion Equation and published in
Bernal et al. 2016b.

64

3.2 Calculation of the face averaged values of fluxes and currents

3.2.3 Improved inter-cells polynomial expansion method

The major downside of the previous method is that the number of equations
might be extremely large, and consequently the size of the matrices of the
eigenvalue problem. In fact, the number of equations for each energy group
with the previous method is the number of cells times the number of faces
of each cell plus one (Nc · (nf + 1)). Thus, reactors with large number of
nodes, such as BWRs, will be modeled with a large number of equations, and
consequently it will require a high computational time.

In this section, the author develops an improvement of the previous method.
With the aim of accelerating the calculation, the number of equations will be
reduced to Nc + Nf , which will reduce up to 60%, and the unknowns will be
φg,i for each cell i and Jg,j for each inner face j. The idea is to implicitly
define the boundary conditions and the current continuity, and therefore the
only equations will be the Neutron Diffusion Equations in each cell and the
flux continuity in each inner face.

To define the current continuity implicitly, only one unknown current per each
inner face j will be considered. For each inner face j, whose adjacent cells are
i and l, the direction of its unknown current (Jg,j) will be from cell i to cell l,
thus Jg,i,j = Jg,j, and Jg,l,j will be substituted by −Jg,j , and consequently the
current condition will be accomplished: Jg,j = Jg,i,j = −Jg,l,j.

With the aim of changing the unknowns from ag,i,t to φg,i and Jg,j, Equation
3.66 is considered from the polynomial expansion for each cell i. In this equa-
tion, Fg,i,j is defined in Equation 3.67 and fg,i,j is defined in Equation 3.68,
where ui,j = 1 for cell i and ui,j = −1 for cell l. In Equation 3.66, the first row
is the calculation of φg,i; the rest of rows are two different calculations depend-
ing on the face j. If the face is a boundary, the row calculates the boundary
condition. If the face is an inner face, the row calculates Jg,j/Di

g, taking into
account the appropriate sign with ui,j.

pVi1 · · · pVinf+1

fi,1,1 · · · fi,1,nf+1

...
...

fi,nf ,1 · · · fi,nf ,nf+1


 ag,i,1

...
ag,i,nf+1

 =


φg,i
Fg,i,1
...

Fg,i,nf

 (3.66)

Fg,i,j =

{
0 if face j is a boundary face
−ui,j ~∇φg,i,j = Jg,j

Dig
if face j is an inner face (3.67)

65

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

fi,j,t =

−bj,1Di
g
~∇pt

Si,j

+ bj,2p
Si,j
t if face j is a boundary face

−ui,j ~∇pt
Si,j

if face j is an inner face
(3.68)

The matrix of Equation 3.66 will be called Ii and its inverse I−1
i . If one inverts

Ii, one obtains ag,i,t as a weighted sum of φg,i and Fg,i,k, as shown in Equation
3.69. In this equation, I−1

i (t, k) is the value of matrix I−1
i for row t and column

k. Although the calculation of the inverse of a matrix is not recommended, in
this case it is appropriate, because the largest matrix size will be nf + 1.

ag,i,t = I−1
i (t, 1)φg,i +

nf∑
k=1

I−1
i (t, 1 + k)Fg,i,k (3.69)

Now, one can use this last equation to calculate φg,i,j by substituting Equation
3.69 in Equation 3.28, which gives Equation 3.70, where Xi,j,k is defined in
Equation 3.71. One can see that each Xi,j,k represents the contribution of each
unknown to φg,i,j. It is better to multiply Equation 3.70 by Di

g as expressed
in Equation 3.72, because Di

gFg,i,j is related to Jg,j, as Equation 3.73 shows.

φg,i,j = Xi,j,1φg,i +

nf∑
t=1

Xi,j,t+1Fg,i,t (3.70)

Xi,j,k =

nf+1∑
t=1

p
Si,j
t I−1

i (t, k) (3.71)

Di
gφg,i,j = Xi,j,1D

i
gφg,i +

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t (3.72)

Di
gFg,i,j =

{
0 if face j is a boundary face
Jg,j if face j is an inner face

(3.73)

Moreover, if there is any boundary face with a boundary condition that is
not reflective, one has to calculate Jg,i,j for this face. To do so, one has to
substitute ag,i,t of Equation 3.69 in Equation 3.34, so one obtains Equation

66

3.2 Calculation of the face averaged values of fluxes and currents

3.74. In this equation, Ri,j,k is defined in Equation 3.75. One can see that
each Ri,j,k represents the contribution of each unknown to ~∇φg,i,j.

Jg,i,j = −Di
g
~∇φg,i,j = Ri,j,1D

i
gφg,i +

nf∑
t=1

Ri,j,t+1D
i
gFg,i,t (3.74)

Ri,j,k = −
nf+1∑
t=1

~∇pt
Si,j

I−1
i (t, k) (3.75)

As said before, the eigenvalue problem of this method is composed of two type
of equations for each energy group. First, Nc Neutron Diffusion Equations
corresponding to Nc cells, as those of Equations 3.76 and 3.77. In these equa-
tions, Fin represents the inner faces, whereas Fbnr represents the boundary
faces with any boundary condition that is not reflective. One has obtained
Equations 3.76 and 3.77 by substituting Equation 3.74 and Jg,i,j = ui,jJg,j in
the Neutron Diffusion Equations of Equations 3.3 and 3.4.

nf∑
j=1

j∈Fbnr

Sj

(
Ri,j,1D

i
1φ1,i +

nf∑
t=1

Ri,j,t+1D
i
1F1,i,t

)
+

nf∑
j=1
j∈Fin

Sjui,jJ1,j +

+Vi
(
Σi
a,1 + Σi

s,1→2

)
φ1,i =

1

k
Vi
(
νΣi

f,1φ1,i + νΣi
f,2φ2,i

)
(3.76)

nf∑
j=1

j∈Fbnr

Sj

(
Ri,j,1D

i
2φ2,i +

nf∑
t=1

Ri,j,t+1D
i
2F2,i,t

)
+

nf∑
j=1
j∈Fin

Sjui,jJ2,j +

+ ViΣ
i
a,2φ2,i − ViΣi

s,1→2φ1,i = 0

(3.77)

The second type of equation of the eigenvalue problem is the neutron flux
continuity at the inner faces. Therefore, there are Nf Equations 3.78. One has
obtained this equation by substituting Equation 3.72 in Equation 3.8.

67

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

0 = ADFg,i,jφg,i,j −ADFg,l,jφg,l,j =
ADFg,i,j
Di
g

Di
gφg,i,j −

ADFg,l,j
Dl
g

Dl
gφg,l,j =

=
ADFg,i,j
Di
g

(
Xi,j,1D

i
gφg,i +

nf∑
t=1

Xi,j,t+1D
i
gFg,i,t

)
−

− ADFg,l,j
Dl
g

(
Xl,j,1D

l
gφg,l +

nf∑
t=1

Xl,j,t+1D
l
gFg,l,t

)
(3.78)

Finally, one can build the eigenvalue problem defined in Section 3.2.1 (Equa-
tion 3.24), if one considers the following equations for each energy group: Nc

Equations 3.76 or 3.77 and Nf Equations 3.78. However, in this eigenvalue
problem, the vectors Φg of the eigenvector are those of Equation 3.79.

Φg =



φg,1
...

φg,Nc
Jg,1
...

Jg,Nf


(3.79)

The matrix L1,1 contains the terms corresponding to SjRi,j,kDi
1, Sjui,j and

Vi
(
Σi
a,1 + Σi

s,1→2

)
of Equation 3.76, and the termsADF1,i,jXi,j,1,

ADF1,i,j

Di1
Xi,j,t+1,

−ADF1,l,jXl,j,1 and −ADF1,l,j

Dl1
Xl,j,t+1 of Equation 3.78.

The matrix L2,2 contains the terms corresponding to SjRi,j,kDi
2, Sjui,j and

ViΣ
i
a,2 of Equation 3.77. The matrix also contains the terms ADF2,i,jXi,j,1,

ADF2,i,j

Di2
Xi,j,t+1, −ADF2,l,jXl,j,1 and −ADF2,l,j

Dl2
Xl,j,t+1 of Equation 3.78.

The matrix L2,1 contains the terms corresponding to −ViΣi
s,1→2 of Equation

3.77.

The matrixM1,1 contains the terms corresponding to ViνΣi
f,1 of Equation 3.76.

The matrixM1,2 contains the terms corresponding to ViνΣi
f,2 of Equation 3.76.

This method was applied in the Neutron Diffusion Equation and published in
Bernal et al. 2016a.

68

3.3 Multigroup formulation

In addition, one can subdivide matrices Lg,g′ and Mg,g′ as in Equations 3.80-
3.82. The important issue of this subdivision is that matrix LAg is a diagonal
matrix and its dimension is Nc.

Lg,g =

(
LAg LBg
LCg LDg

)
(Nc+Nf)×(Nc+Nf)

(3.80)

Lg,g′ =

(
Lcellsg,g′ 0Nc×Nf

0Nf×Nc 0Nf×Nf

)
, g 6= g′ (3.81)

Mg,g′ =

(
M cells

g,g′ 0Nc×Nf
0Nf×Nc 0Nf×Nf

)
(3.82)

3.3 Multigroup formulation

If one applies the FVM to the Neutron Diffusion Equation for any energy
group, one obtains Equation 3.83.

nf∑
j=1

SjJg,i,j + Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

φg,i −

−Vi
G∑

g′=1
g′ 6=g

Σi
s,g′→gφg′,i =

1

k
χigVi

G∑
g′=1

νΣi
f,g′φg′,i (3.83)

One can extend any of the methods of Section 3.2 to the multigroup formulation
of the Neutron Diffusion Equation. Equation 3.84 shows this formulation for
the method of Section 3.2.1, Equation 3.85 shows this formulation for the
method of Section 3.2.2 and Equation 3.86 shows this formulation for the
method of Section 3.2.3.

69

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

nf∑
j=1

Sjui,jD
j
g

n∑
l=1

kgradl,j φg,l + Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

φg,i −

−Vi
G∑

g′=1
g′ 6=g

Σi
s,g′→gφg′,i =

1

k
χig

G∑
g′=1

ViνΣi
f,g′φg′,i (3.84)

nf+1∑
t=1

ag,i,t

−Di
g

nf∑
j=1

Sj ~∇pt
Si,j

+ Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

 pVit

−
−

G∑
g′=1
g′ 6=g

nf+1∑
t=1

ag′,i,tViΣ
i
s,g′→gp

Vi
t =

1

k
χig

G∑
g′=1

nf+1∑
t=1

ag′,i,tViνΣi
f,g′p

Vi
t (3.85)

nf∑
j=1

j∈Fbnr

Sj

(
Ri,j,1D

i
gφg,i +

nf∑
t=1

Ri,j,t+1D
i
gFg,i,t

)
+

nf∑
j=1
j∈Fin

Sjui,jJg,j +

+Vi

Σi
a,g +

G∑
g′=1
g′ 6=g

Σi
s,g→g′

φg,i −
G∑

g′=1
g′ 6=g

ViΣ
i
s,g′→gφg′,i =

1

k
χig

G∑
g′=1

ViνΣi
f,g′φg′,i

(3.86)

Next, one can apply any of the methods explained in Section 3.2 to obtain an
eigenvalue problem as that of Equation 3.87. In this equation, G is the number
of energy groups and u is the first group containing upscattering terms.

L1,1 0 · · · 0
...

.
...

Lu−1,1 · · · Lu−1,u−1 0 · · · 0
Lu,1 · · · · · · Lu,u · · · Lu,G
...

...
...

...
...

...
LG,1 · · · · · · LG,u · · · LG,G


Φ1

...
ΦG

 = 1
k

M1,1 · · · M1,G

...
...

...
MG,1 · · · MG,G


Φ1

...
ΦG



(3.87)

70

3.3 Multigroup formulation

Matrices Mg,g′ contain the fission terms, which are the same except the fission
spectrum (χg). Therefore, Mg,g′ can be expressed as in Equation 3.88. In this
equation, Cg is a matrix depending on the methods of Section 3.2: Equation
3.89 shows Cg for the method of Section 3.2.1, Equation 3.90 shows Cg for the
method of Section 3.2.2 and Equation 3.91 shows Cg for the method of Section
3.2.3.

Mg,g′ = CgM1,g′ (3.88)

Cg = diag

(
χ1
g

χ1
1

, · · · ,
χNcg

χNc1

, 0, · · · , 0
)

(Nc+Nb)×(Nc+Nb)

(3.89)

Cg = diag
(
χ1
g

χ1
1
, 0, · · · , 0, χ

2
g

χ2
1
, 0, · · · , 0, · · · , χ

Nc
g

χNc1

, 0, · · · , 0
)

(Nc+2Nf+Nb)×(Nc+2Nf+Nb)

(3.90)

Cg = diag

(
χ1
g

χ1
1

, · · · ,
χNcg

χNc1

, 0, · · · , 0
)

(Nc+Nf)×(Nc+Nf)

(3.91)

By using Mg,g′ as in Equation 3.88, one can multiply Equation 3.87 by matrix
P , defined in Equation 3.92, so one obtains the eigenvalue problem of Equation
3.93. The submatrix E appearing in matrix P is the unit matrix. Matrices
L̄g,1 are calculated as in Equation 3.94.

P =



E 0 · · · · · · 0

−C2 E
. . .

...

−C3 0 E
. . .

...
...

...
. 0

−CG 0 · · · 0 E


(3.92)

71

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method



L1,1 0 · · · 0
...

.
...

L̄u−1,1 · · · Lu−1,u−1 0 · · · 0
L̄u,1 · · · · · · Lu,u · · · Lu,G
...

...
...

...
...

...
L̄G,1 · · · · · · LG,u · · · LG,G


Φ1

...
ΦG

 = 1
k


M1,1 · · · M1,G

0 · · · 0
...

...
...

0 · · · 0


Φ1

...
ΦG



(3.93)

L̄g,1 = Lg,1 − CgL1,1 (3.94)

This method was applied in the Neutron Diffusion Equation and published in
Bernal et al. 2017b.

3.4 Solution of the Eigenvalue Problem

From Equation 3.93, the eigenvalue problem is reduced to the eigenvalue prob-
lem of Equation 3.95, which is solved by using an iterative process, for several
eigenpairs. In this iterative process, Φ1 is the iterative eigenvector and Φg for
g > 1 are calculated with Equations 3.96 and 3.97. Equation 3.96 is used for
calculating sequentially Φg, for g = 2, . . . , u− 1, because there is no upscatter-
ing for these energy groups. Once they are calculated, Equation 3.97 is used
for calculating Φg, for g ≥ u. Then, Φg is substituted in the right-hand-side of
Equation 3.95. Equations 3.96 and 3.97 are linear systems and are obtained
from Equation 3.93. It is important to highlight that the inverse of L1,1 is not
calculated in Equation 3.95, but instead the linear system is solved in each
iteration of the eigensolver.

kΦ1 = L−1
1,1

G∑
g=1

M1,gΦg (3.95)

Lg,gΦg = −L̄g,1Φ1 −
g−1∑
g′=2

Lg,g′Φg′ , 2 ≤ g < u (3.96)

72

3.4 Solution of the Eigenvalue Problem

Lu,u · · · Lu,G
...

...
...

LG,u · · · LG,G


Φu

...
ΦG

 =


−L̄u,1Φ1 −

∑u−1
g′=2 Lu,g′Φg′

...
−L̄G,1Φ1 −

∑u−1
g′=2 LG,g′Φg′

 (3.97)

On the other hand, for the method of Section 3.2.3, one can use other equa-
tions instead of Equations 3.95 and 3.96. Actually, if one uses the subdivided
matrices of Lg,g′ and Mg,g′ described in Section 3.2.3, one could use a better
approach. The formulation is obtained with the following example. If one
uses the multigroup formulation of Equation 3.93 with two energy groups and
the subdivided matrices, one obtains Equation 3.98. From this last equation,
one can define the linear system of Equation 3.99, where bcells2 is defined in
Equation 3.100.

LA1 LB1 0Nc×Nc 0Nc×Nf
LC1 LD1 0Nf×Nc 0Nf×Nf

Lcells2,1 − Ccells
2 · LA1 −Ccells

2 · LB1 LA2 LB2

0Nf×Nc 0Nf×Nf LC2 LD2




Φcells
1

Φfaces
1

Φcells
2

Φfaces
2

 =

=
1

k


M cells

1,1 0Nc×Nf M cells
1,2 0Nc×Nf

0Nf×Nc 0Nf×Nf 0Nf×Nc 0Nf×Nf
0Nc×Nc 0Nc×Nf 0Nc×Nc 0Nc×Nf
0Nf×Nc 0Nf×Nf 0Nf×Nc 0Nf×Nf




Φcells
1

Φfaces
1

Φcells
2

Φfaces
2

 (3.98)

L2,2Φ2 =

(
LA2 LB2

LC2 LD2

)(
Φcells

2

Φfaces
2

)
=

(
bcells2

0Nf×1

)
(3.99)

bcells2 = Ccells
2 · LA1 · Φcells

1 + Ccells
2 · LB1 · Φfaces

1 − Lcells2,1 · Φcells
1 (3.100)

Since LAg is a diagonal matrix, as explained in Section 3.2.3, one can calculate
Φcells

2 with Equation 3.101, which is obtained from Equation 3.99. However,
one has to determine Φfaces

2 , to calculate the previous equation. To do so,
one can obtain the linear system of Equation 3.102 from Equation 3.99. In
Equation 3.102, LD2 is defined in Equation 3.103, and bfaces2 is defined in
Equation 3.104.

Φcells
2 = LA−1

2

(
bcells2 − LB2 · Φfaces

2

)
(3.101)

73

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

LD2 · Φfaces
2 = bfaces2 (3.102)

LD2 = LD2 − LC2 · LA−1
2 · LB2 (3.103)

bfaces2 = −LC2 · LA−1
2 · bcells2 (3.104)

Once Φcells
2 is calculated, one can use it for the eigenvalue problem. In this

eigenvalue problem, one has to calculate kΦcells
1 and kΦfaces

1 . Likewise, one
can calculate these values with Equations 3.105 and 3.106. In these equations,
bcells1 is defined in Equation 3.107, LD1 is defined in Equation 3.108, and bfaces1

is defined in Equation 3.109.

kΦcells
1 = LA−1

1

(
bcells1 − LB1 · kΦfaces

1

)
(3.105)

LD1 · kΦfaces
1 = bfaces1 (3.106)

bcells1 =
G∑

g′=1

M cells
1,g′ Φcells

g′ (3.107)

LD1 = LD1 − LC1 · LA−1
1 · LB1 (3.108)

bfaces1 = −LC1 · LA−1
1 · bcells1 (3.109)

Consequently, one can use Equations 3.105 and 3.106, instead of Equation
3.95, to solve the eigenvalue problem. Moreover, one can define equations for
any energy group g by extending Equations 3.100-3.104 to any energy group.
Thus, for any energy group g, which 2 ≤ g < u, one can use Equations 3.110
and 3.111, for calculating Φcells

g and Φfaces
g . In the previous equations, bcellsg

is defined in Equation 3.112, LDg is defined in Equation 3.113 and bfacesg is
defined in Equation 3.114.

Φcells
g = LA−1

g

(
bcellsg − LBg · Φfaces

g

)
(3.110)

74

3.5 Parallelization

LDg · Φfaces
g = bfacesg (3.111)

bcellsg = Ccells
g · LA1 · Φcells

1 + Ccells
g · LB1 · Φfaces

1 −
g−1∑
g′=1

Lcellsg,g′ · Φcells
g′ (3.112)

LDg = LDg − LCg · LA−1
g · LBg (3.113)

bfacesg = −LCg · LA−1
g · bcellsg (3.114)

The eigenvalue problem of Equation 3.95, or Equations 3.105 and 3.106, is
solved with the Krylov-Schur algorithm (Stewart 2002), implemented in the
SLEPc library and for several modes. Furthermore, one has to solve linear
systems while solving the eigenvalue problem, as mentioned above. To do so,
the author used iterative and direct solvers. The use of iterative or direct
solvers depends on the condition number and size of the matrices, as explained
in Section 2.5. For the eigenvalue problems obtained with the method of Sec-
tion 3.2.3, the author used iterative solvers. Nonetheless, for the eigenvalue
problems obtained with the methods of Sections 3.2.1 and 3.2.2, one has to
use direct solvers, because the matrices are not well-conditioned.

As regards the iterative solvers, the author tested all the solvers included in
PETSc (Balay et al. 2017), which are based on a combination of a Krylov
subspace method and a preconditioner, as mentioned in Section 2.5. PETSc
includes a great variety of solvers and preconditioners, but the fastest solver is
Generalized Minimal Residual (GMRES) (Saad and Schultz 1986), using the
ILU preconditioner. With respect to direct solvers, the author used the LU
factorization implemented in MUMPS (Amestoy, Duff, and L’excellent 2000),
which can also be used from PETSc.

3.5 Parallelization

The parallelization of this method involves not only running the algorithms in
several Central Processing Units (CPUs), but also storing the data in different
CPUs. The parallel implementation in the code developed in this thesis uses
the Message Passing Interface (MPI) standard for all message-passing commu-

75

Chapter 3. Steady State of the Neutron Diffusion Equation with the Finite Volume Method

nication. However, the key issue of this parallelization is the use of parallel
objects of PETSc, which use MPI.

Actually, the method stores the data in parallel vectors of PETSc. It is worth
using these vectors because the storage and transfer of data is user-friendly.
First, the vectors are defined with global and local dimensions. The global
dimension is the real size of the vector, whereas the local dimension is the
size of the vector stored in each CPU. In addition, one can define the local
dimension explicitly for each CPU or one can let PETSc decide the most
suitable dimension. PETSc does that if one defines the global dimension and
set the number of CPUs. In this thesis, the method lets PETSc decide the
local dimension of the vectors. Second, one can read some value in one CPU
and store this value in other CPU by means of the parallel vectors of PETSc.
Third, one can easily gather all the data in one or several CPUs by means of
simple functions of PETSc.

With respect to the storage, this method stores six different types of data:
cells, faces, nodes, materials, regions and inner faces. All these types of data
are stored in all the CPUs, but each one with its local dimension. Examples
of these data are:

• Cells: materials in each cell, identification number of the nodes of the cell,
identification number of the faces of the cell, coordinates of the centroid
of the cell, volume of the cell (or area for 2D elements), type of cell, cell
and face averaged value of polynomials in the cell, and neutron flux in
the cell.

• Faces: identification number of the region of the face, identification num-
ber of the adjacent cells of the face, identification number of the nodes
of the face, area of the face (or length for 2D elements), type of face and
vectors defining the face, such as the normal.

• Nodes: coordinates of the node.

• Materials: cross sections, fission spectra, velocities of the neutrons, diffu-
sion coefficients and ADFs.

• Regions: identification number of the boundary conditions.

• Inner faces: neutron current at the inner face.

Furthermore, the parallelization includes all the tasks of the code: geometry
pre-processing, equations discretization, eigenvalue and linear system solvers,
linear algebra operations and post-processing.

76

3.5 Parallelization

The geometry pre-processing consists in storing and calculating the geometry
properties. The calculation of geometry properties involves calculating the
following: areas, volumes, centroids, faces normal, and adjacent cells and faces.
All these operations are run in parallel computers.

The eigenvalue solver is already programmed in parallel in SLEPc. Likewise,
the linear system solvers and the linear algebra operations are coded in parallel
in PETSc. To use the parallel computing capabilities of these libraries, one has
to define the matrices and vectors with parallel objects. In the code developed
in this thesis, all the matrices and vectors are defined with parallel objects.

The post-processing step involves three major operations. First, the power
calculation. Second, collapse of the results in nodal form, which is used in
reactor physics. Third, calculation of axial and radial power profiles. Finally,
the results are written in VTK format because of two reasons. First, VTK for-
mat can represent different unstructured meshes. Second, a lot of visualization
software can read this format. In particular, the author used ParaView be-
cause it is user-friendly, open-source and is kept up to date. ParaView (Ahrens
et al. 2005) is an open-source, multi-platform data analysis and visualization
application. By means of ParaView, one can explore the data interactively in
3D or using ParaView’s batch processing capabilities. In addition, ParaView
was developed to analyze extremely large datasets using distributed memory
computing resources.

The parallelization of the method was applied in the Neutron Diffusion Equa-
tion and published in Bernal et al. 2018.

77

Chapter 4

Modal Method for the time
dependent Neutron Diffusion

Equation

4.1 Modal Method

If one applies the FVM to the transient Neutron Diffusion Equation (Equations
2.13 and 2.14), one obtains Equations 4.1 and 4.2. All the terms of these
equations are defined in Sections 2.1, 3.1 and 3.3, except vig, χ

del,i
g,k and Ci

k; vig
is the velocity of the neutron, for the energy group g, in the cell i; χdel,ig,k is the
fission spectrum of the precursors of group k, energy group g, in the cell i; and
Ci
k is the cell averaged value of the concentration of precursors of group k, in

the cell i, which is defined in Equation 4.3.

79

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

Vi
vig

dφg,i(t)

dt
= −

nf∑
j=1

SjJg,i,j(t)− Vi

Σi
a,g(t) +

G∑
g′=1
g′ 6=g

Σi
s,g→g′(t)

φg,i(t)+

+ Vi

G∑
g′=1
g′ 6=g

Σi
s,g′→g(t)φg′,i(t) + (1− β)χig(t)Vi

G∑
g′=1

νΣi
f,g′(t)φg′,i(t)+

+
K∑
k=1

χdel,ig,k (t)λkViC
i
k(t) (4.1)

Vi
dCi

k(t)

dt
= βkVi

G∑
g′=1

νΣi
f,g′(t)φg′,i(t)− λkViCi

k(t), k = 1, ...,K (4.2)

Ci
k(t) =

1

Vi

∫
Vi

Ck(~r, t)dV (4.3)

Equation 4.1 is similar to Equation 3.83, but adding the time dependent terms.
Equation 3.83 was used to obtain the eigenvalue problem in matrix form of
Equation 3.87, as explained in Section 3.3. Likewise, one can obtain the matrix
equations shown in Equations 4.4 and 4.5.

v−1dΦ

dt
= −LΦ + (1− β)MΦ +

K∑
k=1

λkX
del
k Ck (4.4)

Xdel
k

dCk
dt

= βkX
del
k McΦ− λkXdel

k Ck, k = 1, · · · ,K (4.5)

In Equations 4.4 and 4.5, β, λk and βk are coefficients, Φ and Ck are vectors,
and the rest of terms are matrices. Equations 4.6-4.11 define these vectors and
matrices: Φ is composed of vectors Φg; v−1 is a diagonal matrix composed
of matrices v−1

g ; L is a matrix composed of matrices Lg,g′ ; M is a matrix
composed of matrices Mg,g′ ; Xdel

k is a matrix composed of matrices Xdel
g,k ; Mc

is a matrix composed of matrices Mc,g.

80

4.1 Modal Method

Φ =

Φ1

...
ΦG

 (4.6)

v−1 = diag(v−1
1 , · · · , v−1

G) (4.7)

L =



L1,1 0 · · · 0
...

.
...

Lu−1,1 · · · Lu−1,u−1 0 · · · 0
Lu,1 · · · · · · Lu,u · · · Lu,G
...

...
...

...
...

...
LG,1 · · · · · · LG,u · · · LG,G


(4.8)

M =

M1,1 · · · M1,G

...
...

...
MG,1 · · · MG,G

 (4.9)

Xdel
k =

X
del
1,k
...

Xdel
G,k

 (4.10)

Mc = (Mc,1, · · · ,Mc,G) (4.11)

Vectors Φg and Ck and matrices v−1
g , Lg,g′ , Mg,g′ , Xdel

g,k and Mc,g depend on
the FVM. Vector Φg and matrices Lg,g′ and Mg,g′ are defined for the different
methods in Section 3.2. Equations 4.12-4.15 define Ck, v−1

g , Xdel
g,k and Mc,g for

the method of Section 3.2.1.

Ck =



V1C
1
k

...
VNcC

Nc
k

0
...
0


(Nc+Nb)×1

(4.12)

81

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

v−1
g = diag

(
V1

v1
g

, · · · , VNc
vNcg

, 0, · · · , 0
)

(Nc+Nb)×(Nc+Nb)

(4.13)

Xdel
g,k = diag

(
χdel,1g,k , · · · , χdel,Ncg,k , 0, · · · , 0

)
(Nc+Nb)×(Nc+Nb)

(4.14)

Mc,g = diag

(
1

χ1
1

, · · · , 1

χNc1

, 0, · · · , 0
)

(Nc+Nb)×(Nc+Nb)

·M1,g (4.15)

Equations 4.16-4.19 define Ck, v−1
g , Xdel

g,k and Mc,g for the method of Section
3.2.2.

Ck =



V1C
1
k

0
...
0

V2C
2
k

0
...
0
...

VNcC
Nc
k

0
...
0


(Nc+2Nf+Nb)×1

(4.16)

v−1
g = diag

(
V1

v1g
, 0, · · · , 0, V2

v2g
, 0, · · · , 0, · · · , VNc

vNcg
, 0, · · · , 0

)
(Nc+2Nf+Nb)×(Nc+2Nf+Nb)

(4.17)

Xdel
g,k = diag

(
χdel,1g,k , 0, · · · , 0, χdel,2g,k , 0, · · · , 0, · · · , χdel,Ncg,k , 0, · · · , 0

)
(Nc+2Nf+Nb)×(Nc+2Nf+Nb)

(4.18)

Mc,g = diag
(

1
χ1
1
, 0, · · · , 0, 1

χ2
1
, 0, · · · , 0, · · · , 1

χNc1

, 0, · · · , 0
)

(Nc+2Nf+Nb)×(Nc+2Nf+Nb)
·M1,g

(4.19)

82

4.1 Modal Method

Equations 4.20-4.23 define Ck, v−1
g , Xdel

g,k and Mc,g for the method of Section
3.2.3.

Ck =



V1C
1
k

...
VNcC

Nc
k

0
...
0


(Nc+Nf)×1

(4.20)

v−1
g = diag

(
V1

v1
g

, · · · , VNc
vNcg

, 0, · · · , 0
)

(Nc+Nf)×(Nc+Nf)

(4.21)

Xdel
g,k = diag

(
χdel,1g,k , · · · , χdel,Ncg,k , 0, · · · , 0

)
(Nc+Nf)×(Nc+Nf)

(4.22)

Mc,g = diag

(
1

χ1
1

, · · · , 1

χNc1

, 0, · · · , 0
)

(Nc+Nf)×(Nc+Nf)

·M1,g (4.23)

To obtain the time distribution of the neutron flux, the modal method (Miró
et al. 2002) expands the neutron flux as in Equation 4.24, where Φl(~r), for
1 ≤ l ≤ Md, are the dominant eigenvectors associated with the Md dominant
eigenvalues of a steady state condition of the reactor, and nl(t) are their time
amplitudes. Thus, any Φl accomplishes Equation 4.25, where L0 and M0 are
the values of L and M for the steady state, and kl is the eigenvalue associated
to Φl.

Φ(~r, t) =
∞∑
l=1

nl(t)Φ
l(~r) ≈

Md∑
l=1

nl(t)Φ
l(~r) (4.24)

L0Φl =
1

kl
M0Φl (4.25)

If one applies this expansion to Equations 4.4 and 4.5, one obtains Equations
4.26 and 4.27.

83

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

Md∑
l=1

v−1Φl dnl(t)

dt
= −L

Md∑
l=1

nl(t)Φ
l+(1−β)M

Md∑
l=1

nl(t)Φ
l+

K∑
k=1

λkX
del
k Ck (4.26)

Xdel
k

dCk
dt

= βkX
del
k Mc

Md∑
l=1

nl(t)Φ
l − λkXdel

k Ck, k = 1, · · · ,K (4.27)

Then, one can multiply the previous equations (dot product) by the adjoint
eigenvectors corresponding to mode m, Φm∗, so one obtains Equations 4.28
and 4.29.

Md∑
l=1

〈
Φm∗, v−1Φl

〉 dnl(t)
dt

= −
Md∑
l=1

nl(t)
〈
Φm∗, LΦl

〉
+

+ (1− β)
Md∑
l=1

nl(t)
〈
Φm∗,MΦl

〉
+

K∑
k=1

λk
〈
Φm∗, Xdel

k Ck
〉

(4.28)

〈
Φm∗, Xdel

k

dCk
dt

〉
= βk

Md∑
l=1

nl(t)
〈
Φm∗, Xdel

k McΦ
l
〉
−

− λk
〈
Φm∗, Xdel

k Ck
〉
, k = 1, · · · ,K (4.29)

One can rewrite the last two equations as in Equations 4.30 and 4.31. One
has obtained these equations by considering that matrices L and M can be
expressed as a variation of their steady state: L = L0 +δL andM = M0 +δM .
The rest of variables of Equations 4.30 and 4.31 are defined in Equations 4.32-
4.39. It is important to highlight that ρsm, in Equation 4.33, is the static
reactivity.

Md∑
l=1

Λm,l

dnl
dt

= (ρsm − β)Nmnm −
Md∑
l=1

ALm,lnl + (1− β)
Md∑
l=1

AMm,lnl +
K∑
k=1

λkCm,k

(4.30)

dCm,k
dt

= βk

Md∑
l=1

AMc,k
m,l nl − λkCm,k, k = 1, · · · ,K (4.31)

84

4.1 Modal Method

Λm,l =
〈
Φm∗, v−1Φl

〉
(4.32)

ρsm = (km − 1)/km (4.33)

Nm = 〈Φm∗,M0Φm〉 (4.34)

ALm,l =
〈
Φm∗, δLΦl

〉
(4.35)

AMm,l =
〈
Φm∗, δMΦl

〉
(4.36)

Cm,k =
〈
Xdel
k

T
Φm∗, Ck

〉
(4.37)

dCm,k
dt

=

〈
Xdel
k

T
Φm∗,

dCk
dt

〉
(4.38)

AMc,k
m,l =

〈
Xdel
k

T
Φm∗,McΦ

l
〉

(4.39)

Then, if one considers all the values of m and l, ranging from 1 to Md, and
all the values of k, ranging from 1 to K, one obtains the system of differential
equations of Equation 4.40, where I is the identity matrix of dimension Md.

d
dt



n1

n2

...
nMd

C1,1

...
CMd,1

...
C1,K

...
CMd,K



=


Λ−1 ((ρs − βI)N −AL + (1− β)AM) λ1Λ−1 · · · λKΛ−1

β1A
Mc,1 −λ1I 0 0
... 0

. . . 0
βKA

Mc,K 0 0 −λKI





n1

n2

...
nMd

C1,1

...
CMd,1

...
C1,K

...
CMd,K


(4.40)

85

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

If Md is not a large number, the dimension of the system of Equation 4.40 is
much smaller (Md + Md · K) than that of Equations 4.4 and 4.5. Moreover,
Equation 4.40 is a stiff system, so the author decided to use the exponential
matrix method to solve this equation, since it is an analytical method. With
the aim of explaining the exponential matrix method applied to Equation 4.40,
the author will write this equation in a simple form, as in Equation 4.41. As
explained in Section 2.6, one should integrate Equation 4.41 in time intervals
[ti−1, ti] changing matrix A, so one can evaluate accurately N . For certain time
interval [ti−1, ti], with matrix Ai, one can obtain Ni by means of Equation 4.42,
as stated in Section 2.6.

dN
dt

= AN (4.41)

Ni = eAi·(ti−ti−1)Ni−1 (4.42)

For calculating the exponential matrix, the author used the method imple-
mented in SLEPc, which is a matrix function solver reducing the system matrix
and applying the Padé method with scaling and squaring to the reduced ma-
trix. Since one could expand eAi·(ti−ti−1)Ni−1 as the Taylor series of Equation
4.43, one can approximate eAi·(ti−ti−1)Ni−1 as an element of the Krylov sub-
space of matrix Ai ·(ti−ti−1), vector Ni−1 and dimension n. Therefore, SLEPc
performs the Arnoldi decomposition of Equation 4.44, where the columns of
Vn form an orthogonal basis of the previous Krylov subspace, and Hn is the
Hessenberg matrix. Then, SLEPc computes Ñi, which is the approximation
of Ni, as in Equation 4.45, where b = ||Ni−1||2 and e1 is the first coordinate
vector. In addition, SLEPc computes the exponential of Hn with the Padé
method with scaling and squaring (Higham 2009).

eAi·(ti−ti−1)Ni−1 = Ni−1 +
Ai · (ti − ti−1)

1!
Ni−1 +

(Ai · (ti − ti−1))
2

2!
Ni−1 + · · ·

(4.43)

Ai · (ti − ti−1)Vn = Vn+1Hn (4.44)

Ñi = bVneHne1 (4.45)

86

4.1 Modal Method

Since Equation 4.42 is a recurrence formula and one knows Ai for each time
interval [ti−1, ti], one can calculate any Ni, if one knows the initial condition
N0. Fortunately, the initial condition is the steady state of Equations 4.30 and
4.31. In particular, the solution of the steady state of the Neutron Diffusion
Equation is the fundamental mode, that is, the eigenvector Φ1 associated to k1.
Therefore, if one considers the previous statement and the modal expansion
of Φ(~r, t), which is in Equation 4.24, for time t = 0, one realizes that the
initial conditions for nl have to be: n1(0) = 1 and nl(0) = 0, for 2 ≤ l ≤ Md.
For calculating the initial conditions of Cm,k, one has to consider that in the
steady state the fission terms are divided by k1, as shown in Equation 4.46.
Consequently, one can calculate the steady state solution of Cm,k with Equation
4.47, which one obtains by setting to 0 the derivatives of Equation 4.31 and
dividing the fission terms by k1. Finally, if one applies the initial conditions of
nl to Equation 4.47, one obtains the initial conditions of Cm,k(0), as shown in
Equation 4.48. In conclusion, Equation 4.49 shows N0.

L0Φ1 =
1

k1

M0Φ1 (4.46)

0 =
1

k1

βk

Md∑
l=1

AMc,k
m,l nl(0)− λkCm,k(0), k = 1, · · · ,K (4.47)

Cm,k(0) =
1

k1

βk
λk
AMc,k
m,1 , k = 1, · · · ,K, m = 1, · · · ,Md (4.48)

N0 =



1
0
...
0

1
k1

β1

λ1
AMc,1

1,1

...
1
k1

β1

λ1
AMc,1
Md,1

...
1
k1

βK
λK
AMc,K

1,1

...
1
k1

βK
λK
AMc,K
Md,1



(4.49)

87

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

4.2 Adjoint calculation

The modal method needs the adjoint eigenvectors Φm∗ to obtain the reduced
matrix. The adjoint eigenvectors are the eigenvectors of the adjoint eigenvalue
problem. Taking into account the eigenvalue problem of Equation 3.87, which
one can simplify in Equation 4.50, the adjoint eigenvalue problem is defined in
Equation 4.51. Since matrices L and M are real, L∗ = LT and M∗ = MT .

LΦ =
1

k
MΦ (4.50)

L∗Φ∗ =
1

k
M∗Φ∗ → LTΦ∗ =

1

k
MTΦ∗ (4.51)

An interesting property of the adjoint eigenvectors is the biorthogonal property
with respect to the eigenvectors, which is shown in Equation 4.52, where δm,l
is the Kronecker delta. Moreover, the adjoint eigenvalues are the same for the
forward and adjoint eigenvalue problems.

〈
Φm∗, LΦl

〉
=

1

kl

〈
Φm∗,MΦl

〉
=

1

kl

δm,lNl (4.52)

Unfortunately, the adjoint eigenvectors might be different from the forward
eigenvectors. Furthermore, there is not a mathematical formula for obtaining
the adjoint eigenvectors from the forward ones. Thus, one has to solve the
adjoint eigenvalue problem to obtain the adjoint eigenvectors, which might
require the same computational resources. These eigenvalue calculations might
be computationally costly for large matrices.

Therefore, it would be better to develop a method for obtaining an estimation
of the adjoint eigenvectors from the forward ones. Actually, other authors
developed this kind of methods, such as Döring, Kalkkuhl, and Schröder 1993.
This method was used in other modal methods, such as Miró et al. 2002.
However, this method seems to work only for the Neutron Diffusion Equation
with two energy groups, without upscattering and with χ1 = 1. In this case,
one can combine the eigenvalue problem of Equation 3.95 and Equation 3.96
to obtain the eigenvalue problem of Equation 4.53. The adjoint eigenvalue
problem for this case is given in Equation 4.54, which one can transform into
Equation 4.55. From Equations 4.53 and 4.55, one can obtain Equation 4.56.
In addition, one should also consider the eigenvalue problem of matrix AT ,

88

4.2 Adjoint calculation

which is the transpose of matrix A. This eigenvalue problem is defined in
Equation 4.57, which has the same eigenvalues as the forward and adjoint
eigenvalue problems, but the eigenvector is ΦAT

1 . This eigenvector is important
due to two reasons. First, the method of Döring, Kalkkuhl, and Schröder 1993
estimates ΦAT

1 from the forward eigenvectors. Second, one can calculate the
adjoint eigenvectors from ΦAT

1 , as shown in Equation 4.58. One can obtain
this equation from Equations 4.55-4.57

kΦ1 = L−1
1,1

(
M1,1 −M1,2L

−1
2,2L2,1

)
Φ1 = AΦ1 (4.53)

(
LT1,1 LT2,1

0 LT2,2

)(
Φ∗1
Φ∗2

)
=

1

k

(
MT

1,1 0
MT

1,2 0

)(
Φ∗1
Φ∗2

)
(4.54)

kΦ∗1 = LT1,1
−1
(
MT

1,1 − LT2,1LT2,2
−1
MT

1,2

)
Φ∗1 = A∗Φ∗1 (4.55)

ATLT1,1 = LT1,1A
∗ (4.56)

kΦAT

1 = ATΦAT

1 (4.57)

Φ∗1 = LT1,1
−1

ΦAT

1 (4.58)

The key issue of the method proposed in Döring, Kalkkuhl, and Schröder 1993
is that ΦAT

1 is within the subspace of the forward eigenvectors Φ1. Therefore,
one can calculate ΦAT

1 as a linear combination of the vectors of this subspace,
as shown in Equation 4.59. In this equation, Φl

1

AT is the eigenvector l of AT ,
X is a matrix whose columns are orthonormal vectors of the subspace defined
by the forward eigenvectors Φl

1, and U is the matrix containing the coefficients
for calculating Φl

1

AT as a linear combination of the columns of X. Since X is
orthonormal, XTX = I, where I is the unit matrix.[

Φ1
1

AT · · ·ΦMd
1

AT
]

= XU (4.59)

89

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

If one substitutes the previous equation in the eigenvalue problem of Equation
4.60, one obtains Equation 4.61. Then, one can multiply this equation by XT ,
so one obtains Equation 4.62. In this equation, one uses XTX = I and defines
B = XTATX to obtain the eigenvalue problem of Equation 4.63. The size
of matrix B is Md, which is much smaller than the size of matrix AT , so one
can perform a fast calculation of the eigenvalue problem of Equation 4.63. In
particular, one solves Md eigenvalue problems, one for each column of U , as
shown in Equation 4.64. The solution of this eigenvalue problem is U , which
one uses to calculate Φl

1

AT with Equation 4.59. Once Φl
1

AT are calculated, one
can calculate Φl

1

∗ with Equation 4.65.

AT
[
Φ1

1

AT · · ·ΦMd
1

AT
]

=

[
Φ1

1

AT · · ·ΦMd
1

AT
]
· diag (k1, · · · ,kMd

) (4.60)

ATXU = XU · diag (k1, · · · ,kMd
) (4.61)

XTATXU = XTXU · diag (k1, · · · ,kMd
) (4.62)

BU = U · diag (k1, · · · ,kMd
) (4.63)

BUl = klUl , 1 ≤ l ≤Md (4.64)

Φl
1

∗
= LT1,1

−1
Φl

1

AT

= LT1,1
−1
XUl , 1 ≤ l ≤Md (4.65)

In this section, the author develops a simpler, faster and more accurate method
than the one developed in Döring, Kalkkuhl, and Schröder 1993, as shown in
Section 6.7. Although this method is not exact, it is accurate enough and
requires much less computational resources than solving the adjoint eigenvalue
problem.

This method for calculating the adjoint is based on the Power Iteration method,
which is explained in Section 2.5. The Power Iteration method is based on the
product of the matrix by a vector, which should be an estimation of the final
solution. If this vector is close to the eigenvector, the method will converge
fast and one might multiply the matrix only few times.

90

4.2 Adjoint calculation

The proposed method multiplies only once the adjoint matrix and the initial
estimation, for each mode. The proposed estimation is Φl

1 for calculating Φl∗

for each mode l, which is the vector containing all the vectors Φl
g

∗, for each
energy group g. In addition, the method includes a reorthogonalization for
conserving the biorthogonal property of the forward and adjoint eigenvectors.

Although the estimation vector is Φl
1, which only contains the values for the

first energy group, the method calculates the values of the adjoint eigenvectors
for all the energy groups, that is, Φl

g

∗. Actually, one obtains the forward
eigenvectors for all the energy groups in the same way, as explained in Section
3.4.

Now, the author will obtain different equations for calculating the adjoint
eigenvalue problem, as those developed in Section 3.4. The author obtained
the equations of Section 3.4 from the multigroup formulation developed in
Section 3.3. In fact, one does not obtain these equations from the original
eigenvalue problem (Equation 3.87 or 4.50), but from this eigenvalue problem
multiplied by matrix P (Equation 3.92), which is that of Equation 3.93. One
can write this equation with a simple formulation, as in Equation 4.66. The
main advantage of solving Equation 4.66 is that it requires less computational
resources than the original one. Consequently, the author will use the same
approach for the adjoint eigenvalue problem.

PLΦ =
1

k
PMΦ→ LΦ =

1

k
MΦ (4.66)

Although the eigenvalue problems of Equations 4.50 and 4.66 have the same
eigenvectors, the adjoint ones do not, as one can see in Equations 4.51 and
4.67. However, one realizes that the adjoint eigenvectors of Equations 4.51
and 4.67, which are Φ∗ and Ψ∗ respectively, are related as shown in Equation
4.68. Therefore, first, the method will calculate Ψ∗ because it is easier. Second,
the method calculates Φ∗ with Equation 4.68, because the modal method uses
Φ∗.

L
T

Ψ∗ =
1

k
M

T
Ψ∗ → LTP TΨ∗ =

1

k
MTP TΨ∗ (4.67)

91

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation


Φ∗1
Φ∗2
...

Φ∗G

 = Φ∗ = P TΨ∗ =


E −C2 · · · −CG
0 E 0 0
...

.
0 · · · 0 E




Ψ∗1
Ψ∗2
...

Ψ∗G

 =


Ψ∗1 −

∑G
g=2CgΨ

∗
g

Ψ∗2
...

Ψ∗G


(4.68)

Likewise the forward eigenvalue problem explained in Section 3.4, one can
reduce the adjoint eigenvalue problem of Equation 4.67 to that of Equation
4.69. In this equation, one calculates kΨ∗1 from the estimation of Ψ∗1: Ψl

1

∗
= Φl

1,
for 1 ≤ l ≤ Md. In addition, one needs kΨ∗g, for g ≥ 2, to calculate kΨ∗1. To
calculate kΨ∗g, for g ≥ 2, one starts solving the linear system of Equation 4.70,
which contains the upscattering terms, because Ψ∗1 is known. Then, one solves
sequentially the linear systems of Equation 4.71, from g = u − 1 to g = 2.
Finally, one substitutes kΨ∗g, for g ≥ 2, in Equation 4.69, so one obtains
kΨ∗1. Since the final solution is kΦ∗ instead of kΨ∗, one has to substitute the
calculated kΨ∗g, for g ≥ 1, in Equation 4.72. This process is performed only
once, so there are not iterations.

kΨ∗1 = LT1,1
−1

(
MT

1,1Ψ∗1 −
G∑
g=2

L̄Tg,1
(
kΨ∗g

))
(4.69)

L
T
u,u · · · LTG,u
...

...
...

LTu,G · · · LTG,G


kΨ∗u

...
kΨ∗G

 =

M
T
1,uΨ∗1
...

MT
1,GΨ∗1

 (4.70)

LTg,g ·
(
kΨ∗g

)
= MT

1,gΨ
∗
1 −

G∑
g′=g+1

LTg′,g
(
kΨ∗g′

)
, u > g ≥ 2 (4.71)

kΦ∗ =


kΦ∗1
kΦ∗2
...

kΦ∗G

 =


kΨ∗1 −

∑G
g=2CgkΨ∗g

kΨ∗2
...

kΨ∗G

 (4.72)

On the other hand, if one subdivides matrices Lg,g′ and Mg,g′ as explained
in Sections 3.2.3 and 3.4, one has to use other equations for calculating kΨ∗g,
from g = u − 1 to g = 1. However, one calculates kΨ∗g for g ≥ u without

92

4.2 Adjoint calculation

the subdivision and with the same Equation 4.70. By contrast, for g < u, one
subdivides kΨ∗g as shown in Equation 4.73. Then, one calculates sequentially
kΨfaces

g

∗ and kΨcells
g

∗, from g = u− 1 to g = 1. For each energy group g, first,
one calculates kΨfaces

g

∗ with Equation 4.74; second, one calculates kΨcells
g

∗

with Equation 4.75, because it depends on kΨfaces
g

∗. Equations 4.74 and 4.75
depend on vectors bfaces,∗g and bcells,∗g . In addition, bfaces,∗g also depends on
bcells,∗g . Thus, one has to first calculate bcells,∗g with Equation 4.76 for g ≥ 2 and
Equation 4.77 for g = 1. Then, one calculates bfaces,∗g with Equation 4.78 for
g ≥ 2 and Equation 4.79 for g = 1. Finally, one calculates kΦ∗ by substituting
kΨ∗g, for g ≥ 1, in Equation 4.72.

kΨ∗g =

(
kΨcells

g

∗

kΨfaces
g

∗

)
(4.73)

LD
T

g ·
(
kΨfaces

g

∗
)

= bfaces,∗g (4.74)

kΨcells
g

∗
= LA−1

g ·
(
bcells,∗g − LCT

g ·
(
kΨfaces

g

∗
))

(4.75)

bcells,∗g = M cells
1,g

T ·Ψcells
1

∗ −
G∑

g′=g+1

Lcellsg′,g

T ·
(
kΨcells

g′
∗
)

, u < g < 1 (4.76)

bcells,∗1 = M cells
1,1

T ·Ψcells
1

∗
+LA1 ·

G∑
g=2

Ccells
g ·

(
kΨcells

g

∗
)
−

G∑
g=2

Lcellsg,1

T ·
(
kΨcells

g

∗
)

(4.77)

bfaces,∗g = −LBT
g · LA−1

g · bcells,∗g , u < g < 1 (4.78)

bfaces,∗1 = LBT
1 ·
(

G∑
g=2

Ccells
g ·

(
kΨcells

g

∗
)
− LA−1

1 · b
cells,∗
1

)
(4.79)

Since these calculated kΦ∗ are not the real adjoint eigenvectors, they might
not accomplish the biorthogonal property of Equation 4.52. However, one can
make sure that this property is satisfied for theMd eigenvectors calculated. To

93

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

do so, one can orthogonalize the calculated kΦ∗ with respect to LΦ. Another
approach is to calculate the estimation Ψm

1
∗, for each mode m, with Equation

4.80. In this equation, one calculates Ψm
1
∗ as a linear combination of Φl

1 with
coefficients Ul,m, which are calculated to accomplish the biorthogonal property.

Ψm
1
∗ =

Md∑
l=1

Ul,mΦl
1 (4.80)

For the sake of simplicity, the author will calculate Ul,m with
〈
Ψm∗, LΦl

〉
in-

stead of
〈
Φm∗, LΦl

〉
. Nevertheless, one can see in Equation 4.81 that both

dot products are equivalent. Moreover, one can express the calculated kΨ∗ in
matrix form as in Equation 4.82. In this equation, L

T−1

·MT
is the adjoint

matrix and [Φ1 · · ·ΦMd] · U is the estimation of [Ψ1
1
∗ · · ·ΨMd

1

∗
]. Then, one can

substitute Equation 4.82 in the dot product of Equation 4.83. As this dot
product should be the unit matrix to accomplish the biorthogonal property,
one has to calculate U as in Equation 4.84. Although one has to calculate an
inverse in Equation 4.84, this is straightforward because the size of the matrix
is Md. The value of matrix U for the row l and column m is the coefficient
Ul,m. 〈

Ψm∗, LΦl
〉

=
〈
Ψm∗, PLΦl

〉
=
〈
P TΨm∗, LΦl

〉
=
〈
Φm∗, LΦl

〉
(4.81)

[
k1Ψ1∗ · · ·kMd

ΨMd
∗
]

= L
T−1

·MT ·
[
Φ1 · · ·ΦMd

]
· U (4.82)

〈[
k1Ψ1∗ · · ·kMd

ΨMd
∗
]
, L
[
Φ1 · · ·ΦMd

]〉
=

=
[
k1Ψ1∗ · · ·kMd

ΨMd
∗
]T
· L ·

[
Φ1 · · ·ΦMd

]
= UT ·

[
Φ1 · · ·ΦMd

]T ·M · [Φ1 · · ·ΦMd
]

(4.83)

94

4.3 Updating modes

U =
([

Φ1 · · ·ΦMd
]T ·MT ·

[
Φ1 · · ·ΦMd

])−1

=


〈∑G

g=1M1,g · Φ1
g,Φ

1
1

〉
· · ·

〈∑G
g=1M1,g · Φ1

g,Φ
Md
1

〉
...

...
...〈∑G

g=1M1,g · ΦMd
g ,Φ1

1

〉
· · ·

〈∑G
g=1M1,g · ΦMd

g ,ΦMd
1

〉

−1

Md×Md

(4.84)

4.3 Updating modes

In real transients, one should take into account that the cross sections are
dependent not only on time, but also on the space variables. Consequently,
the spatial distribution of the modes might also change over time, and therefore
the values of Φ(~r, t) might not be accurate. However, one can use two different
approaches to obtain accurate solutions. One the one hand, one can use a
large number of modes (Md) in the expansion of Equation 4.24, but this is
not efficient from a computational point of view. On the other hand, one can
use only a small number of Md, but updating the spatial distribution of the
modes at certain time steps. The code developed in this thesis can use both
approaches, but the author strongly recommends using the second one.

The update of modes is the calculation of the eigenvalue problem for the con-
ditions at certain time ti. Equation 4.85 shows this eigenvalue problem. In this
equation, Li andM i are matrices L andM for the time ti, whereas kil and Φl,i

are the eigenvalue and eigenvector of the mode l for the eigenvalue problem at
time ti. In addition, one should also calculate the adjoint eigenvectors Φl,i∗,
as explained in Section 4.2.

LiΦl,i =
1

kil
M iΦl,i (4.85)

Furthermore, one can also use the same equations of Section 4.1, but with
the updated terms at time ti, to continue calculating the time amplitudes in
other time intervals. Nonetheless, one has to recalculate the initial conditions
(Ni) for the new conditions at time ti. These new initial conditions will be
used for the next time interval [ti, ti+1]. The new initial conditions are nil(ti)
and Ci

m,k(ti), which are the values of nl(ti) and Cm,k(ti) for the conditions of
time ti. Therefore, they might differ from the previous time ti−1, because the

95

Chapter 4. Modal Method for the time dependent Neutron Diffusion Equation

eigenvalues, eigenvectors and matrices might be different. Since the solution
of Φ(t) has to be continuous, one should consider the value of Φ(ti) for both
conditions of the times ti−1 and ti, as shown in Equations 4.86 and 4.87 re-
spectively. If one combines these two equations, one obtains the new initial
conditions nim(ti) as shown in 4.88.

Φ(ti) =
Md∑
l=1

ni−1
l (ti)Φ

l,i−1 (4.86)

Φ(ti) =
Md∑
l=1

nil(ti)Φ
l,i (4.87)

nim(ti) =

〈
Φm,i∗,M iΦ(ti)

〉
〈Φm,i∗,M iΦm,i〉

=

〈
Φm,i∗,M i

∑Md

l=1 n
i−1
l (ti)Φ

l,i−1
〉

〈Φm,i∗,M iΦm,i〉
(4.88)

Unfortunately, the calculation of the initial conditions Ci
m,k(ti) is not as straight-

forward as the previous one. Thus, one could calculate them by using some
approach, as that of Equation 4.89. In this equation, one has to calculate the
coefficients am,l to accomplish the equation. Actually, one can calculate am,l
as in Equation 4.90.

Φm,i∗ ≈
Md∑
l=1

am,lΦ
l,i−1∗ (4.89)

am,l =

〈
Φm,i∗,M i−1Φl,i−1

〉
〈Φm,i−1∗,M i−1Φl,i−1〉

(4.90)

Finally, if one uses these two equations, one can obtain Ci
m,k(ti), as explained

in Equation 4.91.

Ci
m,k(ti) =

〈
Xdel
k

T
Φm,i∗, Ck(ti)

〉
=

Md∑
l=1

am,l
〈
Xdel
k

T
Φl,i−1∗, Ck(ti)

〉
=

=
Md∑
l=1

am,lC
i−1
l,k (ti) (4.91)

96

Chapter 5

Steady State of the Neutron
Transport Equation with the

Discrete Ordinates formulation
and the Finite Volume Method

5.1 Discrete Ordinates formulation

In this section, the author applies the FVM to the Steady State of the Discrete
Ordinates Neutron Transport Equation. Section 2.2 explains how to obtain this
equation (Equation 2.55). One can rewrite this equation as in Equation 5.1,
where µm and ϕm express the direction dependence.

97

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

∇~Ωmψg(µm, ϕm, ~r) + Σt,g(~r)ψg(µm, ϕm, ~r)−

−
G∑

g′=1

L∑
l=0

(2l + 1)Σs,g′→g,l(~r)

{
Pl(µm)φg′,l(~r) +

+2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm) ·

[
φkC,g′,l(~r) cos(kϕm) + φkS,g′,l(~r) sin(kϕm)

]}
=

=
χg(~r)

k

G∑
g′=1

νΣf,g′(~r)φg′,0(~r) (5.1)

In the previous equation, the moments φg′,l, φkC,g′,l and φkS,g′,l were already
defined in Section 2.2 (Equations 2.56-2.58). However, in this chapter, the
author will use the moments of Equations 5.2-5.4, because the author will
normalize the weights wn to 8:

∑Nd
n=1wn = 8. This is a typical normalization,

as there are eight octants.

φg′,l(~r) =
1

8

Nd∑
n=1

wnPl(µn)ψg′(~r, µn, ϕn) (5.2)

φkC,g′,l(~r) =
1

8

Nd∑
n=1

wnP
k
l (µn) cos(kϕn)ψg′(~r, µn, ϕn) (5.3)

φkS,g′,l(~r) =
1

8

Nd∑
n=1

wnP
k
l (µn) sin(kϕn)ψg′(~r, µn, ϕn) (5.4)

Before applying the FVM to Equation 5.1, the author defines the cell averaged
values of the angular flux and moments, as shown in Equations 5.5-5.8.

ψg,n,i =
1

Vi

∫
Vi

ψg(~r, µn, ϕn)dV (5.5)

98

5.1 Discrete Ordinates formulation

φg′,l,i =
1

Vi

∫
Vi

φg′,l(~r)dV =

=
1

8

Nd∑
n=1

wnPl(µn)
1

Vi

∫
Vi

ψg′(~r, µn, ϕn)dV =

=
1

8

Nd∑
n=1

wnPl(µn)ψg′,n,i (5.6)

φkC,g′,l,i =
1

Vi

∫
Vi

φkC,g′,l(~r)dV =

=
1

8

Nd∑
n=1

wnP
k
l (µn) cos(kϕn)

1

Vi

∫
Vi

ψg′(~r, µn, ϕn)dV =

=
1

8

Nd∑
n=1

wnP
k
l (µn) cos(kϕn)ψg′,n,i (5.7)

φkS,g′,l,i =
1

Vi

∫
Vi

φkS,g′,l(~r)dV =

=
1

8

Nd∑
n=1

wnP
k
l (µn) sin(kϕn)

1

Vi

∫
Vi

ψg′(~r, µn, ϕn)dV =

=
1

8

Nd∑
n=1

wnP
k
l (µn) sin(kϕn)ψg′,n,i (5.8)

Since the FVM transforms the cell averaged value of the divergence term into
face averaged values, Equation 5.9 shows the face averaged value of the angular
flux ψg,n.

ψg,n,j =
1

Sj

∫
Sj

ψg(~r, µn, ϕn)dS (5.9)

Now, one applies the FVM to Equation 5.1. First, one obtains cell averaged
values of the mentioned equation in each cell i of the discretized geometry, as
shown in Equation 5.10.

99

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

∮
~Ωmψg(µm, ϕm, ~r)d~S +

∫
Vi

Σt,g(~r)ψg(µm, ϕm, ~r)dV −

−
∫
Vi

dV
G∑

g′=1

L∑
l=0

(2l + 1)Σs,g′→g,l(~r)

{
Pl(µm)φg′,l(~r) +

+2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm) ·

[
φkC,g′,l(~r) cos(kϕm) + φkS,g′,l(~r) sin(kϕm)

]}
=

=
1

k

∫
Vi

dV χg(~r)
G∑

g′=1

νΣf,g′(~r)φg′,0(~r) (5.10)

Second, one sets the cross sections and fission spectrum corresponding to the
material of the cell i, as shown in Equation 5.11.

nf∑
j=1

∫
Sj

ψg(µm, ϕm, ~r)~Ωm · d~S + Σi
t,g

∫
Vi

ψg(µm, ϕm, ~r)dV−

−
G∑

g′=1

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)

∫
Vi

φg′,l(~r)dV +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm) ·

[
cos(kϕm)

∫
Vi

φkC,g′,l(~r)dV+

+ sin(kϕm)

∫
Vi

φkS,g′,l(~r)dV

]}
=

1

k
χig

G∑
g′=1

νΣi
f,g′

∫
Vi

φg′,0(~r)dV (5.11)

Third, one obtains the cell averaged values of the angular fluxes and the mo-
ments. In addition, one calculates the face averaged values on each face of
the cell. This is shown in Equation 5.12, where ui,j,x, ui,j,y and ui,j,z are the
direction cosines of the normal of face j.

100

5.1 Discrete Ordinates formulation

nf∑
j=1

(µmui,j,x + ηmui,j,y + ξmui,j,z)Sjψg,m,j + Σi
t,gViψg,m,i −

−
G∑

g′=1

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)Viφg′,l,i +

+2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm) ·

[
cos(kϕm)Viφ

k
C,g′,l,i + sin(kϕm)Viφ

k
S,g′,l,i

]}
=

=
1

k
χig

G∑
g′=1

νΣi
f,g′Viφg′,0,i (5.12)

Fourth, one substitutes the moments of Equations 5.6-5.8 in the previous equa-
tion, so one obtains Equation 5.13.

nf∑
j=1

(µmui,j,x + ηmui,j,y + ξmui,j,z)Sjψg,m,j + Σi
t,gViψg,m,i −

−Vi
G∑

g′=1

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)

1

8

Nd∑
n=1

wnPl(µn)ψg′,n,i +

+2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm) ·

[
cos(kϕm)

1

8

Nd∑
n=1

wnP
k
l (µn) cos(kϕn)ψg′,n,i+

+ sin(kϕm)
1

8

Nd∑
n=1

wnP
k
l (µn) sin(kϕn)ψg′,n,i

]}
=

=
1

k
χig

G∑
g′=1

νΣi
f,g′Vi

1

8

Nd∑
n=1

wnP0(µn)ψg′,n,i (5.13)

Then, one can reorder the previous equation to obtain Equation 5.14, where
one has used P0(µn) = 1.

101

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

nf∑
j=1

(µmui,j,x + ηmui,j,y + ξmui,j,z)Sjψg,m,j + Σi
t,gViψg,m,i−

− Vi
8

G∑
g′=1

Nd∑
n=1

wnψg′,n,i

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)Pl(µn)+

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn) [cos(kϕm) cos(kϕn) + sin(kϕm) sin(kϕn)]

}
=

=
1

k

Vi
8
χig

G∑
g′=1

νΣi
f,g′

Nd∑
n=1

wnψg′,n,i (5.14)

Finally, one can define Σi
s,g′→g,m,n as in Equation 5.15. If one substitutes

this value in Equation 5.14, one obtains Equation 5.16. Therefore, Σi
s,g′→g,m,n

represents the scattering macroscopic cross section, from the energy group g′

to g and from the direction ~Ωm to ~Ωn, in Equation 5.16.

Σi
s,g′→g,m,n =

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)Pl(µn) +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn) cos [k(ϕm − ϕn)]

}
(5.15)

nf∑
j=1

Sj (µmui,j,x + ηmui,j,y + ξmui,j,z)ψg,m,j + ViΣ
i
t,gψg,m,i −

−Vi
8

G∑
g′=1

Nd∑
n=1

wnΣi
s,g′→g,m,nψg′,n,i =

1

k

Vi
8
χig

G∑
g′=1

νΣi
f,g′

Nd∑
n=1

wnψg′,n,i

(5.16)

Equation 5.16 is the Discrete Ordinates formulation of the Steady State of
the Neutron Transport Equation with the Finite Volume Method. The main
advantage of this equation is its simplicity, since all the direction variables are
included in Σi

s,g′→g,m,n. Furthermore, it should be highlighted that Σi
s,g′→g,m,n

depends only on the directions ~Ωm and ~Ωn and on Σi
s,g′→g,l. Thus, one can

calculate it a priori.

102

5.1 Discrete Ordinates formulation

On the other hand, one can obtain another simplification of Σi
s,g′→g,m,n for

2D cases. In these cases, half of the directions are symmetric to the other
half, so one can calculate only the first set. To define the symmetry of the
directions, one should consider the 2D domain and the direction cosines. Let
us consider that the domain is defined in the XY plane and the direction cosines
are those of Figure 2.1 and Equation 2.25. For these conditions, the symmetry
of the direction is in ξ. Thus, if direction n2 is the symmetric direction of n1,
then µn2

= µn1
, ηn2

= ηn1
and ξn2

= −ξn1
. Moreover, one can also define this

symmetry in terms of ϕ: cos(ϕn1
) = cos(ϕn2

) and sin(ϕn1
) = − sin(ϕn2

). From
these, one can easily prove two statements: first, if cos(ϕn1

) = cos(ϕn2
), then

cos(kϕn1
) = cos(kϕn2

); second, if sin(ϕn1
) = − sin(ϕn2

), then sin(kϕn1
) =

− sin(kϕn2
). Taking into account these statements, one can sum Σi

s,g′→g,m,n1

and Σi
s,g′→g,m,n2

, for these directions n1 and n2, as shown in Equation 5.17.

Σi
s,g′→g,m,n1

+ Σi
s,g′→g,m,n2

=
L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm) [Pl(µn1

) + Pl(µn2
)] +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)

(
P k
l (µn1

) cos [k(ϕm − ϕn1
)] +

+P k
l (µn2

) cos [k(ϕm − ϕn2
)]
)}

=
L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
2Pl(µm)Pl(µn1

)+

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn1
) (cos [k(ϕm − ϕn1

)] + cos [k(ϕm − ϕn2
)])

}
=

=
L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
2Pl(µm)Pl(µn1

)+

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn1
)2 cos(kϕm) cos(kϕn1

)

}
=

= 2
L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)Pl(µn1

)+

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn1
) cos(kϕm) cos(kϕn1

)

}
(5.17)

Equation 5.17 is similar to Equation 5.15, so one can define a similar Σi
s,g′→g,m,n

for 2D cases as shown in Equation 5.18.

103

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

Σ2D,i
s,g′→g,m,n =

L∑
l=0

(2l + 1)Σi
s,g′→g,l

{
Pl(µm)Pl(µn) +

+ 2
l∑

k=1

(l − k)!

(l + k)!
P k
l (µm)P k

l (µn) cos(kϕm) cos(kϕn)

}
(5.18)

To obtain the simplification for 2D cases, one can simplify the scattering terms
as shown in Equation 5.19. In this equation, one takes into account that for
a direction n2 which is the symmetric one of n1: wn1

= wn2
and ψg′,n1,i =

ψg′,n2,i. Finally, one obtains a similar scattering term to that of Equation 5.16.
Nevertheless, in Equation 5.19, one uses Σ2D,i

s,g′→g,m,n1
and the following weights:

w2D
n1

= 2wn1
.

Nd∑
n=1

wnΣi
s,g′→g,m,nψg′,n,i =

Nd
2∑

n1=1

wn1
Σi
s,g′→g,m,n1

ψg′,n1,i+

+

Nd
2∑

n2=1

wn2
Σi
s,g′→g,m,n2

ψg′,n2,i =

Nd
2∑

n1=1

wn1
ψg′,n1,i

(
Σi
s,g′→g,m,n1

+ Σi
s,g′→g,m,n2

)
=

=

Nd
2∑

n1=1

wn1
ψg′,n1,i2Σ2D,i

s,g′→g,m,n1
=

Nd
2∑

n1=1

w2D
n1

Σ2D,i
s,g′→g,m,n1

ψg′,n1,i (5.19)

On the other hand, the continuity condition of the angular flux is accomplished
implicitly, because one defines only one angular flux for each inner face j:
ψg,m,j. Although this value is not known, the author describes in Section 5.3
two methods for calculating the face averaged values from the cell averaged
values of the angular flux.

As regards the boundary conditions, the author only used two type of boundary
conditions for the method developed in this thesis: vacuum and reflective. As
discussed in Section 2.2, the boundary conditions are applied to the incoming
angular fluxes. Mathematically, one can determine if an angular flux ψg,m,j,
whose direction is defined by the unit vector of Equation 5.20, will be incoming
to a boundary face, whose normal vector is defined by Equation 5.21. If the
dot product of both vectors, which is shown in Equation 5.22, is negative,
the angular flux is incoming. Once one knows the incoming angular fluxes
(ψg,min,j), one can easily set the vacuum boundary conditions: ψg,min,j = 0.

104

5.1 Discrete Ordinates formulation

~um = µm~i+ ηm~j + ξm~k (5.20)

~ui,j = ui,j,x~i+ ui,j,y~j + ui,j,z~k (5.21)

〈~um, ~ui,j〉 = µmui,j,x + ηmui,j,y + ξmui,j,z (5.22)

Regarding reflective boundary conditions, for an incoming angular flux with
direction ~Ωm, whose reflective angular flux is defined by direction ~Ωrm , the
boundary condition is: ψg,m,j = ψg,rm,j. However, one should determine the
reflective direction for each of the incoming angular fluxes. To do so, one can
consider Figure 5.1, where ~um is the unit vector of an incoming angular flux,
~ui,j is the unit vector of the normal of the boundary face, and ~urm is the unit
vector of the reflective direction. From this figure, one realizes that ~urm can
be calculated with Equation 5.23, for certain coefficient a, which is not known.
Since the norm of a unit vector must be one, one can calculate this coefficient
a with Equation 5.24. Thus, one obtains a = 2 〈~um, ~ui,j〉, and consequently
one can calculate the reflective direction with Equation 5.25.

Figure 5.1: Reflective direction

~urm = ~um − a~ui,j = (µm − aui,j,x)~i+ (ηm − aui,j,y)~j + (ξm − aui,j,z)~k (5.23)

105

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

1 = |~urm | = (µm − aui,j,x)2 + (ηm − aui,j,y)2 + (ξm − aui,j,z)2 (5.24)

~urm = (µm − 2ui,j,x 〈~um, ~ui,j〉)~i+ (ηm − 2ui,j,y 〈~um, ~ui,j〉)~j + (ξm − 2ui,j,z 〈~um, ~ui,j〉)~k
(5.25)

Once one knows the unit vector of the reflective direction ~urm , one has to
identify which outgoing direction is. If the directions of the quadrature are
not symmetric, there will not exist an outgoing direction with unit vector
~urm . Nevertheless, one can choose the direction with the closest unit vector
to ~urm . For this purpose, one should calculate the dot product of ~urm and all
the directions of the quadrature set, as shown in Equation 5.26. Then, one
calculates Rn with Equation 5.27 for all the directions. Finally, the direction
with the minimum value of Rn is the closest one to the reflective direction.

〈~urm , ~un〉 = 〈~um − 2 〈~um, ~ui,j〉 ~ui,j, ~un〉 = 〈~um, ~un〉 − 2 〈~um, ~ui,j〉 〈~ui,j, ~un〉
(5.26)

Rn = | 〈~urm , ~un〉 − 1| (5.27)

If one applies Equation 5.16 to the Nd directions and Nc cells of the discretized
geometry, one obtains the same eigenvalue problem as that of the Neutron
Diffusion Equation (Equation 3.87), but with different vectors Ψg and matrices
Lg,g′ and Mg,g′ . Equation 5.28 shows Ψg and Equation 5.29 shows matrices
Mg,g′ . These matrices are composed of matrices Mg,g′,i for each cell i, which
are defined in Equation 5.30. As regards matrices Lg,g′ , Equation 5.31 shows
matrices Lg,g′ for g 6= g′, which are composed of matrices Lg,g′,i for each cell i.
One can see these matrices Lg,g′,i in Equation 5.32. Unfortunately, it is difficult
to give the composition of matrices Lg,g, because of the face averaged values of
the angular flux. Thus, the author will only specify the terms of Equation 5.16
that one has to use to build these matrices: Sj (µmui,j,x + ηmui,j,y + ξmui,j,z),
ViΣ

i
t,g and −Vi

8
wnΣi

s,g→g,m,n.

106

5.1 Discrete Ordinates formulation

Ψg =



ψg,1,1
...

ψg,Nd,1
ψg,1,2
...

ψg,Nd,2
...

ψg,1,Nc
...

ψg,Nd,Nc


(Nd·Nc)×1

(5.28)

Mg,g′ =


Mg,g′,1 0Nd×Nd · · · 0Nd×Nd

0Nd×Nd Mg,g′,2
. . . 0Nd×Nd

...
.

0Nd×Nd
. . . 0Nd×Nd Mg,g′,Nc


(Nd·Nc)×(Nd·Nc)

(5.29)

Mg,g′,i =
Vi
8
χigνΣi

f,g′ ·

w1 · · · wNd
...

...
...

w1 · · · wNd


Nd×Nd

(5.30)

Lg,g′ =


Lg,g′,1 0Nd×Nd · · · 0Nd×Nd

0Nd×Nd Lg,g′,2
. . . 0Nd×Nd

...
.

0Nd×Nd
. . . 0Nd×Nd Lg,g′,Nc


(Nd·Nc)×(Nd·Nc)

, g 6= g′

(5.31)

Lg,g′,i = −Vi
8
·

 w1Σi
s,g′→g,1,1 · · · wNdΣ

i
s,g′→g,1,Nd

...
...

...
w1Σi

s,g′→g,Nd,1 · · · wNdΣ
i
s,g′→g,Nd,Nd


Nd×Nd

, g 6= g′

(5.32)

107

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

5.2 Gauss-Legendre Product Quadrature

Section 2.2 states that there is a number of quadrature sets for the Discrete
Ordinates, such as: level-symmetric, Legendre-Chebyshev and product quadra-
ture. The most known and used is level-symmetric, because it conserves the
symmetry in each octant and it conserves the moments of the direction cosines.
However, level-symmetric is not the best quadrature for integrating any func-
tion with respect to the direction variables. Actually, the goal of the Discrete
Ordinates is to use few directions to perform the integrals of the functions
depending on the direction variables. As a result, one applies the product
quadrature to obtain more accuracy in the integration. As explained in Sec-
tion 2.2, particularly in Equation 2.47, the product quadrature uses a set of
collocation points and weights for each of the variables cos(θ) and ϕ. The
typical product quadrature uses the Gauss-Legendre quadrature to integrate
with respect to cos(θ). Nonetheless, this quadrature typically uses a different
approach for ϕ. In fact, it divides the whole domain of ϕ, which is 2π, in n
number of collocation points and set the same value for all the weights.

In this section, the author develops another product quadrature using the
Gauss-Legendre quadrature for cos(θ) and ϕ. It should be highlighted that
this product quadrature is a new development. First, the method considers
Np collocation points for cos(θ). This value Np is an even number, with the
aim of conserving the symmetry with respect to θ. For each one of the Np

collocation points, the method uses the weights wxi and collocation points xi
of the Gauss-Legendre quadrature. Then, one can integrate any function f by
means of this quadrature as shown in Equation 5.33.

∫ 1

−1

f(x)dx ≈
Np∑
i=1

wxi f(xi) (5.33)

The Gauss-Legendre quadrature is suitable for cos(θ), because the domain of
the integration ranges from -1 to 1, which is the same as the Gauss-Legendre
quadrature. By contrast, the domain of integration of ϕ ranges from 0 to 2π.
For this reason, if one wants to use the Gauss-Legendre quadrature, one has
to perform the change of variable of Equation 5.34. In this equation, wyj and
yj are the weights and collocation points for Na points of the Gauss-Legendre
quadrature.

108

5.2 Gauss-Legendre Product Quadrature

∫ b

a

f(y)dy =
b− a

2

∫ 1

−1

f

(
b− a

2
y +

a+ b

2

)
dy ≈

≈ b− a
2

Na∑
j=1

wyj f

(
b− a

2
yj +

a+ b

2

)
(5.34)

The author proposed to perform four integrals with respect to ϕ, one in each
quadrant of the domain of ϕ. Therefore, in this method one chooses Na collo-
cation points, so one integrates any function with respect to ϕ in each quadrant
q, as explained in Equation 5.35.

∫ qπ
2

(q−1)π
2

f(y)dy ≈ π

4

Na∑
j=1

wyj f

(
π

4
yj +

(2q − 1)π

4

)
, 1 ≤ q ≤ 4 (5.35)

To sum up, the collocation points and weights are shown in Equations 5.36-
5.38. Since the collocation points of the gaussian quadrature, xi and yj, are
symmetric in [−1, 1], the collocation points cos(θi) and ϕg,j will be symmetric
too. Regarding the weights, one multiplies the weights by constant, as one
can see in Equation 5.38. This value is a normalization coefficient to normalize
weights to 8; thus, one calculates constant as in Equation 5.39.

cos(θi) = xi , 1 ≤ i ≤ Np (5.36)

ϕq,j =
π

4
yj +

(2q − 1)π

4
, 1 ≤ j ≤ Na , 1 ≤ q ≤ 4 (5.37)

wi,q,j = constant · wxi · w
y
j , 1 ≤ j ≤ Na , 1 ≤ q ≤ 4 , 1 ≤ i ≤ Np

(5.38)

constant =
8∑Np

i=1

∑4
q=1

∑Na
j=1w

x
i · w

y
j

(5.39)

Finally, one calculates the direction cosines with Equation 5.40.

109

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

µi,q,j = cos(θi)

ξi,q,j =
√

1− cos2(θi) · sin(ϕq,j)

ηi,q,j =
√

1− cos2(θi) · cos(ϕq,j) (5.40)

Nevertheless, in this method, one can apply the polar variable to any direction
cosine, not only µ. If one uses η as the polar variable, the direction cosines
are those of Equation 5.41. Likewise, if one uses ξ as the polar variable, the
direction cosines are those of Equation 5.42.

ηi,q,j = cos(θi)

ξi,q,j =
√

1− cos2(θi) · sin(ϕq,j)

µi,q,j =
√

1− cos2(θi) · cos(ϕq,j) (5.41)

ξi,q,j = cos(θi)

ηi,q,j =
√

1− cos2(θi) · sin(ϕq,j)

µi,q,j =
√

1− cos2(θi) · cos(ϕq,j) (5.42)

5.3 Interpolation schemes for the face values

This section explains two interpolation schemes for calculating the face aver-
aged values of the angular flux: linear-step and multislope second order upwind.
The first one is used for calculating the face averaged values at the inner faces.
The second one is used for calculating these values at the boundary faces.

5.3.1 Linear-step

The first scheme is based on a combination of a step method and a linear
method. The step method is the same method as the upwind method described
in Section 2.4, particularly in Figure 2.6. However, the author calls it step,
because this is the classical name used in the Discrete Ordinates. The step
method calculates the face averaged value of the angular flux with Equation
5.43. In this equation, ψg,m,iout is the value of the angular flux in cell iout.

110

5.3 Interpolation schemes for the face values

This cell is defined in Figure 5.2 and it is the cell from which the angular flux
outgoes.

ψg,m,j = ψg,m,iout (5.43)

Figure 5.2: Definition of cells iout and iin

The step method has two main advantages. First, its simplicity. Second, its
convergence. However, it has a major drawback: it overestimates the leakage
terms. A more accurate approach is the linear method, which is the same
method as the central difference scheme, which is defined in Figure 2.5 of
Section 2.4. Equation 5.44 displays the calculation of ψg,m,j by means of the
linear method. In this equation, ri,j is the distance from the centroid of cell i
to the centroid of face j. Although the linear method improves the accuracy, it
has two main drawbacks. First, the convergence is worse than the step method.
Second, it might provide results without physical sense, like negative values of
the angular fluxes.

ψg,m,j =
riout,j

riin,j + riout,j
ψg,m,iin +

riin,j
riin,j + riout,j

ψg,m,iout (5.44)

To deal with the advantages of the previous methods, the author defines a
linear-step method, as shown in Equation 5.45. In this equation, δ is a value
ranging from 0 to 1. The advantage of this method is that it gets the best of
each method. The linear method improves the accuracy of the solution. The
step method improves the convergence and avoid obtaining results without
physical sense. The downside of the method is that it is difficult to set a
general value of this coefficient δ. As a rule of thumb, one has to use the
closest value to zero that provides results with physical sense. Moreover, if the
calculation does not converge, one should also increase slightly this value of δ.
The author recommends values in the following range: [0.005, 0.25].

111

Chapter 5. Steady State of the Neutron Transport Equation with the Discrete Ordinates

formulation and the Finite Volume Method

ψg,m,j = δ·ψstepg,m,j+(1−δ)ψlinearg,m,j =
(1− δ)riout,j
riin,j + riout,j

ψg,m,iin+
riin,j + δ · riout,j
riin,j + riout,j

ψg,m,iout

(5.45)

5.3.2 Multislope second order upwind

Since the boundary faces do not have two adjacent cells, one cannot use the
linear method, but one can use only the step method. However, the step
method is first order accurate, so one should use another interpolation scheme,
which was at least second order accurate.

A simple and second order accurate scheme is the second order upwind. This
scheme calculates the face averaged value from the slope defined by the cell
averaged values of two cells. The first cell is the adjacent cell to the face.
The second cell is the adjacent cell to the first cell. This scheme is defined in
Equation 5.46, where pi,j is the slope, i is the adjacent cell to the boundary
face j, and ri,j is the distance between the centroids of the cell i and face j.

ψg,m,j = ψg,m,i + pi,jri,j (5.46)

Nevertheless, for 2D and 3D geometries, there are several adjacent cells to the
cell i. For this reason, one should consider the information of all the neighbor
cells. Therefore, this slope pi,j for certain cell i and face j should take into
account the slope in all the adjacent cells to cell i. To do so, the author
proposes calculating this slope with Equation 5.47. In this equation, i is the
adjacent cell to face j, whereas ikl are the adjacent cells to cell i, nac is the
number of adjacent cells to cell i, and wi,j,l are weights for calculating pi,j as a
weighted sum of the slopes of each cell ikl . As pi,j takes into account the slopes
of all the neighbor cells, the author called this scheme multislope second order
upwind.

pi,j =
nac∑
l=1

wi,j,l
ψg,m,i − ψg,m,ikl

ri,ikl
=

(
nac∑
l=1

wi,j,l
ri,ikl

)
ψg,m,i−

nac∑
l=1

wi,j,l
ri,ikl

ψg,m,ikl (5.47)

As regards these weights wi,j,l, one can calculate them to accomplish Equation
5.48. In this equation, ~ui,j is the unit vector from the centroid of cell i to the
centroid of face j, and ~uikl ,i is the unit vector from the centroid of cell ikl to the
centroid of cell i. If one multiplies (dot product) Equation 5.48 and ~uikm ,i, one
obtains Equation 5.49. From this equation, one can build the linear system of

112

5.3 Interpolation schemes for the face values

Equation 5.50. Since one can calculate all the dot products appearing in this
linear system, one can determine wi,j,l.

~ui,j =
nac∑
l=1

wi,j,l~uikl ,i (5.48)

〈
~ui,j, ~uikm ,i

〉
=

nac∑
l=1

wi,j,l
〈
~uikl ,i, ~uikm ,i

〉
(5.49)


〈
~uik1 ,i, ~uik1 ,i

〉
· · ·

〈
~uik1 ,i, ~uiknac ,i

〉
...

. . .
...〈

~uiknac ,i, ~uik1 ,i
〉
· · ·

〈
~uiknac ,i, ~uiknac ,i

〉

 wi,j,k1

...
wi,j,knac

 =


〈
~ui,j, ~uik1 ,i

〉
...〈

~ui,j, ~uiknac ,i
〉


(5.50)

Once one has calculated these weights, one can calculate pi,j by means of
Equation 5.47. Then, if one combines Equations 5.46 and 5.47, one obtains
Equation 5.51 for calculating ψg,m,j.

ψg,m,j =

(
1 + ri,j

nac∑
l=1

wi,j,l
ri,ikl

)
ψg,m,i −

nac∑
l=1

(
wi,j,l

ri,j
ri,ikl

)
ψg,m,ikl (5.51)

113

Chapter 6

Results

6.1 Evaluation of the results

There are two important issues for evaluating the results. First, the accu-
racy of the solution. Second, the computational cost. The author will assess
the computational cost by means of the computational time required for run-
ning the simulation. Furthermore, the author will assess the performance of
the parallelization by means of the speedup. The speedup for N processors
is defined as the ratio of the computational time with one processor to the
computational time with N processors. In addition, the author ran the sim-
ulations on two different computers. Almost all the results were obtained on
an AMD Opteron(TM) Processor 6272 with the CentOS 6.8 operating system.
However, there are some cases in which the author ran the simulations on an
Intel Core i7-3770 CPU (3.4GHz), with the CentOS 6.8 operating system. In
these cases, the author will mention it.

Regarding the accuracy of the solution, the author will check the accuracy
of the values of the crucial variables in Nuclear Safety Analyses, which are
the multiplication factor and the power. On the one hand, the multiplication
factor is the largest value of the eigenvalue k. Since the method of this thesis
is a modal method, the author calculated several eigenvalues, particularly the
five largest eigenvalues in almost all the cases. On the other hand, the power

115

Chapter 6. Results

for each cell (Pi) is defined in Equation 6.1. The constant is a normalization
factor to obtain Mean Power (MP) equals 1.0, which is defined in Equation
6.2.

Pi = constant ·
G∑
g=1

Σi
f,gφg,i (6.1)

MP =

∑
i |Pi|Vi∑
i Vi

(6.2)

To evaluate the accuracy of the eigenvalues and power, the author will use
the Power Errors (PE) and Eigenvalue Errors (EE). These variables are
defined in Equations 6.3 and 6.4. With the aim of reducing the extent of this
document, one will also use the Mean Power Error (MPE) to assess the power
results, and it is defined in Equation 6.5. In this thesis, one exhibits all the
eigenvalue errors, but one only shows the power errors corresponding to the
first eigenvector, due to the extent of the results.

PEi(%) =
|Pi − Pi,ref |

Pi,ref
· 100 (6.3)

EE(pcm) =
k− kref
kref

· 105 (6.4)

MPE(%) =

∑
i PEi(%)|Pi|Vi∑

i |Pi|Vi
(6.5)

In the previous equations, the values with subindex ref correspond to the
values of a reference solution. The ideal reference solution is the analytical
solution of the Neutron Diffusion or Transport Equations. However, one can
obtain the analytical solution only for simple cases, like homogeneous reactors
whose geometry is a rectangle or parallepiped. For general cases, one might
also use reference solutions of benchmarks. Normally, one uses validated meth-
ods to obtain the results of these benchmarks. Consequently, the author also
calculates the solution with other validated methods; thus, the author can
check any case, including commercial nuclear reactors. Among the different
validated methods, the author used three Neutron Diffusion Codes and one

116

6.1 Evaluation of the results

Neutron Transport Code. The Neutron Diffusion codes are: PARCS (Dow-
nar et al. 2006), VALKIN (Verdú et al. 1994, Miró et al. 2002) and TRIVAC
(Hébert and Sekki 2010). The Neutron Transport Code is TITAN (Yi 2009).

PARCS is a 3D reactor core simulator very well known and used. It solves the
Steady State and time-dependent, multigroup Neutron Diffusion and low order
Transport Equations in orthogonal and non-orthogonal geometries. PARCS
only calculates the first eigenvalue. Regarding the spatial discretization, PARCS
uses a Coarse Mesh Finite Difference Method (CMFD) to solve the Neutron
Diffusion Equation in each node. These nodes are coupled at each inner face by
the leakage terms. To calculate the coupling terms, PARCS has different nu-
merical methods: Analytic Nodal Method (ANM), Nodal Expansion Method
(NEM), a hybrid method combining ANM and NEM, and Finite Difference
Method (FDM).

VALKIN is a Nodal Modal method that solves the 2-energy group Neutron
Diffusion Equation, without upscattering and with fission neutrons produced
in the first energy group. VALKIN solves this equation in Cartesian meshes
by using the Nodal Collocation Method (Hébert 1987). VALKIN can calculate
several eigenvalues and eigenvectors. In addition, for the time-dependent Neu-
tron Diffusion Equation, VALKIN can use a Modal Method or a Quasi-Static
Method.

TRIVAC is a computer code intended to compute the neutron flux in a frac-
tional or in a full core representation of a nuclear reactor. It can solve the
multigroup and multidimensional form of the Steady State and time-dependent
Neutron Diffusion Equation or simplified Pn equation. Moreover, it allows
the discretization of 1-D geometries (slab and cylindrical), 2-D geometries
(Cartesian, cylindrical and hexagonal) and 3-D geometries (Cartesian and
hexagonal). TRIVAC can apply different numerical methods: Finite Differ-
ence Method (FDM), Nodal Collocation Method (NCM) and Finite Element
Method (FEM). In addition, TRIVAC can calculate several eigenvalues. Ac-
tually, the original version uses the Hotelling Deflation technique to do so,
which is not the most efficient approach. However, the author of this the-
sis developed an algorithm for applying the Krylov-Schur method of SLEPc
in TRIVAC, which was published in Bernal et al. 2017a. This Krylov-Schur
method is very efficient for calculating several eigenvalues.

TITAN is a deterministic radiation transport simulation code in 3D Cartesian
geometry. TITAN numerically solves the time-independent first order trans-
port equation. It can solve the Transport Equation with the Discrete Ordinates
method and the Method of Characteristics. For the Discrete Ordinates, it can

117

Chapter 6. Results

use two numerical methods for the spatial discretization: Diamond Difference
and Directional Theta-Weighted. In addition, it only calculates one eigenvalue.
TITAN has a parallel version using MPI, which only does angular decomposi-
tion. Regarding the quadrature sets, TITAN uses two types: level-symmetric
and Legendre-Chebyshev.

The author also performed a sensitivity analysis of the following parameters:
mesh, parameters of the FVM, linear system solvers and parameters of the
modal method. First, the author used different structured and unstructured
meshes with different sizes of the meshes.

Second, the sensitivity analysis of the parameters of the FVM depends on
the type of FVM. For the Moving Least Squares method of Section 3.2.1, the
parameter is the diffusion coefficient for the inner faces Dj

g. Regarding the
polynomial expansion methods of Sections 3.2.2 and 3.2.3, the parameters are
the polynomials xαtyβtzγt . With respect to the linear-step method of Section
5.3.1, the parameter is the coefficient δ.

Third, the author tested different linear system solvers and preconditioners of
the PETSc library. In particular, the author tested the following linear sys-
tem solvers: BiConjugate Gradient, GMRES, Generalized Conjugate Residual,
BiCGSTAB and Conjugate Gradient Squared. The author used these solvers
because they can be applied to non-symmetric matrices. These solvers were
used with the following preconditioners: Jacobi, SOR and Additive Schwarz,
which is the same as Incomplete LU for one processor. The author used the
default tolerances of PETSc.

Finally, there are two important parameters of the modal method. First, the
number of modes (Md) of the expansion of the eigenvectors in Equation 4.24.
Second, the time step for updating the modes.

6.2 Moving Least Squares method

In this section, the author tests the capabilities of the Moving Least Squares
method of Section 3.2.1, to solve the Steady State Neutron Diffusion Equa-
tion, with two energy groups, without upscattering and with fission neutrons
produced in the first energy group.

The author applied the method to 4 reactors: 2D and 3D homogeneous and
heterogeneous. The homogeneous reactors are used to check the accuracy of
calculation of the face averaged values. Then, the author tests the capability of

118

6.2 Moving Least Squares method

the diffusion coefficient Dj
g in heterogeneous reactors. The 2D heterogeneous

reactor is Biblis. The 3D heterogeneous reactor is Langenbuch. In all the
cases, five eigenvalues are calculated.

For solving the linear systems, the author used direct solvers, because the
matrices were not well-conditioned. In particular, the author used the LU
decomposition of MUMPS (Amestoy, Duff, and L’excellent 2000).

The results of this section were published in Bernal et al. 2014.

6.2.1 2D homogeneous reactor

This reactor is a rectangle of the following dimensions: 100 cm x 60 cm. It is
composed of only one material, whose cross sections are those of Table 6.1.

Table 6.1: Cross sections of the homogeneous reactor

Group Dg (cm) Σa,g (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)
1 1.28205128205 0.01 0.01 0.075
2 0.666667 0.1 0.109017634020268

The author used six meshes for modeling this reactor, three structured and
three unstructured. Mesh 1 is a structured mesh composed of 12 x 6 identical
rectangles (72 rectangles). Mesh 2 is a structured mesh composed of 24 x 12
identical rectangles (288 rectangles). Mesh 3 is a structured mesh composed
of 54 x 30 identical rectangles (1620 rectangles). Figure 6.1 shows Meshes 4
and 5, which have 270 and 732 triangles respectively. Figure 6.2 shows Mesh
6, which has 4208 triangles.

Mesh 4 Mesh 5

Figure 6.1: Meshes 4 and 5 for the 2D homogeneous reactor

119

Chapter 6. Results

Figure 6.2: Mesh 6 for the 2D homogeneous reactor

Since this reactor is homogeneous, the choice of the diffusion coefficient Dj
g

does not matter.

The author ran all the cases with boundary conditions of zero flux.

As this case has analytical solution, this is the reference solution. The reference
solution is calculated in a structured mesh of 3 x 3 identical rectangles. The
reference eigenvalues are: 1.000000, 0.943323, 0.859663, 0.854512 and 0.810300.

Table 6.2 shows the computational time, eigenvalue errors and maximum power
errors for each mesh. One can see in this table that the calculation of the power
and the first eigenvalue is accurate for any mesh, with power errors below 0.14
% and eigenvalue errors below 140 pcm. Nevertheless, one has to use fine
meshes for obtaining accurate eigenvalue results for other eigenvalues.

Table 6.2: Results for the 2D homogeneous reactor: Computational time (s), eigenvalue
errors (pcm) and maximum power error (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 max(PEi)
Mesh 1 0.38 139.90 309.79 1207.77 1587.05 1948.23 0.02
Mesh 2 0.85 35.08 77.40 246.02 462.01 492.74 0.00
Mesh 3 0.11 5.73 14.01 47.22 74.56 80.71 0.00
Mesh 4 0.74 29.65 117.77 437.26 221.29 436.13 0.10
Mesh 5 1.52 12.92 38.61 179.91 128.80 185.87 0.14
Mesh 6 10.41 2.05 6.12 18.74 20.95 29.28 0.02

Finally, Figures 6.3-6.5 show the power distribution for the five modes and
Mesh 6.

120

6.2 Moving Least Squares method

First mode Second mode

Figure 6.3: Power (first and second modes) for the 2D homogeneous reactor with Mesh 6

Third mode Fourth mode

Figure 6.4: Power (third and fourth modes) for the 2D homogeneous reactor with Mesh 6

Figure 6.5: Power (fifth mode) for the 2D homogeneous reactor with Mesh 6

121

Chapter 6. Results

6.2.2 Biblis reactor

Biblis is a 2D heterogeneous reactor composed of 8 materials. Figure 6.6 shows
its geometry and material composition. Table 6.3 exhibits its cross sections.

Figure 6.6: Biblis reactor

The author used six meshes for modeling this reactor, three structured and
three unstructured. Figures 6.7-6.9 show these meshes. Meshes 1-3 are com-
posed of 1028, 2416 and 9252 rectangles respectively. Meshes 4-6 are composed
of 1808, 4542 and 23972 triangles respectively.

Furthermore, the author also performed a sensitivity analysis of the four dif-
fusion coefficients Dj

g of Section 3.2.1, whose names are: Cell i, Cell l, Homog-
enized and Linear.

The author ran the simulations with the geometry of Figure 6.6, and conse-
quently one has to use boundary conditions of zero flux at the east and south
boundaries, but one has to use reflective conditions at the west and north
boundaries. The author calculated five eigenvalues, but there are only refer-
ence results for the first eigenpair. These results are calculated for the nodes

122

6.2 Moving Least Squares method

Table 6.3: Cross sections of Biblis reactor

Material Group Dg (cm) Σa,g (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)
1 1 1.4360 0.0095042 0.0058708 0.017754

2 0.3635 0.0750580 0.0960670
2 1 1.4366 0.0096785 0.0061908 0.017621

2 0.3636 0.0784360 0.1035800
3 1 1.3200 0.0026562 0.0000000 0.023106

2 0.2772 0.0715960 0.0000000
4 1 1.4389 0.0103630 0.0074527 0.017101

2 0.3638 0.0914080 0.1323600
5 1 1.4381 0.0100030 0.0061908 0.017290

2 0.3665 0.0848280 0.1035800
6 1 1.4385 0.0101320 0.0064285 0.017192

2 0.3665 0.0873140 0.1091100
7 1 1.4389 0.0101650 0.0061908 0.017125

2 0.3679 0.0880240 0.1035800
8 1 1.4393 0.0102940 0.0064285 0.017027

2 0.3680 0.0905100 0.1091100

Mesh 1 Mesh 2

Figure 6.7: Meshes 1 and 2 for Biblis reactor

123

Chapter 6. Results

Mesh 3 Mesh 4

Figure 6.8: Meshes 3 and 4 for Biblis reactor

Mesh 5 Mesh 6

Figure 6.9: Meshes 5 and 6 for Biblis reactor

124

6.2 Moving Least Squares method

of Figure 6.6. One can find this reference solution in Müller and Weiss 1991,
which was obtained by means of PANIC analytic nodal code using a 4 x 4
mesh. The reference eigenvalue is 1.025110.

As regards the results, Tables 6.4-6.6 show the computational time, eigenvalue
errors and maximum power errors respectively. From Table 6.5 one draws two
conclusions. First, any approach of Dj

g and mesh gives accurate eigenvalue
results, since the eigenvalue errors are below 100 pcm. Second, there are slight
differences among the results obtained with the different Dj

g. Furthermore,
one draws the same conclusion from the power results of Table 6.6. However,
these results show that one has to use fine meshes for obtaining maximum
power errors below 2 %. As a conclusion, the author recommends using the
Homogenized Dj

g and fine meshes, but not the finest ones. The reason is that
the finest meshes increase drastically the computational time as shown in Table
6.4.

Table 6.4: Computational time (min:s) of Biblis reactor

Dj
g Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Cell i 0:4 0:7 0:41 0:4 0:13 3:34
Cell l 0:3 0:7 0:41 0:4 0:13 3:43

Homogenized 0:3 0:7 0:41 0:5 0:13 3:35
Linear 0:3 0:7 0:41 0:4 0:13 3:44

Table 6.5: Eigenvalue error (pcm) of Biblis reactor

Dj
g Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Cell i 97.88 42.21 11.21 49.52 19.92 4.54
Cell l 40.94 7.78 3.52 15.31 0.10 1.95

Homogenized 67.64 23.97 3.46 31.41 9.45 1.16
Linear 69.18 24.80 3.73 32.25 9.86 1.26

Table 6.6: Maximum power error (%) of Biblis reactor

Dj
g Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

Cell i 5.30 2.06 0.47 2.70 0.94 0.19
Cell l 1.70 1.80 1.17 1.16 1.26 0.53

Homogenized 3.22 0.86 0.63 1.41 0.60 0.29
Linear 3.33 0.86 0.61 1.47 0.57 0.28

Finally, Figures 6.10-6.12 display the power for the five calculated eigenvec-
tors, for Mesh 6 and using the Homogenized Dj

g. It is important to highlight

125

Chapter 6. Results

that these eigenvectors are not those corresponding to the largest eigenvalues,
because the author did not simulate the whole geometry, but a quarter of it.
However, the author did that for testing the reflective boundary condition.

First mode Second mode

Figure 6.10: Power (first and second modes) for Biblis reactor with Mesh 6 and Homoge-
nized Dj

g

Third mode Fourth mode

Figure 6.11: Power (third and fourth modes) for Biblis reactor with Mesh 6 and Homoge-
nized Dj

g

126

6.2 Moving Least Squares method

Figure 6.12: Power (fifth mode) for Biblis reactor with Mesh 6 and Homogenized Dj
g

6.2.3 3D homogeneous reactor

This reactor is a parallelepiped of the following dimensions: 100 cm x 60 cm x
180 cm. It is composed of only one material, whose cross sections are those of
Table 6.1.

In this case, the author only used three structured meshes. Mesh 1 is composed
of 10 x 6 x 18 identical parallelepipeds (1080 parallelepipeds). Mesh 2 is
composed of 20 x 12 x 36 identical parallelepipeds (8640 parallelepipeds). Mesh
3 is composed of 50 x 30 x 90 identical parallelepipeds (135000 parallelepipeds).

As this reactor is homogeneous, the choice of the diffusion coefficient Dj
g does

not matter.

The author ran all the cases with boundary conditions of zero flux.

Since this case has analytical solution, this is the reference solution. The
reference solution is calculated for a structured mesh of 3 x 3 x 6 identical
parallelepipeds. The reference eigenvalues are: 0.993919, 0.976030, 0.947343,
0.937787 and 0.921486

Table 6.7 shows the computational time, eigenvalue errors and maximum power
errors for each mesh. One can conclude that the calculation of the power and
the first eigenvalue is accurate for Meshes 2 and 3, with power errors below 0.29
% and eigenvalue errors below 103.76 pcm. Nevertheless, the computational
time of Mesh 3 is extremely high, so the author recommends using Mesh 2.

127

Chapter 6. Results

Table 6.7: Results for the 3D homogeneous reactor: Computational time (h:min:s), eigen-
value errors (pcm) and maximum power error (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 max(PEi)
Mesh 1 0:0:9 148.49 174.64 276.89 390.55 416.48 1.07
Mesh 2 0:2:52 37.14 43.47 68.86 97.62 103.76 0.29
Mesh 3 12:41:9 5.93 6.91 10.94 15.56 16.50 0.05

Finally, Figures 6.13-6.15 show the power distribution for the five modes and
Mesh 3.

First mode Second mode

Figure 6.13: Power (first and second modes) for the 3D homogeneous reactor with Mesh 3

6.2.4 Langenbuch reactor

Langenbuch is a 3D heterogeneous reactor composed of 4 materials. Figure
6.16 displays its geometry and material composition. Table 6.8 shows its cross
sections.

The author used two structured meshes for modeling this reactor. Figure 6.17
shows these meshes, which are composed of 2800 and 18720 parallelepipeds
respectively.

128

6.2 Moving Least Squares method

Third mode Fourth mode

Figure 6.14: Power (third and fourth modes) for the 3D homogeneous reactor with Mesh
3

Figure 6.15: Power (fifth mode) for the 3D homogeneous reactor with Mesh 3

129

Chapter 6. Results

XY plane Frontal plane

Figure 6.16: Langenbuch reactor

Table 6.8: Cross sections of Langenbuch reactor

Material Group Dg (cm) Σa,g (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)
Comb.1 1 1.423913 0.010402060 0.006477691 0.01755550

2 0.356306 0.087662170 0.112732800
Comb.2 1 1.425611 0.010992630 0.007503284 0.01717768

2 0.350574 0.099256340 0.137800400
Absorbent 1 1.423913 0.010952060 0.006477691 0.01755550

2 0.356306 0.091462170 0.112732280
Reflector 1 1.634227 0.002660573 0.000000000 0.02759693

2 0.264002 0.049363510 0.000000000

130

6.2 Moving Least Squares method

Mesh 1 Mesh 2

Figure 6.17: Meshes 1 and 2 for Langenbuch reactor

131

Chapter 6. Results

In addition, the author also performed a sensitivity analysis of the four diffusion
coefficients Dj

g of Section 3.2.1.

The author ran the simulation with the geometry of Figure 6.16, and therefore
one has to use boundary conditions of zero flux at the east, north, top and
bottom boundaries, but one has to use reflective conditions at the west and
south boundaries. The author calculated the reference solution with VALKIN
code and obtained five eigenvalues. These results are calculated for the nodes
of Figure 6.16. The reference eigenvalues are: 0.994881, 0.948211, 0.911892,
0.907632 and 0.877972.

Regarding the results, Table 6.9 shows the computational time; Tables 6.10-
6.11 display the eigenvalue errors; Table 6.12 exhibits the maximum power
errors (max(PE)) and mean power errors (MPE). From these tables, one
concludes that only Mesh 2 gives accurate results, that is, MPE below 1 %
and EE below 200 pcm for almost all the eigenvalues. Moreover, one can see
that "Cell l" gives the worst results. As a conclusion, the author recommends
using the Homogenized Dj

g and Mesh 2, although the computational time is
about minutes, as shown in Table 6.9.

Table 6.9: Computational time (min:s) of Langenbuch reactor

Dj
g Mesh 1 Mesh 2

Cell i 0:26 10:55
Cell l 0:26 11:24

Homogenized 0:26 10:56
Linear 0:26 10:44

Table 6.10: EE1, EE2 and EE3 (pcm) of Langenbuch reactor

EE1 EE2 EE3

Dj
g Mesh 1 Mesh 2 Mesh 1 Mesh 2 Mesh 1 Mesh 2

Cell i 83.38 12.50 226.12 7.72 364.90 0.20
Cell l 212.85 63.06 350.52 80.21 768.15 242.30

Homogenized 143.15 22.69 281.00 39.99 556.71 115.28
Linear 150.09 25.26 292.19 44.24 574.25 121.93

Finally, Figures 6.18-6.20 display the power for the five calculated eigenvec-
tors, for Mesh 2 and using the Homogenized Dj

g. It is important to highlight
that these eigenvectors are not necessarily those corresponding to the largest
eigenvalues, because the author did not simulate the whole geometry, but a

132

6.2 Moving Least Squares method

Table 6.11: EE4 and EE5 (pcm) of Langenbuch reactor

EE4 EE5

Dj
g Mesh 1 Mesh 2 Mesh 1 Mesh 2

Cell i 357.08 8.73 584.10 67.89
Cell l 695.07 204.28 701.53 135.88

Homogenized 518.77 93.34 633.48 96.47
Linear 533.07 98.53 649.97 102.76

Table 6.12: Maximum Power Error and Mean Power Error (%) of Langenbuch reactor

max(PE) MPE
Dj
g Mesh1 Mesh2 Mesh1 Mesh2

Cell i 10.28 3.59 2.23 0.63
Cell l 17.49 7.22 4.34 1.56

Homogenized 10.47 3.00 2.98 0.68
Linear 10.91 3.13 3.08 0.72

quarter of it. However, the author did that for testing the reflective boundary
condition.

First mode Second mode

Figure 6.18: Power (first and second modes) for Langenbuch reactor with Mesh 2 and
Homogenized Dj

g

133

Chapter 6. Results

Third mode Fourth mode

Figure 6.19: Power (third and fourth modes) for Langenbuch reactor with Mesh 2 and
Homogenized Dj

g

Figure 6.20: Power (fifth mode) for Langenbuch reactor with Mesh 2 and Homogenized
Dj

g

134

6.3 Inter-cells polynomial expansion method

6.3 Inter-cells polynomial expansion method

In this section, the author tests the capabilities of the inter-cells polynomial
expansion method of Section 3.2.2, to solve the Steady State Neutron Diffu-
sion Equation, with two energy groups, without upscattering and with fission
neutrons produced in the first energy group.

The author applied the method to two 3D reactors, which are the same as those
of the previous section. In both cases, one calculated five eigenvalues. For
solving the linear systems, the author used the LU decomposition of MUMPS
(Amestoy, Duff, and L’excellent 2000), because the matrices were not well-
conditioned.

The results of this section were published in Bernal et al. 2016b.

6.3.1 3D homogeneous reactor

Since this reactor is the same as that of Section 6.2.3, one can find the geometry
and cross sections in the mentioned section.

In this case, the author used three structured and four unstructured meshes.
Mesh 1 is a structured mesh composed of 3 x 3 x 6 identical parallelepipeds (54
parallelepipeds). Mesh 2 is a structured mesh composed of 6 x 6 x 12 identical
parallelepipeds (432 parallelepipeds). Mesh 3 is a structured mesh composed of
12 x 12 x 24 identical parallelepipeds (3456 parallelepipeds). Figure 6.21 shows
Meshes 4 and 5, which are composed of 1296 and 3402 tetrahedra respectively.
Figure 6.22 shows Meshes 6 and 7, which are composed of 12146 and 5184
tetrahedra respectively.

As discussed in Section 3.2.2, there are only several possible combinations of
polynomials giving valid results. For meshes composed of hexahedra, there is
only one combination giving valid results in this reactor: 1, x, y, z, x2, y2,
z2. In case of meshes composed of tetrahedra, there are three combinations
providing valid results in this reactor. The first combination is 1, x, y, z, x2; the
second one is 1, x, y, z, y2; and the third one is 1, x, y, z, z2. In addition, the
author tested other combinations with terms of higher orders and he realized
that there is also a fourth combination giving valid and accurate results for
coarse unstructured meshes: 1, x, y, z, x2y2.

The author ran all the cases with boundary conditions of zero flux.

135

Chapter 6. Results

Mesh 4 Mesh 5

Figure 6.21: Meshes 4 and 5 for the 3D homogeneous reactor

Mesh 6 Mesh 7

Figure 6.22: Meshes 6 and 7 for the 3D homogeneous reactor

136

6.3 Inter-cells polynomial expansion method

As mentioned in Section 6.2.3, this case has analytical solution, so this is the
reference solution. The reference power is calculated in Mesh 1. The reference
eigenvalues are: 0.993919, 0.976030, 0.947343, 0.937787 and 0.921486.

Regarding the results of Meshes 1-3, Table 6.13 shows the computational time
and eigenvalue errors. The power errors for these meshes are 0.00 %. From
Table 6.13 one draws the following conclusion. Only Mesh 3 provides accurate
eigenvalue results, with a low computational time.

Table 6.13: Results for the 3D homogeneous reactor with Meshes 1-3: Computational time
(s) and eigenvalue errors (pcm)

Mesh Time EE1 EE2 EE3 EE4 EE5

Mesh 1 1 755.70 957.66 1845.58 3427.56 3586.69
Mesh 2 1 215.84 265.33 483.48 1004.20 1043.10
Mesh 3 5 83.75 95.74 149.10 363.77 372.34

On the other hand, for Meshes 4-7, Table 6.14 shows the computational time,
Tables 6.15-6.19 exhibit the eigenvalue errors and Table 6.20 contains the Mean
Power Error for each mesh and polynomial set. In Table 6.14, one can see
that the computational times are competitive and they hardly depends on the
polynomial set. By contrast, one can see a significant effect of the polynomial
set on the eigenvalue errors, for the coarsest mesh, but not for the finer ones. In
addition, Mesh 4 obtains eigenvalue errors above 100-200 pcm, so one should
use Meshes 5-7 to obtain accurate eigenvalue results for any polynomial set
and mode. Finally, one can see excellent power results in Table 6.20, although
there are some errors about 0.7 % for Meshes 5 and 6. However, these errors
are very low and they are produced because of the fact that Meshes 5 and 6
are not symmetric.

Table 6.14: Computational time (s) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 2 3 13 5
Combination 2 2 3 13 5
Combination 3 2 3 13 5
Combination 4 2 4 15 6

137

Chapter 6. Results

Table 6.15: EE1 (pcm) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 147.31 22.16 13.13 20.16
Combination 2 14.82 61.97 56.36 43.45
Combination 3 153.96 63.69 14.71 16.56
Combination 4 34.69 19.76 35.65 43.42

Table 6.16: EE2 (pcm) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 275.18 62.78 1.63 11.70
Combination 2 77.27 37.28 50.88 8.31
Combination 3 215.23 53.89 5.75 2.81
Combination 4 117.50 4.71 25.26 10.06

Table 6.17: EE3 (pcm) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 509.14 164.77 25.57 66.12
Combination 2 175.51 42.23 29.07 57.84
Combination 3 286.14 20.13 18.44 26.24
Combination 4 261.40 91.99 3.94 51.79

Table 6.18: EE4 (pcm) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 127.74 162.62 168.48 148.89
Combination 2 58.43 17.57 99.89 63.93
Combination 3 416.60 187.86 14.80 69.07
Combination 4 29.04 84.49 142.15 152.58

Table 6.19: EE5 (pcm) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 254.04 120.86 148.79 90.85
Combination 2 117.15 45.95 67.87 15.15
Combination 3 471.14 182.65 11.31 22.69
Combination 4 43.28 60.70 112.24 85.31

138

6.3 Inter-cells polynomial expansion method

Table 6.20: MPE (%) of the 3D homogeneous reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 0.00 0.19 0.06 0.00
Combination 2 0.00 0.18 0.05 0.00
Combination 3 0.00 0.30 0.12 0.00
Combination 4 0.00 0.70 0.26 0.00

6.3.2 Langenbuch reactor

As this reactor is the same as that of Section 6.2.4, one can find the geometry
and cross sections in the cited section.

In this case, the author also used three structured and four unstructured
meshes. Mesh 1 is the same mesh as that of Figure 6.16. One obtains Mesh
2 by subdividing each hexahedron of Mesh 1 in 2 x 2 x 2 identical hexahedra.
Mesh 3 is obtained by subdividing each hexahedron of Mesh 1 in 4 x 4 x 4
identical hexahedra. Figure 6.23 shows Meshes 4 and 5. Figure 6.24 shows
Meshes 6 and 7. Meshes 1-3 are composed of the following number of hexahe-
dra: 350, 2800 and 22400. Meshes 4-7 are composed of the following number
of tetrahedra: 8400, 41290, 111154 and 56160.

Mesh 4 Mesh 5

Figure 6.23: Meshes 4 and 5 for Langenbuch reactor

With respect to the polynomial set, one draws the same conclusion as in the
previous section. Therefore, for meshes composed of hexahedra, only one com-
bination of second order gave valid results: 1, x, y, z, x2, y2, z2. In case of

139

Chapter 6. Results

Mesh 6 Mesh 7

Figure 6.24: Meshes 6 and 7 for Langenbuch reactor

meshes composed of tetrahedra, only three combinations of second order gave
valid results. The first combination is 1, x, y, z, x2; the second one is 1, x, y,
z, y2; and the third one is 1, x, y, z, z2. Furthermore, the fourth combination
used in the previous section also gives valid and accurate results for coarse
unstructured meshes. This combination was the following: 1, x, y, z, x2y2.

As mentioned in Section 6.2.4, the author used boundary conditions of zero
flux at the east, north, top and bottom boundaries, but one has to use reflec-
tive conditions at the west and south boundaries. The author calculated the
reference solution with VALKIN and obtained five eigenvalues. These results
are calculated for the nodes of Figure 6.16. The reference eigenvalues are:
0.994881, 0.948211, 0.911892, 0.907632 and 0.877972.

The results of Meshes 1-3 are exhibited in Table 6.21, which includes the
computational time, eigenvalue errors and mean power errors. From this table,
the finer the mesh, the more accurate the results. Although Mesh 3 is the most
accurate, it is better to use Mesh 2, because the results are accurate enough
with a computational time of 8 s. Moreover, Mesh 2 of this section is the
same as Mesh 1 of Section 6.2.4. Therefore, if one compares the results of
this method with those of the Moving Least Squares method, one draws three
conclusions. First, this method is faster. Second, this method provides more
accurate eigenvalue results. Third, this method gives more accurate power
results.

140

6.3 Inter-cells polynomial expansion method

Table 6.21: Results for Langenbuch reactor with Meshes 1-3: Computational time (s),
eigenvalue errors (pcm) and mean power errors (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 MPE
Mesh 1 5 126.46 53.96 162.51 203.98 604.45 3.11
Mesh 2 8 9.94 32.14 119.07 132.74 250.26 0.58
Mesh 3 52 12.51 2.79 5.37 23.47 70.95 0.71

With respect to Meshes 4-7, Table 6.22 shows the computational time, Tables
6.23-6.27 exhibit the eigenvalue errors and Table 6.28 contains the Mean Power
Error for each mesh and polynomial set. From these tables one draws four
conclusions. First, the finer the mesh, the more accurate the results. Second,
the finer the mesh, the less sensitivity to the polynomial set. Third, one obtains
accurate results with all these meshes and polynomial sets, but Mesh 4 requires
only 13 seconds of computational time. Fourth, in Mesh 4, the polynomial set
has a significant effect on the eigenvalue errors for each mode. Actually, one
can see that the eigenvalue errors for Mesh 4 and Combination 3 are below 100
pcm for modes 1, 2 and 5; whereas they are above 200 pcm for modes 3 and 4.

Table 6.22: Computational time (min:s) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 0:13 1:27 6:23 2:31
Combination 2 0:14 1:26 6:21 2:30
Combination 3 0:13 1:24 6:13 2:24
Combination 4 0:13 1:27 6:28 2:32

Table 6.23: EE1 (pcm) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 58.02 42.78 26.36 26.80
Combination 2 58.07 41.86 26.46 26.85
Combination 3 62.92 41.74 22.57 22.70
Combination 4 45.42 47.33 27.80 28.14

141

Chapter 6. Results

Table 6.24: EE2 (pcm) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 111.19 78.03 35.59 33.71
Combination 2 111.32 77.39 35.98 33.68
Combination 3 61.13 42.50 22.58 25.41
Combination 4 99.87 92.57 39.60 35.94

Table 6.25: EE3 (pcm) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 169.41 143.20 79.58 74.93
Combination 2 169.53 137.74 79.15 74.83
Combination 3 261.70 178.97 84.27 75.33
Combination 4 99.62 137.95 79.49 70.41

Table 6.26: EE4 (pcm) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 129.56 110.06 57.25 56.66
Combination 2 129.64 105.80 57.17 56.49
Combination 3 238.94 169.11 64.72 56.28
Combination 4 75.53 126.64 58.82 53.83

Table 6.27: EE5 (pcm) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 192.40 158.16 57.53 39.44
Combination 2 192.54 159.45 58.52 39.44
Combination 3 19.38 22.44 8.57 13.59
Combination 4 185.22 193.63 65.37 44.36

Table 6.28: MPE (%) of Langenbuch reactor with Meshes 4-7

Polynomial set Mesh 4 Mesh 5 Mesh 6 Mesh 7
Combination 1 1.32 1.13 0.92 0.92
Combination 2 1.32 1.11 0.92 0.92
Combination 3 1.54 1.19 0.86 0.84
Combination 4 1.07 1.25 0.95 0.98

142

6.4 Improved inter-cells polynomial expansion method

6.4 Improved inter-cells polynomial expansion method

In this section, the author tests the capabilities of the improved inter-cells poly-
nomial expansion method of Section 3.2.3, to solve the Steady State Neutron
Diffusion Equation, with two energy groups, without upscattering and with
fission neutrons produced in the first energy group.

In Section 6.3, the author proved that the polynomial expansion method is
better than the Moving Least Squares method. The method of this section
does not change the discretization of the FVM with respect to the polynomial
expansion method, but improves the quality of the matrices. This improvement
is based on two issues. First, the reduction of the size of the matrices. Second,
the reduction of the condition number.

The author applied the method to a BWR reactor, but for two different cases.
The first one without control rods and the second one with them inserted.

The results of this section were published in Bernal et al. 2016a.

6.4.1 BWR reactor without control rods

This is a commercial BWR reactor, whose geometry is displayed in Figure 6.25.
This reactor is composed of 624 fuel assemblies and 503 different compositions.
The reactor was modeled with 19980 nodes, which are cubes whose side length
is 15.24 cm. The outer radial nodes and the nodes of the bottom and top axial
planes model the reflector. Each node has different values of moderator density
and fuel temperature, but there are not control rods. The values of the mod-
erator densities, fuel temperatures and the corresponding cross sections were
obtained by applying the SIMTAB methodology (Miró et al. 2006) developed
by the UPV together with Iberdrola Ingeniería y Construcción (Iberinco), for
the following conditions: 92% of full power, 66.3% of flow and burnup of 11.196
GWd/MT. However, the values of the cross sections are not included in this
document, because the number of cross sections for this case is too high. In
addition, the author also used ADFs obtained with the same methodology.

The author used four structured and one unstructured meshes. Mesh 1 is the
same mesh as that of Figure 6.25. Mesh 2 is obtained by generating 2 x 2 x
2 identical hexahedra in each hexahedron of Mesh 1. Mesh 3 is obtained by
generating 3 x 3 x 3 identical hexahedra in each hexahedron of Mesh 1. Mesh
4 is obtained by generating 4 x 4 x 4 identical hexahedra in each hexahedron
of Mesh 1. Figure 6.26 shows Mesh 5.

143

Chapter 6. Results

Figure 6.25: BWR reactor

Figure 6.26: Mesh 5 of BWR reactor

144

6.4 Improved inter-cells polynomial expansion method

As regards the polynomial set, one draws the same conclusion as in the previ-
ous sections. For meshes composed of hexahedra, only one polynomial set of
second order gave valid results: 1, x, y, z, x2, y2, z2. For meshes composed of
tetrahedra, four polynomial sets gave valid results. Set 1 is 1, x, y, z, x2; Set
2 is 1, x, y, z, y2; Set 3 is 1, x, y, z, z2; Set 4 is 1, x, y, z, x2y2.

The author used boundary conditions of zero flux. In addition, the reference
solution was calculated with VALKIN code, obtaining five eigenvalues. The
results are calculated for the nodes of Figure 6.25. The reference eigenvalues
are: 1.021729, 1.010299, 1.010038, 1.004688 and 0.998619.

First, the author compares the matrices obtained with this method and with
the polynomial expansion method. Table 6.29 displays the number of cells
(Nc), the number of inner faces (Nf) and the number of boundary faces (Nb),
for the different meshes. The last column of this table shows the reduction of
the size of the matrices, due to the implicit definition of the current continuity
and boundary conditions in this method.

Table 6.29: Geometrical elements of the meshes used for modeling BWR reactor

Mesh Nc Nf Nb Reduction = Nc+Nf
Nc+2Nf+Nb

1 19980 57580 4720 0.55
2 159840 470080 18880 0.56
3 539460 1587140 42480 0.57
4 1278720 3798400 75520 0.57
5 479520 949600 18880 0.60

Not only are these matrices of lower size, but they also have better quality, in
spite of using the same polynomial expansion and equations. The quality of the
matrices can be quantified by the condition number, which is shown in Table
6.30. Actually, this table shows the condition number of matrices L1,1 and
L2,2 for the polynomial expansion method (PEM), the improved polynomial
expansion method (IPEM) and the improved polynomial expansion method
with preconditioner (IPEM-P), which is single-domain ASM in this case. Table
6.30 shows only the condition number for Mesh 1, which is similar for the other
meshes, but is quickly calculated.

Since the matrices have a good condition number, the author used iterative
solvers for solving the linear systems. In particular, the author used GMRES
with ASM preconditioner.

145

Chapter 6. Results

Table 6.30: Condition number of the matrices of BWR reactor without control rods for
Mesh 1

Condition number of Lg,g
Matrix PEM IPEM IPEM-P
L1,1 7654.40 107.80 1.56
L2,2 1648.51 116.24 1.10

Regarding the results, Table 6.31 contains the computational times, eigenvalue
errors and mean power errors for each mesh. One draws four conclusions
from this table. First, all the meshes give excellent eigenvalue results, since
the eigenvalue errors are below 20 pcm. Second, the mean power errors are
also good for all meshes, but particularly for Meshes 2-5, with errors below
1 %. Third, Mesh 5 is almost insensitive to the polynomial set. Fourth, the
computational times are acceptable for all meshes, except for Mesh 4, which is
higher than 30 min.

Table 6.31: Results for BWR reactor without control rods: Computational time (min:s),
eigenvalue errors (pcm) and mean power errors (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 MPE
Mesh 1 0:17 4.6 11.14 10.75 9.55 11.17 1.55
Mesh 2 3:15 4.26 5.60 5.68 11.43 8.77 0.60
Mesh 3 10:53 2.04 2.43 2.47 4.80 3.43 0.24
Mesh 4 34:27 0.08 0.48 0.46 1.05 1.00 0.10

Mesh 5 (Set 1) 16:38 6.9 13.54 11.45 3.23 18.06 0.79
Mesh 5 (Set 2) 17:21 6.87 11.54 13.47 3.22 18.12 0.79
Mesh 5 (Set 3) 13:12 2.34 4.44 4.46 8.01 4.86 0.91
Mesh 5 (Set 4) 16:1 5.87 11.42 11.31 6.39 17.91 0.57

Moreover, the author shows the axial power errors in Table 6.32, and the radial
power errors in Figures 6.27-6.30. From these errors, one realizes that Mesh 1
does not give accurate results, because the maximum axial and radial power
error is about 9 %. However, Meshes 3 and 4 provide excellent results. With
respect to Mesh 5, one can a see a significant effect of the polynomial set on the
power distribution. On the one hand, Set 3 is the best one for the axial power
distribution. On the other hand, Set 4 is the best one for the radial power
distribution. As a conclusion, one should use meshes composed of hexahedra,
because they provide the best results, due to the higher number of polynomial
terms in the polynomial expansion for each cell.

146

6.4 Improved inter-cells polynomial expansion method

Table 6.32: Axial power errors (%) for BWR reactor without control rods

Axial Mesh Mesh Mesh Mesh Mesh 5 Mesh 5 Mesh 5 Mesh 5
level 1 2 3 4 (Set 1) (Set 2) (Set 3) (Set 4)
26 1.53 0.84 0.32 0.15 1.71 1.71 1.88 1.19
25 4.19 1.87 0.81 0.41 2.67 2.67 2.00 2.00
24 2.82 1.14 0.51 0.24 1.50 1.50 1.91 0.87
23 2.58 1.09 0.43 0.19 1.44 1.44 1.85 0.82
22 2.86 1.14 0.48 0.22 1.61 1.58 1.78 1.00
21 2.53 0.96 0.40 0.18 1.35 1.35 1.64 0.81
20 2.39 0.89 0.36 0.17 1.32 1.32 1.53 0.81
19 2.35 0.83 0.34 0.15 1.25 1.25 1.40 0.79
18 2.24 0.77 0.31 0.14 1.21 1.21 1.28 0.80
17 1.94 0.64 0.25 0.11 1.04 1.04 1.10 0.68
16 1.78 0.54 0.22 0.10 0.93 0.93 0.96 0.64
15 1.72 0.52 0.21 0.10 0.91 0.91 0.80 0.67
14 1.39 0.37 0.15 0.08 0.71 0.71 0.64 0.52
13 1.16 0.29 0.12 0.06 0.60 0.60 0.48 0.48
12 1.00 0.24 0.10 0.06 0.52 0.52 0.32 0.44
11 0.71 0.12 0.06 0.04 0.35 0.35 0.16 0.34
10 0.43 0.03 0.02 0.03 0.22 0.22 0.01 0.25
9 0.18 0.05 0.01 0.01 0.07 0.07 0.16 0.15
8 0.10 0.12 0.05 0.01 0.07 0.07 0.32 0.05
7 0.47 0.23 0.09 0.03 0.27 0.27 0.48 0.10
6 0.91 0.35 0.14 0.06 0.52 0.52 0.63 0.31
5 1.46 0.48 0.20 0.09 0.86 0.86 0.75 0.63
4 1.74 0.58 0.24 0.12 1.23 1.23 0.85 0.99
3 2.10 0.20 0.09 0.11 1.04 1.04 0.98 0.80
2 8.77 2.72 1.18 0.63 3.05 3.05 1.23 2.80

147

Chapter 6. Results

Mesh 1 Mesh 2

Figure 6.27: Radial power errors (%) of BWR reactor without control rods for Meshes 1
and 2

Mesh 3 Mesh 4

Figure 6.28: Radial power errors (%) of BWR reactor without control rods for Meshes 3
and 4

148

6.4 Improved inter-cells polynomial expansion method

Set 1 Set 2

Figure 6.29: Radial power errors (%) of BWR reactor without control rods for Mesh 5
with polynomials sets 1 and 2

Set 3 Set 4

Figure 6.30: Radial power errors (%) of BWR reactor without control rods for Mesh 5
with polynomials sets 3 and 4

149

Chapter 6. Results

Finally, Figures 6.31-6.33 show the power distribution for the five modes, Mesh
5 and Set 4.

First mode Second mode

Figure 6.31: Power (first and second modes) for BWR reactor without control rods, for
Mesh 5 with polynomials set 4

Third mode Fourth mode

Figure 6.32: Power (third and fourth modes) for BWR reactor without control rods, for
Mesh 5 with polynomials set 4

150

6.4 Improved inter-cells polynomial expansion method

Figure 6.33: Power (fifth mode) for BWR reactor without control rods, for Mesh 5 with
polynomials set 4

6.4.2 BWR reactor with control rods

This case is the same as the one of Section 6.4.1, but with the control rods of
Figure 6.34. As in the previous case, the values of the cross sections are not
included, because the number of cross sections is too high.

Radial position Axial position

Figure 6.34: Control rod map of BWR reactor

151

Chapter 6. Results

Likewise, the author used the same meshes and polynomial sets as in Section
6.4.1.

The author also used boundary conditions of zero flux. Furthermore, the ref-
erence solution was calculated with VALKIN, obtaining five eigenvalues. The
results are calculated for the nodalization of Figure 6.25. The reference eigen-
values are: 1.009375, 0.998101, 0.997857, 0.995140 and 0.986519.

As regards the results, Table 6.33 shows the computational times, eigenvalue
errors and mean power errors. The computational times and eigenvalue errors
are similar to those of the case without control rods. However, the mean power
errors are higher. Moreover, one realizes that the mean power error decreases
slightly with the refinement of the mesh.

Table 6.33: Results for BWR reactor with control rods: Computational time (min:s),
eigenvalue errors (pcm) and mean power errors (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 MPE
Mesh 1 0:10 4.90 31.97 17.04 30.95 30.89 2.87
Mesh 2 2:49 3.78 6.00 7.52 5.12 1.06 1.76
Mesh 3 11:56 0.56 10.00 3.52 6.31 4.62 1.37
Mesh 4 37:49 3.60 13.82 0.31 8.56 9.93 1.26

Mesh 5 (Set 1) 17:35 6.53 24.72 11.72 24.16 27.78 1.81
Mesh 5 (Set 2) 19:51 6.52 25.05 11.25 24.03 27.79 1.85
Mesh 5 (Set 3) 19:40 2.43 19.91 6.71 21.52 18.52 2.35
Mesh 5 (Set 4) 16:37 7.28 23.40 9.89 20.39 26.55 1.46

In addition, one finds further details of the power results in Table 6.34 and
Figures 6.35-6.38. Table 6.34 exhibits the axial power errors for the different
meshes. From this table, one concludes that only Mesh 4 gives very accurate
results, since it is the only one giving errors close to 1 %. Actually, one draws
the same conclusion from the radial power errors, which are shown in Figures
6.35-6.38. Nevertheless, the radial power errors are higher than the axial ones
and they are located close to the control rods. This might be due to the high
gradients of the neutron flux at these locations.

Finally, Figures 6.39-6.41 show the power distribution for the five modes, Mesh
5 and Set 4.

152

6.4 Improved inter-cells polynomial expansion method

Table 6.34: Axial power errors (%) for BWR reactor with control rods

Axial Mesh Mesh Mesh Mesh Mesh 5 Mesh 5 Mesh 5 Mesh 5
level 1 2 3 4 (Set 1) (Set 2) (Set 3) (Set 4)
26 1.64 1.10 0.67 0.55 1.82 1.82 2.36 1.16
25 4.42 2.18 1.18 0.78 2.69 2.69 2.53 1.99
24 3.05 1.45 0.84 0.62 1.53 1.53 2.42 0.84
23 2.84 1.40 0.82 0.60 1.49 1.49 2.36 0.82
22 3.11 1.47 0.85 0.62 1.65 1.63 2.29 1.00
21 2.79 1.28 0.75 0.57 1.40 1.40 2.17 0.81
20 2.65 1.21 0.72 0.54 1.36 1.36 2.04 0.81
19 2.58 1.13 0.68 0.52 1.30 1.29 1.90 0.79
18 2.43 1.05 0.62 0.48 1.22 1.22 1.72 0.77
17 2.08 0.87 0.53 0.42 1.02 1.02 1.51 0.63
16 1.82 0.73 0.45 0.36 0.87 0.87 1.27 0.54
15 1.61 0.63 0.38 0.30 0.78 0.78 1.02 0.53
14 1.05 0.36 0.23 0.20 0.45 0.45 0.70 0.28
13 0.65 0.19 0.12 0.10 0.31 0.31 0.34 0.25
12 0.22 0.03 0.02 0.02 0.06 0.06 0.06 0.10
11 0.39 0.30 0.18 0.13 0.27 0.27 0.50 0.12
10 1.06 0.58 0.35 0.26 0.61 0.61 0.95 0.33
9 1.66 0.84 0.50 0.38 0.86 0.86 1.43 0.46
8 2.34 1.12 0.68 0.52 1.23 1.23 1.94 0.69
7 3.17 1.44 0.86 0.65 1.63 1.63 2.46 0.96
6 4.11 1.82 1.07 0.80 2.13 2.13 2.98 1.33
5 5.06 2.14 1.25 0.95 2.53 2.52 3.51 1.60
4 5.74 2.44 1.42 1.09 3.11 3.10 3.94 2.09
3 6.33 2.18 1.36 1.14 3.07 3.07 4.28 2.00
2 13.18 4.73 2.46 1.66 5.04 5.04 4.67 3.94

153

Chapter 6. Results

Mesh 1 Mesh 2

Figure 6.35: Radial power errors (%) of BWR reactor with control rods for Meshes 1 and
2

Mesh 3 Mesh 4

Figure 6.36: Radial power errors (%) of BWR reactor with control rods for Meshes 3 and
4

154

6.4 Improved inter-cells polynomial expansion method

Set 1 Set 2

Figure 6.37: Radial power errors (%) of BWR reactor with control rods for Mesh 5 with
polynomials sets 1 and 2

Set 3 Set 4

Figure 6.38: Radial power errors (%) of BWR reactor with control rods for Mesh 5 with
polynomials sets 3 and 4

155

Chapter 6. Results

First mode Second mode

Figure 6.39: Power (first and second modes) for BWR reactor with control rods, for Mesh
5 with polynomials set 4

Third mode Fourth mode

Figure 6.40: Power (third and fourth modes) for BWR reactor with control rods, for Mesh
5 with polynomials set 4

156

6.5 Multigroup formulation

Figure 6.41: Power (fifth mode) for BWR reactor with control rods, for Mesh 5 with
polynomials set 4

6.5 Multigroup formulation

This section shows the capabilities of the multigroup formulation, including
upscattering and fission neutrons produced in several energy groups, to solve
the Steady State Neutron Diffusion Equation. In particular, the author used
the improved inter-cells polynomial expansion method of Section 3.2.3, because
it is demonstrated that it is the best one.

The author tested the multigroup formulation in two MOX benchmarks. The
first one is C5G7 MOX Benchmark (Lewis et al. 2001). Particularly, the author
only tested the 2D benchmark. The second one is PWR MOX/UO2 Core
Transient Benchmark (Kozlowski and Downar 2007). This is a 3D benchmark
including the transient state, yet the author only tested here the steady state.

The author ran the simulations of both cases on an Intel Core i7-3770 CPU
(3.4 GHz), with the CentOS 6.8 operating system.

The results of this section were published in Bernal et al. 2017b.

157

Chapter 6. Results

6.5.1 2D C5G7 reactor

Figure 6.42 displays the geometry and composition of this benchmark (Lewis
et al. 2001). The overall dimensions of Figure 6.42 are 64.26 cm × 64.26 cm,
while each assembly is 21.42 cm × 21.42 cm. Each fuel assembly is made up
of a 17 × 17 lattice of square pin level cells, as exhibited in Figures 6.43 and
6.44. The side length of each pin cell is 1.26 cm and all of the fuel pins and
guide tubes have a 0.54 cm radius. A single moderator composition is given
for use in all of the pin cells and for use in the water moderator (reflector)
surrounding the assemblies. The composition layout for all four assemblies is
shown in Figure 6.44. This benchmark uses 7 energy groups and the cross
sections for each material are provided in Appendix A in Lewis et al. 2001. In
addition, Figure 6.42 shows the boundary conditions.

Figure 6.42: Core configuration for 2D C5G7 reactor

This benchmark was modeled with the mesh of Figure 6.45. Figure 6.46 dis-
plays a zoom of the mesh. Furthermore, Figure 6.46 shows that the fuel-clad
circle was modeled as a regular hexadecagon. The radius of this polygon (Rp)
was calculated to obtain the same area as the circle of radius (Rc) 0.56 cm, so
the reaction rates are conserved. Equation 6.6 gives the analytical expression
for Rp.

Rp = Rc ·
√

π

8 sin
(
π
8

) = 1.013 ·Rc (6.6)

158

6.5 Multigroup formulation

Figure 6.43: Pin cell geometry for 2D C5G7 reactor

Since the cells of these meshes are quadrangles, the polynomial expansion
is limited to 5, as discussed in Section 3.2.2. There are six 2D monomials
of order up to 2: 1, x, y, x2, y2 and xy. Thus, there are six possible 5-
combinations of the set composed of these six monomials. The author tested
these six combinations, and only one of them gave valid results: 1, x, y, x2,
y2.

The reference results for this case are given in the benchmark (Lewis et al.
2001). The benchmark specifies that the reference results were obtained with
MCNP code (Briesmeister Judith 2000), which is a Monte Carlo code.

Five modes were calculated, although there are only reference results for the
fundamental mode (first mode). It is important to point out that this bench-
mark was solved by using direct solvers for the linear systems, since the matri-
ces were ill-conditioned. Particularly, the author used the LU decomposition
of the MUMPS library (Amestoy, Duff, and L’excellent 2000).

The computational time was 34 seconds. The five eigenvalues are: 1.182958,
0.903905, 0.859309, 0.702847 and 0.562519. These eigenvalues correspond to a
quarter of the core, but they are not necessarily the five largest ones. Nonethe-
less, the author also ran the simulation of the full core, which required 2 min-
utes and 38 seconds, obtaining the following eigenvalues: 1.182958, 1.038667,
0.949189, 0.903905 and 0.859309. The eigenvalue error was 302.75 pcm, the
mean power error was 1.44 % and the maximum power error was 4.04%. Fur-
thermore, Figure 6.47 shows the power errors, where one can see high errors
at the boundaries of MOX assemblies. These errors are acceptable, since the
reference solution is obtained with a Monte Carlo method.

Finally, Figures 6.48-6.50 display the power for the different modes of the
quarter of the reactor.

159

Chapter 6. Results

Figure 6.44: Pin cell compositions for 2D C5G7 reactor

160

6.5 Multigroup formulation

Figure 6.45: Mesh for 2D C5G7 reactor

161

Chapter 6. Results

Figure 6.46: Zoom of the mesh for 2D C5G7 reactor

Figure 6.47: Power errors for 2D C5G7 reactor

162

6.5 Multigroup formulation

First mode Second mode

Figure 6.48: Power (first and second modes) for 2D C5G7 reactor

Third mode Fourth mode

Figure 6.49: Power (third and fourth modes) for 2D C5G7 reactor

163

Chapter 6. Results

Figure 6.50: Power (fifth mode) for 2D C5G7 reactor

6.5.2 PWR MOX/UO2 reactor

This reactor is a PWR consisting of 224 fuel assemblies of different compo-
sitions and burnup (Kozlowski and Downar 2007). The active fuel length is
365.76 cm and was modeled with 20 axial levels. The assembly pitch is 21.42
cm. The reflector width is 21.42 cm. Figure 6.51 exhibits a quarter of the
core. In this figure, the composition U 4.2 corresponds to UO2 fuel type and
enrichment of 4.2%. In contrast, M 4.0 corresponds to MOX fuel type and
enrichment of 4.0%. One can find further details of the composition of these
fuels in Kozlowski and Downar 2007. The core has uniform fuel composition
in axial direction. The axial reflector has the same width as the fuel assembly
pitch. Therefore, the model includes two more axial levels for the reflector, so
it is modeled with 22 axial levels.

The benchmark has several sets of cross sections for 2, 4 and 8 energy groups
and for different values of thermal-hydraulic conditions. In this case, the author
used the set of 8 energy groups and the following thermal-hydraulic conditions:
inlet coolant temperature of 560 K and inlet pressure of 15.5 MPa. From
Figure 6.51, one concludes that there are 18 different sets of cross sections,
so the author did not include them in this document due to the extent of the
data. However, it is important to point out that there are upscattering terms
in energy groups 6 and 7. With respect to the ADFs, the author set a value of
1.0.

On the other hand, the author used three meshes for modeling this reactor.
Mesh 1 is the same as that of Figure 6.52. Mesh 2 is obtained by generating 2

164

6.5 Multigroup formulation

Figure 6.51: A quarter of the core for PWR MOX/UO2 reactor

x 2 x 2 identical hexahedra in each hexahedron of Mesh 1. Mesh 3 is obtained
by generating 3 x 3 x 3 identical hexahedra in each hexahedron of Mesh 1.

Figure 6.52: Mesh for PWR MOX/UO2 reactor

As regards the polynomial expansion, the author tested the 120 possible 7-
combinations of polynomial sets of order 2, but only one of them gave valid
results: 1, x, y, z, x2, y2, z2.

The boundary conditions for this case are zero flux. Moreover, the author
calculated the reference results with TRIVAC code (Hébert and Sekki 2010).
TRIVAC can solve the neutron diffusion equation with different methods, as

165

Chapter 6. Results

mentioned in Section 6.1. In this section, the author used the Nodal Col-
location Method (Hébert 1987), with Legendre polynomials of order three.
Actually, the author used a version of TRIVAC based on its version 5, which
includes an eigensolver based on the SLEPc library (Bernal et al. 2017a). The
mesh used in TRIVAC is that of Figure 6.52. The computational time for
TRIVAC calculation was 1 min and 38 s and the five eigenvalues are: 1.149530,
1.137884, 1.135261, 1.135259 and 1.124268.

Regarding the results, Table 6.35 shows the computational time, eigenvalue
errors and mean power errors for each mesh. In this table, one can see excellent
results for all meshes, although the finer the mesh, the more accuracy. It is
also important to highlight that the computational time for Mesh 2 is similar
to the computational time of TRIVAC.

Table 6.35: Results for PWR MOX/UO2 reactor: Computational time (min:s), eigenvalue
errors (pcm) and mean power errors (%)

Mesh Time EE1 EE2 EE3 EE4 EE5 MPE
1 0:8 39.85 42.25 34.63 34.80 36.81 1.55
2 1:18 4.45 0.45 8.63 8.55 17.80 1.25
3 5:30 2.89 1.57 2.35 2.23 5.70 0.43

One can find further details of the power results in Table 6.36 and Figures 6.53
and 6.54. On the one hand, Table 6.36 exhibits the axial power errors for each
mesh. All meshes give accurate axial power results. Nonetheless, one can see
in this table that Mesh 2 gives higher errors than Mesh 1 at axial levels 2 and
21, though these errors are two or three times lower at other axial levels. This
might be due to round-off errors, because round-off errors have more effect on
power errors for low power values than for high ones. In this case, the power
results of TRIVAC in axial levels 2 and 11 are 0.2461 and 1.4849. A variation
of the power of 0.005 in axial levels 2 and 11 corresponds to a percentage
variation of 2.03% and 0.34% respectively. Therefore, this justifies the effect
of round-off errors on axial levels 2 and 21.

On the other hand, Figures 6.53 and 6.54 show the radial power errors for each
mesh. These figures might look a little bit asymmetrical due to the fact that
results obtained with TRIVAC are a little asymmetrical, though they should
not be asymmetrical. A possible reason for this little asymmetry could be
round-off errors when one calculates cell averaged values. From these figures,

166

6.5 Multigroup formulation

Table 6.36: Axial power errors (%) for PWR MOX/UO2 reactor

Axial level Mesh 1 Mesh 2 Mesh 3
21 1.66 2.44 0.86
20 1.43 0.20 0.06
19 0.87 0.09 0.02
18 0.34 0.01 0.00
17 0.06 0.04 0.01
16 0.12 0.06 0.02
15 0.24 0.09 0.03
14 0.32 0.11 0.04
13 0.36 0.12 0.04
12 0.39 0.12 0.04
11 0.39 0.13 0.04
10 0.36 0.12 0.04
9 0.31 0.11 0.04
8 0.23 0.10 0.04
7 0.11 0.07 0.03
6 0.07 0.04 0.01
5 0.35 0.01 0.01
4 0.87 0.09 0.01
3 1.43 0.19 0.06
2 1.67 2.43 0.85

167

Chapter 6. Results

one draws the following conclusion: only Mesh 3 gives accurate results, with
power errors close to 1 %.

Mesh 1 Mesh 2

Figure 6.53: Radial power errors (%) of PWR MOX/UO2 reactor for Meshes 1 and 2

Figure 6.54: Radial power errors (%) of PWR MOX/UO2 reactor for Mesh 3

Finally, Figures 6.55-6.57 show the power distribution for the five modes and
Mesh 3.

168

6.5 Multigroup formulation

First mode Second mode

Figure 6.55: Power (first and second modes) for PWR MOX/UO2 reactor for Mesh 3

Third mode Fourth mode

Figure 6.56: Power (third and fourth modes) for PWR MOX/UO2 reactor for Mesh 3

169

Chapter 6. Results

Figure 6.57: Power (fifth mode) for PWR MOX/UO2 reactor for Mesh 3

6.6 Parallelization

The main objective of this section is to test the parallelization of the method.
To do so, the author solves the Steady State Neutron Diffusion Equation ap-
plied to a VVER. In particular, this VVER reactor is modeled with two energy
groups, without upscattering and with fission neutrons produced in the first
energy group.

The author used the improved inter-cells polynomial expansion method of Sec-
tion 3.2.3, because it is the method giving the most accurate results with the
lowest computational time.

As VVERs have hexagonal geometry, the author also performs a sensitivity
analysis of different meshes and polynomial sets. In addition, this case also
includes a sensitivity analysis of the different linear system solvers and precon-
ditioners of PETSc.

The results of this section were published in Bernal et al. 2018.

170

6.6 Parallelization

6.6.1 VV1K3D reactor

VV1K3D is a VVER mockup and is composed of 1690 hexagonal prisms, dis-
tributed in 10 axial levels of 20 cm in length. The hexagonal prisms are regular
and their flat-to-flat distance is 23.6 cm. Figure 6.58 displays a cross section
of the reactor, where each number represents an assembly type. Assemblies
from 1 to 5 are composed of materials from 1 to 5, respectively. Composition
of assembly 6 changes with the axial level: in the first five axial levels it is
composed of material 4 and in the last ones it is composed of material 3. The
cross sections of all the materials are shown in Table 6.37 (Chao and Shatilla
1995).

Figure 6.58: Assembly distribution in VV1K3D reactor

The author used three meshes. Mesh 1 is shown in Figure 6.59, which divides
each hexagonal prism in 3 hexahedra as displayed in Figure 6.60 (left). Mesh 2
divides each hexahedron of Mesh 1 in 2 x 2 x 2 hexahedra and Mesh 3 divides
each hexahedron of Mesh 1 in 3 x 3 x 3 hexahedra as exhibited in Figure 6.60.

As regards the polynomial sets, there are 120 possible 7-combinations of the
set composed of 3D monomials of order 2. The author tested these 120 com-
binations, and only 2 of them gave valid results in this reactor. The first one
is: 1, x, y, z, x2, z2 and xy. The second one is: 1, x, y, z, y2, z2 and xy.

171

Chapter 6. Results

Table 6.37: Cross section data for VV1K3D reactor

Material Group Dg (cm) Σa,g (cm−1) νΣf,g (cm−1) Σs,g→g+1 (cm−1)
1 1 1.38320 8.3859·10−3 4.81619·10−3 1.64977·10−2

2 3.86277·10−1 6.73049·10−2 8.46154·10−2

2 1 1.38299 1.15550·10−2 4.66953·10−3 1.47315·10−2

2 3.89403·10−1 8.10328·10−2 8.52264·10−2

3 1 1.39522 8.9443·10−3 6.04889·10−3 1.56219·10−2

2 3.86225·10−1 8.44801·10−2 1.19428·10−1

4 1 1.39446 1.19932·10−2 5.91507·10−3 1.40185·10−2

2 3.87723·10−1 9.89671·10−2 1.20497·10−1

5 1 1.39506 9.1160·10−3 6.40256·10−3 1.54981·10−2

2 3.84492·10−1 8.93878·10−2 1.29281·10−1

Figure 6.59: Mesh 1 of VV1K3D reactor

Boundary conditions are zero flux for all boundaries.

In the following paragraphs, the author will perform three different sensitivity
analyses: polynomial set, mesh and linear system solver. For each analysis, the
author fixes the other parameters. As the author already verified the method
in the previous sections, in this section the author will not compare the results
with those obtained with other reference codes.

First, the author performs the sensitivity analysis of the polynomial sets, Com-
binations 1 and 2. As regards the other parameters, the author used Mesh 3 and

172

6.6 Parallelization

Figure 6.60: Subdivisions of hexagonal prism in Mesh 1, 2 and 3

the linear system solver was GMRES with Additive Schwarz preconditioner.
This preconditioner uses Incomplete LU preconditioner as local preconditioner
by default.

The computational time for each polynomial combination was: 4 min and 43 s
for the first one; 4 min and 54 s for the second one. The results are evaluated
considering that Combination 1 is the reference. On the one hand, Table 6.38
exhibits the eigenvalue results, which are accurate because EE < 100 pcm.
On the other hand, Table 6.39 shows the axial power errors for the different
axial levels, which are good since they are lower than 1 %. One can conclude
that for fine meshes, the results are almost insensitive to the polynomial sets.

Table 6.38: Eigenvalue results for the sensitivity analysis of the polynomial set, for
VV1K3D reactor

Eigenvalue Combination 1 Combination 2 EE(pcm)
1 1.005460 1.005503 4.23
2 0.987339 0.987434 9.62
3 0.987319 0.987403 8.57
4 0.968399 0.968575 18.14
5 0.964224 0.964336 11.64

Table 6.39: Axial power results for the sensitivity analysis of the polynomial set, for
VV1K3D reactor

Axial level 10 9 8 7 6 5 4 3 2 1
PE(%) 0.09 0.08 0.08 0.05 0.02 0.04 0.08 0.11 0.16 0.12

Second, the author performs the sensitivity analysis of the mesh, for Meshes
1-3. In this case, one fixes the polynomial set to Combination 1: 1, x, y, z,

173

Chapter 6. Results

x2, z2 and xy. The linear system solver is also fixed to GMRES with Additive
Schwarz preconditioner.

For each mesh, the number of rows of matrices Lg,g is: 19323 for Mesh 1;
158412 for Mesh 2; 538947 for Mesh 3. In addition, the computational time
for each mesh was: 5 s for Mesh 1; 58 s for Mesh 2; 4 min and 43 s for
Mesh 3. The results are evaluated considering that Mesh 3 is the reference.
Table 6.40 exhibits the eigenvalue results, whereas Table 6.41 shows the axial
power results. One draws the following conclusion. Mesh 2 is more accurate
than Mesh 1, but the results of Mesh 1 are good enough, because the maximum
eigenvalue error is about 100 pcm and the maximum axial power error is about
1 %.

Table 6.40: Eigenvalue results for the sensitivity analysis of the mesh, for VV1K3D reactor

Eigenvalue EE(pcm)
Eigenvalue Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2

1 1.005193 1.005389 1.005460 26.61 7.12
2 0.987292 0.987313 0.987339 4.78 2.64
3 0.986931 0.987234 0.987319 39.22 8.59
4 0.968356 0.968382 0.968399 4.46 1.78
5 0.962930 0.964002 0.964224 134.26 22.99

Table 6.41: Axial power results for the sensitivity analysis of the mesh, for VV1K3D reactor

Axial
level 10 9 8 7 6 5 4 3 2 1

PE Mesh 1 0.97 0.88 0.72 0.44 0.02 0.44 0.72 0.93 1.08 1.10
(%) Mesh 2 0.21 0.19 0.15 0.10 0.01 0.09 0.16 0.20 0.24 0.24

Third, the author performs the sensitivity analysis of the linear system solver.
In this case, the mesh and the polynomial set are fixed: Mesh 3 and Combina-
tion 1 (1, x, y, z, x2, z2 and xy). The author tested the following linear system
solvers of PETSc: BiConjugate Gradient (bicg), GMRES, Generalized Conju-
gate Residual (gcr), BiCGSTAB (bcgs) and Conjugate Gradient Squared (cgs).
The author used these solvers because they can be applied to non-symmetric
matrices. These solvers were used with the following preconditioners of PETSc:
Jacobi, SOR and Additive Schwarz (asm), which is the same as Incomplete LU
for one processor. The author used the default tolerances of PETSc.

Among all these combinations of solvers and preconditioners, only one of them
is forbidden in PETSc (for non-symmetric matrices): BiConjugate Gradient

174

6.6 Parallelization

with SOR. For the rest, the results are the same, but there are differences in the
computational time as shown in Figure 6.61. From this figure, one concludes
that GMRES is the fastest method in combination with the Additive Schwarz
preconditioner.

Solver - Preconditioner

gm
re

s-
as

m

cg
s-

as
m

cg
s-

ja
co

bi

bc
gs

-a
sm

gc
r-

as
m

gm
re

s-
so

r

bc
gs

-s
or

gm
re

s-
ja

co
bi

bc
gs

-ja
co

bi

gc
r-

so
r

cg
s-

so
r

bi
cg

-ja
co

bi

gc
r-

ja
co

bi

bi
cg

-a
sm

T
im

e
(s

)

0

50

100

150

200

250

300

350

400

450

Figure 6.61: Time results for the linear system solvers, for VV1K3D reactor

Furthermore, the author calculated the condition number of matrices L1,1 and
L2,2 by using the singular value decomposition solver of SLEPc. Table 6.42
shows the calculated condition number for each mesh and polynomial combi-
nations. In this table, C.1 corresponds to Combination 1 and C.2 corresponds
to Combination 2. One draws two conclusions from this table. First, the ma-
trices are well-conditioned, since their condition number is very low. Second,
the condition number of this discretization, applied to this reactor, is almost
insensitive to the mesh and the polynomial terms.

175

Chapter 6. Results

Table 6.42: Condition number of L1,1 and L2,2, for VV1K3D reactor

L1,1 L2,2

Mesh 1 Mesh 2 Mesh 3 Mesh 1 Mesh 2 Mesh 3
C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2
56.1 56.1 56.3 56.3 62.9 56.3 74.4 74.6 74.6 74.6 74.6 74.6

For testing the parallel computation, the author ran the simulations with Mesh
3, Combination 1, GMRES solver and Additive Schwarz preconditioner. The
size of the matrices L1,1 and L2,2 for this case is 538947. To evaluate the par-
allelization, one uses the speedup, as discussed in Section 6.1. Figure 6.62
displays the speedup of the parallelization. This figure exhibits the total
simulation time. One can draw two conclusions from this figure. First, the
performance is close to ideal up to 5 processors. Second, a reasonably good
performance gain is seen up to 14 processors in the strong scaling sense. It
should be pointed out that the efficacy of the Additive Schwarz preconditioner
decreases with the number of processors, so this behavior is normal. Finally,
the parallel computation runs the case of Mesh 3 in 35 s, with 16 processors.

Number of Processors
2 4 6 8 10 12 14 16

S
pe

ed
up

 [t
1/

tN
]

2

4

6

8

10

12

14

16

Ideal
Method

Figure 6.62: Speedup of the parallelization.

176

6.7 Adjoint calculation

Finally, Figures 6.63-6.65 show the power distribution for the five modes, Mesh
3 and Combination 1.

First mode Second mode

Figure 6.63: Power (first and second modes) for VV1K3D reactor, for Mesh 3 with Com-
bination 1

Third mode Fourth mode

Figure 6.64: Power (third and fourth modes) for VV1K3D reactor, for Mesh 3 with Com-
bination 1

6.7 Adjoint calculation

In this section, the author evaluates the methods for calculating the adjoint
eigenvectors, which are proposed in Section 4.2. These methods are the one
developed by the author and the other is that proposed by Döring and Kalkkuhl
(Döring, Kalkkuhl, and Schröder 1993).

177

Chapter 6. Results

Figure 6.65: Power (fifth mode) for VV1K3D reactor, for Mesh 3 with Combination 1

The evaluation is based on the accomplishment of two equations. First, the
biorthogonal property, which was shown in Equation 4.52. The author cal-
culated 5 adjoint eigenpairs and checked the biorthogonal property with 10
forward eigenvectors. Second, the adjoint eigenvalue problem, which is evalu-
ated with the error shown in Equation 6.7.

Ei =
〈
LTΦ∗iki −MTΦ∗i , L

TΦ∗iki −MTΦ∗i
〉

(6.7)

The author tested the methods in two reactors: the 3D homogeneous reactor
and Langenbuch reactor. These reactors are modeled with two energy groups,
without upscattering and with fission neutrons produced in the first energy
group.

6.7.1 3D homogeneous reactor

This reactor is the same as that of Section 6.2.3, so one can find the geometry
and cross sections in the mentioned section.

The method developed by the author and that developed by Döring and
Kalkkuhl provide the same results. Errors (Ei) are zero for the five eigenpairs.
The biorthogonal property is also accomplished for the 10 forward eigenvectors,
as shown in Table 6.43. One can conclude that the results are excellent.

178

6.7 Adjoint calculation

Table 6.43: Biorthogonal property for the 3D homogeneous reactor

LΦj

Φ∗i

-995.20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1003.58 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 -1017.22 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1021.44 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 -1029.48 0.0 0.0 0.0 0.0 0.0

6.7.2 Langenbuch reactor

This reactor is the same as the one of Section 6.2.4. Thus, one can find in this
section the geometry, materials and cross sections.

As regards the results obtained with the method of Döring and Kalkkuhl, Table
6.44 displays the errors (Ei) and Table 6.45 shows the biorthogonal property.
One might draw two conclusions from these tables. First, Ei are not close to
zero. Second, there are some values of the biorthogonal property which are
clearly not zero, such as i = 2, j = 6 and i = 5, j = 9; thus, one cannot
conclude that the biorthogonal property is accomplished.

Table 6.44: Errors for Langenbuch reactor and the method of Döring and Kalkkuhl

Eigenpair 1 2 3 4 5
Ei 320.81 305.05 323.80 256.74 274.24

Table 6.45: Biorthogonal property for Langenbuch reactor and the method of Döring and
Kalkkuhl

LΦj

Φ∗i

-92.78 0.0 0.0 0.0 -0.31 0.0 -6.29 0.0 -0.36 0.0
0.0 -86.17 0.0 0.0 0.0 -19.44 0.0 -0.39 -0.33 0.0
0.0 0.0 97.52 0.0 0.0 0.0 -0.41 0.0 0.0 -0.16
0.0 0.0 0.0 81.94 0.0 0.74 0.0 -17.69 0.33 0.0
0.0 0.0 0.0 0.0 -88.25 0.07 0.0 0.20 -19.92 0.0

One can see the results for the method developed by the author in Tables 6.46
and 6.47. Table 6.46 displays the errors (Ei), which are close to zero. Table

179

Chapter 6. Results

6.47 shows the biorthogonal property, in which one can appreciate that there
are some values slightly higher than zero. However, these values are almost zero
and they are about three order of magnitude lower than non-zero values. Thus,
one concludes that the biorthogonal property is accomplished. In conclusion,
the method proposed by Döring and Kalkkuhl might provide wrong results
for heterogeneous results, whereas the method of this thesis provides accurate
results.

Table 6.46: Errors for Langenbuch reactor and the method developed by the author

Eigenpair 1 2 3 4 5
Ei 0.69 0.70 1.37 1.13 0.72

Table 6.47: Biorthogonal property for Langenbuch reactor and the method developed by
the author

LΦj

Φ∗i

101.08 0.0 0.0 0.0 0.0 -0.00 0.0 -0.01 0.00 0.0
0.0 102.88 0.0 0.0 0.0 -0.28 0.0 -0.00 0.00 0.0
0.0 0.0 106.33 0.0 0.0 0.0 0.00 0.0 0.0 0.00
0.0 0.0 0.0 99.32 0.0 -0.01 0.0 0.19 -0.01 0.0
0.0 0.0 0.0 0.0 105.76 0.01 0.0 -0.00 -0.31 0.0

6.8 Modal method

In this section the author assesses the modal method for calculating the time-
dependent Neutron Diffusion Equation for the multigroup formulation. For
the spatial discretization, the author used the improved inter-cells polynomial
expansion method of Section 3.2.3.

The modal method is tested in a simple transient of PWR MOX/UO2 reactor
used in Section 6.5.2.

180

6.8 Modal method

6.8.1 PWR MOX/UO2 reactor

This transient case is a withdrawal and insertion of a control rod of the reactor
proposed in the PWR MOX/UO2 Core Transient Benchmark (Kozlowski and
Downar 2007). The author used and defined this reactor in Section 6.5.2,
particularly in Figure 6.51, which shows a quarter of this reactor, although
the author simulated the whole geometry. As regards the cross sections, this
benchmark gives the cross sections for different values of the thermal-hydraulic
variables, different energy groups (2, 4 and 8) and for 6 precursors groups. For
this case, the author used the 8-energy groups cross sections, which include
upscattering terms from the fifth energy group and fission production in the
first four energy groups.

In this section, the author did not use the thermal-hydraulic coupling; but
he used the following fixed thermal-hydraulic variables: moderator density of
752.06 kg/m3, fuel temperature of 560.0 K and boron concentration of 1000
ppm. With respect to the control rods, the author used the same position as
defined in the benchmark.

In the initial state of this transient, all the control rods are inserted and then
the control rod positioned in the middle of the reactor is fully withdrawn in 3
s. Then, this control rod is another time fully inserted in 3 s. Thus, the author
performed a total transient of 6 s using a step time of 0.025 s.

The author modeled the reactor with two meshes composed of hexahedra.
Figure 6.66 shows Mesh 1. Mesh 2 is obtained by subdividing each hexahedra
of Mesh 1 in 2 x 2 x 2 identical hexahedra.

Figure 6.66: Mesh 1 for the transient of PWR MOX/UO2 reactor

181

Chapter 6. Results

With respect to the polynomial expansion, the author stated in Section 6.5.2
that only one of polynomial set of order two gave valid results: 1, x, y, z, x2,
y2, z2.

The results are compared with those obtained by PARCS (Downar et al. 2006)
using the NEMMG solver. The author modeled the reactor in PARCS with
the same mesh as Mesh 1.

In this section, the author only shows three kind of results due to the extent of
them. The first one is the total power at each time step. The second and third
ones are the radial and axial power profile at the time step in which the power
reaches its maximum value. The author also performed a sensitivity analysis
of three parameters: the mesh, the time step for updating the eigenvectors or
modes and the number of modes. For the updating of modes, the author used
a tolerance of 10−6 for the convergence of the eigenvalue calculations.

Figures 6.67-6.69 display the total power results at each time step. In these
figures, VALKIN-FVM is the name of the modal method developed in this
thesis. Figure 6.67 shows the influence of the time step for updating the modes,
for Mesh 2 and 5 modes. Figure 6.68 shows the sensitivity analysis of the mesh,
for the calculation performed with 5 modes and updating these with a time
step of 0.1 s. In Figure 6.69, one can see the results for different number of
modes used in the modal method, for Mesh 2 and updating the modes with a
time step of 0.1 s. One can draw three conclusions from these figures. First,
one should update the modes with a time step of 0.1 s to obtain accurate
results. Second, the calculation using Mesh 2 and updating the modes each
0.1 s produced excellent results. Third, the effect of the number of modes on
the modal method for this case is not remarkable.

As regards the time results, Table 6.48 shows the computational time for
PARCS and VALKIN-FVM.

Table 6.48: Time results(h:min:s) for the transient of PWR MOX/UO2 reactor

VALKIN-FVM
PARCS 1 MODE 3 MODES 5 MODES
1:20:35 2:22:50 3:0:47 4:11:54

Moreover, the power reaches its maximum value at 3.45 s. At this time step
and for the calculation with Mesh 2, 5 modes and 0.1 s of updating time step,
the power results are shown in Table 6.49 and Figure 6.70. Table 6.49 shows
the axial power errors, where one can see that the maximum value is 1.91%.

182

6.8 Modal method

Figure 6.67: Analysis of the time step for updating the modes for the transient of PWR
MOX/UO2 reactor, with Mesh 2

Figure 6.68: Analysis of the mesh for the transient of PWR MOX/UO2 reactor

Figure 6.70 displays the radial power errors, whose maximum value is 5.44%.
One can conclude that the results are good.

183

Chapter 6. Results

Figure 6.69: Analysis of the number of modes for the transient of PWRMOX/UO2 reactor,
with Mesh 2

Finally, the author ran this case with parallel computing with VALKIN-FVM.
Figure 6.71 shows the parallel performance of VALKIN-FVM for several num-
ber of modes and number of processors. From this figure, one concludes that
VALKIN-FVM has a good parallel computing performance, particularly up to
8 processors. From this parallel performance, one realizes that VALKIN-FVM
would have similar computational time to that of PARCS with just 2 proces-
sors, but it could be faster with more processors. The author would like to
highlight that the parallel performance increases with the number of modes
calculated.

6.9 Neutron Transport Equation with the Discrete Ordinates
and FVM

In this section, the author tests the methods of Chapter 5, for solving the
Steady State of the Neutron Transport Equation, with the Discrete Ordinates
formulation and the FVM.

In particular, the author applied these methods to two reactors: a 3D homoge-
neous reactor and the 2D reactor of the C5G7 MOX Benchmark (Lewis et al.

184

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Table 6.49: Axial power errors (%) for the transient of PWR MOX/UO2 reactor

Axial level PE(%)
21 0.69
20 0.73
19 0.40
18 0.37
17 0.24
16 0.22
15 0.19
14 0.12
13 0.10
12 0.05
11 0.02
10 0.09
9 0.08
8 0.12
7 0.23
6 0.23
5 0.26
4 0.34
3 0.18
2 1.91

2001). For both cases, the author used GMRES with the Additive Schwarz
preconditioner for solving the linear systems.

6.9.1 3D homogeneous reactor

This reactor has the same geometry as that of Section 6.2.3, but the cross
sections are different. The cross sections are defined for the two-energy group
formulation, without upscatering and with fission neutrons produced in the
first energy group. Table 6.50 shows these cross sections.

Table 6.50: Cross sections of the homogeneous reactor for the Neutron Transport Equation

Group Σt,g (cm−1) νΣf,g (cm−1) Σs,g→g (cm−1) Σs,g→g+1 (cm−1)
1 5.2096647·10−1 7.72686955·10−3 4.95171815·10−1 1.60585809·10−2

2 1.31245720 1.55083969·10−1 1.20309806

185

Chapter 6. Results

Figure 6.70: Radial power errors (%) for the transient of PWR MOX/UO2 reactor

Number of processors
2 4 6 8 10 12 14 16

S
pe

ed
up

 (
t1

/tN
)

2

4

6

8

10

12

14

16

IDEAL

1 MODE

3 MODES

5 MODES

Figure 6.71: Speedup for the transient of PWR MOX/UO2 reactor

The author used six meshes. Mesh 1 is composed of 10 x 6 x 18 identical hexa-
hedra (1080 hexahedra). Mesh 2 is obtained by subdividing each hexahedron of

186

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Mesh 1 in 2 x 2 x 2 identical hexahedra (8640 hexahedra). Mesh 3 is obtained
by subdividing each hexahedron of Mesh 1 in 3 x 3 x 3 identical hexahedra
(29160 hexahedra). Mesh 4 is obtained by subdividing each hexahedron of
Mesh 1 in 4 x 4 x 4 identical hexahedra (69120 hexahedra). Mesh 5 is obtained
by subdividing each hexahedron of Mesh 1 in 5 x 5 x 5 identical hexahedra
(135000 hexahedra). Mesh 6 is obtained by subdividing each hexahedron of
Mesh 1 in 24 tetrahedra (25920 tetrahedra). One can see Mesh 6 in Figure
6.72.

Figure 6.72: Mesh 6 for the 3D homogeneous reactor

Moreover, the author will perform a sensitivity analysis of the coefficient δ
of the linear-step method, which appears in Equation 5.45. Particularly, the
author used the following values: 0.0, 0.5 and 1.0. If δ = 0.0, the linear-step
method is equivalent to the linear method. If δ = 1.0, the linear-step method
is equivalent to the step method. The author will determine the best value of
this coefficient δ.

With respect to the directional discretization, the author modeled this case
with the level-symmetric quadrature, particularly with S2. This case is equiv-
alent to the product quadrature with 2 polar angles and 4 azimuthal angles,
that is, Np = 2 and Na = 1 of Section 5.2.

The author calculated the reference results with TITAN (Yi 2009). The author
used Mesh 4 to model this reactor in TITAN, but the results are evaluated
in Mesh 1. In addition, the author ran TITAN with the Discrete Ordinates
method and the Diamond Difference method for the spatial discretization.
For the Discrete Ordinates, the author used the level-symmetric quadrature,

187

Chapter 6. Results

particularly S2. For these conditions, the eigenvalue calculated with TITAN is
1.07352 and the computational time is 512 s.

The boundary conditions are vacuum in all boundaries. The author calculated
five modes in each simulation, but only calculates one eigenvalue error, because
TITAN only can calculate one eigenvalue. The author ran all the simulations,
including the one performed with TITAN, on an Intel Core i7-3770 CPU (3.4
GHz), with the CentOS 6.8 operating system.

First, the author analyzes the effect of the coefficient δ for Mesh 1. Table 6.51
shows the computation time, eigenvalues and EE1 for different values of δ.
From this table, one draws three conclusions. First, the higher the value of δ,
the higher the eigenvalue error. This might be due to the fact that the leakage
terms increase with δ, and consequently the value of the eigenvalue decreases.
Second, the lower the value of δ, the higher the computational time. Third,
for δ = 0.0, there are several eigenvalues with similar values. It seems that
for values of δ close 0.0, the eigenvalues are closer, and therefore the rate of
convergence is worse. As regards the results of δ = 0.018, the author will
comment on them afterwards.

Table 6.51: Results for the 3D homogeneous reactor with the linear-step method and Mesh
1: Computational time (s), eigenvalues and eigenvalue error of the first mode (pcm)

δ Time k1 k2 k3 k4 k5 EE1

0.0 3 1.079883 1.078980 1.074792 1.073899 1.059962 592.71
0.5 1 0.914669 0.862032 0.786708 0.772808 0.733606 14797.25
1.0 1 0.831953 0.762853 0.667857 0.657651 0.611328 22502.36
0.018 2 1.071079 1.047655 1.013257 1.006292 0.985595 227.37

Besides the eigenvalues, the author plots the distribution of the power for the
first two modes and δ = 0.0, which is shown in Figure 6.73. In addition, Figure
6.74 displays the same distribution, but for δ = 1.0. From these figures, one
realizes that the power distribution of the second mode, for δ = 0.0, does not
make sense, although the power distribution of the first mode seems to be
right. All in all, one concludes that one has to use the lowest value of δ which
provides a power distribution of the modes with physical sense. The author
tested a number of values of δ, and concluded that the most accurate δ for this
case is 0.018, which is proved in Table 6.51 that it has the lowest eigenvalue
error.

188

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Mode 1 Mode 2

Figure 6.73: Power (first and second modes) for the 3D homogeneous reactor with the
linear-step method, Mesh 1 and δ = 0.0

Mode 1 Mode 2

Figure 6.74: Power (first and second modes) for the 3D homogeneous reactor with the
linear-step method, Mesh 1 and δ = 1.0

189

Chapter 6. Results

With respect to the power results, Table 6.52 and Figures 6.75 and 6.76 show
these results for the mentioned values of δ. Table 6.52 contains the axial power
errors, whereas Figures 6.75 and 6.76 display the radial power errors. Finally,
one can conclude that one has to use values of δ close to 0.0, but not 0.0, to
obtain the most accurate results.

Table 6.52: Axial power errors (%) for the 3D homogeneous reactor with the linear-step
method and Mesh 1

PE(%)
Axial level δ = 0.0 δ = 0.5 δ = 1.0 δ = 0.018

18 3.36 57.03 108.03 1.43
17 0.01 14.14 27.75 0.06
16 0.53 5.15 10.15 0.19
15 0.00 1.16 2.40 0.14
14 0.18 1.01 1.87 0.08
13 0.15 2.32 4.45 0.00
12 0.08 3.11 6.04 0.07
11 0.28 3.57 6.98 0.14
10 0.23 3.79 7.41 0.17
9 0.28 3.79 7.41 0.17
8 0.23 3.58 6.98 0.14
7 0.13 3.12 6.05 0.08
6 0.11 2.33 4.46 0.01
5 0.13 1.03 1.89 0.08
4 0.04 1.14 2.38 0.13
3 0.47 5.12 10.14 0.18
2 0.09 14.11 27.73 0.06
1 3.43 56.97 107.97 1.43

Now, the author performs a sensitivity analysis of the mesh. For each mesh,
the author determines the best value of δ, which is written in Table 6.53. This
table also includes the computational time, eigenvalues and eigenvalue errors.
From this table, one draws three conclusions. First, the finer the mesh, the
more accurate is the first eigenvalue. Second, one obtains lower values of δ
with physical sense for finer meshes. Third, meshes composed of tetrahedra,
such as Mesh 6, can use δ = 0.0, although the eigenvalue results are less
accurate than those obtained with meshes composed of hexahedra. On the
other hand, one can see the power results for each mesh in Table 6.54 and
Figures 6.77-6.79. Table 6.54 exhibits the axial power errors, while Figures

190

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

δ = 0.0 δ = 0.5

Figure 6.75: Radial power errors (%) for the 3D homogeneous reactor with the linear-step
method and Mesh 1 (I)

δ = 1.0 δ = 0.018

Figure 6.76: Radial power errors (%) for the 3D homogeneous reactor with the linear-step
method and Mesh 1 (II)

191

Chapter 6. Results

6.77-6.79 display the radial power errors. One draws similar conclusions to
those of the eigenvalues. First, the axial power errors are similar for all meshes,
but one can see an improvement of the radial power errors for fine meshes.
Second, meshes composed of hexahedra provides better results than the mesh
composed of tetrahedra. Third, the finer the mesh, the more accurate the
radial power results, though this improvement is slight.

Table 6.53: Results for the 3D homogeneous reactor with the linear-step method: Compu-
tational time (s), eigenvalues and eigenvalue error of the first mode (pcm)

Mesh δ Time k1 k2 k3 k4 k5 EE1

1 0.018 2 1.071079 1.047655 1.013257 1.006292 0.985595 227.37
2 0.010 17 1.072928 1.050082 1.014626 1.004789 0.984770 55.16
3 0.007 39 1.073339 1.050624 1.014994 1.004635 0.984759 16.84
4 0.005 100 1.073551 1.050896 1.015224 1.004686 0.984872 2.86
5 0.005 187 1.073530 1.050880 1.015155 1.004523 0.984720 0.89
6 0.0 91 1.068146 1.045405 1.009215 0.996339 0.976958 500.64

Mesh 1 Mesh 2

Figure 6.77: Radial power errors (%) for the 3D homogeneous reactor with the linear-step
method, for Meshes 1 and 2

6.9.2 2D C5G7 reactor

This reactor is the same as the one described in Section 6.5.1, so one can find in
the mentioned section the geometry and material composition. The interested
reader can look for the cross sections in the C5G7 MOX Benchmark (Lewis
et al. 2001).

However, in this case, the author modeled this reactor with two meshes. Mesh
1 is the one described in Section 6.5.1. Mesh 2 is similar to Mesh 1, but the

192

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Mesh 3 Mesh 4

Figure 6.78: Radial power errors (%) for the 3D homogeneous reactor with the linear-step
method, for Meshes 3 and 4

Mesh 5 Mesh 6

Figure 6.79: Radial power errors (%) for the 3D homogeneous reactor with the linear-step
method, for Meshes 5 and 6

193

Chapter 6. Results

Table 6.54: Axial power errors (%) for the 3D homogeneous reactor with the linear-step
method

PE(%)
Axial level Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 Mesh 6

18 1.43 1.56 1.50 1.43 1.37 3.67
17 0.06 0.32 0.37 0.37 0.37 0.96
16 0.19 0.26 0.29 0.29 0.29 0.46
15 0.14 0.18 0.21 0.20 0.20 0.14
14 0.08 0.08 0.10 0.08 0.09 0.11
13 0.00 0.03 0.01 0.03 0.02 0.43
12 0.07 0.12 0.11 0.12 0.12 0.78
11 0.14 0.18 0.18 0.19 0.19 0.78
10 0.17 0.22 0.23 0.23 0.23 0.54
9 0.17 0.22 0.23 0.23 0.23 0.41
8 0.14 0.18 0.20 0.19 0.19 0.32
7 0.08 0.12 0.13 0.12 0.12 0.19
6 0.01 0.03 0.04 0.03 0.03 0.30
5 0.08 0.08 0.07 0.08 0.08 0.04
4 0.13 0.18 0.16 0.19 0.19 0.77
3 0.18 0.25 0.25 0.28 0.28 1.67
2 0.06 0.32 0.32 0.34 0.34 3.19
1 1.43 1.56 1.43 1.37 1.31 5.73

reflector is modeled with a progressive mesh as that of Figure 6.80. Likewise
the previous section, the author determined the best value of δ for each mesh.

Regarding the quadrature sets, the author used the level-symmetric and the
product quadrature developed in this thesis. Table 6.55 summarizes the quadra-
ture sets that the author used. In this table, Sn is the approach used in the
level-symmetric quadrature, Np is the number of collocation points for the
polar angle, Na is the number of collocation points in each quadrant of the
azimuthal angle, Nd is the total number of directions and N2D

d is the number
of directions simulated for 2D cases.

As mentioned in Section 6.5.1, the reference results for this case are given in
the benchmark (Lewis et al. 2001), which were obtained with MCNP code
(Briesmeister Judith 2000). Although there are only reference results for the
first mode, the author calculated five modes, but for the quarter of the core.

194

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Figure 6.80: Mesh 2 for 2D C5G7 reactor

Table 6.55: Quadrature sets for 2D C5G7 reactor

Set Type Sn Np/2 Na Nd N2D
d = Nd/2

S2 Level-symmetric S2 8 4
S4 Level-symmetric S4 24 12
S6 Level-symmetric S6 48 24

PQ1,2 Product quadrature 1 2 16 8
PQ1,3 Product quadrature 1 3 24 12
PQ1,4 Product quadrature 1 4 32 16
PQ2,2 Product quadrature 2 2 32 16
PQ2,3 Product quadrature 2 3 48 24

195

Chapter 6. Results

As regards the linear system solver, the author used GMRES with Additive
Schwarz preconditioner.

Regarding the results, Table 6.56 summarizes the eigenvalue and power results,
for each mesh and quadrature set. One draws seven conclusions from this table.
First, one obtains different minimum values of δ for each mesh. Particularly,
one can use a lower value of δ with Mesh 1. Second, the values of δ used in this
reactor are much higher than the values used in the previous section, in the 3D
homogeneous reactor. The author proved in the previous section that the closer
the value of δ to 0.0, the more accurate the results. However, if one uses values
of δ lower than 0.24 or 0.26 in this reactor, the calculation does not converge.
Third, one obtains more accurate results with lower values of δ, for any mesh
and quadrature set. Fourth, Mesh 2 highly improves the power results with
respect to Mesh 1, but increases slightly the eigenvalue errors, for any value
of δ and quadrature set. Fifth, the higher the number of directions, the more
accurate the results, for any δ and mesh. Sixth, the product quadrature highly
improves the eigenvalue errors with respect to the level-symmetric quadrature,
for the same number of directions. Seventh, the power results obtained with
the level-symmetric quadrature seems to be slightly more accurate than those
obtained with the product quadrature. For example, for Mesh 2 and δ = 0.26,
one obtains EE1 = 383.28pcm andMPE = 0.53% for S6, whereas one obtains
EE1 = 254.97 pcm and MPE = 0.72 % for PQ2,3.

In addition, Figures 6.81-6.96 show further details of the power errors. One
draws the same conclusions as in the previous paragraph. Furthermore, one
realizes that the maximum errors are located in those pins composed of MOX
which are close to the reflector.

With respect to the computational time, the author gives only the compu-
tational time for one case calculating only one mode. This case is Mesh 1,
δ = 0.24 and PQ2,2. For this case, one processor spent 41 min and 43 s in
the calculation. In addition, the author ran this case with parallel computing,
obtaining the speedups of Figure 6.97. This figure displays the total simulation
time. One draws three conclusions from this figure. First, the performance is
close to ideal up to 9 processors. Second, a reasonably good performance gain
is seen up to 16 processors in the strong scaling sense. Third, it seems that
the speedup is better than the ideal situation for 7 and 8 processors; however,
this might be a round-off error in the calculation of the time. Finally, for 8
processors the computational time is 4 min and 53 s.

Although the author performed the whole sensitivity analysis with only one
mode, he also calculated five modes with Mesh 2, δ = 0.26 and PQ2,3. These

196

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

Table 6.56: Results for 2D C5G7 reactor with transport

Mesh δ Set k1 EE1 (pcm) MPE (%)
1 1.0 S2 1.179704 576.93 2.01

PQ1,2 1.180297 527.01 1.90
PQ1,3 1.180783 485.99 1.90
PQ1,4 1.180744 489.30 1.89
PQ2,2 1.180791 485.33 1.87
PQ2,3 1.181243 447.29 1.86
S4 1.180217 533.74 1.67
S6 1.180474 512.07 1.77

0.24 S2 1.182529 338.91 1.94
PQ1,2 1.182575 334.99 0.99
PQ1,3 1.183769 234.36 1.08
PQ1,4 1.183730 237.66 1.07
PQ2,2 1.182871 310.06 1.03
PQ2,3 1.183967 217.66 1.08
S4 1.182089 375.99 0.83
S6 1.182405 349.36 0.90

2 1.0 S2 1.178923 642.83 1.66
PQ1,2 1.179635 582.79 1.41
PQ1,3 1.180104 543.27 1.40
PQ1,4 1.180061 546.85 1.38
PQ2,2 1.180196 535.49 1.50
PQ2,3 1.180633 498.67 1.47
S4 1.179590 586.61 1.27
S6 1.179861 563.77 1.39

0.26 S2 1.181966 386.37 1.67
PQ1,2 1.182149 370.90 0.56
PQ1,3 1.183289 274.85 0.61
PQ1,4 1.183242 278.76 0.60
PQ2,2 1.182486 342.54 0.69
PQ2,3 1.183525 254.97 0.72
S4 1.181681 410.36 0.47
S6 1.182002 383.28 0.53

197

Chapter 6. Results

δ = 1.0 δ = 0.24

Figure 6.81: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and S2

δ = 1.0 δ = 0.24

Figure 6.82: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and PQ1,2

198

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

δ = 1.0 δ = 0.24

Figure 6.83: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and PQ1,3

δ = 1.0 δ = 0.24

Figure 6.84: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and PQ1,4

199

Chapter 6. Results

δ = 1.0 δ = 0.24

Figure 6.85: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and PQ2,2

δ = 1.0 δ = 0.24

Figure 6.86: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and PQ2,3

200

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

δ = 1.0 δ = 0.24

Figure 6.87: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and S4

δ = 1.0 δ = 0.24

Figure 6.88: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 1 and S6

201

Chapter 6. Results

δ = 1.0 δ = 0.26

Figure 6.89: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and S2

δ = 1.0 δ = 0.26

Figure 6.90: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and PQ1,2

202

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

δ = 1.0 δ = 0.26

Figure 6.91: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and PQ1,3

δ = 1.0 δ = 0.26

Figure 6.92: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and PQ1,4

203

Chapter 6. Results

δ = 1.0 δ = 0.26

Figure 6.93: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and PQ2,2

δ = 1.0 δ = 0.26

Figure 6.94: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and PQ2,3

204

6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

δ = 1.0 δ = 0.26

Figure 6.95: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and S4

δ = 1.0 δ = 0.26

Figure 6.96: Power errors (%) for 2D C5G7 reactor with transport, for Mesh 2 and S6

205

Chapter 6. Results

Figure 6.97: Speedup for 2D C5G7 reactor, for Mesh 1, δ = 0.24, PQ2,2 and the calculation
of one mode

eigenvalues are: 1.183525, 0.909022, 0.870758, 0.716367 and 0.582865. These
values correspond to the quarter of the core of this reactor.

206

Chapter 7

Conclusions

7.1 Conclusions

The author developed a code for solving the Neutron Diffusion and Transport
Equations with the following features:

• Application to any geometry, 2D or 3D, discretized with structured and
unstructured meshes.

• Use of the Finite Volume Method for discretizing the spatial derivatives
terms.

• Use of the Discrete Ordinates method for discretizing the directional
terms of the Neutron Transport Equation.

• General multigroup formulation including any upscattering and fission
neutrons production.

• Calculation of multiple modes (eigenvalues and eigenvectors) of the Steady
State of the Neutron Diffusion and Transport Equations.

• Use of a Modal Method for calculating the time-dependent Neutron Dif-
fusion Equation.

207

Chapter 7. Conclusions

• Parallel computation.

• Use of the state of the art algorithms for solving linear algebra operations.

The code uses a grid generator to model any kind of reactor by discretizing its
geometry in a set of simple elements such as triangles, quadrangles, tetrahedra
or hexahedra. In particular, the code uses Gmsh because of four reasons. First,
it is fast and user-friendly. Second, it can generate meshes with different kind
of elements. Third, it is free and open-source. Fourth, the developers keep it
up to date.

On the one hand, the author developed three different FVMs for discretiz-
ing the Neutron Diffusion Equation: one based on the Moving Least Squares
method, an inter-cells polynomial expansion method, and an improved inter-
cells polynomial expansion method.

One summarizes the main features of the method based on the Moving Least
Squares method as follows:

• Two types of equations for each energy group: cell equations for the Neu-
tron Diffusion Equation and face equations for the boundary conditions.

• Use of the Moving Least Squares method for calculating the face averaged
values of the neutron flux and the gradient of the neutron flux.

• Calculation of one face averaged value of the gradient of the neutron flux
for each face.

• Enforcement of the current continuity condition by means of the diffusion
coefficient for each inner face.

• Four approaches for calculating the diffusion coefficient for each inner
face: Cell i, Cell l, Homogenized and Linear.

The main features of the inter-cells polynomial expansion method are the fol-
lowing:

• Expansion of the neutron flux, for each energy group and cell, with a
finite series of 3D monomials. The expansion is limited to the number of
faces of the cell plus one. In this expansion, the monomials are fixed and
the coefficients are the unknowns.

• Use of four type of equations for each energy group: cell equations for
the Neutron Diffusion Equation, boundary conditions for the boundary

208

7.1 Conclusions

faces, current continuity condition for the inner faces and flux continuity
condition for the inner faces.

• Analytical calculation of the cell and face averaged values of the neutron
flux and the gradient of the neutron flux.

The improved inter-cells polynomial expansion method uses the same polyno-
mial expansion as the previous method, but it has the following differences:

• Two type of equations for each energy group: cell equations for the Neu-
tron Diffusion Equation and face equations for the flux continuity condi-
tion.

• Implicit enforcement of the current continuity and the boundary condi-
tions.

• The unknowns are the cell averaged values of the neutron flux and the
face averaged values of the neutron current.

• The matrices have better condition number and lower size.

To solve the Steady State of the Neutron Diffusion Equation, the code solves
the eigenvalue problem of the Neutron Diffusion Equation, which is discretized
by any of the previous methods, and for a general multigroup formulation. The
main characteristics of this calculation are the following:

• Use of the Krylov-Schur method implemented in the SLEPc library.

• The size of vectors used in the Krylov subspace does not depend on the
number of energy groups.

• General multigroup formulation: any upscattering and fission neutrons
production.

• Use of the linear algebra algorithms of PETSc to calculate vector and
matrix operations, and to solve linear systems.

• Calculation of multiple eigenvalues and eigenvectors.

Furthermore, the author performed the parallelization of the whole code, which
is summarized as follows:

209

Chapter 7. Conclusions

• Based on MPI, and particularly on the parallel objects and algorithms of
PETSc.

• Running the tasks in several CPUs: geometry pre-processing, equations
discretization, eigenvalue and linear system solvers, linear algebra opera-
tions and post-processing.

• Storage of the data in several CPUs. These data are classified in six
different types: cells, faces, nodes, materials, regions and inner faces. All
these types of data are stored in all the CPUs, but each one with its local
dimension.

As regards the Modal Method, the following points summarize the main fea-
tures of the method:

• Solution of the general multigroup formulation.

• Expansion of the neutron flux as a sum of the product of the eigenvectors
and time amplitudes for each eigenvector.

• Obtaining a reduced system of time-dependent Ordinary Differential Equa-
tions by means of the product of the adjoint eigenvectors.

• Calculation of the time amplitudes by solving the reduced system with
the matrix exponential method of SLEPc.

• Fast adjoint calculation based on the product of the adjoint matrix and
the forward eigenvectors, which includes a reorthogonalization to accom-
plish the biorthogonal property.

• Updating of modes and recalculation of the initial conditions, for transient
with strong local variations of the cross sections.

On the other hand, the author applied the Discrete Ordinates method to the
Neutron Transport Equation for discretizing the directional terms. In addition,
the author applied the FVM for discretizing the spatial derivatives terms of
the previous equation. The main features of this formulation are the following:

• It solves the Neutron Transport Equation, for each energy group, direc-
tion and cell. The unknowns are the cell averaged values of the angular
flux.

• General multigroup formulation.

210

7.1 Conclusions

• Use of two type of quadrature sets: level-symmetric and product quadra-
ture based on Gauss-Legendre.

• The author developed the product quadrature based on Gauss-Legendre.

• Simple formulation: all the angular terms are included in one term, which
one can calculate a priori; the formulation includes a simplification of this
term for 2D cases.

• Reflective boundary conditions, even for quadrature sets without sym-
metric directions.

• Two interpolation schemes for calculating the face averaged values of the
angular flux:

– Linear-step:

∗ Interpolation scheme for the inner faces.
∗ Combination of the upwind (step) and the central difference (lin-
ear) schemes.
∗ Use of a factor δ to change the contribution of each scheme. This
value ranges from 0 to 1. When δ = 1, the method is equivalent
to the step method.

– Multislope second order upwind:

∗ Interpolation scheme for the boundary faces.
∗ It is a second order upwind, but considering the slopes of all the
neighbor cells.
∗ Calculation of a 1D slope as a weighted sum of the slopes con-
necting the adjacent cell to the boundary face, with the adjacent
cells to this cell.

• Calculation of multiple eigenvalues and eigenvectors with the same algo-
rithms as those used for the Neutron Diffusion Equation.

Finally, the author tested the algorithms in several 2D and 3D reactors, with
different multigroup formulations and geometries. This evaluation included
the use of computational resources and accuracy of the solution. The author
evaluated the use of computational resources by means of the computational
time and the speedup. The computational time evaluates the computational
cost, whereas the speedup assesses the parallel performance. As regards the

211

Chapter 7. Conclusions

accuracy of the solution, the author checked the accuracy of the crucial vari-
ables in Nuclear Safety Analyses: the multiplication factor (largest eigenvalue)
and the power. In addition, since the code of this thesis can calculate multiple
eigenvalues, the author tested the accuracy for the calculation of five eigenval-
ues. For evaluating these variables, the author used eigenvalue errors, power
errors and the mean power error. These errors are calculated by using a refer-
ence solution, which is calculated with already validated codes. Furthermore,
the author performed a sensitivity analysis of the following parameters: mesh,
parameters of the FVM, linear system solvers and parameters of the Modal
Method. These parameters of the Modal Method are the number of modes of
the expansion and the time step for updating the modes. From the results,
one draws the following conclusions:

• For the method based on the Moving Least Squares method:

– It obtains accurate eigenvalue and power results for fine meshes.

– The diffusion coefficient is almost insensitive for fine meshes, but one
obtains the best results with Homogenized.

– One has to use direct methods to solve the eigenvalue problem, be-
cause the matrices are not well-conditioned.

• For the inter-cells polynomial expansion method:

– It obtains accurate eigenvalue and power results for fine meshes.

– There are only few polynomial sets, containing monomials of second
order, which give valid results.

– The polynomial sets are almost insensitive for fine meshes. However,
for coarse meshes there are some sets obtaining better results for
certain eigenvalues in meshes composed of tetrahedra.

– One has to use direct methods to solve the eigenvalue problem, be-
cause the matrices are not well-conditioned.

– It gives more accurate results than the method based on the Moving
Least Squares method, for the same meshes and in some cases for
coarser meshes.

• For the improved inter-cells polynomial expansion method:

212

7.1 Conclusions

– It gives the same results as those of the inter-cells polynomial expan-
sion method, but with much lower computational time.

– The matrices have better condition number and lower size than those
of the inter-cells polynomial expansion method.

– One can use iterative methods. The author tested all the iterative
methods of PETSc, and he concluded that the fastest one is GMRES
with Additive Schwarz preconditioner.

– The general multigroup formulation provides accurate results with
competitive computational times.

– The parallel performance is close to ideal up to 5 processors and a
reasonably good performance gain is seen up to 14 processors in the
strong scaling sense.

• For the Modal Method:

– The author applied this method to the equations discretized with
the improved inter-cells polynomial expansion method.

– The adjoint calculation accomplishes the biorthogonal property and
the equation of the eigenvalue problem, even in heterogeneous reac-
tors.

– The author applied the method in a full size reactor of a benchmark
multigroup transient. Accurate results were obtained.

– One has to use fine meshes for obtaining accurate results.

– One has to update the modes at least each 0.1 s to obtain accurate
results in the studied case.

– The effect of the number of modes was not remarkable on the ana-
lyzed transient.

– The parallel computing performance was particularly good up to 8
processors. Actually, with more than 2 processors the code is faster
than the NRC’s PARCS code with the Nodal Expansion Multigroup
solver.

• For the Neutron Transport Equation with the Discrete Ordinates and
FVM:

213

Chapter 7. Conclusions

– One obtains the most accurate results with the finer meshes and the
lowest values of δ.

– This δ should be above certain value to not provide results with non
physical sense.

– The method is simple and might be fast, but the main drawback is
that one does not know a priori the best value of δ, so one has to
find out this value by experimental testing.

– The product quadrature based on Gauss-Legendre gives better eigen-
value results than the level-symmetric, for the same number of di-
rections. However, the power results might be slightly worse, but
accurate enough.

– The method was applied to two reactors for its validation. The
first reactor was validated by means of a code-to-code comparison
with TITAN. The second reactor is the 2D reactor of the C5G7
benchmark; the reference results of this benchmark were obtained
with the MCNP code.

7.2 Future work

As future work of this thesis, the author thinks that one should develop the
following ideas:

• Application of the Modal Method to instability analyses.

• Development of a solver of eigenvalue problems with a restart capability
of several modes.

• Add the moving-meshes capability for transients consisting in movement
of control rods.

• Development of a Modal Method to solve the time-dependent Neutron
Transport Equation.

• Coupling the code developed in this thesis with a thermal-hydraulic code.

• Application of the exponential matrix method to solve the whole system of
time-dependent Ordinary Differential Equation, that is, without reducing
the system.

214

7.2 Future work

• Development of new interpolation schemes for estimating the face aver-
aged values of the angular flux:

– Expansion of the angular flux with polynomials depending on space
variables.

– Use of High Order schemes of the FVM, such as MUSCL or WENO.

– Use of Artificial Intelligence to get a matrix response for calculating
the face averaged values from the cell averaged values. For example,
Deep learning.

• Definition of circles, cylinders and spheres as new elements in the meshes
to avoid the discretization of them.

• Application of Jacobian Free Newton Krylov methods.

• Expansion of the neutron flux with 4D monomials depending on space and
time variables to solve at the same time the spatial and time distribution
of the neutron population.

• Calculation of fixed-source problems of the Neutron Transport Equation.

• Development of a Photon Transport Code.

• Development of lattice calculation tools for cross sections processing, such
as homogenization and collapse.

• High fidelity instability analyses based on three issues. First, solution
of the initial adjoint eigenvalue problem to obtain accurately the adjoint
eigenvectors. Second, calculation of the time and space distribution of
the neutron flux with the matrix exponential method, applied to the
whole system. Third, calculation of the time amplitudes for each mode
by multiplying the adjoint eigenvectors and the neutron flux at certain
time.

• Development of new methods for solving linear systems or calculating the
inverse of a matrix, such us the use of rational matrix functions.

215

Chapter 7. Conclusions

7.3 Scientific contribution

During the development of this thesis, the author contributed 7 publications
to international scientific journals:

• Methodology to resolve the transport equation with the discrete ordinates
code TORT into the IPEN/MB-01 reactor.

– Authors: A. Bernal, A. Abarca, T. Barrachina and R. Miró.

– Journal: International Journal of Computer Mathematics.

– Year: 2014.

• Resolution of the Generalized Eigenvalue Problem in the Neutron Diffu-
sion Equation Discretized by the Finite Volume Method.

– Authors: Á. Bernal, R. Miró, D. Ginestar and G. Verdú.

– Journal: Abstract and Applied Analysis.

– Year: 2014.

• Development of a finite volume inter-cell polynomial expansion method
for the neutron diffusion equation.

– Authors: A. Bernal, J. E. Roman, R. Miró, D. Ginestar and G.
Verdú.

– Journal: Journal of Nuclear Science and Technology.

– Year: 2016.

• Assembly Discontinuity Factors for the Neutron Diffusion Equation dis-
cretized with the Finite Volume Method. Application to BWR.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Journal: Annals of Nuclear Energy.

– Year: 2016.

• Multigroup neutron diffusion equation with the finite volume method in
reactors using MOX fuels.

216

7.3 Scientific contribution

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Journal: Journal of Nuclear Science and Technology.

– Year: 2017.

• A Krylov-Schur solution of the eigenvalue problem for the neutron diffu-
sion equation discretized with the Raviart-Thomas method.

– Authors: A. Bernal, A. Hébert, J. E. Roman, R. Miró and G. Verdú.

– Journal: Journal of Nuclear Science and Technology.

– Year: 2017.

• Calculation of multiple eigenvalues of the neutron diffusion equation dis-
cretized with a parallelized finite volume method.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Journal: Progress in Nuclear Energy.

– Year: 2018.

Furthermore, the author also presented 14 works in international conferences:

• Methodology to resolve the transport equation with the discrete ordinates
code TORT into KRITZ reactor.

– Authors: A. Bernal, A. Abarca, T. Barrachina, R. Miró and G.
Verdú.

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2012.

• Resolution of the generalized eigenvalue problem in the neutron diffusion
equation discretized by the Finite Volume Method.

– Authors: A. Bernal, R. Miró, D. Ginestar and G. Verdú.

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2013.

• Determination of PWR core water level using ex-core detectors signals.

217

Chapter 7. Conclusions

– Authors: A. Bernal, A. Abarca, R. Miró and G. Verdú.

– Conference: 6th International Nuclear Atlantic Conference (INAC
2013).

• An inter-cells polynomial expansion method for the steady-state 2 energy-
group neutron diffusion equation discretized by the Finite Volume Method.

– Authors: A. Bernal, J. E. Roman, R. Miró, D. Ginestar and G.
Verdú.

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2014.

• Generalized and standard multigroup neutron diffusion equation eigen-
value problem with the finite volume method.

– Authors: A. Bernal, R. Miró, D. Ginestar and G. Verdú.

– Conference: ANS Reactor Physics Topical Meeting (PHYSOR 2014).
The Role of Reactor Physics towards a Sustainable Future.

• A polynomial expansion method based on Helmholtz equation for the
Neutron Diffusion Equation discretized by the Finite Volume Method.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2015.

• Eigenvalue problem of the neutron diffusion equation discretized with the
finite volume method in a VVER.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Conference: International Congress on Advances in Nuclear Power
Plants (ICAPP 2016).

• Eigenvalue problem of the neutron diffusion equation with ADF and dis-
cretized with the FVM. Application to a PWR modelled with unstruc-
tured grid.

218

7.3 Scientific contribution

– Authors: A. Bernal, J. E. Roman, R. Miró, G. Verdú and J. A.
Bermejo.

– Conference: Physics of Reactors conference. Unifying Theory and
Experiments in the 21st Century (PHYSOR 2016).

• Dose rate analysis in a high capacity nuclear spent fuel storage system
using the MAVRIC code.

– Authors: A. Bernal, A. Abarca, R. Miró and G. Verdú.

– Conference: Physics of Reactors conference. Unifying Theory and
Experiments in the 21st Century (PHYSOR 2016).

• A spectral method for the steady state of the 2 energy-group neutron
diffusion equation.

– Authors: A. Bernal, R. Miró and G. Verdú.

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2016.

• Calculation of non-fundamental Modes in TRIVAC5 with SLEPc.

– Authors: A. Bernal, A. Hébert, J. E. Roman, R. Miró and G. Verdú.

– Conference: International Conference on Mathematics and Compu-
tational Methods Applied to Nuclear Science and Engineering (M&C
2017).

• Solution of the eigenvalue problem and linear systems in the neutron
diffusion equation with high performance libraries.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Conference: Congress on Numerical Methods in Engineering (CMN
2017).

• Calculation of the adjoint flux of the neutron diffusion equation.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

219

Chapter 7. Conclusions

– Conference: Mathematical Modelling in Engineering & Human Be-
haviour 2017.

• VALKIN-FVM: A Modal Finite Volume Method for solving the transient
Neutron Diffusion Equation on unstructured meshes.

– Authors: A. Bernal, J. E. Roman, R. Miró and G. Verdú.

– Conference: PHYSOR 2018: Reactor Physics paving the way to-
wards more efficient systems.

220

Bibliography

Ahrens, James et al. (2005). “36-paraview: An end-user tool for large-data
visualization”. In: The visualization handbook 717 (cit. on p. 77).

Alcouffe, Ray E et al. (1995). “DANTSYS: a diffusion accelerated neutral par-
ticle transport code system”. In: Los Alamos National Laboratory, LA-
12969-M (cit. on p. 24).

Alcouffe, Ray E et al. (2005). “PARTISN: A time-dependent, parallel neutral
particle transport code system”. In: Los Alamos National Laboratory, LA-
UR-05-3925 (May 2005) (cit. on p. 24).

Amestoy, Patrick R, Iain S Duff, and J-Y L’excellent (2000). “Multifrontal
parallel distributed symmetric and unsymmetric solvers”. In: Computer
methods in applied mechanics and engineering 184.2-4, pp. 501–520 (cit.
on pp. 40, 75, 119, 135, 159).

Anderson, E. et al. (1999). LAPACK Users’ Guide. Third. Philadelphia, PA:
Society for Industrial and Applied Mathematics. isbn: 0-89871-447-8 (pa-
perback) (cit. on p. 40).

Anselone, PM and LB Rall (1968). “The solution of characteristic value-vector
problems by Newton’s method”. In: Numerische Mathematik 11.1, pp. 38–
45 (cit. on p. 37).

221

Bibliography

Aragonés, José M and Carol Ahnert (1986). “A linear discontinuous finite dif-
ference formulation for synthetic coarse-mesh few-group diffusion calcu-
lations”. In: Nuclear Science and Engineering 94.4, pp. 309–322 (cit. on
p. 13).

Aragonés, José M, Carol Ahnert, and Nuria García-Herranz (2007). “The ana-
lytic coarse-mesh finite difference method for multigroup and multidimen-
sional diffusion calculations”. In: Nuclear Science and Engineering 157.1,
pp. 1–15 (cit. on p. 13).

Askew, JR (1972). A characteristics formulation of the neutron transport equa-
tion in complicated geometries. Tech. rep. United Kingdom Atomic Energy
Authority (cit. on p. 23).

Balay, Satish et al. (2017). PETSc Users Manual. Tech. rep. ANL-95/11 -
Revision 3.8. Argonne National Laboratory (cit. on pp. 40, 44, 75).

Bennewitz, F, H Finnemann, and H Moldaschl (1975). Solution of the multidi-
mensional neutron diffusion equation by nodal expansion. Tech. rep. (cit.
on p. 12).

Berkenbosch, AC, EF Kaasschieter, and JHM ten Thije Boonkkamp (1994).
“Finite-difference methods for one-dimensional hyperbolic conservation
laws”. In: Numerical Methods for Partial Differential Equations 10.2, pp. 225–
269 (cit. on p. 34).

Bernal, A et al. (2016a). “Assembly Discontinuity Factors for the Neutron Dif-
fusion Equation discretized with the Finite Volume Method. Application
to BWR”. In: Annals of Nuclear Energy 97, pp. 76–85 (cit. on pp. 68, 143).

Bernal, Álvaro et al. (2014). “Resolution of the generalized eigenvalue problem
in the neutron diffusion equation discretized by the finite volume method”.
In: Abstract and Applied Analysis. Vol. 2014. Hindawi (cit. on pp. 53, 119).

Bernal, Álvaro et al. (2016b). “Development of a finite volume inter-cell poly-
nomial expansion method for the neutron diffusion equation”. In: Journal
of Nuclear Science and Technology 53.8, pp. 1212–1223 (cit. on pp. 64,
135).

222

Bibliography

Bernal, Álvaro et al. (2017a). “A Krylov–Schur solution of the eigenvalue
problem for the neutron diffusion equation discretized with the Raviart–
Thomas method”. In: Journal of Nuclear Science and Technology 54.10,
pp. 1085–1094 (cit. on pp. 38, 117, 166).

Bernal, Álvaro et al. (2017b). “Multigroup neutron diffusion equation with the
finite volume method in reactors using MOX fuels”. In: Journal of Nuclear
Science and Technology 54.11, pp. 1251–1260 (cit. on pp. 72, 157).

Bernal, Alvaro et al. (2018). “Calculation of multiple eigenvalues of the neutron
diffusion equation discretized with a parallelized finite volume method”.
In: Progress in Nuclear Energy 105, pp. 271–278 (cit. on pp. 39, 77, 170).

Blackford, L. S. et al. (1997). ScaLAPACK Users’ Guide. Philadelphia, PA:
Society for Industrial and Applied Mathematics. isbn: 0-89871-397-8 (pa-
perback) (cit. on p. 40).

Briesmeister Judith, F MCNPTM (2000). “A general Monte Carlo N-Particle
transport code”. In: LA12625-M, Version B 4, pp. 2–27 (cit. on pp. 159,
194).

Brown, Forrest B et al. (2003). “MCNP–A General Monte Carlo N-Particle
Transport Code, Version 5”. In: Los Alamos National Laboratory, Oak
Ridge, TN (cit. on p. 24).

Butcher, J.C. (2008). Numerical Methods for Ordinary Differential Equations.
Wiley. isbn: 9780470753750 (cit. on pp. 42, 43).

Cacuci, D.G. (2010). Handbook of Nuclear Engineering: Vol. 1: Nuclear Engi-
neering Fundamentals; Vol. 2: Reactor Design; Vol. 3: Reactor Analysis;
Vol. 4: Reactors of Generations III and IV; Vol. 5: Fuel Cycles, Decommis-
sioning, Waste Disposal and Safeguards. Handbook of Nuclear Engineering
v. 3. Springer US. isbn: 9780387981307 (cit. on pp. 5, 6, 15).

Carreño, A et al. (2017). “Spatial modes for the neutron diffusion equation
and their computation”. In: Annals of Nuclear Energy 110, pp. 1010–1022
(cit. on p. 39).

223

Bibliography

Chao, YA and YA Shatilla (1995). “Conformal mapping and hexagonal nodal
methods II: implementation in the ANC-H code”. In: Nuclear Science and
Engineering 121.2, pp. 210–225 (cit. on p. 171).

Cho, JY et al. (2003). “Three-Dimensional Whole Core Transport Calculation
Methodology of the DeCART Code”. In: KAERI0TR-236502003, Korea
Atomic Energy Research Institute (cit. on p. 24).

Cueto-Felgueroso, Luis et al. (2007). “Finite volume solvers and moving least-
squares approximations for the compressible Navier–Stokes equations on
unstructured grids”. In: Computer Methods in Applied Mechanics and En-
gineering 196.45-48, pp. 4712–4736 (cit. on pp. 32, 51).

DeHart, MD and MD Jessee (2005). “NEWT: a new transport algorithm for
two-dimensional discrete ordinates analysis in non-orthogonal geometries”.
In: ORNL/TM-2005/39, Oak Ridge National Laboratory (cit. on p. 24).

Derstine, KL (2011). “DIF3D 10.0: Code System Using Variational Nodal
Methods and Finite Difference Methods to Solve Neutron Diffusion and
Transport Theory Problems”. In: CCC-784 (cit. on p. 13).

DiGiovine, AS et al. (1995). “SIMULATE-3 User’s Manual”. In: Studsvik0SOA-
95015, Studsvik of America, Inc (cit. on p. 13).

Döring, Matthias G, Jens Chr Kalkkuhl, and Wolfram Schröder (1993). “Sub-
space iteration for nonsymmetric eigenvalue problems applied to the λ-
eigenvalue problem”. In: Nuclear science and engineering 115.3, pp. 244–
252 (cit. on pp. 38, 88–90, 177).

Downar, T et al. (2006). “PARCS v2. 7 US NRC Core Neutronics Simulator
User Manual”. In: Purdue University (cit. on pp. 13, 117, 182).

Dulla, Sandra, Ernest H Mund, and Piero Ravetto (2008). “The quasi-static
method revisited”. In: Progress in Nuclear Energy 50.8, pp. 908–920 (cit.
on p. 45).

Edenius, Malte et al. (1995). “CASMO-4, a fuel assembly burnup program,
user’s manual”. In: Studsvik0SOA-9501, Studsvik of America, Inc (cit. on
p. 24).

224

Bibliography

Eisenstat, Stanley C, Howard C Elman, and Martin H Schultz (1983). “Vari-
ational iterative methods for nonsymmetric systems of linear equations”.
In: SIAM Journal on Numerical Analysis 20.2, pp. 345–357 (cit. on p. 40).

Evans, Thomas M et al. (2010). “Denovo: A new three-dimensional parallel
discrete ordinates code in SCALE”. In: Nuclear technology 171.2, pp. 171–
200 (cit. on p. 24).

Fletcher, Roger (1976). “Conjugate gradient methods for indefinite systems”.
In: Numerical analysis. Springer, pp. 73–89 (cit. on p. 40).

Gaskell, PH and AKC Lau (1988). “Curvature-compensated convective trans-
port: SMART, A new boundedness-preserving transport algorithm”. In:
International journal for numerical methods in fluids 8.6, pp. 617–641
(cit. on p. 32).

Geuzaine, Christophe and Jean-François Remacle (2009). “Gmsh: A 3-D fi-
nite element mesh generator with built-in pre-and post-processing facili-
ties”. In: International journal for numerical methods in engineering 79.11,
pp. 1309–1331 (cit. on pp. 25, 48).

Gill, Daniel F and Yousry Y Azmy (2011). “Newton’s method for solving k-
eigenvalue problems in neutron diffusion theory”. In: Nuclear Science and
Engineering 167.2, pp. 141–153 (cit. on p. 39).

Gill, Daniel F et al. (2011). “Newton’s Method for the Computation of k-
Eigenvalues in SN Transport Applications”. In: Nuclear Science and En-
gineering 168.1, pp. 37–58 (cit. on p. 39).

Ginestar, D et al. (1998). “High order backward discretization of the neutron
diffusion equation”. In: Annals of Nuclear Energy 25.1-3, pp. 47–64 (cit. on
pp. 13, 44).

Goluoglu, Sedat and HL Dodds (2001). “A time-dependent, three-dimensional
neutron transport methodology”. In: Nuclear science and engineering 139.3,
pp. 248–261 (cit. on p. 45).

225

Bibliography

Goluoglu, Sedat et al. (2011). “Monte Carlo criticality methods and analysis
capabilities in SCALE”. In: Nuclear Technology 174.2, pp. 214–235 (cit. on
p. 24).

González-Pintor, S, D Ginestar, and G Verdú (2013). “Modified Block New-
ton method for the lambda modes problem”. In: Nuclear Engineering and
Design 259, pp. 230–239 (cit. on p. 39).

González-Pintor, S, Damián Ginestar, and G Verdú (2011). “Updating the
Lambda Modes of a nuclear power reactor”. In: Mathematical and Com-
puter Modelling 54.7-8, pp. 1796–1801 (cit. on p. 39).

Grundmann, Ulrich et al. (2005). “DYN3D version 3.2-code for calculation of
transients in light water reactors (LWR) with hexagonal or quadratic fuel
elements-description of models and methods”. In: (cit. on p. 13).

Gupta, Anurag and RSModak (2011). “Evaluation of dominant time-eigenvalues
of neutron transport equation by Meyer’s sub-space iterations”. In: Annals
of Nuclear Energy 38.7, pp. 1680–1686 (cit. on p. 38).

Harvie, Dalton James Eric (2012). “An implicit finite volume method for arbi-
trary transport equations”. In: ANZIAM Journal 52, pp. 1126–1145 (cit.
on pp. 50, 51).

Hébert, A (1993). “Application of a dual variational formulation to finite ele-
ment reactor calculations”. In: Annals of Nuclear Energy 20.12, pp. 823–
845 (cit. on p. 13).

Hébert, A (2008). “A Raviart–Thomas–Schneider solution of the diffusion equa-
tion in hexagonal geometry”. In: Annals of Nuclear Energy 35.3, pp. 363–
376 (cit. on p. 13).

Hébert, A. (2009). Applied Reactor Physics. Presses internationales Polytech-
nique. isbn: 9782553014369 (cit. on pp. 5, 6, 10, 12, 15, 20, 23, 28, 44,
45).

Hébert, A and A Kavenoky (1981). Development of the SPH homogenization
method. Tech. rep. CEA Centre d’Etudes Nucleaires de Saclay (cit. on
p. 28).

226

Bibliography

Hébert, A and D Sekki (2010). “A user guide for Trivac Version4”. In: Institut
de Génie Nucléaire, Tech. Rep. IGE-293 (cit. on pp. 13, 117, 165).

Hébert, Alain (1987). “Development of the nodal collocation method for solv-
ing the neutron diffusion equation”. In: Annals of Nuclear Energy 14.10,
pp. 527–541 (cit. on pp. 12, 117, 166).

Henry, A.F. (1975). Nuclear-reactor analysis. MIT Press. isbn: 9780262080811
(cit. on p. 18).

Hernandez, V., J. E. Roman, and V. Vidal (2003). “SLEPc: Scalable Library
for Eigenvalue Problem Computations”. In: Lect. Notes Comput. Sci. 2565,
pp. 377–391 (cit. on p. 40).

Hernandez, V. et al. (2005a). Single Vector Iteration Methods in SLEPc. Tech.
rep. STR-2. Available at http://slepc.upv.es. Universitat Politècnica de
València (cit. on pp. 35, 36).

— (2005b). Subspace Iteration in SLEPc. Tech. rep. STR-3. Available at
http://slepc.upv.es. Universitat Politècnica de València (cit. on p. 36).

— (2006). Lanczos Methods in SLEPc. Tech. rep. STR-5. Available at http://slepc.upv.es.
Universitat Politècnica de València (cit. on p. 37).

— (2007). Krylov-Schur Methods in SLEPc. Tech. rep. STR-7. Available at
http://slepc.upv.es. Universitat Politècnica de València (cit. on p. 37).

Hernandez, Vicente, Jose E. Roman, and Vicente Vidal (2005). “SLEPc: A
scalable and flexible toolkit for the solution of eigenvalue problems”. In:
ACM Trans. Math. Software 31.3, pp. 351–362 (cit. on pp. 40, 44).

Heroux, Michael et al. (2003). An overview of Trilinos. Tech. rep. Citeseer (cit.
on p. 44).

Higham, Nicholas J (2009). “The scaling and squaring method for the matrix
exponential revisited”. In: SIAM review 51.4, pp. 747–764 (cit. on p. 86).

227

Bibliography

Hindmarsh, Alan C et al. (2005). “SUNDIALS: Suite of nonlinear and differen-
tial/algebraic equation solvers”. In: ACM Transactions on Mathematical
Software (TOMS) 31.3, pp. 363–396 (cit. on p. 44).

Hoffmann, K.A. and S.T. Chiang (2000). Computational Fluid Dynamics. Com-
putational Fluid Dynamics v. 2. Engineering Education System. isbn:
9780962373138 (cit. on pp. 28, 29).

Jessee, Matthew Anderson et al. (2014). Polaris: a new two-dimensional lattice
physics analysis capability for the SCALE code system. Tech. rep. Oak
Ridge National Laboratory (ORNL), Oak Ridge, TN (United States) (cit.
on p. 24).

Kavenoky, A (1980). The SPH homogenization method. Tech. rep. IAEA-TECDOC–
231. International Atomic Energy Agency (IAEA) (cit. on p. 28).

Knoll, Dana A and David E Keyes (2004). “Jacobian-free Newton–Krylov
methods: a survey of approaches and applications”. In: Journal of Com-
putational Physics 193.2, pp. 357–397 (cit. on p. 37).

Kochunas, Brendan et al. (2013).Overview of development and design of MPACT:
Michigan parallel characteristics transport code. Tech. rep. American Nu-
clear Society, 555 North Kensington Avenue, La Grange Park, IL 60526
(United States) (cit. on p. 24).

Kophazi, Jozsef and Danny Lathouwers (2012). “Three-dimensional transport
calculation of multiple alpha modes in subcritical systems”. In: Annals of
Nuclear Energy 50, pp. 167–174 (cit. on p. 38).

Koren, Barry (1993). “A robust upwind discretization method for advection,
diffusion and source terms”. In: Department of Numerical Mathematics
[NM] R 9308 (cit. on p. 32).

Kozlowski, Tomasz and Thomas J Downar (2007). “PWR MOX/UO2 Core
Transient Benchmark Final Report”. In: Nuclear Energy Agency, Organi-
zation for Economic Co-operation and Development, US Nuclear Regula-
tory Commission (cit. on pp. 157, 164, 181).

228

Bibliography

Lamarsh, J.R. and A.J. Baratta (2001). Introduction to Nuclear Engineering.
Addison-Wesley series in nuclear science and engineering. Prentice Hall.
isbn: 9780201824988 (cit. on pp. 5, 6).

Lathouwers, D (2003). “Iterative computation of time-eigenvalues of the neu-
tron transport equation”. In: Annals of Nuclear Energy 30.17, pp. 1793–
1806 (cit. on p. 38).

Lathrop, Kaye D (1968). “Ray effects in discrete ordinates equations”. In: Nu-
clear Science and Engineering 32.3, pp. 357–369 (cit. on p. 23).

Lautard, JJ, S Loubiere, and C Fedon-Magnaud (1990). “CRONOS2: A modu-
lar computational system for neutronic core calculations, 1993”. In: IAEA
specialists meeting on advanced calculational methods for power reactors
and LWR core design parameters (cit. on p. 24).

Lawson, Chuck L et al. (1979). “Basic linear algebra subprograms for Fortran
usage”. In: ACM Transactions on Mathematical Software (TOMS) 5.3,
pp. 308–323 (cit. on p. 40).

Lehoucq, Richard B, Danny C Sorensen, and Chao Yang (1998). ARPACK
users’ guide: solution of large-scale eigenvalue problems with implicitly
restarted Arnoldi methods. Vol. 6. Siam (cit. on p. 40).

Leppänen, Jaakko (2013). “Serpent–a continuous-energy Monte Carlo reactor
physics burnup calculation code”. In: VTT Technical Research Centre of
Finland 4 (cit. on p. 24).

Lewis, EE et al. (2001). “Benchmark specification for Deterministic 2-D/3-D
MOX fuel assembly transport calculations without spatial homogenization
(C5G7 MOX)”. In: NEA/NSC (cit. on pp. 157–159, 184, 192, 194).

Macian-Juan, Rafael and John H Mahaffy (1998). “Numerical diffusion and the
tracking of solute fields in system codes: Part I. One-dimensional flows”.
In: Nuclear engineering and design 179.3, pp. 297–319 (cit. on p. 34).

Mahadevan, Vijay and Jean Ragusa (2008). “Novel hybrid scheme to compute
several dominant eigenmodes for reactor analysis problems”. In: (cit. on
p. 39).

229

Bibliography

Marleau, Guy, Alain Hébert, and Robert Roy (2011). “A user guide for DRAGON
Version 4”. In: IGE-294, Ecole Polytechnique de Montréal, Institut de génie
nucléaire Département de génie mécanique (Aug. 26, 2016) (cit. on p. 24).

Miró, Rafael et al. (2002). “A nodal modal method for the neutron diffusion
equation. Application to BWR instabilities analysis”. In: Annals of Nuclear
Energy 29.10, pp. 1171–1194 (cit. on pp. 13, 83, 88, 117).

Miró, Rafael et al. (2006). Parameterization of nuclear cross-sections for cou-
pled neutronic-thermalhydraulic codes. Tech. rep. American Nuclear So-
ciety, 555 North Kensington Avenue, La Grange Park, IL 60526 (United
States) (cit. on p. 143).

Modak, RS and VK Jain (1996). “Sub-space iteration scheme for the evaluation
of λ-modes of finite-differenced multi-group neutron diffusion equations”.
In: Annals of Nuclear Energy 23.3, pp. 229–237 (cit. on p. 38).

Moukalled, F., L. Mangani, and M. Darwish (2015). The Finite Volume Method
in Computational Fluid Dynamics: An Advanced Introduction with OpenFOAM R©
and Matlab. Fluid Mechanics and Its Applications. Springer International
Publishing. isbn: 9783319168746 (cit. on pp. 25, 28, 29).

Müller, EZ and ZJ Weiss (1991). “Benchmarking with the multigroup diffusion
high-order response matrix method”. In: Annals of Nuclear Energy 18.9,
pp. 535–544 (cit. on p. 125).

Ott, Karl (1966). “Quasistatic treatment of spatial phenomena in reactor dy-
namics”. In: Nuclear Science and Engineering 26.4, pp. 563–565 (cit. on
p. 45).

Palmiotti, G, EE Lewis, and CB Carrico (1995). “VARIANT: VARIational
Anisotropic Nodal Transport”. In: Proceedings of the international confer-
ence on mathematics and computations, reactor physics, and environmen-
tal analyses. Vol. 1 (cit. on p. 24).

Rhoades, Wayne A and DB Simpson (1997). The TORT three-dimensional
discrete ordinates neutron/photon transport code (TORT version 3). Tech.
rep. Oak Ridge National Lab., TN (United States) (cit. on p. 24).

230

Bibliography

Roe, Philip L (1986). “Characteristic-based schemes for the Euler equations”.
In: Annual review of fluid mechanics 18.1, pp. 337–365 (cit. on p. 32).

Roman, J. E. et al. (2017). SLEPc Users Manual. Tech. rep. DSIC-II/24/02 -
Revision 3.8. D. Sistemes Informàtics i Computació, Universitat Politèc-
nica de València (cit. on p. 40).

Saad, Youcef (1983). “Projection methods for solving large sparse eigenvalue
problems”. In: Matrix Pencils. Springer, pp. 121–144 (cit. on p. 35).

Saad, Youcef and Martin H Schultz (1986). “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems”. In: SIAM
Journal on scientific and statistical computing 7.3, pp. 856–869 (cit. on
pp. 40, 75).

Sanchez, Richard (2009). “Assembly homogenization techniques for core cal-
culations”. In: Progress in Nuclear Energy 51.1, pp. 14–31 (cit. on p. 27).

Sanchez, Richard et al. (1988). “APOLLO II: A user-oriented, portable, modu-
lar code for multigroup transport assembly calculations”. In: Nuclear Sci-
ence and Engineering 100.3, pp. 352–362 (cit. on p. 24).

Shampine, Lawrence F and Mark W Reichelt (1997). “The matlab ode suite”.
In: SIAM journal on scientific computing 18.1, pp. 1–22 (cit. on pp. 40,
44).

Shu, Chi-Wang (1998). “Essentially non-oscillatory and weighted essentially
non-oscillatory schemes for hyperbolic conservation laws”. In: Advanced
numerical approximation of nonlinear hyperbolic equations. Springer, pp. 325–
432 (cit. on p. 33).

Singh, KP et al. (2009). “Iterative schemes for obtaining dominant alpha-modes
of the neutron diffusion equation”. In: Annals of Nuclear Energy 36.8,
pp. 1086–1092 (cit. on p. 38).

Smith, Kord S (1986). “Assembly homogenization techniques for light water
reactor analysis”. In: Progress in Nuclear Energy 17.3, pp. 303–335 (cit. on
pp. 27, 49).

231

Bibliography

Smith, Kord Sterling (1979). “An analytic nodal method for solving the two-
group, multidimensional, static and transient neutron diffusion equations”.
PhD thesis. Massachusetts Institute of Technology (cit. on p. 12).

Sonneveld, Peter (1989). “CGS, a fast Lanczos-type solver for nonsymmetric
linear systems”. In: SIAM journal on scientific and statistical computing
10.1, pp. 36–52 (cit. on p. 40).

Stacey, W.M. (2007). Nuclear Reactor Physics. John Wiley & Sons. isbn:
9783527406791 (cit. on pp. 5, 6, 9, 44, 45).

Stewart, Gilbert W (2002). “A Krylov–Schur algorithm for large eigenprob-
lems”. In: SIAM Journal on Matrix Analysis and Applications 23.3, pp. 601–
614 (cit. on pp. 37, 75).

Sweby, Peter K (1984). “High resolution schemes using flux limiters for hy-
perbolic conservation laws”. In: SIAM journal on numerical analysis 21.5,
pp. 995–1011 (cit. on p. 32).

Theler, German (2013). “Unstructured grids and the multigroup neutron dif-
fusion equation”. In: Science and Technology of Nuclear Installations 2013
(cit. on p. 39).

Turinsky, Paul J et al. (1994). NESTLE: Few-group neutron diffusion equa-
tion solver utilizing the nodal expansion method for eigenvalue, adjoint,
fixed-source steady-state and transient problems. Tech. rep. EG and G
Idaho, Inc., Idaho Falls, ID (United States); Los Alamos National Lab.,
NM (United States) (cit. on p. 13).

Van Leer, Bram (1997). “Towards the ultimate conservative difference scheme”.
In: Journal of Computational Physics 135.2, pp. 229–248 (cit. on p. 32).

Verdú, G et al. (1994). “3D λ-modes of the neutron-diffusion equation”. In:
Annals of Nuclear Energy 21.7, pp. 405–421 (cit. on pp. 13, 38, 117).

Verdú, G et al. (1999). “The implicit restarted Arnoldi method, an efficient
alternative to solve the neutron diffusion equation”. In: Annals of nuclear
energy 26.7, pp. 579–593 (cit. on p. 38).

232

Bibliography

Verdu, Gumersindo et al. (2010). “3D alpha modes of a nuclear power reactor”.
In: Journal of nuclear science and technology 47.5, pp. 501–514 (cit. on
p. 38).

Verdú, G. et al. (1995). “A consistent multidimensional nodal method for tran-
sient calculations”. In: Annals of Nuclear Energy 22.6, pp. 395 –410. issn:
0306-4549. doi: https://doi.org/10.1016/0306-4549(94)00067-O
(cit. on p. 45).

Vidal-Ferrandiz, A et al. (2014). “Solution of the Lambda modes problem of a
nuclear power reactor using an h–p finite element method”. In: Annals of
Nuclear Energy 72, pp. 338–349 (cit. on pp. 13, 38).

Vorst, Henk A Van der (1992). “Bi-CGSTAB: A fast and smoothly converging
variant of Bi-CG for the solution of nonsymmetric linear systems”. In:
SIAM Journal on scientific and Statistical Computing 13.2, pp. 631–644
(cit. on p. 40).

Wagner, MR and K Koebke (1983). “Progress in nodal reactor analysis”. In:
Atomkernenergie Kerntechnik 43.2, pp. 117–126 (cit. on p. 27).

Wareing, Todd A, John M McGhee, and Jim E Morel (1996). “ATTILA: A
three-dimensional, unstructured tetrahedral mesh discrete ordinates trans-
port code”. In: Transactions of the American Nuclear Society 75.CONF-
961103– (cit. on p. 24).

Warsa, James S et al. (2004). “Krylov subspace iterations for deterministic
k-eigenvalue calculations”. In: Nuclear Science and Engineering 147.1,
pp. 26–42 (cit. on p. 38).

Waterson, NP and H Deconinck (1995). “A unified approach to the design and
application of bounded higher-order convection schemes”. In: Numerical
methods in laminar and turbulent flow. 9, pp. 203–214 (cit. on p. 32).

Yi, Ce (2009). “TITAN: A 3-D Deterministic Radiation Transport Code, TI-
TAN User Manual Version 1.05”. In: Univ. of Florida (cit. on pp. 21, 24,
117, 187).

233

http://dx.doi.org/https://doi.org/10.1016/0306-4549(94)00067-O

Bibliography

Zhou, Gang (1995). Numerical simulations of physical discontinuities in single
and multi-fluid flows for arbitrary Mach numbers. Chalmers University of
Technology (cit. on p. 32).

Zimin, Vyacheslav G (2002). “SKETCH-N 1.0, Solve Neutron Diffusion Equa-
tions of Steady-State and Kinetics Problems”. In: (cit. on p. 13).

234

	Abstract
	Resumen
	Resum
	Acknowledgments
	Agradecimientos
	Contents
	List of Symbols
	1 Introduction
	1.1 Motivation and objectives
	1.2 Thesis outline

	2 State of the art
	2.1 Neutron Diffusion Equation
	2.2 Neutron Transport Equation
	2.3 Spatial Discretization
	2.4 Finite Volume Method
	2.5 Calculation of Eigenvalue Problems
	2.6 Time dependent Ordinary Differential Equations

	3 Steady State of the Neutron Diffusion Equation with the Finite Volume Method
	3.1 Two-energy group Neutron Diffusion Equation
	3.2 Calculation of the face averaged values of fluxes and currents
	3.3 Multigroup formulation
	3.4 Solution of the Eigenvalue Problem
	3.5 Parallelization

	4 Modal Method for the time dependent Neutron Diffusion Equation
	4.1 Modal Method
	4.2 Adjoint calculation
	4.3 Updating modes

	5 Steady State of the Neutron Transport Equation with the Discrete Ordinates formulation and the Finite Volume Method
	5.1 Discrete Ordinates formulation
	5.2 Gauss-Legendre Product Quadrature
	5.3 Interpolation schemes for the face values

	6 Results
	6.1 Evaluation of the results
	6.2 Moving Least Squares method
	6.3 Inter-cells polynomial expansion method
	6.4 Improved inter-cells polynomial expansion method
	6.5 Multigroup formulation
	6.6 Parallelization
	6.7 Adjoint calculation
	6.8 Modal method
	6.9 Neutron Transport Equation with the Discrete Ordinates and FVM

	7 Conclusions
	7.1 Conclusions
	7.2 Future work
	7.3 Scientific contribution

	Bibliography

