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Abstract 9 

This paper presents a non-invasive fully automatic procedure for Bluefin Tuna sizing, based on a stereoscopic vision 10 

system and a deformable model of the fish ventral silhouette. An image processing procedure is performed on each video 11 

frame to extract individual fish, followed by a fitting procedure to adjust the fish model to the extracted targets, adapting 12 

it to the bending movements of the fish. The proposed system is able to give accurate measurements of tuna Snout Fork 13 

Length (SFL) and widths at five predefined silhouette points without manual intervention. In this work, the system is used 14 

to study size evolution in adult Atlantic Bluefin Tuna (Thunnus Thynnus) over time in a growing farm. The dataset is 15 

composed of 12 pairs of videos, which were acquired once a month in 2015, between July and October, in three grow-16 

out cages of tuna aquaculture facilities on the west Mediterranean coast. Each grow out cage contains between 300 and 17 

650 fish on an approximate volume of 20000 m3. Measurements were automatically obtained for the four consecutive 18 

months after caging and suggest a fattening process: SFL shows an increase of just a few centimetres (2%) while the 19 

maximum width (A1) shows a relative increase of more than 20%, mostly in the first two months in farm. Moreover, a 20 

linear relation (with coefficient of determination R2 >0.98) between SFL and widths for each month is deduced, and a 21 

fattening factor (F) is introduced. The validity of the measurements is proved by comparing 15780 SFL measurements, 22 

obtained with our automatic system in the last month, versus ground truth data of a high percentage of the stock under 23 

study (1143 out of 1579), obtaining no statistically significant difference. This procedure could be extended to other 24 

species to assess the size distribution of stocks, as discussed in the paper. 25 

 26 

Keywords: Underwater stereo-vision;  Computer vision; Fisheries management; Fish sizing; Biomass estimation; 27 

Automatic 3D measurements. 28 

1. Introduction 29 

The early detection of impacts from natural and anthropogenic activities is very important to the sustainability of the 30 

marine environment. Fishing, climate change and pollution have high implications for fish stocks. Reliable fish 31 

measurements like length, height and width can be a very important indicator of the health of wild fish stocks (Dunbrack, 32 

2006), (Shortis et al., 2013), (Rosen et al., 2013), (Shafait et al., 2017). Sampling methods to take fish measurements that 33 

involve capturing and handling live fish must be discarded, because they not only cause fish stress and possible death but 34 

also hinder the achievement of a large number of measurements.  35 

Monitoring wild fish stock and inspection in aquaculture require extremely gentle handling of the target to avoid 36 

damage. Thus underwater computer vision systems have been frequently used, as reported in recent reviews (Zion, 2012), 37 

(Shortis et al., 2013), (Mallet and Pelletier, 2014), (Boutros et al., 2015), (Hao et al., 2015), (Saberioon et al., 2016), 38 
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because it is a very appropriate non-intrusive method that permits work even when the fish are alive. In the particular case 39 

of using stereoscopic vision systems (two cameras in a side-by-side arrangement), the following applications have been 40 

achieved: fish sizing (Ruff et al., 1995), (Tillett et al., 2000), (Lines et al., 2001), (Harvey et al., 2003), (Costa et al., 41 

2006), (Dunbrack, 2006), (Torisawa et al., 2011), (Letessier et al., 2015), (Williams and Lauffenburger, 2016); fish 42 

counting and sizing (Costa et al., 2009), (Rosen et al., 2013); fish sizing in combination with acoustic techniques (Sawada 43 

et al., 2009), (Espinosa et al., 2011), (Kloser et al., 2011); fish farm automation (Martinez-de Dios et al., 2003); wild fish 44 

stock assessment (Willis and Babcock, 2000), (Watson et al., 2009), (Harvey et al., 2012), (Langlois et al., 2012), (Seiler 45 

et al., 2012), (Smale et al., 2012), (Zintzen et al., 2012), (Wakefield et al., 2013), (Santana-Garcon et al., 2014), (McLaren 46 

et al., 2015). 47 

Nevertheless, vision sensors and image processing methods have to overcome limited visibility, temporal and spatial 48 

variations in lighting, varying distances and relative orientations between cameras and objects, motion and density of the 49 

monitored targets, and even lack of physical stability. All these conditions represent a very demanding challenge, which 50 

have limited the development of fully automatic commercial solutions. In fact, most of the aforementioned applications 51 

are manual or semi-automatic and require human intervention in some of their stages. In regard to biomass estimation, 52 

the most widely used commercial systems are AQ1 AM100 (Phillips et al., 2009) and AKVAsmart, formerly VICASS 53 

(Shieh and Petrell, 1998), which belong to the semi-automatic category. In both systems, human operators must inspect 54 

the videos and select frames in which the fish is isolated and straight, to then manually mark fish snout and fork in both 55 

stereo images to estimate its length. The International Commission for the Conservation of Atlantic Tunas (ICCAT) 56 

establishes a catch reporting system which covers the full chain of Atlantic Bluefin Tuna (ABT) fishery from capture to 57 

marketing (Costa et al., 2009). The use of a stereoscopic system to estimate catch quotas is established in (ICCAT, 2015). 58 

The number of individuals, counted during the transfer from tow to grow-out cages, is multiplied by the average weight 59 

of a subsample of the stock to derive the total biomass per tow cage. As mentioned before, current stereoscopic vision 60 

systems need human operation, making the process slow and laborious, and introduce the variability of manual measuring 61 

in the biomass estimation. Therefore, a vision-based automatic procedure for ABT biomass estimation is required.  62 

One of the most significant aspects for farmers, biologists and researchers would be the definition of growing models 63 

for different species (Aguado-Gimenez and Garcia-Garcia, 2005), but periodic systematic monitoring is required. 64 

Aquaculture farms are a good environment for this purpose. Species such as tuna and salmon are most commonly farmed 65 

due to market acceptance and rapid growth (Shortis, 2015), (Sture et al., 2016). Monitoring would provide information 66 

on abnormal growth so that the causes such as parasites, stress caused by environmental conditions and diseases could be 67 

tackled. Additionally, fish behaviour depending on size or seasonal habits could also be studied and feed regimens and 68 

harvest strategies in aquaculture could be optimized. As indicated in (Harvey et al., 2003), collecting numerous, precise 69 

accurate data on length or age without the need to physically handle live fish has been identified as an urgent requirement 70 

for fisheries and aquaculture managers. Some authors, such as (Lines et al., 2001), (Zion, 2012), (Shortis et al., 2013), 71 

(Atienza-Vanacloig et al., 2016), (Shafait et al., 2017), highlight the need for fully automatic methods for underwater 72 

video processing. 73 

The automatic identification of a single fish is an essential step in achieving a fully automatic process. However, body 74 

bending while free-swimming means the same individual is observed with very different shapes, sizes and orientations 75 

depending on the visualized frame. So, robust fish detection methods dealing with these variations are required (Lines et 76 

al., 2001). In (Atienza-Vanacloig et al., 2016) a deformable adaptive model based on computer vision methods that 77 

automatically fit the body ventral silhouette of Bluefin Tuna while swimming was proposed. This model achieved very 78 

high success rates (up to 90%) identifying individuals in complex images acquired in real conditions. The main advantages 79 

of using silhouette model fitting are the following:  i) foreground fish in crowded images can be detected ii) fish can be 80 
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measured even in images with bad segmentation due to noise or variable lighting, and iii) fish direction and body bending 81 

can be deduced. When the target has been identified and characterized, 3D biometric measurements can be obtained from 82 

a calibrated stereo vision system. Moreover, the validity of any semi-automatic or automatic procedure must be 83 

demonstrated by comparing the results with ground truth measurements.  84 

In this work, we present a fully automatic procedure based on a stereoscopic vision system and a deformable model of 85 

the Bluefin Tuna ventral silhouette to estimate length and widths. Our proposal can provide accurate measurements under 86 

real conditions and without human intervention, as shown by comparing the results with ground truth data. Furthermore, 87 

fish growing and fattening models are deduced analysing the data collected by us through systematic periodic acquisition 88 

for four consecutive months in grow-out cages. Although this paper is mainly focused on achieving good precision in 89 

biometric measurements of fish in cages, the work is currently being adapted so that biomass can be estimated during the 90 

fish transfer process. 91 

2. Materials and methods 92 

The computer vision algorithms involved in the process of fish sizing are described and summarized in Figure 1, as 93 

well as the offline manual and supervised operations we performed to check the goodness of our algorithms. 94 

 95 

Figure 1. Sequence of processes performed automatically in our proposal, in the first row, and the results of each step, in the second row. Fitting Error 96 

Index (FEI) is a coefficient that represents the goodness of the model fitting. 97 

2.1. Video acquisition 98 

In order to study the evolution of the ABT dimensions, videos were acquired in three grow-out cages in the Grup 99 

Balfegó aquaculture facilities. The three grow-out cages are located next to each other and 2.5 miles off the port of 100 

l’Ametlla de Mar (Spain). The cages are cone shaped with a base of 50m of diameter in the water surface and 30 m high, 101 

that is an approximate volume of 20 000 m3. The recordings were taken using the AM100 stereovision system 102 

(www.aq1systems.com). It uses two Gigabit Ethernet cameras, with image resolution of 1360x1024 pixels and framerate 103 

of 12 fps.  The cameras are mounted in an underwater housing, with a baseline of 80cm and an inward convergence of 104 

6º. The system is rated to 40m deep and has an umbilical cable that supplies power to the cameras and transfers images 105 

to a logging computer, which generates synchronized left and right videos. 106 

The recordings were taken once a month in 2015 between July and October for each grow-out cage, using the same 107 

AM100 stereovision system. The resulting dataset consists of 12 pairs of videos, one per month per cage, of 120 minutes 108 

duration each one, enough to extract a statistically representative amount of measurements. The cameras were positioned 109 

15 m deep in the grow-out cages and looking towards the surface to obtain a ventral silhouette of the fish (Figure 2). This 110 

camera arrangement has three advantages: first, with this orientation, the sunlight acts like a backlight system so objects 111 

are always darker than water; second, in this set up, body bending can be clearly appreciated and dealt with; third, the 112 
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most reliable measurements are obtained when the fish are swimming in a plane orthogonal to the visual axis (Dunbrack, 113 

2006). The acquired videos are processed automatically using the computer vision algorithms described. 114 

   115 

Figure 2. (a) Sensors platform in grow-out cages, including the AM100 stereoscopic vision system used for this study. (b) Snapshot of recordings with 116 

the AM100. 117 

2.2. Stereo vision system calibration 118 

Images for calibration were acquired in a tank containing seawater at IEO (Spanish Oceanographic Institute) facilities 119 

in Mazarrón (Spain). A 1.40 x 1.10 m checkerboard pattern was guided from -45º to 45º with respect to the optical axis 120 

and moved between 1 and 10 m away from the cameras. The MATLAB® Stereo Calibration Application based on 121 

(Heikkila & Silven, 1997) and (Zhang, 2000) was used to estimate the calibration parameters. The diagonal length of the 122 

checkerboard pattern was computed in 5018 stereo images to analyse our calibration accuracy in terms of proportional 123 

error between true and measured lengths. 95.91% of the measurements fall within a margin of error of 1% and 100% of 124 

the measurements fall within a margin of error of 3% for all ranges. Measurements of a scale bar with known length (1.5 125 

m) are done over a range of distances (2 to 10 m) before each recording to guarantee that the camera calibration is still 126 

valid. 127 

2.3. Processing frames: segmentation, filtering and tuna model fitting 128 

In the present paper, a variant of the tuna model presented in (Atienza-Vanacloig et al., 2016) was implemented to 129 

achieve our objective of estimating biometric measurements. 130 

2.3.1. Segmentation and filtering process 131 

Image segmentation was implemented using local thresholding technique (Petrou and Petrou, 2011) to extract 132 

individual objects (fish) from video frames. Local thresholding examines statistically the intensity values of the local 133 

neighbourhood of each pixel assuming that illumination is approximately uniform in the neighbourhood. In our case, the 134 

pixel in i-th row and j-th column of the image is selected as foreground if its intensity value pij is below a local threshold 135 

Mij. The local thresholding technique can be expressed as:  136 

Mij =
1

w∗w
  ∑  ∑ plk

j+
w

2

k=j−
w

2

i+
w

2

l=i−
w

2

   ;    { 
pij ≥ Mij ;  pij is background

pij < Mij;  pij is foreground
     ;      ∀ pij ∈ Ft   (1) 137 

where w=25 is the size of the neighbourhood, plk the intensity values of the neighbour pixels and Ft the video frame. 138 

Open, close and fill morphological operations complete the segmentation process. The segmented blobs are geometrically 139 
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characterized and sifted using shape (aspect ratio), pixel density and dimensional filters. An edge detection algorithm is 140 

then applied and a fitting of the deformable model of the fish, defined as a nonlinear multivariable function, is obtained 141 

using a minimization algorithm. 142 

2.3.2. Deformable tuna model and fitting process 143 

Figure 3e shows the deformable model 𝐌 of tuna fish defined in (Atienza-Vanacloig et al., 2016) as a vector of five 144 

parameters 𝐌 = [sx,  sy, 𝑙, α, θ] where: sx and sy give the image location of the snout tip; 𝑙 is the length of the vertebral 145 

column; α denotes the angle of the fish head in relation to the horizontal axis, and θ is the bending angle of the vertebral 146 

column. The capabilities of this fish model have been increased, from discrimination of individuals to accurate measuring: 147 

(i) the number of vertebral points has been increased from 16 to 18 and are now not equidistantly distributed along the 148 

fish length l, (ii) more points are concentrated in the tail, a crucial zone for length measurements, (iii) the area around the 149 

pectoral fin is not considered, as its many shapes can hinder model fitting, and (iv) a new width vector parameter w, 150 

containing a width coefficient for each vertebral point, has been added to already existing model parameters. While in the 151 

deformable model presented in (Atienza-Vanacloig et al., 2016), the width is considered a function of length with constant 152 

coefficients, our model assigns a variable-bounded coefficient for each vertebral point.  153 

This new model is defined as a vector of six parameters 𝐌𝐰 = [sx,  sy, l, α, θ, w] where w is a vector of coefficients for 154 

width fitting. The model is characterized by 18 vertebras vi = ( xi
v,  yi

v) distributed along the fish length, whose position 155 

is computed according to the parameters using the following equation: 156 

(
xi

v

 yi
v) = (

Sx

Sy
)  + (

cos α − sin α
sin α cos α

) (
li cos (θi)
li sin (θi)

)  (2) 157 

where li is the length from the snout to the ith-vertebra and θi the bending angle of the ith-vertebra. 158 

The model consists of 35 landmarks, 1 landmark for the snout tip and 17 landmarks for each side of the tuna body 159 

profile. The landmarks ki = (xi
k, yi

k) that configure the 𝐌𝐰 model silhouette are obtained from the vertebral points vi 160 

with the following expressions: 161 

xi
k = xi

v   ±    wi li ci  sin θi ;      yi
k =   yi

v  ±  wi li ci  cos θi  ;      i = 1 … n   (3) 162 

where the positive or negative sign depends on the side of the tuna body profile, while ci is the ith-coefficient from a 163 

constant vector defining the distance from vertebras to landmarks and wi is the width coefficient of ith-vertebra. 164 

A Fitting Error Index (FEI), based on the quadratic distance between the model points and the target edges points, is 165 

computed to analyse the goodness of the fitting. FEI takes values in the [0..10] range, where FEI=0  denotes a perfect fit 166 

between the segmented blob and the theoretical model 𝐌𝐰. Fittings with high values (FEI>6) are discarded. See (Atienza-167 

Vanacloig et al., 2016) for further details on the model definition and fitting procedure. 168 

 169 

Figure 3a, b, c and d show the image processing steps. The model comprises from the fish snout to the end of the 170 

caudal peduncle keel, as the caudal fin cannot be modelled due to its great variability. A set of blobs with good FEI, that 171 

is, with good model fitting, is provided after the processing frames stage. Up to this point, the videos acquired by both 172 

cameras are processed independently, as can be seen in Figure 1.  173 
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 174 

Figure 3. Image processing steps: (a) original image, (b) image segmentation, (c) edge detection, (d) deformable model fitting with the 18 non 175 

equidistant vertebral points in magenta and their respective profile points (landmarks) in green, (e) deformable tuna model presented in (Atienza-176 

Vanacloig et al., 2016), (f) graphical representation of the Model Length (ML), Snout Fork Length (SFL) and the five widths defined to study the 177 

fattening evolution, (g) polynomial fitting for the ML-SFL relation, the green line is the linear fitting and the red dashed lines are the 95% confidence 178 

interval. 179 

2.4. Stereo correspondence 180 

The results for left and right videos, obtained separately in Section 2.3, can be merged to calculate fish measurements 181 

if the same individuals can be identified in both videos. With the calibration described in Section 2.2 the relative position 182 

and orientation of the two cameras is known, so the following epipolar geometry restriction can be used: given two 183 

characteristic points of the fish model, like snout and tail, in one image, the matching points in the other image must lie 184 

on the epipolar line defined by the calibration parameters. The solution is not unique in the image plane so geometrical 185 

filters must be added to guarantee the correspondence. Only the samples with similar model parameters (length, 186 

orientations, bending and widths) are considered.  187 

2.5. Length and Widths: 3D Measurements 188 

When stereo correspondence has been guaranteed, the image plane information can be transformed to 3D 189 

measurements using the calibration matrices and 3D triangulation. 190 

Fish are deformable due to the swimming motion and, consequently, measurements taken from a single frame may not 191 

be reliable (Shortis et al., 2013).  Two main options are used in the literature to reduce the effect of swimming motion on 192 

length measurement: i) take measurements in all frames and deduce straight body length from a sinusoid-like pattern 193 

(Shortis et al., 2013);  ii) account for body bending by adding contiguous linear segments (Williams and Lauffenburger, 194 

2016). In our case, the swimming length problem is resolved using the tuna model bending angle θ, by identifying as 195 

valid samples the ones whose vertebral points form a straight line and discarding the others. Model Length (ML) is 196 

computed as the Euclidean distance between the 3D coordinates of the snout and tail fork model points. 197 

As explained in Section 2.3 and as can be appreciated in Figure 3a and b, the caudal fin cannot be modelled due to its 198 

great variability, so a relation between SFL, usually used in the literature, and ML is needed. For this purpose, 279 samples 199 
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from within the automatic measurements were selected with the following requirements: the tail fork must be clearly 200 

identifiable and aligned with the snout and tail model points, as shown in Figure 3f. For these samples, the tail fork point 201 

was manually selected to have SFL. A polynomial fitting was done, resulting in an SFL-ML linear relation as shown in 202 

Equation 2 and Figure 3g. 203 

SFL = 1.0312 ML + 0.065641  (4)         204 

For the case of fish width measurements, the 3D coordinates of the model points that are symmetrically paired to the 205 

vertebral column could be used, see Figure 3d. However, these points are influenced more by the camera perspective 206 

because they are not extreme points in the silhouette. Triangulation may lead to major errors if the matching points in 207 

both images do not correspond to the same actual point.  208 

 Therefore, the proposal for width measurements differs from the one for SFL measurements. In this case, only the 209 

model with better FEI from the left or right image is considered. The pairs of characteristic model points defining the 210 

widths are transformed to the 3D space assuming each pair is at the same distance from the cameras. For this study, five 211 

fish widths Ai are considered, whose location in the model can be seen in Figure 3f. 212 

The distance to the cameras Zi for each width Ai is computed with the following expression: 213 

Zi = Zs +
li

l
(Zt − Zs)  (5) 214 

where Zs and Zt, are Z coordinates of  snout and tail fork, 𝑙 is model length, and 𝑙𝑖 is length from the snout to the vertebral 215 

axis corresponding to Ai. Note that Equation 3 represents the equation of a line between Zs and Zt and the calculated 216 

distance depends on the position in the model of the pair of points associated to each width Ai. Once the points are in the 217 

3D space, the Euclidean distances for each pair of points are selected as the fish 3D widths.     218 

3. Results 219 

The dataset was recorded with a stereoscopic system for four consecutive months immediately after caging, from July 220 

to October 2015, on three grow-out cages. Targets were extracted from a total of 12 pairs of videos of 120 minutes 221 

duration and around 100000 frames each. Our tuna model had a successful fitting, that is, good FEI, in individual images 222 

in more than 1.4 million blobs, and more than 100000 3D measurements where obtained after stereo correspondence. 223 

Redundant information in the statistical distribution is intrinsic to the case of grow-out cage monitoring due to sample 224 

repetition, but its impact decreases with the number of measurements. Moreover, the stock under study is considered 225 

almost constant, as the population only changes considerably in one cage and month (cage 1 in October). Table 1 226 

summarizes the number of video frames, number of good model fitting samples, automatic 3D measurements, and number 227 

of fish in cages when the recordings were taken. The videos of cage 2 in August were corrupted, so no information can 228 

be extracted from them. 229 

It should be noticed that this work focuses on obtaining as many samples as possible, so computing time is not an 230 

issue. The overall process shown in Figure 1, had a computing time of around 5 hours for each cage and month. As further 231 

work, both the code and the algorithms will be optimized to adapt the proposal to applications where computing time is 232 

important, like biomass estimation in transfers. 233 

 234 
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NUMBER 

OF 

FRAMES 

GOOD MODEL 

FITTING 

3D MEASUREMENTS / 

NUMBER OF FISH IN CAGES 

LEFT RIGHT CAGE 1 CAGE 2 CAGE 3 TOTAL 

JULY 648180 212562 231973 3923 / 646 20143 / 647 7651 / 647 31717 / 1940 

AUGUST 324750 184316 192719 8180 / 636 - / 631 17209 / 626 25389 / 1893 

SEPTEMBER 646220 199090 181340 3996 / 538 15208 / 625 12011 / 625 31215 / 1792 

OCTOBER 650210 124712 129521 6706 / 326 3365 / 624 5709 / 624 15780 / 1579 

TOTAL 2269360 720680 735553 22805 38716 42580 104101 

Table 1. Number of video frames, number of good model fitting samples, automatic 3D measurements, and number of fish in cages when the 235 

recordings were taken. The study comprises three grow-out cages from July to October. 236 

The data collected over four months have been processed using the computer vision algorithms described in Section 237 

2, and the resulting 3D measurements of 104101 fish are analysed in this section with the following structure: 238 

- SFL evolution. 239 

- Ai evolution. 240 

- SFL – A1 ratio evolution. 241 

- Fattening factor. 242 

- Measurements validation. 243 

At least 3000 samples have been extracted for each cage and month, so the results are considered statistically 244 

significant. Measurements are validated by comparing ground truth data from harvests in October with automatic 245 

measurements in that month.  246 

3.1. Snout Fork Length (SFL) evolution 247 

Figure 4 shows normalized SFL frequency histograms and SFL means (SFL̅̅ ̅̅ ̅) for each month and cage. Distributions are 248 

very similar for all months and SFL̅̅ ̅̅ ̅ variation for the four months is of only a few centimetres (2%). The great majority 249 

of the samples are located in the interval SFL ϵ [1.70,2.60]. The same results seems to apply to cage 2, despite the missing 250 

data in August. 251 
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 252 

Figure 4. Normalized Snout Fork Length (SFL) frequency histograms and evolution of SFL means (SFL̅̅ ̅̅ ̅) for each month and cage under study. 253 

3.2. Widths (Ai) evolution 254 

The five fish widths defined in Figure 3f are considered. The normalized frequency histogram for each width Ai and 255 

month, and the evolution of the mean widths A̅i are shown in  256 

Figure 5 for cages 1 and 3. It can be seen that the form of the distribution is similar over months and the evolution of 257 

the widths is different for each point: whereas A2 and A5 remain almost constant, A1, A3 and A4 show a clear fattening 258 

evolution. Moreover, those widths increase most in the first two months in the cages. Similar results apply to cage 2, 259 

although the representation of those results has been omitted due to the lack of information in August. 260 
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 261 

Figure 5. Normalized frequency histograms for each width Ai and evolution of mean widths A̅i over months 262 

 for cages 1 and 3. 263 
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3.3. Snout Fork Length (SFL) - Maximum width (A1) ratio evolution 264 

The study of the SFL-widths ratio evolution is focused on the maximum width A1 and for SFL ϵ [1.70,2.60], because 265 

the evolution is similar for all widths that vary over time and there are few samples outside that length interval. The 266 

relation between SFL and A1 over months can be seen in Figure 6: on the left column, a scatter plot with the data of the 267 

first and last study months (July and October) is shown; on the right, SFL is split in intervals of 5 cm and the mean width 268 

for each interval is calculated. A strong linear relation can be observed for all months. The fitting to a linear model and 269 

the coefficient of determination R2 is summarized in Table 2. 270 

 271 

Figure 6. On the left, scatter plots of Snout Fork Length (SFL) and maximum width (A1) for first and last study months. On the right, relation between 272 

SFL and A1
̅̅ ̅ over months. SFL ϵ [1.70,2.60] is split in intervals of 5 cm and the mean width for each interval is calculated.  273 

 274 
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 JULY AUG SEP OCT 

CAGE 1 
A1 = 0.164·SFL + 0.059 

R2 = 0.985 

A1 = 0.145·SFL + 0.125 

R2 = 0.996 

A1 = 0.194·SFL + 0.062 

R2 = 0.995 

A1 = 0.195·SFL + 0.060 

R2 = 0.981 

CAGE 2 
A1 = 0.141·SFL + 0.106 

R2 = 0.988 
- 

A1 = 0.218·SFL + 0.156 

R2 = 0.991 

A1 = 0.222·SFL + 0.015 

R2 = 0.985 

CAGE 3 
A1 = 0.159·SFL + 0.069 

R2 = 0.990 

A1 = 0.175·SFL + 0.067 

R2 = 0.993 

A1 = 0.189·SFL + 0.071 

R2 = 0.998 

A1 = 0.188·SFL + 0.083 

R2 = 0.993 

Table 2. Linear fitting of the relation between Snout Fork Length (SFL) and maximum width  (A1) over months. 275 

3.4. Fattening factor 𝐹 276 

As can be seen in Figure 7, the evolution over time of maximum width A1 for different SFL is very similar, so a global 277 

fattening factor can be defined independently of SFL:  278 

F =
A1M̅̅ ̅̅ ̅̅

A1J̅̅ ̅̅ ̅
  (6) 279 

where A1M
̅̅ ̅̅ ̅ is the mean A1 for each month, and A1J

̅̅ ̅̅  mean A1 in July. Its evolution over time can be seen on the last 280 

subplot in Figure 7: the fattening factor increases mostly, and almost linearly, in the first two months and less in the third 281 

month.  282 

 283 

Figure 7. (a-c) Mean maximum width (A1
̅̅ ̅) for Snout Fork Length (SFL) intervals over months. SFL ϵ [1.70,2.60] is split in intervals of 5 cm and the 284 

mean width for each interval is calculated. (d) Fattening factors over months. Line dashed to represent the missing data in August. 285 
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3.5. Measurements validation 286 

To validate the procedure, the system measurements and ground truth data are compared. The ground truth data is 287 

provided by Grup Balfegó, which measures SFL of the fish in the cages at harvesting. They are dated mostly between 288 

October and December, so it was decided to compare them with automatic measurements of the recordings in October. 289 

The analysis is also run on pooled data, although the fish in each cage constitute an independent stock and merging data 290 

from different stocks can lead to differences in distributions. 291 

Figure 8 shows the normalized SFL frequency histograms of the automatic measurements and ground truth data, for 292 

each cage and with pooled data. Differences in SFL̅̅ ̅̅ ̅ among harvests and automatic measurements were examined with 293 

analysis of variance tests. Since the two groups have unequal sample sizes and homoscedasticity (homogeneity of 294 

variance) cannot be ensured, Welch’s ANOVA test (Welch, 1951) is used, as recommended in (Rasch et al., 2011) and 295 

(McDonald, 2014). The differences in SFL  frequency distributions are analysed with the Kolmogorov-Smirnov test 296 

(Massey, 1951). 297 

As Table 3 shows, the tests for SFL̅̅ ̅̅ ̅ give p-values higher than the 5% significance level for each cage and with data 298 

pooled, and the tests for SFL distribution frequency give p-values higher than the 5% significance level, except when the 299 

cages are pooled. In conclusion, there is no statistically significant difference between ground truth and automatic 300 

measurements, thereby validating the measurements obtained with the proposed automatic system. 301 

 302 

Figure 8. Normalized Snout Fork Length (SFL) frequency histograms. Ground truth in dark-blue and automatic measurements in light-yellow. 303 

SFL̅̅ ̅̅ ̅, mean SFL; f, number of fish; n, number of samples. 304 
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 CAGE 1 CAGE 2 CAGE 3 POOLED  

# fish 326 629 624 1579 

# harvests (ground truth) 316 511 316 1143 

# automatic measurements 6706 3365 5709 15780 

Welch’s ANOVA test p-value 0.9928 0.7793 0.4118 0.3884 

Kolmogorov-Smirnov test 

p-value 
0.3553 0.2944 0.3075 0.0183 

Table 3. Automatic system measurements vs ground truth statistical comparison in the three grow-out cages 305 

and with data pooled. 306 

4. Discussion 307 

The need for a fully automatic system to accurately estimate the length of free swimming fish with a non-intrusive 308 

procedure has often been pointed out in recent years (Costa et al., 2009), (Zion, 2012), (Shortis et al., 2013), (Rosen et 309 

al. 2013), (Williams & Lauffenburger, 2016), (Shafait et al., 2017). Fish length information is an important indicator of 310 

the health of wild fish stocks and for predicting biomass using length-weight relations (Lines et al., 2001), (Martinez-de 311 

Dios et al., 2003). The most common mathematical model between fish length (L) and mass (W) is W = aLb, where a 312 

and b are parameters dependent on fish species (Zion, 2012) and on growth, in captivity or wild, (Aguado-Gimenez and 313 

Garcia-Garcia, 2005), (Katavić et al., 2016). The total biomass of a fish stock is commonly determined by obtaining the 314 

mean length of a statistically representative number of fish and counting the number of fish (Costa et al., 2009), (Shafait 315 

et al., 2017).  316 

The proposed automated system allowed us to process more than 2 million video frames, producing more than 100000 317 

3D length and width measurements. Stereo-cameras were positioned 15 metres deep in the grow-out cages with fish 318 

measurements ranging from 3 to 10 m. The limitations of using computer vision, namely high turbidity in water and 319 

crowded fish situations, were revealed and the videos in November were dismissed because of poor water visibility. The 320 

results demonstrate highly accurate SFL estimation and validate the automatic procedure. As Figure 8 and Table 3 show, 321 

there is no statistically significant difference between ground truth and automatic measurements. 322 

The periodicity of our recordings on the same individuals and the large number of samples collected, more than 3000 323 

per cage and month, enables us to analyse evolution over time (four months) of the length and width measurements. This 324 

analysis may be of use for solving some paradigms of interest regarding Atlantic Bluefin Tuna for farmers, biologists and 325 

researchers such as: 326 

- How does SFL evolve over time? The obtained SFL̅̅ ̅̅ ̅ variation presents an increase of only 2% from first to last month 327 

(Figure 4). 328 

- How do widths Ai evolve over time? The obtained evolution differs depending on the fish body section considered: 329 

whereas no increasing is shown in head and caudal peduncle keel sections (A2, A5), sections between the pectoral fin and 330 

caudal peduncle keel (A1, A3, A4) show clear increasing, mostly in the first two months (Figure 5). 331 

- Is there any relation between SFL  and A1 ? A strong linear relation has been observed: high coefficients of 332 

determination R2 for linear model fitting have been obtained for all months (Figure 6, and Table 2). 333 

- Can a fattening factor for tuna in grow-out cages be established? Fattening factor F, defined as the relative increase 334 

over time of maximum width A1, shows a fattening evolution that increases almost linearly in the first two months and 335 

less in the third month (Figure 7) for SFL ϵ [1.70,2.60]. A simulation of fattening evolution according to fattening factor 336 

F is shown in Figure 9. 337 
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 338 

Figure 9. Bluefin Tuna fattening evolution according to the calculated fattening factor. The image corresponds to a fish in July, the green line is the 339 

model fitting in that month, and the red, yellow and blue dashed lines are the simulation of the evolution over months. 340 

Automatic extraction of a large number of silhouettes, precise tuna model fitting and accurate 3D measurements were 341 

a priority in our developments, without paying much attention to processing time. Working with tuna in cages has the 342 

advantage of being able to record the time necessary to obtain a good statistical representation of the stock. Thus, on a 343 

two hours recording, the automatic system estimates on average about 10000 fish measurements (SFL and five widths Ai) 344 

with a computational cost of five hours (1.38 seconds per sample). We are sure it will be possible to improve the 345 

processing time, but currently it is obviously much lower than the time necessary to obtain the same measurements with 346 

a manual or semiautomatic application. 347 

The whole fully automatic process is the main difference of this work with respect to other studies with similar goals.  348 

Also the following aspects should be highlighted: 349 

i) Our measurements have been validated with a large number of measurements (15780), a large amount of ground 350 

truth data (1143 harvests out of 1579 fish), and wide measuring range (from 3 to 10 metres). Other authors obtained good 351 

results measuring fish lengths with stereovision systems, but their proposals have one or several of the following common 352 

limitations: measurements are not extracted fully automatically, measurements are taken in a narrow range, the number 353 

of measurements is relatively small, or the ground truth comprises only a few samples. In fact, (Lines et al., 2001) reported 354 

that the linear dimension of salmon in sea cages could be extracted automatically with a mean error below 10%, but they 355 

work with only 60 images of 17 fish and measure in a range from 1 to 2 metres. (Harvey et al., 2003) predicted the SFL 356 

of Southern Bluefin Tuna (SBT) inside a cage with a relative error of 0.16% (with SFL from 830 to 1412 mm), but 357 

harvesting only 54 SBT from thousands in the cage and measuring in a range of about 1 meter. (Shafait et al., 2017) 358 

present a semiautomatic method for estimating the fish lengths of 22138 SBT in transfers in a range from 1 to 4 metres, 359 

but it is not fully automatic and the results are compared with manual measurements and not ground truth data.  360 

ii) Fully automatic estimation of five widths in addition to SFL . Recent studies attempt to show that biomass can be 361 

better estimated if fish measurements in dimensions other than length, like width and depth, are available (Aguado-362 

Gimenez and Garcia-Garcia, 2005), (Harvey et al., 2003). Nevertheless, as stated in (Harvey et al., 2003), measuring the 363 

width of a fish is relatively subjective due to the lack of defined points in the fish silhouette. Those authors use simple 364 

cursor positioning and mouse clicks to measure Maximum Body Depth (MBD). Instead, we use our tuna model features 365 

to obtain the maximum width (equivalent to MBD but in width) in the body section close to the pectoral fin (Figure 3f). 366 

Our automatic system can produce a lot of SFL and maximum width measurements in a relatively short time, so a 367 

statistical distribution with a high number of samples can be obtained, which would allow better biomass estimation. 368 

iii) Videos are acquired in real world conditions without using any background screen, contrast element or reference 369 

object, as it is done for example in (Shafait et al., 2017). 370 

iv) The acquisition configuration meets the requirements for automatic sizing and counting of tuna in transfers 371 

according to (ICCAT, 2015). The stereo-videos were recorded from 15 m deep in grow-out cages with a measuring range 372 

from 3 to 10 m. This position and range were selected, as a first approach, to be able to apply this method to fish transfers, 373 
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where tuna have to pass from transport to grow-out cages through a 10 x 10 m door between cages. Although measuring 374 

fish at higher range to the cameras should lead to greater measurement error, the results prove that our automatic system 375 

is able to give accurate measurements in that range interval. The present regulations for ABT establish the use of 376 

stereoscopic vision systems to estimate catch quotas when the fish are transferred from tow cages to grow-out cages. But 377 

the current systems need human operation, making the process slow and laborious, and introduces the variability of 378 

manual measuring into the biomass estimation. Therefore, the proposed vision-based fully automatic procedure for 379 

Bluefin Tuna individual biomass estimation makes a necessary and valuable contribution. To complete the system and be 380 

able to estimate total biomass in transfer operations, an automatic counting procedure is currently under development. 381 

5. Conclusions and further work 382 

The proposed procedure might be a significant contribution towards a commercial system for fully automatic Bluefin 383 

Tuna biomass estimation. The authors consider this system a potential tool to ensure the reliable accomplishment of catch 384 

quotas following ICCAT recommendations and to support farmers, biologists and researchers in important aspects of fish 385 

growth and marine environment. It is also reasonable to think that better biomass estimation could be achieved using 386 

more dimensions of the tuna than just SFL. Our system estimates SFL and five widths in different sections of the fish 387 

silhouette which can be used to compute biomass. 388 

As further work, we plan to improve the robustness of the method by adding a time-dependent analysis, as well as 389 

other developments, such as: improved segmentation procedures, accurate measurements in bended fish and accurate 390 

measurements from other perspectives (not only ventral silhouette) some aspects of the model to provide accurate 3D 391 

measurements of bent fish and to fit the tuna silhouette from other views in addition to the ventral one. Moreover, we 392 

want to combine this computer vision procedure with echosounder information to estimate biomass in more complex 393 

situations, such as wild environments and transfers from tow to grow-out cages.  394 
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