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Abstract 17 

Droughts cause significant socio-economic and environmental impacts, so it has become an extremely 18 

important element in decision-making within water resource systems. For this reason, the research in 19 

this field has increased considerably over the last few decades. In order to be capable of making early 20 

decisions and reducing drought impacts, it is necessary to predict the occurrence of such events months 21 

or even years in advance. In this sense, various methods have been used to predict the occurrence of 22 

droughts. At present, seasonal forecast data can be used to forecast meteorological, hydrological, 23 

agricultural and operational droughts. However, the seasonal forecast data of these dynamical ocean-24 

atmosphere coupled models must be analyzed in an exhaustive way, since it is known that these models 25 

may not adequately represent the climatic variability at river basin scale. Hence, this paper presents a 26 

new methodology for assessing the skill of a climate forecasting system in order to predict the 27 

occurrence of droughts by using contingency tables. The indices obtained from the contingency tables 28 

are necessary to perform the analysis of the predictive ability of the model in a semi-distributed way. All 29 

this taking into account the intensity of droughts using different scenarios based on the threshold below 30 

which it is considered to be in drought. Finally, a single value is obtained to determine the predictive 31 

ability of the forecasting model for the entire basin. The proposed methodology is applied to the Júcar 32 

river basin in Spain. It has been found that the analyzed forecast model shows better results than those 33 

obtained using an autoregressive model. Further work is needed to enhance climate forecasting from 34 

the perspective of water resources management, however, it should be mentioned that this type of data 35 

could be used for drought forecasting, allowing possible mitigation measures.  36 

 37 

Keywords 38 

Drought forecasting; forecast verification; contingency table; Jucar river basin. 39 

 40 

1. Introduction 41 

Over the last decades, drought events have been defined in a variety of ways, and some of the most 42 

common definitions are contained in Dracup et al. (1980), Tate & Gustard (2000) and Mishra & Singh 43 

(2010). However, drought can generally be defined as the reduction of water availability in a particular 44 
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area for a specific period of time. There are several classifications of droughts, for example, Wilhite & 45 

Glantz (1985), classify droughts into meteorological, hydrologic, agricultural and socio-economic. 46 

Meteorological droughts can generally be defined as a period in which a particular number of days with 47 

rainfall less than a certain value (Great Britain Meteorological Office, 1951). This threshold below which 48 

a drought event is considered to occur can be the average precipitation value for the time scale 49 

analyzed (Hisdal & Tallaksen, 2000).   50 

Droughts are a phenomenon that can be of varying magnitude, duration and intensity and can affect 51 

various sectors of society. In water resources management is important to be able to predict a possible 52 

drought event in order to have the capacity to make decisions that help minimize the damage of this 53 

phenomenon. The application of early mitigation measures is essential to reduce the socio-economic 54 

and environmental impacts of drought (Haro et al., 2014a). Drought forecasting is a critical component 55 

in risk management, drought preparedness and mitigation, and a major research challenge is to develop 56 

suitable techniques for forecasting the onset and termination points of droughts. One of the deficiencies 57 

in mitigating the effects of a drought is the inability to predict drought conditions accurately for months 58 

or years in advance (Mishra & Singh, 2011).  59 

There are different methodologies in drought forecasting; regression models, time series models, 60 

probability models, neural networks models  and hybrid models  ( Bacanli et al., 2009; Cancelliere & 61 

Salas, 2004; Fernández et al., 2009; Leilah & Al-Khateeb, 2005; Mishra et al., 2007; Morid et al., 2007). 62 

Nowadays, global circulation models and regional climate models are used to produce seasonal 63 

forecasts, which can be useful for drought forecasting. The Seasonal Forecast System model (System4) 64 

(Molteni et al., 2011), developed by the European Centre for Medium-Range Weather Forecasts 65 

(ECMWF), is a dynamical forecasting system. Which produces time series of 7 months from the first day 66 

of each month (Wetterhall & Giuseppe, 2017). System4 has been assessed for skill in predicting Asian 67 

summer monsoons (Kim et al., 2012b), Northern hemisphere winter (Kim et al., 2012a), below normal 68 

rainfall in the Horn of Africa (Dutra et al., 2013), drought forecasting in East Africa (Mwangi et al., 2013), 69 

global meteorological drought (Dutra et al., 2014) and for impacts analysis over East Africa (Ogutu et al., 70 

2016). However, seasonal forecast must be analyzed from the point of view of water resources 71 

management. To analyze the predictive capacity of a model, several indices (skill scores) can be used, 72 



4 
 

which have existed for more than a century (Peirce 1884, in Bartholmes et al., 2009). Not all indices are 73 

suitable for assessing a forecast system and there is no set of indices to obtain all the necessary 74 

information, which is why several sets of indicators are often used to cover a wider range of properties 75 

of the assessed model (Baldwin & Kain, 2004).  76 

The aim of this paper is to propose a method of forecast verification for seasonal forecast systems by 77 

carrying out an assessment of the predictive capacity of the model in drought forecasting as an early 78 

warning for a water resources system with high exploitation rates and long lasting droughts. Data from 79 

System4 were analyzed against reference data, which in this case are precipitation data from the 80 

Spain02. v4 model (Herrera et al., 2012; 2016). In this paper, the data is evaluated by means of 81 

contingency tables, proposing a new aggregate index that can be easily used to evaluate the ability of 82 

seasonal forecast models to predict drought events.  The proposed methodology is applied to the Júcar 83 

river basin in Spain.    84 

The remainder of this paper is structured as follows. Section 2 describes the case study and the data 85 

used. Section 3 focuses on the proposed methodology. The results and a general discussion are provided 86 

in section 4. And finally, section 5 shows the conclusions. 87 

 88 

2. Case study 89 

For the analysis of the System4 precipitation data, was used the Júcar River Basin (JRB), located in the 90 

eastern of Spain. This basin is comprised of a total surface area of 22,261 km2 and is the main of 9 water 91 

exploitation systems in the Júcar River Basin Demarcation (DHJ), (Haro et al., 2014b). Five sub-basins 92 

were considered for this study (see Fig. 1).  93 
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 94 

Fig. 1. Study area. Júcar River Basin. 95 

 96 

The JRB has an average precipitation of 510 mm/year, and the average temperature is 13.6 °C. The 97 

natural resources reach 1,279 hm3/year. On the other hand, the basin has a total water demand of 98 

1,117 hm3/year, of which, 88.6% is for irrigated agriculture, thus the basin has a water exploitation index 99 

(WEI) of 87% (Pedro-Monzonís et al., 2014).  100 

The JRB is prone to drought events due to its semi-arid environment (Andreu et al., 2013), in the recent 101 

decades, four events have been recorded, which caused serious environmental damages and economic 102 

losses. The last events recorded are the historic droughts of 1983/84-1985/86, 1992/93-1995/96, 103 

1997/98-2000/01 and 2004/05-2007/08 (Ministerio de Medio Ambiente, 2007).  104 

To mitigate the impacts of these phenomena, the Ministry of Environmental of Spain (MMA) has worked 105 

extensively; making special plans of drought management, which consider three scenarios, normal and 106 

pre-alert, alert and emergency (Estrela & Vargas, 2008; Ferrer et al., 2008). In addition, the Júcar Basin 107 

Agency (JBA) has developed indices that allow determining the appropriate measure to deal with a 108 

drought event. These indices called Operative Drought Monitoring Indicators (SODMI), use real-time 109 

information provided by the Automatic Data Acquisition System of the DHJ (Estrela, 2006), the data 110 

contain information about precipitation and state of reservoirs, aquifers and rivers. 111 
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2.1 Forecast data 112 

The forecast data used in this study come from the System4, developed by the ECMWF. These data are 113 

datasets of precipitation and temperature with a lead time of six months. The hindcasts (re-forecasts) 114 

start on the 1st of every month for the years 1981-2010, and the ensemble size is 15 members. The grid 115 

point calculations of the datasets are on the corresponding reduced N218 gaussian grid, which has 116 

about a 0.7 degrees spacing (Molteni et al., 2011). For each of the five sub-basins, two points were 117 

taken from the grid of the System4 model, in order to ensure that they were spread over the entire area 118 

of interest. Subsequently, the average of the two points was obtained to work with a single dataset per 119 

sub-basin. This approach was chosen because an interpolation produces time series with less dispersion 120 

than the original series. To obtain the historical time series of the forecast data, the first month of each 121 

time series was extracted (0-month lead time hindcast) and the fifteen scenarios generated by the 122 

System4 model were used (ensemble members). 123 

 124 

2.2 Observed data 125 

To contrast the forecast data, were used the dataset of Spain02 version v4 (Herrera et al., 2016), which 126 

are time series of precipitation and temperature in high-resolution grids on a daily scale. These data 127 

cover the Iberian Peninsula and the Balearic Islands. The grids correspond to standard grids of EURO-128 

CORDEX: 0.44, 0.22 and 0.11 degrees  (Herrera et al., 2012). For this study was selected the thinnest grid 129 

of Spain02 that is 0.11 degrees. Inside the datasets exist time series obtained with different 130 

interpolation methods, and for this work was used the dataset obtained with the Area-Averaged-131 

monthly trivariate Thin Plate Splines method (AA-3D) (Herrera et al., 2016). Four points were taken in 132 

each sub-basin and averaged in order to obtain a representative time series for each sub-basin. 133 

Although the data of the System4 model range from 01/01/1981 to 31/12/2015, the analysis only was 134 

performed with the period between hydrological years 1981/82 and 2005/06 (25 years), due to the data 135 

range chosen from Spain02, which goes from 01/01/1970 to 31/12/2006. Once the time series were 136 

obtained for each sub-basin, they were analyzed on a monthly scale. 137 

 138 
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3. Methodology 139 

3.1 Statistical analysis 140 

In the evaluation of hydrological models, indices are used to determine their capacity to reproduce 141 

reality. Among the most commonly used indicators are Nash-Sutcliffe efficiency (NSE) and the Modified 142 

Kling-Gupta Efficiency (KGEM) ( Kling et al., 2012; Moriasi et al., 2007; Spalding-fecher et al., 2016). 143 

Therefore, a first evaluation of the System4 model data was made, obtaining the NSE and KGEM 144 

indicators. 145 

The Nash-Sutcliffe efficiency (Eq. 1) is a metric that determines the relative magnitude of variance of 146 

data modeled with observed variance (Nash & Sutcliffe, 1970).  147 

𝑁𝑆𝐸 =  1 −  [
∑ (𝑂𝑛 − 𝐹𝑛)2𝑁

𝑛=1

∑ (𝑂𝑛 − 𝑂𝑛
̅̅ ̅)2𝑁

𝑛=1

] 
( 1 ) 

Where 𝑁 is the total number of time-steps, 𝑂𝑛 is the forecasted value at time-step 𝑛, 𝐹𝑛 is the observed 148 

value at time-step 𝑛, and 𝑂𝑛
̅̅ ̅ is the mean of the observed values. 149 

The Modified Kling-Gupta Efficiency (Eq. 2), as well as the NSE, it has a range of -Inf to 1 and its optimal 150 

value is 1.   151 

 𝐾𝐺𝐸𝑀 =  1 −  √(𝑟 − 1)2 + (𝛽 − 1)2 +  (𝛾 − 1)2 ( 2 ) 

Where r is the correlation coefficient between forecasted (F) and observed (O) data, β is the ratio of 152 

means (µF/µO) and γ is the ratio of coefficients of variation (CVF/CVO). The ideal value of each of the 153 

three components is 1 (Gupta et al., 2009; Kling et al., 2012).  154 

In order to obtain the indicators described above, an accumulation of data from the 15 System4 155 

ensemble members was carried out. As these time series are equiprobable, it was decided to work with 156 

a unique dataset that includes the characteristics of each forecast. Thus, a single time series that groups 157 

the 15 ensemble members was obtained, placing each time series at the end of the previous one. That 158 

means a total of 4500 precipitation data on a monthly scale. On the other hand, the time series of 159 

observed data was repeated 15 times, so that both data, observed and forecast, have the same length. 160 

These aggregate time series of both, were also used for the forecast verification. In addition, the NSE 161 
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and the KGEM indicators were obtained for the ensemble, in order to analyze the performance of the 162 

mean of the 15 ensemble members. 163 

 164 

3.2 Forecast verification using a contingency table 165 

Since what is desired is to assess the predictive capacity of the drought event as an early alert, an 166 

analysis should be carried out from the perspective of the occurrence of this phenomenon. In the 167 

management of water resources it is very important to predict droughts in order to adopt measures to 168 

reduce the impacts of these events (Haro et al., 2014a). Thus, the correct prediction of a drought event 169 

is more important than the correct amount of the runoff when the prediction is optimal. For this reason, 170 

it was decided to analyze the predictive capacity of drought episodes. 171 

Droughts have three main characteristics: intensity, duration and surface area affected (Wilhite, 2000). 172 

Intensity refers to the decrease in precipitation and the impacts that this decrease can cause, and it is 173 

measured by applying the Palmer drought severity index or through a threshold, which can be a 174 

percentage of the mean precipitation and can be arbitrarily selected. Duration is the period of time that 175 

precipitation is below the set threshold. For the development of the analysis of this work, five drought 176 

scenarios were established, which correspond to 20% (S1), 40% (S2), 60% (S3), 80% (S4) and 100% (S5) 177 

of the monthly means. In each of them, the event occurs when the precipitation value for each month is 178 

less than the corresponding threshold value. In this way, the measurement of drought intensity is also 179 

included in the analysis. 180 

The scenarios were analyzed using 2x2 contingency tables for dichotomous events (Bartholmes et al., 181 

2009), which allow the predictive capacity of the model to be assessed based on meteorological 182 

droughts. These type of droughts occur when the monthly precipitation is below the mean precipitation 183 

value of the corresponding month (Hisdal & Tallaksen, 2000). In this way, a time series of discrete 184 

nonprobabilistic values were obtained for each scenario, since each value can only take a value of four 185 

possibilities, Hit, Miss, False alarm and Correct negative. Table 1 shows a contingency table.  186 

 187 

 188 
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Table 1. Contingency table. (Wilks, 2006). 189 

Spain02.v4 

  YES NO 

System4 

YES Hits (a) False alarms (b) 

NO Misses (c) Correct negatives (d) 

 190 

Where, the Hits (a) represent the coincidence of drought of both series, the Misses (c) correspond to the 191 

presence of a drought in the data of Spain02 and the absence of this event in the data of System4. The 192 

False alarms (b) are presented when in the time series of Spain02 there is no drought and if there is in 193 

System4, and finally, the Correct negatives (d) are the months in which there is no drought in both 194 

models. 195 

From the contingency table, it can be concluded that a perfect forecast is presented when the value of 196 

False alarms (b) and Misses (c) is equal to zero. However, given that an actual forecast is imperfect, 197 

some metrics are required to determine the degree of correspondence between the predicted value 198 

and the observed value, thus obtaining, different characteristics of the predicted time series (Wilks, 199 

2006). There are a large number of metrics developed for model verification using 2x2 contingency 200 

tables ( Mason, 2003; Murphy & Daan, 1985). 201 

In this paper, seven different scores were used in order to assess the forecasting system. The Proportion 202 

Correct score (PC) shown in Eq. 3, proposed by Finley (1884), since this score determines the correct 203 

portion of the time series and it is a widely used metric, being the most direct and intuitive. However, 204 

this score does not differentiate between Hits and Correct negatives, so it is necessary to use other 205 

scores. 206 

The Threat Score (TS) is a very useful metric when the event to predict (drought) occurs less frequently 207 

than the non-occurrence is (Eq. 4). As well as the PC, the TS has the worst possible value of 0 and 1 as 208 

the best possible value. On the other hand, the Bias score (BIAS) is the comparison of the mean forecast 209 

with the mean observation, as evident in Eq. (5). The BIAS score is not a precision indicator since it does 210 

not provide information on the correspondence between forecasts and observations when is dealing 211 

with mean values. A value below 1 indicates that the drought event was less frequently predicted than 212 

observed, while a value above 1 indicates that the event was over-expected. BIAS ranges from zero to 213 
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infinite and the best expected value is 1, which would indicate that the predicted time series is 214 

unbiased. 215 

The reliability of the model can be evaluated by using the False Alarm Ratio (FAR), which represents the 216 

yes portion of the System4 model that is wrong, as shown in Eq. (6), so a better expected value is zero 217 

and the worst is 1.  On the other hand, the Success Ratio (SR) provides information on the probability 218 

that an observed event will be predicted (Eq. 7). This score is sensitive to False alarms and ignores 219 

Misses. This metric can also be represented as 1-FAR, in other words, it is complementary to the False 220 

Alarm Ratio. 221 

The Probability Of Detection score (POD) is the ratio between the correct forecasts and the number of 222 

times this event has occurred (Eq. 8). On the other hand, the Probability of False Detection score (POFD) 223 

is the ratio of False alarms to the total number of no drought events (Eq. 9). 224 

𝑃𝐶 =  
ℎ𝑖𝑡𝑠 +  𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑛
 

( 3 ) 

𝑇𝑆 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

( 4 ) 

𝐵𝐼𝐴𝑆 =  
ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 

( 5 ) 

𝐹𝐴𝑅 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

( 6 ) 

𝑆𝑅 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

( 7 ) 

𝑃𝑂𝐷 =  
ℎ𝑖𝑡𝑠

ℎ𝑖𝑡𝑠 + 𝑚𝑖𝑠𝑠𝑒𝑠
 

( 8 ) 

𝑃𝑂𝐹𝐷 =  
𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠
 

( 9 ) 

In order to obtain an analysis with the obtained indices, the performance diagram is used 225 

(Roebber, 2009), where BIAS, SR (1-FAR), POD and TS are evaluated. 226 

 227 
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3.3 Contingency table modified 228 

Despite the different indices used, there is information that cannot be collected by them since it should 229 

not only be seen as an analysis of the possible occurrence, or not, of the drought event. Consideration 230 

should also be given to the possibility that the event may be predicted early or late, in addition to the 231 

permanence of the drought over the months. In order to collect these possibilities of dichotomous 232 

events, the creation of a 3x3 contingency table is proposed, leaving it as follows: 233 

Table 2. Contingency table modified. 234 

Spain02.v4 

  DROUGHT START DROUGHT STAY NO DROUGHT 

System4 

DROUGHT START Drought start hit (e) Late start (f) False start (g) 

DROUGHT STAY Early start (h) Drought stay hit (i) False stay (j) 

NO DROUGHT False no drought (k) Early exit (l) No drought hit (m) 

 235 

When both time series present the start of a drought event in the evaluated month, the discrete 236 

variable corresponds to a Drought start hit (e), but if an onset drought event occurs in System4 and in 237 

Spain02 there is a drought initiated prior to the month evaluated, a Late start (f) is present. On the other 238 

hand, when in the System4 time series there is a start of a drought and Spain02 does not present 239 

drought, a False start (g) is taken. 240 

When in the Spain02 time series there is the onset drought and in the System4 time series there is a 241 

drought that started earlier, the value of the variable is an Early start (h), but if both time series have 242 

drought in the month evaluated, but in neither case is the start of said event, a Drought stay hit (i) is 243 

held. Whereas, if in System4 there is a drought initiated prior to the month evaluated while in the 244 

Spain02 data there is no drought, the variable is a False stay (j). 245 

When Spain02 presents a start of a drought while in the System4 there is no drought, the variable is a 246 

False no drought (k). If the Spain02 time series is in a drought that started before the month evaluated 247 

and the System4 time series does not have a drought, an Early Exit (l) is presented, and when neither 248 

time series has a drought, the discrete variable takes the value of a No drought hit (m). 249 

However, since the metrics mentioned above have been developed for 2x2 contingency tables,   250 
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Table 2 must be transformed from 3x3 to 2x2. To this end, the procedure proposed in Wilks (2006) 251 

should be used. For example, if the goal is to work with the event Drought start hit (e),  252 

Table 2 is modified, as follows: 253 

Table 3. Contingency table for the event Drought start hit. 254 

Spain02.v4 

 
 YES NO 

System4 

YES (aʹ) = (e) (bʹ) = (f)+(g) 

NO (cʹ) = (h)+(k) (dʹ) = (i)+(j)+(l)+(m) 

 255 

Thus, for any event to be evaluated, it will take the place of a Hit, the sum of the two remaining values 256 

of the row of the evaluated event corresponds to a False alarm, while the sum of the two values of the 257 

column where the studied event is located corresponds to a Miss. Finally, the sum of the rest of the 258 

values will be a Correct negative. 259 

Since the most important event in this analysis is the occurrence of the drought event and its onset, the 260 

events Drought hit (e), Early start (h) and Late start (f) are evaluated. 261 

 262 

3.4 Assessment of an aggregate index 263 

The analysis described above provides a large number of values that are complex to analyze, therefore it 264 

is necessary to reduce the number of indices in order to obtain a unique value capable of showing the 265 

drought forecasting skill of the forecast system model in a simplified way. 266 

A first approximation is to average the value of each scenario for each index and for each event. It is 267 

important to take into account the water exploitation index (WEI) of the river basin, since when the 268 

availability is greater than the WEI, the drought is not worrying, as the volume of resources is greater 269 

than the demand. Therefore, in order to obtain the average of the scenarios, only those below the WEI 270 

should be considered. Even after having averaged the values, a large number of parameters have to be 271 

analyzed independently. Since, the four possibilities that each discrete value can obtain (Hits, False 272 

alarms, Misses and Correct negatives) the one that is less interesting is the Correct negatives, an average 273 

of the TS and POD indices is obtained in order to obtain an aggregate index. Given that, the TS indicates 274 
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the portion of Hits of the drought event with respect to the presence of this phenomenon in both series 275 

and the POD shows the portion of Hits with respect to the presence of the drought in the observed data. 276 

Thus, the number of indices is reduced to one per sub-basin and per event. 277 

Moreover, it should be considered that the drought phenomenon also has a spatial dimension. To take 278 

this property into account and also to obtain a single value for the entire basin, it is proposed to obtain 279 

an overall index as the weighted average of the 5 series, the annual mean precipitation is proposed as a 280 

weighting parameter.  281 

Thus, an aggregate index is obtained for the whole basin and for each particular event, 282 

considering the intensity and spatial variability. The aggregate index obtained was contrasted with the 283 

Relative Operating Characteristic (ROC). The ROC diagram plots the Probability Of Detection score (POD) 284 

and the Probability of False Detection score (POFD). This method is widely used for its ability to graph 285 

several thresholds in a single diagram. Nevertheless, it can be convenient to summarize a ROC diagram 286 

using a single scalar value, and the usual choice for this purpose is the area under the ROC curve. As ROC 287 

curves for perfect forecasts pass through the upper-left corner, the area under a perfect ROC curve 288 

includes the entire unit square (the perfect area is equal to 1) and the random forecasts lie along the 45° 289 

diagonal of the unit square, the area under the ROC of interest is 2A-1. Where A is the area under the 290 

curve obtained (Wilks, 2006). 291 

4. Results and discussion 292 

In this section, spatio-temporal droughts from 15 ensemble member of the model System4 from 1981 to 293 

2006 was compared to the reference data set (Spain02.v4). After a precipitation analysis, the predictive 294 

capacity of droughts is analyzed using modified contingency tables in order to obtain an aggregate index 295 

for the entire basin. Seven indices were assessed in the analysis (see Fig. 9 and Fig. 10)   296 

 297 

4.1 Precipitation 298 

For the comparison of the monthly mean precipitation of the System4 model with respect to the 299 

Spain02 model, the ensemble of the 15 scenarios of the forecast time series was used. Figure 2 shows 300 

the monthly mean of both models for the five sub-basins analyzed. 301 
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 302 

Fig. 2. Monthly mean precipitation. 303 

 304 

As can be seen in the previous figure, there is a high correlation between both models from March to 305 

September (months with the least precipitation) in the five sub-basins. However, there are notable 306 

differences from October to February, when the rainfall is greater. Despite this, in all cases a similar 307 

trend of the System4 model data is reproduced with respect to the Spain02 model. The annual 308 

precipitation of the System4 model also presents the same trend as the Spain02 model, as can be seen 309 

in Figure 3.  For this reason, the information can be used, since it is possible to correct differences by 310 

applying some method of bias correction. 311 

The data of the ensemble collect the mean values of the 15 System4 model scenarios, however, this 312 

time series does not contain the noise presented by each of these scenarios, as can be seen in Figure 3. 313 

Therefore, it has been decided to work with the fifteen time series on a monthly scale, obtaining their 314 

statistics as a single series. 315 
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 316 

Fig. 3. Annual precipitation. The shaded surface represents the variation of the 15 ensemble members. 317 

 318 

Once the single time series containing the data of the 15 System4 model scenarios has been obtained, it 319 

is contrasted with the observed time series and the Nash-Sutcliffe and Kling-Gupta indices are obtained 320 

(see Fig. 4 and Fig. 5). 321 

 322 
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 323 

Fig. 4. Nash-Sutcliffe Efficiency and Kling-Gupta Efficiency Modified for the monthly precipitation data.  324 

 325 

 326 

Fig. 5. Kling-Gupta Efficiency Modified elements. 327 

  328 

Figure 4 shows low NSE values, between -0.26 and -0.01, while KGEM values are around 0.4. When 329 

analyzing the elements of the KGEM (see Fig. 5), it can be seen that the monthly data of the five sub-330 

basins show a relationship close to 1, both for the mean ratios (bias ratio) and the coefficients of 331 

variation. On the other hand, the Pearson correlation coefficient is between 0.31 for the Contreras sub-332 

basin and 0.38 in the Alarcón sub-basin. However, in the case of the ensemble, the analysis shows in an 333 

NSE between 0.20 for Mulet and 0.27 for Tous, a KGEM between 0.26 for Mulet and 0.33 for Tous, and a 334 

Pearson correlation coefficient between 0.48 for Contreras and 0.57 for Alarcón. This indicates that the 335 

ensemble mean presents a better similarity to the observed data with respect to the 15 ensemble 336 

members. The reason for this similarity is that the ensemble improves the average of the 15 time-series, 337 

but the noise of these series is lost. As in the seasonal management of water resources, the noise of the 338 
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15 ensemble members is more important than their average, it is important to work with all the series 339 

and not only with the ensemble. 340 

 341 

4.2 Droughts 342 

Since the time series of occurrence or absence of drought event is a time series of dichotomous data, it 343 

can be analyzed using a 2x2 contingency table. The indices obtained are shown in the following tables: 344 

Table 4. Indices obtained from the 2x2 contingency tables for Alarcón, Contreras and Molinar sub-basins. 345 

Catchment Alarcón Contreras Molinar Perfect 

Scenario S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 Score 

PC 0.86 0.72 0.64 0.62 0.61 0.86 0.72 0.64 0.61 0.60 0.83 0.71 0.63 0.59 0.60 1 

BIAS 0.67 0.76 0.89 1.00 0.99 0.50 0.67 0.90 0.97 1.00 0.61 0.82 0.95 1.04 1.00 1 

POD 0.18 0.31 0.43 0.58 0.66 0.13 0.28 0.43 0.56 0.65 0.19 0.33 0.45 0.56 0.65 1 

TS 0.12 0.21 0.30 0.40 0.50 0.09 0.20 0.29 0.40 0.48 0.13 0.22 0.31 0.38 0.48 1 

SR 0.27 0.40 0.49 0.58 0.67 0.25 0.41 0.48 0.58 0.65 0.31 0.40 0.48 0.54 0.65 1 

FAR 0.73 0.60 0.51 0.43 0.33 0.75 0.59 0.52 0.42 0.35 0.69 0.60 0.52 0.46 0.35 0 

POFD 0.06 0.14 0.25 0.35 0.45 0.05 0.13 0.25 0.35 0.47 0.07 0.16 0.28 0.39 0.48 0 

 346 

 Table 5. Indices obtained from the 2x2 contingency tables for Mulet and Tous sub-basins. 347 

Catchment Mulet Tous Perfect 

Scenario S1 S2 S3 S4 S5 S1 S2 S3 S4 S5 Score 

PC 0.84 0.66 0.59 0.57 0.59 0.81 0.67 0.60 0.57 0.57 1 

BIAS 1.12 0.98 0.95 0.96 1.01 0.73 0.91 0.93 0.97 1.05 1 

POD 0.23 0.35 0.48 0.58 0.68 0.19 0.36 0.48 0.58 0.66 1 

TS 0.12 0.22 0.32 0.42 0.51 0.12 0.23 0.33 0.41 0.48 1 

SR 0.21 0.36 0.50 0.60 0.67 0.26 0.39 0.51 0.59 0.63 1 

FAR 0.79 0.64 0.50 0.40 0.33 0.74 0.61 0.49 0.41 0.37 0 

POFD 0.10 0.23 0.33 0.44 0.54 0.09 0.21 0.32 0.44 0.56 0 

 348 

Table 4 and 5 show that the correct portion (PC) of the analyzed time series is between 86% and 81% for 349 

scenario S1, while for scenario S5, the correct portion is between 61% and 57%. In reducing the 350 

threshold of droughts, the sub-basin that presented the greatest difference between the PC values for 351 

the different scenarios was Mulet, where there was a difference of 27% between the S1 and S5 352 

scenarios. 353 

In general, BIAS shows that the time series of all sub-basins are unbiased or slightly biased. Light over-354 

forecast was obtained for the Mulet-S1 and Tous-S5 scenarios. On the other hand, the greatest biases 355 
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were obtained in Alarcón, Contreras, Molinar and Tous (all on scenario S1), in addition to Alarcón-S2 and 356 

Contreras-S2. 357 

The analysis of the Probability Of False Detection (POFD) and Probability Of Detection (POD) is very 358 

important because together they form the conceptual basis for the signal detection approach to verify 359 

probability forecasts (Wilks, 2006). The POFD obtained shows that the evaluated data have a False 360 

alarm percentage with respect to the non-occurrence of the drought event of less than 25% for 361 

thresholds S1, S2 and S3, except for the Mulet and Tous sub-basins. In addition, in the previous sub-362 

basins in scenario S3, it is slightly higher than 30%. However, for the rest of the scenarios, the 363 

percentage of False alarms with respect to non-occurrence of drought fluctuates between 35% and 364 

56%. The POD indicates that, despite having obtained high PC values, the percentage of Hits with 365 

respect to the total occurrence of the event is low, reaching a maximum of 68% for scenario S5 of the 366 

Mulet sub-basin. 367 

The SR and FAR denote the percentage of Hits and False alarms with respect to the "yes" of the 368 

predicted data, respectively.  The values found from SR and FAR indicate that the forecast model tends 369 

to over-estimate the drought event when considering low thresholds. 370 

Figure 6 shows the performance diagram obtained, where can be seen that for the thresholds of 100% 371 

(S5) the results are better, since the optimum forecast is in the upper right part of the diagram. Figure 7 372 

shows the ROC diagram, where it is possible to ascertain what is obtained in the performance diagram, 373 

that is, the predictive capacity of the model improves when droughts are less intense (S5). However, this 374 

predictive capacity is very low, since the area of interest under the curve is in the range of 0.18 in the 375 

Tous sub-basin and 0.27 in the Alarcón sub-basin. 376 
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 377 

Fig. 6. Performance diagram. 378 

 379 

 380 

Fig. 7. ROC diagram. 381 

 382 

In order to study the coincidences of the System4 model data with respect to the Spain02 model, the 383 

2x2 contingency table is extended to a 3x3 table, with emphasis on the concordances at the onset of 384 

each event, these are, Drought start hit, Early start and Late start events. Additionally, the event 385 

Drought stay hit was analyzed, in order to explore the behavior of the predictions of the System4 model 386 

once it has entered a period of drought. Once the 3x3 contingency table has been obtained, it is reduced 387 
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to 2x2 since the calculated indices have been developed for 2x2 contingency tables. Table 6 shows as an 388 

example the transformation of the contingency table from 3x3 to 2x2 for the Alarcón sub-basin and for 389 

the Drought hit event corresponding to scenario S1. 390 

Table 6. Modified contingency tables for the Alarcón sub-basin, corresponding to scenario S1. Left, 3x3 table. Right, 391 

2x2 table for the Drought start hit event. 392 

Spain02.v4 

   DROUGHT 
START 

DROUGHT 
STAY 

NO 
DROUGHT 

System4 

DROUGHT 
START 

63  (e) 11  (f) 207  (g) 

DROUGHT 
STAY 

7  (h) 4  (i) 28  (j) 

NO 
DROUGHT 

335  (k) 60  (l) 3785  (m) 
 

Spain02.v4 

  DROUGHT 
START 

NO 
DROUGHT 

START 

System4 

DROUGHT 
START 

63  (e) 218  (f+g) 

NO 
DROUGHT 

START 
342  (h+k) 

3877  
(i+j+l+m) 

 

 393 

Figure 8 shows the performance diagrams of the four events analyzed, where it can be seen that, for all 394 

sub-basins, the climate model gives the best results for the S4 and S5 scenarios, while scenario S1 has 395 

the worst results. In Figure 8 it can also be seen that the results of the four events are unbiased for the 396 

S4 scenario, however, for the Drought start hit event, the POD, SR and TS indices are very low. The 397 

Contreras sub-basin was the one that obtained the highest values with a POD of 0.39, a SR of 0.35 and a 398 

TS of 0.23. On the other hand, for the Early Start event, scenario S4 has POD and SR values of around 399 

0.20 while the TS reaches 0.19 and 0.19 for the Mulet and Tous sub-basins respectively. 400 

As for the Late start event, the POD and SR values are close to 0.30 and the TS remains around 0.15. 401 

Finally, for the Drought stay hit event, index values improved slightly; the POD and SR are around 0.40 402 

and the TS around 0.20.   403 

Figure 9 shows the evolution of the seven indices calculated through the five proposed scenarios, this 404 

for the Alarcón sub-basin and for the four events analyzed, Drought start hit, Early start, Late start and 405 

Drought stay hit. For each graph shown, the optimal value of the first five indices is 1 (PC, BIAS, POD, TS 406 

and SR), while for the last two, the optimal value is 0 (FAR and POFD). 407 

In the Drought start hit event, the correct portion is 88% for scenario S1 and decreases for the other 408 

scenarios to 71% for scenario S5. The event is sub-forecast for scenarios S1, S2 and S3 as they present a 409 

BIAS of less than 1, however, for scenarios S4 and S5 it is observed that the event is over-forecasted. The 410 



21 
 

percentage of hits with respect to the occurrence of the event in the observed time series is only 36% 411 

for scenarios S4 and S5. By eliminating the Correct negatives from the analysis, the Drought start hit 412 

event has a low success rate (TS) of between 10% and 21%. 413 

The Early start event presents a more erratic behavior compared to the Drought start hit event, since 414 

the PC decreases up to 57% for the S5 scenario and with bias from 0.096 for the S1 scenario, to 1.627 for 415 

the S5 scenario. However, for the S4 scenario the event is unbiased. In this event there is a high number 416 

of False alarms regarding the predicted events, as can be seen in the FAR index. 417 

The Late start event shows a high over-forecast as it reaches up to a value of 3.75 for scenario S1, 418 

besides a very high FAR as well as the Early start event. 419 

Finally, the Drought stay hit event has a similar behavior to the Drought start hit event, with 420 

considerable bias in the first three scenarios and a PC close to its optimal value in the S1 scenario. As in 421 

all other events, the value of the FAR index is very high, due to the considerable number of False alarms.   422 

In Figure 9 it can be seen that after the analysis carried out, there are 5 values for each of the calculated 423 

indices, that is, 35 values for each sub-basin and this for each event, making it difficult to fully analyze 424 

the ability of the climate model to predict the drought event. Therefore, an aggregate index is proposed. 425 

In order to obtain an average of the scenarios analyzed, the scenario S5 was not considered, given that it 426 

is higher than the WEI of the JRB is 87%  (Pedro-Monzonís et al., 2014). Figure 10 shows the mean of the 427 

four scenarios for each sub-basin and event. 428 
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 429 

Fig. 8. Performance diagram for the four events analyzed. Top left diagram: Drought start hit event. Top right 430 

diagram: Early start event. Bottom left diagram: Late start event. Bottom right diagram: Drought stay hit event. 431 

 432 



23 
 

 433 

Fig. 9. Indices obtained for the four events analyzed, corresponding to the Alarcón sub-basin. The x-axis corresponds 434 

to the five scenarios. 435 

 436 
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 437 

 438 

Fig. 10. Average values for each calculated index. 439 
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By reducing the number of indices considering only TS and POD, compound indices are obtained for 440 

each sub-basin, which are shown in Table 7. 441 

Table 7. Compound indices. 442 

 Index by event 

Catchment Drought start hit Early start Late start Drought stay hit 

Alarcón 0.21 0.07 0.16 0.16 

Contreras 0.21 0.06 0.15 0.14 

Molinar 0.21 0.07 0.18 0.16 

Mulet 0.22 0.10 0.16 0.15 

Tous 0.22 0.09 0.16 0.16 

 443 

When calculating a weighted average, considering the annual mean precipitation, an aggregate index is 444 

obtained for the entire basin. The results are shown in the following table. 445 

Table 8. Aggregate indices for the Júcar River Basin. 446 

 Index by event 

Catchment Drought start hit Early start Late start Drought stay hit 

Júcar 0.21 0.08 0.16 0.15 

 447 

The assessment of the areas under the curves of the ROC diagram for the Drought start hit event, 448 

considering only the first four scenarios (0-80%) results in values ranging from 0.11 for the Tous sub-449 

basin to 0.17 for Alarcón. If a weighted average is obtained in the same way as the aggregate index, it 450 

has a value of 0.19 (Figure 11).  451 

 452 

Fig. 11. ROC diagram for Drought start hit event. 453 
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The above results may be considered unoptimistic when describing the predictive capacity of the 454 

analyzed model. However, this conclusion was predictable given the known uncertainty in the 455 

occurrence of future precipitation events. As a result, these cannot be judged on their own, they need 456 

to be compared with other alternatives in order to obtain forecasts. For this purpose, the classical 457 

method has been chosen, which has already been used on some occasions in the management of the 458 

JRB (Andreu et al., 2013; Haro-Monteagudo et al., 2017; Suárez-Almiñana et al., 2017). A stochastic 459 

model AR(1), shown in Eq. (10), has been calibrated for the 5 sub-basin time series obtained from 460 

Spain02.  461 

𝑋𝑡 =  𝜑1 ∙ 𝑋𝑡−1 + 𝜃0 ∙ 𝜀 
( 10 ) 

Where Xt and Xt-1 are the variables, ϕ1 is an autocorrelation matrix, θ0 is an matrix of coefficients that 462 

multiplies the random N(0,1) values vector represented by ε. With this AR(1) model, the same number 463 

of monthly forecasts have been generated for the same historical period that has been analyzed with 464 

the System4 model forecasts. The results obtained are shown below. 465 

 466 
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 467 

Fig. 12. Performance diagram for the four events analyzed in the autoregressive series.  468 

Top left diagram: Drought start hit event. Top right diagram: Early start event. Bottom left diagram: Late start 469 

event. Bottom right diagram: Drought stay hit event. 470 

 471 

Table 9. Compound indices. AR(1) model. 472 

 Index by event 

Catchment Drought start hit Early start Late start Drought stay hit 

Alarcón 0.15 0.07 0.14 0.09 

Contreras 0.15 0.08 0.13 0.09 

Molinar 0.15 0.09 0.16 0.11 

Mulet 0.17 0.09 0.14 0.13 

Tous 0.17 0.10 0.15 0.13 

 473 

 474 

 475 
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Table 10. Aggregate indices for the Júcar River Basin. AR(1) model. 476 

 Index by event 

Catchment Drought start hit Early start Late start Drought stay hit 

Júcar 0.16 0.09 0.14 0.11 

 477 

When comparing the results of the System4 model with the time series generated with the 478 

autoregressive model, it can be seen that for the Drought start hit event, the AR(1) model presents less 479 

bias, however, for the rest of events the performance is very similar between both models (see 8 and 480 

Fig. ). When comparing the results of the aggregated indices, it can be observed that although the 481 

System4 model values are low, they are higher than those obtained for the autoregressive model by 482 

34% for the Drought start hit event and up to 42% for the Drought stay hit event. Nevertheless, the 483 

improvement is between 8% and 12% for Early start and Late start events. 484 

Since the results of the aggregate index obtained for the droughts onset analysis for the System4 and 485 

the AR(1) models are similar, it is necessary to perform a contrast test to determine if there is a 486 

significant difference. In order to determine if exist this difference a Mann-Whitney U test was 487 

performed. The series of both models that were compared were obtained from the POD and TS indices 488 

with 40 values each. For each of the two indices, there is a value for each of the five sub-basins and for 489 

each of the four scenarios considered (0-80%).  The Mann-Whitney U test resulted in a p-value of 490 

0.0037. Therefore, there is a significant difference between the indices of the System4 and the AR(1) 491 

models. 492 

In order to make predictions for basin management, it is also important to consider predictive capacity 493 

over longer time periods. The cumulative forecast for the entire 7-month period could be analyzed from 494 

the System4 data sets. Nonetheless, increasing the forecast period will result in a loss of prediction 495 

reliability, so using the first month is likely to be the most reliable. 496 

Analysis in terms of flow rates is also relevant, but in this field it is foreseeable that the AR(1) model will 497 

provide a high degree of representativeness due to the subterranean component, which in the case of 498 

the Júcar river is very high. Therefore, it will be useful to explore how to improve this predictive 499 

capacity, using hydrological models or autoregressive moving average models that include an exogenous 500 

variable (ARMAX). 501 
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5. Conclusions 502 

In the area of watershed management, greater attention should be paid to drought prediction, so the 503 

proposed methodology is skillful to value predictions.  504 

Regardless of the result obtained for the case study, climate predictions are a potentially very valuable 505 

tool in basin management, and it is necessary to continue working on improving the generation 506 

methods and their validation. 507 

The methodology proposed in this work has an important application for the evaluation of the 508 

predictive skill of drought events of climatic and stochastic models, since it has been demonstrated that 509 

with its application it is possible to determine the quality of the forecast of this phenomenon. 510 

Based on the analysis of the System4 model data and despite the low values obtained from NSE, KGEM 511 

and the aggregated indices, it is concluded that the dynamical System4 coupled model can be used for 512 

forecasting drought events given that the aggregated indices obtained were better than those produced 513 

by the classical method (autoregressive). 514 

Of the four events analyzed, the most important is the Drought start hit, since what we are looking for is 515 

that the model can predict when a drought will start, from this point of view, the climate model System4 516 

is more accurate than the AR(1) model, since the aggregate index is 0.21, while for the autoregressive 517 

model it is 0.16, on a scale of 0 to 1, where 1 is the optimal value. 518 

The analysis of the Relative Operating Characteristic (ROC) allows verifying the results obtained in the 519 

calculation of the aggregate index, since a weighted area below the curve was obtained with a value of 520 

0.19 for the Drought start hit event, when, as in the aggregate index, the optimum value is 1. In order to 521 

improve the characterization of the climate model, it is necessary to make a bias correction before 522 

applying the methodology developed in this paper, since as was observed in section 4.1, monthly 523 

precipitation data show bias in the months with higher precipitation. 524 

It is important, once the precipitation of the model has been analyzed, to carry out an evaluation using 525 

this method of the runoff data, as this would allow the hydrological and operational droughts of a water 526 

resources management system to be assessed. 527 
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