
Departament de Sistemes Informàtics i Computació

Dense and sparse
parallel linear algebra algorithms

on graphics processing units

Author:
Alejandro Lamas Daviña

Director:
José E. Román Moltó

October 2018

To the extent possible under law, the author has waived all copyright and related
or neighboring rights to this work.

To one, two, and three.

Acknowledgments

I would like to express my gratitude to my director José Román, for his permanent
support during all these years of work. His wise advice and selfless guidance have
been decisive for the culmination of this thesis. His door has always been open for
me, and he has solved all my doubts with unlimited patience. For all that and for
more, I thank him.

I would like to extend my gratitude to my colleagues of the SLEPc project. Here
I thank again to José Román for his unique humor sense. To Carmen, for showing
me the way and for all her good advices. To Enrique, who helped me to get rolling.
And to the former members Andrés and Eloy, to whom I had the opportunity to
meet and who enliven the group meals. I will keep good memories from these years.

I do not want to forget to mention to Xavier Cartoixà, Jeff Steward and Altuǧ
Aksoy, great researchers with whom I have had the opportunity to collaborate.

The afternoon snacks would not have been the same without the excellent discus-
sions and comments of Fernando, David and of course Salva, who, without noticing
it, also helped to improve this dissertation.

Last, I would like to thank to José Luis, IT staff of the department, for his high
valuable work behind the scenes and his promptly response to any incidence.

To all of you who have supported me, thank you.

Abstract

One line of development followed in the field of supercomputing is the use of specific
purpose processors to speed up certain types of computations. In this thesis we study
the use of graphics processing units as computer accelerators and apply it to the field
of linear algebra. In particular, we work with the SLEPc library to solve large-scale
eigenvalue problems, and to apply matrix functions in scientific applications. SLEPc
is a parallel library based on the MPI standard and is developed with the premise
of being scalable, i.e. to allow solving larger problems by increasing the processing
units.

We address the linear eigenvalue problem, Ax = λx in its standard form, using
iterative techniques, in particular with Krylov’s methods, with which we calculate
a small portion of the eigenvalue spectrum. This type of algorithms is based on
generating a subspace of reduced size (m) in which to project the large dimension
problem (n), being m � n. Once the problem has been projected, it is solved by
direct methods, which provide us with approximations of the eigenvalues of the initial
problem we wanted to solve. The operations used in the expansion of the subspace
vary depending on whether the desired eigenvalues are from the exterior or from
the interior of the spectrum. In the case of searching for exterior eigenvalues, the
expansion is done by matrix-vector multiplications. We do this on the GPU, either
by using libraries or by creating functions that take advantage of the structure of the
matrix. In the case of eigenvalues from the interior of the spectrum, the expansion
requires solving linear systems of equations. In this thesis we implemented several
algorithms to solve linear systems of equations for the specific case of matrices with
a block-tridiagonal structure, that are run on GPU.

In the computation of matrix functions we have to distinguish between the direct
application of a matrix function, f(A), and the action of a matrix function on a
vector, f(A)b. The first case involves a dense computation that limits the size of the
problem. The second allows us to work with large sparse matrices, and to solve it we
also make use of Krylov’s methods. The expansion of subspace is done by matrix-
vector multiplication, and we use GPUs in the same way as when solving eigenvalues.
In this case the projected problem starts being of size m, but it is increased by m
on each restart of the method. The solution of the projected problem is done by
directly applying a matrix function. We have implemented several algorithms to
compute the square root and the exponential matrix functions, in which the use of
GPUs allows us to speed up the computation.

i

Resum

Una ĺınia de desenvolupament seguida en el camp de la supercomputació és l’ús de
processadors de propòsit espećıfic per a accelerar determinats tipus de càlcul. En
aquesta tesi estudiem l’ús de targetes gràfiques com a acceleradors de la computació
i ho apliquem a l’àmbit de l’àlgebra lineal. En particular treballem amb la biblioteca
SLEPc per a resoldre problemes de càlcul d’autovalors en matrius de gran dimensió,
i per a aplicar funcions de matrius en els càlculs d’aplicacions cient́ıfiques. SLEPc és
una biblioteca paral·lela que es basa en l’estàndard MPI i està desenvolupada amb
la premissa de ser escalable, açò és, de permetre resoldre problemes més grans en
augmentar les unitats de processament.

El problema lineal d’autovalors, Ax = λx en la seua forma estàndard, ho abor-
dem amb l’ús de tècniques iteratives, en concret amb mètodes de Krylov, amb els
quals calculem una xicoteta porció de l’espectre d’autovalors. Aquest tipus d’algo-
rismes es basa a generar un subespai de grandària redüıda (m) en el qual projectar el
problema de gran dimensió (n), sent m� n. Una vegada s’ha projectat el problema,
es resol aquest mitjançant mètodes directes, que ens proporcionen aproximacions als
autovalors del problema inicial que voĺıem resoldre. Les operacions que s’utilitzen
en l’expansió del subespai varien en funció de si els autovalors desitjats estan en
l’exterior o a l’interior de l’espectre. En cas de cercar autovalors en l’exterior de l’es-
pectre, l’expansió es fa mitjançant multiplicacions matriu-vector. Aquesta operació
la realitzem en la GPU, bé mitjançant l’ús de biblioteques o mitjançant la creació de
funcions que aprofiten l’estructura de la matriu. En cas d’autovalors a l’interior de
l’espectre, l’expansió requereix resoldre sistemes d’equacions lineals. En aquesta tesi
implementem diversos algorismes per a la resolució de sistemes d’equacions lineals
per al cas espećıfic de matrius amb estructura tridiagonal a blocs, que s’executen en
GPU.

En el càlcul de les funcions de matrius hem de diferenciar entre l’aplicació di-
recta d’una funció sobre una matriu, f(A), i l’aplicació de l’acció d’una funció de
matriu sobre un vector, f(A)b. El primer cas implica un càlcul dens que limita la
grandària del problema. El segon permet treballar amb matrius disperses grans, i
per a resoldre-ho també fem ús de mètodes de Krylov. L’expansió del subespai es
fa mitjançant multiplicacions matriu-vector, i fem ús de GPUs de la mateixa forma
que en resoldre autovalors. En aquest cas el problema projectat comença sent de
grandària m, però s’incrementa en m en cada reinici del mètode. La resolució del
problema projectat es fa aplicant una funció de matriu de forma directa. Nosaltres

iii

hem implementat diversos algorismes per a calcular les funcions de matrius arrel
quadrada i exponencial, en les quals l’ús de GPUs permet accelerar el càlcul.

iv

Resumen

Una ĺınea de desarrollo seguida en el campo de la supercomputación es el uso de
procesadores de propósito espećıfico para acelerar determinados tipos de cálculo.
En esta tesis estudiamos el uso de tarjetas gráficas como aceleradores de la compu-
tación y lo aplicamos al ámbito del álgebra lineal. En particular trabajamos con la
biblioteca SLEPc para resolver problemas de cálculo de autovalores en matrices de
gran dimensión, y para aplicar funciones de matrices en los cálculos de aplicaciones
cient́ıficas. SLEPc es una biblioteca paralela que se basa en el estándar MPI y está
desarrollada con la premisa de ser escalable, esto es, de permitir resolver problemas
más grandes al aumentar las unidades de procesado.

El problema lineal de autovalores, Ax = λx en su forma estándar, lo abordamos
con el uso de técnicas iterativas, en concreto con métodos de Krylov, con los que
calculamos una pequeña porción del espectro de autovalores. Este tipo de algoritmos
se basa en generar un subespacio de tamaño reducido (m) en el que proyectar el pro-
blema de gran dimensión (n), siendo m� n. Una vez se ha proyectado el problema,
se resuelve este mediante métodos directos, que nos proporcionan aproximaciones a
los autovalores del problema inicial que queŕıamos resolver. Las operaciones que se
utilizan en la expansión del subespacio vaŕıan en función de si los autovalores desea-
dos están en el exterior o en el interior del espectro. En caso de buscar autovalores
en el exterior del espectro, la expansión se hace mediante multiplicaciones matriz-
vector. Esta operación la realizamos en la GPU, bien mediante el uso de bibliotecas
o mediante la creación de funciones que aprovechan la estructura de la matriz. En
caso de autovalores en el interior del espectro, la expansión requiere resolver siste-
mas de ecuaciones lineales. En esta tesis implementamos varios algoritmos para la
resolución de sistemas de ecuaciones lineales para el caso espećıfico de matrices con
estructura tridiagonal a bloques, que se ejecutan en GPU.

En el cálculo de las funciones de matrices hemos de diferenciar entre la aplicación
directa de una función sobre una matriz, f(A), y la aplicación de la acción de una
función de matriz sobre un vector, f(A)b. El primer caso implica un cálculo denso que
limita el tamaño del problema. El segundo permite trabajar con matrices dispersas
grandes, y para resolverlo también hacemos uso de métodos de Krylov. La expansión
del subespacio se hace mediante multiplicaciones matriz-vector, y hacemos uso de
GPUs de la misma forma que al resolver autovalores. En este caso el problema
proyectado comienza siendo de tamaño m, pero se incrementa en m en cada reinicio
del método. La resolución del problema proyectado se hace aplicando una función

v

de matriz de forma directa. Nosotros hemos implementado varios algoritmos para
calcular las funciones de matrices ráız cuadrada y exponencial, en las que el uso de
GPUs permite acelerar el cálculo.

vi

Contents

List of Figures xi

List of Tables xv

List of Algorithms xvii

1 Introduction 1

1.1 Background and motivation . 1

1.2 Objectives . 4

1.3 Structure of the document . 4

2 High-performance computing 7

2.1 Hardware evolution . 8

2.2 Parallel architectures . 11

2.2.1 Central control mechanism 11

2.2.2 Communication mechanism 12

2.3 Programming models and parallel software 13

2.3.1 Threads and OpenMP . 13

2.3.2 Message Passing Interface . 14

2.3.3 Software . 17

2.4 Hardware accelerators . 21

2.4.1 Integrated circuits . 22

2.4.2 Manycore processors . 22

2.4.3 Graphics processing units . 23

2.5 Performance indicators . 33

2.5.1 Execution time . 33

2.5.2 Speedup . 34

2.5.3 Efficiency . 35

2.5.4 Scalability . 35

2.5.5 FLOPs/s . 35

vii

3 Eigenvalue problems 37
3.1 Methods to compute eigenvalues . 38

3.1.1 Direct methods . 38
3.1.2 Iterative methods . 39

3.2 Krylov methods for eigenvalue problems 41
3.2.1 Krylov-Schur . 43

3.3 Scientific computing software . 44
3.3.1 PETSc . 46
3.3.2 SLEPc . 50

3.4 Solving eigenproblems with GPUs 53
3.4.1 The ParIso code . 55
3.4.2 Optimization of spin eigenanalysis 56
3.4.3 Acceleration with graphics processors 62

3.5 Conclusions . 68

4 Block-tridiagonal eigenvalue problems 71
4.1 Matrix-vector product . 73
4.2 Shift and invert: Linear systems . 73

4.2.1 Thomas algorithm . 73
4.2.2 Block cyclic reduction . 75
4.2.3 Spike . 77

4.3 Block cyclic tridiagonal structures 80
4.3.1 Schur complement . 80

4.4 Parallel implementations . 81
4.4.1 Matrix-vector product . 81
4.4.2 Direct linear solvers . 84

4.5 Numerical experiments . 92
4.5.1 Single process executions . 93
4.5.2 Multi-process executions . 98

4.6 Conclusions . 110

5 Matrix functions 113
5.1 Dense methods for matrix functions 114

5.1.1 Square root . 115
5.1.2 Sign . 118
5.1.3 Exponential . 118

5.2 Krylov methods for matrix functions 119
5.2.1 Restarted Arnoldi . 120

5.3 Numerical experiments . 121
5.3.1 Computational evaluation of dense solvers 121
5.3.2 Computational evaluation of sparse solvers 127

5.4 Conclusions . 134

6 Conclusions 137

viii

Bibliography 141

ix

List of Figures

2.1 CUDA device memory hierarchy. 26

2.2 Schema of 2D memory allocated in the GPU with cudaMallocPitch. 30

3.1 Components of PETSc. 47

3.2 Parallel distribution of a sparse matrix and two vectors in PETSc. . 48

3.3 Components of SLEPc. 50

3.4 Example of energetic cut for a test problem with 18 submatrices. Only
eigenvalues located to the left of the vertical line need to be computed.
The number of eigenvalues to compute depends on the dimension of
the submatrix. A zoom of the region of interest is shown on the right. 58

3.5 Full representation of the 7Mn2+ system, showing the energetic cut
and the computed eigenvalues. 59

3.6 Susceptibility for different values of the population in the 7Mn2+ system. 61

3.7 Susceptibility for different values of the maxev parameter in the 8Mn2+

system. 62

3.8 Example of an isotropic system expressed as a block diagonal matrix
(left) and the partitioning of one of their symmetric sparse blocks
between five MPI processes Pi (right). 66

3.9 Total problem solve time for the 8Mn2+ system with single (left) and
double precision arithmetic (right). 68

3.10 Total problem solve time for the 9Mn2+ system with single (left) and
double precision arithmetic (right). 69

3.11 Total problem solve time for the 9Mn2+ + 1Cu2+ system with single
(left) and double precision arithmetic (right). 70

4.1 Schema of a 2D domain partitioned in subdomains Ωi. 71

4.2 Schema of the partitioning of a block cyclic tridiagonal matrix into
four smaller matrices to solve a system of linear equations by using
the Schur complement. 81

4.3 Schema of the memory allocated in the GPU for storing a matrix block
of dimensions k×k (left), and a block tridiagonal matrix stored in 2D
memory (right). The blocks are represented transposed to illustrate
that we store the matrices using a column-major order. 82

xi

4.4 Wrapper function for the matrix-vector kernel. 83
4.5 Matrix-vector kernel. 85
4.6 Distribution of the four sub-matrices of Figure 4.2 among several pro-

cesses and its representation in memory. 92
4.7 Performance of the matrix-vector product operation to compute the

largest magnitude eigenvalue, for a fixed block size k = 960 and vary-
ing the number of blocks ` for both CPU and GPU on the Fermi (left)
and Kepler (right) machine, in single and double precision arithmetic. 93

4.8 Total eigensolve operation time to compute the largest magnitude
eigenvalue, for a fixed block size k = 960 and varying the number
of blocks ` for both CPU and GPU on the Fermi (left) and Kepler
(right) machine, in double precision arithmetic. 94

4.9 Performance of the matrix-vector product operation to compute the
largest magnitude eigenvalue, for a fixed number of blocks ` = 130 and
varying the block size k for both CPU and GPU on the Fermi (left)
and Kepler (right) machine, in single and double precision arithmetic. 94

4.10 Total eigensolve operation time to compute the largest magnitude
eigenvalue, for a fixed number of blocks ` = 130 and varying the
block size k for both CPU and GPU on the Fermi (left) and Kepler
(right) machine, in double precision arithmetic. 95

4.11 Performance of the factorization operation to compute the eigenvalue
closest to the origin, for a fixed block size k = 960 and varying the
number of blocks ` for both CPU and GPU on the Fermi (left) and
Kepler (right) machine, in double precision arithmetic. 96

4.12 Total eigensolve operation time to compute the eigenvalue closest to
the origin, for a fixed block size k = 960 and varying the number
of blocks ` for both CPU and GPU on the Fermi (left) and Kepler
(right) machine, in double precision arithmetic. 96

4.13 Performance of factorization to compute the eigenvalue closest to the
origin, for a fixed number of blocks ` = 130 and varying the block
size k for both CPU and GPU on the Fermi (left) and Kepler (right)
machine, in double precision arithmetic. 97

4.14 Total eigensolve operation time to compute the eigenvalue closest to
the origin, for a fixed number of blocks ` = 130 and varying the block
size k for both CPU and GPU on the Fermi (left) and Kepler (right)
machine, in double precision arithmetic. 97

4.15 Weak scaling for the BCYCLIC algorithm running on CPU and on
GPU with the non-batched version with k = 64 and ` = p ·400, where
p is the number of MPI processes. 101

4.16 Weak scaling for the BCYCLIC algorithm running on CPU and on
GPU with the non-batched version with k = 1024 and ` = p · 25,
where p is the number of MPI processes. 101

4.17 Weak scaling for the BCYCLIC algorithm running on GPU with
batched and non-batched versions with k = 64 and ` = p · 400, where
p is the number of MPI processes. 102

xii

4.18 Weak scaling for the BCYCLIC algorithm running on GPU with
batched and non-batched versions with k = 1024 and ` = p ·25, where
p is the number of MPI processes. Consult the legend in Figure 4.17. 103

4.19 Weak scaling for the BCYCLIC and the Spike algorithms running on
CPU and on GPU with k = 64 and ` = p ·400, where p is the number
of MPI processes. 104

4.20 Weak scaling for the BCYCLIC and the Spike algorithms running
on CPU and on GPU with k = 1024 and ` = p · 25, where p is the
number of MPI processes. The executions on GPU with the Spike
algorithm with more than 16 processes could not be done due to
memory constraints. 105

4.21 Total eigenproblem time obtained with the weak scaling tests for a
block size k = 1024 (left) and for 128 processes (right). 106

4.22 Strong scaling for the BCYCLIC, the Spike and the reduced Spike al-
gorithms running on CPU and on GPU with a total matrix dimension
of 307200 and different block sizes k. 107

4.23 Total eigenproblem solve time to obtain 40 eigenvalues closest to 1.5
for the qcl and anderson matrices using 4 processes per node. 109

5.1 Time results for computing the matrix square root (left) and the ma-
trix inverse square root (right). 124

5.2 Time results for computing the matrix exponential on Fermi. 128
5.3 Time results for computing the matrix exponential on Kepler. 129
5.4 Time results for the advection diffusion problem. 131
5.5 Time results for the EnSRF matrix function using Denman–Beavers

to compute
√
Hkm. 133

5.6 Total computation time for the EPS and MFN methods as a function
of the matrix size with 386 processes, in double precision arithmetic. 133

5.7 Memory usage for the EPS and MFN methods as a function of the
matrix size with 386 processes, in double precision arithmetic. 134

xiii

List of Tables

2.1 CUDA device memory. 26

2.2 CUDA variable declaration and associated memory. 29

3.1 List of cuBLAS routines employed in the sveccuda implementation
of the BV object. 53

3.2 Systems used. 57

3.3 Value of energetic cut for different values of the population parameter
in the 7Mn2+ system, and the corresponding computation time (in
seconds) with one processor. 59

3.4 Total number of eigenvalues (n) for each of the spins and the selected
values to be computed (k), for the systems 7Mn2+ (left) and 8Mn2+

(right) using maxev=1000 and pobla=10−2. 60

3.5 Value of energetic cut for different values of the maxev parameter in
the 8Mn2+ system. 61

3.6 Parallel execution time (in seconds) for the 8Mn2+ system with dif-
ferent values of maxev and increasing number of MPI processes. . . . 62

3.7 Different versions of ParIso with GPU support. 63

4.1 BCYCLIC implementations with each of the mathematical libraries. 89

4.2 Operations used to factorize the two matrices and solve the systems
on the Spike implementations. 91

4.3 Block sizes and number of block-rows used for the strong and weak
scaling experiments. The column of the weak scaling shows the num-
ber of rows used with 128 processes, that is halved with the number
of processes. 99

4.4 Total eigenproblem time obtained with the weak scaling tests for 128
processes. 105

4.5 Total eigenproblem time obtained with the weak scaling tests for a
block size k = 1024. 106

5.1 Results for computing the matrix square root of the ensrf7864 matrix.
Time expressed in seconds. GF/s indicates gigaflops per second, Iter
indicates iterations done, and Error is computed as ‖F 2 −A‖F /‖A‖F . 124

xv

5.2 Results for computing the matrix inverse square root of the rdb5000
matrix. Time expressed in seconds. GF/s indicates gigaflops per sec-
ond, Iter indicates iterations done, and Error is computed as ‖F 2A−
I‖F /‖A‖F . 125

5.3 Results for the matrix exponential running on the Fermi platform.
Time expressed in seconds. GF/s indicates gigaflops per second. . . 127

5.4 Results for the matrix exponential running on the Kepler platform.
Time expressed in seconds. GF/s indicates gigaflops per second. . . 128

5.5 Results for the advection diffusion problem. Time expressed in sec-
onds. The MatVec and Orthog columns show the time needed in the
matrix-vector product, and in the orthogonalization and normaliza-
tion of the basis vectors, respectively. 130

5.6 Results for the EnSRF matrix function using Denman–Beavers to
compute

√
Hkm. Time expressed in seconds. The MatVec and Or-

thog columns show the time needed in the matrix-vector product,
and in the orthogonalization and normalization of the basis vectors,
respectively. 132

xvi

List of Algorithms

3.1 Simple subspace iteration . 40
3.2 Rayleigh–Ritz method . 41
3.3 Arnoldi . 41
3.4 Lanczos iteration . 42

4.1 Arnoldi algorithm . 72
4.2 BCYCLIC factorization . 87
4.3 BCYCLIC solve . 88
4.4 GetOwnershipRange . 89
4.5 Spike factorization . 90
4.6 Spike solve . 91

5.1 Blocked Schur method for the square root 116

xvii

Chapter 1

Introduction

All work and no play makes

Jack a dull boy

All work and no play...

Scientific computing is an area of growing importance, not only because of its role in
the progress of science, but also for helping companies in the design of new products
or in the development of new processes to be competitive in a global economy.
This thesis dissertation is undertaken within the framework of scientific computing,
particularly in the context of linear systems of equations, eigenvalue problems and
related fields. Typically this type of applications require an efficient and quick
resolution of numerical problems of very large and increasing sizes, which means a
challenge both in terms of computing and numerical analysis. Two main elements are
required to solve these type of problems: a supercomputer, and specialized software
that efficiently implements the required numerical algorithms.

1.1 Background and motivation

The architecture of supercomputers have experienced a huge transformation in the
last years with the inclusion of new hardware accelerators. Many of the most pow-
erful supercomputers in the world are equipped with some type of hardware accel-
erators. They can be GPUs, FPGAs, or other types of accelerators such as the
Intel Xeon Phi. A close example for us is Minotauro, a supercomputer belonging
to the Barcelona Supercomputer Center (BSC) that is furnished with GPUs. These
technologies are gradually spreading to other more modest computing facilities like
clusters of small research groups. Even a single server can be assembled with many
accelerator cards and used as a small scale computing platform. But the high perfor-
mance offered by these computing elements cannot be exploited to its limits without
the availability of efficient software.

1

Chapter 1. Introduction

Today it is mandatory that scientific computing software makes use of special-
ized libraries to cope with the growing complexity of the applications. The use of
software libraries allows the programmers to reduce the development cycle, and to
benefit from high quality implementations. This last feature is very important when
talking about numerical software, as numerical algorithms involve a high degree of
complexity that makes them very difficult to implement in a robust and efficient way.
Modern numerical libraries are designed to provide enough flexibility to allow its use
in many contexts, but other properties like being robust, efficient, interoperable with
other software, or portable to different computing platforms are also desired. A key
characteristic of scientific software is its computational efficiency, as it is usually run
on expensive supercomputers, and in that scenario it is imperative to fully exploit
the hardware. The field of numerical software specialized to run on accelerators has
evolved very much in the last years [73], but it still remains open to new theoretical
research and developments of practical implementations.

Many scientific applications use the spectral analysis to study the behaviour
of the underlying physical phenomena like structural vibration analysis, stability
analysis, signal processing, etc. This type of analysis is associated with eigenvalue
problems, whose matrices are typically large and sparse. It is usually enough solving
a small part of the spectrum, either exterior eigenvalues or interior ones. Other
emerging field of knowledge that can be applied to many scientific applications is
the use of matrix functions. They can be used to solve problems like differential
equations or applied in control theory. Directly applying f(A) is usually avoided in
practice when working with moderately large matrices due to the high computational
and storage cost involved. When working with sparse matrices it is preferred to
perform the computation of the action of the matrix function on a vector, f(A)b.

The computational requirements of the scientific problems grow constantly to-
gether with the evolution of the supercomputers. As a consequence of this, numerical
problems arise affecting to the convergence of the methods. This makes it neces-
sary to use more sophisticated strategies [12]. Innovative research proposals try to
improve the convergence of the methods and reduce the cost per iteration. They
also present new iterative methods or design alternatives that take advantage of the
capabilities of the new hardware. Implementing parallel software in a robust and
efficient way to solve large-scale eigenvalue problems in supercomputers becomes a
challenging task. All these factors make desirable to provide the users with a soft-
ware library for solving numerical problems, and with enough flexibility to fit in a
wide range of applications. This is the objective of SLEPc.

SLEPc [60], is a software library for solving large-scale eigenvalue problems and
related problems in parallel. It can be used to solve the standard and the general-
ized linear eigenvalue problem, and nonlinear problems as well, with symmetric and
nonsymmetric matrices, in real or complex arithmetic. Other related problems like
the singular value decomposition, or more recently the computation of functions of
matrices are also available in it. SLEPc has been developed using modern software
engineering techniques to ensure the efficiency and scalability of the software. Other
characteristics are its flexibility to easily adapt to new types of problems, its robust-
ness and portability. It is built on top of PETSc, a parallel library for the solution

2

1.1. Background and motivation

of scientific applications modeled by partial differential equations.
Nowadays SLEPc has become one of the reference libraries in its area of knowl-

edge in the scientific community, and its maturity ensures its suitability for many
scientific applications. The use of the library by the scientific community has pro-
gressed from being manually installed by the interested researchers to be integrated
in the supercomputers software portfolio and in general purpose operating systems
like Debian, allowing a wider usage. Nevertheless, due to the constant improve-
ments in the software, there are many researchers that still manually deploy in their
platforms the development branch of the library to have access to new solvers and
features added to SLEPc.

Many applications have obtained speedups of two or even three orders of mag-
nitude when moving the computation to GPUs, with respect to previous versions
that only used CPU. However, this remarkable results are not so frequent and only
achievable when the computations involve dense matrix-matrix and similar oper-
ations. Algorithms involving computations with sparse matrices are expected to
obtain less impressive results with speedups between 10-20x [7]. However, the use of
GPUs is still very appealing in the sparse field, not only for the reduction in compu-
tation time, but also for the smaller power consumption offered by the accelerators
and their better performance-cost share. Moreover, we can expect a faster evolu-
tion in the development of accelerators than in the development of general purpose
CPUs.

At the beginning of this thesis, GPU support in SLEPc was more or less limited,
and covered only a small percentage of the functionality. Some preliminary results in
the context of specific applications had already been obtained [111], that allowed us
to be optimistic about future developments. The use of GPU accelerators in SLEPc
follows the approach plotted by its companion library PETSc. The design of GPU
support in PETSc started as described in [96], based on performing some operations
on the GPU and minimizing the data transfers between GPU and CPU.

We began the thesis work being aware of the fact that SLEPc must adopt the
emerging technologies to keep being a reference in the field of high-performance
eigenvalue computations. The possible lines of action are related with the three
main operations in the sparse solvers used by SLEPc:

Expansion of the subspace. The most simple case entails the product of a sparse ma-
trix times a vector, that can be done in a relatively efficient way on GPU [16].
In other cases, this step implies solving a sparse linear system of equations.

Orthogonalization of the basis vectors. This is the part of the computation that can
represent a high percentage of the total computing time, and is more suitable
for its execution on GPU, as it involves working with data stored contiguously,
taking advantage of the spatial locality.

Solution of the projected problem. This step implies dense computations. They
usually are of small size and can be performed fast on CPU, but sometimes
they reach sizes of several thousands, thing that requires their parallelization,
being an ideal case for using GPUs.

3

Chapter 1. Introduction

1.2 Objectives

In accordance with the discussed context, in this thesis we tackle several paths to try
to improve the performance of SLEPc computations by means of graphics processing
units. The main goal of the dissertation is then the acceleration of SLEPc solvers
via parallel implementations of linear algebra algorithms on GPUs.

One of the targets of the thesis, concerning the expansion of the subspace is to
make progress in the efficient solution of linear systems of equations on GPU, with
both direct methods [67,78,145] and preconditioned iterative methods [89,112,113].
The main obstacle to reach good efficiency when using direct methods on GPU is the
triangular solve [67]. This issue also appears in the case of incomplete factorization
preconditioners [113].

In order to achieve good performance in the orthogonalization, it is essential to
redefine the methods to work in a block oriented fashion, that is, to operate with
collections of vectors instead of treating them individually. It is not a straightforward
modification and requires a redesign of a significant part of SLEPc.

Last, solving the projected problem on GPU allows for interesting contributions,
as solving dense eigenvalue problems on GPU is still an emergent topic [52, 56, 138,
144] and there is plenty of room to propose innovative solutions.

On any algorithm or development proposed it is important to consider that it
is necessary to minimize the data transfers between GPU and CPU, as it is a well-
known bottleneck. It is also important to provide multi-GPU support, that is, being
able to use all the available GPUs on a system, wherever they are, in multiple nodes
or in a single node [144].

1.3 Structure of the document

The order in which the work is presented along the chapters of this thesis follows the
natural timeline of its creation. Throughout these years, both the supercomputers
used in the development and testing performed, and the software versions used
have experienced major changes. Some of the supercomputers used have increased
their computing capacity, and others have been decommissioned to be replaced for
newer ones. In the same way, several characteristics of the software used have been
superseded by better ones in the latest versions. Due to this, it would not be fair to
establish a comparison with results from different experiments.

In Chapter 2 a small historical review of the evolution of the parallel comput-
ing is made. In it we talk about the progress in the manufacturing process and
in the hardware architectures. We show the main parallel architectures and their
programming models, and present GPUs as hardware accelerators.

In Chapter 3 we introduce the eigenvalue problem with which we will work and we
make a short overview of the different methods for solving it. We present SLEPc and
PETSc libraries, showing design and implementation details that are important for
the use of GPUs. We also comment about the most robust algorithms implemented
in SLEPc for solving eigenproblems, and how using GPUs on them can reduce the

4

1.3. Structure of the document

execution time. In this chapter we show the first results of the use of GPUs as
accelerators with a scientific application.

In Chapter 4 we focus on solving eigenvalues of matrices with a block-tridiagonal
structure. We optimize the computation of eigenvalues in the exterior of the spec-
trum with the development of a kernel that exploits the storage structure used. For
computing interior eigenvalues we develop several implementations of algorithms
that solve linear systems of equations with that structure, and show the gain pro-
vided by the GPUs.

In Chapter 5 we work with methods for computing functions of matrices that, as
we have already said, is an emerging field with a great potential for improvement.
We study and implement dense methods for computing matrix functions, and sparse
methods where the action of a matrix function on a vector is computed. We also
provide a comparison of the executions on CPU and on GPU.

Finally, in Chapter 6 we summarize the main contributions of this thesis, report
about the publications generated and the transfer activities performed. Lastly, we
show some possible research lines to follow.

5

Chapter 2

High-performance computing

Festina lente

Scientific research and engineering provide challenging problems from the point of
view of computing. Climate, economic or molecular modeling, weather forecasting
or physical simulations, such as vehicle aerodynamics or development of earthquake-
resistant structures imply doing complex computations with very large datasets,
and in some cases, including limited response times. Such demands make those
problems not addressable with general-purpose computers, and are the root of the
development of special computers able to cope with them.

Supercomputers are those special highly performing machines, frequently de-
signed with new architectures and developed with the latest technology available,
that is usually developed ad-hoc to improve their capabilities. High-performance
computing (HPC) involves not just a big and fast computer, but all the necessary
elements that make it able to solve very demanding problems in an efficient way. It
brings together several elements such as: computer architecture, electronics, algo-
rithms and programming. The software used on supercomputers plays a key role in
HPC in order to effectively exploit the computing power.

In this chapter we present the concept of high-performance computing, and show
the evolution that it has gone through until reaching its current status. Several com-
puter architectures coming from different classifications and the two main parallel
programming paradigms are described. We place emphasis on existing accelerators,
providing a detailed view of GPUs, the ones used in this work. Finally, we introduce
and explain some performance factors and indicators like floating-point operations
per second (FLOPs/s), time, speedup, efficiency and scalability, that are used on
the following chapters.

7

Chapter 2. High-performance computing

2.1 Hardware evolution

On the early days of computing, scientific computing was the driving force on the
development of new computing systems, and reciprocally, it benefited from those
new systems. Both of them have changed dramatically during their few years of
life. The constant improvement of the computers has allowed them to increase
their performance in several orders of magnitude, moving from solving simplified
scientific problems to be able to solve more realistic ones. The roadmap to improve
the computing performance has taken multiple parallel lines. We can name the
improvements in the manufacturing process, in the architecture of the computing
systems, in the development of software and specialized libraries, or the origin of
parallel computing as some of them.

The advances on the manufacturing process, such as the transition from vac-
uum tubes to silicon junction transistors allowed the development of complementary
metal-oxide-semiconductors (CMOS) based integrated circuits (microchips), that
lead to large-scale and very-large-scale integrated microprocessors. The miniatur-
ization of the processors made possible to reduce the voltage used and reach working
frequencies in the range of gigahertz. The evolution of the technology has well-known
physical limits, though. The ultimate limit of the downsizing of silicon transistors is
about 0.3 nm, corresponding with the distance of atoms in silicon crystals. Current
microprocessors have transistors manufactured with a process in the range between
14 and 10 nm1, and the expected evolution is to reach soon the downscaling limit
around 5 nm [72]. The propagation speed of electromagnetic waves is also a well-
known limit for signal transmissions.

Parallel computing refers to the ability of the hardware to carry out several
instructions simultaneously. The simultaneity can be the execution of several inde-
pendent processes or several operations within a process, that can come from the
multiplexing of the process into several execution threads or just the parallelization
of different instructions. Different levels of parallelism, such as parallelism at bit,
instruction, thread, task or data level were generated with the improvements in the
architectures. These levels try to increase the rate at which the elements on each
level (bits, instructions, etc.) are processed.

At bit level, the increase of the word size allowed the processors to operate with
more information per instruction, and increased the amount of addressable memory.
Although larger word sizes have been used, standard modern processors use word
sizes of 32 or 64 bits.

The execution (or functional) unit is a component of the processors that performs
the operations instructed by the program. On a simple processor architecture design,
such as a scalar processor, one instruction is executed on each clock cycle. The
development of pipelined and superscalar processors allowed to increase this ratio.
An instruction pipeline consists in the partition of the instructions into a series of
sequential steps that are performed by multiple execution parts coming from the
segmentation of the execution unit, in a similar way as the steps carried out on a

1Intel launched its first 14 nm processor in 2014, and IBM in 2017, NVIDIA launched its first 12
nm processor in 2017 and AMD in 2018, and Samsung launched its first 10 nm processor in 2017.

8

2.1. Hardware evolution

production line. Each one of these execution parts is responsible of a particular task,
like fetching, decoding or executing the instruction. Once fully fed, the pipeline gives
a throughput of as many instructions per clock cycle as partitions originated from
the segmentation of the execution unit. Superscalar processors enable to complete
several instructions on a clock cycle by increasing the number of available execution
units. Nowadays, most of the computers combine these two techniques of instruction-
level parallelism on pipelined superscalar processors.

The programming of a single-processor computer is serial, but different processes
can be computed concurrently by time sharing the CPU. More performance on such
a machine can be obtained by increasing the processor’s working frequency. But the
dynamic power consumed by a switching circuit

P = CV 2f, (2.1)

increases linearly with the frequency, where C is capacitance (approximately pro-
portional to the chip area), V is voltage, and f is frequency. Also, as a consequence
of reaching the nanometre scaling, the leaked current of the transistors become an
important issue, reaching to signify 50 % of the total power consumption [100]. Dis-
sipating all that heat from the chip, to keep it under a safe operating temperature
range, is a major constraint in the development of integrated circuits. Once reached
the gigahertz range, the leaked currents and the heat, made the CPU manufacturers
turn their developments into a different approach.

The increase of the processors working frequency soon revealed an important
constraint of the computers performance. While the processing capabilities were
growing, the time to fetch data from memory did not improve equally, and became
much greater than the time to process the same data. This issue, known as the
memory wall, limits the performance, as the processor remains idle while waiting
for the data. The problem can be addressed with the use of intermediate memories
between the CPU and the main memory, and faster than this one. Cache memories
store data of recent operations and instructions to accelerate subsequent accesses
to them. Obviously, the data has to be reused to benefit from the faster access.
Normally, several levels of cache memories with different speeds are used. The level
1 is the closest one to the processor, and is the fastest and smallest one in storage
capacity. Each superior levels grow in size and become slower as they move away
from the CPU.

Another old technique to reduce the memory wall is the use of hardware mul-
tithreading. Superscalar processors can implement simultaneous multithreading
(SMT), in which a pipeline stage fetches instructions from several processes (or
threads) in the same cycle, and alternates their processing. This thread-level paral-
lelism hides the memory latency and improves the processor utilization by reducing
the idle waits. The execution of a specific instruction can load into the cache some
data also needed from other concurrent threads, speeding up their execution, but at
the same time may produce or increase cache trashing.

Task-level parallelism can also be achieved by adding redundant computing ele-
ments, in a similar way as it is done in superscalar processors. The addition of several

9

Chapter 2. High-performance computing

processors to the same machine was implemented on early computers making pos-
sible computing different processes in parallel. But a larger step was the assembly
of several computational cores into a single processor, entering in the multi core
era [133].

In 2001, IBM anticipated to the frequency ceiling faced three years later by
launching the first (non-embedded) general-purpose multicore processor, the POWER4.
The cores of such a multicore processor are full independent processing devices, al-
lowing to process several instructions in parallel on the available cores.

The path to higher performance by means of the explicit parallelism of multi-
core processors, implies that on the same integration scale (and same voltage used),
the frequency and power consumption per core must be reduced, to maintain the
processor under the heat dissipation limits. This frequency reduction implies man-
ufacturing multicore processors with less performance per core than previous single
core processors. By reducing their frequencies, multicore processors also alleviate
a bit the memory wall problem, reducing the latency gap. On the other side, the
memory bandwidth requirements grow with the cores competing for the shared re-
sources, in a situation that aggravates with the use of hardware multithreading to
boost core utilization.

The coexistence of several cores in the same die implies the use of inter-core
communication mechanisms, that even with a small number of cores becomes a
serious issue, due to the huge impact on the performance that it can signify. The
simple solution of using a common bus facilitates the cache coherency, but increases
the latency, reduces the bandwidth, and limits the scalability. The need for an
efficient inter-core communication mechanism made the design paradigm of network
on chip (NoC) [103] emerge. It is a communication solution based on modular
packet-switched mechanisms, and implies the use of network topologies, switching
techniques, and routing algorithms as in standard computer networks, but on a chip
level. Mesh topology is often used on NoC because it provides a simple routing and
low network overhead, making it very scalable.

The multiple cores of a processor do not necessarily share the same design and/or
functionality. Heterogeneous architectures like Cell Broadband Engine [54] or big.-
LITTLE appeared, that include different types of cores in the same processor. The
former integrates a single general-purpose computational core with several coproces-
sors to accelerate multimedia computation, the latter combines cores with reduced
performance and energy requirements with others having the opposite characteris-
tics. Other possible features of this processors include the use of different working
frequencies for groups of cores, or the implementation of different instruction sets.

Most of the processors manufactured nowadays belong to the multicore family,
and they are used in pairs, or more, to form the computational core of a single HPC
machine.

A different level of parallelism is the data-level parallelism, that consists in dis-
tributing the data among several processors, so they can run in parallel the same
operations over the different subsets of the data in a synchronous way. This tech-
nique of parallelism is widely exploited by MPI and CUDA programming as we will
see later.

10

2.2. Parallel architectures

Supercomputers incorporate and combine most of these parallelization techniques
and exploit them to the limit. Current supercomputers [131] are formed by thou-
sands of nodes with several processors and accelerator devices with multiple compu-
tational cores. The interconnection network of the supercomputers is as important
as the individual computing power of the nodes. The type of network used implies
a specific bandwidth and latency that together with the topology and the routing
employed define the scalability limits of the supercomputer.

Current trends in computers development try to replace silicon transistors with
transistors based on different materials, or enhance the production of computers
based on quantum computing.

2.2 Parallel architectures

As we have seen, the increase of the raw computing performance comes form the
parallelization techniques used. Those arisen parallel computers can be classified
within different criteria such as the number and type of the processors used, the
mechanisms used by the processors to communicate with each other, or the existence
of a central control mechanism. Here we present different parallel architectures based
on the last two classifications.

2.2.1 Central control mechanism

One of the most recognized and used computer architectures classifications is Flynn’s
taxonomy [44], that establishes four categories of computers based on the existence
of a central control mechanism that orchestrates the (possibly multiple) instructions
and data streams. Parallel computers are characterized by the classes with multiple
data streams, and current computers combine both classes.

Single instruction stream on multiple data stream (SIMD)

On this type of computers, a single control unit instructs multiple execution units
to perform the same instruction in parallel over different data streams, provid-
ing data-level parallelism. It encompasses vector processors as the ones used in
Cray machines, and the vectorial instruction sets of current processors such as SSE
(Streaming SIMD Extensions), 3DNow! or Altivec.

Multiple instruction stream on multiple data stream (MIMD)

This class of computers have one control unit per execution unit, and it allows
them to run different instructions on different data streams, in parallel. The pairs
instructions-data streams are totally independent between them, but can be coordi-
nated. Multicore computers, that provide task-level parallelism, are an example of
this class.

11

Chapter 2. High-performance computing

2.2.2 Communication mechanism

According to the communication mechanism used between the processors, the com-
puters can be classified in shared-memory and message-passing architectures.

Shared memory

This architecture is characterized by having a common memory address space that is
accessed by all the processors through an interconnection network. Although it is the
most common implementation, the shared-memory concept does not imply sharing a
common physical memory, it can be a logically shared-memory composed by multiple
physical memories distributed among the processors. On this architecture, different
processors communicate with each other by writing and reading information on the
shared memory. This shared access makes it necessary to use control mechanisms
to avoid race conditions, in which several processors operate on the same memory
address at the same time, and at least one of them write to it. Also, due to the
use of local cache memories by the processors to improve the performance, this
architecture usually implements mechanisms to ensure the coherence between them.
As several processes can have the same variable stored in their cache memory, if
a processor modifies the value of the variable on its local cache, the change must
be propagated to the other cache memories, or invalidated on them. Although all
the processors have access to all the memory, the access time for a specific address
is not necessarily the same for all the processors, as it can depend on the physical
distribution of the processors and the memory banks. Shared memory computers
can be classified based on the existence (or absence) of homogeneity on the access
time.

Uniform memory access (UMA) On this class of computers, the latency time
and bandwidth in the access to any address of the memory by any of the processors
is the same.

Non uniform memory access (NUMA) On this other class, the time to access
to different addresses by one processor varies depending on physical factors. In the
same way, different processors can obtain different latency time and bandwidth when
accessing the same memory address.

Message passing

On this architecture, each processor has exclusive access to a local address space,
and the communication with other processors is done by explicitly sending messages
through an interconnection network. The messages can be used to transmit data
and to synchronize different processors. In the same way as in shared-memory, here
the non-shared-memory concept is also logical, although usually implies a physical
distribution of the memory. The communication between the processors is a key fac-
tor on this architecture, and its management is as relevant as the control mechanism

12

2.3. Programming models and parallel software

necessary in shared-memory architectures. Given its distributed nature, message-
passing computers can be very scalable, depending on the type of interconnection
network used, and allows implementations with very large number of processors.
Computers of this class usually have also a local shared-memory architecture.

2.3 Programming models and parallel software

The hardware improvements are fully bound to parallel programming and an equal
software evolution to maximize the performance capabilities offered. The final goal
of parallel programming is the execution of the software in less time than a serial
version. The reduction in time is achieved by fully employing all the computational
resources available. If a serial program is executed on a parallel computer, the
transparent parallelism at instruction-level or thread-level are the maximum levels
of parallelism that it can benefit from, as higher levels like task-level or data-level
parallelism imply modifications in the program. An efficient parallelization of a
program is a difficult task and usually requires a good knowledge of the architecture
where it is going to be executed. Parallel processes replicate the executed program
and are separately run on different computing elements.

2.3.1 Threads and OpenMP

Almost all operating systems allow programming with a shared-memory model by
providing interprocess communication (IPC) mechanisms. They enable that different
processes communicate with each other through the memory. Other mechanism
consists in creating multiple execution threads within a single process that can run
concurrently, or in parallel if the hardware allows it. There exist multiple application
programming interfaces (API) that allow the users to employ this multithreading
model.

The portable operating system interface (POSIX) standard [70] defines the spec-
ification of a threading API, pthreads (POSIX threads), that has been implemented
in many operating systems, Unix and not Unix. Pthreads defines a low-level set of
C language types and functions that allow the user to manage a parallel execution.
The programmer has to decompose the work to be done and must explicitly manage
the creation of the threads, and the access to the memory, by means of condition
variables, mutexes, synchronization barriers and locks. This API is broadly used
by operating systems, but is less frequent in generic applications as it requires a
considerable programming effort.

Another specification for multithreading programming is OpenMP [28], which
defines a set of compiler directives, an API, and environment variables to manage a
high-level parallelization. OpenMP includes a runtime environment that provides an
automatic management of the threads, releasing the programmer from that task. It
is a multi-platform solution available for C, C++ and Fortran languages and its main
use is by compiler directives (#pragma), that allow the programmer to incrementally
specify parallel regions within the code. This enables the programmer to focus

13

Chapter 2. High-performance computing

on parallelizing first the most time-consuming parts of the algorithm. Another
interesting feature is that it can use accelerators like digital signal processors (DSP),
or graphics processing units (GPU), by defining regions of code in which the data
and/or the computation is moved to be processed on them. All these features have
made OpenMP the shared-memory de facto standard.

2.3.2 Message Passing Interface

With the use of multi-processor machines, multiple message-passing systems pro-
liferated among the supercomputer manufacturers and the academia. Those first
implementations were incompatible between them, and even hardware specific. The
existence of such a great variety of systems made the development of parallel soft-
ware very costly. The developers had to use the solutions offered by the vendors,
and the migration to a different machine involved a complete rework of the software.
This situation made it necessary to develop a unified standard system for parallel
computing on distributed memory systems.

Message Passing Interface (MPI) [98] is that standard library interface specifi-
cation focused on the message-passing parallel programming model. It born as the
result of a standardization effort that selected the most prominent characteristics of
the different message-passing systems existing at the moment, as none of them was
the ideal solution, but all had their own strengths.

The specification includes C and Fortran bindings, and its portability, efficiency
and flexibility are some of its strong points. It allows MIMD programs, although it
is common to use it with a single program multiple data (SPMD) approach. MPI
provides derived datatypes that allow forming new datatypes from previously de-
fined ones; process groups, that establish an order among processes by using identi-
fiers; communication contexts, that map a group of processes with a communication
namespace; point-to-point communications, in which only one sender and one re-
ceiver take part; collective operations, in which all the processes of a communication
context participate; process creation and management operations, one sided commu-
nications and parallel file input/output, among others. MPI is the de facto standard
for distributed memory environments, for its portability and scalability.

Datatypes

MPI defines several basic datatypes with correspondence of C and Fortran datatypes,
like MPI CHAR (char), MPI INT (signed int) and MPI FLOAT (float) for C, and
MPI CHARACTER, (CHARACTER(1)) MPI INTEGER (INTEGER) and MPI REAL (REAL) for
Fortran. Other basic datatypes like MPI BYTE and MPI PACKED, that have no cor-
respondence with the language used, are also included. MPI BYTE is included as an
uninterpreted type that has the same meaning on all machines (eight bits), as op-
posed to a character, that may have different representations on different machines.

MPI expects the data transmitted on a message to be formed by consecutive
elements of a single type. This characteristic would result in a limitation when
having to transmit different types of data, or non-consecutive elements of the same

14

2.3. Programming models and parallel software

type. The use of the type MPI PACKED, to explicitly pack multiple sequences of
consecutive elements of different types and lengths into a single buffer, to be sent in
a single transmission, was a first attempt of avoiding the issue. This approach was
followed to maintain compatibility with previous libraries.

A drawback of the MPI PACKED strategy, is that it requires additional memory-to-
memory copies on the sender (to the packed buffer) and on the receiver side (from
the packed buffer). Derived datatypes are other datatypes defined in MPI, that
allow the programmer to avoid the explicit packing and unpacking of MPI PACKED,
and elude the memory copies.

Derived datatypes allow the programmer to transmit, in a single transfer, ob-
jects composed by variables of different types and sizes, and not necessarily stored
contiguously in memory. They are formed from basic datatypes, and once defined,
the new types can also be recursively used to form new derived types.

Groups and communicators

All the processes in MPI are uniquely identified by their rank, an integer index
that starts from zero and increases without jumps. This rank is unique within a
group, that represents an ordered set of processes. There can be as many groups as
desired in a single program execution, as a group can be composed of any number of
processes, and can include the same set used in other group. Groups are mapped to
communicator contexts and identify the processes involved in their communications.

Communicator contexts are the tool used by MPI that allow to partition the
communication realm into subdomains. As with groups, there is no limit to its
number. Within a specific context, the processes can communicate with each other
without collision with communications of other contexts, even if the sets of processes
overlap. After the program initialization, a process can establish communication
with two predefined communicators, MPI COMM WORLD, that includes all the existing
processes, and MPI COMM SELF, including only itself.

Each message sent must explicitly name the context to where it belongs, and set
the source and destination processes by using their ranks within the corresponding
group. The specification includes operations to consult the rank of a process in a
particular context, and the size of the group associated with that context.

Point to point communications

The simplest form of communication involves only two processes, one of them acting
as a sender and the other as receiver of the message. For the communication to work,
both processes must belong to the same communicator, and they must explicitly
indicate it on the call. The programmer has to consult and use the ranks of the
processes in the communicator to establish the direction of the message. Although
it is not necessary2, it is common to use a condition clause to make the process
with the desired rank to act as source of the message, invoke the appropriate send
call. In the same way, the process with the rank expected to be the destination,

2There exist single calls that fusion send and receive operations like MPI Sendrecv.

15

Chapter 2. High-performance computing

has to invoke the receive call. The calls have also to indicate a tag that allows to
differentiate between multiple messages with the same origin and destination pair
on the same communicator. The coordination in the calls is essential, if one of the
processes misses the call, the message will not be transmitted.

Those four elements, (source, destination, tag and communicator), are the nec-
essary data that allows the system to transmit the message. But besides them,
the calls must also agree on the amount of data to be transmitted. The processes
have to indicate the datatype, by using any valid MPI datatype, including derived
types, and the amount of elements of that datatype to be transmitted. As far as
the amount of data specified on the destination process is not greater than on the
origin, they can use different counts. If the destination buffer is bigger than the
data transmitted, the remaining memory positions remain unmodified, but if it is
smaller, an overflow occurs. By using derived datatypes, it is possible to store the
data with a different shape (or object abstraction) in the destination process than
in the origin, as the underneath basic datatypes must match on both calls, but the
layout in memory can vary.

Point to point communications can be done through blocking or non-blocking
calls. Blocking sends are those that do not return until the buffer used in the call
is not necessary any more, and can be modified. Blocking receives do not return
until the message has been fully stored in the destination buffer. These blocking calls
limit the performance of the computation, as it is stopped while the communication is
being done. On the contrary, non-blocking calls allow to overlap the communication
and/or the computation, with the cost of needing to verify the completion of the
non-blocking send and receive before using the buffers.

Collective operations

Collective operations involve and must be invoked from all the processes in a commu-
nicator. Most of the available collective operations are transmission communications,
but there also exist barriers to synchronize the processes, and reduction operations.
Any program can be made out of point-to-point communications exclusively, but
there are cases in which using them makes the code excessively complex or tedious
to program. Collective operations provide a higher level of abstraction, simplify the
code, and allow the libraries to provide several implementations of the operations,
optimized for different network topologies.

Different data flows are possible when using collective operations. If there is a
single origin or destination process of the data within the operation, it is called the
root process. It is the case of One to All operations, like MPI Bcast or MPI Scatter,
which transmit some information from a single root process to the rest of the pro-
cesses in the group, and All to One operations, like MPI Gather or MPI Reduce,
which transmit information from all the processes in the group to the root process.
All to All operations, like MPI Allgather or MPI Allreduce, transmit information
from all the processes in the group to all the processes.

As in the case of point-to-point communications, there exists a blocking and a
non-blocking version of the collective operations.

16

2.3. Programming models and parallel software

2.3.3 Software

The development of applications experienced a evolution of magnitude similar to
the hardware transformation. Several milestones of the software development were
the adoption of open standards, the use of software libraries, the object oriented
programming, the parallel computing, and the free and collaborative software.

Standards, as a formal document that describes and establishes requirements and
procedures to unify criteria, not as the dominant position on the field, have been a
huge step in the evolution of computing systems. Standards allow the interoperabil-
ity of the systems, by setting formats and protocols to be followed for exchanging
information. The descriptive term, open, of open standards, is significant, as the
specification has to be, at least, public to encourage its adoption, and must not limit
its implementations or use, now or in the future. Another desired connotation of
open is to also accept to be modified, to fix or extend its specification, with a con-
sensus between the affected parties whoever they be. In computing, from the point
of view of the software evolution, the desired scenario is to use free software on the
local machine, and open standards to transmit information and communicate with
other software on remote computers.

A library is a compendium of software, written in a specific programming lan-
guage, that specializes in solving a problem or family of problems, and facilitates an
interface to higher level programs to use its routines.

Years ago, if a development team worked on several applications with common
functionalities, they could share that common portion of the code between the pro-
grams, just by copying the appropriate lines. If changes were needed to be made on
that part of the code, they had to be replicated on the multiple applications using
it, on every single change, to maintain the coherence. The most they could do to
alleviate the issue is to isolate the common code in a file, that could be shared by
the applications. If a different team wanted to solve the same problem, and unless
the original team had published the code of its implementation, it had to face the
complex, time-consuming, and error prone task of implementing that functionality
by writing a similar code from scratch. Different implementations usually have dif-
ferent interfaces for the same functionality. That situation involved a considerably
amount of redundant work in the software development area. Additionally, the pro-
gramming errors in the algorithm and in the implementation, depended completely
on the expertise of each development team. If the functionality needed was not in
the field of knowledge of the developers, the quality of the final product could be
affected.

The employment of libraries provides the opposite situation. The code is devel-
oped once and reused in countless projects. Libraries offer an abstraction layer to the
applications, that simplifies the code when a specific functionality that they provide
is needed. A multi-line ad-hoc implementation can be replaced with a single call to
the library, improving the readability and maintainability of the application. The
development of a library is usually done by experts in the field that can optimize
the algorithms, and any application software using it automatically benefits from
its improvements in performance or accuracy. Even novel applications can provide

17

Chapter 2. High-performance computing

good functionality by relying on the well-known behaviour of mature libraries.
A single standard can have multiple implementations in the form of competing

libraries that share the same interface. The programmers benefit from that circum-
stance, by being able to migrate between different implementations without the need
of modifying the application code.

The common procedure is to develop the software in a modular fashion, by using
libraries specialized in a target field. A key element in scientific computation is the
numerical software, that relies widely on libraries providing computational kernels
used to solve higher level operations.

As in this thesis we focus on solving linear algebra problems, we turn our at-
tention to software libraries that implement related algorithms. According to the
density of the data (vectors or matrices) involved, linear algebra problems can be
classified in dense and sparse. For dense problems, we must highlight two libraries
that have settled the foundation for the subsequent linear algebra libraries devel-
oped, as they are not just plain libraries, but also act as specifications, and are the
de facto standard of a common interface to perform linear algebra operations. These
libraries are BLAS and LAPACK.

Basic linear algebra subprograms (BLAS) [87] are a set of routines developed
originally in Fortran. Their development started by identifying low-level recurrent
mathematical operations, called kernels, that appear on the most common algo-
rithms of numerical software, and consume most of the execution time. Those oper-
ations were provided with an interface and used as basic building blocks to perform
more complex operations.

For the same routine, BLAS defines the interface for real and complex arithmetic,
both in single and double precision. Routines are organized in three levels, that
gradually have extended the library, associated by the type of data they work with.

Level 1: composed of commonly used vector operations on stridden arrays. Involve
O (n) floating-point operations and O (n) data elements accessed, being n the
length of the vectors. The performance obtained with operations of this level
is limited by the poor ratio of floating-point operations to data movement. A
typical operation of this level is the addition of two vectors, y ← αx+ y.

Level 2: composed of matrix-vector operations. Involve O
(
n2
)

floating-point oper-

ations and O
(
n2
)

data elements accessed, being n the dimension of the matrix.
This set of operations try to exploit the memory hierarchy of the computers by
reusing data stored in cache memory, and this way avoiding duplicated data
movements from the main memory. But in the same manner as the level 1 op-
erations, the performance of this level is memory bound, as the floating-point
operations to data movement ratio is the same. A typical operation of this
level is the matrix-vector product, y ← αAx+ βy.

Level 3: composed of block oriented matrix-matrix operations. This level encour-
ages block oriented algorithms to fully reuse the data of the blocks stored
in cache memory. This is the level with better performance, as the routines
involve O

(
n3
)

floating-point operations and O
(
n2
)

data elements accessed,

18

2.3. Programming models and parallel software

being n the dimension of the matrices. This makes the performance to be
defined by the CPU instead of by the memory. A typical operation of this
level is the matrix-matrix product, C ← αAB + βC.

Linear algebra package (LAPACK) [6] is an efficient and portable library for
solving the most common linear algebra problems encountered in numeric compu-
tations. It originated from two preexisting and widely used linear algebra libraries,
LINPACK [37], oriented to the resolution of linear systems of equations and least
square problems, and EISPACK [123], focused on solving eigenvalue problems. The
algorithms used on these two libraries were not developed taking into account that
the cost of accessing the memory can limit the performance of the software, so they
are not data-reuse oriented. LAPACK is a collaborative project that employs more
modern design methodologies, simplified the algorithms to be more modular, and
obtains a better performance with code structured to reuse data in faster mem-
ories, and reduce the movement of data from/to main memory. It includes and
expands the functionality of LINPACK and EISPACK by solving systems of linear
equations, least square solutions to linear systems of equations, eigenproblems and
singular value problems. It also performs the related matrix factorizations like LU,
Cholesky, QR, singular value decompositions, and Schur decompositions.

LAPACK routines are divided in three classes:

Computational routines: perform specific computational tasks like matrix factor-
izations.

Driver routines: based on the computational routines, solve a full problem like a
linear system, eigenvalue problem, etc.

Auxiliary routines: perform auxiliary tasks for the computational routines. Oper-
ations similar to BLAS but not present on it, or extensions of BLAS routines.

LAPACK routines are built using BLAS, so they benefit from its portability, and
the performance of LAPACK is linked to the implementation of BLAS employed.
Level 3 BLAS is used when possible. The usage of LAPACK is similar to the usage
of BLAS, and in the same way as BLAS does, LAPACK also defines interfaces for
real and complex arithmetic, both in single and double precision.

The reference implementations of BLAS and LAPACK developed in Fortran are
serial. Other numerical libraries developed to run in parallel are ScaLAPACK (Scal-
able Linear Algebra PACKage) [19] that provides high-performance linear algebra
routines for parallel distributed memory architectures; PLASMA (Parallel Linear
Algebra for Scalable Multicore Architectures) [23] focused on multicore architec-
tures; MKL (Math Kernel Library) [71] a proprietary library optimized for Intel
processors; or OpenBLAS [142] an optimized free software library that implements
BLAS with a performance comparable to the Intel MKL.

BLAS considers only dense computations on which all the elements of the corre-
sponding operators are involved. In such case, both vectors and matrices are stored
in memory with a dense format. However, as many times scientific problems entail
working with very large and sparse matrices, using a dense storage format incurs in

19

Chapter 2. High-performance computing

a excessive storage and computational overhead. The structure of the matrix be-
comes relevant for sparse matrices, as the performance obtained is directly related
with the performance of the matrix-vector product, that in turn is determined by
the matrix structure and storage scheme used. Structured matrices like diagonal,
band, triangular or even block-tridiagonal allow the use of specific representations
that save both memory and computational effort. Commonly, the particular type of
problem to be solved indirectly yields the storage scheme to be used.

Eventually, the use of sparse storage formats concerned with unstructured sparse
matrices was addressed by the BLAS Technical Forum. It published an interface to
operate with dense-sparse operands3. Sparse storage schemes represent only the
nonzero4 elements of the matrix and store them contiguously in memory, so the
memory required is significantly reduced with respect to the dimension of the ma-
trix, the access to the elements is fast, and zero elements are not involved in the
computation. Each storage scheme intends to optimize the most frequent operations
like the matrix-vector product, the factorization of the matrix or the extraction of
the diagonal elements. We name here some of the sparse matrix storage schemes.

Compressed Sparse Row format (CSR). It is the most commonly used storage
scheme. It stores only the nonzero values without caring about the sparse
pattern of the matrix. It uses three arrays, one to store the values in row-
major order, a second array stores the column indexes, and a third one stores
pointers to the begin of the rows. Row indexes are not stored explicitly.

Compressed Sparse Column format (CSC). It is also a very common scheme, anal-
ogous to CSR, but storing the values in column-major order.

Coordinate format (COO). It stores each element of the matrix using its Cartesian
coordinates. It provides a very efficient sequential access, and an inefficient
access to a specific element (search).

Block Sparse Row format (BSR). It is a variant of the CSR format for matrices
with square dense blocks in a regular pattern. Instead of storing elements like
CSR, it stores the dense blocks.

Modified Compressed Sparse Row format (MSR). It is a variant of the CSR format
that stores the elements of the diagonal, that can be referenced with a single
coordinate, in a separate array.

Diagonal format (DIA). It is a format specific for storing banded matrices. It stores
the elements of each diagonal, in a bidimensional array of size d× n, where d
is the number of diagonals containing at least one nonzero element, and n is
the number of rows of the matrix. Its arrangement leaves unused memory on
all but one of the diagonals.

3Sparse-sparse operations are not considered in the sparse interface.
4Some zero elements may be stored, depending on the storage scheme used.

20

2.4. Hardware accelerators

Ellpack-Itpack generalized diagonal format (ELL). It stores the matrix in two bidi-
mensional arrays, one to store the values and other to store the column indexes.
The size of these arrays is m×k, where m is the number of rows of the matrix
and k is the maximum number of nonzero elements aggregated in a row. This
number k determines the storage overhead. This format is most efficient with
a homogeneous number of nonzero elements per row.

For parallel software on distributed memory architectures, there are multiple
communication libraries implementing MPI, two of them are OpenMPI [49] and
MPICH. Both of them are open-source libraries, high-performance computing ori-
ented, widely used on supercomputers. OpenMPI is an initiative that blends re-
sources from several previous MPI implementations like FT-MPI, LA-MPI, LAM/-
MPI and PACX-MPI aiming to reduce the fragmentation of the implementations
and at the same time, provide a high-quality library by selecting the best of each
contributor. The MPICH implementation was originally developed to provide feed-
back to the MPI Forum during the MPI standardization. Today it is the reference
implementation for the latest MPI standards and it is common that manufacturers
fork the project to develop their own MPI implementation, as it is the first library
that implements new features.

2.4 Hardware accelerators

Hardware accelerators are specific pieces of hardware designed to perform certain
tasks very efficiently and allow to offload that work from the CPU. The first elements
used to accelerate the performance of the computers were processors separated from
the CPU, referred to as coprocessors.

Time-consuming operations like input/output penalize the performance due to
the time the CPU is waiting idle for the data to be read or written. If those opera-
tions are delegated to a specialized device managed by the CPU, who instructs this
coprocessor to carry out the desired operation, the CPU can carry on performing
other computations. Floating-point operations are another example that on ancient
computers could be done much faster in a mathematical coprocessor than in the
CPU. Other accelerators specialize in network transmissions like the TCP offload
engines (TOE), or in digital signal processing. A variety of technologies have been
used in a specialized way to accelerate different parts of the computation. Along with
the evolution of the hardware, it is not uncommon that the coprocessor functionali-
ties, like the one provided by the floating-point units or the graphics processors, end
up integrated in the CPU, completing the wheel of reincarnation [99].

Coprocessors can be simple processors operated by means of specific instructions
belonging to the CPU instruction set, or fully independent processors. Here we
present some of the multiple technologies that have been used to accelerate the
computation.

21

Chapter 2. High-performance computing

2.4.1 Integrated circuits

Application-specific integrated circuits (ASIC) are customized circuits to perform
particular tasks very fast, instead of being a general-purpose solution. An ASIC can
implement the full logic of a microprocessor, including ROM and RAM memories or
other components like network modules. Such integration is referred to as system
on a chip (SoC).

Programmable logic devices like field-programmable gate arrays (FPGA) are
integrated circuits composed by a grid of logic gates, designed to be programmed
by the user, instead of by the manufacturer. These devices provide the flexibility of
being reprogrammable even at run time. One of their traditional applications, given
their multipurpose character, is the rapid ASIC development, acting as low-cost
prototypes.

FPGAs are less dense, more energy demanding and do not reach the performance
of ASICs, but its development has reached a level of maturity with capabilities com-
petitive with them. They have been widely used as digital signal processors (DSP)
but can also implement more complex logics, like SoC. FPGA cards are included
in servers by manufacturers, and are intensively used in HPC [108] as fine grained
accelerators to speedup some (parts of) workflows for their flexibility and low-cost,
and for the good performance per watt ratio that they provide, giving them an ad-
vantage respect to CPUs or other devices like graphics processing units. Another
characteristic that emphasizes their versatility is that developers can program them
with hardware description languages like VHDL or by means of traditional software
languages like C, C++, Python or OpenCL.

2.4.2 Manycore processors

The natural trend in multicore chip design is to increase the number of integrated
cores in a single die, but an additional level of scalability in the integration process is
obtained by assembling several cores in tiles and several tiles on the same chip. Two
different strategies are followed for homogeneous multicore processors that allow us
to make a distinction based on the type of cores that they use.

A first family of manycore processors integrate a large number of simple low-
performance cores running at not very high frequencies, with simple architectures,
and with their own memories. This kind of processors are used as accelerators, in
the form of an external card connected to standard expansion buses like PCIe, or
directly connected to a high-performance interconnection fabric that alleviates the
bottleneck of using the PCIe bus when copying data to and from the memory of the
devices. A typical example of this family of manycore processors are GPUs, that
originated this category.

A second family are those using complex high-performance cores. This fact allows
to maintain a good speed on sequential programs and at the same time provides much
performance when parallelizing the code. Standalone processors from IBM, Intel,
AMD or ARM-based processors employed as CPUs, are expected to eventually fit
in this category. A good example of scalable manycore is the tile-based architecture

22

2.4. Hardware accelerators

family of processors from Tilera5 [18] (successor of the Raw microprocessor [130]),
that includes one ARM-based processor per tile, and the tiles, arranged in a grid,
are interconnected with an on-chip mesh network.

The Xeon Phi processor from Intel is a similar product that, due to the changes
experienced, somewhat lies in between both families. It is referred to as many
integrated core (MIC) processor, so as such it has a considerable large number of
cores, and on its first generations it was exclusively a coprocessor attached to the
PCIe bus. The distinguishing feature of Xeon Phi with respect to the first family of
manycore systems is that their cores are full performance multithreaded cores that
share the instruction set architecture (ISA) of common CPUs (x86). The fact of
sharing the ISA makes MICs more general-purpose than GPUs, allowing them to be
programmable as a normal general-purpose processor, without the need to port the
software.

The current generation of Xeon Phi combines two cores on a single tile and
replicates the tiles on the die. Each tile has two vector processing units (VPU) per
core and 1 MB of level 2 cache shared between the two cores. The tiles, that on
previous generations were interconnected through a cache coherent one-dimensional
ring bus, now use a cache coherent, two-dimensional mesh to communicate with
other parts of the chip. As other manycore products, current generations can be
attached to a standard bus or directly to a specific interconnection fabric, but Xeon
Phi can also be used both as a coprocessor and as standalone processor, capable of
booting the operating system, so its capabilities are closer to the second family than
to the first one.

A different family of manycore processors are the heterogeneous systems, that
integrate cores with different ISAs and capabilities. An important example of this
family is the Chinese SW26010 [147], a heterogeneous chip used in the supercom-
puter Sunway TaihuLight [47], number one of the Top500 [131] from June 2016 to
November 2017.

2.4.3 Graphics processing units

The use of graphics devices as accelerators has followed a different path than the
manycore processors evolved from the CPUs. Even before IBM developed its first
multicore processor, graphics devices were already in use as massively parallel devices
due to the parallel nature of graphics algorithms.

The process of generating an image to be presented on a display consists of a
series of sequential stages called the graphics pipeline [69]. The classical four stages of
the pipeline are the vertex processing, the triangle rasterization, the pixel texturing
and lighting, and the final merge of the generated shading with color and depth.
As a pipeline, the output from one stage is treated as the input for the next, and
although the processing is serial, some of these steps, like the vertex and pixel stages,
perform floating-point operations without any type of data dependency, so with the
appropriate hardware, the stage can operate on all the data in parallel.

5Now part of Mellanox.

23

Chapter 2. High-performance computing

With the first graphics devices, the applications interested in displaying an image
had to render it using the CPU to go through the pipeline, and once formed, sent it to
the graphics card. That behaviour changed with the introduction of programmable
graphics devices, that enabled the use of callback functions, known as shaders, that
are executed on the device for each vertex, or pixel, on their respective stages,
unloading the CPU from those operations. These devices usually have to have
different processors specialized on each stage, causing the idle state of the processors
when the computation was taking place on another stage.

Early efforts on the field of general-purpose computation on graphics process-
ing units (GPGPU) had started in 1980 with the Ikonas Raster Display System,
a fully programmable graphics processor [41, 42], that through the use of an ad-
hoc high-level command language, the Ikonas display language, allowed the users to
send programs to the devices to instruct the cards on how to process, in parallel,
the polygons and images to be displayed [134]. But it was not until 2001 when
OpenGL [76] and DirectX included support for programmable shaders, that a major
transformation was experienced in the computer graphics world. Such feature allows
programmers to port data parallel algorithms to the GPU in the form of shaders.
In order to execute generic programs on the GPU, the data is moved to the memory
of the GPU as a 2D texture, and a rectangle fitted to that texture is rasterized to
produce a result that is stored in the framebuffer. The same year, NVIDIA released
the first GPU with programmable pixel and vertex shaders, the GeForce 3, with
which the first matrix-matrix multiplication on a GPU took place [85].

The next and even more important milestone in GPU computing, was the release
of the G80 architecture as part of the NVIDIA GeForce 8 series in 2006. The G80
came with the introduction of the Compute Unified Device Architecture (CUDA),
the first GPU architecture specially designed as a general-purpose computing plat-
form.

The adoption of CUDA made the GeForce 8800 a revolutionary device, being the
first one that replaced separate vertex and pixel specific-purpose processors with a
single unified processor, in which each one of the pipeline stages is executed. The fact
of providing a unified processor avoids the idle cycles of the old dedicated processors
when processing graphics, and enables the possibility of executing generic computing
programs. CUDA-enabled cards replaced the pipeline model by adopting a single
instruction multiple thread (SIMT) execution model, and changed the programmers
job from managing vertex and pixels through the use of callbacks and accessing the
texture memory, to handle threads and accessing a shared, generic, global, byte-
addressable memory, also used for inter-thread communications.

The fact that a common device included in almost any computer, like a graphics
card could be used as a general-purpose processor was accompanied with the support
for C and C++ programming languages, feature that removed barriers for its adoption
and widely increased the number of potential users, turning CUDA into the most
popular GPU-computing platform.

24

2.4. Hardware accelerators

CUDA overview

We focus now on the GPGPU perspective of CUDA, rather than on its graphics
origin or functionality, but without forgetting them, as otherwise one could have the
feeling that something constraints its general-purpose orientation.

CUDA implies heterogeneous programming, involving CPU and GPU processors.
The convention is to use host and device names to denote the CPU and GPU do-
mains respectively, and kernel to denote a function compiled to run on the device.
As accelerator, a process can not run exclusively on the device, but needs to be
launched as a normal process from the host. Once the execution has started, when
the process reaches a specific point in the code, it instructs the device to perform
the computation of a particular kernel. Before and after calling the kernel, the host
program can optionally copy data to and from the device memory to place operands
and/or retrieve a result. From the point of view of the host code, the kernel call is
asynchronous, enabling to perform different computations in parallel on CPU and
GPU.

When talking about CUDA it is necessary to establish a distinction between the
hardware architecture and the associated software platform. Different generations of
the hardware not only have different design but also support different features that
are specified by its compute capability version. The software platform allows code
to run on CUDA devices, independently of the hardware generation. It provides
support for hardware-agnostic features and other ones that are compute-capability
specific.

The physical design of the architecture follows a hierarchical structure, having the
Streaming Processors (SP) as its computational core, on which the threads are exe-
cuted. The card’s layout if formed by several Graphics Processing Clusters (GPC),
each of them having multiple Streaming Multiprocessors (SM), that are the ones
that contain the SPs.

Unlike on previous graphics architectures that employed vector processors, the
SP is an in-order scalar processor that contains an integer arithmetic logic unit
(ALU) and a floating-point unit (FPU) to perform general-purpose computations.
SMs on their side, are composed of a collection of SPs, Special Function Units
(SFU), load/store units, a registers memory, and a shared memory. GPCs contain
several multiprocessors and a raster engine. Registers and shared memory are on-
chip SRAM memories, and are analogous in latency and bandwidth to the cache
memory of a CPU. A larger off-chip DRAM memory acts as the main memory of
the device. It is reachable from all the SPs and encompasses both local and global
memory. Figure 2.1 represents the CUDA memory hierarchy on which the different
types of memory appear, and Table 2.1 shows the main characteristics of each of
those memories.

From a logical point of view, a kernel is executed (potentially) in parallel on the
device by multiple threads. The set of threads executing the same kernel forms a
grid, and the threads of a grid that are mapped to run on the same SM are organized
in blocks within the grid. The threads that belong to the same block have access
to the shared memory of the SM and can be synchronized explicitly. Thread blocks

25

Chapter 2. High-performance computing

Figure 2.1. CUDA device memory hierarchy.

Table 2.1. CUDA device memory.

Memory Location Cached Access Scope Lifetime

Register On chip No R/W Single thread Thread
Local Off chip Yes R/W Single thread Thread
Shared On chip No R/W All threads in block Block
Global Off chip Yes R/W All threads + host Host allocation
Constant Off chip Yes R All threads + host Host allocation
Texture Off chip Yes R All threads + host Host allocation

26

2.4. Hardware accelerators

can be organized in one, two or three dimensions into the grid and are required
to execute independently, so they can be executed in-order within a dimension, in
parallel, or in any other arbitrary order. Threads within a block can also form 1D,
2D, or 3D structures.

During the execution, an SM partitions its assigned thread blocks in groups
of consecutive threads denominated warps6, that are the minimal scheduling unit
managed by the multiprocessor. Each one of the threads belonging to a warp has its
own program counter7 and registers to keep track of its state, allowing them to follow
different execution branches. Within a warp, all the threads begin the execution at
the same instruction, and a warp executes a single common instruction at a time,
so if branch divergences occur, only the threads on that instruction’s branch will be
active on the current cycle. The scheduling of the warps has important implications
in the performance. On the one hand, it increases the performance by hiding the
memory latency, as it selects from a pool the warps that are ready for execution.
On the other hand, only a number of threads per block multiple of the warp size is
able to optimally populate the SMs, and the more divergent branches appear during
the execution, the more the performance is reduced.

The architecture has experienced a lot of improvements through the years. One
expected (and accomplished) enhancement is the increase of the assembled multipro-
cessors, and SPs per multiprocessor, on each new generation, thanks to the reduction
of the manufacturing process and the increase of the die size, reaching thousands of
cores in a single device.

Some other improvements on Fermi architecture (2010) were the support for dou-
ble precision floating-point operations, the inclusion of a hierarchy of cache memories
on the SMs, and the increase of warp schedulers per SM. Kepler architecture (2012)
added a Grid Management Unit (GMU) that performs the scheduling among the
different existing grids, queueing those who are not ready to be executed and prior-
itizing those who are, trying to improve the performance. Kepler also incorporates
GPUDirect, a proprietary technology that allows data transfers between different
GPUs without the intervention of the CPU or the memory system, by allowing net-
work adapters to directly access the memory of the GPUs. Pascal (2016) introduced
the NVLink high-bandwidth proprietary communication channel that replaces the
use of a PCIe bus to perform GPU-GPU and GPU-CPU transfers, and the unified
memory, a single virtual address space shared between the CPUs and the GPUs.
Independent thread scheduling and special-purpose computing units that perform
fused multiply-add operations working with 4 × 4 matrices were added in Volta
(2017), with the name of tensor cores.

The general-purpose orientation of the architecture, the growth of the complexity,
the creation of new data channels to connect GPUs with CPUs, the unification of
the GPU and CPU memory, and the addition of specialized computing elements
like the tensor cores inevitably reminds the old wheel of reincarnation, on which the
design of the graphics processors results in a never-ending increase of complexity
and the addition of auxiliary processors, that in turn become more complex.

6Warp size depends on the compute capability, being 32 threads on all existing versions.
7Originally a single program counter was shared between all the threads of a warp.

27

Chapter 2. High-performance computing

CUDA programming

The programming of CUDA devices is done mainly in C and C++ languages8, as the
architecture provides a small extension for these languages that allows to define code
to be run on the device. As CUDA programs can not be launched to run exclusively
on the device, using the CUDA extension implies having two types of code on the
program: code that runs on the CPU (host code) and code that runs on the GPU
(device code). The language extension [30] provides a series of function and variable
qualifiers that determine the platform target of the corresponding function (CPU or
GPU), and set the type of memory on which the variable has to be allocated on the
GPU memory, respectively. There exist three function qualifiers:

host : declares a normal C function, invoked from the host and executed on the
host.

global : declares a function invoked from the host and executed on the device.
These functions, also called kernels, are the ones whose invocation switches
the execution to take place on the GPU.

device : declares a function invoked from the device and executed on the device.

Note that the host-device relation is not bidirectional, and it is not possible to
launch a host function from device code, or a kernel from a device function.
The rationale of having a host qualifier, equivalent to not using any qualifier at
all, is that a function can have multiple qualifiers, being possible to have host

and device qualifiers, and in that case, the code is compiled for running on both
the host and the device.

Another five qualifiers are used for variables:

device : declares a variable that resides on the device. It is allocated on global
memory if no other qualifier is used.

constant : declares a variable that resides on constant memory. Optionally
used with device .

shared : declares a variable that resides on shared memory. Optionally used
with device .

managed : declares a variable that can be directly referenced from both, host
and device code. Optionally used with device .

restrict : used to specify non-aliased pointers.

Any automatic variable (variables without qualifiers) declared in device code
should be placed in register memory by default, but as the amount of memory is
limited, the compiler could have to place some variables on local memory. That

8There are Fortran compilers from PGI and IBM, and several bindings for other programming
languages such as Python.

28

2.4. Hardware accelerators

Table 2.2. CUDA variable declaration and associated memory.

Declaration of variables Memory where they reside

Automatic variables Register
Automatic variables (large) Local
device shared Shared
device Global
device constant Constant

can happen when the function has many variables or with some types of arrays. Ta-
ble 2.2 shows the type of memory where the variables are allocated with the different
qualifiers. There exist some restrictions to the variable qualifiers. The device ,
shared and constant specifiers are not allowed on classes, structures, unions,

formal function parameters, and local variables on host code.
CUDA defines some built-in data types and variables present at compile time and

run time, respectively. The data types defined are integer and floating-point struc-
tures with up to four components, that allow to specify four-dimensional elements.
One relevant data type defined is dim3, a three-dimensional integer vector type. If a
variable is defined with this type, the unspecified components are initialized to one,
reducing the actual number of dimensions. Four built-in variables of types dim3 and
uint3 are present on all device and global functions:

dim3 gridDim: provides the dimensions of the grid (in blocks).

dim3 blockDim: provides the dimensions of the blocks (in threads).

uint3 blockIdx: provides the block index within the grid.

uint3 threadIdx: provides the thread index within the block.

These variables are important for the correctness of the code as they allow it to
determine things like the total number of threads and blocks or unique thread IDs.
Kernel functions have to be written from the point of view of a single thread, iden-
tifying it by its ID in a similar way as the rank identifies a MPI process. Another
built-in variable of type int is warpSize, that specifies the warp size in threads.

As already mentioned, kernel launches are asynchronous with respect to the host,
allowing concurrent execution of host and device code. Other tasks that can operate
concurrently are memory transfers, from the host to the device and vice versa, within
the memory of a specific device or among devices. All these operations may operate
concurrently given that they use different streams. Streams are series of commands
that can operate concurrently or out-of-order between them. The commands within
a given stream are executed in-order, though.

If invoking a function in C may require passing some arguments to it, launching
a kernel implies the use of additional arguments in the call. These additional kernel-
specific arguments indicate how the functions have to be executed on the device.

29

Chapter 2. High-performance computing

requested width

allocated pitch

padding

requested height

Figure 2.2. Schema of 2D memory allocated in the GPU with cudaMallocPitch.

The full kernel invocation

kernel <<<Dimgrid, Dimblock, Shr, Str>>>([kernel arguments]);

has four parameters given via the <<< >>> operator. Dimgrid specifies the number
of blocks that constitute the dimensions of the grid, Dimblock specifies the number of
threads per block, Shr specifies the number of bytes of shared memory dynamically
allocated per thread block, and Str specifies the stream linked to the call. Multiple
kernels can be executed simultaneously by sending them to different streams9. The
last two parameters are optional and default to zero if not employed, allowing a
kernel to be launched as

kernel <<<Dimgrid, Dimblock>>>([kernel arguments]);

All the kernel launches which do not specify a stream parameter or explicitly set
it to zero are associated with the default stream, and therefore executed in-order
within that stream.

CUDA runtime

Besides the user-provided kernels, there exists a broad functionality offered by the
CUDA runtime API10. It offers functions to allocate/deallocate the host and device
memory, to set or copy memory, to define the ratio of shared memory and L1 cache,
to manage the devices, or to manage the streams. It also provides an automatic
context initialization and management.

We want to highlight some details about the memory management offered by the
runtime. The runtime allows to allocate memory on both the host and the device.
On the device it provides specific functions to allocate memory on a structure basis.
Two-dimensional arrays can be allocated with the function cudaMallocPitch, that
may pad the rows to ensure the hardware alignment for a coalesced access to the
memory. See Figure 2.2. Three-dimensional arrays can be allocated aligned in
a similar way with cudaMalloc3D. Once the memory is allocated aligned, specific

9It is not possible to have more than 32 concurrent kernels executing at the same time.
10A low level driver API offering a more fine-grained control, similar to OpenCL, is also available.

30

2.4. Hardware accelerators

functions can be used to copy or set it with values in a efficient way. For the host,
the runtime provides the function cudaHostAlloc to allocate page-locked (pinned)
memory. The CPU implements a virtual memory system that allows programs to
use more memory than the available in the system by swapping out unused pages
and swapping them in again when needed. Page-locked memory ensures that the
operating system does not page the memory out to swap memory (to disk or any
other secondary memory), and that it can be accessed directly by the device by
means of direct memory access (DMA) without using intermediate buffers11. This
memory can be read or written with a higher bandwidth than pageable memory
allocated with malloc. Memory allocated with malloc can also be page-locked with
the function cudaHostRegister.

CUDA software

The software toolkit also includes a mathematical library, and multiple numerical
libraries like cuBLAS [101] and cuSPARSE that implement BLAS on top of the
CUDA runtime, for dense and sparse operators respectively.

cuBLAS implements all the three levels of BLAS, and provides the complete set
of BLAS standard routines. Moreover, it includes an additional set of routines that
extend BLAS functionality with mixed precision and batched operations, including
some LAPACK routines. Batched operations allow to compute concurrently the
same operation on multiple small data in a single kernel. For instance, the batched
gemm routine performs the matrix-matrix multiplication of a batch of matrices.

Batched operations allow to fully utilize the CUDA streaming processors and ob-
tain good performance with small input data. It allows the concurrent execution of
multiple kernels through the use of streams and has partial support for multi-GPU
operations, that in the case of large problems can perform hybrid CPU-GPU com-
putations. The functionality provided by cuBLAS can be used from host code and
from user defined kernels.

cuSPARSE provides an implementation of the sparse interface for basic linear
algebra subroutines. It supports three levels of operation.

Level 1: routines for vector-vector operations involving a sparse vector and a dense
vector.

Level 2: routines for matrix-vector operations involving a sparse matrix and a dense
vector.

Level 3: routines for matrix-matrix operations involving a sparse matrix and a dense
matrix12.

Besides dense matrix storage, it supports a variety of sparse formats like COO, CSR,
CSC, and Blocked CSR, and provides conversion routines that allow the conversion
between these formats. These sparse formats, that are suitable for cache-aware CPU

11Pageable memory is copied to a page-locked intermediate buffer previous to its copy when using
DMA.

12Additionally, it has support for sparse matrix by sparse matrix addition and multiplication.

31

Chapter 2. High-performance computing

platforms, usually provide poor performance on GPUs. For this, new formats are
developed to allow an efficient implementation of a sparse matrix-vector product on
GPUs [17,68]. A sparse format included in cuSPARSE, specifically designed for the
use on GPU is HYB.

Hybrid ELL and COO format (HYB). It is a scheme that combines ELL and COO
formats. As the efficiency of ELL decreases when the number of nonzero
elements per row varies significantly, the ELL is combined with the COO
format that is not affected by the number of nonzeros per row.

On top of cuBLAS and cuSPARSE is built cuSOLVER, a library that provides
support for LAPACK-like operations on the GPU. The two main components of
cuSOLVER are cuSolverDN for dense LAPACK routines, and cuSolverSP for sparse
LAPACK routines.

A different library included in the CUDA toolkit is Thrust. It is a high-level
(object-oriented) C++ template library that provides an interface based on the C++

Standard Template Library (STL). Thrust allows users to benefit from a parallel
execution on the GPU without the need to write any kernel, or explicitly manage
device memory, or use other CUDA libraries. The underlying idea is to simplify
the programming by allowing users to exclusively use C++ code, and transparently
allocate certain objects on the GPU to perform the operations. Thrust code can
also be executed on CPU.

On top of Thrust is developed CUSP [33], other parallel linear algebra library, re-
leased under an Apache license, that provides a high-level interface for manipulating
sparse matrices on GPU. CUSP has support for dense and a variety of sparse matrix
formats like COO, CSR, DIA, ELL, and HYB. And it also allows the conversion
between these formats. It furnishes iterative methods for solving linear systems and
for computing eigenpairs, and also several preconditioners for the iterative solvers.
It provides sparse matrix-vector and matrix-matrix multiplication, and other sparse
matrix operations like add, subtract, or transpose. CUSP also includes a subset of
BLAS and LAPACK routines for performing operations with dense matrices.

Lastly, we want to mention MAGMA (Matrix Algebra on GPU and Multicore
Architectures) [132], a high-performance library focused on providing dense linear
algebra functionality similar to LAPACK, on heterogeneous multi-GPU and multi-
core architectures. It tries to obtain the best performance by combining executions
on CPU and on GPU. It provides two interfaces, one that takes the operators and
stores the result using CPU memory, and other analogous that uses GPU memory. It
makes use of cuBLAS for BLAS operations, but also includes its own implementation
of BLAS routines. Contains a sparse module that implements sparse BLAS routines
as well as functions to handle the iterative solution of a sparse linear system of
equations. MAGMA supports three sparse formats: CSR, ELL and SELL-P [8], a
variant of SELL-C [77].

SELL-C. Format that tries to reduce the storage overhead of the ELL format by
splitting the original matrix into blocks of rows, and storing each partition
using ELL.

32

2.5. Performance indicators

Padded sliced ELLPACK format (SELL-P). Modifies SELL-C by adding rows with
zeros such that the row length of each block becomes a multiple of the number
of (CUDA) threads assigned to each row. It allows instruction parallelism and
coalesced memory access.

MAGMA is published with a BSD license.

2.5 Performance indicators

When developing new algorithms to solve a well-known problem, it is important to
have a method to compare them. Assuming that several of them solve the problem
accurately, the desired behaviour is to obtain the solution fast. Usually, the faster
the better. In the same way that the runners can compare their performance with
the time set by the winners of the world championships in athletics, the software
needs a benchmark to compare with. The easiest way to obtain a benchmark is by
using the time of the fastest existing algorithm. If no previous version exists, the
new algorithm will be the benchmark for future algorithms.

The reason behind the hardware innovation process is that the performance of a
program is always going to be restricted by the hardware it runs on. The hardware
sets the upper limit. If a specific software is able to obtain the maximum production
of the hardware, it has accomplished the objectives. The performance of HPC
implies obtaining, if not the maximum, at least a significant fulfillment. The issue
with the parallel hardware is that reaching its limits is not possible with a single
serial program, and even parallel software can have difficulties to succeed.

Although the natural indicator to measure the performance of the software is
the time, other factors like the number of floating-point operations per second
(FLOPs/s) done by a program, the relative speedup obtained between two imple-
mentations, and the concepts of efficiency and scalability, are presented along this
section. We will not consider other performance metrics like performance per watt,
known as green computing, or performance per monetary unit.

2.5.1 Execution time

The main goal of parallel computing is the reduction of the computational time.
A parallel program can make a more intensive use of the hardware by fully using,
at the same time, all the computational resources available. Is the time then, the
principal performance indicator of a parallelization, and this performance is going
to be expressed as a relation to the time of the execution of the equivalent serial
algorithm.

The concept of execution time is easy to understand, but the performance ob-
tained with a parallel version of an algorithm is not straightforward to estimate just
from the time of a serial execution. For a serial program, the execution time is the
elapsed time since the program starts until its termination, and for a parallel pro-
gram, the execution time begins when the first of the involved processors starts the
computation, and ends when the last remaining working processor finalizes. The

33

Chapter 2. High-performance computing

intuition tells us that the more processors a parallel program uses, the less time
it should need to complete. A naive expected result is that the time of a parallel
execution, that uses two processors, is going to be reduced to half the time of the
serial execution. But parallel programming has additional factors that overload the
computation and increase the processing time, reducing the gain obtained.

One characteristic of a parallel program is the need of extra steps not present
on the serial implementation. The memory access management on shared-memory
systems, or the communication non-overlapped with computation on distributed
systems, imply wasting time in management activities.

If the processes have to perform different computations, it is possible that some
of them have to stand idle for others, slowing down the whole program. For this
reason, it is very important to load-balance the computation between the processes
during all the computing process, and this usually means to equally distribute the
data among them. Also, the data distribution used, not speaking of the amount of
data but to what data are mapped to what process, is linked with the communication
that the different processes have to perform during the execution.

On distributed memory systems, the communication time is directly affected by
the latency and transfer rate of the intercommunication network. So the use of low-
latency and high-transfer rate networks is mandatory on these systems. Even with
low latencies, as it is a fixed cost that does not depend on the message size, it is
useful to unify several small messages into a larger one to reduce the communication
time.

Our final comment goes to the fact that it is not always possible to parallelize
all the steps of an algorithm. This is known as the Amdahl’s law [4], and has a big
impact on the final performance. Being

T1 = T(s) + T(p), (2.2)

the total serial execution time of a program, where T(s) represents the time of the
intrinsically serial portion of the program, and T(p) the time of the parallelizable
portion. Amdahl’s law says that the minimal parallel time that can be obtained
with p processors is limited to

Tp = T(s) +
T(p)

p
. (2.3)

2.5.2 Speedup

Viewing two versions of the same program, one of them serial and other one parallel,
as black boxes that given some inputs both return the same outputs, the different
time that both versions take to process the information is going to define their
relative performance, called speedup. Formally, the speedup is

Sp =
T1

Tp
, (2.4)

where T1 represents the execution time of the best serial implementation, or the
execution of the parallel algorithm with a single processor; and Tp represents the

34

2.5. Performance indicators

execution time of the parallel implementation, were p is the number of processors
used. Theoretically, the speedup is Sp ≤ p having p as limit, but there exists the
possibility for some parallel algorithms to obtain super-linear speedups (greater that
p). Super-linear speedups occur due to a more optimal or intense use of the memory
of the system, normally the cache memory.

The common case, though, is to reach speedup values smaller than p because of
the factors mentioned in § 2.5.1, and as Amdahl’s law states, the maximum speedup
is limited to

Sp = 1 +
T(p)

T(s)
. (2.5)

2.5.3 Efficiency

The speedup allows us to compute the efficiency of a parallel algorithm, that gives
the degree of utilization of the parallel resources with that algorithm, in proportion
to the use of the resources achieved with the serial algorithm. This metric relates
the obtained speedup with the number of processors employed

Ep =
Sp
p
. (2.6)

In the same way that the speedup is usually smaller than p, in the practice the
efficiency of the parallel algorithms usually is smaller than 1.

2.5.4 Scalability

Two important things to consider when measuring the performance of the parallel
software is the influence of the hardware used, and the size of the problem to be
solved. The normal procedure to evaluate the performance is to vary the parameters
of the execution, to know how the parallel version works on different conditions.

The scalability of an algorithm tells us if it will take advantage of the increment
of the hardware resources, by maintaining its efficiency. Two types of scalability
can be measured, depending on if the increase of hardware resources goes with an
equivalent increment of the problem size, or not.

Strong scaling studies how the number of processors used affects to the execution
time, while keeping a fixed total problem size.

Weak scaling studies how the execution time vary when modifying the number of
processors, while modifying accordingly the total problem size, maintaining a
fixed problem size per processor.

2.5.5 FLOPs/s

The use of the time as performance indicator that we have seen until now is empirical,
only possible by executing a working implementation on a specific hardware. A
different way of measuring the numerical performance of a computer, or the cost

35

Chapter 2. High-performance computing

of an algorithm is by counting the number of floating-point operations. Floating-
point operations are employed as performance metric in computing as they are the
core operations in scientific software, contrary to integer operations that can be
considered negligible.

In case of hardware performance, the target is to provide as many FLOPs/s as
possible. It results in an architecture independent metric that allows to compare
different pieces of hardware. Traditionally, for nodes with one single-core super-
scalar processor, that works with a fixed frequency, the theoretical floating-point
peak performance of a computer could be determined by multiplying the number of
floating-point operations per cycle, by the frequency. The addition of several sockets
and cores per processor expands the formula

FLOPs

node
=

(
FLOPs

cycle

)(
cycles

second

)(cores
socket

)(sockets
node

)
, (2.7)

but it turns out to be still too simplistic, as it assumes a fully unified performance
on each stage.

However, the current sophistication of the processors and the hardware architec-
ture make this calculus not so straightforward [36]. The number of FLOPs per cycle
coming from the micro architecture elements

mFLOPs =

(
FLOPs

operation

)(
operation

instructions

)(
instructions

cycle

)
, (2.8)

and the number of cycles per second (per node) coming from the machine architec-
ture elements

Mcycles =

(
cycles

second

)(cores
socket

)(sockets
node

)
. (2.9)

can be combined to give an estimation of FLOPs per node

FLOPs

node
=
mFLOPs

Mcycles
. (2.10)

But hardware evolution turns this calculus into a complicated enterprise, in which
vector operations, dynamic frequencies (including different frequencies per core),
fused operations, multithreading behaviour, or the support for several instruction
sets are characteristics that influence the performance.

FLOPs can also be used as a theoretical metric for the cost of an algorithm,
independent of the hardware, that can be obtained a priori, just by examining the
operations in the algorithm. It allows us to compare different algorithms that solve
the same problem without the need of implementing them. Traditionally, algorithms
with less FLOPs would finish in less time, but that is not a golden rule with par-
allel hardware, where high-FLOPs-demanding algorithms can exploit the parallel
resources and finish sooner than less-demanding ones.

36

Chapter 3

Eigenvalue problems

Il meglio è nemico del bene

Computing eigenvalues and eigenvectors is required by a wide range of scientific and
engineering applications.

Among others, eigenvalues are used in engineering to determine the natural
frequencies of vibration (vibration analysis) of large structures like buildings and
bridges during their design. In control theory, the eigenvalues are used to determine
the stability and response of dynamical systems like the analysis of the dynamic
stability of electrical circuits and fluid flow. In physics, they allow the analysis of
systems modeled by the Schrödinger equation, like the parametrization of quantum
cascade lasers and superlattices. They also allow to study the behavior of mechan-
ical engineering and theoretical physics modeled with Poisson Equation like the
behaviour of plasma. In chemistry they allow the simulation of molecular clusters.

Numerical linear algebra is a very active field of research and many mathematical
forms of solving the eigenvalue problem have arisen from a variety of authors. A
good description of the eigenvalue problem is available [12, 115, 129], including a
good article with a historical perspective [53].

The standard eigenvalue problem is formulated as

Ax = λx, x 6= 0, (3.1)

where A ∈ Cn×n is the matrix that defines the problem, λ ∈ C is an eigenvalue and
x ∈ Cn is a right eigenvector of A. The pair (λ, x) ∈ C × Cn is called an eigenpair
of A.

Although the eigenvalues are complex in general, the eigenvalues of a Hermitian
matrix H ∈ Cn×n are real, and if the matrix is real symmetric H ∈ Rn×n, then the
eigenvectors are also real.

Other types of eigenvalue problems that frequently arise in applications lead to

37

Chapter 3. Eigenvalue problems

the generalized form, in which there are two intervening matrices,

Ax = λBx. (3.2)

The pair of matrices of equation (3.2) define the matrix pencil

A− λB, (3.3)

and the eigenvalues of the matrix pencil are those λ for which

det(A− λB) = 0. (3.4)

Under some assumptions, the generalized problem can be reduced to a standard
eigenvalue problem and solved as such. For example, being matrix B non-singular,
the problem can be transformed in

B−1Ax = λx. (3.5)

3.1 Methods to compute eigenvalues

Generally speaking, there are two broad classes of methods for solving the eigenvalue
problem, that we could call direct and iterative methods. When the matrices are
dense and all the eigenpairs are required, the direct methods are usually the pre-
ferred choice. They reduce the matrix to a condensed form by applying orthogonal
transformations, from which the eigenvalues can be easily obtained. On the contrary,
if only a few eigenpairs are required and the matrices are large and sparse, projecting
the eigenproblem on a low-dimensional subspace is normally a better option.

3.1.1 Direct methods

Direct methods are based on applying orthogonal transformations to reduce the
matrix involved in (3.1) to a condensed canonical form from which eigenpairs can be
recovered almost trivially, such as the (generalized) Schur form. For example, given
a non-singular matrix X, the transformation XAX−1 has the same eigenvalues as
A and its eigenvectors are of the form Xx, where x is an eigenvector of A.

The Schur form is the most practical and used form, as it can always be obtained
in a stable way by means of unitary transformations. For the generic non-symmetric
case, the Schur decomposition of A can be expressed as

A = QTQ∗, (3.6)

where T is an upper triangular matrix, whose diagonal elements are the eigenvalues
of A, and Q is a unitary1 matrix whose columns qi are called Schur vectors. If si is
an eigenvector of T , then Qsi is an eigenvector of A.

1A unitary matrix has as inverse its conjugate transpose.

38

3.1. Methods to compute eigenvalues

The symmetric case is a particularly simple case of the Schur form that, if A is
real reads

A = UDU∗, (3.7)

where D is a diagonal matrix with the eigenvalues of A on its diagonal, and the
columns of U are eigenvectors of A.

In order to reduce the cost of applying similarity transformations, direct methods
begin by reducing matrix A to either tridiagonal or upper Hessenberg form, in the
symmetric or non-symmetric case, respectively. Once the problem has been reduced
to a condensed form, various algorithms can be applied to compute the eigenvalues,
such as the QR iteration, or specific methods for symmetric tridiagonals, such as
divide-and-conquer [31]. The QR iteration is a numerically stable algorithm that
converges to the Schur form of the initial matrix.

When the matrices are dense and not too large, direct reduction methods are
appropriate, but usually they are not so for the case of sparse matrices because
they destroy sparsity, and furthermore they compute all eigenvalues, while often
it is enough to compute just a few, especially in large-scale problems with sparse
matrices.

3.1.2 Iterative methods

Iterative methods are based on obtaining approximations of the eigenvalues by gen-
erating a sequence of operations that given an initial guess converge to the desired
values. On each iteration, the approximation obtained is derived from the approxi-
mation of the previous iteration. These techniques preserve sparsity and hence they
are often the only viable strategy for large, sparse matrices. They are usually better
suited for computing only a few eigenpairs. They have a low memory footprint, are
amenable to be parallelized, and are scalable.

The simplest iterative method to solve the eigenvalue problem is the power
method. It consists in repeatedly performing an iteration that multiplies the matrix
A by a vector

xk+1 = Axk/‖Axk‖. (3.8)

The iteration magnifies the component of that vector in the direction of the eigen-
vector with largest eigenvalue (in absolute value), relative to the other components.
The convergence of this method depends on the ratio of the second largest eigenvalue
with respect to the largest one. If both eigenvalues are very close (in magnitude)
the convergence will be very slow. It is very easy to implement as it only requires a
matrix-vector multiplication, but it can only approximate the dominant eigenvector.
Having the eigenvector x, the Rayleigh quotient

λ =
x∗Ax

x∗x
, (3.9)

allows to obtain the eigenvalue λ associated to x.
One class of iterative methods are those that generate a sequence of subspaces

V(i) and extract approximate solutions from them. Iterative subspace methods are

39

Chapter 3. Eigenvalue problems

an extension to the power method that work with multiple vectors instead of with
only one. For instance, a good example of them is the original simple subspace
iteration method, that for a specific power k it computes the matrix

Xk = AkX0, (3.10)

where X0 is an initial block of m vectors [x1, ..., xm]. All of the vectors of the gen-
erated subspace converge to the eigenvector associated with the largest eigenvalue.
A drawback of this method is that the greater the power used, the poorer the linear
independence of the system Xk becomes.

To improve the linear independence of the vectors, the simple subspace iteration
can be extended with a factorization, as shown in Algorithm 3.1. The QR decompo-
sition performed in step 2 is a step comparable with the normalization of the power
method, and ensures linear independence between the columns of Xk.

Algorithm 3.1. Simple subspace iteration

1 W = AXk

2 Compute QR decomposition of W
3 Xk+1 = Q

A common technique used in eigenproblem algorithms is the use of a projection
subspace. The method consists in approximating the eigenvectors of A by means
of such subspace K of a reduced dimension m ≤ n. The Rayleigh–Ritz process
approximates the eigenvectors in that way. It seeks to ensure that the residual
of the approximations satisfy the Ritz–Galerkin condition, that in the case of the
standard problem it reads

Ax̃− λ̃x̃ ⊥ K. (3.11)

Being x̃ = V y a linear combination of the m vectors of the subspace K, of which
V = [v1, v2, ..., vm] is a basis, this results in

V ∗AV y − λ̃V ∗V y = 0, (3.12)

that simplifies to
V ∗AV y − λ̃y = 0, (3.13)

and then, λ̃ and y must satisfy
Bmy = λ̃y. (3.14)

The Rayleigh–Ritz process, detailed in Algorithm 3.2, is used to accelerate the
subspace iteration [13]. Once the subspace is built, the steps 3 to 5 perform the
Rayleigh–Ritz method.

The values and vectors obtained with this method in steps 3 and 5 are known as
Ritz values and Ritz vectors. The approximate eigenvectors of the original eigenvalue
problem obtained in the step 5 are sensitive to rounding errors, but the Schur vectors
can be obtained instead in a stable way.

40

3.2. Krylov methods for eigenvalue problems

Algorithm 3.2. Rayleigh–Ritz method

1 Compute an orthonormal basis {v1, v2, ..., vm} of the subspace K, and let
V = [v1, v2, ..., vm].

2 Compute the projected matrix Bm = V ∗AV .

3 Compute the eigenvalues λ̃ of Bm, and select the k < m desired eigenvalues

λ̃i, i = 1, ..., k.

4 Compute the k eigenvectors yi of Bm associated with λ̃i.
5 Compute the corresponding approximate eigenvectors of A, x̃i = V yi.

3.2 Krylov methods for eigenvalue problems

One important class of the projection methods is the one based on Krylov subspaces,
that allows to compute approximations of the eigenpairs of A from a Krylov subspace

Km(A, v1) ≡ span{v1, Av1, A
2v1, . . . , A

m−1v1}. (3.15)

One example of these methods is the Arnoldi algorithm [9], that builds an orthogonal
basis of the Krylov subspace Km that constitutes steps 1 and 2 of Algorithm 3.2.

Algorithm 3.3. Arnoldi

Data: Matrix A ∈ Cn×n defining (3.1), initial vector v1 ∈ Cn
Result: Matrices Hm+1 ∈ C(m+1)×m, Vm+1 ∈ Cn×(m+1) and hm+1,m ∈ R

1 v1 = v1/‖v1‖
2 V1 ← [v1]
3 H1 ← []
4 for j = 1, 2, . . . ,m do
5 w = Avj
6 hj = V ∗j w

7 w̃ = w − Vjhj
8 hj+1,j = ‖w̃‖
9 if hj+1,j = 0 then break

10 vj+1 = w̃/hj+1,j

11 Vj+1 ← [Vj vj+1]

12 Hj+1 ←
[
Hj hj
0 hj+1,j

]
13 end

Starting with an initial vector v1 of norm 1, the method obtains an orthonormal
basis {v1, . . . , vm+1} of Km(A, v1) in an iterative way, and an upper Hessemberg
matrix Hm, verifying the Arnoldi relation

AVm = VmHm + hm+1,mvm+1e
∗
m, (3.16)

41

Chapter 3. Eigenvalue problems

in which Vm =
[
v1 · · · vm

]
. Algorithm 3.3 details the steps followed by Arnoldi’s

method to generate (3.16). The main steps of the algorithm are the expansion of the
Krylov subspace (step 5), the orthogonalization and normalization of the new vector
(steps 6, 7, and 10), and the update of the upper Hessenberg matrix Hm (step 12)
with the coefficients obtained in the orthogonalization and normalization process.
The eigenpairs (θ, s) of Hm generate Ritz vectors x̃ = Vms, and Ritz values, λ̃ = θ
that provide approximations of the original eigenvalue problem.

In the case of A being an Hermitian matrix, the matrix Hm becomes a symmetric
real tridiagonal matrix

Tm =


α1 β1

β1 α2 β2

...
...

...
βm−2 αm−1 βm−1

βm−1 αm

 . (3.17)

Starting from an initial vector v1 and β0 = 0, the recurrence

βjvj+1 = Avj − αjvj − βj−1vj−1, (3.18)

with αj = v∗jAvj and βj = v∗j+1Avj generates a matrix Vm whose columns are the
orthogonal v1, v2, ..., vm Lanczos vectors and that satisfies the Lanczos relation

AVm − VmTm = βmvm+1e
∗
m, (3.19)

an expression analogous to the Arnoldi relation (3.16). The Lanczos iteration repre-
sented in Algorithm 3.4 can be considered a particular case of the Arnoldi method.
The computation involving vj+1 can be seen as the orthogonalization of Avj with

Algorithm 3.4. Lanczos iteration

1 for j = 1, 2, . . . ,m do
2 w = Avj
3 w̃ = w − βj−1vj−1

4 αj = v∗j w̃

5 ŵ = w̃ − αjvj
6 βj = ‖ŵ‖2
7 if βj = 0 then break
8 vj+1 = ŵ/βj
9 end

respect to vj−1 and vj . In exact arithmetic, vj+1 is orthogonal to v1, v2, ..., vj−2, so
it is not necessary to use those vectors in the orthogonalization process, reducing the
number of operations with respect to the Arnoldi algorithm. However, in practical
implementations where finite precision arithmetic is used, the vectors suffer a loss
of orthogonality when a Ritz value is close to converge [102], and spurious copies

42

3.2. Krylov methods for eigenvalue problems

of the eigenvalues appear. An obvious solution is the use of Arnoldi to keep the
orthogonality, but as the projected matrix is tridiagonal symmetric it can be taken
into account during the computation. Other techniques try to exploit the fact that
the loss of orthogonality occurs when a Ritz value is converging to re-orthogonalize
only on such case.

A well-known particularity of the Krylov subspace methods is the constant
growth of the subspace on each iteration of the algorithm. In many cases, the
algorithm convergence is slow and Ritz approximations may require many iterations
to converge. This feature becomes a serious two-fold issue when solving large-scale
problems. In the one hand the amount of memory necessary to store the subspace
may be too large, and in the other hand the cost of the orthogonalization increases
on each iteration, as the dimension of the basis of the Krylov subspace increases. In
practice, to have some control over the memory requirements of the method and over
the cost of the orthogonalization, the expansion of the subspace has to be limited in
some way.

Restart techniques can be used to avoid managing very large subspaces. They
can be explicit or implicit and consist in stopping the algorithm when a desired size
has been reached, and build a new basis reusing part of the information from the
previous basis. The explicit restart explicitly builds an initial vector as start point
for the new basis. It can use a linear combination of some of the Ritz vectors of
the previous basis, being the simplest form of restart. However, in practice, this
approach does not work very well.

The implicit restart [124] improves significantly the convergence with respect to
the explicit restart by means of keeping several of the Schur vectors of the previous
basis on the new one.

3.2.1 Krylov-Schur

The Krylov-Schur method [128] implements an implicit restart, and extends and
contracts a Krylov decomposition in an iterative way. The restart of the method is
based on using the Krylov relation

AVm = VmC + vm+1b
∗, (3.20)

that is a generalization of the Arnoldi relation (3.16), in the sense that C and b do
not require a specific structure. Matrix C is not necessarily an upper Hessemberg
matrix, and vector b is an arbitrary vector that can be different from em. The bases
that appear in the Krylov relation are not the same as the ones that appear in the
Arnoldi relation, but they also generate a Krylov subspace.

The restart of the Krylov–Schur method is supported by the fact that as C has
the form C =

[
C1 ?
0 C2

]
, with C1 ∈ Cp×p and C2 ∈ C(m−p)×(m−p), the relation (3.20)

can be truncated. Once truncated, and a basis of dimension p is obtained, it can be
extended again up to size m. The idea of the method is to maintain the dimension
of the basis under some limits that allow to keep the desired target Ritz values and
withdraw the less interesting ones. This restart technique follows the next steps:

43

Chapter 3. Eigenvalue problems

1. Compute the Schur decomposition of C and sort it by keeping the most desired
Ritz values in the first p positions of the diagonal of T ,

C = QmTQ
∗
m. (3.21)

A particular case appears when using real arithmetic, as the obtained matrix
T is the real Schur form associated to C, with the eigenvalues in the diagonal
or in 2× 2 diagonal blocks, so p must be chosen ensuring that the 2× 2 blocks
of the diagonal are not truncated.

2. Write Qm = [Qp, Q
′], and discard the columns associated to Q′, to truncate

the Krylov relation of order m into order p,

AṼp = ṼpT1 + vm+1b̃
∗, (3.22)

where T1 = Q∗pCQp, Ṽp = VmQp and b̃ = Q∗pb.

3. Restart of Arnoldi’s iteration as in Algorithm 3.3, extending the Krylov sub-
space by means of w = Avm+1

The Krylov–Schur method can be modified for the case of A being Hermitian
in a similar way as Lanczos modifies Arnoldi. This specialization is known as the
thick-restart Lanczos method [141].

Convergence of Krylov methods for eigenvalue computations is a non-trivial issue,
that depends on separation of eigenvalues, among other things (see for instance [12]).
If the eigenvalues of interest are exterior (that is, lying in the periphery of the spec-
trum), a restarted Krylov method will be able to retrieve them without problems.
However, if the desired eigenvalues are in the interior of the spectrum, then it is
necessary to apply an spectral transformation to the initial problem. A standard
technique to compute interior eigenvalues is the shift-and-invert transformation. For
the generalized eigenvalue problem (3.2) the Krylov method is then applied to the
transformed problem

(A− σB)−1Bx = θx, (3.23)

where largest magnitude θ = (λ − σ)−1 correspond to eigenvalues λ closest to a
given target value σ. Convergence in this case will require less iterations because the
transformation also improves the separation, but the solver must implicitly handle
the inverse of A− σB via direct linear solves.

3.3 Scientific computing software

The constant evolution of numerical software for solving eigenvalue problems has
provided a great variety of software packages [59]. The different available libraries
are specialized in performing serial or parallel computations, intended to solve dense
and/or sparse eigenproblems in the standard (3.1) or the generalized (3.2) form, and
they use a variety of direct and/or iterative methods.

44

3.3. Scientific computing software

We present now some of the most relevant libraries in the field, all of them pub-
licly available in source form. As an example of libraries implementing direct meth-
ods for solving eigenvalues we can name ScaLAPACK [19], ELPA [92], EigenExa [48]
and Elemental [107].

ScaLAPACK is a parallel library that implements a subset of the routines provided
by LAPACK. It is based on MPI and relies on PBLAS (Parallel BLAS) for
performing low-level operations. It provides parallel versions of the primary
algorithms such as the QR iteration. It is developed mostly in Fortran 77 and
released under a BSD license.

ELPA (Eigenvalue soLvers for Petascale Applications) is a parallel library that
provides efficient and scalable direct eigensolvers for dense Hermitian matrices,
addressing the standard and the generalized eigenvalue problems. It is based on
ScaLAPACK’s matrix layout, and replaces all parallel steps with subroutines
of its own. ELPA provides parallelism by means of MPI, and its license is the
LGPL.

EigenExa is a Fortran library oriented to be scalable and to provide high-performance
eigenvalue solvers. It addresses the standard and generalized eigenvalue prob-
lems, using MPI for inter-node parallelism and OpenMP for intra-node threaded
parallelism. The software is published with a BSD license.

Elemental is a library for direct linear algebra similar in functionality to ScaLA-
PACK, but unlike it, Elemental performs almost all computations using element-
wise matrix distributions instead of block-wise ones. It is developed in C++

(directly used from C) with interfaces to Fortran 90, Python, and R. It is ori-
ented to distributed-memory parallelism. Most of its code is released under a
BSD License, although it also uses a variety of other free software licenses.

Within this chapter and Chapter 4 we will focus on the parallel solution of large
and sparse eigenvalue problems by means of iterative methods. Libraries imple-
menting such kind of methods are ARPACK [88], PRIMME [125], FEAST [105],
Anasazi [14], and SLEPc [60].

ARPACK (ARnoldi PACKage) is a library for the computation of a few eigen-
pairs of a general large sparse matrix. As its name points out, it implements
a variant of the Arnoldi algorithm with an implicit restart called Implicitly
Restarted Arnoldi Method (IRAM). It is implemented in Fortran 77 and can
solve both the standard and generalized eigenvalue problems, working with
real or complex arithmetic, in single or double precision. It makes use of a
reverse communication interface, that returns the control of the operations
to the invoking program, indicating to it the next required operation. This
feature allows it to work with any matrix storage type, but requires the user
to implement matrix-vector products and linear solves. It has good efficiency,
and given the maturity of the methods it is one of the most popular software
libraries for computing eigenvalues. There also exists a parallel version of the
library called PARPACK [93] that supports MPI. It uses a BSD license.

45

Chapter 3. Eigenvalue problems

PRIMME (PReconditioned Iterative MultiMethod Eigensolver) is a parallel library
for finding a few eigenpairs of an Hermitian matrix. The library provides a
generic multimethod eigensolver, based on Davidson and Jacobi-Davidson, and
supports preconditioning, as well as the computation of interior eigenvalues.
It is implemented in C and provides Fortran 77, Python, MATLAB, and R
interfaces. Its parallelism is based on MPI and uses a BSD license.

FEAST is a numerical parallel library for solving both the standard and the gen-
eralized eigenvalue problem, and obtaining all the eigenpairs within a given
search interval. It is based on the FEAST algorithm, an innovative and stable
numerical algorithm which deviates fundamentally from the traditional Krylov
subspace based iterations or Jacobi–Davidson techniques. This algorithm takes
its inspiration from the density-matrix representation and contour integration
technique in quantum mechanics. The library is released under a BSD license
and has been integrated into the Intel MKL library.

Anasazi is a subset of the Trilinos [61] library for solving large-scale eigenvalue
problems. It implements several algorithms like a block oriented Krylov-Schur
method, a generalized Davidson method, a Riemannian Trust-Region method,
and LOBPCG method, among others. It is developed in C++, supports paral-
lelism by means of MPI and is released under a LGPL license.

Next we describe in a more detailed way the two software libraries on top of
which we have made all the developments that we present along the chapters. As
this chapter well reflects, our work is focused in the field of eigenvalues and related
areas. Within this field, SLEPc library is a reference in terms of numerical robustness
and efficiency, with highly scalable parallel implementations of state of the field
algorithms. It offers a wide range of solvers, allowing a high degree of parameter
adjustment and is easily extensible. At the same time, SLEPc is developed over
another key library in the linear algebra field as it is PETSc [15].

3.3.1 PETSc

The Portable, Extensible Toolkit for Scientific Computation (PETSc) is an object-
oriented parallel framework for the numerical solution of partial differential equa-
tions.

PETSc uses the MPI paradigm for the coarse grain parallelization and is intended
to build large-scale scientific applications and to run on distributed-memory high-
performance computers. Its code is structured hierarchically in several modules,
each one of them providing a single abstract interface and one or more implementa-
tions that use specific data structures. The data structures represent, for instance,
vectors and matrices, and algorithmic objects (solvers) for different types of prob-
lems, including linear (and non-linear) systems of equations. Complex objects like
solvers are composed of more basic objects in the hierarchy like vectors and matrices.
Some of those structures are shown in Figure 3.1, where their associated subtypes

46

3.3. Scientific computing software

In
cr

ea
si

n
g

L
ev

el
of

A
b

st
ra

ct
io

n

PETSc

BLAS/LAPACK MPI . . .

Vec

Standard CUDA ViennaCL

IS

General Block Stride

Mat

Compressed
Sparse Row

Block
CSR

Symmetric
Block CSR

Dense CUSPARSE . . .

PC

Additive
Schwarz

Block
Jacobi

Jacobi ILU ICC LU . . .

KSP

GMRES CG CGS Bi-CGStab TFQMR Richardson Chebychev . . .

SNES

Line
Search

Trust
Region

. . .

TS

Euler
Backward
Euler

RK BDF . . .

Application Codes Higher-Level Libraries . . .

Figure 3.1. Components of PETSc.

47

Chapter 3. Eigenvalue problems

Ay x

P0

P1

P2

P3

P4

=

Figure 3.2. Parallel distribution of a sparse matrix and two vectors in PETSc.

also appear, corresponding with different implementations of the methods of a par-
ticular interface or with the storage format used. In general, the algorithm employed
to perform a specific operation comes determined by the type of the object instan-
tiated. Vector objects are dense, but matrices can be stored with many different
representations including dense, several sparse formats, block oriented formats, and
also allow the use of user-defined matrices called shell matrices2, among others. In
general, all those representations have a serial and a parallel subtype, that store the
data on a single process or distribute it among several processes, respectively. Fig-
ure 3.2 shows the row-based distribution of the elements of a matrix among several
processes.

PETSc is written in C, so it can be directly used from application codes written
in C and C++, but also by means of Fortran and Python [32] bindings. The com-
bination of C and MPI makes the library highly portable, allowing it to be used on
almost any parallel machine. PETSc defines a neutral datatype called scalar that
allows compiling the library to work with real or complex arithmetic, and specifying
the precision to be used, being it single, double or quadruple. The default setup
configures PETSc to work with real arithmetic in double precision.

The application code interacts with the interface of the objects provided without
caring about the details of the underlying data structures and parallelism, allowing
the users to ignore them and focus on the high-level problem to solve. PETSc
provides calls to help in the distribution and management of parallel data, but as it
employs MPI, the user can also make use of any MPI call to operate with the data.

A characteristic of PETSc is the possibility to interface with third-party libraries
in order to provide additional functionality. PETSc can interface to multiple numer-
ical libraries like BLAS, LAPACK or MUMPS [5], and to numerical environments
like MATLAB. In addition, the library enables the runtime customization and/or
extension of the data structures and algorithms provided.

Another interesting feature of PETSc is its built-in support for profiling the ap-
plications code. It may offer the users a summary of the different stages of the

2Shell matrices can handle the matrix implicitly or store the data allowing user-defined storage
formats.

48

3.3. Scientific computing software

execution, in which performance factors like the time, the floating-point operations
rate and the memory usage of the PETSc routines are reported, after being auto-
matically logged at runtime. In the same way, the user-provided routines can also
be profiled by means of this functionality.

During all the life of the library and due to its highly active development, a
well-known characteristic of PETSc has been the continuous change of its own code,
including its public interface, in order to enhance the solvers, and support new
features and emerging architectures. Other feature of which we make use in this
thesis is the support for GPU computing, officially available since version 3.93.

Early GPU support in PETSc [96] required the functionality of CUSP [33]4, for
managing vectors on GPU. Vector operations and sparse matrix-vector products
were performed through VECCUSP, a special vector class whose array is mirrored in
the GPU, and MATAIJCUSP, a matrix class where data generated on the host is then
copied to the device on demand. The computational effort is this way transferred to
the graphics cards, transparently to the calling code. The AIJ part of the name of
the matrix class indicates the format used to store the matrix in the CPU memory.
This format used by PETSc is the same as the CSR format seen in Chapter 2. The
layout in GPU memory does not necessarily corresponds with the one used in CPU
memory, as MATAIJCUSP supports CSR, DIA and ELL formats on GPU.

One feature of PETSc is that besides automatically allocating memory for an
object on its creation, it also allows the users to manually perform the memory
allocation and passing a pointer to it when creating a new object. Due to the fact of
being based on Thrust, vector objects created on GPU memory by means of CUSP
do not allow to be instantiated in this way. This issue affects negatively to the usage
of PETSc, limiting its flexibility. Within the course of this thesis we proceeded to
create VECCUDA, a new vector type for the GPU, analogous to VECCUSP, that uses the
memory management provided by the CUDA runtime and cuBLAS for performing
vector operations. This new type does not have the limitations of VECCUSP and
allows specifying the memory that the vector object will use.

Currently, the GPU support in PETSc is based on using cuBLAS and cuS-
PARSE5 to perform vector operations and sparse matrix-vector products through
VECCUDA and MATAIJCUSPARSE, vector and matrix classes with analogous function-
ality of the CUSP based classes. Matrices with type MATAIJCUSPARSE are stored on
CPU memory using the AIJ format, and on GPU, CSR, ELL and HYB formats are
supported.

The GPU model considered in PETSc uses MPI for communication between
different processes, each of them having access to a single GPU. On a process, GPU
memory is allocated on demand on the first usage, and the implementation includes
mechanisms to guarantee the coherence of the mirrored data-structures on the host
and the device. For instance, the underlying operations to the memory of the objects
can have read, write, or read-write access. A flag is used to specify in which memory

3On previous versions GPU support was available on the development branch of PETSc.
4CUSP based GPU support was removed in version 3.9 of PETSc.
5PETSc also features OpenCL support for GPU hardware other than NVIDIA, but we do not

consider this here.

49

Chapter 3. Eigenvalue problems

In
cr

ea
si

n
g

L
ev

el
of

A
b

st
ra

ct
io

n

SLEPc

NEP

SLP RII
N-

Arnoldi
Interp. CISS NLEIGS

MFN

Krylov Expokit

PEP

TOAR
Q-

Arnoldi
Linear-
ization

JD

SVD

Cross
Product

Cyclic
Matrix

Thick R.
Lanczos

EPS

Krylov-Schur Subspace GD JD LOBPCG CISS . . .

ST

Shift
Shift-
invert

Cayley Precond.

BV DS RG FN

.

Figure 3.3. Components of SLEPc.

resides the newest data. Depending on the type of access required, the data may be
copied from one memory to the other, and/or the flag may be modified6.

Besides the transparent use of the GPU offered by PETSc objects, they also
provide direct access to the allocated memory (being it on CPU or on GPU). This
feature, together with the possibility of configuring PETSc to link with third party
libraries, enables the use of other GPU-aware libraries such as MAGMA from user-
provided routines.

3.3.2 SLEPc

The Scalable Library for Eigenvalue Problem Computations (SLEPc) follows the
same object-oriented design of PETSc, and extends its functionality with methods
to solve large-scale sparse eigenvalue and related problems. As PETSc, it is devel-
oped in C under a BSD license and can be used from C, C++, Fortran and Python
applications.

It provides several modules to solve linear (EPS), polynomial (PEP), and non-
linear (NEP) eigenvalue problems as well as other related problems like singular
value decompositions (SVD), or the action of a matrix function on a vector (MFN).
Figure 3.3 shows the hierarchy of objects that constitute the library. The main
classes make use of other low-level classes that are described next.

ST provides the functionality for performing spectral transformations (changes in the
variable associated with the eigenvalue). Some of the available transformations
are shift, applying λ = θ + σ for a given σ, or shift-and-invert given by λ =
1/θ + σ. Applying these transformations generates a new eigenvalue problem

6The flag can be set to “GPU not allocated”, CPU, GPU or both memories.

50

3.3. Scientific computing software

with the same eigenvectors than the original one, and with the eigenvalues
modified according to the transformation used. These transformations can be
used together with eigenvalue solvers in order to improve its convergence.

Some of the modules to solve eigenvalue problems (EPS and PEP) provide an
ST object that realizes the transformation of the initial problem given a spe-
cific spectral transformation. This encapsulation enables the eigensolvers to
abstract from the spectral transformation used. For instance, when solving the
standard problem with a matrix A, applying σ over the vector x is translated
in (A−σI)−1x when using the shift-and-invert transformation. By default, the
transformed matrices are not explicitly built, and the inverse is not computed.
Instead, the ST solves a linear system of equations by means of a PETSc’s KSP
object when necessary.

Parallelism within this class is given by the operations of the low-level parallel
objects that it uses.

BV represents a vector basis and its associated operations. It provides data struc-
tures and routines to operate within sets of vectors, including functionality to
perform the orthogonalization of the vectors. Most of SLEPc’s solver classes
contain a BV object to work with the subspace that they generate. There exist
several subclasses depending on the type of storage used. The different sub-
classes are svec, that stores the vectors as a single PETSc’s Vec object, vecs,
that stores the vectors as a collection of Vecs, mat, that uses a PETSc’s Mat

object in which each column stores a vector, or contiguous, that stores the
vectors contiguously in memory.

This class offers two levels of parallelism, task-level parallelism, as each process
performs the computation of their local portion of the vectors, and thread-
level parallelism, with parallel implementations of BLAS and LAPACK. It is
optimized to perform its operations in an efficient way, minimizing the global
communication [58] and prioritizing the use of block oriented operations with
respect to vectorial ones, in the local computations.

DS provides the functionality to solve the projected problems of reduced dimension
that most of the SLEPc solvers generate. There is a specific DS type for each
one of the projected problems generated by the high-level classes.

The parallelism within this class is performed exclusively on the local node by
means of parallel implementations of BLAS and LAPACK, as this computa-
tion is done redundantly by all the processes, given that all of them have the
projected problem stored. As long as the size of the projected problem is not
too large, the global performance is not affected by this step.

RG defines a region on the complex plane. Most of the solvers contain an RG object,
that is used to delimit a region in which to look for eigenvalues. The different
implementations define intervals, polygons and ellipses.

51

Chapter 3. Eigenvalue problems

There is no parallelism associated with this class. The object is replicated
on all the processes and its operations are performed redundantly without
affecting the performance.

FN provides functionality to perform dense functions of matrices. The class includes
some predefined functions that can be composed to obtain more complex ex-
pressions. They are used to specify a non-linear problem associated to a NEP

object, or to indicate the matrix function of an MFN object. Some of the func-
tionality of this class has been added in the context of this thesis, and more
details about it are provided in Chapter 5.

The parallelism within this class is performed exclusively on the local node by
means of parallel implementations of BLAS and LAPACK. The computation
is done redundantly by all the processes, given that all of them have the same
data.

SLEPc inherits all PETSc’s functionality and characteristics, including the sup-
port for GPU computing. In the same way as PETSc does, SLEPc’s solvers are
data-structure neutral, meaning that the computation can be done with different
sparse matrix storage formats.

It offers the users the possibility to specify many parameters such as the number
of eigenpairs to compute, the convergence tolerance or the dimension of the built
subspace, both programmatically and in run-time. And it is also extensible in the
sense that it is possible to plug user-provided code to customize the solvers.

In this thesis we make use of the high-level modules EPS and MFN, that solve linear
eigenvalue problems and the action of a matrix function on a vector, respectively.
But in this chapter we focus exclusively on the solution of eigenvalue problems by
means of EPS.

The default eigensolver in SLEPc is the Krylov-Schur method described in Sec-
tion 3.2.1, which essentially consists in the Arnoldi recurrence enriched with an
effective restart mechanism. The full algorithm involve the following operations:

1. Basis expansion. To obtain a new candidate vector for the Krylov subspace, a
previous vector must be multiplied by A. In the generalized eigenproblem (3.2)
the multiplication is by B−1A or, alternatively, by (A− σB)−1B if shift-and-
invert is used, and hence linear system solves are required.

2. Orthogonalization and normalization of the vectors. The new jth vector of the
Krylov basis must be orthogonalized against the previous j − 1 vectors. This
can be done with the (iterated) modified or classical Gram-Schmidt procedure.

3. Solution of the projected eigenproblem. A small eigenvalue problem of size m
must be solved at each restart, for matrix Hm = V ∗mAVm.

4. Restart. The associated computation is VmQp, p < m, where the columns of
V span the Krylov subspace and Q contains the Schur vectors of Hm.

52

3.4. Solving eigenproblems with GPUs

Table 3.1. List of cuBLAS routines employed in the sveccuda implementation of
the BV object.

BLAS
Routine

BLAS
Level

Description Number of BV
functions using it

scal 1 x← αx 2
axpy 1 y ← αx+ y 1
gemv 2 y ← αAx+ βy 1
gemm 3 C ← αAB + βC 6

The operations with highest computational cost are the expansion of the subspace
and the orthogonalization process, that in a parallel implementation also require
communication between the processes.

The expansion of the subspace shown as a matrix-vector multiplication in step 5
of Algorithm 3.3, many times corresponds with the solution of a linear system of
equations as it happens in the generalized case, where the operator is B−1A or (A−
σB)−1B in case of using the shift-and-invert spectral transformation. The sparse
matrix-vector multiplication can be performed on GPU by using the appropriate
Mat type. SLEPc’s implementation of the Krylov–Schur method uses PETSc’s KSP

object to solve the linear system of equations.

The orthogonalization process is performed by SLEPc’s BV object. One of the
recent improvements made in the code of SLEPc has been the enhancement of the
computational intensity of this object. As already commented, one of the imple-
mentations of BV (svec) uses a single PETSc’s Vec object to store the vectors of the
basis. SLEPc’s code has been refactored to allow this svec implementation to op-
erate with multiple vectors at the same time, using Level 2 and 3 routines of BLAS.
Additionally, in the context of this thesis we have created the sveccuda7 subtype to
provide an implementation of BV that performs the operations on GPU. Table 3.1
shows the cuBLAS operations used by sveccuda and the number of internal routines
that employ them. We can see how most of the internal routines can take advantage
of BLAS Level 3 operations.

In SLEPc, the Krylov-Schur eigensolver includes the possibility of specifying the
maximum dimension of the projected problem as a parameter (mpd), that enables
the computation of a large number of eigenpairs in chunks, by locking eigenpairs
converged at each restart.

3.4 Solving eigenproblems with GPUs

To illustrate the applicability of the SLEPc library and its use on GPU we next
present our work concerned with numerical simulation in the context of molecular
magnetism, where the goal is to analyze molecule-based magnetic materials with

7The implementation of sveccuda makes use of PETSc’s VECCUDA type.

53

Chapter 3. Eigenvalue problems

interesting properties that are important in applications such as high-density in-
formation storage. In particular, we focus on magnetic clusters, that is, molecular
assemblies of a finite number of exchanged-coupled paramagnetic centers. These
assemblies are midway between small molecular systems and the bulk state, being
possible to model them as the former, with quantum mechanical principles, rather
than with the simplifications required for the latter. This allows for deeper under-
standing of the magnetic exchange interaction. However, when analyzing clusters
with a growing number of exchanged-coupled centers, the complexity soon becomes
prohibitive due to the lack of translational symmetry within the cluster.

A flexible methodology for studying high nuclearity spin clusters is based on
the use of the technique of irreducible tensor operators (ITO) [21, 121]. This ap-
proach enables the evaluation of eigenvalues and eigenvectors of the system, then
deriving from them the magnetic susceptibility, the magnetization, as well as the in-
elastic neutron scattering spectra. This functionality is provided by the Magpack
package [22], covering both anisotropic exchange interactions as well as the simpler
isotropic case. Magpack is a set of serial Fortran codes, whose scope of applicabil-
ity is limited to very small number of centers, due to the high computational cost
associated with the creation of the Hamiltonian matrices followed by their diago-
nalization. The dimension of these matrices grows rapidly with the number of spin
cluster basis functions.

In a previous work, E. Ramos et al. [109] reworked the Magpack codes in order to
be able to cope with large-scale problems, with many spins. The developed codes are
parallel, hence enabling the use of large supercomputers, and are based on carrying
out a partial diagonalization of the system matrices by means of SLEPc. In this way,
the computational load is shared across the various processors participating in the
parallel computation, and in addition, only a modest percentage of the eigenvalues
and eigenvectors is obtained, thus avoiding many superfluous calculations. Still, the
computational requirements can be huge so we focus on improving the efficiency of
the software as much as possible.

In particular, we work with ParIso, the parallel code for coping with isotropic
spin clusters, although the use of GPUs could be easily extended to the anisotropic
case. We have made two major improvements in this code. On the one hand, we have
added a preprocessing step aiming at reducing the number of partial diagonalizations
required during the computation. This step computes bounds for the spectrum of
the submatrices in which the main Hamiltonian matrix decomposes, and estimates
the number of eigenvalues to compute in each submatrix. With this strategy, the
computation provides equally satisfactory results with a considerable decrease of the
time of calculation, although we will discuss that the way in which the number of
eigenvalues is estimated may not work in all cases. On the other hand, we have
extended the parallelization paradigm in order to exploit graphics processing units.
The use of GPUs represents a finer level of parallelism, to be added to the already
mentioned coarse-grain parallelism, that provides an additional speedup factor that
can significantly reduce the turnaround time of the computation.

54

3.4. Solving eigenproblems with GPUs

3.4.1 The ParIso code

Consider a spin cluster composed of an arbitrary number of magnetic sites, N , with
local spins. In order to obtain the set of spin cluster basis functions, the local spins
are successively coupled,∣∣∣S1S2

(
S̃2

)
S3

(
S̃3

)
....SN−1

(
S̃N−1

)
St

〉
=
∣∣∣(S̃)St〉 (3.24)

where S̃i refers to the intermediate spin values S1 + S2 = S̃2, S̃2 + S3 = S̃3, etc.,
(S̃) is the full set of S̃i (N − 1 intermediate spin states) and St is the total spin [21].
The system matrix can be evaluated by applying the Hamiltonian to the created
basis set, by means of the irreducible tensor operators technique. The advantage of
this methodology is that it allows us to completely take into consideration all kinds
of magnetic exchange interactions between the metal ions comprised in clusters of
arbitrary size. This is done by expressing the contributions to the spin Hamilto-
nian (expressed in terms of the conventional spin operators) as a function of the
generalized Hamiltonian (written in terms of ITO’s).

The ParIso code computes the quantities mentioned above for isotropic systems,
that is, it generates the spin functions of the system, calculates the energy matrix
and obtains its eigenvalues and eigenvectors, all this in parallel. Isotropic systems are
a special case where only the isotropic and biquadratic exchange terms are present in
the spin Hamiltonian. These terms have the property of not mixing functions with
different quantum number S and not breaking the degeneracy of levels with the
same S and different M . This decouples the energy matrix into several submatrices,
one per each different S quantum number. Taking into account the ITO technique
it is possible to eliminate this M quantum number and reduce the size of each S
submatrix by a factor of 2S + 1. No Zeeman terms are present in this case, during
the diagonalization, but would be included after it.

Thus, in the case of isotropic systems, the energy matrix can be written as a
block diagonal matrix,

A =


A1

A2

. . .

Ab

 , (3.25)

where each of the b blocks is a symmetric sparse matrix of different dimension.
Finding the leftmost eigenvalues of A amounts to computing the leftmost eigenvalues
of each of the blocks, Ai. Thus, the structure of the program ParIso is geared to
this block structure, where one partial diagonalization is carried out per block.

The main steps of the computation are the following:

1. Setup of data containing the information of the cluster.

2. For each diagonal block, i = 1, . . . , b, do:

(2.1) Generation of starting spin functions.

55

Chapter 3. Eigenvalue problems

(2.2) Evaluation of energy submatrix, Ai. All nonzero elements are computed
and assembled into the matrix.

(2.3) Partial diagonalization of Ai. Given the eigenvalue relation Aix = λx, a
subset of the spectrum is computed, corresponding to the leftmost eigen-
values.

3. Generation of final results.

3.4.2 Optimization of spin eigenanalysis

In the ParIso code, the individual blocks of matrix A in (3.25) are treated sep-
arately. The dimensions of these blocks vary widely, ranging from 1 to a hundred
thousand or even more, and the percentage of nonzero elements of each (large) block
is about 1–2%. The generation of the matrix is made submatrix by submatrix (each
submatrix is a spin energy). Not all submatrices need to be in memory simulta-
neously, since after generating one submatrix it is possible to compute its partial
diagonalization and then the matrix is no longer needed and can be destroyed. For
all these reasons, it is possible to calculate much larger systems in the isotropic case
than in the anisotropic one.

The optimization in ParIso that we introduce in this section tries to avoid the
computation associated with those blocks that are not going to contribute signifi-
cantly to the aggregated result. This allows a drastic reduction of the time necessary
for the overall execution. The rationale is that Lanczos methods can provide robust
bounds for the spectrum of each of the submatrices with a relatively small cost.
Based on the location of the first and last eigenvalues of each block, we can discard
some of the blocks if they lie outside the range of interest specified by the user.

The resulting algorithm performs the following steps:

1. In a first pass, the program traverses all the submatrices and, for each of them,
it calculates the first and last eigenvalue, filling a table with the information
obtained for all blocks.

2. From the table of minimum and maximum eigenvalues, the program determines
a point of energetic cut depending on the value of population to be considered
(provided as a user input parameter).

3. With the cut point and the dimension of each submatrix, the code determines
how many eigenvalues are required in each of them. A number of zero implies
that the corresponding submatrix can be discarded, since its energetic levels
are outside the requested range.

4. Finally, a second pass computes the wanted eigenvalues, traversing only the
submatrices that are going to provide useful information.

This process is illustrated in Figure 3.4 with an example. The horizontal lines
represent the span of the spectrum of each of the matrix blocks (18 in this case).
The dimensions of the blocks range from 1 (the last one) to 3150. The vertical line

56

3.4. Solving eigenproblems with GPUs

Table 3.2. Systems used.

System Size Largest submatrix size

7Mn2+ 24017 3150
8Mn2+ 135954 16576
9Mn2+ 767394 88900
9Mn2+ + 1Cu2+ 1534788 177100

represents the energetic cut to be considered. In the plot we can easily see that
this energetic cut leaves out 8 of the submatrices, which are the largest ones in this
particular example. The vertical marks on the horizontal lines to the left of the en-
ergetic cut represent those eigenvalues that must actually be computed. Note that
the plot does not show real eigenvalues, but an estimation based on the size of the
submatrix and assuming a roughly uniform distribution of eigenvalues. This approx-
imation is only valid for those systems with one spin state overstabilized from the
rest, e.g. completely ferromagnetic systems with very high magnetic coupling which
stabilize the high spin ground state or completely antiferromagnetic clusters with a
very stabilized intermediate spin state. In this work, for validation we use the simple
systems with this property shown in Table 3.2, the first one with ferromagnetic and
anti-ferromagnetic interactions, and the rest with only ferromagnetic interactions.

In our code it is also possible to specify an upper bound (maxev) for the number
of eigenvalues to compute in any submatrix. This is useful for large problems where
a given threshold would imply computing too many eigenvalues. As an example, in
the problem of Figure 3.4 the maximum number of requested eigenvalues is 33, and
setting maxev=25, for instance, would imply in practice shifting the vertical line a
certain amount to the left.

The above procedure avoids lots of unnecessary computations, with the corre-
sponding gain in the overall simulation time. The only drawback is that the subma-
trices that participate in the second pass must be regenerated since it is not possible
to keep all blocks in memory simultaneously. Still, the new methodology is much
faster than the former one, as will be shown below.

Apart from modifying the algorithm, we have also optimized the memory usage
by (1) adjusting the dimension of the various arrays to fit the maximum submatrix
size, and (2) converting real variables to integer ones whenever possible. These
two actions have allowed a significant reduction of the memory footprint per MPI
process, up to one third of the previous values. All in all, these improvements enable
to cope with larger, more challenging problems.

Code validation

We have carried out a number of numerical experiments in order to validate the
correctness of the parallel code, and to evaluate its performance. The computer

57

Chapter 3. Eigenvalue problems

Figure 3.4. Example of energetic cut for a test problem with 18 submatrices. Only
eigenvalues located to the left of the vertical line need to be computed. The number
of eigenvalues to compute depends on the dimension of the submatrix. A zoom of
the region of interest is shown on the right.

system used for the computational experiments in this section is Tirant8, an IBM
cluster consisting of 512 JS20 blade computing nodes, each of them with two 64-bit
PowerPC 970FX processors running at 2.2 GHz, interconnected with a low latency
Myrinet network.

For the validation of the code, we have used a small system (7Mn2+) as a test
case whose submatrices have the following dimensions: 1050, 1974, 2666, 3060, 3150,
2975, 2604, 2121, 1610, 1140, 750, 455, 252, 126, 56, 21, 6, and 1. This is the system
used in Figure 3.4 to illustrate the algorithm, and its real data can be seen in
Figure 3.5. The largest block is of size 3150 and the susceptibility was computed
for a range of temperatures up to 300K. In this case, the cut value varies as a
function of the population (pobla, a user input parameter), as shown in Table 3.3,
and we have not considered setting the maxev parameter because the number of
required eigenvalues is small. The vertical line depicted in Figure 3.5 corresponds
to the energetic cut of pobla=10−2. The total number of eigenvalues per spin of
this system and the amount of them selected to compute after the energetic cut has
been determined are shown on the left side of Table 3.4.

The computation time with one processor is also shown in Table 3.3. As a
reference, the total time required in the case of computing all eigenvalues of all
submatrices is 1917 seconds (this will be referred to as the full computation).

Figure 3.6 shows the susceptibility results (product χT against the temperature)

8Description of Tirant 2, decommissioned in 2018.

58

3.4. Solving eigenproblems with GPUs

Figure 3.5. Full representation of the 7Mn2+ system, showing the energetic cut and
the computed eigenvalues.

for the different values of the population, compared to the case of the full compu-
tation. For low temperatures, all lines match, while for higher temperatures the
graphs diverge from the full computation, being more accurate for smaller values of
pobla, as expected.

Performance analysis

In order to assess the performance of the code, both serially and in parallel, we have
used a larger system (8Mn2+), whose submatrices have dimensions: 2666, 7700,
11900, 14875, 16429, 16576, 15520, 13600, 11200, 8680, 6328, 4333, 2779, 1660, 916,
462, 210, 84, 28, 7, and 1. The largest block is of order 16576 and the temperature
range of the simulation is 300K. In this case, the number of eigenvalues that are

Table 3.3. Value of energetic cut for different values of the population parameter in
the 7Mn2+ system, and the corresponding computation time (in seconds) with one
processor.

pobla Energetic cut (cm−1) Computation time (s)

10−1 480.11 120
10−2 960.23 133
10−3 1440.35 217
10−4 1920.47 313

59

Chapter 3. Eigenvalue problems

Table 3.4. Total number of eigenvalues (n) for each of the spins and the selected
values to be computed (k), for the systems 7Mn2+ (left) and 8Mn2+ (right) using
maxev=1000 and pobla=10−2.

Eigenvalues

Spin n k

0 1050 0
1 1974 0
2 2666 0
3 3060 0
4 3150 0
5 2975 0
6 2604 0
7 2121 0
8 1610 14
9 1140 28

10 750 33
11 455 30
12 252 24
13 126 18
14 56 12
15 21 8
16 6 5
17 1 1

Eigenvalues

Spin n k

0 2666 125
1 7700 372
2 11900 608
3 14875 807
4 16429 1000
5 16576 1000
6 15520 981
7 13600 896
8 11200 766
9 8680 614

10 6328 462
11 4333 86
12 2779 0
13 1660 0
14 916 0
15 462 0
16 210 0
17 84 0
18 28 0
19 7 0
20 1 0

60

3.4. Solving eigenproblems with GPUs

0 50 100 150 200 250 300

130

140

150

160

TEMP(cm−1)

χ
T

pobla=10−1

pobla=10−2

pobla=10−3

Full

Figure 3.6. Susceptibility for different values of the population in the 7Mn2+ system.

Table 3.5. Value of energetic cut for different values of the maxev parameter in the
8Mn2+ system.

maxev Energetic cut (K)

1000 1312.39
3000 3936.93
5000 6561.56

needed for a given energetic cut may be quite large, so we are interested in studying
the influence of the maxev parameter. We have set this value to 1000, 3000 and 5000
eigenvalues, and it is the parameter that determines the energetic cut, see Table 3.5.
The total and computed eigenvalues for a value of maxev=1000 can be seen on the
right side of Table 3.4. If we set different values of pobla (10−1, 10−2, and 10−3 as
in the previous example), we will hardly appreciate any noticeable differences in the
results.

The sequential execution time corresponding to the full computation is 403000
seconds. Table 3.6 shows execution times in parallel for the three values of maxev.
Even computing as many as 5000 eigenvalues, the sequential time has been reduced
to one fourth of the original one. And with parallel computing we reduce the times
even further, with a speedup factor of around 10 with 16 processors.

In order to assess the accuracy of the computed susceptibility, in Figure 3.7 we
compare the plot obtained with the full computation against the results for the three
values of maxev used. As expected, the larger the value of maxev, the closer to the
full computation, but any of the values used provide a quite accurate susceptibility
curve. Even for maxev=1000 the susceptibility curve only diverges at the end of
the range used, and it would be necessary to double the temperature to appreciate
the divergence. The plots correspond to a value of pobla=10−1, but as mentioned

61

Chapter 3. Eigenvalue problems

Table 3.6. Parallel execution time (in seconds) for the 8Mn2+ system with different
values of maxev and increasing number of MPI processes.

Processes

maxev 1 2 4 8 16

1000 27351 17020 9543 5167 2810
3000 80172 51217 26932 14476 7926
5000 106384 62590 32909 17655 9690

0 50 100 150 200 250 300

20

30

40

50

TEMP(K)

χ
T

maxev=1000

maxev=3000

maxev=5000

Full

Figure 3.7. Susceptibility for different values of the maxev parameter in the 8Mn2+

system.

before, the graphs are essentially the same for 10−2 and 10−3.

3.4.3 Acceleration with graphics processors

We now present a GPU-enabled implementation of ParIso that can operate also
with multiple GPUs (one per MPI process). We remark that these new develop-
ments are independent of the optimization discussed in Section 3.4.2, and could also
be integrated in the original ParIso code. ParIso can benefit from GPU compu-
tation mainly in two ways: when computing matrix coefficients and when solving
the eigenproblems with SLEPc. The former is very appropriate for GPU computing,
since matrix coefficients can be evaluated independently from each other. Regarding
the latter, expected gains are modest since it corresponds to a sparse linear algebra
computation.

Implementing sparse linear algebra operations on GPUs efficiently is difficult, and
still a topic of active research. Usually, the most relevant operation is the sparse
matrix-vector multiplication, that can be approached in different ways [89, 110]. In
our case, we tried all different sparse storage formats available in PETSc with CUSP

62

3.4. Solving eigenproblems with GPUs

Table 3.7. Different versions of ParIso with GPU support.

Version Matrix created on Eigencomputation on

CPU-sbaij CPU CPU
CPU-aijcusp CPU GPU
GPU-sbaij GPU CPU
GPU-aijcusp GPU GPU

and cuSPARSE, and the difference among them is not noticeable in our application,
since the percentage of time devoted to this operation is just about 3–4% of the total
computation.

Details of GPU implementation

Even though it is possible to use CUDA from Fortran with a non-free compiler, or
by means of calling CUDA-C wrapper functions, in order to make use of the GPU
computing power, we have ported the original Fortran code to C, as it enables a
simpler development. The code uses CUDA in two ways, one by migrating parts of
the application to run on the GPU as CUDA kernels, and another one by means of
SLEPc, as it allows us to do the computation exclusively on the CPU or with the
help of the GPU. We call ‘GPU version’ the one that uses CUDA kernels for the
generation of the matrix (independently of the storage type used), even when the
original CPU version can be instructed to use the GPU by means of the aijcusp

matrix storage type.
With both versions and the different storage types it is possible to run the soft-

ware in four main ways: CPU and GPU, each one with a matrix storage type that
replicates the data into the GPU (aijcusp) or not (sbaij). Table 3.7 summarizes
the four combinations. Note that the user can select one of them at run time by
means of command-line arguments.

One of the benefits of working with symmetric matrices is that the storage can
make use of that symmetry to halve the memory usage, as it is done in the code that
runs exclusively on the CPU by means of the sbaij matrix storage type. In the case
of the GPU, the type of matrix used by PETSc to store the data (aijcusp) does
not take into account the symmetry and needs to allocate and fill both triangular
parts (upper and lower) of the matrix.

The resulting code can be compiled to work with single and double precision
arithmetic, but due to several values exceeding by far the single precision limits,
some of the variables have been explicitly declared as double even when working
with single precision. This mixed-precision approach allows us to reduce the memory
requirements by sacrificing some accuracy in the results. There is also a reduction
of computation time, but as will be shown later, the benefits of the single precision
arithmetic in terms of performance are quite limited.

The migration has been done by selecting the most computationally demanding
functions and moving them to run on the GPU. The selected functions are those re-

63

Chapter 3. Eigenvalue problems

lated with the generation of the submatrices, and one of the functions that compute
the final thermodynamic results. The cost of the generation of the magnetic suscep-
tibility is negligible, but the time needed to compute the magnetization depends on
the number of samples of the magnetic field intensity used. Even though this step is
not very computationally demanding, as it is done exclusively by a single process, its
relative time within the whole computation increases when increasing the number
of processes and the total computation time is reduced. That is why porting it to
the GPU was highly recommended.

In order to avoid heavy performance issues during the sparse matrices assembly,
it is necessary that every process preallocates the memory corresponding to the part
of the matrix that has been assigned to it [15]. For the preallocation to be done, it is
necessary to specify how many diagonal and off-diagonal nonzero elements per row
the matrix has (here, diagonal elements refer to matrix entries located in column
indices matching the range of rows assigned to the current process, see shadowed
blocks in Figure 3.8). Once the preallocation has been done, the process continues
by setting the values of the elements and finally assembling the matrix. The matrix
is ready to use once the assembly is finished.

Two functions are in charge of the generation and, in the GPU version, both
compute all the elements of the matrix (not only the upper half), so we double the
work to be done with respect to the previous CPU implementation. The first one
counts the number of nonzero elements on the diagonal blocks and outside them, to
do the preallocation, and the second one stores the values of these nonzero elements
in memory. Both functions do almost the same work, but the amount of memory
used by them differ significantly, as the counting of the elements needs only a small
bi-dimensional array of integers to store the sum (with one row for each one of the
matrix rows, and two columns, one for the nonzero diagonal elements and other
for the nonzero off-diagonal ones), and the function that fills the matrix in with its
values needs two bi-dimensional arrays of the full size of the matrix, one of floating
point numbers and another one of integers where it records the column indices of
the nonzero elements. The accounting of the elements is only done on the first pass,
and stored to avoid repeating the computation on the second pass.

Each one of these two generation functions has been split in two, the main part
runs as a CUDA kernel making use of a series of auxiliary functions that run as
device functions, and the remaining work is done as a host wrapper function that

allocates the memory on both CPU and GPU, calls the kernel with the appropriate
arguments and copies the results to host memory. The function that computes the
final results follows the same scheme of wrapper and kernel split, but it makes use
of two kernels that need to be called serially.

The host memory used by the wrapper function is allocated with the cuda-

HostAlloc instruction to allocate page-locked memory. The copy of the values of
the matrix and their accounting from the GPU is done with asynchronous instruc-
tions, but as the data is used immediately after it, the transfer can be considered
synchronous with no concurrency of these data transfers and arithmetic operations.

As we saw in Chapter 2 (Section 2.4.3), inside the GPU we can find several
types of memory with different sizes, latency accesses, scopes and lifetimes, that we

64

3.4. Solving eigenproblems with GPUs

want to take advantage of. Within the generation functions, application lifetime
data is copied once at the beginning of the program to constant memory, and
block dependent data is copied to global memory in advance to the submatrix
computation (of which a small array is accessed through texture cache).

The amount of memory in the device, limits the registers a thread can make
use of, and the functions that need a large amount of registers limit the number of
concurrent threads running on the device. The matrix generation functions result in
computation bound kernels due to the high register use. Their launch cannot fully
populate the symmetric multiprocessors of the GPU, so they are infra-utilized and
the performance obtained is far from optimal.

Having said that, the computation of each different matrix element has no depen-
dencies with the others, and this allows us to populate the GPU with any possible
distribution of the grid and block dimensions and size. The launch of the kernels
takes into account two different things, on the one hand, the size of the CUDA grid
and blocks (number of blocks and number of threads per block respectively) per
dimension, and on the other, the tile size (amount of work, measured in number of
matrix elements, that a single thread has to compute) per dimension.

The work distribution scheme within the GPU device is the same for all the
kernels. For the generation functions, for each of the dimensions of the matrix, two
constants are defined, BLOCK SIZE and TILE SIZE, that are used to obtain the kernel
call arguments. The calculus of these arguments begins by setting the number of
blocks to one, and the number of threads per block to BLOCK SIZE. Next, it is checked
if the number of rows (or columns) is greater than the BLOCK SIZE multiplied by the
TILE SIZE. If it is greater, the grid dimension (number of blocks) is increased to

dimGrid->x = (rows + ((BLOCK SIZE X * TILE SIZE X) - 1)) /

(BLOCK SIZE X * TILE SIZE X),

if not, the block size is decreased to

dimBlock->x = (rows + (TILE SIZE X - 1)) / TILE SIZE X.

In the latter case, when the block size is reduced, it ends up not necessarily being
a multiple of the warp size, and that means that we are working with a very small
matrix, so the performance obtained from the use of the GPU is not going to be
good.

Once the grid dimension is set, it is necessary to check that it does not exceed the
limits of the device, and in that case, reduce its size to the maximum allowed value,
and establish a counter in order to do several calls to the kernel. This is necessary
in the case of very large matrices.

The current scheme creates blocks of one thread for the rows axis, and 64 threads
for the columns axis, with tile sizes of one. Other work distributions have been tested
with no better performance obtained. An analogous procedure is used for the kernels
that compute the magnetization.

65

Chapter 3. Eigenvalue problems

A Ai

P0

P1

P2

P3

P4

Figure 3.8. Example of an isotropic system expressed as a block diagonal matrix
(left) and the partitioning of one of their symmetric sparse blocks between five MPI
processes Pi (right).

Hybrid MPI-GPU approach for multi-GPU support

As mentioned in Section 3.3.1, the partitioning of the work between the different
MPI processes done by PETSc uses a block-row distribution. Figure 3.8 shows how
each one of the sparse blocks that form the block diagonal matrix are partitioned.
The horizontal dashed lines delimit the Pi MPI process partition and the shadowed
squares show the diagonal block of each process, formed by the columns whose
indices correspond to the rows assigned to it.

The execution of the kernels is independent of MPI. Since the MPI version of
the code evenly distributes the problem matrices across the processes, several CUDA
devices can be used to individually accelerate the execution at each process, provided
that the code is run on a cluster with GPUs available in all the nodes. If one node
has more than one GPU, the processes select the CUDA device to be used based on
their MPI rank, in the same way as PETSc does. The card identifier to be used is
the reminder of the rank divided by the number of cards on the node. This simple
formula allows to balance the number of processes per GPU, and for it to work, we
present two options that can be used:

1. the rank used in the computation comes from a communicator that includes
only the processes on the same node, or,

2. the rank used in the computation comes from the MPI COMM WORLD communi-
cator. In this case, the processes on each node must be created consecutively.

This way, each process will use a different CUDA device (when available). To max-
imize the performance and to avoid overloading the devices, the MPI launch should
take into account the problem size, the number of available nodes, and the number
of devices per node.

66

3.4. Solving eigenproblems with GPUs

Performance evaluation

In this section we analyze the performance obtained with the GPU version of the
software and compare it with the CPU-only version. For this purpose, several runs
have been done in the cluster Minotauro9, where each node has two Intel Xeon E5649
processors at 2.53 GHz, 24 GB of main memory, and two NVIDIA Tesla M2090 GPU
with 512 cores at 1.3 MHz and 6 GB of GDDR5. The nodes are interconnected with
a low latency Infiniband network, and their operating system is RHEL 6.0 with GCC
4.6.1, MKL 11.1 and CUDA 7.0.

The value of the pobla and maxev parameters used in these runs has been set to
10−2 and 1000, respectively, and SLEPc’s parameter mpd has been set to 50.

Three different cases have been used to evaluate the performance. We have
started using the 8Mn2+ system of Section 3.4.2 to have a connection with the
executions in the cluster Tirant. The matrix in this case has a size of 135954 and its
largest block is of size 16576. The other two systems that we have used to complete
the evaluation are 9Mn2+ and 9Mn2+ + 1Cu2+ with a size of 767394 and 1534788,
and with their largest blocks being of size 88900 and 177100, respectively.

The 8Mn2+ system has been run with the CPU and with the GPU version in
single and double precision arithmetic. At the same time, the GPU version has been
run with two different matrix storage types: sbaij and aijcusp. The two largest
systems have been run exclusively with the GPU version, with the aijcusp and
sbaij matrix storage types, and with single and double precision arithmetic.

Figure 3.9 shows the execution times obtained with the 8Mn2+ system. In the
figure we can see how the normal performance of the CPU-only version is improved
by the two GPU runs. We can see that for a single process, both GPU runs reduce
the time more than one order of magnitude with respect to CPU. For the multi-
process runs, the GPU-sbaij run shows a similar speedup to the one obtained by
the CPU version, maintaining the curves in parallel (up to 32 processes), while the
aijcusp run does not reduce the time with the same rate or even increases it while
increasing the number of processes. This kind of behaviour, where the performance
decreases when the number of processes is increased, is due to the small size of
the submatrices. The GPU-sbaij run shows clearly the great benefit provided by
the kernels that generate the matrix with respect to its CPU counterpart, as both
versions use a symmetric aware storage that reduces the memory and arithmetic
operations (on the CPU). In the same curve it is possible to appreciate that the
speedup is reduced when increasing the number of processes due to the higher cost
of the inter-process communications and the infra-utilization of the GPU devices
due to the reduction of the workload. The GPU-aijcusp run is even more affected
by the problem size, as the overall performance decreases drastically compared with
the sbaij versions due to two main drawbacks, it uses twice the memory needed by
sbaij and it has to synchronize the data between the GPU and CPU besides between
the processes, during the computation. As the SLEPc GPU implementation uses
vector operations, the performance is directly dependent of the size of the problem.
We can appreciate such dependency if we compare the results of the different test

9Description of Minotauro in 2015.

67

Chapter 3. Eigenvalue problems

1 2 4 8 16 32 64 128
101

102

103

104

Processes

S
ec

on
d

s

CPU sbaij

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128
101

102

103

104

Processes

CPU sbaij

GPU aijcusp

GPU sbaij

Figure 3.9. Total problem solve time for the 8Mn2+ system with single (left) and
double precision arithmetic (right).

cases. While in Figure 3.9 we see that GPU-aijcusp starts with the smallest run
times and quickly drops the performance, as we increase the size of the problem
(Figures 3.10 and 3.11), we can see how it behaves much better and only reduces
the performance with 128 processes. It is also noticeable how also the sbaij run
improves with the increment of the size as its performance does not decrease so
quickly when the number of processes is increased.

The figures show that the more the GPU devices are used, the better is the
performance obtained. Both GPU runs clearly improve the CPU-sbaij run times,
maintaining a similar performance and a good scalability and being able to solve
a large system of 1.5 million elements in less than 230 seconds, with 128 GPUs
and using double precision arithmetic. For such improvement to be possible it is
necessary to maximize the use of the GPUs, as we can see how the performance
decreases in all GPU runs when the processes do not have enough workload. The
work done by the GPU needs to be enough to fully populate and use the device, as
the performance depends directly on the usage of the device. The behaviour is the
same for the kernel executions and for the eigenvalue computation.

3.5 Conclusions

In this chapter we have introduced the eigenvalue problem and the SLEPc library
as the context within our work is done. SLEPc is able to exploit GPU accelerators
in some parts of its computations by relying in PETSc capabilities, and enhance the
performance on others by replacing BLAS routines of Level 1 with routines of Levels
2 and 3.

Within this chapter we have presented two main optimizations to ParIso, a
program for simulation of isotropic molecular clusters with the ITO computational
technique.

68

3.5. Conclusions

1 2 4 8 16 32 64 128

102

103

Processes

S
ec

on
d

s

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128

102

103

104

Processes

GPU aijcusp

GPU sbaij

Figure 3.10. Total problem solve time for the 9Mn2+ system with single (left) and
double precision arithmetic (right).

The first optimization consists in avoiding the computation that does not con-
tribute significantly to the aggregate results. In our tests, this has allowed a drastic
reduction of the execution time without losing validity in the results. However, our
heuristics for determining the energetic cut (as well as to estimate the number of
eigenvalues required in each block of the Hamiltonian matrix) assume a uniform
distribution of eigenvalues. This assumption is valid only for systems with specific
properties, as discussed in Section 3.4.2, so the method may not be appropriate for
general systems.

The second major optimization is the implementation of a GPU-enabled version
that can perform either the computation of matrix coefficients or the computation of
the partial diagonalizations, or both, on high-performance graphics processing units.
The performance gain is very significant, especially associated to the computation of
the matrices. Regarding the efficiency of the diagonalization on the GPU, this step
relies on the efficiency achieved by the SLEPc library. In the executions presented
in this chapter, the BV object uses exclusively Level 1 operations.

With the multi-GPU version we are able to reduce the computation one order
of magnitude with respect to the parallel MPI version running on CPUs. This will
make it possible to solve much larger problems, those with real scientific interest,
that would otherwise be impossible to address due to memory limitations or lack of
computational power.

69

Chapter 3. Eigenvalue problems

1 2 4 8 16 32 64 128

103

104

Processes

S
ec

on
d

s

GPU aijcusp

GPU sbaij

1 2 4 8 16 32 64 128

103

104

Processes

GPU aijcusp

GPU sbaij

Figure 3.11. Total problem solve time for the 9Mn2+ + 1Cu2+ system with single
(left) and double precision arithmetic (right).

70

Chapter 4

Block-tridiagonal eigenvalue
problems

Let it be

A particular case of the eigenvalue problem that frequently appears in scientific
and engineering problems involves a structured matrix with block-tridiagonal shape.
Given a two-dimensional domain Ω partitioned in subdomains Ωi like the one repre-
sented in Figure 4.1, where the points interconnected between two domains are only
coupled to their closest neighbours in the mesh, then a specific domain Ωi is only
coupled to its predecessor Ωi−1 and to its successor Ωi+1, and the corresponding
matrix takes the form of a block-tridiagonal matrix.

A block-tridiagonal matrix is a square matrix with a tridiagonal pattern, in
which the scalar elements are replaced with square submatrices (blocks). A block-

x

y Ω1 · · · Ωi−1 Ωi Ωi+1 · · · Ω`

Figure 4.1. Schema of a 2D domain partitioned in subdomains Ωi.

71

Chapter 4. Block-tridiagonal eigenvalue problems

tridiagonal matrix

T =



B1 C1

A2 B2 C2

A3 B3 C3

. . .
. . .

. . .

A`−1 B`−1 C`−1

A` B`


, (4.1)

of order n, has ` blocks of size k that can be dense or sparse.

In this chapter we present the work done in order to extend SLEPc with parallel
eigensolvers that specialize for this particular case, running on one or several GPUs.
The solvers can also be used for dense banded matrices generated by applications
like [1].

Algorithm 4.1. Arnoldi algorithm

1 for i = 1, 2, . . . do
2 for j = 1, 2, . . . ,m do
3 Expansion of the basis of the subspace
4 Orthogonalization and normalization of the vectors

5 end
6 Solution of the projected eigenproblem of size m
7 Restart

8 end

In our parallel developments we assume that the blocks are dense and stored
distributed by block-rows among the existing processes, but without splitting any of
them across multiple processes. As already seen in Chapter 3, the Arnoldi algorithm
with the Krylov–Schur restart can be summarized as shown in Algorithm 4.1. We
assume that the size of the projected problem, m is very small compared to the
dimension of the matrices, n. From the four main computational tasks of the algo-
rithm, the dominant computational cost is the one associated with step 3. Steps 4
and 7, are currently done on the GPU as explained in Chapter 3 (Section 3.3.2), and
the cost of step 6 is negligible compared to the rest and it is not worth performing
it on the GPU.

For this, we next discuss in detail the operations related to the basis expansion,
that vary depending on the requested eigenvalues. We present different strategies
to parallelize the involved operations on the GPU and perform a study to evaluate
their performance, comparing the results with a CPU implementation. Finally, we
present a use case to compare the performance of our developments with a third
party library.

72

4.1. Matrix-vector product

4.1 Matrix-vector product

The most simple eigenvalue computation is the one aiming to obtain eigenvalues
from the exterior of the spectrum. The basis expansion in this case is done by per-
forming a matrix-vector multiplication. Given that our matrix is block-tridiagonal,
the operations performed by the matrix-vector multiplication can be reduced to the
ones involving the nonzero blocks. The matrix-vector product

y = Tv, (4.2)

can be computed by blocks as

yi = [Ai Bi Ci]

 vi−1

vi
vi+1

 , i = 2, . . . , `− 1, (4.3)

with analog expressions for the first and last block-row.

4.2 Shift and invert: Linear systems

If the desired eigenvalues are from the interior of the spectrum, a spectral transforma-
tion needs to be applied to the initial problem. One of the spectral transformations
supported in SLEPc is the shift-and-invert transformation of (3.23), that in the case
of the standard eigenvalue problem it reads

(T − σI)−1z = θz. (4.4)

In a practical implementation the inverse of (T−σI) is never computed explicitly,
instead, the basis expansion is performed by solving a linear system of equations

Tσx = b, (4.5)

where Tσ = (T − σI). Solving this linear system of equations could be approached
with (Sca)LAPACK’s general band factorization subroutine (gbsv), but this is not
available on the GPU. Hence, within this section, we center our attention on algo-
rithms that operate specifically on the block-tridiagonal structure and are feasible to
implement with CUDA. The (scalar) tridiagonal case was analyzed in [146], where
the authors compare GPU implementations of several algorithms.

4.2.1 Thomas algorithm

Gaussian elimination on a tridiagonal system
d1 u1

l2 d2 u2

. . .
. . .

. . .

ln−1 dn−1 un−1

ln dn




x1

x2

...
xn−1

xn

 =


b1
b2
...

bn−1

bn

 (4.6)

73

Chapter 4. Block-tridiagonal eigenvalue problems

can be specialized to use O(n) operations instead of O(n3) and is sometimes referred
to as the Thomas algorithm. In the forward elimination phase, the algorithm com-
putes intermediate coefficients for the first row with e1 = u1/d1 and f1 = b1/d1. In
the same way, intermediate coefficients for the next rows are computed with

ei =
ui

di − liei−1
, (4.7)

for i = 2, . . . , n− 1, and

fi =
bi − lifi−1

di − liei−1
, (4.8)

for i = 2, . . . , n. The backward substitution obtains x with xn = fn, and for
i = n− 1, . . . , 1, it computes

xi = fi − eixi+1. (4.9)

The numerical stability of this algorithm cannot be guaranteed in general. Its ap-
plicability is limited to diagonally dominant or symmetric positive definite matrices,
with which the method is stable. Otherwise, partial pivoting is necessary to make
it stable.

This same algorithm can be applied to a block-tridiagonal system, which in the
forward elimination phase computes

C1 = B−1
1 C1, (4.10a)

b1 = B−1
1 b1, (4.10b)

and for i = 2, . . . , ` proceeds with

Bi = Bi −AiCi−1, (4.11a)

Ci = B−1
i Ci, (4.11b)

bi = B−1
i (bi −Aibi−1); (4.11c)

the backward substitution starts with x` = b`, and runs

xi = bi − Cixi+1, (4.12)

for i = `− 1, . . . , 1.
Steps (4.11a)–(4.11b) perform a block LU factorization, that needs to be com-

puted only once. Note that the factorization is destructive, but we assume that the
original matrix T is no longer needed. The factorization can be accomplished with
a few calls to BLAS’ gemm and LAPACK’s getrf/ getrs. With getrf we compute
the LU factorization with partial pivoting of the diagonal block Bi. We remark
that since the pivoting is limited to the diagonal block, this algorithm is numerically
less robust than a full LU factorization. Subsequent right-hand sides of the Arnoldi
iterations only require steps (4.11c)–(4.12).

We mentioned Thomas algorithm and its block-oriented version just for refer-
ence here, because it is an inherently serial algorithm, with little opportunity of
parallelism except for the computations within the blocks.

74

4.2. Shift and invert: Linear systems

4.2.2 Block cyclic reduction

As can be found in [50, ch. 5], besides the classical Gaussian elimination there are
several well-known algorithms to solve tridiagonal linear systems such as recursive
doubling, cyclic reduction or parallel cyclic reduction. All these methods try to
increase the number of concurrent tasks and therefore reduce the length of the
critical path, although the cost in flops is increased. They can be extended to the
block-tridiagonal case too.

One of the solvers that we have implemented is based on cyclic reduction [24] (also
known as odd/even reduction or CORF). Cyclic reduction is a recursive algorithm
to solve tridiagonal linear systems that has two main steps: a forward elimination
reduces the number of rows it works with, and a backward substitution obtains the
solution while undoing the recursion. It divides the rows in even-indexed and odd-
indexed, and in the forward elimination it recursively eliminates the even-indexed
rows in terms of the odd-indexed ones. Depending on the dimension of the matrix,
the number of rows is approximately halved in each recursion (if the number of
rows is a power of two, it is actually halved) until a single row is left. Assuming
that no division by zero is encountered in any of these steps, with the last row,
an equation with a single unknown is trivially solved. The backward substitution
step progresses increasing the number of rows used in the same proportion as the
forward elimination reduces them. It uses the current recursion level solution(s) to
compute the adjacent even-indexed rows on the previous level until all the unknowns
are solved.

As noted in [51,84], the cyclic reduction method has the property of being equiv-
alent to Gaussian elimination without pivoting on the system (PTσP

Tσ)(Px) = Pb,
where P is a permutation matrix that places first the indices that are odd multiples
of 20, then odd multiples of 21, and so on. Such link with Gaussian elimination
supports the conclusion that cyclic reduction is numerically stable in the same cases
where Gaussian elimination with diagonal pivots is. If Tσ is strictly diagonally
dominant or symmetric positive definite, then no pivoting is necessary and cyclic
reduction is stable.

A version of the algorithm that works with general block-tridiagonal matrices was
proposed in [57] and more recently reworked in [66] as BCYCLIC, where block-rows
are reduced cyclically instead of rows. In this case, the algorithm can progress as
long as the diagonal blocks are non-singular, since it is necessary to compute their
inverse, or handle them implicitly via factorization. Pivoting can be used when
factorizing the diagonal blocks but this does not guarantee the overall stability of
the algorithm. Some aspects of the numerical stability of the block cyclic reduction
were analyzed in [57] and [143], where a study of the bounds of the forward error
is conducted for the cases of (strictly) diagonally dominant matrices assuming that
the matrix is block-column diagonally dominant.

During the forward elimination stage, the block cyclic reduction computes the
inverse of the even-indexed diagonal blocks and a modified (hatted) version of the
lower and upper blocks. In the same way, a modified version of the even-indexed
blocks of the right-hand side (RHS) vector b is computed. In the first recursion, the

75

Chapter 4. Block-tridiagonal eigenvalue problems

computed quantities are

B̂2i = B−1
2i , (4.13a)

Â2i = B̂2iA2i, (4.13b)

Ĉ2i = B̂2iC2i, (4.13c)

b̂2i = B̂2ib2i, (4.13d)

for i = 1, . . . , `/2. The respective modified version of the odd-indexed blocks is then
computed by using the adjacent modified even-indexed blocks,

B̂2i−1 = B2i−1 −A2i−1Ĉ2i−2 − C2i−1Â2i, (4.14a)

Â2i−1 = −A2i−1Â2i−2, (4.14b)

Ĉ2i−1 = −C2i−1Ĉ2i, (4.14c)

b̂2i−1 = b2i−1 −A2i−1b̂2i−2 − C2i−1b̂2i. (4.14d)

In subsequent recursion levels, the computation is analogous to (4.13)-(4.14), but for
a matrix that has about half of the blocks with respect to the previous level (even
blocks have been removed).

In an MPI implementation, if the matrix is distributed across several processes,
prior to the computation of (4.14) it is necessary to ensure that Â2i, Ĉ2i and b̂2i
are accessible from the processes that own the adjacent odd-indexed block-rows, so
communication may be necessary in this case. That occurs for every recursive step
of the algorithm. The modified even-indexed blocks can overwrite the original ones,
but for the odd-indexed blocks, in order to back-solve with successive right-hand
sides, both the original lower and upper blocks and their modified versions must be
retained producing a 66% increase of memory usage during this stage.

The backward substitution stage starts by solving the single block equation

x1 = B̂1b̂1, (4.15)

where B̂1 and b̂1 correspond to quantities computed in the last recursion level. Once
this final odd-indexed block, which is the first part of the solution, is obtained,
the recursion tree is traversed in reverse order. The solution blocks from a certain
recursion level are used to compute the adjacent even-indexed blocks on the previous
level, with

x2i = b̂2i − Â2ix2i−1 − Ĉ2ix2i+1. (4.16)

Communication occurs in an analogous way as in the forward elimination, but in
the opposite direction. The algorithm continues until all blocks are processed.

The computational cost is concentrated in the first 3 operations of (4.13) and (4.14).
These operations represent the factorization itself, and can be amortized in the case
of successive right-hand sides. This is what happens in the Arnoldi method, that
needs to invoke the linear solver in each iteration of the eigensolver.

76

4.2. Shift and invert: Linear systems

4.2.3 Spike

Spike [106] is an algorithm intended for the parallel solution of banded linear systems,
with a possibly sparse band, that we have particularized for the block-tridiagonal
structure. At the outset of the algorithm, matrix Tσ is partitioned and distributed
evenly among the p available processes, and, as we mentioned before, we assume
that none of the ` block-rows are split across different processes. Each process r
organizes its local data in the form

Tr =

[
0

Dr

0
Er

0
Fr

0

]
, r = 0, . . . , p− 1, (4.17)

distinguishing between the diagonal portion Er (that is, the column range corre-
sponding to local rows), and the lower (Dr) and upper (Fr) blocks that represent
the coupling with neighbouring processes. Note that the sizes of these three blocks
differ, being the diagonal block larger than the lower and upper blocks. In our case,
the size of Dr and Fr is k, the original block size of the block-tridiagonal matrix,
whereas the diagonal block has an approximate size of n/p, being p the number of
processes used.

The Spike algorithm has two main phases: factorization and post-processing.
The factorization phase consists in computing the so-called Spike matrix, S, defined
from the decomposition Tσ = ES, where E = diag(E0, E1, . . . , Ep−1). This amounts
to multiplying the local matrix Tr by the inverse of the diagonal block Er to get the
local matrix Sr. In order to do that, the first step is to factorize the diagonal blocks
Er, and compute matrices Vr and Wr by solving the system

Er
[
Vr Wr

]
=

[[
0
Fr

] [
Dr

0

]]
(4.18)

on each process. We must emphasize that (4.18) is a system of linear equations with
2k right-hand sides, where the coefficient matrix is block-tridiagonal, and hence a
solver that exploits this structure can be used. Furthermore, this computation can
be performed independently by each process, without communication.

These Vr andWr matrices are the spikes on a matrix S whose main block-diagonal
is the identity matrix,

S =



I V̂0

Ŵ1 I V̂1

Ŵ2 I V̂2

. . .
. . .

. . .

Ŵp−2 I V̂p−2

Ŵp−1 I


, (4.19)

where we use the notation V̂r =
[
Vr 0

]
and Ŵr =

[
0 Wr

]
.

For the post-processing phase, each process divides the local portion of the matrix
S in top, middle and bottom parts, being the top and bottom parts of size k, and

77

Chapter 4. Block-tridiagonal eigenvalue problems

the middle part of the same size as Er minus 2k. For instance, the upper spike is

written as Vr =

 V
(t)
r

V
(m)
r

V
(b)
r

. Selecting only the top and bottom blocks of the spikes, a

reduced matrix

Ŝ =



I V
(t)
0

I V
(b)
0

W
(t)
1 I V

(t)
1

W
(b)
1 I V

(b)
1

. . .
. . .

. . .

W
(t)
p−2 I V

(t)
p−2

W
(b)
p−2 I V

(b)
p−2

W
(t)
p−1 I

W
(b)
p−1 I


(4.20)

is built, also with an identity matrix on its diagonal.
The first stage in the post-processing phase is the factorization of the reduced

matrix Ŝ. For the algorithm to work in parallel, the size of the original matrix has
to be large enough to distribute at least two block-rows per process, so the number
of processes has to be limited to allow this ratio when factorizing small matrices.

Once Ŝ has been factored, the next stage is to locally compute vector g = E−1b
by solving the system

Ergr = br, (4.21)

in a similar way as (4.18). Note that here br denotes the whole subvector of b stored
locally in process r, not an individual block. Vector gr is in turn partitioned in the
same top, middle and bottom parts as the spikes. From the top and bottom parts
of each process, a reduced vector ĝ is formed and used as RHS to solve the reduced
system

Ŝx̂ = ĝ, (4.22)

where x̂ refers to the top and bottom blocks of x on each process.
Finally, to fully solve the whole system, the middle parts of x can be obtained

in parallel with
x

(m)
0 = g

(m)
0 − V (m)

0 x̂
(t)
1 ,

x
(m)
j = g

(m)
j − V (m)

j x̂
(t)
j+1 −W

(m)
j x̂

(b)
j−1, j = 1, . . . , p− 2,

x
(m)
p−1 = g

(m)
p−1 −W

(m)
p−1 x̂

(b)
p−2.

(4.23)

For the case of diagonally dominant matrices, as noted in [106], it is interesting to
consider that the value of the elements of the right spikes (Vr) decays in magnitude
from bottom to top. The decay is greater, the more diagonally dominant the matrix
is. As a consequence, the value of the elements of the top block of Vr can be expected

78

4.2. Shift and invert: Linear systems

to be zero and can be discarded from the computation. The same assumption can
be done for the bottom block of the left spikes Wr. Discarding these zero blocks,
the extra reduced matrix

S̄ =



I V
(b)
0

W
(t)
1 I

I V
(b)
1

W
(t)
2 I

. . .
. . .

. . .

I V
(b)
p−3

W
(t)
p−2 I

I V
(b)
p−2

W
(t)
p−1 I


(4.24)

can be built and factored as a block-diagonal matrix, instead of as a block-tridiagonal
one. Data movement between processes is necessary to form the matrix S̄, and
all but one of the processes can work in parallel during the factorization without
communication.

Polizzi and Sameh presented in [106] an optimization for the diagonally dominant
case referred to as Truncated Spike that computes only the bottom block of Vr
and the top block of Wr. It requires to perform one LU factorization and one UL
factorization of the diagonal block Er. Their experiments proved that this approach
reduces the computing time on machines with arithmetic operations much faster than
accesses to the memory. As the spikes are not fully computed, the post-processing
stage differs from the general Spike algorithm. A study of the Truncated Spike [95]
found that if the degree of diagonal dominance

d =

(
max
i

{∑
j 6=i |aij |
|aii|

})−1

(4.25)

of the original matrix is not too close to 1 and if the partitions are sufficiently large,
then the errors at every stage of the algorithm are small. A more recent work [94]
discusses several strategies to approach the diagonally and non-diagonally dominant
cases.

Inexact shift-and-invert

For the non-diagonally dominant case, the Truncated Spike can be used as a pre-
conditioner of an iterative method to solve the linear system. In this case, the decay
of the values in the spikes is considerably less prominent, and the Truncated Spike
discards blocks with nonzero elements. The larger the block size and/or number
of processes are, the greater the valid data discarded on this step, and the worse
the approximated solution is. In such case, a large number of outer iterations is
needed, dramatically increasing the communication and the computation, making

79

Chapter 4. Block-tridiagonal eigenvalue problems

this algorithm not worthwhile to solve such kind of systems. Because of this, we
have not considered this variant in the numerical experiments.

4.3 Block cyclic tridiagonal structures

Returning to our initial example of Figure 4.1, if periodic boundary conditions are
imposed, then the domains Ω1 and Ω` are coupled, and the resulting coefficient
matrix is not purely block-tridiagonal, as in (4.1), but has additional nonzero blocks
on the top-right and bottom-left corners

M =



B1 C1 A1

A2 B2 C2

A3 B3 C3

. . .
. . .

. . .

A`−1 B`−1 C`−1

C` A` B`


, (4.26)

and hence algorithms like the block-cyclic reduction or Spike are not directly appli-
cable.

4.3.1 Schur complement

The Schur complement [114, ch. 14] is a classical method that can be applied to the
resolution of linear systems. Let M be a square matrix of dimension n partitioned
as

M =

[
A B
C D

]
, (4.27)

on which we perform a block Gaussian elimination. The Schur complement of M
relative to D is

S = M/D = A−BD−1C. (4.28)

Assuming that D is non-singular, it is possible to solve the system of linear
equations [

A B
C D

] [
x
y

]
=

[
e
f

]
(4.29)

by solving

Sx = e−BD−1f, (4.30)

and once this system is solved, the rest of the system can be solved with

Dy = f − Cx. (4.31)

In our case M is a block cyclic tridiagonal matrix as (4.26), with ` block-rows,
with blocks of size k (n = ` · k), and we take A, B, C and D to be of dimensions

80

4.4. Parallel implementations

A B

C D

Figure 4.2. Schema of the partitioning of a block cyclic tridiagonal matrix into four
smaller matrices to solve a system of linear equations by using the Schur complement.

k×k, k× q, q×k and q× q, respectively (with q = n−k) as illustrated in Figure 4.2.
With this partitioning, (4.30) is a system of small size, and D is a block-tridiagonal
matrix that can be factored in parallel with the block-cyclic reduction or Spike
algorithms.

4.4 Parallel implementations

We comment now the details of the implementations done of the block oriented
methods described to expand the Krylov subspace and how they make use of GPUs.
Given the block-tridiagonal matrix T of (4.1), we store it in memory as

rep(T) =


� B1 C1

A2 B2 C2

A3 B3 C3

...
...

...
A` B` �

 , (4.32)

where the � symbols indicate blocks with memory allocated but not being used, and
all the blocks are stored contiguously as dense blocks.

In the MPI implementation, block-rows are distributed complete across processes,
and hence only the first and last process have an unused block. Within our software,
we have used different mathematical libraries that provide us with optimized parallel
implementations of BLAS and LAPACK routines that we use to operate with the
blocks of the matrices. Intel’s MKL has been used for the CPU version of the soft-
ware, providing thread parallelism. For the GPU version we have implementations
that use cuBLAS and/or MAGMA libraries.

4.4.1 Matrix-vector product

The storage in memory mentioned in (4.32) allows us to use a single gemv BLAS call
per block-row to perform the matrix-vector product on CPU and GPU. Preceding

81

Chapter 4. Block-tridiagonal eigenvalue problems

k

pitch k

padding

lda ≥ `× k

Figure 4.3. Schema of the memory allocated in the GPU for storing a matrix block of
dimensions k×k (left), and a block tridiagonal matrix stored in 2D memory (right).
The blocks are represented transposed to illustrate that we store the matrices using
a column-major order.

the multiplication, in an MPI implementation, each process needs to receive from
its neighbours the parts of the RHS vector of the size of a matrix block, necessary to
perform the computation. We remark that when allocating memory for rep(T) on
the GPU, this compact storage shape allows us to use 2D memory (pitched mem-
ory), to guarantee the alignment of the columns, which is important for coalesced
memory accesses. Matrices in (CUDA) C are stored in a row-major order, and the
cudaMallocPitch function arguments follow this memory layout providing align-
ment for the rows (the requested width), but we work with matrices organized in
column-major order. Figure 4.3 shows how we store the matrix by blocks, allocating
dense 2D blocks in memory and using them with a column-major layout. Apart
from the (cu)BLAS version, we have also implemented a customized CUDA kernel
that performs the whole matrix-vector computation with a single kernel invocation.

The kernel is invoked from the wrapper function shown in Figure 4.4. This host
function selects the appropriate GPU card to be used based on the process rank in
the MPI communicator, prepares the kernel execution, by configuring the sizes of the
CUDA block and grid in a one dimensional shape, in which it distributes the rows of
the matrix, and verifies the correct execution. When establishing the dimensions, it
starts setting a fixed CUDA block size of 256, and (if necessary) halves it until it is
less or equal to the matrix block size. The desired effect of this action is to increase
the number of blocks, that are distributed across the streaming multiprocessors,
increasing the card’s occupancy. Starting with a block size of 256 ensures that the
resulting number of threads in the block does not exceed the hardware maximum,
and that is divisible by the warp size1. With this setting, the number of registers
and the amount of shared memory used in the kernel is within the hardware limits.

1We do not expect to work with matrix block sizes smaller than the warp size.

82

4.4. Parallel implementations

#define CUDA_THREADS 256

#define COMPACT_BLOCK_COLUMNS 3

__host__ PetscErrorCode

blas_dgbmvn(PetscInt m, PetscInt n, const PetscScalar *A,

PetscInt lda, const PetscScalar *x, PetscScalar *y)

{

PetscInt size, rank, first, last, cuda_threads, nblk;

dim3 grid, threads;

cudaError_t cerr;

set_cuda_device();

MPI_Comm_size(PETSC_COMM_WORLD,&size);

MPI_Comm_rank(PETSC_COMM_WORLD,&rank);

first = last = 0;

if (rank == 0) first = 1;

if (rank == size - 1) last = 1;

nblk = n / COMPACT_BLOCK_COLUMNS;

cuda_threads = CUDA_THREADS;

/* reduce the number of threads with small block size matrices */

/* helps to distribute the work between more processors */

while (cuda_threads > nblk) cuda_threads /= 2;

threads.x = cuda_threads;

/* cuda blocks per matrix block */

grid.x = (PetscInt) PetscCeilReal((PetscReal) nblk / cuda_threads);

grid.x *= (m / nblk);

if (threads.x) {

dgbmvn_kernel<<<grid, threads>>>(m, n, A, lda, x, y, first, last);

cerr = cudaGetLastError(); CHKERRCUDA(cerr);

}

return 0;

}

Figure 4.4. Wrapper function for the matrix-vector kernel.

Since a single process uses a single GPU, in order to use all the available cards per
node, the number of processes should be at least one per card. The selection of the
card by the processes is done taking into account the number of available cards and
the rank of the process, in the same way as it is done in Chapter 3 (Section 3.4.3),
to attempt that each process uses a different CUDA card.

As the compact storage uses aligned memory by blocks, the matrix-vector prod-
uct is computed by block-rows. The kernel, shown in Figure 4.5, receives the pointers
to the data, the dimensions of the compacted storage, the leading dimension of the
matrix, and two flags, that indicate if the process has the first and/or last rank in
the MPI communicator.

At the beginning of the function, each thread computes several indexes that point
out on which data to operate. All the threads in a CUDA block work with data
on the same matrix block-row. The first thing computed is the number of CUDA

83

Chapter 4. Block-tridiagonal eigenvalue problems

blocks necessary to operate within a matrix block-row. With this number and the
CUDA block index, it is possible to know the index of the assigned local matrix
block-row. The local prefix refers to the local portion of the matrix stored by the
process. After that, the index of the row on the current matrix block-row, the local
matrix row index, and the vector index are computed.

In order to benefit from coalesced memory operations, each thread computes
all the elements in the matrix row that it has been assigned. This way, the load
operation from global memory of the matrix elements is done jointly by all the
threads in the same CUDA block. The advance of the computation through the
columns is done in parallel by all the threads of the same CUDA block, in a loop, in
batches of the size of the CUDA blocks, and without going beyond the last column.
Within this loop, that has the CUDA block size as step, each thread of the block
loads one element of the vector into a shared memory in a single step. This way,
a consecutive part of the vector, of size equal to the number of threads, is stored
in shared memory. In another inner loop each thread multiplies the consecutive
elements of the matrix row times the corresponding elements of the vector stored in
shared memory.

By default, in the main loop, all threads compute all columns of the storage
between the first one and the largest multiple of the CUDA block dimension not
greater than the last column. In the case of the threads computing the first matrix
block, the column in which they begin is shifted to the right by one matrix block.
And in the case of the threads computing the last matrix block, the last column
computed is the largest multiple of the CUDA block dimension not greater than two
matrix blocks. See again the storage of the matrix in Figure 4.3.

The main loop can leave columns of the matrix without being computed. As
these remaining operations require additional checks that create divergent branches
in the code flow, and slow down the computation, they are done separately. The
process of storing the vector in shared memory and performing the multiplication
is repeated with the remaining columns outside the loop. Finally, the result of each
row is stored on the output vector.

4.4.2 Direct linear solvers

The algorithms employed to solve linear systems of equations when computing in-
terior eigenvalues are implemented by means of BLAS and LAPACK routines. To
adapt the algorithms in this section to solve multiple RHS on subsequent iterations
of Arnoldi, practical implementations split them in two subroutines, factorization
and solve. In all cases, the factorization of the matrix excludes the operations with
the RHS vector(s), and those excluded steps are done in the solve subroutine. This
allows us to invoke the factorization only once, and use the solve in each iteration
of Arnoldi.

84

4.4. Parallel implementations

__global__ void

dgbmvn_kernel(PetscInt m, PetscInt n, const PetscScalar *A, PetscInt lda,

const PetscScalar *x, PetscScalar *y, PetscInt first, PetscInt last)

{

PetscInt i, j, jbegin, jend, idx, yidx, nblk, block0, pitch;

PetscInt nmax, cblockspb, row;

PetscScalar res;

__shared__ PetscScalar shx[CUDA_THREADS];

nblk = n / COMPACT_BLOCK_COLUMNS;

pitch = (lda / (m / nblk));

/* cuda blocks per matrix block */

cblockspb = (PetscInt) PetscCeilReal((PetscReal) nblk / blockDim.x);

block0 = blockIdx.x / cblockspb; /* local matrix block index */

/* row on current matrix block */

row = (((blockIdx.x % cblockspb) * blockDim.x) + threadIdx.x);

idx = block0 * pitch + row; /* local matrix row index */

yidx = block0 * nblk + row; /* local vector index */

res = 0.0;

nmax = n;

jbegin = 0;

jend = ((n / blockDim.x) * blockDim.x);

if (first && (block0 == 0)) {

jbegin = nblk;

jend = (((nblk * 2) / blockDim.x) * blockDim.x);

}

if (last && (block0 == ((lda / pitch) - 1))) {

nmax= nblk * 2;

jend = (((nmax) / blockDim.x) * blockDim.x);

}

A += idx + lda * jbegin;

x += jbegin + (block0 * nblk) + threadIdx.x;

for (i = 0; i < jend; i += blockDim.x) {

shx[threadIdx.x] = x[i];

__syncthreads();

for (j = 0; j < blockDim.x; j++) {

res += A[0] * shx[j];

A += lda;

}

__syncthreads();

}

if (nmax > jend + jbegin) { /* remaining columns */

if (threadIdx.x + jbegin + jend < nmax) shx[threadIdx.x] = x[jend];

__syncthreads();

if (row < nblk) {

for (j = 0; j < (nmax - (jend + jbegin)); j++) {

res += A[0] * shx[j];

A += lda;

}

}

}

/* do not write beyond the matrix block size */

if (row < nblk) y[yidx] = res;

}

Figure 4.5. Matrix-vector kernel.

85

Chapter 4. Block-tridiagonal eigenvalue problems

Bcyclic

As a classical algorithm, the cyclic reduction has already been widely implemented
for different programming paradigms and computer architectures. Studies of its
performance on GPU against other solvers for tridiagonal matrices were carried
out by Zhang et al. [146]. MPI-based implementations were studied for the block-
tridiagonal case in [66] and [118]. The authors of the former combined the use of
MPI parallelism over the block-rows with a threaded parallelism with OpenMP or
GotoBLAS to perform the local operations. The effect of the block size in the per-
formance was studied in [118]. A heterogeneous approach was implemented by Park
and Perumalla [104], who use MPI, and the block arithmetic is done simultaneously
on GPU with cuBLAS or MAGMA [132], and on multicore processors with ACML.
Another single-GPU implementation for the block-tridiagonal case was done in [10],
whose authors tested a variety of block and matrix sizes, showing that a better per-
formance is obtained with systems with relatively large block sizes by better utilizing
the available GPU threads. Recently, a comparison of the classical solvers, includ-
ing Thomas algorithm, was addressed in [86], implementing them on CPU, many
integrated cores (MIC) architecture, and GPU accelerators for the case of using a
single node.

Algorithms 4.2 and 4.3 summarize the operations done on each of the two sub-
routines of the BCYCLIC algorithm with an iterative implementation. We remark
that some (parts) of the operations of the algorithms only take place if the involved
blocks exist on the process at the current level. In Algorithm 4.2, those operations
correspond to steps 12, 14, 16, 17 and 18, and in Algorithm 4.3 they correspond to
steps 12, 14, 18, 26 and 28.

Step 2 of Algorithms 4.2 and 4.3, which is detailed in Algorithm 4.4, obtains the
lower and upper limit of the range of block-rows owned by the calling process. Al-
gorithm 4.2 goes exclusively through the dlog2(`)e levels of the forward elimination,
while Algorithm 4.3 performs the forward elimination and the backward substitu-
tion.

In Algorithm 4.2, there are two alternatives available to deal with the inverse of
the diagonal blocks in step 10. One is to explicitly compute the inverse by means
of LAPACK routines getrf and getri. It could seem inappropriate to do this due
to the high cost of computing the inverse, but once it is computed, the rest of the
steps of the algorithm can be done with optimized matrix-matrix and matrix-vector
multiplications. The other alternative is to solve linear systems by using LAPACK
routines getrf and getrs, that a priori seems the more reasonable way to go due to
the cheaper cost of the operations, but as we will see in Section 4.5 the performance
obtained with this alternative is seldom the best.

In steps 18 and 28 of Algorithm 4.3, parts of the solution vector are exchanged
between processes. One block of the solution vector can be adjacent to multiple
blocks at different levels of the backward substitution, and those blocks can belong
to the same or different processes. To avoid repeating the same communication twice
between the same pair of processes, the implementations of Algorithm 4.3 can store
and take note of the parts of the solution vector already sent/received.

86

4.4. Parallel implementations

Algorithm 4.2. BCYCLIC factorization

1 For all processes (with rank r) do in parallel
2 [low, high] = GetOwnershipRange(p,r,`)
3 for j = 1 : dlog2(`)e do /* For each iteration level */

4 begin = 2j−1 + 1
5 if begin ≤ high then
6 while begin < low do begin = begin + 2j

7 begin = begin− low

8 end
9 for i = begin : 2j : `r do /* For each even block-row */

10 B̂2i = B−1
2i

11 Â2i = B̂2iA2i

12 Ĉ2i = B̂2iC2i

13 end

14 Send/receive Â and Ĉ to/from adjacent block-rows
15 for i = 1 : 2j : `r do /* For each odd block-row */

16 Â2i−1 = −A2i−1Â2i−2

17 B̂2i−1 = B2i−1 −A2i−1Ĉ2i−2 − C2i−1Â2i

18 Ĉ2i−1 = −C2i−1Ĉ2i

19 end

20 end

21 if r == 0 then B̂1 = B−1
1

22 end

87

Chapter 4. Block-tridiagonal eigenvalue problems

Algorithm 4.3. BCYCLIC solve

1 For all processes (with rank r) do in parallel
2 [low, high] = GetOwnershipRange(r,`,p)
3 for j = 1 : dlog2(`)e do /* For each iteration level */

4 begin = 2j−1 + 1
5 if begin ≤ high then
6 while begin < low do begin = begin + 2j

7 begin = begin− low

8 end
9 for i = begin : 2j : `r do /* For each even block-row */

10 b̂2i = B̂2ib2i
11 end

12 Send/receive b̂ to/from adjacent block-rows
13 for i = 1 : 2j : `r do /* For each odd block-row */

14 b̂2i−1 = b2i−1 −A2i−1b̂2i−2 − C2i−1b̂2i
15 end

16 end

17 if r == 0 then x1 = b̂1 = B̂1b1
18 Send/receive x1 to/from adjacent block-rows
19 for j = dlog2(`)e : −1 : 1 do /* For each iteration level */

20 begin = 2j−1 + 1;
21 if begin ≤ high then
22 while begin < low do begin = begin + 2j

23 begin = begin− low

24 end
25 for j = begin : 2j : `r do /* For each even block-row */

26 x2i = b̂2i − Â2ix2i−1 − Ĉ2ix2i+1

27 end
28 Send/receive x to/from adjacent block-rows

29 end

30 end

88

4.4. Parallel implementations

Algorithm 4.4. GetOwnershipRange

Input: number of processes: p, process identifier: r, number of block-rows: `
Output: global index of the first block-row owned by the process: low, global

index of the last block-row owned by the process: high
1 if r < (` mod p) then
2 low = r(b`/pc+ 2)
3 high = low + b`/pc+ 1

4 else
5 low = rb`/pc+ (` mod p) + 1
6 high = low + b`/pc
7 end

Table 4.1. BCYCLIC implementations with each of the mathematical libraries.

Non-batched Batched

Math library getri getrs getri 1 getri 2 getrs

CPU MKL 3 3 - - -

GPU
cuBLAS - - 3 3 3
MAGMA 3 3 3 3 3

Table 4.1 summarizes the BCYCLIC implementations we have put into practice.
In them we have used the batched operations provided by the GPU libraries used, as
they allow us to invoke a single function call to factorize, solve, invert or multiply all
the even-indexed diagonal blocks owned by a process, per recursive step. In the case
of the gemm function, the batched variant is expected to perform well with small
matrices only. So we have created two variants of the GPU version that computes
the inverse of the diagonal blocks, one with normal gemm in a loop (denoted as
getri 1) and another one with batched gemm (denoted as getri 2). We also made

CPU-equivalent implementations, that run on GPU without batched operations, by
making use of the MAGMA library.

Spike

The Spike algorithm is available in the Intel Spike library2 with an MPI-based imple-
mentation. Another implementation, specific for tridiagonal systems, was developed
in [27] for the (multi-)GPU case and later included in the cuSPARSE library. A
modification of Spike for tridiagonal systems, that makes use of QR factorization
without pivoting via Givens rotations, presented in [136] as g-Spike, safeguards the
algorithm in case that the partitioning of the matrix results in at least one of the
Er diagonal blocks being singular. This work was later adapted to the Intel Xeon

2https://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/

89

https://software.intel.com/en-us/articles/intel-adaptive-spike-based-solver/

Chapter 4. Block-tridiagonal eigenvalue problems

Phi platform in [137]. An implementation of the Truncated Spike was used as a
preconditioner to solve tridiagonal linear systems on GPU in [119] through the use
of the CUSP library.

In our case, we focus on developing a fast implementation of the algorithm by
making use of several GPUs to perform the block arithmetic managed by a multi-
process MPI solution in a similar way as [104]. When using the Spike algorithm to
solve a block-tridiagonal system, the band has to be large enough to cover all the
entries of the original matrix and additional triangular zero borders are included
in the computation. We avoid the extra work that this would entail by factorizing
the main diagonal block exploiting its block-tridiagonal structure. To do that, our
implementations of Spike make use of the BCYCLIC implementations to solve the
linear systems involved.

The factorization subroutine of Spike is represented in Algorithm 4.5, in which
we can remark that only step 5 requires communication.

Algorithm 4.5. Spike factorization

1 For all processes (with rank r) do in parallel

2 Ẽr = bcyclic factorize(Er)

3 [Vr,Wr] = bc4spike solve(Ẽr, Fr, Dr)

4 Build Ŝ with top and bottom parts of Vr and Wr

5 S̃ = bcyclic factorize(Ŝ)

6 end

Step 2 factorizes the diagonal block (block-tridiagonal) Er and step 3 solves the
corresponding system (4.18) to compute the spikes. For step 3, a different version of
Algorithm 4.3 was implemented to deal with multiple RHS and to send/receive mul-
tiple times the same block of the solution vector (in this case, the re-sending option
was chosen to reduce the allocated memory by eliminating the buffer mechanism, as
no communication exists on this step). Also, due to the high number of zeros in the
RHS matrices of (4.18), another modification was introduced in the BCYCLIC solve
used (bc4spike solve) that saves time by skipping operations involving zero blocks
on every recursion of the algorithm.

The second factorization needed in step 5 of Algorithm 4.5 is the factorization of
the reduced matrix (Ŝ), that is also done by means of BCYCLIC and, in this case,
communication occurs between the processes as the matrix is distributed across
them.

The solve subroutine of Spike is shown in Algorithm 4.6, in which the steps
involving communication are 4, 5 and 6. Step 8 of Algorithm 4.6, that computes the
middle part of the final solution on each process, corresponds to (4.23).

The memory requirements of our Spike implementations are higher than those of
BCYCLIC, since in addition to the original matrix size and the 66% extra amount of
memory used by BCYCLIC to perform the factorization of the local diagonal block
Er, more memory has to be allocated to build the reduced matrix, whose block size

90

4.4. Parallel implementations

Algorithm 4.6. Spike solve

1 For all processes (with rank r) do in parallel

2 gr = bcyclic solve(Ẽr, br)
3 Build ĝ with top and bottom parts of gr
4 x̂ = bcyclic solve(S̃, ĝ)

5 Send x̂
(t)
r and x̂

(b)
r to r − 1 and r + 1, respectively

6 Receive x̂
(t)
r+1 and x̂

(b)
r−1

7 x(t) = x̂(t)

8 x
(m)
r = g

(m)
r − V (m)

r x̂
(t)
r+1 −W

(m)
r x̂

(b)
r−1

9 x(b) = x̂(b)

10 end

Table 4.2. Operations used to factorize the two matrices and solve the systems on
the Spike implementations.

Spike Reduced Spike

Matrix Er Matrix Ŝ Matrix Er Matrix S̄

Factorization
subroutine

Fact. bcyclic Fact. bcyclic
Solve bc4spike Solve bc4spike

Fact. bcyclic Fact. getrf

Solve
subroutine

Solve bcyclic Solve bcyclic
Solve bcyclic Solve getrs

is twice as large as the original block size, and it has its own 66% increase. Besides
that, the auxiliary memory buffers used to send and receive blocks have to be of this
new double block size.

For diagonally dominant matrices, a variant of the Truncated Spike algorithm
that works with the extra reduced matrix S̄ of (4.24) can be used. In the sequel, this
method is referred to as reduced Spike. In our case, the implementation does not
limit the solve to the first and last k × k blocks, but computes the full spikes (done
via the BCYCLIC algorithm). The reduction in the computation that it provides
is obtained through the use of the extra reduced system, as the blocks discarded
should not contain any nonzero elements. Since the spikes are fully computed, the
logic of the algorithm that processes the diagonal blocks Er does not change with
respect to the general Spike. The extra reduced matrix can be factored in parallel
with a getrf call on each process without any communication or additional storage.

The solve subroutine of both variants of the Spike algorithm differs in the second
solve used with the reduced matrix. A summary of the different operations employed
by both variants can be seen in Table 4.2.

91

Chapter 4. Block-tridiagonal eigenvalue problems

P0

P1

P2

P3

A B

C D

Figure 4.6. Distribution of the four sub-matrices of Figure 4.2 among several pro-
cesses and its representation in memory.

Block cyclic tridiagonal

In our implementation of the Schur complement of Section 4.3.1, the submatrices A
and B of (4.27) are stored on the first process, and C and D are partitioned among
all the existing processes. Figure 4.6 illustrates this data distribution, where we can
see how only the nonzero blocks of B are stored while the full size of C is allocated.
D is a block-tridiagonal matrix that can be stored compacted as in (4.32), reducing
the unused blocks to two.

When computing the Schur complement (4.28), the D−1C operation implies a
linear solve with multiple right-hand sides, that can be computed in parallel, and
since C has only two nonzero blocks on its edges, the computation involving the null
blocks can be avoided during the solve stage of the block-cyclic reduction, reducing
the processing time. The remaining operations to compute the Schur complement
are only done by the first process, as it stores the first block-row of M that includes
A and B. As B also has only two nonzero blocks, the matrix multiplication B
times D−1C can be cheaply done by multiplying only these two blocks with the
corresponding blocks of D−1C; one of them is already stored in this first process
and the other must be sent by the process with the highest rank.

In order to obtain x, the system (4.30) is solved in a similar way as (4.28) by
computing D−1f in parallel with block-cyclic reduction. But this time no reduction
in the operations is possible as f does not have any special zero pattern.

Once the first block of the solution is obtained, it must be sent from the first to
the last process for them both to compute f − Cx, and after that, the block-cyclic
reduction method can be used again to finally solve (4.31) in parallel.

4.5 Numerical experiments

After the development of the algorithms and with all the codes prepared for real
and complex arithmetic, in both single and double precision, we performed some
computational experiments aiming at assessing the performance of our software.
Here we present the results of those experiments corresponding to real scalars using
single and double precision.

92

4.5. Numerical experiments

10 50 90 130

104

105

106

`

M
F
L
O
P
S

k=960

10 50 90 130

104

105

106

`

k=960

GPU single CPU single

GPU double CPU double

Figure 4.7. Performance of the matrix-vector product operation to compute the
largest magnitude eigenvalue, for a fixed block size k = 960 and varying the number
of blocks ` for both CPU and GPU on the Fermi (left) and Kepler (right) machine,
in single and double precision arithmetic.

4.5.1 Single process executions

The matrix-vector product and the block cyclic reduction algorithm have been
tested on single process computational experiments, conducted on random block-
tridiagonal matrices of multiple sizes, where we have varied the number of blocks `,
and the block size k, up to reach the maximum storage space available on the GPU
card. The four number of blocks used go from 10 to 130 with intervals of 40, and
the block sizes vary between a minimum of 64 and a maximum of 960 with intervals
of 128. The matrices used have been generated in all cases on the CPU to use the
exact same matrix on both runs (CPU and GPU).

These tests have been run on two computer platforms:

Fermi 2 Intel Xeon E5649 processor (6 cores) at 2.53 GHz, 24 GB of main memory;
2 GPUs NVIDIA Tesla M2090, 512 cores and 6 GB GDDR per GPU. RHEL
6.0, with GCC 4.6.1 and MKL 11.1.

Kepler 2 Intel Core i7 3820 processor (2 cores) at 3,60 GHz with 16 GB of main
memory; 2 GPUs NVIDIA Tesla K20c, with 2496 cores and 5 GB GDDR per
GPU. CentOS 6.6, with GCC 4.4.7 and MKL 11.0.2.

In both platforms, the other software used is PETSc and SLEPc 3.6-dev, CUDA 7.0
and CUSP 0.5.0.

The matrix-vector product on CPU uses calls to BLAS’ gemv and is linked with
MKL, and on GPU it uses the ad-hoc CUDA kernel of Figure 4.5. To assess their
performance, we have computed the largest magnitude eigenvalue, for which the
computation requires about 100 matrix-vector products.

93

Chapter 4. Block-tridiagonal eigenvalue problems

10 50 90 130

0

10

20

30

`

S
ec
on

d
s

k=960

10 50 90 130

0

10

20

30

`

k=960

GPU single CPU single

GPU double CPU double

Figure 4.8. Total eigensolve operation time to compute the largest magnitude eigen-
value, for a fixed block size k = 960 and varying the number of blocks ` for both
CPU and GPU on the Fermi (left) and Kepler (right) machine, in double precision
arithmetic.

64 192 320 448 576 704 832 960

103

104

105

106

k

M
F
L
O
P
S

`=130

64 192 320 448 576 704 832 960

103

104

105

106

k

`=130

GPU single CPU single

GPU double CPU double

Figure 4.9. Performance of the matrix-vector product operation to compute the
largest magnitude eigenvalue, for a fixed number of blocks ` = 130 and varying the
block size k for both CPU and GPU on the Fermi (left) and Kepler (right) machine,
in single and double precision arithmetic.

94

4.5. Numerical experiments

64 192 320 448 576 704 832 960

0

10

20

30

k

S
ec
on

d
s

`=130

64 192 320 448 576 704 832 960

0

10

20

30

k

`=130

GPU single CPU single

GPU double CPU double

Figure 4.10. Total eigensolve operation time to compute the largest magnitude
eigenvalue, for a fixed number of blocks ` = 130 and varying the block size k for
both CPU and GPU on the Fermi (left) and Kepler (right) machine, in double
precision arithmetic.

Figures 4.7 and 4.9 show the Mflop/s rate obtained with the matrix-vector prod-
uct operation, and Figures 4.8 and 4.10 show the total eigensolve operation time,
when computing the largest magnitude eigenvalue. With a large block size (Fig-
ure 4.7), we can see that the performance does not depend too much on the number
of blocks. In contrast, when we fix the number of blocks (Figure 4.9) the performance
is significantly lower for small block sizes. In any case, the benefit of using the GPU
is evident since we are able to reach about 1 Tflop/s with large block sizes. The
GPU runs obtain speedups up to 9.0 (single) and 8.2 (double) on Fermi, with little
variation when modifying the block size, and up to 20.8 (single) and 15.2 (double)
on Kepler, with respect to the CPU runs. On Kepler, although the greatest per-
formance is obtained with large block sizes, the speedup is reduced when increasing
them.

For assessing the performance of the shift-and-invert computation using the block
oriented cyclic reduction algorithm, we have computed one eigenvalue closest to the
origin (σ = 0). The implementation of the block cyclic reduction used on these
runs avoids to explicitly compute the inverse of the diagonal blocks Bi and solves
a system of linear equations with the batched version of the getrs routine provided
by cuBLAS. Results are shown in Figures 4.11–4.14. In this case, the GPU version
does not beat the CPU computation (using as many threads as computational cores
in MKL operations). Nevertheless we can appreciate the sensitiveness of the GPU
to the data size, as its performance improves when the number of blocks is increased
(for a large block size), as well as when the block size is increased, while the CPU
is only affected by the block size. The reported Mflop/s rates correspond to the LU
factorization, whereas the triangular solves only achieve a performance around 2.5-4

95

Chapter 4. Block-tridiagonal eigenvalue problems

10 50 90 130

104.4

104.6

104.8

105

105.2

`

M
F
L
O
P
S

k=960

10 50 90 130

104.5

105

`

k=960

GPU single CPU single

GPU double CPU double

Figure 4.11. Performance of the factorization operation to compute the eigenvalue
closest to the origin, for a fixed block size k = 960 and varying the number of blocks
` for both CPU and GPU on the Fermi (left) and Kepler (right) machine, in double
precision arithmetic.

10 50 90 130

0

5

10

15

20

25

`

S
ec
on

d
s

k=960

10 50 90 130

0

5

10

15

20

`

k=960

GPU single CPU single

GPU double CPU double

Figure 4.12. Total eigensolve operation time to compute the eigenvalue closest to
the origin, for a fixed block size k = 960 and varying the number of blocks ` for both
CPU and GPU on the Fermi (left) and Kepler (right) machine, in double precision
arithmetic.

96

4.5. Numerical experiments

64 192 320 448 576 704 832 960

104

105

k

M
F
L
O
P
S

`=130

64 192 320 448 576 704 832 960

104

105

k

`=130

GPU single CPU single

GPU double CPU double

Figure 4.13. Performance of factorization to compute the eigenvalue closest to the
origin, for a fixed number of blocks ` = 130 and varying the block size k for both
CPU and GPU on the Fermi (left) and Kepler (right) machine, in double precision
arithmetic.

64 192 320 448 576 704 832 960

0

10

20

30

k

S
ec
on

d
s

`=130

64 192 320 448 576 704 832 960

0

5

10

15

20

25

k

l`=130

GPU single CPU single

GPU double CPU double

Figure 4.14. Total eigensolve operation time to compute the eigenvalue closest to
the origin, for a fixed number of blocks ` = 130 and varying the block size k for both
CPU and GPU on the Fermi (left) and Kepler (right) machine, in double precision
arithmetic.

97

Chapter 4. Block-tridiagonal eigenvalue problems

Gflop/s, both on CPU and GPU. The performance of the single precision tests is
presented, but they provided inaccurate results. The time shown in Figures 4.12
and 4.14 corresponds to the total eigensolve operation, using the same number of
restarts on both GPU and CPU runs. All in all, the performance is much worse
than in the matrix-vector product case, as expected.

4.5.2 Multi-process executions

The problem dimension of scientific applications has increased over time, and made
necessary to use multi-process solutions. In this section we test our software with
multi-process executions, as we are especially interested in evaluating the scalability
for an increasing number of MPI processes (and GPUs), and also in knowing how
the matrix block size impacts the performance, as the communication is directly
affected by it. Another question we want to answer with the tests is which of
the implemented variants performs best. We focus now on the time needed to
perform the computation, rather than on the flop/s rate, and to strengthen the
results obtained, on these executions we have moved the random generated matrices
off the scene and employ matrices from real applications.

Block-tridiagonal case

For the scalability studies, we consider an application coming from astrophysics,
where the matrices are banded (with a dense band) and can be generated for any
matrix size with arbitrary bandwidth. The integral operator T : X → X, arising
from a transfer problem in stellar atmospheres [1], is defined by

(Tϕ) (τ) =
$

2

∫ τ?

0

∫ ∞
1

e−|τ−τ
′|µ

µ
dµϕ(τ ′)dτ, τ ∈ [0, τ?] , (4.33)

which depends on the albedo, $ ∈ [0, 1], and the optical thickness of the stellar
atmosphere, τ?. We are interested in the eigenvalue problem Tϕ = λϕ with λ ∈ C
and ϕ ∈ X. This problem can be solved via discretization, that is, by projection
onto a finite dimensional subspace Xn, resulting in an algebraic eigenvalue problem
Anxn = θnxn of dimension n, where An is the restriction of the projected operator
to Xn. Further details can be found in [135].

Due to the exponential decay, the matrix An has a banded structure, with a
bandwidth depending on the ratio between the matrix size, n, and the parameter
τ?,

bw =

⌊
n

(
1− exp

(
− n

tcτ?

))⌋
, (4.34)

where tc = max(n/100, 5). We always choose τ? in such a way that the band is
contained within a block-tridiagonal structure, that we compute as dense.

As before, the problem size n is defined by the number of block-rows, `, and by
the block size, k. The strong and weak scaling analyses have been obtained with
a batch of experiments on which the number of processes vary in powers of two

98

4.5. Numerical experiments

Table 4.3. Block sizes and number of block-rows used for the strong and weak scaling
experiments. The column of the weak scaling shows the number of rows used with
128 processes, that is halved with the number of processes.

Number of block-rows

Block size Strong scaling Weak scaling

64 4800 51200
96 3200 38400

128 2400 25600
256 1200 12800
384 800 9600
512 600 6400
640 480 5600
768 400 4800
896 343 4000

1024 300 3200

from 1 to 128, and ten different block sizes that vary from 64 up to 1024 have been
tested. Table 4.3 details the block sizes used and the number of block-rows with
each block size. When computing the weak scaling, as the problem size per process
is maintained fixed, the number of block-rows per process depends exclusively on the
block size (for a given matrix size). For the strong scaling, the number of block-rows
depends on the number of processes used, on the block size and on the process index,
as the total matrix size does not change.

In these tests we are interested in computing eigenvalues closest to the albedo
parameter. As we know that all the eigenvalues are smaller than the albedo, we
use it as shift with the shift-and-invert technique operating on matrix (An−$I)−1,
where $ = 0.75 in our runs. In all cases, the relative residual norm of the computed
eigenpairs, ‖Az−θz‖/‖θz‖, is always below the requested tolerance, tol = 10−8. We
have set the eigensolver to restart with a basis size of 16. In most runs, all eigenvalues
converge without needing to restart, and hence 16 linear solves are performed per
each factorization.

The executions have been carried out on Minotauro3, on a cluster equipped with
four GPUs per node. The cluster is formed by 39 servers with two Intel Xeon E5-
2630 v3 processors and 128 GB of RAM, interconnected with FDR Infiniband cards
at 56 Gb/s in a switched fabric network topology, and two NVIDIA K80 cards. Each
K80 has two Kepler GPUs with 2496 cores and 12 GB of GDDR memory per GPU.

The servers run RedHat Linux 6.7 as operating system, and our software has been
compiled with gcc 4.6.1 using PETSc and SLEPc 3.7-dev, and linked with the Intel
MKL 11.3.2, NVIDIA CUDA 7.5 and MAGMA 1.7.0 libraries. The MPI version used
for the inter-process communication is the cluster’s manufacturer bullxmpi 1.2.9.1.

3Minotauro experienced a partial upgrade in March 2016. We here use exclusively the new
cluster.

99

Chapter 4. Block-tridiagonal eigenvalue problems

Since our codes use a single GPU per process, the number of processes per node
has been limited to four in order to fully utilize the servers without oversubscribing
the GPU cards with more than one process when running the GPU executions. In
the case of the CPU runs, the same limit of four processes per node has been used
to have the same communication overhead, and in this case the number of threads
has been set also to four, to allow the software to use all the computational cores
(one thread per core) with the four processes.

We have prepared three sets of experiments to evaluate the weak scaling of the
different software versions, which compute 5 eigenvalues. In the following figures
we show the factorization time and the aggregated time of the multiple solves of
the Arnoldi algorithm needed to obtain five eigenvalues working in double precision
arithmetic for the smallest and the largest block sizes used.

The first set shows the time needed with the non-batched versions of BCYCLIC
for both approaches: explicitly computing the inverse of the diagonal block (getri)
or solving linear systems (getrs). The initial highlight is the better performance of
the CPU executions with small block sizes and the better performance on the GPU
with large block sizes. With small block sizes, the kernels executed on the GPU do
not allow the devices to obtain their maximum performance.

In Figure 4.15 it is clear how explicitly computing the inverse takes more time
during the factorization stage, and less in the solving stage, as could be expected. For
larger block sizes the differences between the getri and getrs versions disappear in
both stages, and the getri times turn to be slightly smaller in the factorization while
maintain the better performance during the solve, as can be seen in Figure 4.16.

The factorization subroutine that uses getri to compute the inverse of the diag-
onal blocks on the CPU requires a block size larger than 512 to be faster than the
one using getrs, while the GPU executions start to be faster with a block size larger
than 128.

The second set of experiments shows exclusively executions on the GPU. We
carry out a comparison of the five implementations that compute the inverse: the
one already used in the first set (getri) and two more batched implementations
(getri 1 and getri 2) per library used. Both batched versions share the same solve
stage, so no different results should be seen in it.

Figure 4.17 allows us to see how for a small block size, any of the batched versions
performs faster than the non-batched one during the factorization. As expected, the
batched versions allow the software to gain performance by computing the blocks
in parallel. The solve results show a significant difference between the cuBLAS and
MAGMA libraries due to their inherent performance, being cuBLAS faster in this
stage.

The executions with a large block size seen in Figure 4.18 do not show the
difference in time between the batched and non-batched implementations that occurs
in the factorization with small sizes, as in this case, the large block size is enough
to fulfill the massive parallel processing of the GPU. This occurs with block sizes
larger than 512.

It is noticeable in Figure 4.18 how the cuBLAS implementations need consider-
ably more time to perform the factorization while they are the fastest during the

100

4.5. Numerical experiments

1 2 4 8 16 32 64 128
0.00

0.20

0.40

0.60

0.80

p

S
ec

o
n
d
s

Factorization

1 2 4 8 16 32 64 128

0.20

0.40

0.60

0.80

1.00

p

Solves

CPU getri CPU getrs
GPU getri GPU getrs

Figure 4.15. Weak scaling for the BCYCLIC algorithm running on CPU and on
GPU with the non-batched version with k = 64 and ` = p · 400, where p is the
number of MPI processes.

1 2 4 8 16 32 64 128

1.00

2.00

3.00

4.00

5.00

6.00

p

S
ec

on
d
s

Factorization

1 2 4 8 16 32 64 128

0.00

0.50

1.00

1.50

p

Solves

CPU bcyclic getri CPU bcyclic getrs
GPU bcyclic getri GPU bcyclic getrs

Figure 4.16. Weak scaling for the BCYCLIC algorithm running on CPU and on
GPU with the non-batched version with k = 1024 and ` = p · 25, where p is the
number of MPI processes.

101

Chapter 4. Block-tridiagonal eigenvalue problems

1 2 4 8 16 32 64 128

0.00

0.20

0.40

0.60

0.80

p

S
ec

on
d
s

Factorization

1 2 4 8 16 32 64 128

0.20

0.40

0.60

p

Solves

getri 1 cublas getri 2 cublas
getri 1 magma getri 2 magma
getri nobatch

Figure 4.17. Weak scaling for the BCYCLIC algorithm running on GPU with
batched and non-batched versions with k = 64 and ` = p · 400, where p is the
number of MPI processes.

solve stage. These findings made us build a combined version of the software to ben-
efit from the best of each libraries. This hybrid implementation selects the routines
to use in the factorization based on the block size of the matrix. More precisely,
cuBLAS getri 2 is used with block sizes up to 128 and MAGMA getri 1 for larger
block sizes. The solve stage is managed by cuBLAS regardless of the block size.

Finally, the third set compares the performance of the BCYCLIC and the Spike
algorithms running on the GPU and on the CPU. For the GPU versions, both algo-
rithms use the combined implementation originated from the results of the previous
set of experiments. For the sake of simplicity, an exception to the ‘select the fastest
functions’ rule has been made, since for the case of using a block size smaller than
128 and no more than 4 processes the getrs variant was slightly faster. Note that
some executions of the Spike implementation with large block sizes could not run
on the GPU due to memory constraints.

Figure 4.19 shows the behaviour of the algorithms with a small block size. Spike
scales better than BCYCLIC in the factorization stage for this size and for sizes no
larger than 128. That is evident in both the GPU and CPU executions. It starts
being slower than BCYCLIC, but as soon as the number of processes is increased, it
is able to obtain smaller times, needing a larger number of processes when executed
on the GPU.

On the other hand, BCYCLIC scales worse due to the relatively higher cost of
communication with respect to the poor computing performance. We can see how
the time increases noticeable when using several nodes (more than 4 processes). A
block size larger than 128 is required for the BCYCLIC algorithm to perform better
than Spike for any number of processes used during the factorization stage.

102

4.5. Numerical experiments

1 2 4 8 16 32 64 128

0.00

5.00

10.00

15.00

p

S
ec

o
n
d
s

Factorization

1 2 4 8 16 32 64 128

0.00

0.20

0.40

0.60

0.80

p

Solves

Figure 4.18. Weak scaling for the BCYCLIC algorithm running on GPU with
batched and non-batched versions with k = 1024 and ` = p · 25, where p is the
number of MPI processes. Consult the legend in Figure 4.17.

With all of the block sizes tested, the BCYCLIC algorithm has always performed
faster than Spike in the solve stage. For small block sizes, the results highlight
the better CPU performance with small BLAS-2 operations and the benefit of the
absence of GPU-CPU data copies. From block sizes larger than 128, the payload of
calling the kernels is worth the performance obtained with the GPU. On the CPU
executions, the time gap between the two algorithms tends to increase when the
block size grows, while in the GPU executions it tends to decrease.

If the block size is increased up to 1024 as can be seen in Figure 4.20, the
differences between the two algorithms and the two platforms are more prominent.

The different times obtained when varying the block size and the number of pro-
cesses can be seen in more detail in Tables 4.4 and 4.5. The first one shows the
total eigenproblem times obtained for all the different block sizes when using 128
processes. This table does not intend to contrast the performance obtained with
different block sizes, as their computational cost differs and are not comparable in
that sense. It allows us to compare the behaviour of the implementations for a spe-
cific block size. Spike is clearly faster with small block sizes as well as the executions
on CPU. Once the block size exceeds 128, the executions on GPU with BCYCLIC
obtain the smallest times. The speedup obtained with the GPU implementation
with respect to the CPU one is increased when increasing the block size. For such
amount of processes, with the largest block size, the GPU speedup of the BCYCLIC
is a modest 2.8.

Table 4.5 shows the total eigenproblem times for all the different number of
processes when using the largest block size. When increasing the problem size by a
factor of 128, the time increasing factor for the fastest implementation (BCYCLIC
on GPU) is 3.3, whereas the same algorithm scales slightly better on CPU with
a factor of 2.0. Even not being very close to a perfect scaling, these factors are
reasonably good and contrast with the Spike factors, that double them. The GPU
versions obtain speedups of 4.8 (Spike) and 4.7 (BCYCLIC) with respect to the CPU

103

Chapter 4. Block-tridiagonal eigenvalue problems

1 2 4 8 16 32 64 128

0.00

0.10

0.20

0.30

0.40

0.50

p

S
ec

on
d
s

Factorization

1 2 4 8 16 32 64 128

0.20

0.25

0.30

0.35

p

Solves

CPU bcyclic getri CPU spike
GPU bcyclic getri combined GPU spike

Figure 4.19. Weak scaling for the BCYCLIC and the Spike algorithms running on
CPU and on GPU with k = 64 and ` = p · 400, where p is the number of MPI
processes.

when executing with one process, but those values are reduced when increasing the
number of processes.

The total eigenproblem time is also represented in Figure 4.21, in which we can
highlight the case of using a block size of 640, where on CPU, the Spike algorithm
performed faster than BCYCLIC against the normal behaviour, due to a drop in the
performance of BCYCLIC with block sizes between 512 and 1024. From 640 and
up to 1024 the BCYCLIC algorithm progressively recovers performance and obtains
smaller times with larger block sizes.

The experiments to measure the strong scaling compute 1 eigenvalue of diagonally
dominant matrices, and compare the performance of BCYCLIC and Spike with
the reduced Spike, used as a direct solver. As matrix An coming from (4.33) is
not diagonally dominant in general, we have forced it to be artificially diagonally
dominant, so the reduced Spike method can be employed.

The figures represent the results obtained when measuring the strong scaling for
a fixed matrix size of 3072004. For the case of one process, this size is larger than the
one used in weak scaling tests, in order to have enough workload with a reasonable
number of processes.

Since for the strong scaling tests the time needed to complete the solve stage
does not vary significantly between the algorithms, we present the total eigenvalue
problem solve operation time in the figures, that have an almost direct correspon-
dence with the time needed to perform the factorization stage and at the same time
provide us with a more global view.

Figure 4.22 shows the strong scaling results for three different block sizes. Again,
for small block sizes where the GPU has a large overhead launching a lot of small

4The actual size of the matrix when using a block size of 896 is 307328.

104

4.5. Numerical experiments

1 2 4 8 16 32 64 128

0.00

5.00

10.00

p

S
ec

o
n
d
s

Factorization

1 2 4 8 16 32 64 128

0.00

0.50

1.00

1.50

p

Solves

CPU bcyclic getri CPU spike
GPU bcyclic getri combined GPU spike

Figure 4.20. Weak scaling for the BCYCLIC and the Spike algorithms running on
CPU and on GPU with k = 1024 and ` = p · 25, where p is the number of MPI
processes. The executions on GPU with the Spike algorithm with more than 16
processes could not be done due to memory constraints.

Table 4.4. Total eigenproblem time obtained with the weak scaling tests for 128
processes.

CPU GPU

Spike BCYCLIC Spike BCYCLIC

Block size Seconds Seconds Seconds Seconds

64 0.67 1.18 0.68 0.85
96 0.96 1.42 0.75 0.81

128 0.85 1.04 0.75 0.76
256 1.34 1.88 1.13
384 3.04 2.50 1.06
512 5.12 3.91 1.90
640 7.83 10.46 6.91
768 14.05 9.62 6.03
896 17.06 8.76 3.55

1024 22.08 8.42 3.01

105

Chapter 4. Block-tridiagonal eigenvalue problems

Table 4.5. Total eigenproblem time obtained with the weak scaling tests for a block
size k = 1024.

CPU GPU

Spike BCYCLIC Spike BCYCLIC

Processes Seconds Seconds Seconds Seconds

1 4.37 4.29 0.91 0.91
2 8.07 3.70 1.68 1.12
4 10.22 4.78 2.32 1.38
8 13.17 5.57 3.76 1.85

16 14.91 6.36 4.55 2.21
32 17.22 6.50 2.39
64 19.12 7.37 2.89

128 22.08 8.42 3.01

1 2 4 8 16 32 64 128
0

5

10

15

20

Processes

S
ec

on
d
s

k = 1024

64 96 128 256 384 512 640 768 896 1024
0

5

10

15

20

Block size

128 processes

spike CPU bcyclic CPU spike GPU bcyclic GPU

Figure 4.21. Total eigenproblem time obtained with the weak scaling tests for a
block size k = 1024 (left) and for 128 processes (right).

106

4.5. Numerical experiments

2 4 8 16 32

0.5

1

1.5

2

Processes

S
ec

on
d
s

k = 64

2 4 8 16 32

2

4

6

8

10

Processes

k = 640

2 4 8 16 32

5

10

15

20

25

Processes

k = 1024

2 4 8 16 32

0.5

1

1.5

2

Processes

S
ec

on
d
s

k = 64

2 4 8 16 32

1

2

3

Processes

k = 640

2 4 8 16 32

1

2

3

4

5

Processes

k = 1024

CPU bcyclic getri CPU spike CPU reduced spike

GPU bcyclic getri combined GPU spike GPU reduced spike

Figure 4.22. Strong scaling for the BCYCLIC, the Spike and the reduced Spike
algorithms running on CPU and on GPU with a total matrix dimension of 307200
and different block sizes k.

kernels, the CPU times tend to be smaller. And when the block size is increased, the
same algorithm performs faster on GPU. For a block size of 64, the three algorithms
scale well up to 8 processes, and from that point on the performance of BCYCLIC
decays due to a higher ratio between communication and computation time. Spike
achieves a better scalability than the other two algorithms.

The middle and right plots in Figure 4.22 show that the scalability of the al-
gorithms with larger block sizes is not good. Spike turns into the slowest of the
algorithms and the one with the worst scalability. On the other side, the reduced
Spike benefits of a larger block size scaling up to a larger number of processes where
the BCYCLIC algorithm performance starts to decay. As in the weak scaling, the
speedup given by the GPU with respect to the CPU is reduced when incrementing
the number of processes, and increased when increasing the block size of the ma-
trix. With the largest block size used and four processes, the GPU versions give
speedups of 4.7 (BCYCLIC), 5.2 (Spike), and 5.3 (Reduced Spike) with respect to
the CPU executions. Those values are reduced to 1.8 (BCYCLIC), 3.3 (Spike), and
3.2 (reduced Spike) when running with 32 processes.

107

Chapter 4. Block-tridiagonal eigenvalue problems

Block cyclic tridiagonal case

The block cyclic tridiagonal case has been studied with an application to provide an
accurate picture of the electronic structure of large systems. This kind of applications
allows the design of new devices that are essential for many emerging technologies.

In order to understand the electronic and optical properties of semiconductor
hetero and nanostructures, it is imperative to know the allowed energy levels for
electrons and their quantum state, completely determined by their corresponding
wavefunctions. These quantities are provided by the Schrödinger equation, a linear
partial differential equation (PDE) which, in its single particle (an electron from
now on) time-independent version, reads

Ĥψ(r) =

[
− ~2

2m0
∇2 + V (r)

]
ψ(r) = Eψ(r), (4.35)

where Ĥ is the Hamiltonian operator, ~ is the reduced Planck constant, m0 is the
free electron mass, V (r) is the microscopic potential energy affecting the electron,
and ψ(r) and E are the sought electron wavefunction and energy, respectively. When
the unknown ψ(r) is expanded as a linear combination of unknown coefficients ci
times known basis functions φi(r),

ψ(r) =
∑
i

ciφi(r), (4.36)

the Schrödinger PDE is transformed into an algebraic (maybe generalized) eigenvalue
problem.

In a semiconductor heterostructure, the matrix resulting from the expansion
in (4.36) using empirical tight-binding methods (ETB) [122], will have the following
characteristics:

• Each atom or primitive cell will contribute with Nb basis functions to the
wavefunction, and with an Nb ×Nb block to the matrix A representing Ĥ.

• The topology of the non-vanishing interactions between the atomic-like orbitals
will determine which blocks in A will have non-zero entries.

If, in addition, the semiconductor heterostructure has translational symmetry along
the x, y coordinates and varies along the z axis (i.e. is effectively one-dimensional),
the obtained matrix A will be block-tridiagonal, with the possibility that non-zero
blocks appear in the upper-right and lower-left corners if periodic boundary condi-
tions are imposed (block cyclic tridiagonal structure).

A set of experiments to measure the performance of the software have been
conducted in Tirant5. Two matrices arising from the ETB parametrization [74]
of a quantum cascade laser structure [20], and a 4/2 GaAs/AlAs superlattice with
fluctuations in the layer widths have been used in the tests. Their dimensions are
82,400 (qcl) and 143,840 (anderson), respectively, and both have a small block size

5See hardware description in Chapter 3 (Section 3.4.2).

108

4.5. Numerical experiments

1 2 4 8 16 32 64

101

102

Processes

S
ec

on
d

s
qcl

MUMPS
Schur-complement
Linear scaling

1 2 4 8 16 32 64

102

103

Processes

anderson

MUMPS
Schur-complement
Linear scaling

Figure 4.23. Total eigenproblem solve time to obtain 40 eigenvalues closest to 1.5
for the qcl and anderson matrices using 4 processes per node.

of 20. These experiments are done exclusively on CPU because the small block size
of the matrices does not make the problem suitable for running it on GPU.

The servers run SuSE Linux Enterprise Server 10 as operating system, and our
software has been compiled in complex arithmetic and double precision with gcc
4.6.1 using PETSc and SLEPc 3.7.1, MUMPS 5.0.1-p1, and MPICH2 1.0.8p1 as the
inter-process communication library.

As the nodes have four computational cores, a limit of four processes per node
have been used during the executions.

In the experiments we compare the performance of a state of the field library
such as MUMPS with our implementation of the Schur complement that uses the
block-cyclic reduction algorithm to solve the block-tridiagonal system that involves
D of (4.27). We should remark that MUMPS stores (and works with) the full matrix
(in blocked sparse format) while our software reduces the operations to the nonzero
blocks (using dense storage), and except in the case of the sub-matrix C of (4.27),
it initially reduces the memory footprint to them. In both cases, we have instructed
SLEPc to obtain 40 eigenvalues closest to the target value 1.5 eV (lowest energy
states in the conduction band) with the shift-and-invert technique and a default
tolerance of 10−8.

The relevant command-line options used in these experiments are:

• MUMPS: -matload block size 20 -eps nev 40 -eps target 1.5

-st type sinvert -st pc factor mat solver package mumps

• Schur complement: -eps nev 40 -eps target 1.5 -st type shell

Additionally, for the runs with matrix anderson, the value of the -eps ncv parameter
has been increased and set to 128 in order to reduce the number of restarts and
achieve a better performance.

109

Chapter 4. Block-tridiagonal eigenvalue problems

Results of the executions can be seen in Figure 4.23. The plots show that the
eigensolver scales linearly (up to 64 MPI processes) when using our custom linear
solver based on Schur complement with block-cyclic reduction. In contrast, the
scalability of MUMPS is more limited, and performance degrades with 16 processes
or more. This can be attributed to the fact that MUMPS is based on a classical
scheme of factorization followed by triangular solves, where the latter operation is
inherently sequential and results in bad scalability. The cyclic reduction scheme
rearranges the operations in such a way that there is more opportunity for a larger
degree of parallelism.

4.6 Conclusions

In this chapter we have addressed the particular case of solving eigenproblems of
large-scale block-tridiagonal and block cyclic tridiagonal matrices. We have devel-
oped a set of codes for computing a few eigenpairs of such matrices via Krylov
methods. The codes are integrated in the SLEPc/PETSc framework, with an MPI-
CUDA programming style, and allow to use many processors/GPUs to address very
large-scale problems.

We have focused on the optimization of the basis expansion of the Arnoldi al-
gorithm for which we have developed a high-performance matrix-vector kernel, that
is able to fully exploit the computing power of the available GPUs when computing
exterior eigenvalues. This solution significantly reduces the computation time when
comparing with a multi-threaded CPU version.

For the case of interior eigenvalues, the developing effort has been concentrated
on the scalable solution of block-tridiagonal linear systems on the GPU. In the case
of the band oriented Spike algorithm, we have adapted it to explicitly work with
block-tridiagonal matrices by means of using the block cyclic reduction underneath
it.

We have performed a study of the scalability of the algorithms used to see how
they react to the changes in the block size of the matrix. The performance analysis
allows us to draw several conclusions. In general, BCYCLIC performs better than
Spike, but Spike scales better when using small block sizes. All GPU implementa-
tions have shown to be faster than the CPU counterparts, except for small block
sizes. In terms of scalability, we can state that for sufficiently large block sizes, the
codes scale well for up to 128 MPI processes (GPUs). Our implementations can use
either cuBLAS or MAGMA, or a combination of the two. The best performance has
been obtained with the mixed implementation.

Another conclusion is that, for a large block size, BCYCLIC is able to solve larger
problem sizes with respect to Spike, because Spike has larger memory requirements.
In the case of diagonally dominant block-tridiagonal matrices, the reduced Spike
method achieves better scalability.

We have also addressed the case of coefficient matrices with block cyclic tridi-
agonal structure and have analyzed the scalability of the linear solver when used
within an iterative eigensolver in the context of electronic structure calculations. In

110

4.6. Conclusions

this type of applications, it is important to obtain the solution very fast, especially
when the process involves a self-consistency loop that requires solving an eigenvalue
problem in each iteration. Our results illustrate that exploiting the matrix structure
in the solver may provide some advantage, such as a better scalability, although it
implies a higher development effort compared to using general-purpose numerical
libraries.

Although the performance analysis were carried out in the context of Krylov
eigensolvers, the conclusions could be applied to other applications where a sequence
of linear systems with block (cyclic) tridiagonal matrices must be solved, since in our
tests almost all the computation is associated with the factorization and linear solves.
The solvers can also be used with banded matrices, in which case the off-diagonal
blocks are triangular (although we have not exploited this fact).

111

Chapter 5

Matrix functions

Mel de romer

The area of matrix functions has developed significantly in the last years, both in
formalizing the relevant theoretical concepts and in developing algorithms for their
computation [64, 65]. Matrix functions can be found in many scientific computing
applications, especially the exponential and the square root, but also other less
frequent functions such as the logarithm, or trigonometric functions.

Matrix functions can be understood in several ways. For this, it is necessary
to state to which of them we are referring to. Throughout this chapter we will
interpret matrix functions as those that map Cn×n to Cn×n and are defined in
terms of a scalar function f . For instance, the matrix exponential exp(A) is defined
in terms of the scalar exponential function exp(z) in the sense discussed below, not
in other senses such as element-wise evaluation. Note that functions of a matrix like
the determinant, that yield a scalar result instead of mapping Cn×n to Cn×n, or
a function such as X 7→ AX2 + BX + C where A,B,C are also matrices are not
included in the definition and not considered in this chapter.

There are several equivalent definitions for such matrix functions. One definition
is based on the Jordan canonical form of the matrix, A = ZJZ−1. Then

f(A) := Z diag
(
f(J1(λi1)), . . . , f(Jp(λip))

)
Z−1, (5.1)

where Jk(λik) is the Jordan block corresponding to the eigenvalue λik , and f(Jk(λik))
can be defined in terms of the successive derivatives of f evaluated on λik

f(Jk(λik)) =


f(λk) f ′(λk) . . . f(mk−1)(λk)

(mk−1)!

f(λk)
. . .

...
. . . f ′(λk)

f(λk)

 . (5.2)

113

Chapter 5. Matrix functions

Alternatively, matrix functions can be defined in terms of a polynomial

f(A) := r(A), (5.3)

where r interpolates f in the Hermite sense at the eigenvalues λik . And also by
means of the Cauchy integral formula

f(A) =
1

2πi

∫
Γ

f(z)(zI −A)−1dz, (5.4)

assuming f is analytic in the considered domain Γ. All these definitions give rise to
different computational methods.

As in other numerical linear algebra problems, such as linear systems or eigen-
systems, there are two broad classes of methods that we can generically refer to
as dense and sparse. For dense matrices of relatively small size we can afford to
explicitly compute the matrix

F = f(A) (5.5)

with dense methods. The computational cost of these methods depends cubically
on n, the matrix size. For sparse matrices, whose size is usually much larger, it
is not possible to explicitly compute (or even store) the matrix F of (5.5), so the
alternative is the implicit application of the matrix function to a given vector,

y = f(A)b. (5.6)

The cost in this case is less than cubic, but this cost is accounted for every different
vector b to which the matrix function is applied.

In this chapter we discuss CPU and GPU implementations for both the dense and
the sparse case. Along the next sections we review the available types of methods
to perform the dense computation of matrix functions, and present some of them to
compute matrix square roots and exponentials that can be efficiently implemented on
GPU. For the sparse case of (5.6) we will center our attention on Krylov methods for
performing its computation in a iterative way, where A is typically large and sparse,
or is available implicitly by means of a matrix-vector multiplication subroutine. We
will also point out how Krylov methods are related with the dense computation, and
the impact that the implementation of the latter may have on the performance of
the sparse computation. Finally, we show some results comparing the performance
of the selected methods with executions on CPU and on GPU.

5.1 Dense methods for matrix functions

There are many different methods for the dense computation of f(A). Here we
present three classes of methods that are relevant for our purposes:

Similarity transformation. Computing f(A) via (5.1) is not viable due to the dif-
ficulty of obtaining the Jordan form in a numerically stable way. An alterna-
tive is to compute the Schur form (3.6), A = QTQ∗, with Q orthogonal (or

114

5.1. Dense methods for matrix functions

unitary in the complex case), and then evaluate the matrix function of the
(quasi-)triangular matrix T ,

f(A) = Qf(T)Q∗. (5.7)

In the case that A is symmetric (or Hermitian), it is even simpler because T
is then diagonal. The latter case will be referred to as diagonalization.

Rational approximation. Approximating f(A) can be tackled by replicating the
procedures used on scalar functions. One of the main rational approximations
are based on Padé approximants.

Matrix iterations. Some matrix functions like matrix roots or the sign function are
amenable to be computed with iterations derived from Newton’s method.

Methods based on similarity transformation are appealing since they usually
require less floating-point operations than methods of the other types. However,
that same characteristic makes them less likely to take advantage of the GPU.

Previous works have compared different algorithms for matrix functions, for in-
stance [25] analyzes Matlab implementations for the matrix exponential. Our inten-
tion is not simply to carry out a comparison, something inescapably in the developing
process, but to provide robust and efficient implementations for both CPU and GPU,
that can be used from sequential or parallel codes written in C, C++ or Fortran. We
have implemented four methods for the matrix square root and three for the matrix
exponential. All of them have been implemented for both CPU and GPU, except
the Schur method for the square root that is only available for CPU.

5.1.1 Square root

A square root of A is any matrix satisfying the matrix equation

F 2 = A. (5.8)

If A has no eigenvalues on R−, the closed negative real axis, there is a unique
principal square root, denoted as A1/2 or

√
A, whose eigenvalues have all positive

real part. The methods discussed below compute the principal square root.
As mentioned above, an interesting strategy is to first reduce A to the Schur

form, A = QTQ∗. The Schur-Parlett method [65] uses a recurrence to evaluate
f(T) exploiting the (quasi-)triangular structure of T . Implementing the Parlett
recurrence in a numerically stable way is tricky. Fortunately, in the case of the
matrix square root the method can be simplified, as the Parlett recurrence is not
necessary, and hence it is simply called Schur method [62]. In this method the
diagonal elements are determined as

√
tii and the off-diagonal ones can be obtained

from the equation X2 = T . Once X, the square root of T , has been obtained, a final
backtransform step is necessary to recover F .

We have implemented a blocked variant of this method as described in [34] that
runs on CPU, see Algorithm 5.1. Although when solving on CPU, the gemm calls

115

Chapter 5. Matrix functions

are the most time-consuming operations, this method is not appropriate for imple-
mentation on GPU, due to the need of reduction to the Schur form and the steps
after it, that involve using level 2 BLAS to solve Sylvester equations.

Algorithm 5.1. Blocked Schur method for the square root

1 Compute (real) Schur decomposition A = QTQ∗ ;
2 for j = 1, 2 , . . . , nblk do

3 Evaluate Xjj = T
1/2
jj ;

4 for i = j − 1 , . . . , 1 do

5 Solve Sylvester eq. XiiXij −XijXjj = Tij −
∑i−1
k=j+1XikXkj

6 end

7 end
8 Backtransform F = QXQ∗

The other methods that we have considered to compute the matrix square root
are based on matrix iterations. Iterative methods are interesting to implement as
they are easily built with common matrix operations, and are particularly rich in
matrix-matrix products. Those characteristics make them a suitable choice for GPU
computing.

The Newton method is the basis of many existing iterative methods. When
applied to the matrix equation of (5.8), it gives the recurrence

Fk+1 =
1

2
(Fk + F−1

k A), F0 = A. (5.9)

For A having no eigenvalues on R−, the recurrence converges quadratically to the
principal square root A1/2 for F0 sufficiently close to it. Nevertheless, this iteration
is numerically unstable and is not useful for practical computation. It is necessary
to rewrite the iteration in a different way to make it stable. Several variants of the
Newton method that stabilize the iteration have been developed, and they often
scale the Fk terms to reduce the steps until the quadratic convergence starts.

One variant of the Newton method is the product form [29] of the Denman–
Beavers iteration [35], with a scaling factor µk:

µk = |det(Mk)|−1/(2n), (5.10a)

Mk+1 =
1

2

(
I +

µ2
kMk + µ−2

k M−1
k

2

)
, M0 = A, (5.10b)

Fk+1 =
1

2
µkFk(I + µ−2

k M−1
k), F0 = A. (5.10c)

Contrary to the recurrence (5.9), that solves a multiple right-hand side linear
system per iteration, (5.10) requires to compute a matrix inverse and, in addition,
obtaining the scaling factor µk also requires computing the determinant of Mk.

116

5.1. Dense methods for matrix functions

Following Higham’s reference implementation1, the scaling can be stopped when
‖Fk − Fk−1‖/‖Fk‖ < 10−2. In our implementation, the determinant is computed
from the LU factorization of Mk (getrf). However, for the computational experi-
ments in this section we have turned off the scaling in this method, as the determi-
nant may suffer from overflow or underflow in finite precision arithmetic when the
matrix is quite large. The scaling factor µk may accelerate the initial convergence,
but the results obtained without scaling are equally accurate. Alternative scaling
factors discussed in [64, Ch. 5] in the context of the matrix sign function are not
suitable for the case of the square root.

Another method for computing the square root is Newton–Schulz [117], from the
Padé family of iterations. It usually needs more iterations to converge, but as it is an
inverse-free iterative method, it does not rely on having an efficient implementation
of the matrix inverse, having the matrix-matrix product as its main operation. It
consists of two coupled recurrences,

Xk+1 =
1

2
Xk(3I − ZkXk), X0 = B, (5.11a)

Zk+1 =
1

2
(3I − ZkXk)Zk, Z0 = I. (5.11b)

The initial guess B = A/‖I−A‖` is a scaled version of A, so scaling must be undone
after convergence, F =

√
‖I −A‖`X. The condition ‖I − A‖` < 1 is sufficient for

the method to converge for ` = 1, 2 or∞. The scaling of the initial matrix may help
the convergence of the method, although it does not guarantee it.

Recently, a cubically convergent iterative method for computing the square root
has been developed by Sadeghi [116]. It starts with B = A (or B = A/‖A‖ in case
ρ(A) > 1), and builds two coupled recurrences

Xk+1 = Xk ·
(

5

16
In +

1

16
Mk(15In − 5Mk +M2

k)

)
, X0 = I, (5.12a)

Mk+1 = Mk ·
(

5

16
In +

1

16
Mk(15In − 5Mk +M2

k)

)−2

, M0 = B, (5.12b)

being F =
√
‖A‖X when the initial guess has been scaled or F = X otherwise.

This method, like (5.10), requires computing an inverse in each iteration. But as
it converges faster, the number of iterations needed to compute the square root is
expected to be smaller.

In our implementations, we use the Frobenius norm for scaling as well as for
convergence tests.

1The Matrix Function Toolbox, http://www.ma.man.ac.uk/~higham/mftoolbox/

117

http://www.ma.man.ac.uk/~higham/mftoolbox/

Chapter 5. Matrix functions

5.1.2 Sign

Assuming that A is non-singular and has no eigenvalues on the imaginary axis, the
matrix sign function sign(A) can be defined. Let

A = Z

[
Jn

Jp

]
Z−1 (5.13)

be the Jordan canonical form of A, where Jn and Jp contain the Jordan blocks of
eigenvalues with negative and positive real parts, respectively, being n and p their
respective dimensions. Then the sign function of A is defined as

sign(A) = Z

[
−In

Ip

]
Z−1. (5.14)

A different representation of the matrix sign function, introduced in [63], shows
its link with the matrix square root:

sign(A) = A(A2)−1/2. (5.15)

Although there are specific Newton-type iterations for sign(A) [64, Ch. 5], here we
discuss its computation using square root solvers. Since A is assumed to be non-
singular, (A2)−1/2 of (5.15) can be obtained. Some of the methods for the square
root mentioned above can be used to obtain the inverse square root. In particular,
in Denman–Beavers (5.10) the sequence Fk converges to A−1/2 if the iteration starts
with F0 = I, and in Newton–Schulz (5.11) the sequence Zk converges to B−1/2 so
both the square root and its inverse are obtained simultaneously. If using another
method to compute the square root, like Schur or Sadeghi, the inverse square root
can be obtained by additionally solving a system of linear equations with multiple
right-hand sides

AF = A1/2, (5.16)

where F = A−1/2.

5.1.3 Exponential

The matrix exponential is a function of major importance due to its connection with
solving linear differential equations [45], and due to this, this matrix function has
been widely studied and many methods for computing it have been proposed [97].
For the matrix exponential, we use a rational function r(A) to approximate exp(A).
This rational function is chosen in a similar way as in scalar approximation theory,
although in the case of matrix functions there is no guarantee that the approximation
will be good (depending on the spectral properties of A) [65].

The first method that we have implemented is a rational approximation based on
Padé approximants of order [p/p] with p = 6, combined with scaling and squaring.
The notation [·/·] indicates the polynomial degree of the numerator and denominator,
which are equal in this case (diagonal Padé approximant). The evaluation of the

118

5.2. Krylov methods for matrix functions

numerator and denominator is done following the Horner scheme, to reduce the
number of required matrix-matrix multiplications. The last step for computing the
rational function is done with a linear solve with multiple right-hand sides. The
scaling and squaring technique consists in determining the minimal integer s ≥ 0
such that ‖A/2s‖ is smaller than a certain constant, then scale the matrix as A/2s

prior to the computation of the rational matrix function. In that case, a post-
processing is required to form F 2s , which is done with s additional matrix-matrix
multiplications.

The above technique is very close to one of the methods used in Expokit [120]. A
more recent work [3] suggests using higher degree Padé approximants (up to degree
13), but rearranging the computation in such a way that the number of required
matrix products is much smaller. This approach (included in the latest versions of
Matlab) is more accurate in some cases, and also avoids choosing a too large value
of s (overscaling). Our second implementation follows this approach, and will be
referred to as Higham.

A third method, presented by Güttel and Nakatsukasa in [55], also based on Padé
approximations, tries to reduce its cost by using a subdiagonal Padé approximant
of low degree (such as [3/4]), and also uses a small scaling and squaring factor to
avoid potential instability caused by overscaling. Before starting, the method shifts
the matrix

Aσ = A− σI, (5.17)

being σ the real part of the rightmost eigenvalue of A, so that all the eigenvalues
of Aσ are in the left half plane. It is supposed to perform well with an estimation
of such eigenvalue, assuming that the rightmost eigenvalues do not have widely
varying imaginary parts. If the matrix is stable, with no eigenvalues in the right
half plane, the shift is not required. A drawback of this method is that it employs
complex arithmetic even when A is real, so its performance with real matrices is not
expected to be good when compared with methods that do the computation with
real scalars. This last implementation is referred to as Güttel–Nakatsukasa.

5.2 Krylov methods for matrix functions

Krylov methods, as in the case of computing eigenvalues, basically amount to build-
ing an Arnoldi decomposition and evaluating the matrix function on the computed
Hessenberg matrix. In an MPI parallel implementation of this method, the former
can be implemented efficiently, but the latter is a dense matrix computation, that
must be done redundantly by all MPI processes. This redundant computation is in
the critical path, so it may hinder performance if the size of the Hessenberg matrix
is not very small, as it may happen when using restart techniques. In this scenario,
having GPU implementations of the methods of Section 5.1 is very interesting as it
may help to improve the overall scalability of parallel Krylov solvers.

Other authors have considered the topic of GPU calculation of sparse matrix
functions, particularly the case of computing exp(tA)b with iterative methods [43,
139]. Here, we cover both the exponential and the square root for the sparse case. In

119

Chapter 5. Matrix functions

this section, we discuss the specific method that we have considered for this problem,
in the context of the SLEPc library.

5.2.1 Restarted Arnoldi

Krylov methods [64, Ch. 13] are appropriate for the case of large and sparse A,
although they are not the only alternative (see, e.g. [25]). They approximate the
result vector y = f(A)b of (5.6) by an element of the Krylov subspace

Km(A, b) ≡ span
{
b, Ab,A2b, . . . , Am−1b

}
, (5.18)

without explicitly building the matrix f(A). The computation comprises two parts.
The first part is to build an orthonormal basis Vm of the Krylov subspace by means
of the Arnoldi method. The computed quantities satisfy the relation

AVm = VmHm + hm+1,mvm+1e
∗
m, (5.19)

where Hm is an m ×m upper Hessenberg matrix. The second part is to compute
the approximation of y as

y(0) = βVmf(Hm)e1, (5.20)

where β = ‖b‖2, and e1 is the first coordinate vector. In this way, the problem of
computing the function of a large matrix A of order n is reduced to computing the
function of a small matrix Hm of order m, with m� n.

In an MPI parallel implementation of this method, the main ingredients of the
first part are the parallel sparse matrix-vector product and the orthogonalization
of the vj vectors (the columns of Vm). These two operations can be implemented
efficiently and in a scalable way, provided that A has an appropriate sparse pattern.
The second part, the evaluation of f(Hm) as a dense matrix computation, must be
done redundantly by all MPI processes. Although this computation is in the critical
path, it is usually negligible whenever m, the size of the Hessenberg matrix Hm, is
much smaller than the size of A. However, this is not always the case, as we now
discuss.

The value of the m parameter is difficult to choose. If m is too small the Krylov
subspace will not contain enough information to build an accurate approximation.
And if m is too large, the memory requirements for storing Vm (as well as the
associated computational cost) will be prohibitive. In a practical implementation,
a restarted variant of the method must be used, where m is prescribed to a fixed
value and when the subspace reaches this size, a restart is carried out by keeping
part of the data computed so far and discarding unnecessary information. We use
the Eiermann-Ernst restart [39], in which only the last basis vector vm+1 is kept (to
continue the Arnoldi recurrence), along with the matrix Hm that is glued together
with the previous ones. More precisely, the approximation of y is improved at each
restart by an additive correction. After k restarts, the approximation is updated as
y(k) = y(k−1) + c(k), where the correction is

c(k) = βVm[0, Im]f(Hkm)e1. (5.21)

120

5.3. Numerical experiments

The upper Hessenberg matrix Hkm is obtained by extending the one from previous
restarts,

Hkm =

[
H(k−1)m 0

h
(k−1)
m+1,me1e

T
(k−1)m H

(k)
m

]
, (5.22)

where H
(k)
m is the matrix computed by Arnoldi in the kth restart. The stopping

criterion can be based on the norm of the correction: ‖c(k)‖ < β · tol. We use a value
tol = 10−8 in the tests of Section 5.3.2.

Note that the matrix of (5.22) has increasing size k ·m, where k is the number
of restarts. In practical applications, this size can often become as high as a few
thousands. Note also that this matrix is not symmetric even if A is symmetric.

5.3 Numerical experiments

The methods that we have considered in this chapter are not new, but we are
interested in furnishing SLEPc with efficient implementations to solve the function
of a matrix (5.5) and the action of a matrix function on a vector (5.6). In the case
of dense functions, the implementations are coded as a sequence of function calls
to libraries such as BLAS, relying on their high efficiency either on the CPU or on
the GPU. For solving sparse functions we rely on the efficient implementation of the
parallel matrix-vector multiplication in PETSc, as well as in our implementations
of methods for computing dense matrix functions. Both of them are amenable to
run on CPU or GPU. Our implementations can operate with either real or complex
scalars, in single or double precision arithmetic, but we restrict the experiments to
double precision only.

Matrix functions are not as common in applications as other linear algebra prob-
lems such as linear systems or eigenvalue problems. For the evaluation of the solvers
we have used matrices from well-known collections and from some sample applica-
tions with the aim of showing that different matrix functions appear in different
contexts. Before presenting each set of results, we provide a description of the cor-
responding applications from which the matrices arise. Note that for the selected
applications it is sufficient to compute the action of the matrix function on a vector,
so sparse methods should be employed on them. Still, we also use these matrices
as use cases to test the dense algorithms, since they are more representative of real
situations than, e.g. random matrices.

5.3.1 Computational evaluation of dense solvers

We have analyzed the performance of the dense solvers implementations by conduct-
ing several tests on the Minotauro supercomputer presented in Chapters 3 and 4.
We comment again the characteristics of the two types of nodes of the clusters that
compose Minotauro:

Fermi 2 Intel Xeon E5649 processors (6 cores per processor) at 2.53 GHz with 24
GB of main memory; 2 GPUs NVIDIA Tesla M2090, with 512 cores and 6 GB

121

Chapter 5. Matrix functions

GDDR per GPU.

Kepler 2 Intel Xeon E5-2630 v3 processors (8 cores per processor) at 2.4 GHz with
128 GB of main memory; 2 NVIDIA K80 cards (2 GPUs each), with 2496
cores and 12 GB GDDR per GPU.

On both platforms, the codes are compiled with GCC 5.1.0, and linked against
PETSc 3.8, SLEPc 3.8, CUDA 8.0, MAGMA 2.2.0 and MKL 11.3.2. The algo-
rithm’s implementations are built using BLAS and LAPACK operations as main
computational blocks. In general, the GPU implementations make use of cuBLAS
to perform the BLAS operations, and MAGMA for the LAPACK routines. Some
auxiliary kernels are used for simple, non computationally intensive operations, like
setting or modifying the diagonal elements of a matrix.

Running on two platforms with consecutive generations of GPUs, allows us not
just to see the gain obtained with their use, but also the evolution of such cards
compared with their coetaneous generations of CPUs.

When using sparse matrices during the experiments of this section, they are
stored and treated as dense. As PETSc does not have a type for dense matrices on the
GPU, we have to manage the memory and the transfer of the data between CPU and
GPU. We make use of PETSc’s logging functionality to measure the time and flops
rate of the solvers. All the tables in this section show the total elapsed time needed
to compute the respective (dense) matrix function and the achieved performance
in gigaflops per second. The time includes, in all cases, the memory allocation
(and deallocation) of the auxiliary variables needed, and in the case of the GPU
implementations, also the copies to and from the device memory. The reported times
are the minimum from three independent executions working in double precision
arithmetic. All the experiments with dense solvers consist in a CPU execution,
using as many threads as available cores (12 threads in Fermi and 16 threads in
Kepler), and a GPU execution using only one of the available GPUs. The size of
the matrices used in the tests is limited by the memory available in the GPU of the
Fermi platform (6 GB).

Sample applications (1)

Data assimilation Numerical weather prediction relies on modern data assimila-
tion techniques for merging satellite observations (of order 105 or more) with model
forecasts in order to improve the initial conditions and hence obtain more accurate
results. The EnSRF method [140] is a variant of Ensemble Kalman Filter used with
deterministic observations that includes a matrix square root to account for the
uncertainty of the unperturbed ensemble observations.

For the ensemble mean xm and ensemble perturbations XA, the square-root
observation filter can be written as

x(a)
m = x(f)

m +K(y −HX), (5.23a)

X
(a)
A = X

(f)
A + K̃(0−HA), (5.23b)

122

5.3. Numerical experiments

where the superscripts (a) and (f) denote the analysis and the previous forecast,
respectively. Vector y contains the observations. The traditional Kalman gain is

K = Cx,yD
−1, (5.24)

with D = Cy,y + R, where Cx,y and Cy,y are covariance matrices and R the ob-
servation error covariance. The correction from using unperturbed observations is

K̃ = Cx,yD
−1/2(

√
D +

√
R)−1, (5.25)

which simplifies to
K̃ = Cx,y(D +

√
D)−1. (5.26)

Further details can be found in [127].

Stability of dynamical systems In control theory and many other contexts, it
is important to determine if a dynamical system is stable or not, and this question
can often be formulated as a problem involving eigenvalues of matrices. In this
context, a matrix A is considered to be a stable matrix if all its eigenvalues lie in
the open left half plane, Re[λi] < 0 for all i. As suggested in [64, §2.5], the matrix
sign function can be used to count the number of eigenvalues of a matrix located
in a particular region of the complex plane, and determine if a system is stable or
unstable. The matrix sign function is related to the matrix square root, as discussed
in Section 5.1.2.

Dense square root experiments

Two matrices are considered for the matrix square root experiments. The first
one is ensrf7864, a symmetric positive-definite matrix from the data assimilation
application, with dimension 7864, for which the square root is computed.

The second one is rdb5000, a sparse non-symmetric matrix belonging to the NEP
collection [11], with dimension 5000, which is used to compute the matrix inverse
square root, as part of the computation of the matrix sign function for determining
the stability of a dynamical system.

Apart from the performance data, the tables for the square root tests (Tables 5.1
and 5.2) also show the relative error of the computed solution, ‖F 2−A‖F /‖A‖F for
the square root and ‖F 2A − I‖F /‖A‖F for the inverse square root. According to
Higham [64, §6.1], the best relative error we can expect for the numerical computa-
tion of the matrix square root is of order α(F)u, where u is the unit round-off and

α(F) = ‖F‖2
‖A‖ . We have checked that in the considered matrices this quantity is of

order 101, and hence the maximum expected accuracy in double precision would be
around 10−15. The tables also show the number of required iterations in the case of
iterative methods. Figure 5.1 summarizes the square root and inverse square root
executions, on which the fastest method is Denman–Beavers running on GPU.

Table 5.1 shows the results for the square root. Given that the matrix is sym-
metric, f(A) can be computed as Qdiag(f(λi))Q

∗. This diagonalization method is

123

Chapter 5. Matrix functions

Table 5.1. Results for computing the matrix square root of the ensrf7864 matrix.
Time expressed in seconds. GF/s indicates gigaflops per second, Iter indicates iter-
ations done, and Error is computed as ‖F 2 −A‖F /‖A‖F .

CPU GPU

Platform Algorithm Time GF/s Iter. Error Time GF/s Iter. Error

Fermi
Diagonalization 196.9 27 - 1.5 · 10−14 - - - -
Denman–Beavers 208.3 93 10 4.2 · 10−14 56.6 344 10 9.3 · 10−14

Newton–Schulz 489.4 101 17 7.4 · 10−15 127.0 391 17 3.0 · 10−14

Sadeghi 346.5 101 6 3.9 · 10−15 93.7 374 6 2.4 · 10−14

Kepler
Diagonalization 37.3 143 - 1.2 · 10−14 - - - -
Denman–Beavers 74.4 262 10 4.4 · 10−14 25.8 754 10 9.1 · 10−14

Newton–Schulz 135.0 367 17 6.5 · 10−15 49.6 1001 17 3.0 · 10−14

Sadeghi 88.2 397 6 3.9 · 10−15 38.6 907 6 2.4 · 10−14

Fermi Kepler

0

100

200

300

400

500

S
ec

on
d

s

Fermi Kepler

0

100

200

300

400

Diagonalization CPU Denman–Beavers CPU Newton–Schulz CPU Sadeghi CPU
Schur CPU Denman–Beavers GPU Newton–Schulz GPU Sadeghi GPU

Figure 5.1. Time results for computing the matrix square root (left) and the matrix
inverse square root (right).

124

5.3. Numerical experiments

Table 5.2. Results for computing the matrix inverse square root of the rdb5000 ma-
trix. Time expressed in seconds. GF/s indicates gigaflops per second, Iter indicates
iterations done, and Error is computed as ‖F 2A− I‖F /‖A‖F .

CPU GPU

Platform Algorithm Time GF/s Iter. Error Time GF/s Iter. Error

Fermi
Schur 271.1 26 - 2.3 · 10−12 - - - -
Denman–Beavers 141.9 85 12 6.6 · 10−16 43.0 279 12 1.6 · 10−15

Sadeghi 393.8 101 13 6.9 · 10−13 119.1 333 13 1.6 · 10−12

Kepler
Schur 210.7 33.6 - 2.0 · 10−12 - - - -
Denman–Beavers 49.8 241.0 12 5.9 · 10−16 21.5 558 12 1.6 · 10−15

Sadeghi 108.6 365.3 13 7.1 · 10−13 48.8 814 13 1.6 · 10−12

the fastest one for the CPU runs, and the ranking between methods is the same on
both platforms, but with notable differences with respect to their relative execution
time.

The relative behaviour of the methods does not differ substantially between CPU
and GPU executions. On the Fermi platform, the GPU runs obtain speedups ranging
from 3.6 to 3.8 with respect to the CPU ones, and a speedup of 3.5 is obtained if
comparing the fastest method on GPU (Denman–Beavers) with the fastest one on
CPU (diagonalization). On the Kepler platform, the speedups achieved with the
GPU runs are smaller, going from 2.3 to 2.9. And the comparison between the
fastest methods on CPU and GPU gives a speedup of only 1.4.

Although Newton–Schulz is the method that attains the highest Gflop/s rate in
almost all the cases due to the matrix-matrix operations, it is not competitive in
terms of execution time because of the larger number of required iterations. Nei-
ther is Sadeghi despite its cubic convergence that allows it to terminate in only six
iterations.

Table 5.2 shows the results of the inverse square root with the non-symmetric
matrix. The implementation of the blocked Schur method employed here uses a
block size of 64. The Newton–Schulz method does not converge with this matrix, so
no results are shown for it. The poor error obtained with Schur and Sadeghi comes
from the final linear solve to obtain the inverse, not from computing the matrix
square root. This additional step also implies increasing the time needed to obtain
the inverse square root. Denman–Beavers is the fastest method on CPU and GPU
on both platforms, achieving speedups of 3.3 on Fermi and 2.3 on Kepler.

Sample applications (2)

Time evolution in quantum problems The time-dependent Schrödinger equa-
tion

i
∂

∂t
Ψ(t) = H(t)Ψ(t) (5.27)

125

Chapter 5. Matrix functions

can be solved numerically with a time-stepping scheme, where at time tn

Ψ(tn) = e−iH(tn)∆t Ψ(tn−1) (5.28)

with ∆t = tn − tn−1. See [91] for an example that uses the matrix exponential in
SLEPc for the simulation of quantum systems.

Here we will use a very simple problem where the Hamiltonian H is constant in
all time steps, consisting in N spins in a uniform transverse field, with disordered
potential. The dimension of the Hamiltonian matrix is 2N .

We emphasize that complex arithmetic is required to compute exp(−iH∆t), even
if H is real.

Migration modeling In the last years, population genomic datasets have been
collected, making it possible to use these data to infer demographic histories of
populations, e.g. under models of migration and divergence. The method presented
in [75] relies on a Markov chain representation, and uses the matrix exponential
to obtain probability distributions at different times. More precisely, if M is the
transition matrix, the vector π(t) of probabilities of being in each state of the Markov
chain at time t is

π(t) = π(0) etM . (5.29)

Dense exponential experiments

Four matrices are considered for the matrix exponential tests. The first two belong to
the Harwell-Boeing collection [38] and are commonly used as benchmarks: orani678,
nonsymmetric sparse matrix of order 2529, and bcspwr10, symmetric sparse matrix
of order 5300. The other two are te12, a complex matrix from the time evolu-
tion application, with dimension 4096, and imclam55, a matrix from the migration
modelling application, sparse, nonsymmetric of dimension 6770.

Tables 5.3 and 5.4, and Figures 5.2 and 5.3 show the results for each of the
three methods implemented to compute the matrix exponential function. Tables 5.3
and 5.4 also show the absolute error of the computed solution, ‖F −Fm‖F , taking as
a reference the computation done in Matlab, Fm, that uses the algorithm described
in [3].

When using Güttel–Nakatsukasa, computing the eigenvalues of A to shift the
matrix implies adding too much overhead to the method. For the executions, we
have disabled that computation and eliminated the shift. Also, since most of the
operations in this method are performed in complex arithmetic in the case of real
matrices, the flop count discerns between real and complex operations.

The results of the executions on the Fermi platform are displayed in Table 5.3 and
Figure 5.2. They show that Higham’s method (Padé up to degree 13) is faster than
basic Padé and Güttel–Nakatsukasa, but it is slightly less efficient in terms of compu-
tational intensity. The high number of Gflop/s achieved by Güttel–Nakatsukasa with
real matrices, comes from unconditionally using complex arithmetic. The speedup
obtained with the GPU on this platform is smaller than in the square root case, rang-
ing from 1.3 to 3.0 with the fastest method. Higham’s method always attains the

126

5.3. Numerical experiments

Table 5.3. Results for the matrix exponential running on the Fermi platform. Time
expressed in seconds. GF/s indicates gigaflops per second.

CPU GPU

Matrix Algorithm Time GF/s ‖F − Fm‖F Time GF/s ‖F − Fm‖F

orani678
Higham 3.1 67 4.1 · 10−12 2.5 83 4.1 · 10−12

Padé 5.0 80 4.1 · 10−12 2.3 219 6.6 · 10−12

Güttel–Nakatsukasa† 15.5 97 3.9 · 10−12 5.7 260 4.7 · 10−12

bcspwr10
Higham 27.2 80 2.7 · 10−12 11.7 187 3.7 · 10−12

Padé 49.9 74 4.7 · 10−12 16.5 295 1.8 · 10−10

Güttel–Nakatsukasa† 129.8 104 8.4 · 10−9 34.6 390 8.4 · 10−9

te12
Higham 55.3 83 1.2 · 10−13 18.5 248 3.9 · 10−13

Padé 71.9 94 4.3 · 10−13 22.5 399 1.1 · 10−10

Güttel–Nakatsukasa† 77.6 102 3.3 · 10−9 22.4 359 3.3 · 10−9

imclam55
Higham 76.8 92 5.0 · 10−14 26.9 262 5.1 · 10−14

Padé 105.8 96 1.6 · 10−13 36.0 351 1.7 · 10−12

Güttel–Nakatsukasa† 264.6 106 1.6 · 10−12 72.3 401 1.4 · 10−12

†Without computing the eigenvalues and shifting the matrix

smallest error on all the executions, because Matlab’s reference solution implements
the same algorithm.

Table 5.4 and Figure 5.3 contain the results for the tests on the Kepler platform.
The results corresponding to the CPU runs maintain the same ranking as on Fermi,
but the increase of computational intensity of Padé is remarkable. It is noticeable
how the time ratio between Higham and Padé is reduced on this newer platform.
Güttel–Nakatsukasa returns the poorest results even when working with complex
arithmetic, where it can be competitive.

The GPU executions obtain the fastest times, but the speedups with respect to
the CPU are smaller on this platform. The best speedup of 2.1 is obtained with Padé
when working with the largest matrix. Contrary to the CPU results, Padé is always
faster than Higham on GPU, benefiting from a higher computational intensity. The
higher number of Gflop/s obtained by Padé comes from the smaller relative weight
of the gesv routine with respect to higher number of matrix-matrix multiplications.

5.3.2 Computational evaluation of sparse solvers

The sparse tests were conducted on two clusters of the Minotauro supercomputer
composed by nodes with the same characteristics as the platforms of Section 5.3.1,
interconnected through an Infiniband network. In the experiments of this section,
all the executions launch a single process per node, using 12 (Fermi) or 16 (Kepler)
threads per process on the CPU runs, and a single GPU card per process on the

127

Chapter 5. Matrix functions

orani678 bcspwr10 te12 imclam55

0

50

100

150

200

250

S
ec

on
d

s

Higham CPU Higham GPU
Padé CPU Padé GPU
Güttel–Nakatsukasa CPU Güttel–Nakatsukasa GPU

Figure 5.2. Time results for computing the matrix exponential on Fermi.

Table 5.4. Results for the matrix exponential running on the Kepler platform. Time
expressed in seconds. GF/s indicates gigaflops per second.

CPU GPU

Matrix Algorithm Time GF/s ‖F − Fm‖F Time GF/s ‖F − Fm‖F

orani678
Higham 1.7 122 4.1 · 10−12 2.3 90 4.1 · 10−12

Padé 1.8 225 4.1 · 10−12 1.5 324 6.6 · 10−12

Güttel–Nakatsukasa† 4.9 310 3.9 · 10−12 2.9 505 4.7 · 10−12

bcspwr10
Higham 10.3 212 2.6 · 10−12 7.8 280 4.1 · 10−12

Padé 10.9 337 4.9 · 10−12 6.3 773 1.8 · 10−10

Güttel–Nakatsukasa† 30.1 449 8.4 · 10−9 17.9 753 8.4 · 10−9

te12
Higham 15.3 300 1.4 · 10−13 11.9 386 3.8 · 10−13

Padé 16.0 423 3.4 · 10−13 11.0 818 1.1 · 10−10

Güttel–Nakatsukasa† 19.2 410 3.3 · 10−9 13.7 588 3.3 · 10−9

imclam55
Higham 22.9 307 4.3 · 10−14 13.6 518 5.1 · 10−14

Padé 26.1 388 1.3 · 10−13 12.5 1012 1.7 · 10−12

Güttel–Nakatsukasa† 59.2 475 1.6 · 10−12 31.0 934 1.4 · 10−12

†Without computing the eigenvalues and shifting the matrix

128

5.3. Numerical experiments

orani678 bcspwr10 te12 imclam55

0

20

40

60
S

ec
on

d
s

Higham CPU Higham GPU
Padé CPU Padé GPU
Güttel–Nakatsukasa CPU Güttel–Nakatsukasa GPU

Figure 5.3. Time results for computing the matrix exponential on Kepler.

GPU runs. The reported times are the minimum from three independent executions
working in double precision arithmetic. The performance of the different steps of the
computation may vary a lot depending on the problem solved and the parameters
used. Here we break down the total computation time into the main computational
units to analyze their behaviour. These units are: the matrix-vector product used to
expand the basis of the Krylov subspace, referred to as MatVec; the orthogonaliza-
tion and normalization of the vectors, referred to as Orthog; and the computation
of the projected dense problem, f(Hkm).

In this section, we present performance results for the Krylov solver using two
test cases, with the exponential and square root functions respectively.

Sparse exponential experiments

Advection diffusion equation The application employed in the tests of the expo-
nential function, also used in [26], corresponds to the discretization of the advection
diffusion equation

∂tu = ε∆u+ c∇u, (5.30)

on the domain Ω = [0, 1]2 with homogeneous Dirichlet boundary conditions. A
standard 5-point finite-difference discretization with grid size h = 1

N+1 in both

spatial directions results in a sparse matrix of order n = N2 with at most five
nonzero elements per row. The Péclet number is defined as the advection diffusion
ratio, scaled by h, Pe = ch

2ε , allowing to control the normality of the matrix. In this
case, we are interested in computing uk = exp(∆t A)uk−1 for a few values of k using
a constant time step, ∆t. The computation can be done with the restarted Arnoldi
method described in Section 5.2.1, together with the algorithms of Section 5.1.3 for
the explicit evaluation of exp(Hkm) at each restart.

129

Chapter 5. Matrix functions

Table 5.5. Results for the advection diffusion problem. Time expressed in seconds.
The MatVec and Orthog columns show the time needed in the matrix-vector product,
and in the orthogonalization and normalization of the basis vectors, respectively.

CPU Time GPU Time

Platform Processes Algorithm MatVec Orthog exp(Hkm) MatVec Orthog exp(Hkm)

Fermi
1

Higham 136.9 554.9 61.8 10.1 160.4 11.0
Padé 135.0 557.6 65.2 10.1 160.5 6.9

16
Higham 23.9 78.9 63.5 9.1 24.6 12.2
Padé 19.3 71.9 67.1 5.2 15.0 7.5

Kepler
1

Higham 103.7 473.3 6.1 8.1 78.0 4.4
Padé 112.8 473.1 6.4 8.1 78.1 3.5

16
Higham 8.7 19.4 7.5 4.4 10.5 4.9
Padé 8.1 19.1 7.6 3.9 9.3 4.4

Figure 5.4 and Table 5.5 show the results when computing uk = exp(∆t A)uk−1

for five repetitions with ∆t = 10−4. The parameters that we have used to generate
the advection diffusion discretization matrix are Pe = 0.5, ε = 1, and N = 1735
(hence the size of A is roughly 3 million). The initial vector used is the one given
by the discretization of the initial state u0(x, y) = 256 · x2(1 − x)2y2(1 − y)2. The
Arnoldi restart parameter used in this case is m = 30, with which the solver needed
23 restarts on each time step.

On Section 5.3.1 we saw that on the Kepler platform, none of the algorithms
to compute the dense exponential was faster on both CPU and GPU, so with this
problem we present results using Higham (faster on CPU) and Padé (faster on
GPU). On Fermi, MatVec, Orthog and exp(Hkm) are able to achieve good speedups
of 13.4, 3.5 and 9.5 respectively, with the single process execution on the GPU runs
(comparing to CPU). The overall speedup obtained with a single process reaches only
4.3, as the dominant time-consuming operation is the orthogonalization, that attains
the smallest speedup. As the dense solver is not executed in parallel, its runtime
should not vary in the multi-process execution, although on actual runs there can
indeed be some variation due to idle times produced by process synchronization.
On the multi-process execution, the speedup of MatVec is reduced to 3.8 and the
speedup of Orthog improves up to 4.8. These speedups, together with the reduced
relative weight of the orthogonalization when executing with multiple processes,
increase the maximum speedup obtained with the GPU for the whole computation
up to 5.8 when using 16 processes.

On Kepler, the single process execution on GPU obtains speedups of 13.9 and
6.1 for MatVec and Orthog, with respect to the CPU runs. The dense exponential
performance is reduced to a speedup of 1.8 when running on GPU. The whole com-
putation speedup for GPU runs compared with the CPU ones, achieve 6.6 with a
single process, and a more limited speedup of 2.1 on the multi-process execution.

130

5.3. Numerical experiments

Fermi 1 Kepler 1

0

200

400

600

800
S

ec
on

d
s

Fermi 16 Kepler 16

0

50

100

150

MatVec CPU Orthog CPU Higham CPU Padé CPU
MatVec GPU Orthog GPU Higham GPU Padé GPU

Figure 5.4. Time results for the advection diffusion problem.

Sparse square root experiments

Ensemble Square-Root Kalman Filter The application used in the tests of the
square root function is the data assimilation application of Section 5.3.1. Note that
in Section 5.1 we used the same application, but a different matrix, to analyze the
square root function, and now we deal with the complete function with a matrix of
dimension 17733 and a sparsity of 40%, much denser than in the advection diffusion
case. In this application, we are interested in solving linear systems of the form
(D +

√
D)x = b, which is equivalent to computing x = f(D)b, with

f(D) = (D +
√
D)−1. (5.31)

SLEPc allows certain flexibility in the definition of functions, by combining two
simpler functions. In our case, we define f(·) as the reciprocal of another function,
which in turn is defined as the sum of two functions (the identity and the square
root). All these sub-functions can be evaluated easily, except for the matrix square
root that needs the algorithms of Section 5.1.1. These evaluations will operate on
the Hessenberg matrix in every restart of the Arnoldi method.

Figure 5.5 and Table 5.6 show the results obtained for computing f(D)b for 30
different right-hand sides b with the EnSRF matrix function of (5.31), and using
Denman–Beavers (5.10) as the method to compute

√
Hkm. In this experiment we

have used an Arnoldi restart parameter of m = 150, with which the solver required
only three restarts in all cases.

On Fermi, the single process execution running on GPU achieves speedups of 16.2
and 2.7 for MatVec and Orthog, with respect to the CPU, while the dense function

131

Chapter 5. Matrix functions

Table 5.6. Results for the EnSRF matrix function using Denman–Beavers to com-
pute

√
Hkm. Time expressed in seconds. The MatVec and Orthog columns show

the time needed in the matrix-vector product, and in the orthogonalization and
normalization of the basis vectors, respectively.

CPU Time GPU Time

Platform Processes MatVec Orthog
√
Hkm MatVec Orthog

√
Hkm

Fermi
1 3459.8 67.6 49.0 212.8 25.0 43.2

16 269.1 124.4 55.0 29.2 18.1 43.6

Kepler
1 2453.2 21.5 15.4 135.2 13.0 15.3

16 192.1 58.9 28.8 20.7 14.4 19.0

obtains almost the same time on CPU and GPU. The overall obtained speedup of
12.7 when running on GPU stems from the MatVec operation. The multi-process
execution reduces the speedup of MatVec to 9.2, and Orthog speedup increases to
6.8, reducing the total speedup down to 4.8 for the GPU with respect to the CPU
run. The runs on GPU on the Kepler platform, with a single process, obtain better
speedup in MatVec, the dominant operation, reaching 18.1. This improvement of
MatVec helps to accelerate the whole computation more than in the case of the
Fermi platform, with a speedup of 15.2 when running a single process on GPU, with
respect to CPU. Using several processes on Kepler also improves the gain obtained
on Fermi, reaching a speedup of 5 on the whole computation with respect to the
CPU runs.

Addendum Here, we would like to take the opportunity to add an aside to com-
ment about the improvement in the time and memory usage of the data assimilation
application with the matrix function approach.

In a previous work, Steward et al. [126] proposed a parallel method to compute
the Ensemble Square-Root Kalman Filter (EnSRF) equations by computing a matrix
function via eigenpairs. Unlike other methods that assimilate the observations in a
given window sequentially, the proposed solution does not depend on the order of
observations, allowing to assimilate all the observations in the window independently
at the same time. With our work [127] we have enabled the optimization of this
methodology by switching from computing the inverse and square root portion of
the EnSRF equations into computing the action of a matrix function on a vector.
Matrix-vector products are then used to build a Krylov subspace and the matrix
function is applied to a projected problem as described in Section 5.2.

We briefly present the results of a set of executions carried out in the xjet super-
computer. Xjet is composed by 812 nodes interconnected with an FDR Infiniband
network. Each node has two Intel Haswell processors (12 cores per processor) run-
ning at 2.3 GHz and 64 GB of main memory.

The modifications were incorporated to the HEDAS application [2] and tested

132

5.3. Numerical experiments

Fermi 1 Kepler 1

0

1,000

2,000

3,000
S

ec
o
n

d
s

Fermi 16 Kepler 16

0

100

200

300

400

MatVec CPU Orthog CPU Denman-Beavers CPU
MatVec GPU Orthog GPU Denman-Beavers GPU

Figure 5.5. Time results for the EnSRF matrix function using Denman–Beavers to
compute

√
Hkm.

0 1 2 3

·104

500

1,000

1,500

2,000

2,500

Matrix size

S
ec

on
d
s

Wall time

EPS
MFN

Figure 5.6. Total computation time for the EPS and MFN methods as a function of
the matrix size with 386 processes, in double precision arithmetic.

133

Chapter 5. Matrix functions

0 1 2 3

·104

20

40

60

Matrix size

M
em

o
ry

u
se

d
(%

)

Memory usage

EPS
MFN

Figure 5.7. Memory usage for the EPS and MFN methods as a function of the
matrix size with 386 processes, in double precision arithmetic.

with 384 processes, running on the same number of computational cores. The matrix
function approach provides a numerical solution analogous to the eigenproblem based
method, that has proven error bounds. We show in Figure 5.6 the execution time
as a function of the matrix size (number of observations to assimilate) for both
methods of solving the EnSKF equations, EPS which computes the eigenvalues of
the forward observation covariance matrix, and MFN that performs the computation
of the action of a matrix function on a vector with Krylov methods. Times above
2500 seconds are not shown. The EPS solution scales approximately as n3, while
MFN seems to scale linearly. We remark that the time of the computation is directly
related with the sparsity of the matrix and these matrices are relative dense.

Figure 5.7 shows the total memory footprint for the same executions. The eigen-
problem method yields the same cubic increase with respect to the matrix size, and
the matrix function increase is more than linear. Again, the memory scaling is di-
rectly related with the sparsity of the matrix, where a sparse matrix should provide
linear scaling and a dense one quadratic scaling.

5.4 Conclusions

In this chapter we have studied the suitability of several dense methods (f(A)) to
compute the matrix square root, the inverse square root, and the matrix exponen-
tial functions on GPU platforms. The simplicity of iterative methods entitle them
to be implemented on GPU with common linear algebra operations and allow the
acceleration of their computation with respect to a CPU implementation. In our
tests, we have been able to obtain up to a gain factor of 3.8 when comparing GPU

134

5.4. Conclusions

implementations against multi-threaded CPU implementations, for matrices with
dimension of a few thousands. We have also observed that the increasing number of
available cores on newer CPUs make them closer in efficiency to its contemporary
GPUs.

The obtained acceleration can be useful to reduce the cost present in the criti-
cal path of parallel Krylov methods for the computation of the action of a matrix
function on a vector (f(A)b), when executed on clusters of GPUs, provided that the
size of the Hessenberg matrix is not too small, that is, the computation associated
with this matrix takes a non-negligible percentage of the overall computation time.
The GPU implementations of the dense methods will also be helpful for explicitly
computing f(A) in some applications.

We have also analyzed the overall performance on GPU platforms of the restarted
Arnoldi method for matrix functions, obtaining speedups of 5.8 in a multi-process
execution. We have seen how the computation is divided in three main steps that
have more or less relevance depending on the characteristics of the initial matrix. A
parallel high performance implementation of the matrix-vector product is essential
to provide fast results. The most time-consuming operation is the orthogonalization
of the vectors of the Krylov basis. Each restart of Arnoldi increases the size of the
dense problem, and it may entail a considerable cost with many restarts. We have
shown how all three operations can be done on GPU, and the improvement that it
provides.

Finally, we have taken the opportunity to present the results of implementing
our methods on an application, and compare the matrix function solution with
an eigenvalue oriented method. The matrix function solution scales better as a
function of the matrix size, both in time and in memory usage, while achieving
similar numerical results and maintaining the feature of assimilating the observations
within the assimilation window in parallel.

135

Chapter 6

Conclusions

No lusco e fusco

With this chapter we conclude the exposition of these years of work. As the cul-
mination of our activity we summarize here the most relevant conclusions of the
fulfilled targets in this thesis.

Our work has focused on creating multi-process parallel implementations of large
sparse eigenvalue solvers and functions of matrices that make use of graphics process-
ing units to accelerate the computations. Each of our implementations has subse-
quently been used in scientific applications to demonstrate the improvement achieved
and its applicability.

In Chapter 3 we introduced the eigenvalue problem and the most common meth-
ods for solving it. We also presented SLEPc and PETSc libraries and offered a
description of how they can make use of GPUs in a multi-process parallel imple-
mentation that combines MPI and CUDA. We raised the problematic encountered
with the initial approach to GPU computing in PETSc when we found some specific
lacks of capabilities in the GPU support based on CUSP, that restrained our devel-
opments. The constraints were originated in some decisions in the design of Thrust,
the C++ library on top of which CUSP is developed. This situation made us work
to extend PETSc functionality with a more complete support for GPU operations
basing this support in the CUDA runtime, in cuBLAS, and in cuSPARSE.

Nevertheless, with the initial version of the GPU support based on CUSP, we
were able to obtain very rewarding results with the ParIso application. The speedup
of the eigenvalue solve when running on the GPU in a transparent way, in addition
to the speedup of the generation of the matrix with our implementation of a specific
kernel, resulted in a good scalability. The multi-process trials showed that the GPU
version is far superior than the previous one.

The implementations and tests performed in Chapter 4 were those who required
most of our time, out of all the work that we have done. In this chapter we have
worked in obtaining a few eigenpairs from block-tridiagonal and block cyclic tridi-

137

Chapter 6. Conclusions

agonal matrices by means of Krylov methods. We have considered the blocks of the
matrices as dense blocks in order to use BLAS routines in the computations. The
matrix storage format used has helped us to simplify the implementations, and also
allowed the improvement of the performance by using coalesced access to the GPU
memory by the CUDA threads. In the case of computing eigenvalues on the exterior
of the spectrum we experimented with BLAS based solutions and eventually ended
up implementing a better performing kernel to do the matrix product. In the case
of computing interior eigenvalues by means of the shift-and-invert technique, we im-
plemented and made a comparison of several algorithms for solving linear systems
of equations with such structure. Our GPU implementations have proven to be very
competitive when comparing them with CPU implementations for a large enough
matrix block size. With small block sizes, it is difficult to recover from the overhead
of launching a kernel to the GPU. In both cases, exterior and interior eigenvalues,
our software can make use of several GPUs with an MPI-GPU approach, scaling
up to very large problem sizes. Finally, we compared our multi-process solution for
solving linear systems of equations with a state of the field library obtaining a better
scalability.

In Chapter 5 we have implemented different matrix function solvers in the SLEPc
library, extending the usability of the FN and MFN modules. The methods have been
validated with a collection of test cases coming from scientific applications, and have
proven to provide robust numerical results and achieve a good performance. They
are included in the public release of SLEPc, and are already being used in different
scientific computing applications.

Throughout this years of work the SLEPc library has experienced changes and
improvements. The main contributions of this thesis have been the extension of the
computing capabilities of the library by means of the use of graphics processing units
as accelerators, and the inclusion of new algorithms that allow to perform operations
that were not available before.

Publications and research projects

Publications

Together with the presented developments, the contents of this thesis have been
published in several scientific journals and presented in international conferences. In
particular, Chapters 3, 4 and 5 gave rise to the following articles and proceedings:

[80] A. Lamas Daviña, E. Ramos, and J. E. Roman. Optimized analysis of isotropic
high-nuclearity spin clusters with GPU acceleration. Comput. Phys. Com-
mun., 209:70–78, 2016.

[81] A. Lamas Daviña and J. E. Roman. GPU implementation of Krylov solvers
for block-tridiagonal eigenvalue problems. In R. Wyrzykowski et al., editors,
Parallel Processing and Applied Mathematics-PPAM 2015, Part I, volume 9573
of Lect. Notes Comp. Sci., pages 182–191. Springer, 2016.

138

[82] A. Lamas Daviña and J. E. Roman. Parallel MPI-GPU linear system solvers
specific for block-tridiagonal matrices. In Libro de comunicaciones definitivas
presentadas en CEDYA+CMA2017, pages 674–681. UP4Sciences, 2017.

[83] A. Lamas Daviña and J. E. Roman. MPI-CUDA parallel linear solvers for
block-tridiagonal matrices in the context of SLEPc’s eigensolvers. Parallel
Comput., 74:118–135, 2018.

[79] A. Lamas Daviña, X. Cartoixà, and J. E. Roman. Scalable block-tridiagonal
eigensolvers in the context of electronic structure calculations. In S. Bassini,
M. Danelutto, P. Dazzi, G. Joubert, and F. Peters, editors, Parallel Computing
is Everywhere, volume 32 of Advances in Parallel Computing, pages 117–126.
IOS Press, 2018.

[127] J. Steward, J. E. Roman, A. Lamas Daviña, and A. Aksoy. Parallel direct so-
lution of the covariance-localized ensemble square-root Kalman filter equations
with matrix functions. Mon. Weather Rev., 146(9):2819–2836, 2018.

Research projects

This thesis has been developed under the FPU program (FPU2013-06655) granted
by the Spanish Ministry of Education, Culture and Sport, and in the framework of
the following research projects:

Extending the SLEPc library for matrix polynomials, matrix functions and matrix
equations in emerging computing platforms (TIN2013-41049-P) (2014-2016),
granted by the Spanish Ministry of Economy and Competitiveness.

Highly scalable eigensolvers in the context of the SLEPc library (TIN2016-75985-P)
(2017-2019), granted by the Spanish National Research Agency.

Open research lines

Many things have remained to be done on each of the developments made. Some of
them are just small ideas, and other, complex things that would entail a time that
we did not have. We here name some possible future courses of action that we think
feasible and would improve the software capabilities.

The ParIso software of Chapter 3 may be extended in such a way that not only
the first and last eigenvalue of each block is computed in the first phase, but also a
rough approximation of how all eigenvalues are distributed within that range. This
information, usually known as density of states (DOS), is difficult to obtain, but
recent efforts are trying to do this cost-effectively [90].

When we solve the block (cyclic) tridiagonal matrices of Chapter 4, we treat
the blocks of the matrix as dense, therefore as an evident future work remains to
take profit of their sparsity. It can be made by using any of the sparse matrix
storage formats available on cuBLAS and MAGMA. Other attractive possibility is

139

Chapter 6. Conclusions

allocating the blocks directly as PETSc matrix types, as it would allow a transparent
management of the memory transfers between CPU and GPU, and the operations
with them could be easily migrated. Another possible research direction would be
to expand the software to work with tridiagonal blocks that appear in some fast
Poisson solvers.

With respect to the implementation of matrix functions of Chapter 5, we will
continue adding more functionality to the matrix function solvers in SLEPc, as it is
a very interesting field with an active development of new algorithms. In particular,
for the dense case, we could study the inclusion of trigonometric functions like the
sine and cosine, that appear in the solution of second order differential equations.
For the sparse case, alternative restart schemes [40,46] have been proposed recently
that may be more effective than the Eiermann-Ernst scheme that we currently use.

Talking about a more low level aspect of the implementations, the lack of a
matrix dense type that works on the GPU (a possible MatCUDADense type) in
PETSc could be addressed. This feature would benefit both SLEPc and user codes
by enabling the transparent run of dense operations on the GPU. Also, the inclusion
of MAGMA solvers in PETSc for performing operations on the GPU would certainly
accelerate LAPACK operations. In more general terms, the use of other accelerators
could be studied.

140

Bibliography

[1] M. Ahues, F. D. d’Almeida, A. Largillier, O. Titaud, and P. Vasconcelos. An
L1 refined projection approximate solution of the radiation transfer equation
in stellar atmospheres. J. Comput. Appl. Math., 140:13–26, 2002. (Cited on
pages 72 and 98.)

[2] A. Aksoy, S. Lorsolo, T. Vukicevic, K. J. Sellwood, S. D. Aberson, and
F. Zhang. The HWRF Hurricane Ensemble Data Assimilation System
(HEDAS) for High-Resolution Data: The Impact of Airborne Doppler Radar
Observations in an OSSE. Mon. Weather Rev., 140(6):1843–1862, 2012. (Cited
on page 132.)

[3] A. H. Al-Mohy and N. J. Higham. A new scaling and squaring algorithm for
the matrix exponential. SIAM J. Matrix Anal. Appl., 31(3):970–989, 2010.
(Cited on pages 119 and 126.)

[4] G. M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring
Joint Computer Conference, AFIPS ’67 (Spring), pages 483–485. ACM, 1967.
(Cited on page 34.)

[5] P. R. Amestoy, I. S. Duff, and J.-Y. L’Excellent. Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech.
Eng., 184(2–4):501–520, 2000. (Cited on page 48.)

[6] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen.
LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edition, 1999. (Cited on page 19.)

[7] C. Andrew, C. F. F., L. Rainald, and W. John. Running unstructured grid-
based CFD solvers on modern graphics hardware. Int. J. Numer. Methods
Flu., 66(2):221–229, 2011. (Cited on page 3.)

[8] H. Anzt, S. Tomov, and J. Dongarra. Implementing a sparse matrix vector
product for the SELL-C/SELL-C-σ formats on NVIDIA GPUs. Technical Re-
port ut-eecs-14-727, University of Tennessee, March 2014. (Cited on page 32.)

141

Bibliography

[9] W. E. Arnoldi. The principle of minimized iterations in the solution of the
matrix eigenvalue problem. Quart. Appl. Math., 9:17–29, 1951. (Cited on
page 41.)

[10] B. Baghapour, V. Esfahanian, M. Torabzadeh, and H. M. Darian. A dis-
continuous Galerkin method with block cyclic reduction solver for simulating
compressible flows on GPUs. Int. J. Comput. Math., 92(1):110–131, 2015.
(Cited on page 86.)

[11] Z. Bai, D. Day, J. Demmel, and J. Dongarra. A test matrix collection for non-
Hermitian eigenvalue problems (release 1.0). available at https://sparse.

tamu.edu, 1996. (Cited on page 123.)

[12] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors.
Templates for the Solution of Algebraic Eigenvalue Problems: A Practical
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA,
2000. (Cited on pages 2, 37, and 44.)

[13] Z. Bai and G. W. Stewart. Algorithm 776: SRRIT: A FORTRAN subroutine
to calculate the dominant invariant subspace of a nonsymmetric matrix. ACM
Trans. Math. Software, 23(4):494–513, 1997. (Cited on page 40.)

[14] C. G. Baker, U. L. Hetmaniuk, R. B. Lehoucq, and H. K. Thornquist. Anasazi
software for the numerical solution of large-scale eigenvalue problems. ACM
Trans. Math. Software, 36(3):13:1–13:23, 2009. (Cited on page 45.)

[15] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman,
L. Dalcin, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley,
D. May, L. C. McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith,
S. Zampini, H. Zhang, and H. Zhang. PETSc users manual. Technical Report
ANL-95/11 - Revision 3.9, Argonne National Laboratory, 2018. (Cited on
pages 46 and 64.)

[16] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector multi-
plication on GPUs using compile-time and run-time strategies, 2008. (Cited
on page 3.)

[17] N. Bell and M. Garland. Implementing sparse matrix-vector multiplication on
throughput-oriented processors. In Proceedings of the Conference on High Per-
formance Computing Networking, Storage and Analysis, SC ’09, pages 18:1–
18:11. ACM, 2009. (Cited on page 32.)

[18] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C. C. Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney,
and J. Zook. TILE64 - processor: A 64-core SoC with mesh interconnect. In
2008 IEEE International Solid-State Circuits Conference - Digest of Technical
Papers, pages 88–598, 2008. (Cited on page 23.)

142

https://sparse.tamu.edu
https://sparse.tamu.edu

Bibliography

[19] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon,
J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1997. (Cited on pages 19 and 45.)

[20] S. Blaser, M. Rochat, L. Ajili, M. Beck, J. Faist, H. Beere, G. Davies, E. Lin-
field, and D. Ritchie. Terahertz interminiband emission and magneto-transport
measurements from a quantum cascade chirped superlattice. Physica E, 13(2–
4):854–857, 2002. (Cited on page 108.)

[21] J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S.
Tsukerblat. High-nuclearity magnetic clusters: Generalized spin Hamiltonian
and its use for the calculation of the energy levels, bulk magnetic properties,
and inelastic neutron scattering spectra. Inorg. Chem., 38:6081–6088, 1999.
(Cited on pages 54 and 55.)

[22] J. J. Borras-Almenar, J. M. Clemente-Juan, E. Coronado, and B. S.
Tsukerblat. MAGPACK: A package to calculate the energy levels, bulk mag-
netic properties, and inelastic neutron scattering spectra of high nuclearity
spin clusters. J. Comput. Chem., 22(9):985–991, 2001. (Cited on page 54.)

[23] A. Buttari, J. Langou, J. Kurzak, and J. Dongarra. A class of parallel tiled lin-
ear algebra algorithms for multicore architectures. Parallel Comput., 35(1):38–
53, 2009. (Cited on page 19.)

[24] B. L. Buzbee, G. H. Golub, and C. W. Nielson. On direct methods for solving
Poisson’s equations. SIAM J. Numer. Anal., 7(4):627–656, 1970. (Cited on
page 75.)

[25] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer. Comparison of soft-
ware for computing the action of the matrix exponential. BIT Numer. Math.,
54(1):113–128, 2014. (Cited on pages 115 and 120.)

[26] M. Caliari, P. Kandolf, A. Ostermann, and S. Rainer. The Leja method re-
visited: Backward error analysis for the matrix exponential. SIAM J. Sci.
Comput., 38(3):A1639–A1661, 2016. (Cited on page 129.)

[27] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu. A scalable,
numerically stable, high-performance tridiagonal solver using GPUs. In Pro-
ceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, pages 27:1–27:11, Nov. 2012. (Cited on
page 89.)

[28] B. Chapman, G. Jost, and R. van der Pas. Using OpenMP Portable Shared
Memory Parallel Programming. The MIT Press, 2008. (Cited on page 13.)

[29] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub. Approximating
the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl.,
22(4):1112–1125, 2001. (Cited on page 116.)

143

Bibliography

[30] CUDA C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/. Accessed on 17 May 2018. (Cited on
page 28.)

[31] J. J. M. Cuppen. A divide and conquer method for the symmetric tridiagonal
eigenproblem. Numer. Math., 36(2):177–195, 1980. (Cited on page 39.)

[32] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo. Parallel distributed
computing using Python. Adv. Water Resour., 34(9):1124–1139, 2011. (Cited
on page 48.)

[33] S. Dalton, N. Bell, L. Olson, and M. Garland. Cusp: Generic parallel algo-
rithms for sparse matrix and graph computations, 2015. Version 0.5.1, available
at https://cusplibrary.github.io/. (Cited on pages 32 and 49.)

[34] E. Deadman, N. J. Higham, and R. Ralha. Blocked Schur algorithms for
computing the matrix square root. In P. Manninen and P. Öster, editors,
Applied Parallel and Scientific Computing, PARA 2012, pages 171–182, 2013.
(Cited on page 115.)

[35] E. D. Denman and A. N. Beavers, Jr. The matrix sign function and computa-
tions in systems. Appl. Math. Comput., 2(1):63–94, 1976. (Cited on page 116.)

[36] R. Dolbeau. Theoretical peak flops per instruction set: a tutorial. J. Super-
comput., 74(3):1341–1377, 2018. (Cited on page 36.)

[37] J. Dongarra, C. Moler, J. Bunch, and G. Stewart. LINPACK Users’ Guide.
Society for Industrial and Applied Mathematics, 1979. (Cited on page 19.)

[38] I. S. Duff, R. G. Grimes, and J. G. Lewis. Users’ guide for the Harwell-Boeing
sparse matrix collection (release I). available at https://sparse.tamu.edu,
1992. (Cited on page 126.)

[39] M. Eiermann and O. G. Ernst. A restarted Krylov subspace method for the
evaluation of matrix functions. SIAM J. Numer. Anal., 44(6):2481–2504, 2006.
(Cited on page 120.)

[40] M. Eiermann, O. G. Ernst, and S. Güttel. Deflated restarting for matrix func-
tions. SIAM J. Matrix Anal. Appl., 32(2):621–641, 2011. (Cited on page 140.)

[41] N. England. A system for interactive modeling of physical curved surface ob-
jects. SIGGRAPH Comput. Graph., 12(3):336–340, 1978. (Cited on page 24.)

[42] N. England. A graphics system architecture for interactive application-specific
display functions. IEEE Computer Graphics and Applications, 6(1):60–70,
1986. (Cited on page 24.)

[43] M. E. Farquhar, T. J. Moroney, Q. Yang, and I. W. Turner. GPU accelerated
algorithms for computing matrix function vector products with applications
to exponential integrators and fractional diffusion. SIAM J. Sci. Comput.,
38(3):C127–C149, 2016. (Cited on page 119.)

144

https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://cusplibrary.github.io/
https://sparse.tamu.edu

Bibliography

[44] M. J. Flynn. Some computer organizations and their effectiveness. IEEE
Trans. Comput., 21(9):948–960, 1972. (Cited on page 11.)

[45] R. A. Frazer, W. J. Duncan, and A. R. Collar. Elementary Matrices: And Some
Applications to Dynamics and Differential Equations. Cambridge University
Press, 1938. (Cited on page 118.)

[46] A. Frommer, K. Lund, M. Schweitzer, and D. B. Szyld. The Radau–Lanczos
method for matrix functions. SIAM J. Matrix Anal. Appl., 38(3):710–732,
2017. (Cited on page 140.)

[47] H. Fu, J. Liao, J. Yang, L. Wang, Z. Song, X. Huang, C. Yang, W. Xue, F. Liu,
F. Qiao, W. Zhao, X. Yin, C. Hou, C. Zhang, W. Ge, J. Zhang, Y. Wang,
C. Zhou, and G. Yang. The Sunway Taihulight supercomputer: system and
applications. Sci. China Infor. Sci., 59(7):072001, 2016. (Cited on page 23.)

[48] T. Fukaya and T. Imamura. Performance evaluation of the Eigen Exa eigen-
solver on Oakleaf-FX: Tridiagonalization versus pentadiagonalization. In 2015
IEEE International Parallel and Distributed Processing Symposium Workshop,
pages 960–969, 2015. (Cited on page 45.)

[49] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design
of a next generation MPI implementation. In D. Kranzlmüller, P. Kacsuk,
and J. Dongarra, editors, Recent Advances in Parallel Virtual Machine and
Message Passing Interface, pages 97–104. Springer Berlin Heidelberg, 2004.
(Cited on page 21.)

[50] E. Gallopoulos, B. Philippe, and A. H. Sameh. Parallelism in Matrix Compu-
tations. Springer, Dordrecht, 2016. (Cited on page 75.)

[51] W. Gander and G. H. Golub. Cyclic Reduction: history and applications. In
R. J. P. Franklin T. Luk, editor, Proceedings of the Workshop on Scientific
Computing, pages 73–85. Springer, Mar. 1997. (Cited on page 75.)

[52] M. Gates, A. Haidar, and J. Dongarra. Accelerating computation of eigenvec-
tors in the nonsymmetric eigenvalue problem. Technical Report Working Note
286, LAPACK, 2014. (Cited on page 4.)

[53] G. H. Golub and H. A. van der Vorst. Eigenvalue computation in the 20th
century. J. Comput. Appl. Math., 123(1-2):35–65, 2000. (Cited on page 37.)

[54] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Ya-
mazaki. Synergistic processing in Cell’s multicore architecture. IEEE Micro,
26(2):10–24, 2006. (Cited on page 10.)

[55] S. Güttel and Y. Nakatsukasa. Scaled and squared subdiagonal Padé approx-
imation for the matrix exponential. SIAM J. Matrix Anal. Appl., 37(1):145–
170, 2016. (Cited on page 119.)

145

Bibliography

[56] A. Haidar, H. Ltaief, and J. Dongarra. Toward a high performance tile divide
and conquer algorithm for the dense symmetric eigenvalue problem. SIAM J.
Sci. Comput., 34(6):C249–C274, 2012. (Cited on page 4.)

[57] D. Heller. Some aspects of the cyclic reduction algorithm for block tridiago-
nal linear systems. SIAM J. Numer. Anal., 13(4):484–496, 1976. (Cited on
page 75.)

[58] V. Hernandez, J. E. Roman, and A. Tomas. Parallel Arnoldi eigensolvers
with enhanced scalability via global communications rearrangement. Parallel
Comput., 33(7–8):521–540, 2007. (Cited on page 51.)

[59] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for
sparse eigenvalue problems. Technical Report STR-6, Universitat Politècnica
de València, 2006. (Cited on page 44.)

[60] V. Hernandez, J. E. Roman, and V. Vidal. SLEPc: A scalable and flexible
toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software,
31(3):351–362, 2005. (Cited on pages 2 and 45.)

[61] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G.
Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps, A. G.
Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. Williams,
and K. S. Stanley. An overview of the Trilinos project. ACM Trans. Math.
Software, 31(3):397–423, 2005. (Cited on page 46.)

[62] N. J. Higham. Computing real square roots of a real matrix. Linear Algebra
Appl., 88–89:405–430, 1987. (Cited on page 115.)

[63] N. J. Higham. The matrix sign decomposition and its relation to the polar
decomposition. Linear Algebra Appl., 212-213:3–20, 1994. (Cited on page 118.)

[64] N. J. Higham. Functions of Matrices: Theory and Computation. Society for
Industrial and Applied Mathematics, Philadelphia, PA, 2008. (Cited on pages
113, 117, 118, 120, and 123.)

[65] N. J. Higham and A. H. Al-Mohy. Computing matrix functions. Acta Numer-
ica, 19:159–208, 2010. (Cited on pages 113, 115, and 118.)

[66] S. P. Hirshman, K. S. Perumalla, V. E. Lynch, and R. Sanchez. BCYCLIC: A
parallel block tridiagonal matrix cyclic solver. J. Comput. Phys., 229(18):6392–
6404, 2010. (Cited on pages 75 and 86.)

[67] J. D. Hogg. A fast dense triangular solve in CUDA. SIAM J. Sci. Comput.,
35(3):303–C322, 2013. (Cited on page 4.)

[68] C. Hong, A. Sukumaran-Rajam, B. Bandyopadhyay, J. Kim, S. E. Kurt,
I. Nisa, S. Sabhlok, Ü. V. Çatalyürek, S. Parthasarathy, and P. Sadayappan.
Efficient sparse-matrix multi-vector product on GPUs. In Proceedings of the

146

Bibliography

27th International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’18, pages 66–79. ACM, 2018. (Cited on page 32.)

[69] J. F. Hughes, A. van Dam, M. McGuire, D. F. Sklar, J. D. Foley, S. K. Feiner,
and K. Akeley. Computer Graphics: Principles and Practice. Addison-Wesley
Professional, Boston, MA, USA, third edition, 2013. (Cited on page 23.)

[70] IEEE and The Open Group. POSIX.1-2017, IEEE std 1003.1-2017 (revision
of IEEE std 1003.1-2008), The Open Group Base Specifications issue 7, 2018.
(Cited on page 13.)

[71] Intel Math Kernel Library (MKL) developer reference (C). https://

software.intel.com/en-us/mkl-developer-reference-c/. Accessed on
17 May 2018. (Cited on page 19.)

[72] H. Iwai. CMOS technology after reaching the scale limit. In Junction Technol-
ogy, 2008. IWJT ’08. Extended Abstracts - 2008 8th International workshop
on, pages 1–2, May 2008. (Cited on page 8.)

[73] J. D. Jakub Kurzak, David A. Bader. Scientific Computing with Multicore and
Accelerators. CRC Press, 2010. (Cited on page 2.)

[74] J. M. Jancu, R. Scholz, F. Beltram, and F. Bassani. Empirical spds* tight-
binding calculation for cubic semiconductors: General method and material
parameters. Phys. Rev. B, 57(11):6493–6507, 1998. (Cited on page 108.)

[75] A. D. Kern and J. Hey. Exact calculation of the joint allele frequency spectrum
for generalized isolation with migration models. Genetics, 207(1):241–253,
2017. (Cited on page 126.)

[76] J. Kessenich, G. Sellers, and D. Shreiner. The OpenGL Programming Guide.
Addison-Wesley Professional, Boston, MA, USA, 9th edition, 2017. (Cited on
page 24.)

[77] M. Kreutzer, G. Hager, G. Wellein, H. Fehske, and A. Bishop. A unified sparse
matrix data format for efficient general sparse matrix-vector multiplication on
modern processors with wide SIMD units. SIAM J. Sci. Comput., 36(5):C401–
C423, 2014. (Cited on page 32.)

[78] V. Kysenko, K. Rupp, O. Marchenko, S. Selberherr, and A. Anisimov. GPU-
accelerated non-negative matrix factorization for text mining. In G. Bouma,
A. Ittoo, E. Métais, and H. Wortmann, editors, Natural Language Processing
and Information Systems, pages 158–163, Berlin, Heidelberg, 2012. Springer
Berlin Heidelberg. (Cited on page 4.)

[79] A. Lamas Daviña, X. Cartoixà, and J. E. Roman. Scalable block-tridiagonal
eigensolvers in the context of electronic structure calculations. In S. Bassini,
M. Danelutto, P. Dazzi, G. Joubert, and F. Peters, editors, Parallel Computing
is Everywhere, volume 32 of Advances in Parallel Computing, pages 117–126.
IOS Press, 2018. (Cited on page 139.)

147

https://software.intel.com/en-us/mkl-developer-reference-c/
https://software.intel.com/en-us/mkl-developer-reference-c/

Bibliography

[80] A. Lamas Daviña, E. Ramos, and J. E. Roman. Optimized analysis of isotropic
high-nuclearity spin clusters with GPU acceleration. Comput. Phys. Commun.,
209:70–78, 2016. (Cited on page 138.)

[81] A. Lamas Daviña and J. E. Roman. GPU implementation of Krylov solvers
for block-tridiagonal eigenvalue problems. In R. Wyrzykowski et al., editors,
Parallel Processing and Applied Mathematics–PPAM 2015, Part I, volume
9573 of Lect. Notes Comp. Sci., pages 182–191. Springer, 2016. (Cited on
page 138.)

[82] A. Lamas Daviña and J. E. Roman. Parallel MPI-GPU linear system solvers
specific for block-tridiagonal matrices. In Libro de comunicaciones definitivas
presentadas en CEDYA+CMA2017, pages 674–681. UP4Sciences, 2017. (Cited
on page 139.)

[83] A. Lamas Daviña and J. E. Roman. MPI-CUDA parallel linear solvers for
block-tridiagonal matrices in the context of SLEPc’s eigensolvers. Parallel
Comput., 74:118 – 135, 2018. (Cited on page 139.)

[84] J. J. Lambiotte, Jr. and R. G. Voigt. The solution of tridiagonal linear systems
on the CDC STAR 100 computer. ACM Trans. Math. Software, 1(4):308–329,
1975. (Cited on page 75.)

[85] E. S. Larsen and D. McAllister. Fast matrix multiplies using graphics hard-
ware. In Proceedings of the 2001 ACM/IEEE Conference on Supercomputing,
SC ’01, pages 55–55. ACM, 2001. (Cited on page 24.)

[86] E. László, M. Giles, and J. Appleyard. Manycore algorithms for batch scalar
and block tridiagonal solvers. ACM Trans. Math. Software, 42(4):31:1–31:36,
2016. (Cited on page 86.)

[87] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear
algebra subprograms for Fortran usage. ACM Trans. Math. Software, 5(3):308–
323, 1979. (Cited on page 18.)

[88] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users’ Guide, Solu-
tion of Large-Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Meth-
ods. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998.
(Cited on page 45.)

[89] R. Li and Y. Saad. GPU-accelerated preconditioned iterative linear solvers.
J. Supercomput., 63(2):443–466, 2013. (Cited on pages 4 and 62.)

[90] L. Lin. Randomized estimation of spectral densities of large matrices made
accurate. Numer. Math., 136(1):183–213, 2017. (Cited on page 139.)

[91] D. J. Luitz and Y. B. Lev. Information propagation in isolated quantum
systems. Phys. Rev. B, 96:020406, 2017. (Cited on page 126.)

148

Bibliography

[92] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Hei-
necke, H.-J. Bungartz, and H. Lederer. The ELPA library: scalable parallel
eigenvalue solutions for electronic structure theory and computational science.
J. Phys.: Cond. Matter, 26(21):213201, 2014. (Cited on page 45.)

[93] K. J. Maschhoff and D. C. Sorensen. PARPACK: An efficient portable large
scale eigenvalue package for distributed memory parallel architectures. Lect.
Notes Comp. Sci., 1184:478–486, 1996. (Cited on page 45.)

[94] K. Mendiratta and E. Polizzi. A threaded SPIKE algorithm for solving general
banded systems. Parallel Comput., 37(12):733–741, 2011. (Cited on page 79.)

[95] C. C. K. Mikkelsen and M. Manguoglu. Analysis of the truncated SPIKE
algorithm. SIAM J. Matrix Anal. Appl., 30(4):1500–1519, 2009. (Cited on
page 79.)

[96] V. Minden, B. Smith, and M. G. Knepley. Preliminary implementation of
PETSc using GPUs. In D. A. Yuen et al., editors, GPU solutions to multi-scale
problems in science and engineering, pages 131–140. Springer, 2013. (Cited on
pages 3 and 49.)

[97] C. Moler and C. F. V. Loan. Nineteen dubious ways to compute the exponential
of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003. (Cited on
page 118.)

[98] MPI Forum. MPI: a message-passing interface standard. Int. J. Supercomp.
Applic. High Perf. Comp., 8(3/4):159–416, 1994. (Cited on page 14.)

[99] T. H. Myer and I. E. Sutherland. On the design of display processors. Commun.
ACM, 11(6):410–414, 1968. (Cited on page 21.)

[100] S. G. Narendra and A. Chandrakasan. Leakage in nanometer CMOS technolo-
gies. Springer US, New York, NY, 2006. (Cited on page 9.)

[101] NVIDIA. CUBLAS Library V9.2. Technical Report DU-06702-001 v9.2,
NVIDIA Corporation, 2018. (Cited on page 31.)

[102] C. C. Paige. Accuracy and effectiveness of the Lanczos algorithm for the
symmetric eigenproblem. Linear Algebra Appl., 34:235–258, 1980. (Cited on
page 42.)

[103] M. Palesi and M. Daneshtalab. Routing Algorithms in Networks-on-Chip.
Springer, 2013. (Cited on page 10.)

[104] A. J. Park and K. S. Perumalla. Efficient heterogeneous execution on large
multicore and accelerator platforms: Case study using a block tridiagonal
solver. J. Parallel and Distrib. Comput., 73(12):1578–1591, 2013. (Cited on
pages 86 and 90.)

149

Bibliography

[105] E. Polizzi. Density-matrix-based algorithm for solving eigenvalue problems.
Physical Review B, 79(11):115112, 2009. (Cited on page 45.)

[106] E. Polizzi and A. H. Sameh. A parallel hybrid banded system solver: the
SPIKE algorithm. Parallel Comput., 32(2):177–194, 2006. (Cited on pages 77,
78, and 79.)

[107] J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero.
Elemental: A new framework for distributed memory dense matrix computa-
tions. ACM Trans. Math. Softw., 39(2):13:1–13:24, 2013. (Cited on page 45.)

[108] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J.-Y. Kim, S. Lanka, J. Larus, E. Peterson,
S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A reconfigurable fab-
ric for accelerating large-scale datacenter services. ACM SIGARCH Comput.
Archit. News, 42(3):13–24, 2014. (Cited on page 22.)

[109] E. Ramos, J. E. Roman, S. Cardona-Serra, and J. M. Clemente-Juan. Parallel
implementation of the MAGPACK package for the analysis of high-nuclearity
spin clusters. Comput. Phys. Commun., 181(12):1929–1940, 2010. (Cited on
page 54.)

[110] I. Reguly and M. Giles. Efficient sparse matrix-vector multiplication on cache-
based GPUs. In Innovative Parallel Computing (InPar), pages 1–12, 2012.
(Cited on page 62.)

[111] J. E. Roman and P. B. Vasconcelos. Harnessing GPU power from high-level
libraries: eigenvalues of integral operators with SLEPc. In International Con-
ference on Computational Science, volume 18 of Procedia Comp. Sci., pages
2591–2594. Elsevier, 2013. (Cited on page 3.)

[112] K. Rupp, A. Jüngel, and T. Grasser. Facing the multicore-challenge ii.
chapter A GPU-Accelerated Parallel Preconditioner for the Solution of the
Boltzmann Transport Equation for Semiconductors, pages 147–157. Springer-
Verlag, Berlin, Heidelberg, 2012. (Cited on page 4.)

[113] K. Rupp and B. Smith. On level scheduling for incomplete lu factorization
preconditioners on accelerators, 2013. (Cited on page 4.)

[114] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM Publications,
2nd edition, 2003. (Cited on page 80.)

[115] Y. Saad. Numerical Methods for Large Eigenvalue Problems, Revised Edition.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2011.
(Cited on page 37.)

[116] A. Sadeghi. Approximating the principal matrix square root using some novel
third-order iterative methods. Ain Shams Engineering Journal, 2016. In press,
DOI: 10.1016/j.asej.2016.06.004. (Cited on page 117.)

150

Bibliography

[117] G. Schulz. Iterative Berechung der reziproken Matrix. Z. Angew. Math. Mech.,
13(1):57–59, 1933. (Cited on page 117.)

[118] S. K. Seal, K. S. Perumalla, and S. P. Hirshman. Revisiting parallel cyclic
reduction and parallel prefix-based algorithms for block tridiagonal systems of
equations. J. Parallel and Distrib. Comput., 73(2):273–280, 2013. (Cited on
page 86.)

[119] R. Serban, D. Melanz, A. Li, I. Stanciulescu, P. Jayakumar, and D. Negrut. A
GPU-based preconditioned Newton–Krylov solver for flexible multibody dy-
namics. Int. J. Numer. Methods Eng., 102(9):1585–1604, 2015. (Cited on
page 90.)

[120] R. B. Sidje. Expokit: a software package for computing matrix exponentials.
ACM Trans. Math. Software, 24(1):130–156, 1998. (Cited on page 119.)

[121] B. L. Silver. Irreducible Tensor Methods. An Introduction for Chemists. Aca-
demic Press, London, 1988. (Cited on page 54.)

[122] J. C. Slater and G. F. Koster. Simplified LCAO method for the periodic
potential problem. Phys. Rev., 94(6):1498–1524, 1954. (Cited on page 108.)

[123] B. T. Smith, J. M. Boyle, Y. Ikebe, V. C. Klema, and C. B. Moler. Matrix
Eigensystem Routines: EISPACK Guide. Springer, New York, NY, USA,
second edition, 1970. (Cited on page 19.)

[124] D. C. Sorensen. Implicit application of polynomial filters in a k-step Arnoldi
method. SIAM J. Matrix Anal. Appl., 13:357–385, 1992. (Cited on page 43.)

[125] A. Stathopoulos and J. R. McCombs. PRIMME: PReconditioned Iterative
MultiMethod Eigensolver: Methods and software description. ACM Trans.
Math. Software, 37(2):21:1–21:30, 2010. (Cited on page 45.)

[126] J. Steward, A. Aksoy, and Z. Haddad. Parallel direct solution of the Ensemble
Square-Root Kalman Filter equations with observation principal components.
J. Atmos. Ocean. Tech., 34(9):1867–1884, 2017. (Cited on page 132.)

[127] J. Steward, J. E. Roman, A. Lamas Daviña, and A. Aksoy. Parallel direct so-
lution of the covariance-localized Ensemble Square-Root Kalman Filter equa-
tions with matrix functions. Mon. Weather Rev., 146(9):2819–2836, 2018.
(Cited on pages 123, 132, and 139.)

[128] G. W. Stewart. A Krylov–Schur algorithm for large eigenproblems. SIAM J.
Matrix Anal. Appl., 23(3):601–614, 2001. (Cited on page 43.)

[129] G. W. Stewart. Matrix Algorithms. Volume II: Eigensystems. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2001. (Cited on
page 37.)

151

Bibliography

[130] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agarwal. The
Raw microprocessor: a computational fabric for software circuits and general-
purpose programs. IEEE Micro, 22(2):25–35, 2002. (Cited on page 23.)

[131] The TOP500 Supercomputer Sites. https://www.top500.org/. Accessed on
23 Mar 2018. (Cited on pages 11 and 23.)

[132] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for
hybrid GPU accelerated manycore systems. Parallel Comput., 36(5-6):232–
240, 2010. (Cited on pages 32 and 86.)

[133] A. Vajda. Programming Many-Core Chips. Springer, Boston, MA, 2011. (Cited
on page 10.)

[134] T. Van Hook. Real-time shaded NC milling display. SIGGRAPH Comput.
Graph., 20(4):15–20, 1986. (Cited on page 24.)

[135] P. B. Vasconcelos, O. Marques, and J. E. Roman. Parallel eigensolvers for a
discretized radiative transfer problem. In J. M. L. M. Palma et al., editors, High
Performance Computing for Computational Science–VECPAR 2008, volume
5336 of Lect. Notes Comp. Sci., pages 336–348. Springer, 2008. (Cited on
page 98.)

[136] I. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. Sameh. A direct
tridiagonal solver based on Givens rotations for GPU architectures. Parallel
Comput., 49:101–116, 2015. (Cited on page 89.)

[137] I. E. Venetis, A. Sobczyk, A. Kouris, A. Nakos, N. Nikoloutsakos, and E. Gal-
lopoulos. A general tridiagonal solver for coprocessors: Adapting g-Spike for
the Intel Xeon Phi. In G. R. Joubert et al., editors, Parallel Computing: On
the Road to Exascale, pages 371–380. IOS Press, 2015. (Cited on page 90.)

[138] C. Vomel, S. Tomov, and J. Dongarra. Divide and conquer on hybrid GPU-
accelerated multicore systems. SIAM J. Sci. Comput., 34(2):C70–C82, 2012.
(Cited on page 4.)

[139] S.-H. Weng, Q. Chen, N. Wong, and C.-K. Cheng. Circuit simulation via
matrix exponential method for stiffness handling and parallel processing. In
Proceedings of IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD),
pages 407–414, 2012. (Cited on page 119.)

[140] J. S. Whitaker and T. M. Hamill. Ensemble data assimilation without per-
turbed observations. Mon. Weather Rev., 130(7):1913–1924, 2002. (Cited on
page 122.)

[141] K. Wu and H. Simon. Thick-restart Lanczos method for large symmetric
eigenvalue problems. SIAM J. Matrix Anal. Appl., 22(2):602–616, 2000. (Cited
on page 44.)

152

https://www.top500.org/

Bibliography

[142] Z. Xianyi, W. Qian, and Z. Yunquan. Model-driven Level 3 BLAS Performance
Optimization on Loongson 3A Processor. In 2012 IEEE 18th International
Conference on Parallel and Distributed Systems, pages 684–691, 2012. (Cited
on page 19.)

[143] P. Yalamov and V. Pavlov. Stability of the block cyclic reduction. Linear
Algebra Appl., 249(1):341–358, 1996. (Cited on page 75.)

[144] I. Yamazaki, T. Dong, R. Solcà, S. Tomov, J. Dongarra, and T. Schulthess.
Tridiagonalization of a dense symmetric matrix on multiple GPUs and its
application to symmetric eigenvalue problems. 26:2652–2666, 2014. (Cited on
page 4.)

[145] C. D. Yu and W. Wang. Performance models and workload distribution algo-
rithms for optimizing a hybrid CPU-GPU multifrontal solver. Comput. Math.
Appl., 67(7):1421–1437, 2014. (Cited on page 4.)

[146] Y. Zhang, J. Cohen, and J. D. Owens. Fast tridiagonal solvers on the GPU. In
Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’10, pages 127–136, 2010. (Cited on pages
73 and 86.)

[147] F. Zheng, H.-L. Li, H. Lv, F. Guo, X.-H. Xu, and X.-H. Xie. Cooperative com-
puting techniques for a deeply fused and heterogeneous many-core processor
architecture. J. Comput. Sci. Tech., 30(1):145–162, 2015. (Cited on page 23.)

153

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Background and motivation
	Objectives
	Structure of the document

	High-performance computing
	Hardware evolution
	Parallel architectures
	Central control mechanism
	Communication mechanism

	Programming models and parallel software
	Threads and OpenMP
	Message Passing Interface
	Software

	Hardware accelerators
	Integrated circuits
	Manycore processors
	Graphics processing units

	Performance indicators
	Execution time
	Speedup
	Efficiency
	Scalability
	FLOPs/s

	Eigenvalue problems
	Methods to compute eigenvalues
	Direct methods
	Iterative methods

	Krylov methods for eigenvalue problems
	Krylov-Schur

	Scientific computing software
	PETSc
	SLEPc

	Solving eigenproblems with GPUs
	The ParIso code
	Optimization of spin eigenanalysis
	Acceleration with graphics processors

	Conclusions

	Block-tridiagonal eigenvalue problems
	Matrix-vector product
	Shift and invert: Linear systems
	Thomas algorithm
	Block cyclic reduction
	Spike

	Block cyclic tridiagonal structures
	Schur complement

	Parallel implementations
	Matrix-vector product
	Direct linear solvers

	Numerical experiments
	Single process executions
	Multi-process executions

	Conclusions

	Matrix functions
	Dense methods for matrix functions
	Square root
	Sign
	Exponential

	Krylov methods for matrix functions
	Restarted Arnoldi

	Numerical experiments
	Computational evaluation of dense solvers
	Computational evaluation of sparse solvers

	Conclusions

	Conclusions
	Bibliography

