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Abstract

Synthetic biology is defined as the engineering of biology: the deliberate (re)design
and construction of novel biological and biologically based parts, devices and systems
to perform new functions for useful purposes, that draws on principles elucidated from
biology and engineering. Methods and tools are needed to facilitate fast, reproducible
and predictable construction of biological systems from sets of biological components.

This thesis raises multi-objective optimization as the proper framework to deal with
common problems arising in rational design and optimal tuning of synthetic gene ci-
rcuits. Using a classical systems engineering approach, the thesis mainly addresses:
i) synthetic gene circuit modelling based on first-principles, ii) model parameters esti-
mation from experimental data and /ii) model-based tuning to achieve desired circuit
performance.

Two gene synthetic circuits of different nature and with different goals and inherent
problems have been used throughout the thesis: an Incoherent type 1 feedforward
circuit (I11-FFL) that exhibits the important biological property of adaptation, and a
Quorum sensing/Feedback circuit (QS/Fb) comprising two intertwined feedback loops
—an intracellular one and a cell-to-cell communication-based one— designed to regulate
the mean expression level of a protein of interest while minimizing its variance across
the population of cells. Both circuits have been analyzed in silico and implemented in
VIVO.

In both cases, circuit modelling based on first-principles has been carried out. Then,
special attention is paid to illustrate how to obtain reduced order models amenable for
parameters estimation yet keeping biological significance.

Model parameters estimation from experimental data is considered in different scena-
rios, both using deterministic and stochastic models. For the I11-FFL circuit, determi-
nistic models are considered. In this case, the thesis raises ensemble modelling using
multi-objective optimization to perform model parameters estimation under scenarios
with incomplete model structure (unmodeled dynamics). For the QS/Fb gene circuit,
a feedback controlled structure, the lack of excitability of the signals is the problem
addressed. The thesis proposes a two-stage estimation methodology using stochastic




models. The methodology allows using population averaged time-course data and
steady-state distribution measurements at the single-cell level.

Model-based circuit tuning to achieve desired circuit performance is also addressed
using multi-objective optimization. First, for the QS/Fb feedback control circuit, a
complete stochastic analysis is performed. Here, the thesis addresses how to correctly
take into account both intrinsic and extrinsic noise, the two main sources of noise
in gene synthetic circuits. The trade-off between both sources of noise, and the role
played by in the intracellular single-cell feedback loop and the extracellular population-
wide feedback is analyzed. The main conclusion being that the complex interplay
between both feedback channels compel the use of multi-objective optimization for
proper tuning of the circuit to achieve desired performance. Thus, the thesis wraps up
all the previous results and uses them to address circuit tuning for desired performance.
Here, besides the proper use of multi-objective optimization tools, the main concern is
how to derive guidelines for circuit parameters tuning in silico that can realistically be
applied in vivo in a standard laboratory. Thus, as an alternative to classical parameters
sensitivity analysis, the thesis proposes the use of clustering techniques along the
optimal Pareto fronts relating the performance trade-offs with regions in the circuits
parameters space.

In summary, the thesis provides useful practical methods and tools for modelling,
parameters estimation, analysis and practical tuning of synthetic gene circuits, both
in the deterministic and stochastic domains, using multi-objective optimization as
common framework.



Resumen

La biologia sintética se define como la ingenieria de la biologia: el (re)disefio y constru-
ccién de nuevas partes, dispositivos y sistemas bioldgicos para realizar nuevas funciones
con fines (tiles, que se basan en principios elucidados de la biologia y la ingenieria.
Para facilitar la construccién rapida, reproducible y predecible de estos sistemas bio-
l6gicos a partir de conjuntos de componentes es necesario desarrollar nuevos métodos
y herramientas.

Esta tesis plantea la optimizacién multiobjetivo como el marco adecuado para tratar
los problemas comunes que surgen en el disefio racional y el ajuste 6ptimo de los
circuitos genéticos sintéticos. Utilizando un enfoque clasico de ingenieria de sistemas,
la tesis se centra principalmente en: i) el modelado de circuitos genéticos sintéticos
basado en los primeros principios, ii) la estimacién de pardmetros de modelos a partir
de datos experimentales y Jii) el ajuste basado en modelos para lograr el desempefio
deseado de los circuitos.

A lo largo de la tesis se han utilizado dos circuitos genéticos sintéticos de diferente
naturaleza y con diferentes objetivos y problemas: un circuito de realimentacién de
tipo 1 incoherente (11-FFL) que exhibe la importante propiedad biolégica de adapta-
cién, y un circuito de deteccién de quorum sensing y realimentacién (QS/Fb) que
comprende dos bucles de realimentacién entrelazados -uno intracelular y uno basado
en la comunicacién de célula a célula- disefiado para regular el nivel medio de expresién
de una proteina de interés mientras se minimiza su varianza a través de la poblacién
de células. Ambos circuitos han sido analizados in silico e implementados in vivo.

En ambos casos, se han desarrollado modelos de estos circuitos basado en primeros
principios. Luego, se presta especial atencién a ilustrar cémo obtener modelos de orden
reducido susceptibles de estimacién de parametros, pero manteniendo el significado
bioldgico.

La estimacién de los pardmetros del modelo a partir de los datos experimentales se
considera en diferentes escenarios, tanto utilizando modelos deterministicos como esto-
casticos. Para el circuito |1-FFL se consideran modelos deterministicos. En este caso,
la tesis plantea la utilizacién de modelos locales utilizando la optimizaciéon multiobjetivo
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para realizar la estimacion de parametros del modelo bajo escenarios con estructura de
modelo incompleta (dindmica no modelada). Para el circuito QS/Fb, una estructura
controlada por realimentacion, el problema tratado es la falta de excitabilidad de las
sefiales. La tesis propone una metodologia de estimacién en dos etapas utilizando
modelos estocasticos. La metodologia permite utilizar datos de curso temporal pro-
mediados de la poblacién y mediciones de distribucién en estado estacionario a nivel
de una sola célula.

El ajuste de circuitos basado en modelos para lograr el desempefio del circuito de-
seado también se aborda mediante la optimizacién multiobjetivo. En primer lugar,
para el circuito de control de realimentacién QS/Fb, se realiza un anilisis estocéstico
completo. Aqui, la tesis aborda como tener en cuenta correctamente tanto el ruido
intrinseco como el extrinseco, las dos principales fuentes de ruido en los circuitos ge-
néticos sintéticos. Se analiza el equilibrio entre ambas fuentes de ruido y el papel que
desempefian en el bucle de realimentacién intracelular, y en la realimentacién extrace-
lular de toda la poblacién. La principal conclusién es que la compleja interaccién entre
ambos canales de realimentacién obliga al uso de la optimizacién multiobjetivo para el
adecuado ajuste del circuito. En esta tesis ademas del uso adecuado de herramientas
de optimizacién multiobjetivo, la principal preocupaciéon es cémo derivar directrices
para el ajuste in silico de pardmetros de circuitos que puedan aplicarse de forma reali-
sta in vivo en un laboratorio estandar. Asi, como alternativa al anélisis de sensibilidad
de parametros clasico, la tesis propone el uso de técnicas de clustering a lo largo de
los frentes de Pareto, relacionando el compromiso de rendimiento con las regiones en
el espacio de parametros.

En resumen, la tesis proporciona métodos y herramientas practicas (tiles para el mode-
lado, la estimacién de parametros, el analisis y el ajuste practico de circuitos genéticos
sintéticos, tanto en el dominio deterministico como en el estocastico, utilizando opti-
mizacién multiobjetivo como marco comin.



Resum

La biologia sintética es defineix com I'enginyeria de la biologia: el (re) disseny i con-
struccié de noves parts, dispositius i sistemes biologics per a realitzar noves funcions
atils que es basen a principis elucidats de la biologia i I'enginyeria. Per facilitar la
construccié rapida, reproduible i predictible de aquests sistemes biologics a partir de
conjunts de components és necessari desenvolupar nous metodes i eines.

Aquesta tesi planteja la optimitzacié multiobjectiu com el marc adequat per a tractar
els problemes comuns que apareixen en el disseny racional i I ajust optim dels circuits
geneétics sintétics. Utilitzant un enfocament classic d'enginyeria de sistemes, la tesi es
centra principalment en: i) el modelatge de circuits genétics sintétics basat en primers
principis, if) |" estimacié de parametres de models a partir de dades experimentals i i)
I" ajust basat en models per aconseguir el rendiment desitjat dels circuits.

Al llarg de la tesi s'han utilitzat dos circuits genétics sintétics de diferent naturalesa
i amb diferents objectius i problemes: un circuit de prealimentacié de tipus 1 incoh-
erent (I11-FFL) que exhibeix la important propietat biologica d'adaptacio, i un circuit
de quorum sensing i realimentacié (QS/Fb) que compren dos bucles de realimentaci6
entrellacats -un intracel-lular i un basat en la comunicaci6é de cél-lula a cél-lula- dis-
senyat per regular el nivell mitja d'expressié normal d'una proteina d'interés mentre
es minimitza la seua variacié al llarg de la poblacié de cel-lules. Els dos circuits han
estat analitzats in silico i implementats in vivo.

En tots dos casos, s'han desenvolupat models basats en primers principis d'aquests
circuits. Després es presta especial atencié a delinear com obtenir models d’ordre
reduit susceptibles de estimacié de parametres, pero mantenint el significat biologic.
L' estimacid dels parametres del model a partir de les dades experimentals es considera
en diferents escenaris, tant utilitzant models deterministics com estocastics. Per al
circuit 11-FFL es consideren models deterministics. En aquest cas, la tesi planteja
la utilitzacié de models locals utilitzant la optimitzacié multiobjectiu per realitzar
I'estimacié de parametres del model sota escenaris amb estructura de model incompleta
(dinamica no modelada). Per al circuit de QS/Fb, una estructura controlada per
realimentacid, el problema tractat és la manca d'excitabilitat dels senyals. La tesi
proposa una metodologia de estimacid en dues etapes utilitzant models estocastics.
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La metodologia permet utilitzar dades de curs temporal promediats de la poblacié i
mesures de distribucié en estat estacionari a nivell d'una sola una cél-lula.

L' ajust de circuits basat en models per aconseguir el rendiment desitjat dels circuits
també s’ aborda mitjancant la optimitzacié multiobjectiu. Per al circuit de control
de realimentacié de QS/Fb, es fa un analisi estocastic complet. Aci, la tesi aborda
com tenir en compte correctament tant el soroll intrinsec com |" extrinsec, les dues
principals fonts de soroll en els circuits genetics sintétics. S’ analitza I'equilibri entre
dues fonts de soroll i el paper que exerceixen en el bucle de realimentacié intracel-lular,
les i en la realimentacié extracel-lular de tota la poblacié. La principal conclusié es
que la complexa interaccié entre els dos canals de realimentacié fa necessari I' is
de la optimitzacié multiobjectiu per al adequat ajust del circuit. En aquesta tesi,
a més de I'Gs adequat d'eines d'optimitzacié multiobjectiu, la principal preocupacié
és com derivar directives per al ajust in silico de parametres de circuits que puguin
aplicar-se de forma realista en viu en un laboratori estandard. Aixi, com a alternativa
a I'analisi de sensibilitat de parametres classic, la tesi proposa I'is de I' técniques de
I'agrupacié al llarg dels fronts de Pareto, relacionant el compromis de dessempeny
amb les regions en |'espai d'parametres. En resum, la tesi proporciona metodes i
eines practiques Utils per a la modelitzacid, |' estimacié de parametres, I'analisi i I'
ajust practic de circuits genetics sintétics, tant en el domini deterministic com en
I'estocastic, utilitzant optimitzacié multiobjectiu com marc comu.
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Chapter 1

Thesis outline and
contributions

Thesis outline

In the remainder of this Thesis, Chapter 2 describes the state of the field of Synthetic
biology, aiming to develop new and functional synthetic gene circuits. Its design-build-
test cycle brings out some of the concepts further detailed in this work. Chapter 3
introduces two synthetic gene circuits used as case-studies. The well-known Incoh-
erent type 1 feedforward circuit (I11-FFL) that presents Adaptation as an important
biological feature, and the Quorum senging/Feedback circuit (QS/Fb) developed to
reduce noise in protein production that incorporates feedback control to improve the
system robustness. Chapter 4 describes the deterministic and stochastic models for
these circuits using first-principles to capture both the single cell and the cells po-
pulation dynamics. The models are systematically reduced to obtain more tractable
models even for complex systems that do not suffer from over-parametrization as well
as computational cost. Chapter 5 presents a multi-objective optimization framework
for model parameter estimation, including experimental data of different nature for
the same system identification process. Chapter 6 describes the stochastic analysis of
a feedback control synthetic gene circuit. The chapter elucidates the benefits from
the interplay between feedback and cell-to-cell communication in the QS/Fb gene ci-
rcuit. Finally, Chapter 7 tunes the performance of a gene circuit via multi-objective
optimization. This methodology allow us design efficient and optimal synthetic gene
controllers.
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Chapter 2

Foundations

2.1 Synthetic biology

Synthetic biology is a new field that has developed over the last 15 years thanks to the
confluence of a number of factors. Advances in biology, genetics, genome sequencing,
computational and automation technologies have enabled researchers to understand
living systems in more detail.

As a multidisciplinary field, synthetic biology aims to design and engineer biologically
based parts, novel biological devices and systems as well as redesigning existing, natural
biological systems (The Royal Academy of Engineering, [2009)). One of the key features
of synthetic biology is the application of engineering principles to design, modeling,
testing and validation of new biological devices that meet with defined specifications
(see Fig. Thereby, Synthetic biology is a growing up area with tremendous impact
on biotechnology industry, healthcare, chemistry, energy, environment and the general
economy.

2.1.1 Gene expression

As this Thesis unfolds within the context of synthetic biology, some basic concepts
about biological systems that will be used throughout the Thesis are briefly described
in this Chapter. Living systems involve several main components (cells, proteins,
genes) that allow biological microorganisms to grow and replicate. Understanding
interactions among these components has led to understand that the rules governing
how cells grow and replicate operate at various levels, from the individual cells to the
populations of cells. At the molecular scale within an individual cell, the relationships
between DNA, RNA and proteins are key to understand cell biology.
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Figure 2.1. Synthetic biology cycle. Three fundamental pillars designing, building, and testing enable
the development of synthetic biological systems in a more efficient and systematic way.

Gene expression was explained for the first time by Crick (?Crick| [1970) after the
discovery of the structure for deoxyribose nucleic acid (DNA) by Watson and Crick
(Watson et al., |1953). Crick established Gene expression as the so-called Central
Dogma of Molecular Biology. The Central Dogma is a framework for understanding
the transfer of sequence information between information-carrying molecular agents
in living organisms. Transcription and translation are the two main stages of protein
production, also known as gene expression (Alberts et al} [2009). Inside a single cell,
genes store the genetic code (DNA) of a target protein. A DNA sequence is decoded
into an intermediary messenger RNA (mRNA) in a process known as transcription.
Then, the mRNA is translated into a protein in a process known as translation. Par-
ticularly, proteins are long chains of peptide molecules (also known as polypeptides)
which fold in shapes that confer their active and structural properties.

Transcription starts when RNA polymerase (RNAP) binds to a specific DNA region
that encodes a protein (see Fig. RNAP is an abundant molecular complex that
catalyzes the production of an intermediary molecule of mRNA out of the coding re-
gion of a DNA molecule. If RNAP binds DNA and generates mRNA without other
molecular compound intervening, transcription is said to proceed constitutively. Al-
ternatively, transcription may be either helped or hampered by molecules binding to
regulatory regions in DNA. These molecules are called transcription factors (TF). A
TF may increase production of mRNA from DNA (an activator), or may reduce it
(a repressor). Activation and repression by TFs is never completely on-off. It can be
better approximated as a smooth switch-like characteristic function.

Translation starts when ribosomes attach the mRNA sequence to synthesize a protein
(see Figl2.2). Ribosomes are complexes of proteins that recognize a specific region



2.1 Synthetic biology

Transcription 1

Ribosome M mRNA

Translation 1

Amino acids W‘OPROTEIN
%o

Prokariote cell

Figure 2.2. Gene expression process. DNA replication of a gene, then the Polymerase transcribes a
single-strand copy of the DNA, finally the mRNA is translated into the corresponding protein by the
ribosomes.

in the mRNA sequence called ribosomal binding site (RBS). The easiness with which
ribosomes bind/undind the RBS (which in turn depends on the RBS sequence) will
determine the rate of protein production. Once translation finishes producing the
polypeptide chain, this folds onto itself due to electrochemical affinities among its
constituents. This folded polypeptide is the functional protein.

In synthetic biology, the most commonly used model organisms include the procaryotic
bacteria Escherichia coli (E. coli), and the eukaryotic yeast Saccharomyces cerevisiae.
All the results obtained in this work are referred to E. coli bacteria as a host microorga-
nism. Figure[2.3|depicts important gene expression timescales for E. coli. Transcription
is a fast process that takes ~ 1 minute since RNAP binds to DNA. But translation
takes around 5-10 minutes since ribosomes release the protein completely translated
and folded (Milo et al., [2016)). Proteins are also naturally degraded by other proteins
called proteases. Finally, cell division in bacteria ranges from 20 minutes (in a rich
environment) to 1 hour.




Chapter 2. Foundations

TF to promoter

binding/
unbinding | ——|
Time to mRNA Time to ; ion ti
PP E.coli generation time ;
D|ffusf|on time transcribe lifetime translate E Protein
of protein agene a protein lifetime
across cell I
[]IE] I:Ih:l [ A
0.1sec 1sec ~1min 3-5 min ~10 min 20 min 5h Time

Figure 2.3. Relative timescales of biological processes. For E. colibacteria, diffusion time of protein
and binding of small molecule to protein are the fastest reactions (~ 1 msec). By contrast, proteins
lifetime are on the order of hours that means the protein degradation process is slower than the other
ones.

2.1.2 Synthetic gene circuit and parts

Advances in molecular biology and computer technologies have allowed researchers to
manipulate DNA in bacteria, plants or animals. Synthetic biology aims to establish a
rational framework for the DNA re-engineering, based on design and computational
modelling. These principles have been used as the basis to build novel and artificial
biological parts, devices and systems.

A synthetic gene circuit is a system where one or more genes interact between them
and perform a specific function. Gene circuits are normally built from standard devices
or transcriptional units, which in turn are built from standard bioparts. Each biopart
or part is a modular DNA sequence that can be combined in the design of multiple
transcriptional units. As shown in Fig[2.4b assembling a transcriptional unit needs four
basic parts (each part has a glyph according the SBOL language ([Cox et al} [2018]))):

1. Promoter. A small part of DNA that recruits RNAP to transcribe mRNA
from a DNA sequence. Promoters can be split into two types: constitutive or
regulated. A constitutive promoter is always producing mRNA (as mentioned
in section at the same transcription rate. In contrast, a promoter can be
an activator or a repressor. The activator attracts RNAP to begin transcription.
The repressor obstructs RNAP thus inhibiting transcription.

2. Ribosomal binding site (RBS). A sequence found in mRNA where ribosomes
bind and initiate translation. Depending of the RBS's affinity for the ribosomes,
the effective translation rate will be higher or lower. The relative change in
translation rate is known as the RBS strength.

3. Coding sequence (CDS). A long specific DNA sequence that is transcribed
into mRNA and translated into its corresponding protein. That is, the coding
sequence is the DNA sequence that corresponds to the sequence of amino acids
(peptides) which constitute the protein.
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Figure 2.4. A gene circuit in a plasmid. a) Plasmids are DNA sequences containing the designed
gene circuit. Several plasmids are inserted into E. colibacteria to amplify the gene circuit. b) For
a basic gene circuit, transcription of a desired gene is regulated by an activator or a repressor to
either recruit or inhibit the binding of RNAP to the promoter. DNA is transcribed into mRNA,
which contains a ribosome binding site (RBS). Ribosomes recognize the RBS and start translating
the sequence of amino acids into a polypeptide. The resulting polypeptide is a folded protein with a
specific 3D conformation.

4. Terminator. A genetic part that stops transcription by dissociating RNAP from
DNA.

One of the most widely used library of biological parts in synthetic biology is the
Registry of Standard Biological Parts (Biobrick Foundation| [2006)). Here, a designed
part is well characterized using a set of parameters so it can be easily re-used in other
gene circuits. All the registered parts are compatible with the BioBrick™ (Knight,
2007 and the Gibson (Gibson et al., [2009)) assembly methods. These two methods
were used in this Thesis to create new longer parts and more complex transcriptional

units, so they are described in annexes[A.T] and

Figures depicts separate circular DNA structures called plasmids (Zucca et al.)
2013)) inside a prokaryote cell (E. coli). Plasmids are akin to a piece of software loaded
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onto a computer that the computer runs to achieve the function. Hence plasmids are
used to introduce foreign DNA in prokaryotes. Natural plasmids confer antibiotic
resistance to bacteria. So, they arose as a protection mechanism. They replicate as
the cell replicates, and a cell may carry many copies of the same plasmid (also known
as copy plasmid number). Introducing foreign DNA in a plasmid is very simple. This
way, one can achieve a cell that expresses the gene coded by the foreign DNA. The
new cell is so-called a recombinant one. Assembling different foreign DNA parts of
different origins (such us promoters, RBS, CDS or terminators) in a single plasmid is
also possible. To do this, two sets of enzymes are used very much in the cut & paste
spirit: the restriction enzymes to cut, and the ligase to paste.

The first step in the construction of a recombinant plasmid is the restriction digest.
It is a process in which DNA is cut at specific sites by restriction enzymes, dictated
by the surrounding DNA sequence (the protocol is described in annex . There are
hundreds of different restriction enzymes, allowing scientists to target a wide variety
of recognition sequences. One or more digested parts are inserted into a compatibly
digested vector backbone. This is another plasmid DNA sequence carrying both a
bacterial origin of replication (particular sequence at which gene expression is initiated),
and an antibiotic resistance gene for use as a selectable marker in bacteria. The final
step is connecting the DNA inserts into the backbone using the reaction called ligation
(refer to annex that is performed by the ligase enzyme. Now, the insert DNA
is physically attached to the backbone and the complete plasmid can be introduced
(transformed) into bacterial cells for propagation.

Transformation of bacteria with plasmids is important not only because is the process
by which foreign DNA is introduced into a cell (Figl2.4p), but also because bacteria are
used as the means for both storing and replicating plasmids. Specific treatments have
been discovered that increase the transformation efficiency and make bacteria more
susceptible to either chemical or electrical based transformation, generating what are
commonly referred to as “competent cells" (see annex [A.3).

2.1.3 Cell density and Fluorescence

In this Thesis two main variables will be considered as measured ones: cell density
and fluorescence. Cell density is a measure of the number of cell in a culture sample.
It is measured as absorbance, also called optical density (OD) that is adimensional.
Usually, the OD of a culture sample is quantified at a wave length of 600 nm. Hence,
ODgoo=1 contains 8 x 10! cells per one litre. Fluorescent proteins are used as
reporters informing about the expression level of a gene. The fluorescent protein
content (sometimes linked to another target protein) in a bacterial culture is measured
as fluorescence intensity (F) in relative light units (RLU).

In practice, these raw data are affected by the background signal from the culture
medium absorbance ODy, and the auto-fluorescence Fy, of the cells. These va-
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lues should be eliminated by subtracting them from the corresponding data, obtai-
ning the corrected absorbance (OD = OD,,y — ODy},), and corrected fluorescence
(F = Fraw — Fb). In most cases, the ratio F/OD is taken as a measure of the
fluorescent protein content per cell.

2.1.4 Measurements types

From the point of view of the way measurements are taken, there are three main ways
measurements can be carried out in vivo (see Figf2.5)): (1) bulk data, (2) single-cell
population snapshot data, and (3) time-series single-cell data.

1. Bulk data consist of measurements of a variable of interest for a culture of cells
growing in a bioreactor. The measured variable is proportional to its sum for
all cells in the population (Fig[2.5h). For instance, a plate reader machine can
incubate cell cultures at a specific temperature and collect cell density and fluo-
rescence information at regular time intervals. These two data will be described
below.

2. Population snapshot data consist of measuring a variable for a large number
of individual cells in a population (see Fig). yet different from above, these
same cells cannot be followed over time. Therefore at the next time point, a
different set of cells are measured. Population snapshot measurements include
techniques such as flow cytometry. Flow cytometers can process a cell culture
and read both cell size and fluorescence for tens of thousands of cells within a
few seconds.

3. Time-series measurements provide the track of some single cells variable of
interest over time, using techniques like time-lapse fluorescence microscopy.

It is important to point out that the type of measurement collected can and should
impact the choice of model for the system being studied (Hsiao et all 2018). As we
will see in Chapter [f if the data collected are all bulk data, using a stochastic model
that accounts for noisy gene expression in single cells could be unnecessarily complex,
and a deterministic model based on ordinary differential equations might be a better
choice.

2.2 Feedback control in synthetic biology

Control theory has arisen from the conceptualization and generalization of design
strategies aimed at improving the stability, robustness and performance of physical
systems, including the microscopic ones. Some of these techniques have been succes-
sfully implemented for the design of controllers for synthetic gene networks at either

11
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Figure 2.5. a) Bulk data are proportional the sum of the cells in the population. Cell density and
total fluorescence of the culture can be quantified. b) Population snapshot data reveal measurements
for individual cells. They usually include tools like flow cytometry (fluorescence and cell size), and
microscopy.

single-cell or population level. However, the nature of biomolecular interactions has
also supposed unavoidable challenges to the implementation of any feedback loop.

For example (Olson and Tabor]| [2014; [Olson et al., [2017)) have achieved highly predi-
ctable gene expression programming by combining experimental characterization with
simplified models of optogenetic systems in bacteria. Though the methods are open-
loop, they enable a basic dynamic characterization approach of synthetic gene circuits
and provide valuable information that can be used in the subsequent design of more
complex or closed-loop gene circuits.

Inevitably, gene circuits are complex large-scale systems with intricate patterns, there
are limited tools for measuring biomolecular interactions in real time to design an
appropriated input/structure that follows a desired reference (Milias-Argeitis et al.)
2011)), and system identification entails great difficulty of isolating gene circuits from
their cellular environment. Therefore, solving problems in synthetic biology using con-
trol theory requires much more than simply transplanting existing theories developed
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for engineering systems directly to a biomolecular setting. Engineers have to tackle
these issues to design more stable, predictable and robust synthetic gene circuits.

2.2.1 Control strategies

There are two different ways to design controllers for synthetic gene networks. The first
one is to design a gene circuit as a controller in living single cells, which in turn form
multicellular systems (Hsiao et al| [2018} [Menolascina et al., 2011). This controller
must be implemented by the biological parts and their subsequent chemical species
and reactions, hence it is highly constrained. Also, species and reactions are subject to
stochastic fluctuations, so there are fundamental limits on the controller robustness in
the process. The second way implements the controller at the population level using a
computer in the loop (Menolascina et al [2014)). This can reduce the issues from the
first strategy, but it does not allow for independent actuation on distinct single cells.

In this Thesis, the fist strategy —a gene circuit as a controller in individual cells— has
been chosen to design new synthetic gene circuits that behave following the desired
reference.
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Figure 2.6. Implementation of feedback control in living cells. a) From top to bottom: synthetic
feedback modules associated to the most common non-regulated and regulated actions i) constant
protein production, ii) negative feedback and positive feedback protein expression. b) Some feedback
controllers built to demonstrate the feasibility of feedback in engineered organisms. Figure inspired
in (Hsiao et al.,|2018).
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2.2.2 Control design in single cells

There are several issues to deal with when one is interested in regulating the synthetic
gene circuits behavior. Devising synthetic feedback control circuits to address the
problems caused by uncertainty and burden-induced undesired dynamics and their
scalability to industrial conditions in a systematic, conceptually unified, and modular
way will require a set of enabling tools:

1. Modular model building. Models are key for both model-based design of (feed-
back control) gene circuits, and for computational analysis and design. Modular
model building i.e. the systematic way of combining module components from
a library of standard parts must address retroactivity and inter- and intra-circuit
interactions. Retroactivity among modules can be addressed by considering fast
binding/unbinding reactions to be at quasi-steady state (QSS), leading to ca-
ncellation of the interconnection terms in the dynamic balances. This approach
will be fully described and used in section[2.3.T]and Chapter[d This is equivalent
to considering that fast reactions interconnecting modules have low output and
high input impedances. Yet, this is not the case for slow reactions (dynamics). In
such a case, a modular approximated matrix representation taking into account
retroactivity has been devised in (Gyorgy and Del Vecchio, [2014)) by assuming
QSS and using sensitivity analysis on the resulting fast manifolds. This framew-
ork can be easily integrated within model structures accounting for genetic load
like those in (Qian et al|, [2017)). Further integration of basic substrate uptake
metabolism and cell growth using models like (WeiBe et al., |2015; |Beguerisse-
Diaz et al., [2016) would be a key step towards comprehensive models capturing
all relevant phenomena to deal with burden-induced dynamics and their inte-
raction with the cell environment. Uncertainty could then be addressed using
model consensus approaches (Villaverde et al., 2015)). Alternatively, extension
of these (generally deterministic) ODE models to the stochastic realm would be
quite straightforward using Langevin-based approaches like the ones described in
Chapter [4 and [6] Modular model building can be applied to the basic modules
of gene circuits illustrated in Fig[2.6p. The models must reflect in a systematic
way the positive and/or negative control actions that these basic modules can
carry out.

2. Model-based and automated design of feedback control gene circuits.
Feedback control mechanisms play a fundamental role in synthetic biology. Su-
ccessful design and implementation of stress and genetic burden feedback control
genetic biocircuits requires on the one hand availability of biological devices for
building feedback mechanisms (see Fig[2.6p), and appropriate design methodo-
logies on the other. The increasing number of biological devices available makes
it possible to implement control structures within the cell (Del Vecchio et al.
2016; |Folliard et al., [2017)). Today there are transcriptional activators/repressors
that act as gains with saturation; switches (Wittmann and Suess| 2012) that act
as sensors that recognize metabolites or DNA sequences and activate/deactivate
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genes; sensors (Dahl et al., [2013)) that respond to different types of intracellular
or extracellular metabolites, to metabolic states, or to external light signals (OI-
son et al., [2014). Feedback control methodologies for constrained systems and
for systems with shared resources (e.g. information and electrical networks) al-
ready exist. In the first case, reference conditioning methods have been adapted
to biological systems in (Picé et al., [2009)) though not at the intracellular gene-
tic scale. In the second one, initial attempts with basic control strategies have
been tested in (Shopera et al) [2017). However, further work is clearly requi-
red. Considering the problem as the one of agents coordination (Vignoni et al.,
2013a)) under optimality conditions (Giordano et al., [2016) seem a promising
approach. On the other hand, modular and systematic design of biocircuits, i.e.
the systematic automated way of finding combinations of components from a
library of standard parts allowing to optimally perform a pre-defined function can
be formulated using an optimization framework (Otero-Muras and Bangal, {2016,
2017). These approaches combine the efficiency of global mixed-integer nonli-
near programming solvers with multi-objective optimization techniques (Sendin
et al.| [2010]) using coarse-grain dynamic models of the biocircuit modules. They
also can provide guidelines to tune the gains of few circuits parts (see section
to achieve a desired control metrics. Their combination with model-based
approaches would certainly speed-up the design and analysis process, as we will
see in Chapters [f] and

Many important challenges remain to be addressed for synthetic biology to mature as
an engineering discipline that take advantage of control theory (Church et al., [2014;
Way et al. [2014b)): (1) availability and characterization of biological parts, devices
and systems, (2) systematic and modular design methods of synthetic circuits, (3)
dealing with host interaction (metabolic burden and variability), and (4) scalability
to industrial bioreactors. In the Thesis, we will focus on the first two challenges to
develop systematic and modular design methods of synthetic gene circuits.

2.3 Deterministic modeling. Law of mass action

A model is a representation of a system in some form useful for a given purpose. Mo-
deling allows the generation of new testable hypothesis and novel ways of intervention,
as well as mechanistic explanations of experimental results. Models are key for both
model-based design of biocircuits (feedback control), and for computational analysis
and design.

Kinetic modeling of small biological circuits has a long fruitful tradition (Villaverde
and Banga, [2014). Kinetic (i.e. dynamic) models are particularly important since
they can explain and predict the functional behavior that emerges from the time-
varying concentrations in cellular components (Villaverde and Banga, 2014;|Chen et al.|

2010a).

15
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All reactions taking place inside the cell are stochastic by nature. That is, modeling
the set of reactions should be formulated in terms of the probabilities of each of the
reactions to occur. The resulting models are stochastic ones, and they will be consi-
dered in section As a simpler alternative, deterministic models do not take into
account the probabilistic nature of reactions. Instead, they assume the amount of spe-
cies transformed by the reactions depend solely on the current amount of species, the
rates at which the reactions proceed, and the stoichiometry of them. Furthermore, it is
normally assumed that the amount of molecules are large enough, so one may consider
that the amount of molecules is a continuous magnitude that varies continuously in
time.

Consider for instance a simple model of gene transcription and mRNA degradation

(see sections and [2.1.2)) given by the set of chemical reactions

DNA —5 DNA + mRNA 2.1)

mRNA —2 ¢

where DNA and mRNA are both reactants and products, k and d denote the reaction
rate constants.

In the general case, given a set of chemical species X;, i = [1,...,I] that interact
through J reactions, each one may be expressed as

I 1
Zsijxi k—7> Zs;j)(i7 7=1....J (22)
i=1 i=1

where s;; and s;; are the stoichiometric coefficients denoting numbers of reactant and
product molecules, respectively. Thus, reaction (2.1)) can be rewritten as

k
X, — X+ X,y (23)

X, 450
where X is the concentration of the DNA, and X5 is the concentration of the mRNA.

The dynamics of a reaction network can be derived considering the dynamic balance
for each chemical species and using (2.2). Hence, one can express

t=S-v (2.4)

where z e IR! is the vector of chemical species, S = sgj — Sij, SeIR™*7 is the stoichi-

ometric matrix, and velR’ is the vector of reaction rates. Notice these balances can
be set either in terms of mass (i.e. number of molecules as we will use later) or in
terms of concentration (mass divided cell volume).
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Thereby, for the example (2.3, the dynamic balance applying equation (2.4]) will be-
come system ([2.5)). Note that each row of S denotes the i-th species of the system, and

each column shows the j-th reaction. We use s;; = [ (1) (1) ] and sj;j = [ 1 8 }

H”H—OlHZ” (2.5)

The reaction rates can be expressed using the Law of mass action kinetics (MAK)
(Chellaboina et al., [2009; Steinfeld et al., |1989; [Horn and Jackson| 1972). The MAK
states that for an elementary reaction (reaction where all of the stoichiometric coeffi-
cients of the reactants are one), the reaction rate is proportional to the product of the
concentrations of the reactants raised to a given power defined by the stoichiometry
of the reaction. The proportionality coefficient is the specific reaction rate (reaction
rate constant). Thus, for system , the dynamic balance can be mathematically
described by the ordinary differential equations or ODEs that commonly referred
to as kinetic equations ([Alon} [2007; [Heinrich and Schuster, [1996)

1 =0, x1(0) =m0, t >0,

To = kxl(t) - dxg(t), 1'2(0) = T20 (26)

where the coefficients of the right-side of are the stoichiometric coefficients from
the matrix S. One single simulation of the ODE system is shown in Fig[2.7] The
mRNA is transcribed after around 16 minutes (typical transcription time in E. coli),
and the DNA is an invariant state.

9 MRNA 7

Species amounts

. . . . .
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Time (minutes)

Figure 2.7. Deterministic simulation of constitutive gene transcription. Parameters used: the gene

copy number C,=1 molecule is also the initial condition x1(0) , transcription rate k=2.5 min—1,

degradation rate d=0.25 min~!, and x2(0) = 0.

For the MAK, if one of the required products is lacking, the reaction will not take place.
The reaction proceeds faster as the concentration of the required substrates increase.
The mass-action kinetics accounts for the probability of encounter (collision) among
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the reactants, doing it proportionally to the product of the reactant concentrations.
Thus, the rationale behind mass-action kinetics is that the rate at which a reaction
proceeds is proportional to the probability that the required reactants encounter. This
probability, in turn, is proportional to the product of their concentrations. This is an
idea that we will find again in section [4.4] when we will deal with stochastic models.

The MAK has numerous analytical properties that are of inherent interest from a
dynamical systems perspective. For example, mass-action kinetics give rise to systems
of ODEs having polynomial nonlinearities. Polynomial systems are notorious for their
intricate analytical properties even in low-dimensional cases (Chellaboina et al., [2009;
Jarrah et al 2007)). For example, consider the reversible reaction network of four
species

X, + X, 5 X5 +2X,
Jo X, (2.7)
X, 450

the MAK for system (2.7 implies that:

i = —kya ()2 (t) + k_yx3()23(t), x1(0) = z19, t >0,
5.82 = 7k11’1(t)12(t) + k 1I3(t)l’i(t), IQ(O) = T20 (2 8)
iz = kiwy ()wa(t) — kqws(t)ad(t) + ks,  23(0) = w30 '

.’t4 = 2k1x1( )l’g(t) - 2k,113(t)fl' (t) - de4(t), 1'4(0) = T40

where the second reaction represents mass addition of species X3 at the ks production
rate, and the last reaction represents mass removal of X, at the degradation rate
d. The ODE system is a second-order polynomial system with nonnegative
solutions, because of physical considerations like nonnegative initial conditions. The
MAK and the resulting kinetic equations are widely used formalism to perform a
relatively straightforward analysis of a biological system’'s behavior. The resulting
dynamic models have interesting properties that have been studied using the Chemical
Network Theory (Angeli et al., 2007} |Craciun and Feinberg, 2005; [Feinberg, [1987)).

However, the MAK fails to provide a valid description in cases where the effects
of stochastic fluctuations become significant. This is typically the case when some
reactions between the species involved occur at low number of molecules. Thereby
stochastic modeling is needed as we will see in section This is a common feature
of biological systems.
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2.3.1 Model reduction

Dynamic models obtained from the reaction networks by applying mass action kinetics
are usually large order ones. Model reduction techniques can be put into practice, yi-
elding models with less state variables, i.e. with less order. There are some advantages
in reducing these dynamic models:

e Large order models have many parameters (i.e. specific reaction rates). The
values of these parameters must be obtained using experimental data related
to the corresponding reactions. This process is called parameters estimation.
It turns out that the experimental difficulties and computational cost for the
parameters estimation process increases a lot with the number of parameters.
For instance, estimating binding rates is not an easy task.

e In practice, there are reactions in the network that proceed at much faster rates
than others. For instance, the RNA polymerase binding/unbinding rates to the
gene promoter are much faster than the translation or elongation rates. This
means that there are very different time scales associated to each reaction. The
large differences in the time scales among the different species in the reaction
network (typically many orders of magnitude) originate huge difficulties for si-
mulating the temporal evolution of the network and for understanding the basic
principles of its operation.

In case we want a model that allow for some degree of mechanistic description of the
system, the reduction process should yield a more amenable model for computational
analysis, but avoiding excessive reduction that would lead to lack of biological releva-
nce. In particular, the species in the reduced model must not be lumped ones, and
the resulting lumped parameters in this reduced model must be easy to associate to
experimental tuning knobs.

There are several methods that can be used for model reduction. The most widely
used in the field of systems and synthetic biology is the so-called Quasi Steady-State
Approximation (QSSA) (Segel and Slemrod, [1989; |[Kokotovic et al., [1986; Khalil,
1996)), which is also know as Bodenstein-Semenov kinetics. Recently, the related
Layered Decomposition was proposed in (Prescott and Papachristodouloul 2014)).

On the one hand, model reduction can be carried out by means of the QSSA. In
essence, QSSA is a singular perturbation method that considers the time-scale sepa-
ration among the different dynamics (Zagaris et al.l 2004; Mélykuti et al., [2014). In
particular, one can assume that some binding reactions occur very fast in comparison
with those corresponding to transcription, translation and degradation. This results in
considering that the time derivatives of fast state variables are zero. In other words,
they are at quasi steady-state.

On the other hand, layered decomposition suggests that in many instances the para-
meters are such that it is the reaction rates which separate in time scale and not the
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state space variables. In standard singular perturbation analysis state space variables,
chemical species or reactants in our case, are grouped into fast and slow subsets. But
in biochemical networks, often, a reactant takes part in both fast and slow reactions
so there is no way of classifying it this way. The problem is sometimes solved using
state space transformations, introducing new variables whose behaviour is difficult to
interpret in physical terms. For layered decomposition, the state space variables are
expressed as the sum of a fast variables set and a slow one,

r=a5+ s (2.9)
in such a way the original state equations can be rearranged as

&= %vaf(x) + S%v%(x) (2.10)

where the v/, v® represent the corresponding fast and slow reaction rates, and the
S/,5% are stoichiometric matrices. Using (2.9) to rewrite ([2.10) in a form more
amenable for singular perturbation analysis the following system is obtained

erp = STol (2, 24) (2.11)

Zs = S (zy, )

Either using QSSA or Layered Decomposition, additional algebraic relationships among
variables can be obtained through system invariants. In the case of reaction networks,
it can be observed that some reactions are a linear combination of other ones. Then,
the linear combination of the concentrations of the species involved will keep constant
in time. These linear combinations, so called moieties, can be understood as a kind
of quasi-species that keep invariant, i.e. keep constant concentration.

In this Thesis QSSA and systems invariants will be used most often. next, to illustrate
them, these concepts will be applied to reduce the following set of reactions taking
place during transcription

v

RNAP + DNA <= RNAP - DNA

RNAP - DNA -2 RNAP + DNA + mRNA (2.12)
mRNA 45 ()

where DNA stands for the gene, and RNAP - DNA represents the compound resulting
from binding of the RNA polymerase (RNAP) to the gene promoter. Notice the
promoter can be taken to represent the whole gene. Indeed, from the reaction point of
view, the important fact is that of binding of RNAP to the gene promoter. vy,v_1, vg,
and v, denote the reaction rates. The binding of RNAP to the gene promoter has been
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assumed as a reversible reaction, while mRNA degradation is an irreversible reaction.
We assume that after the transcription reaction finishes when RNAP encounters the
terminator, so RNAP releases from the DNA. Thus, the gene promoter becomes free
to bind to a new RNAP.

Setting the dynamic mass balances for the four chemical species of (2.12]) implies the
use of the MAK through the equation ([2.4)). This will give us the following model

1 -1 1 1 0 U1 —kizi1zo + k123 + kmas
T2 _ —1 1 1 0 V2 L gy = —kizizo + k123 + kmas
T3 1 -1 -1 0 v3 kizire —k_123 — ks
T4 0 0 1 1 V4 kmxs — dmxs

(2.13)
where 1 = [DNA], 2 = [RNAP], 25 = [RNAP - DNA], and 24 = [mRNA], S is the
stoichiometry matrix, and v contents the proportionality constants ky, k_1, ky,, diy
as the specific reaction rates. Notice the model takes the form of a system of four first
order differential equations, each one corresponding to the balance at each species.
Thus, the model is a fourth-order one.

Identifying moieties is a straight forward process. In this simple case, conservation laws
can be inferred from simple inspection. Notice that &y + @3 = 0, and @3 + 23 = 0.
This implies that the sum of concentrations in both cases keep constant in time

1 +x3 =Cy

(2.14)
x2 + 3 = CrNAP

where the constants C,,, and Crnap correspond to the initial concentrations of z1+x3,
and x5 + x3 respectively.

In larger reaction networks where getting invariants by simple inspection may probe
difficult, one can calculate the kernel of the stoichiometric transpose matrix S In our
case, this kernel is spanned by the vectors [1,0,1,0]7, and [0,0,1,1]7. This implies
the conservation laws above.

The first invariant in simply means that the number of gene copies keep constant
in time, being equal to the sum of the free and bound promoter. Therefore, the
constant C, equals the gene copy number. Recall that most often the gene will be
introduced by means of plasmids, as was described in section @] In the same cell,
multiple copies can be introduced of a plasmid carrying the gene to be transcribed.
Thus integer values of gene copy number greater than one are possible. The plasmid
copy number is an important tuning knob for genetic circuits. In case the transcribed
gene is in the cell chromosome, there is only one molecule of DNA in the case of
prokaryoted!]

Lt is said that they are are haploid cells, i.e. they only have one copy of each chromosomal gene.
Diploid cells, e.g. yeast cells, have two copies of each chromosomal gene.
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The second invariant states the conservation of the RNAP. The polymerase is either
free (x2) or bound to the DNA under the form of z3. This invariant may be misleading,
and should be interpreted with care. The second differential equation of model
is not true. It would be if the only gene using RNAP is the one under study. But
in the cell, other genes might be using RNAP in parallel transcriptions. Therefore,
the dynamic balance for the RNAP should be written taking into account all reactions
in the cell using it. This is unfeasible. A better approach to cope with this problem
is to consider that the cell contains free RNA polymerase in excess enough to serve
all the active genes transcribing at a given moment. In this case, one could consider
that the free RNA polymerase concentration in the cell will not appreciably change in
time. That is @5 =~ 0. But this means that the free RNA polymerase concentration
will approximately keep constant with time x5 ~ Crnaps.

In practice, the free RNAP concentration may appreciably change with time if we
consider long time intervals in which the cell goes through different situations. But if
this appreciable change over long periods is very slow as compared to the time-scales
at which the other species change. Therefore, we may consider that x5 is kind of a
slowly time-varying parameter. In the rest of the Thesis we will use this approach in
all models.

In summary, by looking at reaction invariants, we have the algebraic constraints

1 +x3=C,
2.15
zo2 = CrNaP (2.19)

Now it is time to apply the QSSA approach to get rid of species whose dynamics are
very fast as compared with the remaining ones. The underlying idea behind QSSA
is that very fast reactions will quickly reach steady-state as compared with reactions
proceeding slower. Therefore, one could neglect the dynamics of the fast reactions,
and directly assume they are at steady-state. This will convert the corresponding
differential equation into an algebraic one.

In our case, as we already mentioned above, one can safely assume that the RNAP
binding/unbinding reactions to the gene promoter proceed much faster than elongation
and mRNA degradation. This is reflected in the values of the reaction rates. How much
difference there is between the RNAP binding/unbinding rates and e.g. the elongation
rate will depend on the gene promoter affinity for RNAP, i.e. on the promoter strength.
Recalling the model (2.13)), we can define the so called perturbation parameter

€= — (2.16)

Pre-multiplying by € both sides of the first equation of the model
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k_ km
Gi'l = —X1%2 + %1‘3 (217)
1

If assuming that k; is large enough, € will be a very small number. In the limit, e will
tend to zero as ki increases. The term % will not vanish if its numerator and
denominator have the same or close orders of magnitude. That is, if RNAP binding
and unbinding to the gene promoter have rates that are not different by several orders
of magnitude. Under this condition, equation can be approximated as

k1 +kny
0=—z129 + %xg (2.18)
1

This is an algebraic equation that can be used, along with (2.15]), to reduce the model

(2.13). To this end, from (2.18]) and (2.15]) we can obtain

Cn
T 1 kit
Crnar ki

(2.19)

Equation gives the concentration of the complex formed by RNA polymerase
bound to the gene promoter, x5 = [RNAP - DNA]. Notice the maximum possible
concentration will equal the gene copy number concentration C,. That is, all gene
copies in the cell have their promoters occupied by RNA polymerase. This concentra-
tion can only be achieved in the limit as the available free RNA polymerase in the cell
tends to infinity. See also that the ratio % is the one between the release rate
of free RNAP from the promoter, and its capture rate. Therefore, the more affinity of
RNAP for the gene promoter —the stronger the promoter— the closer x3 will be to C,,.

Now, using equation (2.19)) in (2.13)) we reach the desired reduced model for consti-
tutive gene transcription

Cn
m 1 k_1+4+km
1+ Crnar ki

— Ay (2.20)

T4 =k

where recall z, = [mRNA].

This model can still be further simplified by lumping all parameters associated to
promoter strength and transcription elongation rate under the umbrella of a new pa-
rameter reflecting effective transcription rate

km
kme = 1+ L Kotk

Crnar ki1

(2.21)
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Then we have
T4 = Cpkme — dima (2.22)

Under this assumption, the two first reactions in the transcription reactions network
(2.12)) can be lumped together, resulting in the simplified reactions network

DNA X2, DNA + mRNA
(2.23)

mRNA 4=,

If the gene copy number C,, is larger than one, we can either consider C,, parallel

. Kme . . :
reactions DNA —% DNA + mRNA in the model (2.23)), or consider that the reaction
rate is the product Cpkpye. The model structure given by equation (2.22)) is the most
often used for constitutive gene transcription, i.e. unregulated one.

2.4 Stochastic modeling and simulation

The continuous deterministic approach fails to capture many important details at mo-
lecular level (Samoilov et al., [2005} [Eldar and Elowitz, [2010a]). Noise is pervasive in
the cellular mechanisms underlying gene expression (Raser and O’Sheal, [2005)). It pro-
pagates to downstream genes at the single-cell level, and eventually causes variation
within an isogenic population (Raj and van Oudenaarden| 2008} [Labhsetwar et al.,
2013) that may determine the fate of individual cells and that of a whole population
(Eldar and Elowitz, 2010b)). As a consequence, a variation of protein expression levels
appears in every cell across the population (Novick and Weiner| [1957)). This stocha-
sticity in protein expression levels is often referred to as gene expression noise (Elowitz
et al.; [Chalancon et al/, 2012).

As said before, gene expression noise can not be avoided, and has relevant impact on
cellular functions generating phenotypic variability. This variability can be it can be
beneficial in some contexts and harmful in others. These situations include e.g. the
stress response, metabolism, development, the cell cycle, circadian rhythms, and aging
(Raj and van Oudenaarden| [2008; Acar et al., [2008).
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2.4.1 Sources of gene expression noise

The sources of gene expression noise can be classified according its origin as /) intrinsic
noise, and ii) extrinsic noise (Swain et al., 2002; Wilkinson| {2006} |Gillespie, [1977).
Intrinsic noise appears from the inherently randomness of chemical reactions at a
single-cell level. It arises from the discrete nature of the molecular events of gene
expression (see Figl2.8p). Extrinsic noise becomes visible when other cellular processes
interact with the system under study across a cell population, or when fluctuations
come from extracellular environment (see Fig). It is important to realize extrinsic
noise can be theoretically isolated from the system. But intrinsic noise is the very
essence (discrete nature) of the underlying molecular events and cannot be separated
(even hypothetically) from the system. Thereby, both of them should be taken into
account to perform stochastic modeling of gene circuits (Hilfinger and Paulsson| 2011}
|Wilkinson, 2009; [Cai et al., 2006).

a)
< ™~
g O
S 5, O
b) Cell,
oSS
Cell, | — 9 OO

Figure 2.8. Gene expression noise. a) Intrinsic noise comes form the stochastic nature of biochemical
reactions. It becomes harmful at low number of molecules. b) Extrinsic noise comes from other cellular
processes and the environment. This noise .

As we will see in Chapter [d) intrinsic noise was modeled by using the stochastic Che-
mical Langevin Equation (Higham| [2008]), and extrinsic noise was set by randomizing
values of the model parameters (Joo et al., [2013; [Toni and Tidor, 2013]). Despite mo-

deling extrinsic noise as an additive signal is a commonly used approach (Elowitz et al.;

Swain et al} [2002), Chapter [6] will demonstrate that this assumption can disguise the
magnitude and effects of extrinsic noise in a gene circuit.
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2.4.2 Chemical Master Equation (CME)

The most accurate way to describe the stochasticity of a gene network (being a system
of chemically reacting molecules) is by means of the Chemical Master Equation (CME)
(Wilkinson| [2006; Van Kampen|, [2011]).

We seek a stochastic description of the chemical reaction network under well-mixed
and diluted conditions in a closed compartment of volume 2. Well-mixed means that
the diffusion of particles in the compartment is the fastest time scale of the system.
This implies that the spatial positions of molecules can be ignored and the dynamics of
the system only depends on the total molecule numbers. Diluted means the combined
volume of all the considered molecules is much smaller than the total volume, which
in turn means that the molecules can be considered as point particles (Schnoerr et al.|
2017)).

Using these two conditions, it can be shown that the state of the system at any time
is fully determined by the state vector n(t) = (ny,...,ns), where n; is the amount of
molecules of species, I is the total number of species in the compartment at that time
(Gillespie, [1992)). The spatial locations and diffusion of molecules does not have to
be modelled, and the system corresponds to a continuous-time Markov jump process.
Hence, the probability for the j-th reaction to happen in an infinitesimal time step
0t is given by a; (n)dt , which is the propensity function of the j-th reaction
and proportional to the number of combinations of reactant molecules in n(t). For

example, a bimolecular reaction of the form X; +X, ta, X4 has nyng as the number
of pairs with one n; and one no molecule. The corresponding propensity function
is given by kining /2. The scaling comes from the fact that the probability for two
molecules to collide is proportional to the compartment size 1/Q). The compartment
size () is a scaling parameter that allows us to express the reactions in terms of species
concentrations (Ullah and Wolkenhauer, [2011)). Thus

where x; is the concentration of the species i.

To mathematically describe the dynamics of this system, consider the probability di-
stribution P (n,t) = P (n,t|ng,ty) for the system to be in state n at time ¢ given
that it was in state ng at time ¢y. The probability P (n,t + dt ) after an infinitesimal
time step ¢t is given by P (n,t) plus the probability to transition into state n from a
different state n* minus the probability to leave state n:

J J
P(n,t+6t)=P(n,t)+dt (Zaj (n-8;)P(n-8;,t) _Zaj (n)P(n,t)> (2.25)

j=1 j=1
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where a; (n) 6t is the probability of the j-th reaction occurs in an infinitesimal time
interval 8t , S; is the j-th column of the stoichiometric matrix S. Subtracting P (n, t)
and dividing by 6t and taking the limit 6t — 0 gives the CME

P J
—P (n,t) E [a; (n P(n—Sj,t)—a; (n) P (n,t)] (2.26)
J=1

The CME in is a very large system because n is an unbounded discrete-valued
vector (typically is a coupled infinite-dimensional system of linear ODEs), where one
solution for each possible state gives the probability of the system being in that par-
ticular state n at time ¢.

For example, recall the transcription network (2.1 rewritten below again

DNA -5 DNA + mRNA
(2.27)

mRNA 45 ¢

Now, instead of considering the reaction rates as in the deterministic case, we will
talk about the reaction probability rates. Later we will see the relationship between
deterministic reaction rates and stochastic reaction probability ones. For the time
being, consider the probability per time unit that one molecule of mRNA is transcribed
is k, and the one molecule of mRNA degrades is d. Assume the gene copy number
Cy is 1. If this is not the case, one could simply consider either the product kC,, as
transcription probability rate or, more accurately, C,, parallel reactions like .

Let the probability of having n copies of mMRNA at time ¢ be denoted as p(n,t). Let us
set a balance to obtain the probability of having n copies at time ¢ 4 dt. The rationale
is as follows: the probability sought for equals the probability of having n — 1 copies
of mRNA at ¢, and the transcription reaction took place during the elapsed time dt,
plus the probability of having n 4 1 copies of mRNA at ¢, and the mRNA degradation
reaction took place during the elapsed time dt, plus the probability that there already
were n copies of mRNA at ¢, and no reaction took place during §t. Notice addition
of probabilities is used, because we assume that the first event, or the second, or
the third may occur, and the elapsed time 4t is taken small enough so that all three
possible events are disjoint. If two events are mutually exclusive, then the probability
of either occurring is the sum of the probabilities of each occurring.

The probability that a specific reaction takes place in a given time interval equals the
product of the corresponding probability reaction rate, and the elapsed time. Thus, for
instance, each molecule of mRNA has probability ddét of decaying in the time interval
[t,t + 6t].
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On the other hand, the probability that e.g. the degradation reaction took place in
a time interval dt is proportional to the number of mRNA copies at ¢, the rate of
degradation d, and the elapsed time dt. The product of the first two terms is often
referred to as the propensity of the reaction (Higham)| [2008).

With the elements above, the probability of having n copies of mRNA at time ¢ + §¢
is

p(n,t+dt) = p(n—1,t)két +p(n+1,t)(n+1)ddét + p(n,t) [1 — nddt — kot] (2.28)

Rearranging terms, and taking the limit as §t goes to zero, the CME equation expres-
sing the time evolution of the probability distribution, is reached

dp(n,t)
ot

= dfp(n + 1,00+ 1) — pln,t)n] + k[p(n — 1,6) ~p(n, 1)) (2:29)

Equation ([2.29)) is a linear infinite dimensional one. There is one ODE for each possible
state of the system. That is, the CME has to be solved for all possible values of the
mRNA copy number. Thus, we have

o —k d 0 0 0 p(0,1)
apgt@ k —(r+d) 2d 0 0 p(1,
o2t | = | 0 k —(r+2d) 3d 0 p2,t) | (2:30)

But solving equation is computationally a challenging problem. Despite its
simple structure, solving the CME is an intractable problem from the analytical point
of view, although there are some cases where the CME is possible to solve (Jahnke
and Huisinga, [2007} |Grima et al., 2012). Moreover, there are also numerical schemes
like in (Munsky and Khammash| [2006} [Kazeev et al., 2014)) providing a solution in a
truncated state-space. However, long-term predictions are not always possible, even
for simple bimolecular reactions, which are the most common in biological networks.
Instead of seeking an analytical solution of the CME, it is possible to approximate
simulate its exact sample paths using stochastic simulation.
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2.4.3 Approximation of the CME. Linear Noise Approximation (LNA)

Time Varying Ensemble Data Plot
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Figure 2.9. Constitutive gene transcription. Left: Stochastic simulation with SSA (see section .
3D representation of the time evolution of the mean and variance of mRNA copy number over 100
realizations. Right: A representation of the LNA approach. At each time instant, approximate
the system response as that of the deterministic model, plus a fluctuation term with an associated
gaussian variance-covariance characteristics.

The CME can be written directly from the rate constants and stoichiometries of
all the elementary reactions of a chemical system, but neither analytical nor numerical
solutions are in general available. Fortunately, the CME can often be simplified by
the so-called Linear noise approximation (LNA) (Van Kampen| [2011)) using the Q-
expansion of the CME. The Q-expansion means that the CME is Taylor-expanded
near macroscopic system trajectories or stationary solutions in powers of 1/, where
Q is the system volume (see Fig. This section highlights the key principles to
obtain the mathematical expressions for the LNA. A complete development of it can
be found in annex[A4]

The LNA tries to deal with noise in a deterministic setting, where analytical solutions
are locally valid close to macroscopic trajectories (deterministic reaction rates) plus
an additive noise called fluctuation term (see Fig rigth). This section follows the
arguments from (Ullah and Wolkenhauer, |2011)) to derive the LNA from the CME. An
alternative notation more suited for Taylor expansion uses the step operator E; f(n) =
f(n+8S;) for the j-th reaction in the CME ([2.26)

—P(n,t)=> (E;'—1)a;(n)P(n,t) (2.31)

The LNA can anticipate the way in which the solution of the CME P (n, t) will depend
on the system size ) (see Fig left). Assuming that the continuous approximation
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n(t) of the system fluctuates around a macroscopic trajectory (deterministic reaction
rate) of order  with a fluctuation of order v/Q

n; = Qs + VO, (2.32)

where n; is the molecules number of species i, ¢ is the macroscopic concentration
defined in section[2.4.2] and ¢ is a random variable from the random matrix Z(t), which
models the fluctuations around ¢(t). The probability distribution P (n,t) transforms
into the probability distribution II (£,t) of Z(¢)

P(n,t) =P (Q@ + x/ﬁgi) —TI(¢,¢) (2.33)

Now, it is necessary to define the propensity function a; (n) in terms of the fluctuation
&, the deterministic rate v;(z), and the operator E; for each j-th reaction through

a;(m) =Q[y; (o +9Q712) + 0 (271)]. Replacing a; (n) in the CME

%qu; Qi%ﬁ l”fQ@g@+Q*ﬂQ+0@rwpugo (2.34)

j=1
where O(x) is the first neglected order with respect to x in an expansion.

Equations ([2.34)) and (2.33]) lead to the linear equation (further details in annex [A.4)

om gkn s OMI
o = ZZ;;AM + = ZBsziagiagk (2.35)

where A = Z'j]:l Sij% is the Jacobian matrix, and B = Z'j]:l v;Si;Sk; is the
diffusion matrix. Both of these matrices depend on time thorough the deterministic
rate concentration q’)(t). The terms of order Q~'/2 are proportional to 85 , and ¢

corresponds to % = ZSijuj (¢). The stationary solution of (2.35)) is a multidi-

-1
mensional normal distribution P (¢) = ((271')[/2 \/detE) exp (—¢TE€/2), which

has a covariance matrix Z = (££7), and follows a Lyapunov equation
A=z +=2AT + BB =0. (2.36)

The correlation matrix of the stationary process is (£(t)¢7(s)) = Eexp (A |t — s |).
Thereby, we can determine the symmetric covariance matrix as C = QQ=. The LNA
solutions together with the matrix C often give very accurate descriptions of the size
of molecule number fluctuations and how they are correlated.
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As an example, consider the reaction network ([2.27)) for the transcription of a gene.
Applying the LNA, we can obtain the mean and the variance (i, o2 respectively)

of the species involved in the system. The temporal dynamics of ny = [DNA] and
ny = [MRNA] is described by the ODE model (see section [2.3)

ny =0

2.37
hQ = knl(t) - dng(t), 77,2(0) = N20, t Z 0 ( )

Consider the steady-state n = T solution of the system (2.37), where m; = ny is
a constant number of DNA molecules, and 715 = gnl is the molecules number of

mRNA. The LNA implies solving AZ + ZAT + BB” = 0 with

2
B=[0 kn +dny | E—{ Im "”1"2}

n=n’

The number of molecules of n; is fixed. Hence its variance and covariances between
n1 and ny are null (07211, Onyn2, and o,,n1, respectively). For the variance of mRNA

o2_) we have
( na

kny + dng)?
02:(n1+ ’I’Lg)

n=n

Replacing the steady-states values 721,72 in (2.38]), we obtain the variance for the
2

stationary distribution of mRNA as 02, = %n% Figure illustrates the simulated

solution of the number of molecules evolution using the LNA.

The LNA is very accurate for systems where the fluctuations around the stationary
state do not drive the system to regions far away from the equilibrium point at which
the linearization was carried out (EIf and Ehrenberg, [2003)). For large systems is
difficult to deal with the Jacobian matrix A or the diffusion matrix. Having several
species or having a large population of cells also increase the computational load of the
probability distributions simulations. As an alternative to solve the CME, it is possible
to simulate the exact sample paths of the CME by using stochastic simulation.
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Figure 2.10. (Top) Deterministic output for the mRNA concentration. Units are number of molecules.
(Bottom) Comparison between the variance of §¢ £ \/V£(t) obtained using equations (2.4.3)) and

(2.38]). Units are number of molecules squared per cell. Parameters used: the gene copy number

Cn=1 molecule is also the initial condition 71(0) (not showed), transcription rate k=2.5 min—1,

degradation rate d=0.25 min—1, variable step time in seconds, and z2(0) = 0.

2.4.4 Discrete stochastic simulation. The Gillespie algorithm

Typically, the CME is too high-dimensional to deal with computationally due to the
high dimensionality of the domain of the probability distribution P (n,t), which leads
to an exponential increase of computational and memory cost with the network size.
The stochastic simulation algorithm (SSA) or Gillespie algorithm gets around this issue
by computing single realizations of the state vector rather than an entire probability
distribution (Gillespie, [1977} 2007)).

The Gillespie algorithm allows us to draw exact samples (also called realizations or
runs) of the Markov jump process to obtain a numerical solution from the underlying
stochastic process. It generates time course trajectories of the system state over a given
time window, starting from a given initial system state ng(t). The SSA algorithm is
exact in the sense that each run is an independent realization from the true underlying
process. The properties deduced about the probabilistic nature of the process from
multiple runs can be made arbitrarily accurate by averaging over a sufficient number
of runs to reduce the Monte Carlo error associated with the estimates (Wilkinson),
2006)).

The Gillespie algorithm introduce Py (7|n,t) as the probability that no reaction takes
place in the time interval [¢t,¢ + 7) (Higham, 2008). Considering the time interval
[t + 7,t+ 7+ d7) and assuming that what happens over this interval is independent
of what happens in the first interval [t,t + 7), we have
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J
Py (T+67In,t) = Py (rIn,t) [ 1= a; (n) o7
j=1 (2.39)
Py (7 +7|n,t) — Py (7|n, t)
oT

=-I (T‘Il, t) Asum (Il)
where agym (n) = Z}]:1 a; (n) is the sum of all propensity functions. Solving equation
(2.39) when 67 — 0 and the initial condition is Py (Ojn,t) =1

Py (t]n,t) = e~ tsum ()T (2.40)

The key quantity for the SSA is P[r,j|n,t), which is defined by given n(t) =
n, P(7,jn,t)d7 as the probability that the next reaction i) will be the j-th rea-
ction, and ii) will occur in the time interval [t + 7,¢ + 7 + d7). Using the definitions
of Py and a; (n), we obtained an expression for P (7, j|n,t) during the mentioned

interval. Replacing equation (2.40]) in (2.39) one obtain

P(7,jn,t) 01 = Py (T|n,t) a; (n) o7
a; (n)

(2.41)
P (n) Asum (1’1) €

—Qsum (N)T

P (7, jn,t) =

where equation was conveniently rewritten to obtain: i) the next reaction index
is proportional to a; (n), and ii) the time until next reaction asym, (n)e~%um (M7 js
the density function for a continuous random variable with an exponential distribu-
tion. These two random variables formally describe P (7, j|n,t) as their joint density
function. The essential structure of this discrete event simulation algorithm is outlined
below as in (Wilkinson| 2006)):

as a discrete random variable where the chance of picking the j-th reaction

e Step 1: set the initial number of molecules of each biochemical species in the
reaction network and set the simulation time to zero.

e Step 2: on the basis of the current molecular abundances, calculate the propen-
sity for each possible reaction event.

e Step 3: using the current propensities, simulate the time to the next reaction
event, and update the simulation time accordingly (the larger the reaction pro-
pensities, the shorter the time to the next event).

e Step 4: pick a reaction event at random, with probabilities determined by the
reaction propensities (higher propensities lead to higher probability of selection),
and update the number of molecules accordingly.

e Step 5: record the new simulation time and state.
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Figure 2.11. Left:. A single run of the SSA for constitutive gene transcription. Right: Mean of

mRNA over 100 runs together with mean £ SD (error bars). The parameters used are the same ones
for the LNA. Step time §7 = 0.3 seconds

e Step 6: check the simulation time. If the simulation is not yet finished, return
to step 2.

To give an explicit example, the Gillespie algorithm was implemented to generate
one realization from the stochastic discrete model of the transcription network
. Figure shows the stochastic simulation results for the species DNA and
mRNA in equation (2.42)

P(r,jn,t)o1r = P (r,1ln+ 1,t) kx167 + P (7,2|n — 1,t) d x2dT (2.42)

The SSA is exact, in the sense that the statistics from the CME are reproduced pre-
cisely. But it comes at a high computational cost even for few species. In particular,
if the molecule numbers have large fluctuations or if many reactions happen per unit
time. In the first case a large number of samples have to be simulated to obtain
statistically accurate results, whereas in the second case single simulations become ex-
pensive since the time between reaction events becomes small (Schnoerr et al.| 2017]).
We can try to speed up the SSA by lumping together reactions and only updating the
state vector after many reactions have fired. This is the so-called tau-leaping approxi-
mation that introduces errors that will be small as long as the state vector updates are
relatively small (Higham| 2008). Therefore, pushing the approximation further leads
to a continuous stochastic simulation.

However, we will see in Chapter [3| that having an interconnected population of cells
in a synthetic gene network jeopardizes the possibility of employing SSA for several
reasons. First there are different volumes involved, extracellular and intracellular. The
diffusion of an intracellular species through the membrane depends on the concen-
tration gradient of the extracellular one, which in turn is function of the extracellular
volume. It makes the account for the probability of this diffusion process more compli-
cated. Second, when using SSA, several realizations or trajectories of the system are
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needed in order to obtain an accurate estimation of the moments, making the use of
SSA in a population of interconnected cells a computationally very demanding task.
These kind of systems have been modeled and simulated before as ODE perturbed
with white noise (Koseska et al.,[2009)). However, this representation does not capture
the intrinsic noise phenomena as desired.

2.4.5 Continuous stochastic simulation. Chemical Langevin Equation
(CLE)

The Chemical Langevin Equation (CLE) is a practical way to model gene expression
noise. The CLE is a stochastic differential equation driven by zero-mean Gaussian
noise that describes the system when the molecules of reactants into a cell population
are sufficiently large (Gillespiel 2007} 2000)). From the CLE, one can obtain statisti-
cal parameters to analyze the noise generated during gene expression. Moreover, to
analyze a stochastic system, statistical moments such as the mean of gene expression
(u), variance (02) or standard deviation (o) are used. An alternative measure of gene
expression noise is the noise strength (7 = 02/u?), that shows of the dispersion of
a probability distribution for the number of molecules of certain species (Paulsson),
2004). Thus, the SSA and the CLE methods allow us to obtain certain statistical
parameters for analyzing the fluctuations of a synthetic gene circuit.

For a system in state x at time ¢ suppose a dt > 0 that satisfies the condition
that the number of times each reaction fires in the next infinitesimal time interval
[t,t + 0t) follows a Poisson distributiorﬁ with mean (and variance) a;(x)dt. The term
a;(x)dt > 1 is known as the reaction propensity, and we have

M
X(t+6t) =x+»_ v;P(aj(x)dt, a;(x)dt) (2.43)

j=1

where x = X(t) is the number of molecules, M is the number of reactions, and v; is
the stoichiometry (change in the molecular population) caused by reaction j. Denoting
the normal (Gaussian) random variable with mean p and variance o2 by N (u,0?),
and using the fact that a Poisson random variable with a mean and variance much
larger than one (p, 0 >> 1 respectively) can be approximated as a continuous normal
random variable with that same mean and variance. The equation can be
approximates as

2The Poisson distribution expresses the probability of a given number of events occurring in a
fixed interval of time if these events occur with a known average rate and independently of the time
since the last event.
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X(t+dt) =x(t) + » viN;(aj(x)dt, a;(x)dt)

vy [0+ fas 5, 0.1)

where we used the well-known property of the normal random variable that N (i, 0%) =
u~+0(0,1). Collecting terms from ([2.44)) gives the Chemical Langevin Equation (CLE)

1

.
Il

(2.44)
=x(t) +

-

j=1

X(t+6t) =x+ > vja;(x)t+ Y vjy/a;(x)N;(0,1)Vot (2.45)

where NV;(0,1) is a statistically independent normal random variable. Note that equ-
ation ([2.45]) has sense only if the populations of all reaction substrates are sufficiently
large, which ensures the reaction will be fired during dt.

The simulation results the reaction network ([2.27)) using the CLE equation ([2.45) is
depicted in Fig[2.12]

Since a CLE is a special form of the general SDE, the Euler-Maruyama method
can be used for generating sample paths of the stochastic process driven
by a CLE. The method involves generation of random numbers from the Gaussian
distribution to represent the Wiener processes and then using the update rule
at each time step (Ullah and Wolkenhauer, [2011). As we sill see in Chapter 4} the sto-
chastic dynamics of all reactions involved in a gene circuit was modeled and simulated
by using CLE together with the Euler-Maruyama method.
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Figure 2.12. Left:. A single run of the CLE for constitutive gene transcription. Right: Mean of
mRNA over 100 runs together with mean £ SD (error bars). The parameters used are the same for
the SSA algorithm.
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2.5 Multi-objective optimization

Optimization can be used as a computational tool to search the best solution for a
given problem in a systematic and efficient way. In the context of synthetic biology,
coupling mathematical modeling and optimization with suitable simulation of synthetic
gene circuits contributes to discern some of their principles and behavior under defined
conditions.

This thesis raises Multi-Objective Optimization Design (MOOD) as the proper
framework to deal with common problems arising in rational design and tuning of
synthetic gene circuits. Using a classical systems engineering approach, the thesis
mainly addresses: i) synthetic gene circuit modelling based on first-principles, i) model
parameters estimation from experimental data, and iii)) model-based tuning to achieve
desired circuit performance. The optimization problem will be a multi-objective one
in the general case. Typically, some of the objectives will be in conflict, so a trade-off
among solutions is required. Ad hoc weighting of the different objectives may be used
to transform the problem into a single-objective one (Mattson and Messac, [2005).
Alternatively, thresholds on each of the objectives may be set in order to run multiple
times a single-objective optimization. Instead, we can address the problem as a truly
multi-objective optimization design one.

In MOOD all objectives are important, so all of them are optimized simultaneously.
Thus, the solution rarely is unique, but a set of solutions is called the Pareto Front.
In this sense, all Pareto-optimal solutions differ from each other in a trade-off between
the objectives that each one represents. Then, the design carefully reduces the desired
dynamics into the objectives as an optimization problem in the MOOD framework
(Meza, [2014). As a result, the designer obtains qualitative regions/intervals of pa-
rameters along the Pareto Front giving rise to the predefined behavior of the circuit.
Contrarily to the passive search for solutions of Monte Carlo-based approaches, the
MOOD may actively searches for all the optimal solutions as a first step. The MOOD
framework also naturally provides a classification of the parameters along the Pareto
front, by taking into account their effect on each of the goals. Moreover, this fra-
mework makes easy to analyze the impact of context on the synthetic devices to be
designed. This can be done by just incorporating information about the relationship
between the device and the context. In general, this means we only need to know
where do we connect the device which is being designed and how we are connecting it.
Including this information in the optimization problem, we obtain a qualitative region
of parameters taking into account the effect of the context on the device.

To successfully implement the multi-objective optimization approach, at least three
fundamental steps are required (Miettinen et al.,[2008)), as depicted in the figure 2.13}

1. the multi-objective problem definition (MOP): defining the circuit behavior spe-
cifications in a proper way,
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Figure 2.13. Steps for the multi-objective optimization design (MOOD). Figure inspired in (Meza,
2014).

2. the optimization process: tuning the parameters using multi-objective global
optimization (MOO).

3. and the multi-criteria decision making stage (MCDM): obtaining tuning guide-
lines useful for the wet-lab implementation.

2.5.1 Multi-objective problem definition (MOP)

The main goal of this first stage (see Fig[2.13}1) is to articulate a multi-objective
statement that precisely describes the problem to address and ensures that the obtained
solutions match the needs of the decision-maker (Paula et al.,[2017)). First, the context
must be considered: which is the aim of the analysis?, which are the variables under
study?, and what rules connect them?. These questions answer how many objectives
of the procedure we should define, and which are their corresponding decision variables.
For this purpose, generally, a parametric model is used, relating the variables among
them and describing the system'’s behavior. As we saw in sections[2.3and a model
will set some limitations to the values that the variables can take, and will establish the
outputs that result when those variables take particular values. Taking into account
the model, the objectives and the constraints strongly influence the solutions that can
be found through the process. Thus, this is a fundamental step to ensure the quality
of the results (Mattson and Messad, [2005)).

As said above, in this Thesis the multi-objective optimization problem definition is
applied to two problems: i) model parameters estimation from experimental data, and
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i) model-based tuning to achieve desired circuit performance. In both cases, this stage
will be properly defined and solved in Chapters [5] and [7]

2.5.2 Multi-objective optimization (MOO)

In this second stage (see Fig2), the multi-objective optimization process itself
seeks to approximate the best values of the decision variables 8} that give the best
Pareto front approximation J3 (Miettinen| [1999)). Such search could be done through
a random Monte-Carlo sampling in the decision variables space 6 —the set of parame-
ters determining our biological model—, followed by filtering of the solutions in order
to obtain the decision variables 0% (hereinafter Pareto set) that defines the Pareto
front approximation J3. This could be a good option for problems with few decision
variables. For problems with a large number of decision variables, as synthetic gene ci-
rcuits, it is more efficient to use an appropriate multi-objective optimization algorithm
to approximate this solution.

Convergence and spreading properties of the solutions are considered a must in multi-
objective optimization (see Fig. An additional required characteristic regards to
pertinency of solutions, i.e. getting interesting solutions from the designer point of
view. It might happen that some obtained solutions are not useful, due to the a strong
degradation in some objectives. This is a characteristic to take into account.

In the Thesis, the Pareto front of solutions was obtained via spMODE, a multi-
objective optimization algorithm based on differential evolution (Reynoso-Meza et al.,
2010, 2013b)) implemented in Matlab, available at Matlab Centraﬂ The algorithm
spMODE actively searches for all the solutions in the parameter space along the Pareto
front. Thereby, it:

e improves convergence by using an external file to store high-quality solutions
and include them in the evolutionary strategy itself. The main idea is instead of
using the classical relation for dominance, one can follow concepts such as: i)
a solution dominates the solutions that are less fit for all the objectives, or ii) a
solution dominates the solutions inside a distance that is less than a parameter
€ as a dominance measure (Herrero et al. [2005)).

e improves spreading by using the spherical pruning mechanism based on spherical
relations in the objective space (Reynoso-Meza et al., 2010). This technique
shows good flexibility dealing with diverse geometries in m-dimensional Pareto
fronts, so it achieves a well-spread set of solutions (see Fig[2.14)),

e improves the pertinency of the solutions, i.e. getting interesting solutions from
the designer's point of view, by means of a basic bound mechanism in the
objective space, as described in (Reynoso-Meza et al., [2012).

3http://es.mathworks.com /matlabcentral /fileexchange /39215
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Figure 2.14. Decision variable’s space (left) showing the optimal values (in color black) for the
variables 1 and z3 that corresponds to the Pareto front (right) computed by the spMODE algorithm.

2.5.3 Multi-criteria decision making (MCDM)

The selection of the preferable solution according to designer’s criteria is the final stage
of the MOOD framework (Fig[2.13}3). It takes place in an a-posteriori multi-criteria
analysis of the Pareto front approximation. Using tools that simplify the visualization
and the analysis of the trade-off among competing objectives. Such visualization and
analysis is not a trivial task when the number of objectives is larger than three and/or
the number of decision variables in the Pareto set is large. Several tools are available
for designers, but in any case, characteristics to analyze and visualize the results are
desirable:

e The tool must enable to compare design alternatives (analyze different soluti-
ons).

e It must enable to compare design concepts, that is, analyze different Pareto
front approximations.

e Completeness: all relevant information should be contained in the visualization.

e Persistence: all the relevant information should be retained in the designer’s
mind.

e Simplicity: the visualization should be easily understandable.

The last three characteristics are related to the degree of training and/or familiarity
of the designer with a given tool. The first two depend on the required multi-criteria
analysis.

In this Thesis, the visualization tool known as Level Diagrams (LD) (Blasco et al.,
2008; [Reynoso-Meza et al., 2013a)) was used. It has a freely available implementation
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for designers{ﬂ LD-Tool allows the designer to correlate design objectives with decision
variables. It classifies the calculated optimal parameters 6} with respect to each
objective J,(0) normalized with respect to its minimum and maximum value. A graph
for each objective is displayed as in Fig top. The Y-axis is the p-norm |.J(8)|,
of the objectives vector, and the X-axis corresponds to the objective value or decision
variable depending on the case. A second graph displays ||.J(8)||, with respect to each
decision variable (see Fig bottom). This characteristics make it helpful in order
to propagate the information between the design objectives space and the decision
variables space. Thus, a given solution will have the same value -y in all graphs.
LD-Tool enables the simple comparison of alternative design solutions.

4Tool available at http://www.mathworks.com/matlabcentral/fileexchange /24042
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Chapter 3

Two case studies: incoherent
feedforward and quorum
sensing/feedback gene circuits.

3.1 Introduction

Synthetic biology broadly encompasses the genetic engineering of microorganisms to
implement and test new biological functions. To this end, synthetic gene circuits
are built following engineering principles of mathematical design and modeling, feed-
back control and optimization. This Thesis has considered and contributed to solve
different problems arising in all four aspects. Thus, drawing from a practical problem-
based engineering approach, the Thesis has considered problems arising in two specific
applications, and the corresponding synthetic gene circuits used in both cases:

1. The Incoherent type 1 feedforward circuit (I11-FFL). This is a well-known
gene circuit which presents an interesting behavior for many applications: its
output temporarily responds to a change in its input and then returns to the
value it had prior to the application of the stimulus. This behavior, often referred
to as adaptative, is relevant in many biological processes. This explains why this
circuit motif is so widespread in natural biological networks.

2. The Quorum sensing/Feedback circuit (QS/Fb). This is a gene circuit enti-
rely developed and implemented during this work. Its goal is to reduce noise in
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protein production while maintaining a desired mean value. The circuit combines
two subsystems: i) an intracellular negative feedback loop, and ii) and extracel-
lular feedback loop based on cell-to-cell communication via quorum sensing.

Both the I1-FFL and the QS/Fb circuits will be used as two case studies in this Thesis.
In this chapter, the structure, construction in the laboratory, the biochemical reactions,
and the dynamics of both circuits are described.

3.2 Incoherent type 1 feedforward circuit

Adaptation is an important property of biological systems, linked to homeostasis
(Alon|, 2007)) and to the generation of responses that depend on the fold-change in
the input signal and not on its absolute level (Goentoro et al., [2009). It is defined
as the particular ability of biological circuits to respond to a change in its input and
return to the value it had prior to the stimulus, as depicted in Fig[3.1] Due to its
relevance, synthetic gene circuits showing adaptation have received much attention
for a long time (Alon| [2007; [Ma et al., 2009; Rodrigo and Elena| [2011} |Rahi et al.|
2017)).

Although currently there are no catalogues of functional modules, there is a vast
literature in the systems biology area on network motifs producing a variety of dynamic
behaviors like adaptation. Circuit topologies giving rise to adaptive behavior have been
extensively studied (Alon, [2007)). Feedforward circuits with such adaptive behavior are
an important case. In (Ma et al) [2009) all three-node possible network topologies
that present adaptive dynamical behavior are analyzed using function-topology maps
based on Monte Carlo sampling in the parameters space. Using a simple enzymatic
model, the authors draw design principles of adaptation circuits. They show that there
are only two core solutions that achieve robust adaptation: negative feedback loops
and incoherent feed-forward ones.

In particular, the Incoherent type 1 feedforward loop (I1-FFL) is one of these
feedforward network motifs. Its three-node structure is the second most common fe-
edforward type in E. coli, yeast, as well as higher microorganisms. Figure[3.1]illustrates
the I1-FFL. Feedforward motifs consist of two paths from the input to the output: a
direct path, and an indirect one. The sign of the indirect path is opposite to the one
of the direct one. Thus, the effect of a change in the input affects the output via both
paths, either increasing or decreasing the effect, and at different time instants due to
the different length of both paths. Specifically in the case of the I1-FFL circuit, the
direct path (C block in Fig[3.1) is positive and the indirect path (A and B blocks) is
negative.

Theoretical studies in (Alon, 2007; [Behar et al., [2007) suggest the I11-FFL can act
as pulse generator and even as a sign-sensitive accelerator. Recently (Rahi et al.|
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Figure 3.1. Input-output adaptive behavior. |11-FFL is made of two parallel but antagonistic regula-
tion paths. The direct path activates the Actuator and the subsequent output, but it also activates
the feedforward path that represses the actuator as well as the output.

2017)) has enunciated an orthogonal approach to probe response signatures (i.e. ,
characteristic input-output features) in response to oscillatory stimulation for adapting
systems like the I1-FFL circuit. Moreover, the ability to sense the environment is
a fundamental trait of biological systems. in this context, the I1-FFL circuit has
been presented as one of the sensory systems in cells and organisms, which shares a
recurring property called fold-change detection (Adler and Alon, 2017). The circuit
can be included as sensor in signaling pathways and the bacterial chemotaxis system
that guides motion toward attractants. Therefore, researchers have begun to map the
space of feedforward circuits and the functions they can provide.

Though the I1-FFL circuit structure can achieve adaptive behavior, its parameters
must be tuned in order to actually achieve it. In (Chiang et al., [2014)), the incoherent
feedforward adaptive enzyme network structure derived in (Ma et al. 2009)), is used as
case-study. A method is proposed to make inferences on the contribution of individual
parameters to specific components of the system. Classes of kinetic parameters are
obtained that may correspond to varying strengths of enzymatic reactions that can be
measured and classified experimentally. The authors show that, for a given network
structure, certain types of values, or motifs, also exist for kinetic parameters in order to
achieve specific system dynamics. Clustering in the parameters space to detect kinetic
motifs, i.e. sets of parameters yielding desired circuit dynamics, is used in (Chiang and
Hwang| [2013).
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3.2.1 11-FFL circuit structure

Different implementations of the I1-FFL circuit are possible, including enzyme reaction
networks (Ma et al) [2009; |Chiang et all [2014), gene circuits (Basu et all [2004;
Rodrigo and Elenal [2011)) and in vitro transcriptional networks (Kim et al., [2014).

In this Thesis an implementation based on a circuit with three genes has been used,
as shown in figure The gene gfp represents the direct path of the I1-FFL circuit,
while the genes /luxR and cl are part of the indirect path as it was depicted in Fig[3.1}

Thus, the main biochemical species expressed by these genes are: proteins LuxR, cl,
GFP, and the external inducer AHL,,;. GFP is a fluorescent protein considered as the
output of the circuit. To introduce a step-like input signal to the circuit, the addition of
small inducer molecules N-acyl-L-homoserine lactone (AHL) (Kaplan and Greenberg,
1985; |[Fuqua et al., [2001)) is considered. AHL.y; molecules diffuse from the extracel-
lular culture inside the cell. Most of these inducers undergo an heterodimerization,
i.e. the inducer binds to one of the circuit species thus effectively providing an input
to the circuit. Most of them subsequently dimerize. These phenomena are present in
both the I1-FFL and the QS/Fb circuits, and they will be modeled in Chapter

Particulary, protein LuxR binds to the inducer AHL and forms a monomer (LuxR.AHL),
which in turn dimerizes. The dimer (LuxR.AHL); is the transcription factor activating
expression of both downstream genes c/ and gfp. It directly activates expression of
GFP, and indirectly represses it via activation of the repressor protein cl. In turn, protein
cl becomes a transcription factor of the gfp inhibiting expression of GFP. Thereby,
(LuxR.AHL); acts as an activator of the hybrid promoter Py, /1 and the promoter
Prux, whilst protein cl is the repressor of the promoter Py, /1. As a result, when a
signal causes node luxR to assume its active conformation (dimer (LuxR.AHL)5), GFP
is produced, but after some time cl accumulates, eventually attaining the repression
threshold for the gene gfp.

3.2.2 11-FFL circuit construction

The I1-FFL synthetic gene circuit was implemented in E. coli with two different pla-
smids (see Fig[3.3). The genes luxR and gfp with their corresponding transcriptional
units are in one plasmid, and the gene c/ is in another different one (see further details

in annex [B.1)).

On the one hand, in the plasmid pCB14mut, the gene coding for the protein LuxR
(BBa_C0062) is constitutively expressed under the control of a medium strength
promoter (BBa_J23106) and a strong RBS (BBa_B0034). Also in the same pla-
smid, a hybrid promoter Py /c1 (BBa_K415032) drives the expression of protein GFP
(BBa_K082003) with a strong RBS (BBa_B0034). This two cassettes are placed in
a pBR322 plasmid backbone.
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Figure 3.2. I11-FFL circuit. It shows an important biological property so-called Adaptation. The gene
luxR produces LuxR protein, which in turn binds to the inducer AHL forming the transcription factor
(LuxR.AHL)3. It activates both gfp and cl, so GFP expression begins. Then, cl protein generated by
cl represses GFP expression until eventually it achieves the same level as before activation.

On the other hand, the plasmid pCB11a contains the gene ¢/ (BBa_K327018) con-
trolled by the Py, repressible promoter (BBa_R0062), and a mild ribosome binding
site (RBS part BBa_B0033) in the pACYC184 plasmid backbone.

The ¢l and gfp coding sequences are followed by the terminator BBa_B0015 in both
plasmids. All parts were taken from the Registry of Standard Biological Parts described
in section 2.1.2] and cloned using the 3 Antibiotic Assembly method from Biobrick's

foundation (see annex [A.1)).

Additionally, GFP proteins is tagged for faster degradation than the remaining proteins
LuxR and cl. This was done to effectively captures the peak of I11-FFL dynamics.
Therefore only for these last two proteins the main degradation component is due to
the growth related dilution. Thus, their dynamics can be considered as equivalent.
Finally, both plasmids pCB14mut and pCB11a were co-transformed in competent cells
(Top10, Invitrogen).
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Figure 3.3. Glyph of the I1-FFL gene circuit corresponding to the lab-construction using both plasmids
pCB11tc and pCbl4mut inside the cell. Further details in annexE}

3.2.3 Biochemical reactions

The biochemical reactions considered can be split in two main classes: the gene
expression reactions, and the induction ones.

In the gene expression block, the main processes and assumptions considered for each
of the three proteins LuxR, cl, and GFP are:

e the binding of the RNA polymerase (RNAP) to each promoter,
e binding of the transcription factors to the genes promoters,

e degradation of mRNA and proteins.
In the induction part, the main processes considered are:

e hetero- and homodimerization reactions involving the inducer, like binding be-
tween the protein LuxR and AHL to form the monomer, and dimerization of this
monomer to form the dimer,

e diffusion of the inducer through the cell membrane,

e binding of the dimer (LuxR.AHL)2 to both ¢/ and gfp promoters (P, and
Plux/cr, respectively),

e binding between the activator and/or repressor to the gfp hybrid promoter
(Plux/cl)v and
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Table 3.1. Species of the I1-FFL circuit.

Species Description Unit
1 gR unbound P¢ promoter nM
2 RNAP RNA polymerase nM
3 gR.RNAP RNAP bound luzR nM
4 mR lux R messenger RNA nM
5 R LuxR protein nM
6 A AHL intracellular inducer nM
7 (R.A) LuxR and AHL monomer nM
8 (R.A)2 dimer of (R.A) nM
9 gl unbound Py, promoter nM
10 gl.(R.A)2 dimer-bound Py, promoter nM
11 gG unbound Py, /1 hybrid promoter nM
12 gG.(R.A)2 dimer-bound Py, /1 hybrid promoter nM
13 gGl cl-bound Py /c1 hybrid promoter nM
14 gG.(R.A)2.l cl-dimer-bound Py /o1 hybrid promoter nM
15  gl.(R.A)2.RNAP RNAP-dimer-bound Py,,,. promoter nM
16 ml cl messenger RNA nM
17 1 cl protein nM
18 mG gfp messenger RNA nM
19 G GFP protein nM
20 Ae AHL extracellular inducer nM
21 gl.RNAP RNAP bound ¢l nM
22 gG.(R.A)2.I.RNAP  bound Py /cr hybrid promoter nM
23 gG.(R.A)2.RNAP dimer-RNAP bound Py /.1 hybrid promoter  nM
24 gG.RNAP RNAP bound gfp nM

e degradation of monomer, dimer and inducer.

All the biochemical species involved in the I1-FFL circuit are listed in Table[3.I] Notice
the genes /uxR, cl and gfp are denoted as their corresponding unbound promoters.

The resulting set of biochemical reactions has three

different subsets ([3.113.3) for each

gene or node /uxR, cl and gfp. Species degradation is denoted as ().
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Finally, reactions ([3.13.3) were obtained under the following assumptions:

1. during transcription, the cell contains enough free RNAP to serve all the active
genes transcribing at a given moment. In this way, it is assumed that the free
RNAP concentration in the cell will not appreciably change in time,

2. each basal expression (i.e. transcription even in saturating presence of the re-
pressor) of the promoters P,y and Py,x/c1 is a nonzero minimal expression level,

3. Translation is not a simple process (Alberts et all, 2009). It was modeled as
an irreversible reaction with an average transcription rate accounting for the
fact that binding of ribosomes to the ribosome binding site (RBS) is indeed
reversible, and several ribosomes may translate a single messenger RNA copy
(mRNA) simultaneously,

4. Transcription of genes /uxR, cl, and gfp is irreversible, so that ky,,, km, and
ky,, are the effective transcription rates of luxR, cl, and gfp respectively,

5. gR, gl, and gG are the plasmid copy numbers of genes luxR, cl, and gfp respe-
ctively,
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6. LuxR and AHL binding is a fast and reversible reaction,
7. Dimerization of (LuxR.AHL)s or (R.A)2 is a reversible reaction,

8. Interactions between AHL and AHL., represent the physical passive diffusion
process for cell-to-cell communication via quorum sensing, so that was modeled
as a reversible pseudo-reaction,

9. Ve = Veen/Vext is the ratio between the cellular and the environment volumes
to quantify the AHL/AHL, effect,

10. The monomer (LuxR.AHL) or (R.A) only degrades at each cell cycldl} and

11. Messengers RNA, proteins and transcription factor degradation are irreversible
reactions (denoted as ().

3.3 Quorum sensing/Feedback circuit

In section it was commented that noise is pervasive in the cellular mechanisms
underlying gene expression (Raser and O’Shea, [2005)). It propagates to downstream
genes at the single-cell level, and eventually causes variation within an isogenic popu-
lation (Raj and van Oudenaarden| 2008} |Labhsetwar et al., [2013) that may determine
the fate of individual cells and that of a whole population (Eldar and Elowitz, 2010bj
Labhsetwar et al.| [2013]).

At the gene level, noise can be traced back to intrinsic sources due to stochastic fluctu-
ations in transcription and translation mechanisms, and extrinsic ones corresponding
to gene independent fluctuations in protein expression due to external factors (Eldar
and Elowitz, 2010b} [Chalancon et all, [2012; [Jones et al), [2014). To minimize the
deleterious effects of noise, cells have evolved different strategies at the single-cell
level: from different transcription and translation efficiency so as to reduce translation
burst rates in key genes (Karn et all [2005) to more elaborated strategies, such as
negative feedback regulation to reduce noise by shifting the noise spectrum to a higher
frequency region (Raser and O’'Shea) [2005)). Yet, cells live in communities, forming
a population. At this level, extracellular signaling propagates intracellular stochastic
fluctuations across the population (Tabbaa et all [2013). Thus, cells have adapted
their communication mechanisms in order to improve the signal-to-noise ratio (Weber
and Bucetal 2013). One of such communication mechanisms is quorum sensing.

Quorum sensing (QS), initially discovered in V. fisheri and P. putida, is a cell-to-cell
communication mechanism whereby bacteria exchange chemical signaling molecules,
called autoinducers, whose external concentration depends on the cell population den-

LCell doubling time or cell cycle is the period of time required for a quantity to double in size or

value (see section [2.1.1)
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sity. It is known that synchronization and consensus protect from noise (Tabareau
et al [2010)). Cells detect a threshold concentration of QS autoinducers and alter
gene expression accordingly (Fuqua et al., [2001)), driving the population as a whole
to achieve a desired consensus gene expression level despite the individual noise of
each member of the population. Cells consensus induced by QS is thought to reduce
extrinsic noise by reducing the transmission of fluctuating signals in the low-frequency
domain (Tanouchi et al., 2008), enhances intrinsic stochastic fluctuations (Tabbaa
et al} [2013)), and allows entrainment of a noisy population when faced to environmen-
tal changing signals (Nelson et al., 2013)). Therefore QS seems an effective tool to
control the phenotypic variability in a population of cells (Weber and Buceta 2013)).

Phenotypic variability has important practical relevance in many applications in the
areas of biomedicine, biotechnology and other branches of biological science (Geiler-
Samerotte et al., 2013) as the presence of heterogeneous subpopulations may have
significant impact on the yield and productivity of industrial cultures (Muller et al.|
2010; [Fernandes et al., [2011} |Carlquist et al.l [2012). Thus, improving homogeneity of
protein expression in industrial cultures is a goal of economic relevance for microbial
cell factory processes that has traditionally been attempted either by optimizing envi-
ronmental conditions in the culture or by careful selection of the strain. Open loop
strategies based on sensitivity analysis have been used to provide guides as to how
properly tune transcriptional and translational parameters so that the noise levels can
be controlled while the mean values can be simultaneously adjusted to desired values
(Kim and Sauro| [2012)). While sensitivity analysis gives very valuable insights, open
loop control is not robust against system uncertainty and/or variations. There is an
ever-growing appreciation that biological complexity requires new bioprocess design
principles.

Synthetic biology, sometimes defined as the engineering of biology, has the potential
to engineer genetic circuits to perform new functions for useful purposes in a syste-
matic, predictable, robust, and efficient way (Way et al., 2014a)). In the last years,
several synthetic circuits have been proposed with the ultimate goal of dealing with
gene expression noise (Zechner et al., [2016} [Zhang et al.,[2016]). Though circuits using
Negative feedback (Fb) have been proved to decrease gene expression noise (Dubla-
nche et al., [2006)), single-cell intracellular feedback loops do not take into account that
in practice one is interested in controlling gene expression mean value and noise across
a population of cells. In other words, having a feedback loop inside one cell helps to
reduce noise in that cell. However for a cell population, the effect of these individual
feedback loops can be improved by incorporating information from the remaining cells
of the population.

Feedback across a population of cells can be implemented by means of quorum sensing-
based strategies, and has been shown to reduce noise effects (Tanouchi et al., 2008;
Weber and Bucetal 2011} [2013)). Indeed, cell-to-cell communication by means of
quorum sensing induces consensus among cells (Russo and Slotine| [2010)), that is,
contributes to reduce the difference of internal state among cells in a population.
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Figure 3.4. QS/Fb circuit. It combines the quorum sensing (QS) subsystem, and the negative
feedback (Fb) subsystem to control noise in a protein of interest. The QS part achieves consensus
across N cells during protein expression. The Fb part regulates the same protein production inside
every cell.

This, in turn, may contribute to protect from noise (Tabareau et al., [2010). Thus,
the idea of joining both intracellular negative feedback and extracellular feedback via
quorum sensing is a natural one, that has been suggested in (Vignoni et al., 2013b;
Zargar et al.,[2016)). Together quorum sensing and the intracellular feedback loop make
the Quorum senging/Feedback (QS/Fb) circuit, which is illustrated in the diagram of

Fig[3.4]

3.3.1 QS/Fb circuit structure

Figure depicts the QS/Fb circuit to reduce gene expression noise while achieving
a desired mean expression level in a protein of interest (Pol). It couples two functional
subsystems already implemented in E. coli(Vignoni et al., 2013b)): i) quorum sensing
interconnecting cell population with the signal inducer AHL, and ii) a feedback loop
regulating expression of the Pol protein with another two proteins LuxR and Luxl.

The first subsystem implements a cell-to-cell communication mechanism via quorum
sensing (QS). It is based on the exchange of the small signaling autoinducer molecule
N-acyl-L-homoserine lactone (AHL) (Kaplan and Greenberg, [1985; [Fuqua et al.,[2001)
to induce population cell consensus. AHL molecules passively diffuses across the
cellular membrane from inside the cell to the external environment, and viceversa (is
was also described for the previous circuit). Intracellular AHL is synthesized by the Luxl
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Figure 3.5. QS/Fb circuit. a) Representation of a E. coli cell incorporating the engineered QS/Fb
synthetic circuit including cell-to-cell communication system based on quorum sensing and an in-
tracellular negative feedback loop. b) NoQS/NoFb gene circuit to asses the roles of both quorum
sensing and feedback.

protein previously expressed by an homolog of the lux/ gene from V. fisheri (Schaefer
et al., |1996)).

The second subsystem introduces an intracellular negative feedback loop (Fb) to con-
trol expression of the protein of interest Pol using two genes /uxR and pol/luxl. First,
LuxR protein is expressed by /uxR under the constitutive promoter P.. Then, LuxR and
AHL bind forming the heterodimer (LuxR.AHL), which subsequently dimerizes as the
heterotetramer transcription factor (LuxR.AHL)2. The dimer represses co-expression
(simultaneous gene expression) of Pol and Luxl, when it is attached to the synthetic
repressible promoter Pj,xr designed in (Egland and Greenberg, [2000)). In other words,
the production excess of protein Pol is regulated by (LuxR.AHL)2, when it accumulates
and eventually attaining the repression threshold for the gene pol/lux/ promoter.

To assess the role played by feedback and QS, the QS/Fb circuit illustrated in Fig[3.5p
was compared with another one that has only constitutive expression (NoQS/NoFb
in Fig[3.5p), and with a circuit with feedback but no QS (NoQS/Fb).
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3.3.2 QS/Fb circuit construction

Following the same implementation presented in the QS/Fb and NoQS/NoFb
circuits were implemented using components taken from the Lux operon in the V.
fisheri (Kaplan and Greenberg, [1985) quorum sensing system, and a green fluore-
scent protein (GFP) as a reporter. As in section all the bioparts from both
circuits were inserted into different plasmids, and taken from the iGEM Registry of
Standard Biological Parts. Finally, they were cloned using the Biobrick's foundation
3 Antibiotic Assembly method, and confirmed by sequencing. Both the QS/Fb and
the NoQS/NoFb gene circuits were implemented in E. colicontaining two different
plasmids for each construction, as was detailed in annexes [B.2] and

The QS/Fb circuit couples two subsystems: i) QS-based cell-to-cell communication
mechanism, and ii) a negative feedback loop. So, this is an auto-regulated gene circuit,
whose output is the protein of interest Pol co-expressed together with protein Luxl.
The QS/Fb system was split in two subunits integrated in different plasmids.

a) pCB2tc b) pAV02ta
B0034 B0034
J23106 " m B0015 R0061 () m B0015
| |
| S| | S| S S
TetR CmR TetR AmpR
c) pYB06ta

TetR AmpR

Figure 3.6. Glyph of the QS/Fb and NoQS/NoFb gene circuits built in the lab. Plasmids a) and
c) correspond to the QS/Fb gene circuit transformed in every cell. Similarly, plasmids a) and b)
represent the NoQS/NoFb circuit inside the cell. Further details in

On the one hand, plasmid pCB2tc (Fig[3.6) contains the gene /uxR (part BBa_C0062)
coding for protein LuxR that is constitutively expressed under the control of a medium
strength promoter P (part BBa_J23106), and a strong RBS (part BBa_B0034). This
insert was cloned into the pACYC184 plasmid cloning vector (p15A origin, chloram-
phenicol /tetracycline).

Then, plasmid pYBO06ta (Fig[3.6) comprises of gene Jux/ (part BBa_C0161) under
control of the repressible promoter Py xr (part BBa_R0062), and a strong RBS (part
BBa_B0034). Another strong RBS (BBa_B0034) and the green fluorescent protein
GFP (part BBa_E0040) were inserted using GIBSON assembly (NEB Catalog Number
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E2611S) upstream of /ux/, right after the Py,xr promoter. In this way, GFP represents
the protein of interest Pol (Fig, and it is co-expressed with Luxl to also reports
its dynamics during experiments. These constructions were inserted into the pBR322
plasmid cloning vector (pMB1 origin, ampicillin/tetracycline).

On the other hand, the control circuit NoQS/NoFb was also implemented for remo-
ving both QS and the feedback loop subsystems. To this end, the plasmid pCB2tc
above was also co-transformed with the plasmid pAV02ta (see Fig that contains
only GFP downstream of the Pj,xr repressible promoter (part BBa_R0062), and the
same previous strong RBS (part BBa_B0034). pAV02ta was cloned in the pBR322
plasmid cloning vector (pMB1 origin, ampicillin/tetracycline). As a consequence, the
only structural difference between both circuits is the gene /ux/ downstream in the
QS/Fb system.

None of the proteins are tagged for degradation (an additional coding sequence for
fast protein turnover), therefore the main degradation component is due to the growth
related dilution for both proteins. Thus, their dynamics can be considered as equiva-
lent. Finally, both plasmids pCB2tc and pYBO06ta were co-transformed in competent
cells (DH-5q, Invitrogen).

3.3.3 Biochemical reactions

For the QS/Fb circuit, the main biochemical reactions can be split in two main classes:
the gene expression reactions, and the induction ones (similar to the I1-FFL circuit).

For the gene expression block, the key processes and assumptions considered for the
genes luxR and pol/luxl are:

e the binding of RNA polymerase (RNAP) to each promoter is a fast reaction,
therefore it has not been evaluated, even though it was considered in of
the 11-FFL circuit,

e binding of the transcription factors to the genes promoters,
e degradation of mRNA, transcription factors and proteins.
In the induction part using the autoinducer AHL, the main processes considered are:

e hetero- and homodimerization reactions involving the inducer, like binding be-
tween the protein LuxR and AHL to form the monomer, and dimerization of this
monomer to form the dimer,

e diffusion of the inducer through the cell membrane,
e binding of the dimer to the Pj,g promoter,

e degradation of monomer, dimer and inducer.
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The biochemical species involved in the gene expression and the induction parts are
shown in the Table B2l

genes luxR and pol/luxl:
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The species react following the set of biochemical reactions ([3.4]) under the following
assumptions:

1. During transcription, the cell contains enough free RNAP to serve all the active
genes transcribing at a given moment. In this way, it is assumed that free RNAP
concentration in the cell will not appreciably change in time,
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10.

11.
12.

Table 3.2. Species of the QS/Fb circuit.

Species Description Unit
1 mPlI pol/lux] messenger RNA molecules
2 mR luxR messenger RNA molecules
3 Pl co-expression of proteins Pol/Luxl molecules
4 R LuxR protein molecules
5 (R.A) LuxR and AHL monomer molecules
6 (R.A)2 dimer of (R.A) molecules
7 gPl unbound P xgr promoter gene pol /luxI  molecules
8 gPl.(R.A)2  bound Pjyxgr promoter of gene pol/luxzl  molecules
9 A AHL intracellular inducer molecules
10 Aext AHL extracellular inducer molecules

Basal expression or leakiness (i.e. transcription even in saturating presence of
the repressor) of the repressible promoter Py,xg is a nonzero minimal expression
level,

Transcription of genes pol/lux! and luxR is irreversible, so that k., and Cg are
the effective transcription rates of pol/luxl and luxR respectively,

« is the basal expression (leakage) of pol/luxl,

Cg is the plasmid copy number times the effective constitutive transcription rate
of luxR,

Translation is not a simple process (Alberts et al., 2009). It was modeled an
irreversible reaction with an average transcription rate accounting for the fact
that binding of ribosomes to the ribosome binding site (RBS) is indeed reversible,
and several ribosomes may translate a single messenger RNA copy (mRNA)
simultaneously,

LuxR and AHL binding is a fast and reversible reaction,
Dimerization of (LuxR.AHL)s is a reversible reaction,

Interactions between AHL and AHL, represent the physical passive diffusion
process for cell-to-cell communication via quorum sensing, so that it is a rever-
sible pseudo-reaction

Ve = Veenn/Vexs is the ratio between the cellular and the environment volumes
to quantify the AHL/AHL,y; effect,

Monomer (LuxR.AHL) only degrades at each cell cycle, and

Messengers RNA, proteins and transcription factor degradation are irreversible
reactions (denoted as 0).
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3.4 Summary

Two synthetic gene circuits of different nature and with different goals and inherent
problems will be used in this Thesis: (1) an Incoherent type 1 feedforward circuit
(I11-FFL) that exhibits the important biological property of adaptation, and (2) a
Quorum sensing/Feedback circuit (QS/Fb) comprising two intertwined feedback loops
—an intracellular one and a cell-to-cell communication-based one— designed to regulate
the mean expression level of a protein of interest, while minimizing its variance across
the population of cells. Both circuits will be analyzed in silico as we will see in Chapter

|



Chapter 4

Modeling and simulation

4.1 Introduction

This Chapter deals with the deterministic and stochastic modeling and simulation of
two synthetic gene circuits used throughout the Thesis: the I1-FFL and the QS/Fb
circuits already described in Chapter [3]

The choice of a modeling framework (i.e. deterministic or stochastic) is determined
by the complexity of the system being modeled, the level of investigation, and, conse-
quently, the question being asked (R Dougherty and L Bittner| 2010)). The answer is
different for each of the two circuits analyzed in the Thesis.

In the first case, we are concerned about the I1-FFL circuit average behavior. Thus,
a deterministic modeling framework will be used. In the second case, the Thesis
focuses in the QS/Fb circuit capacity to deal with variability due to intrinsic and
extrinsic noise. Therefore, a stochastic modeling approach is used.

One of goals of this Chapter is to obtain reduced-order models more amenable for
computational analysis, but avoiding excessive reduction that would lead to lack of
biological relevance. Model reduction comes at a cost, for identification of the para-
meters in the reduced order model may only valid around some operating region. A
multi-objective identification methodology is propose to tackle with this problem (see
Chapter . The results of this Chapter have been published in

e Y. Boada, A. Vignoni, D. Oyarzin, and J. Picé. Host-circuit interactions explain
unexpected behaviours of a feedforward gene circuit. 2018. Foundations of
Systems Biology in Engineering FOSBE,
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e Y. Boada, A. Vignoni, and J. Pic6é. Engineered control of genetic variability
reveals interplay among quorum sensing, feedback regulation, and biochemical
noise. ACS Synthetic Biology, 6(10):1903-1912, 2017a. doi: 10.1021/acssynbio.
7b00087,

e Y. Boada, A. Vignoni, and J. Picé. Model reduction and multi-objective iden-
tification of a feedback synthetic gene circuit. IEEE Transactions on Control
Systems Technology, which is accepted.

Additionally, since stochastic simulations demand high speed computers with hundreds
of megabytes for storing data, an efficient computational framework for stochastic
simulation was described in

e Y. Boada, A. Vignoni, J. L. Navarro, and J. Picé. Improvement of a cle stochastic
simulation of gene synthetic network with quorum sensing and feedback in a cell
population. In 2015 European Control Conference (ECC), pages 2274-2279,
2015.

The Chapter is organized as follows. Sections and describe the deterministic
modeling and the model reduction approach for both gene circuits: the 11-FFL and the
QS/Fb. Section describes stochastic CLE-based approach to model gene circuit
stochasticity for a cell population. Aspects related to stochastic modeling like efficient
simulation, data storage, and modeling functions are introduced in this section. Finally
in section the main conclusions are drawn.

4.2 The I1-FFL gene circuit

As | said before, an average behaviour is considered for the I1-FFL circuit. therefore,
a deterministic model will be sought after. The deterministic approach starts from
the corresponding sets of biochemical reactions for the I1-FFL gene circuit. Then,
dynamic balances for the species of the I1-FFL circuit were obtained using the mass-
action kinetics formalism described in section The resulting ODE model is a high
dimensional one and depends on several parameters that need to be estimated before
the model can be used. It will be reduced in subsection [£.2.2

4.2.1 Circuit model

For the I1-FFL ODE model, the key regulatory interactions between the concentrations
of the main biochemical species presented in section [3.2) were taking into account. Its
main species are proteins LuxR, cl, and GFP, and inducer AHL. The inducer AHL is
the input of the system, and the protein GFP is the output signal.
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Figure 4.1. 11-FFL model. a) Population of N growing cells with different sizes. b) Total volume
V(t) of a growing population of cells. ¢) Total biomass and concentration ¢; of species 7 inside V(¢).

Recall the reaction sets - summarize the regulatory interactions for the
AHL with genes /uxR, cl and gfp respectively. In turn, these genes produce their cor-
responding proteins LuxR, cl, and GFP. Again, the I1-FFL circuit (Fig) comprises
a gene gfp under the control of the hybrid promoter P, /1. Expression of GFP is
activated by the dimer (LuxR.AHL)s or (R.A)y that acts as transcription factor for
the hybrid promoter, and repressed by protein cl. The dimer (LuxR.AHL)s also acts
as transcription factor activating the promoter Pj.y. Protein LuxR is constitutively
expressed, and bounds to the inducer AHL. The inducer can passively diffuse across
the cell membrane. Though the input signal to the circuit is the intracellular inducer
concentration AHL, the experimental input signal is the external application of the
inducer in the broth AHLq.

Using the law of mass-action kinetics (described in section[2.3), reactions (3.1)) - (3.3)

can be used to formulate the corresponding ODE equations for the all species concen-
trations in the I1-FFL circuit. These equations can be derived either by inspection, or
using specific software to automate the process. For example, software packages like
Facile (Siso-Nadal et al., 2007)), BioNetGen (Blinov et al., 2004) or COPASI (Mendes
et al., [2009) allow us to obtain the dynamic kinetic model from either the set of rea-
ctions or from SBML files encoding them. Here, the ODE model was obtained
by inspection.
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i1 = —kicrnap®1 + (k-1 + kmr )23 — pry + p(xy + x3)
To =0

&3 = kicrnapz1 — (ko1 + kmr) T3 — pas

T4 = kpnrez — (dmr + /)74

&5 = kpray — (dr + p)xs — kowswe + k_ox7

tg = —kowswe + k227 + ka(r20 — 26) — (da + p) 76

7 = kowsws — k_oxr + 2k_378 — 2k3aF — (dra + p)z7

ig = —k_378 + k32?2 — kywgwg + k_g710 — kssw11 + k5712 — keTs13
+k_ox14 — (draz + p)zs
&g = —kaxgxg + k410 — ki1crnap®o + (ko11 + kmp)T21 — pg

+ p(xy + 210 + 215 + 221)
T10 = kawgrg — k4710 — krcrnap®10 + (k-7 + k1) 215 — p10
%11 = —kox11717 + k9713 — ksw1178 + k5712 — ki3CrNAPT11

+ (k—13 + kmab, ) T2a — pz11 + p(z11 + 212 + T13 + T14 + T22 + T3 + To4)
T12 = ksx11708 — k5712 — kgT12717 + k_8%14 — K10CRNAPT12

+ (k—10 + kma) w23 — p12
%13 = kow11717 — k_ow13 — keT1378 + k6714 — 713
%14 = kew1378 — k6714 + ksw12217 — k8714 — k12CRNAPT14

+ (k12 + kmab, )22 — p14
#15 = krcrnapZ10 — (ko7 + kmr)21s — p1s
%16 = k1, 21 + kmi1s — (dmr + ££)Z16
#17 = kpiz16 — kox11217 + k_ox13 — ksw12217 + k_gw1a — (di + p)z17
%18 = kmaZ23 + kmab, 222 + kmab, 224 — (dmag + 1) z138
t19 = kpar1s — (da + p)w19

NVeen
Vext

@21 = ki1crNAPT9 — (K11 + Km1p + 1) 221
T3 = kiocRNAPT14 — (K12 + kmab, + p)T22
&3 = kigcrnapT12 — (K_10 + kma + p1) 723

Z94 = kizcrnarz11 — (k—13 + kmab, + ()24

Zo0 = —kq (r20 — 6) — daea0

(4.1)
where x90(0) = k, is the initial concentration of extracellular inducer, and 25 = crnaP
is the free RNA polymerase (RNAP). This one is assumed to be large enough so its
fast time-varying fluctuations due to its use and release in the cell reactions can be
neglected, and only its slow time-varying average amount is taken into account. Thus,
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9 can be considered as a fixed parameter. The remaining variables are listed in Table

The parameters correspond to the reaction rates in (3.1)), (3.2), and (3.3).

Table 4.1. Variables of the I11-FFL circuit.

Variable  Species Description Unit
T gR unbound P promoter nM
T2 RNAP RNA polymerase nM
T3 gR.RNAP RNAP bound luzR nM
x4 mR lux R messenger RNA nM
5 R LuxR protein nM
xe A AHL intracellular inducer nM
7 (R.A) LuxR and AHL monomer nM
TS (R.A)2 dimer of (R.A) nM
T9 gl unbound Py, promoter nM
10 gl.(R.A)2 dimer-bound Pj,x promoter nM
T11 gG unbound Py /c1 hybrid promoter nM
T12 gG.(R.A)2 dimer-bound Py, /1 hybrid promoter nM
13 gG.l cl-bound Py /1 hybrid promoter nM
T14 gG.(R.A)2.1 cl-dimer-bound Py, c1 hybrid promoter nM
15 gl.(R.A)2.RNAP RNAP-dimer-bound Py, promoter nM
T16 ml cl messenger RNA nM
T17 | cl protein nM
18 mG gfp messenger RNA nM
T19 G GFP protein nM
20 Ae AHL extracellular inducer nM
xr21 gl.RNAP RNAP bound cI nM
22 gG.(R.A)2.LRNAP  bound Py /1 hybrid promoter nM
23 gG.(R.A)2.RNAP dimer-RNAP bound Py /o1 hybrid promoter ~ nM
To4 gG.RNAP RNAP bound gfp nM

The full model takes into account the dilution effect caused by cells growth,
where a specific growth rate p (min~!) has been assumed. The number of copies
of the genes luxR, cl, and gfp is considered to keep constant through time. This is
indeed the case if the genes are chromosomal ones. In case the genes are located in
plasmids (as it was saw in section , one can assume that at each cell division,
plasmids are first duplicated, and then half of them will be inherited by each of the
offspring cells. This is a valid approximation for the model that is a model for
an average cell (see Fig). These kind of models do not distinguish individual
cells but lump them into an aggregate volume (as in Fig[4.1p), which expands along
time (De Jong et al., [2017)). To account for this, the dilution terms due to cell growth
were compensated in the balance expressions corresponding to the three genes (z1,
xg, and x11). Notice also that extracellular species, like the external inducer AHLyt
are not subject to dilution by growth rate. On the other hand, the external inducer
is introduced as a bolus injection. That is, at time t = 0 an amount of AHLy is
injected in the culture, so that its concentration in the culture equals k.. This value
of external inducer concentration is taken as the initial condition for its corresponding
dynamic balance (with z20(0) = ko).
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For the output protein GFP and its messenger mRNA (z19 and x1g, respectively), bin-
ding between the activating dimer (LuxR.AHL), and the gfp hybrid promoter (P, /c1)
is always possible, even if the repressor cl is already bound to the promoter, and vice-
versa. Yet, it was considered that whenever the repressor cl is bound to the promoter
Plux/c1, the RNA polymerase cannot bind the promoter. Thus, the cl repressor x17
and the dimer concentration xg include the corresponding balance terms to model this
dynamics, that is the corresponding terms for the species from z1¢g to x14.

For the AHLy extracellular input signal x4, though its diffusion has been expres-
sed as a biochemical reaction, it is not at all, but a physical process modeled using
a lumped approximation of the Fick's law (Alberts et al/ 2009; Weiss, 1996)). The
AHLy; concentration is measured with respect to the total volume occupied by the
cells NV and the liquid medium Vg, where there is a population of N cells. In
practice NV o1 < Veyt, S0 that the external inducer concentration can be measured
with respect to the medium volume. The diffusion coefficient is kq. In addition, the
AHL intracellular inducer concentration zg is the same for all cells. With this simplif-
ying assumption, the dynamics of the external inducer concentration x5y depends on
x¢ instead of on the average of xog across the population of cells. The same diffusion
process is assumed for the second circuit, the QS/Fb, as it will be seen in section

4.2.2 Model reduction

As already said in section [2.3.1] this Thesis aims at obtaining a reduced model more
amenable for computational analysis, but avoiding excessive reduction that would lead
to lack of biological relevance. In particular, the species in the reduced model must
not be lumped ones and, and the resulting lumped parameters in the reduced model
must be easy to associate to experimental tuning knobs (Hancock et al.| 2015)).

The model is a large order one, with 24 state variables and around 96 parameters.
This makes difficult the parameters estimation process that will be carried out later on.
Moreover, the large differences in the time scales among the different species in the
synthetic gene network (typically many orders of magnitude) originate huge difficulties
for simulating the temporal evolution of the network and for understanding the basic
principles of its operation. Therefore, this model will be reduced using time-scale
separation and detection of system invariants, as it was described in section [2.3.1

To obtain a reduced order model, we will look for system invariants resulting from con-
servation laws. Then, the Quasi Steady-State Approximation (QSSA) and the layered
decomposition techniques will be applied to the fast chemical species. In particular,
it is assumed that binding reactions occur very fast as compared to transcription,
translation and degradation. Special attention will be paid to the reduced expressions
obtained for the promoters. Finally, standard values of the parameters will be taken
from the literature. These values will also be useful to assess the reaction time-scales
during the model reduction process.
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System invariants

The number of copies of the genes /uxR, cl, and gfp were kept as constant values
through time. The model (4.1)) considers this by implicitly incorporating the invariants

Cr =121+ 23
Cr=x9 +x10+ 215 + T21 (4.2)

Co =211 +Z12 + 213 + T14 + Taz + Taz + To4

where Cg, Ci, and Cg are the gene copy numbers of the corresponding genes.

Reduction of the reactions associated to gene luxR

For gene JuxR, we assume that the binding/unbinding reaction r; (see reactions
of RNAP is much faster than transcription and dilution by cells growth. Indeed, the
rate constant of binding of RNAP to the promoter will depend on its affinity for the
promoter and, thus, will depend on the promoter sequence. Typical values for the
binding and unbinding rates k; and k_; of RNAP for a constitutive strong promoter
are in the order of magnitude of k; = 600 nM ! min—! (Berg et al., 2002), and
k_; = 180min~! (Skinner et al.,[2004). On the other hand, if we approximate k,,r
by the transcription elongation rate, a typical value for E. coli is ky,g = 50nt sec™?,
where nt represents one nucleotide.

Considering the mean transcript length of 1000 base pairs for E. coli, and the possibility
of several transcripts occurring simultaneously, the mRNA transcription rate is in the
order of magnitude of k,,g = 6min~!. On the other hand, the growth rate for a
doubling time of 20 minutes corresponds to y = 0.035min~!. Therefore, applying
the layered decomposition approach to the x5 dynamics in equation , one can
set kicrnapx1 — k_1z3 = 0. This, along with the first invariant in gives the

relationship

Cr A Cr
CRNAP K1 CRNAP

where kq; is the dissociation constant. The values given above correspond to a strong
promoter, where kq; = 0.3nM. This value may increase several orders of magnitude
for weak promoters (Brewster et al.,[2012)). Notice that using the QSSA approximation
(&5 = 0) would approximately give the same result, as %I‘AJ”‘ ~k_1/k.

The concentration of free RNAP (crnap) depends on the growth rate. For a doubling
time of 20 minutes estimates of crnap = 1M were obtained in (Bremer et al., 2003;
Klumpp and Hwa, 2008). This value drops to 0.5 uM for a doubling time of 120
minutes.
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In summary, for a strong enough promoter it is assumed —4i— < 1 in (4.3). Thus,

CRNAP
the reduced set of equations for gene /uxR is considered

4 =kmrCr — (dmr + ()24

. (44)
s = kRI4 - (dR + p,)$5 — k2I5I6 + k_2£E7

For weaker promoters, one may consider that the effective transcription rate kg takes
lower values with respect to the nominal maximum one. Alternatively one might use

K o = akmr, with a € [0,1], in (@.4).

The term 15(x) 2= —koxszg + k_oxr in the dynamics of x5, corresponds to the
formation and dissociation of the monomer complex (R.A) in the reaction 5. Thus, it
represents the loading effect of the monomer formation of the amount of protein LuxR.
The unbinding rate k_o = 10 min~" (Weber and Buceta, 2013)), while a dissociation
constant kg2 = k_o/ke = 100 nM |Schwarz-Schilling et al.| (2016)); \Urbanowski et al.
(2004) results in the binding rate kg = 0.1nM ™~ 'min~!. Thus, reaction ry is not a
fast one.

Reduction of the reactions associated to gene cl

For gene cl, it is again assumed that the binding/unbinding reactions of RNA poly-
merase to the promoter of ¢/ (i.e. reactions ry and r7 in[3.2) are fast ones. Thus, it
is considered

k7 A CRNAP
15 = 7—CRNAPZ10 = — 210
k_7 kar (4.5)
ki A CRNAP
To1 = CRNAPT9 = Ty
k_11 ka1t

where kq7 and kqi1 are the dissociation constants accounting for the inverse of the
affinity of RNA polymerase for the ¢/ promoter when the activator is bound and when
it is not, respectively. Notice that at low basal transcription, the RNA polymerase will
have low affinity for the promoter unless the activator is bound to it. This accounts
to consider that kg7 < kqi1.

On the other hand, it was also assumed that binding of the transcription factor (R.A)2
to the ¢l promoter Py, (reaction ry in[3.2)) is also a fast reaction, as compared e.g. with
transcription and translation ones. Thus, taking into account (|4.5))

" _ IgT9g p T8T9
10 — k. k

(4.6)

Now, using ([4.5)), (4.6]) and the second invariant in (4.2)) for xg
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Cr
CRNAP 1 CRNAP
1+ ka11 + Kaa (1 + kaz )wg

Tg — (4—7)

On the other hand, it makes sense to consider that the transcription rates k.,; and
kip both correspond to the elongation rate once RNA polymerase has achieved to
bind the promoter. Thus, kyip = k1. Therefore, the dynamics for the messenger
RNA of ¢l (ml: z16) using these parameters becomes

1 T8
. kdll kaskar
T16 = : ’ kmn1Cr — (dm1 + p)716
CRNAP + kdll i kd4 (CRNAP + kd7> (4.8)
1 rg
~ ka1 kd7kd4
~ n T kn1Cr — (dmr + p) 16
CRNAP kdll kaakar

where in the last approximation k47 < crnap. Recall, it was already assumed as
ka7 < kqi1.

Notice the dynamics for x4 contains a Hill-like function (Hill, 1910} Weiss, [1997)) for
the promoter kinetics. The Hill-like function estimates the number of ligand molecules
that are required to bind to a receptor to produce a functional effect. In other words, it
describes how many transcription factors (dimer (R.A)s : xg in this case) are required
to start transcription of the gene c/ following the expression

. Qp + a1
= ——————kuiCr — (dp 49
T16 1+ oy 7g 1C1 — (dmr + 1)%16 (4.9)
where
_ 1
a0 = 1 kg1
CRNAP
4.10
 kan 1 (4.10)
aq

B 1+ - kaps kd7kd4

Notice that as the unbinding of RNA polymerase from the unactivated promoter is
much more favorable than the binding reaction, kq11 will increase, while the basal term
o will decrease. Simultaneously, the first term in « will tend to one. Furthermore,
the affinity of the transcription factor (R.A)2 for the ¢/ promoter (1/kqs), and the
one of the RNA polymerase for the induced promoter (1/kq7) will be the main factors
determining the half-concentration constant (Ang et al.| [2013).
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Reduction of the reactions associated to gene gfp

For gene gfp, the same procedure as for genes /uxR and cl/ was followed. Thus, the
fast dynamics associated to the bound species formed by the gfp complexes and RNA
polymerase from the reactions set [3.3 were considered

ko & CRNAP
Tog = CRNAPT14 = ————T14
k_qo kqio
kig Ao CRNAP
Toz = CRNAPT12 = ———T12 (4.11)
k_10 ka1o
kg & CRNAP
Toy = CRNAPT11 = T11
k13 kq13

where the dissociation constants kqg10, kq12 and kqi3 correspond to the inverse of
the affinity of RNA polymerase for the gfp promoter when the activator is bound,
when both activator and repressor are bound, and when none of them are bound,
respectively.

Also, it was assumed that fast binding of the activator and repressor to gene gfp.

Using (4.11)) leads to

k_s

r5(%) + 18(x) + r10(X) = 0 ~> 282711 — ( R
5

5y 1 Kes 0
ks 17 | T12 ks T14 =

k_ k k_
TG(X) + Y9(X) =0~ 211217 — (1{9 + k6$8> T3 + k7651314 =0 (412)
9 9 9

k k k
16(x) + 15(%) + T12(x) = 0~ 25213 — |~ + —— | 214 + —@17212 = 0
kg kg kg
Using (4.11)) along with the third invariant in (4.2)

C C C
Cg = (1 + RNAP) r11 + (1 + RNAP) Ti2 +T13 + (1 + RNAP) T14 (4.13)
kqi3 kq1o kaio

Now, lets make the following assumptions:

e The affinity of the inducer (R.A), for the hybrid promoter Py, /1 is high, so

that kqs = kk‘s < 1, i.e. it is sufficiently small,

e Once the repressor cl is bound to the hybrid promoter, the inducer has low
affinity for it, so that kqg = kk;: > 1,

e The repressor strength is enough so that kg9 = kk;gg takes a small value, but it
does not necessarily allow for a strong repressor.
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From (4.12) and (4.13)), the system of following equations is derived

k_5 , kg k_g
T - L —
8 ( T T kg 217 0 e o 0
k_9 | k¢ k_¢
x — (=246, -=5 T12 0
17 0 ( T ko8 ko = 0
0 ks _kogtkos 13
ke T17 zs ko 14 Ca
14 SBRNAP ) (1 CRNAP ) 1 (1 CRNAP )
( + kdis + kd1o0 + kg12

(4.14)

Solving gives rational polynomial expressions for 211 to x14. The denominator
is a second order polynomial of the form p(zs, 217, w8217, 23, 3,, 22117, 2872,). In
order to simplify the resulting expressions, the limit cases where xg, and =17 are large
enough, and when they are both in small amounts, and when one of the is large and
the other one small were taken into account.

First, lets consider the case when the affinity of the inducer (R.A)s and the repressor
protein cl for the promoter of gene gfp are large enough, and/or their amounts, so
that the approximations

(4.15)

hold for values of inducer and repressor over some small minimum concentration.
Under these assumptions, solving ([4.14]) gives

211 =0
kek_gx
1y — 6K_8T8 Ca
(1 + 7C§le‘:‘JP) kek_gxg + kgk_gx17 + (1 + %) kekgzsx17
kgk_
s = 8K _6T17 e (416)
(1 + %) kﬁk,g&?g + k8k76$17 + (1 + %) k6k85r:8$17
keksxrsx
i — 6K8T8T17 Ca
(1 + 7C§lesz) kek_gzs + ksk_gx17 + (1 + %) kekgwgwir

The expressions (4.16]) are not valid when any of the approximations (4.15)) do not
hold. This is the case when either the inducer zg : (R.A)y or the repressor x17 : cl
or both have very low concentrations. Accordingly, the limit cases considered are:
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k_
Case x5 = 0, k—f < lﬁ—ixwz

T11 =

k_g
(1 + CRNAP) k_g +koxi7
12 = T14 = O (417)
_ kox17
13 =
(1 + Cﬁi’zp) k_g + kox17

Ca

Ca

— k_o ke
Case T17 = 0, oy < k9I8

k 5
Z11 Ca
(1 _j’_ CR(I;TAP )k 5 + (1 + CRNAP) kaS
ksx
- 528 Ce (4.18)
(14 epan ks + (1 + Spar ) ks
13 =214 =0
Case xTrg = 0, T17 = 0: 913
o= —28 @
" cpnap + 03 © (4.19)

T2 =x13 =214 =0

One can assume knab, = kmab, = kmab because these basically correspond to the
transcription elongation rates once the RNA polymerase has achieved to bind the
Plux/c1 promoter, that will depend on the gene CDS sequence. Therefore, for the nor-
mal case , the dynamics for the messenger RNA of gene gfp can be approximated
as

%18 = KmGCRNAP T+ —x12 + 214 | — (dmag + p)z18
Ka13 Ka1o ka2
kmceCq (klil;ot% T8 + 11({311{3 33855'17) (4.20)

T17 + (CRNAP + kd12) kekssriz

1
(CRNAP + kle) kek—

— (dma + p)z18

Notice that kqj2 should be large (10% — 10* nM), corresponding to low affinity of
RNA polymerase for the repressed promoter. The dissociation constant kg3 will be
large (~ 10% nM), corresponding to low basal transcription, while kq1o will be small
(1 — 102 nM), corresponding to medium to strong activation of the hybrid promoter
by the inducer (R.A)a.

For the other limit cases:
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k_
Case x5 = 0, —5 < k—gxw'

. kg
s = ks o kmcCo — (dme + p)713 (4.21)
(1+ CR(;I:P )k 9 +ko ch\“:p 17
Case z17 = 0, *9 < ’fﬁ Ty
kg~ 5 ks

kais Ka1o *8

T8 =
1 1
(CRNAP + kdlS) ks + (CRNAP + kdlo) ks s

kncCq — (dma +p)z18 (4.22)

Case 13 =0, 217 =0:

C
T8 = kaLAPCG — (de + M)1‘18 (4.23)

crNAP + ka3

Reduction of the monomer

One last assumption concerns the large production of monomer (LuxR.AHL) as compa-
red to the dimer one. Therefore, one can apply the QSSA approach already mentioned
in section [2.3.1] to the monomer dynamics 27 in the model (4.1). Thus, the monomer
is assumed &7 = 0, and the resulting algebraic expression

dra + k- 1
RA 2, 1

T T ik, s

(dRA +k_ ) + 8k3(k2$5$6 + 21{731'8) (424)

which can be replaced in the involved dynamics for the species x5 =[LuxR], 25 =[AHL],
and xg =[(LuxR.AHL)2] in equation (4.1)).

Besides, a phenomenological model for the hybrid promoter, that includes all the
previous cases is

Yo + Y18 + Y2X8T17
Y3 + YaTs + V5X17 + VeXsT17

i1 = kmaCa — (dme + p)z1s (4.25)

Interestingly, this phenomenological model is very similar to the one used in (Rodrigo
and Elena| [2011)). Notice from (4.20), and that in the limit case when there
is no repressor (x17 = 0), the promoter activity increases as the concentration of the
inducer xg does, and it reaches a maximum value of 1 as xg — oo when kg9 is low,
as described above. This behavior WiII be captured in the phenomenological model
5) making 71 = 74 Again, from and ([4.22), this is the case when kq10 is
Iow so that Y. kdm ~ o . On the other hand, the relationship 75 > 72 can be
easily inferred.

Besides, the basal level corresponds in all cases to
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Yo _ CRNAP (4.26)

Y3 CRNAP + Kai3

Therefore, the model sensibly predicts that for a low basal level, the affinity of RNA
polymerase for the empty hybrid promoter must be very low, i.e. kq13 large enough.
Moreover, the more free RNA polymerase in the cell, the less affinity is required.
Additionally, leakiness of the hybrid promoter in absence of either x17 or the product
xgr17 are denoted as 1 and [s.

To sum up, after the model reduction process, we obtain the ODE model (4.1) with 9
state variables (coming from 24 initially), and one additional algebraic equation (4.24)).
The reduced order model contains 26 parameters.

1.71 = kaCR - dmRzl
Ty = kprl —kowoxs +k_oM — drao
T3 = —koxoxs + k_oM + kd(l‘g — .%‘3) —daxs

; 2
T4 =ksM* —k_3x4 — drazzs

&5 = ki Cr——— — s

Y1+ T4
,’tﬁ = kp1$5 — d1$6 (427)
i = kO 20 + 4 + Bryame + B2ysTats F—

Y2 + V3T4 + Y4Te + V5T4T6
g = kpgrr — daas

T9 = Keenskq (33‘3 - 1‘9) — dae®g

dra + k_ 1
_RAT 2, —/(dra + k_2)2 + 8ks(kozoxs + 2k _314)
1k 1k

M =

Vean*Neells the yolumes relati-

where M is the monomer concentration, and K s = ”
onship required to take into account the concentration outside the N5 cells. Table
lists the values of the parameters used in the I11-FFL reduced model (4.27)), and

Table [4.2] describes the species involved.

Notice the transport term (x3 — xg), depends only on the difference of the concen-
trations inside and outside the cells. The K, constant reflects the amount that
goes out (or in, depending on the sing) from all the cells into the extracellular volume.
Finally, the deterministic simulations use Veenn = 1 x 1071 L, which is the typical vo-
lume of an E. coli cell, and the population is Neeis = 4.32 x 107 that is the number of
cells of a culture sample with OD= 0.3 (see section placed in a well containing
Viedium = 180 uLL.
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Table 4.2. Variables of the 11-FFL reduced model.

Variable Species Description Units
1 mR luxR messenger RNA nM
To R LuxR protein nM
T3 A AHL intracellular inducer nM
M (R.A)  LuxR and AHL monomer ~ nM
X4 (R.A)2  dimer of (R.A) nM
s ml cl messenger RNA nM
Tg | cl protein nM
7 mG gfp messenger RNA nM
s G GFP protein nM
Tg A, AHL extracellular inducer nM

4.3 The QS/Fb gene circuit

As said at the beginning of this Chapter, the QS/Fb circuit deals with variability
caused by both intrinsic and extrinsic noise sources. Before studying this variability,
an amenable model has to be proposed. This section presents the QS/Fb deterministic
model and its systematic model reduction as a first step before considering stochasticity
in section 441

4.3.1 Circuit model

To obtain the QS/Fb model, a different point of view is adopted with respect to that
in the I1-FFL gene circuit. The I1-FFL model quantified a molecular species as a
function of the growing population in terms of its expanding volume. This model is
appropriate when one is interested in the average evolution of the population of
cells along time. In contrast, the QS/Fb circuit needs to distinguish individual cells
for understanding and dealing with the population heterogeneity (see figure ) We
need models suitable for describing molecular species at the single-cell level rather than
at the cells population level (Kiviet et al|, 2014; Westermayer et al., [2016)). Thereby,
all species involved in the QS/Fb circuit are considered for every cell in the population,

as depicted in Fig[4.2b).

Recall the set of chemical reactions and the 10 species involved in the QS/Fb ci-
rcuit. The dynamical balance equations describe the evolution of the all molecule
species as a function of time ¢, using the mass-action kinetics formalism (section [2.3)).
The resulting ODE model is given by the set of equations that describes each
species dynamics inside the i-th cell in a population of N cells.
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Table 4.3. Parameters of the 11-FFL circuit.

Parameter Description Value Unit Reference

dmr, dmi, dme MR, ml, mG degradation rates 0.3624 min~—! Milo and Phillips E

ko kprs kpg mR, ml, mG translation rates 80,40,15 min~!

dr LuxR degradation rate 0.035 min~t

kq Inducer diffusion rate 0.06 min~—!

ko, ks (R.A), (R.A), association rates 0.1 min~—!

ko (R.A) dissociation rate 20 min~!

k_s (R.A), dissociation rate 1 min~!

51 Plux/c1 promoter leakage 0.05 adim, nM~!  estimated

Ba Plux/c1 promoter basal expression 0.05 adim, nM~!  estimated

da, dae Intra/extra cellular inducer degradation rates 0.0164 min~! Kaufmann et al.| 2005 _mnrmm*.m« et m_._E_xmv_m: and mqmms_umqm_E
dra, dra2 (R.A), (R.A); degradation rates 0.035 min—! uchler et al.||2005) and refs. therein
kimrCr Transcription rate times plasmid copy number of luzR 30 min~! Boada et al.||2015) and refs. therein
km1Cr Transcription rate times plasmid copy number of ¢l 10 min~! Lewis et al.||2011||Milo and P nm_E
kmcCa Transcription rate times plasmid copy number of gfp 30 min~—! Boada et al.||2015

dp, dg cl and GFP degradation rates 0.1733 min~1 Dodd et al | 2001 |Lippincott-Schwartz et al.|[2001)
Yo Plux/c1 promoter coefficient times basal expression 0.0001 nM estimated

Jo%1 Plux promoter Hill constant 50 nM estimated

Y2 Plux/c1 promoter Hill constant 0.02 nM

Y3 Plux/e1 promoter coefficient 0.1 adim

Y4 Plux/c1 promoter coefficient 1.42 adim

s Pux/c1 promoter coefficient 70 nM-1
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a) N cells in bioreactor b) Cell volume is constant

fi(t): medium influx
fe(t): cells efflux

T
P
e
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DO 0l —
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dv/idt=0 mj = species
fi(t) = f(t) molecules e

Figure 4.2. QS/Fb circuit model. a) Population of N cells growing in a bioreactor. Dilution is
proportional to the efflux fe(¢). The influx f;(¢) is the same as the efflux fe(t), so the cells are washed
away and the total volume V(t) is kept constant. b) The QS/Fb circuit inside of the i-th cell in the
population.

N} = ke, ny + ake g — dm; 1]
TLQ - CR - dmRn2

Ny = pn] — ding

ny = prnb +k_1n — dgnj — k;lnénfl
d1
. ) k . . . ko . .
il = 2k_onk + Elngng + <—k1 — dga — 2kd§ng> nk
; koo 42 Kix 4\ 4
g = Kjyxng + ——ny + (k_g —dra, — ——nb | ng
6 I P > kax ) ° (4.28)
4 ok o
n%wm%—gf%m
ux
4 k .
iy = Ky + o ngny
dlux
ng =D (Vcnw - ng) — <k1nfl + dA) ng + k_1ng +kans
d1
N
N =D [ —=NVcni + Z ng | —da.nio
i=1

7



Chapter 4. Modeling and simulation

78

Table 4.4. Species of the QS/Fb circuit.

Variable Species Description Unit
ni mPI pol/luxl messenger RNA molecules
no mR luxR messenger RNA molecules
ns Pl co-expression of proteins Pol/LuxI molecules
ng R LuxR protein molecules
ns (R.A) LuxR and AHL monomer molecules
ne (R.A)2 dimer of (R.A) molecules
ny gPl unbound Pjuxr promoter gene pol /luzl  molecules
ns gPl.(R.A)2  bound Pjyxr promoter of gene pol/luxl  molecules
ng A AHL intracellular inducer molecules
n10 Aext AHL extracellular inducer molecules

The deterministic model ([4.28)) has 10 state variables listed in Table[4.4] Each equation
in (4.28]) corresponds to one i-th cell, and the last equation 1y accounts for the
AHLcy dynamics for the whole population.

For the quorum sensing subsystem, passive diffusion of AHL.y outside the cell and
AHL inside the cell across the cell membrane are modeled using an approximation of the
Fick's law (Alberts et al., [2009; \Weiss| [1996]). Thus, in the dynamic balances of AHL
and AHLcy;, (nd and nj, respectively), a flow of molecules proportional to the gradi-
ent of concentrations is considered. The diffusion coefficient D = SP,,/V ey (min™1!)
depends on the cell surface area S, of its membrane permeability P, and the cell
volume.

For the AHLqy; dynamics, the fact that there is a population of N cells is used
to obtain the net inflow. The effect of this inflow over one cell in the population
corresponds to the term V., = % where Vg is the volume of the culture medium
(refer section[3.3.3)). It is assumed all N cells contribute equally. Therefore no effect of
the spatial distribution is taken into account. this is the main simplification made. In
practice, spatial distribution could be considered while keeping the simple structure of

the model, by weighting the summation term of the accumulative cells contributions.

The degradation rate for the 9 intracellular species in the model is the sum
of the growth dilution and their specific degradation rates. Extracellular species like
the external inducer AHL.,; are not subject to dilution by growth rate. On the other
hand, the number of copies of the genes pol/lux/ and luxR (ny and ns, respectively),
keeps constant through time ¢. This is indeed the case if the genes are chromosomal
ones. In case the genes are located in plasmids, one can assume that at each cell
cycle, plasmids are first duplicated, and then half of them will be inherited by each
of the offspring cells. This is a valid approximation if we assume that we model the
average cell.

Finally, the model parameters summarized in Table were calculated taking into
account the remarks above and considering:



4.3 The QS/Fb gene circuit

1. The transcription rate ke, is the minimum Pol/Luxl transcription rate. The
typical transcription rate in E. coli. is ~ 600-6000 bp/min E] (Alberts et al.,
2009). The Luxl length is 582 bp (part BBa_C0161) (Biobrick Foundation),
2006). Therefore, k., = (600 bp/min)/582 bp = 1.03 min—!,

2. The rate Cr was obtained as the transcription rate obtained as before times
the LuxR plasmid copy number. We use the vector pACYC184 with 10 co-
pies/cell, the minimum transcription rate 600 bp/min, and the LuxR length 756
bp (part BBa_C0062) (Biobrick Foundation, [2006)). Hence, the plasmid copy
number times LuxR transcription rate is Cg = (10600 bp/min)/756 bp = 7.9
molecules-min—1,

3. The translation rate can be tuned using a ribosome-binding site (RBS) of dif-
ferent strengths. In bacteria, the translation rate is &~ 30-60 bp/sec (Alberts
et al.} [2009). Accordingly, the minimum Pol/Luxl translation rate is py= (1800
bp/min)/582 bp = 3.09 min~!, and the minimum LuxR translation rate is pr=
(1800 bp/min)/756 bp = 2.38 min~1,

4. The degradation rates dmy, dmg, di, dr, da, dga include the dilution effect
due to the cell growth. The specific growth rate ps. = 0.017 min~™! corre-

sponds to a cell doubling time of 40 min,

5. The degradation rate dra, = 0.017 min~! of the dimer (LuxR.AHL)y only
depends of the specific growth rate 5y, since (R.A)2 is much more stable than
the other species in the system (Basu et al.| [2005; |Buchler et al., 2005),

6. The diffusion coefficient was calculated as D = \S,P‘l‘l

the cell surface area S = 4mr? (spherical area with r=10 um), the membrane

permeability P, = 3 x 1073um - min~! and the typical E. coli. volume Ve =
1.1 x 1079 pl,

min~!. It depends on

7. The dissociation rate of (LuxR.AHL)s to the Py,xr promoter kj,, was not re-
quired by the mathematical model ({4.28)).

4.3.2 Model reduction

As in the I1-FFL case, the QS/Fb model can be further simplified by applying
the QSSA to the fast species, and taking system invariants as the result of conserva-
tion laws. We aimed at obtaining a reduced model more amenable for computational
analysis, but avoiding excessive reduction that would lead to lack of biological releva-
nce. In particular, the species we obtained in the reduced model are not lumped ones.
Reduced models accounting for total mMRNA and total transcription factor have been
proposed to match modeled species with measurable ones (Hancock et al| [2015)). In

Ibp/min is one unit of DNA base pair coded per minute.
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Table 4.5. Parameters of the QS/Fb model.

Parameter  Description Value Unit Reference

Cr Plasmid copy number times gR transcription rate 7.9 molecules-min—! Boada et al.

Key gPl transcription rate 17.5 molecules-min—! Boada et al.

« Pjuxr promoter basal expression 0.01 - estimated

PR mR translation rate 10 min—1 Milo and Phi

P1 mPl translation rate 3.09 min~1 Alon||2007{|Milo and Phillips| {2015
ka Synthesis rate of AHL by Lux| 0.04 min—1 ignoni et al.[|2013b

k-1 Dissociation rate of (R.A) 10 min—1 Weber and Buceta|[2013

k_o Dissociation rate of dimer (R.A)2 1 min—1 oada et al.[|2017a

ka1 Dissociation constant of (R.A) 100 molecules Urbanowski et al.[|2004

kdo Dissociation constant of (R.A)2 20 molecules Harman[|2001

Kdlux Dissociation constant of (R.A)2 to the Pj,xr promoter 100 molecules Buchler et al.||2005) and refs. therein
dr Pl degradation rate 0.027 min~1 Goryachev et al.|[2006] [Milo et al. E
dgr R degradation rate 0.2 min—1 Boada et al.|[2016b), and refs. therein
da A degradation rate 0.057 min—1 Kaufmann et al.||2005]|Schaefer et al.| 1996
da, A degradation rate in culture medium 0.04 min~1 Kaufmann et al.||2005]|Kaplan and Greenberg||1985
dra (R.A) degradation rate 0.156 min—1! uchler et al.[|2005) and refs. therein
dra, (R.A)2 degradation rate 0.017 min—1 Boada et al.|[2017a)

dmy mPl degradation rate 0.247 min~1

dmpg mR degradation rate 0.247 min—1

D Diffusion rate of AHL through the cell membrane 2 min—1

Veell Typical volume of E. coli. 1.1 x 107° uL/cell

Vext Typical volume of microfluidic device 1x1073 ul
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4.3 The QS/Fb gene circuit

the QS/Fb case, we explicitly modeled bound and unbound forms of the transcription
factor, but the model accounts for the total Luxl protein. For this gene circuit this
is a good proxy for the amount of protein of interest if both are co-expressed, and
transcriptional noise dominates. In the best case, when the protein of interest is in
self-cleavable tandem fusion with Luxl, both will express in 1:1 stoichiometric ratio
(Chen et al., 2010b). Moreover, the resulting lumped parameters in the reduced mo-
del are easy to associate to tuning knobs available in the wet-lab implementation in
the relevant cases (Arpino et al} [2013]), and their values are amenable to be obtained
experimentally.

The first assumption concerns system invariants (as in section resulting from
conservation laws in the model . The amount of DNA from the gene pol/lux!
keeps as a constant along time t. As a result, the sum of free DNA plus the bound
DNA.(R.A)2 ( ni and ni, respectively) leads to

Ny +nk =0 ~ nb+nh =Py (4.29)

This implies that the sum of free and bound promoter Py« is constant and equal to
the plasmid copy number Py.

The second consideration assumes that the transcription factor binding/unbinding
reactions to the Pj,r promoter proceed much faster than translation and mRNA
degradation, so they can be assumed to be at quasi-steady state. Applying the Quasi
Steady-State Approximation (QSSA), this is also equivalent to consider that ky,y is
large enough so, using (4.29), this can be approximated

1 i i kdlux
2L = 0~ plb = Py | —dlux
klux " T N (kdlux + né)

X i (4.30)

. . n
S i _Pp 6 i

klux s e N (kdlux + né)

The third QSSA assumption is related to the transcription reactions of genes pol/luxl
and /uxR (n% and n%, respectively). It is assumed that messenger RNA for both
pol/luxl and luxR are produced and degraded much faster than the proteins. Hence,
applying QSSA

) . ke ) )
ni =0~ ni = 1 L (nk + any) (4.31)
my
and
i , _ Cr
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From (4.31)) and ((4.30)), replacing in (4.28) we have

. g I Nkelpl kdlux omé 1
b= = | — dn, 4.33
"3 dInI kdlux n76 1" ( )

and using (4.32)) and (4.30) in (4.28)) provides

i _ CrPR i (k-1 i
1y = dmR + k71n5 — Eng +dg Ny (434)
Also replacing (4.30]) in (4.28]) approximates
by k_ 9 i
i = 1 (n5)" = (K2 + dias)ng (4.35)

Finally, the fourth QSSA assumption concerns the large production of monomer (R.A)
or (LuxR.AHL) as compared to the dimer one. It follows the same procedure described
in subsection [4.2.2] for the I11-FFL gene circuit. Thus, the monomer (R.A) is assumed
AL = 0, and the resulting algebraic expression for n{ can be replaced in the species
ni =[LuxR], n§ =[(LuxR.AHL)2], and the intracellular inducer nf =[AHL].

All these approximations (with a renumbering of the variable names, so as to have
continuous numbering) lead to the reduced-order model for the i-th cell in
a population of N cells. It consists of four differential equations and one algebraic
equation per cell. Additionally, there is one differential equation describing the external
AHLcy; dynamics for the whole population.

» C Kaiux + an’ )
pi = S ( dlu 3) —dmi

©dmy \ kax + 74
.; _ Crpr ; kg ;
i k_i1nt — % d )
Ny dmp +Kk_1ng kay Ny +dr | ng
.5 k_ I i
Ay = 7= (ng)” — (ko + dra,)n}
kao

- i i i ki i 4.36
Ny =k_ing+kani +D (Vcn5 - n4) — (1712 + dA) ny ( )

ka1
N
ns =D (—NVCns + Z ni) —da.ns

i=1

i _ de(dRA +k_1) [\/Sk_g(Zk_gkdlng —&—k_lnénfl)
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4.3 The QS/Fb gene circuit

Table 4.6. Species for the QS/Fb reduced model.

Variable Species Unit
ni LuxI| protein molecules
ng LuxR protein molecules
n3 Dimer of (R.A) molecules
ng AHL intracellular inducer molecules
ns AHLext extracellular inducer  molecules
ne Monomer (R.A) molecules

The species involved are listed in Table The parameter Cy is the plasmid copy
number times the /ux/ transcription rate. C; = Py ke, = 17.5 molecules-min~?!, where
Py is the Luxl plasmid copy number (vector pBR322 with = 17 copies described in
, and ke, = 1.03 min~—! from Table The remaining parameters are the same
as those of the full model listed in Table[4.5]

It is important to note the first term on the right hand side of the dynamics of n{ in the
model ([4.36)). This is a Hill-like function (Hill,[1910} [Alon| [2007)) with a hill coefficient
n = 1, which together with the monomer algebraic equation n{ in (4.36]) describe the
transcription factor regulatory effect, as in the 11-FFL reduced model (]@

Kn
h(z) = kmax Ko (4.37)
where x is the transcription factor, k.. is the maximum transcription rate, K is
the repression threshold, and n is the Hill coefficient. The Hill coefficient estimates
the number of molecules of transcription factor required to bind the promoter and to
inhibit gene expression of a desired protein (recall section for the 11-FFL circuit).

For the n! dynamics, the Hill-like function shows the inhibiting effect on Pol/Luxl
expression caused by the negative feedback through the dimer n% = [(LuxR. AHL)],,
i.e. with

~ Cipr <kdlux + Om§>

h(nk) = , 4.38
(n5) dmr \ kqiux + 75 (4.38)

where one molecule (n = 1) of the transcription factor (LuxR.AHL), is the required
Hill coefficient to start the repression of Pol/Lux| expression in the i-th cell. The dis-

sociation constant kqjux and the transcription-translation rate gg’: are relative to the

Pluxr promoter strength. Additionally, an’ represents the basal expression (leakage)
of the promoter Pj,«g, as in the previous full model. These expressions are equivalent
to the ones that one can obtain using (Hancock et al.,[2015)) for the multimer-dominant
case.

To compare the full model with the reduced order one, a series of in silico experiments
were performed. Figl4.3|shows some of the results demonstrating the good agreement
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Figure 4.3. Comparison of the QS/Fb full and reduced models. Simulation during 250 minutes for
a single cell of both the reduced (solid line) and the complete model (dashed line). In both cases the
simulations were performed with the same initial conditions, same parameter values and same step
size: 6t = 1 x 10~3 seconds.

between the results provided by both the complete and the reduced models. The
principal biochemical species Luxl, LuxR and AHL are plotted on the top of Fig[d.3]
for the reduced model (solid line), and for the full one (dashed line).

The plots of the five species eliminated by the model reduction: luxR and pol/luxl
messengers RNA (mRNA,x; and mRNA), g, respectively), unbound and bound DNA
of gene pol/lux/ (DNA and DNA.(LuxR.AHL)5), and the monomer (LuxR.AHL) were
calculated algebraically from the remaining species. This simulation was carried over
a single cell (N=1). Therefore, the amount of molecules of AHL and AHL.y is
similar, hence, the AHL.,; plot was omitted in this figure. The agreement between
the results of both models was good enough for our purposes, without requiring any ad
hoc adjustment. From a qualitative point of view, the transient regime of the complete
model is similar to the reduced one for all species. The length of the transients and
the steady-state values coincide in both models.

In Section [3.3] another synthetic gene circuit with no QS nor feedback was proposed.
The NoQS/NoFb circuit (see Fig) assesses the role played by both feedback and
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QS subsystems. As we saw, synthesis of AHL molecules by Luxl protein is the only one
chemical reaction missed in the NoQS/NoFb circuit from the original QS/Fb system.
As a consequence, two main aspects should be considered:

1. the NoQS/NoFb ODE model is similar to the QS/Fb one, except for there is no
term of AHL synthesis kany in the equation 1} from ([4.36)), due to the synthesis
rate kp is null, and

2. ns represents the extracellular AHL,y; molecules. The initial condition n5(0)
represents a bolus (pulse-like) amount of extracellular AHLqy; added to the
medium.

4.4 Stochastic CLE-based model for cell population

The principal idea in this section is to use the deterministic model, as a basis to formu-
late a simplified stochastic model for analyzing noise in gene expression. Additionally,
this section will address the practical problems arising when besides the individual
states in each cell, one has a global cell population state. In the QS/Fb circuit,
this global state as seen in section [4.3] arises from quorum sensing-based cell-to-cell
communication.

Section reviewed how biochemical reactions are subject to fluctuations producing
gene expression noise, and how this stochasticity can be modeled using the Chemical
Master Equation (CME), the Gillespie's Algorithm (SSA), or the Chemical Langevin
Equation (CLE). Section showed that the most accurate way to depict the time
evolution of a biological system is using the (CME): a set of linear ODES, one for each
possible state of the system at time . Yet, the CME becomes intractable for large
systems like the QS/Fb circuit. One option to sample the CME is to use Gillespie's
Algorithm or Stochastic Simulation Algorithm (SSA), described in section time
trajectories numerically generated based on a Monte Carlo process, which are in exact
accordance with the CME. However, having an interconnected population of cells like
in the QS/Fb system jeopardizes the possibility of employing SSA for several reasons.

First there are different volumes involved, extracellular and intracellular. The diffusion
through the membrane depends on the concentration gradient of the small molecule
in both of them, making the account for the probability of reaction more complicated.
Second, when using SSA, several realizations or trajectories of the system are needed
in order to obtain an accurate estimation of the moments, making the use of SSA in a
population of interconnected cells a computationally very demanding task. Although,
these kind of systems have been modeled and simulated before as ODE perturbed with
white noise (Koseska et al.| 2009)), this does not capture the intrinsic noise phenomena
as desired.
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If the expected number of firings of each reaction event during a time interval dt is
greater than one, it is possible to use a Langevin-type equation called the Chemical
Langevin Equation (CLE): a set of nonlinear SDEs, where the solution of each equation
at time t is a real-valued random variable representing the amount of every species in

the system (refer to section [2.4.5)).

Interestingly, generating sample paths is orders of magnitude faster than doing the
same for the CME, because it essentially needs generation of normal random numbers
instead of probability functions. In fact, the CLE (and also SSA) allows us to obtain
certain statistical parameters for analyzing fluctuations in a gene circuit, no matter if
there is cell-to-cell communication.

4.4.1 CLE-based model

To model gene expression noise produced by extrinsic and intrinsic sources, a stochastic
CLE-based model of the QS/Fb system is derived, whose mean corresponds to that
of the deterministic reduced model ([4.36]) for each species.

To consider intrinsic noise and since a CLE is a special form of the general SDE,
the Euler-Maruyama discretization method (Higham) [2001)) was used for generating
sample paths of the stochastic process driven by a CLE for each species

n(t+6t) =n(t) +S-a(n)ét +S-N - /a(n)Vst (4.39)

where n(t) is the number of molecules of each species in the population of the
QS/Fb system, S is the stoichiometry matrix, a(n) is the reaction propensity, N'(0, 1)
is a statistically independent normal random variable, representing a Brownian motion,
and dt is the step time.

Now, in order to define the variables S, a(n), and N'(0, 1), a set of equivalent pseudo-
reactions from the model was deduced. There are four intracellular species, and
one extracellular species interacting through thirteen biochemical reactions (J=13) in
every i-th cell from the population. The biochemical reactions are listed in (}4.40)),
and the species involved in the gene circuit (see Table are denoted as: proteins
Pol/Luxl (PI) and LuxR (R), monomer (LuxR.AHL) or (R.A), dimer (LuxR.AHL)y or
(R.A)2, and intra/extracellular inducer AHL (A and Ay, respectively).
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ciated to Pl expression, g(ng,t) corresponds to the dimerization reflected in the last
equation of (4.36)), ttLuxr = CRrPR represents the transcription-translation activity of

dmg

) denotes the Hill-like function asso-

luxR, V. = Y,—‘“lj is the ratio between the cell volume and the culture medium volume,
and () denotes species degradation. All the parameters are the same from Table

Thus for example for the QS/Fb circuit, the amount of molecules of protein Pol /Luxl
in the i-th cell can be expressed and numerically solved applying equation ({4.39)

ni(t+0t)" =ni + [f(n,t) — din}] 6t+

{ F(ni, YN1(0, 1) — 1/ diniNa(0, 1)l] Vot (4.41)

Summing up, the CLE-based model for cell population describes the QS/Fb dynamics
as having five states formally written

n(t+0t) =n(t)+S-an)dt +S-N-/an)Vet (4.42)

where n(t) = [n’(t),...nN,n5]7 contains all vectors n’(t) for the i-th cell in a popu-
lation of N cells, whose elements represent the molecules number of the intracellular
species nq,...,nyq listed in Table and ns is the molecules number of the extra-
cellular inducer AHLyt. Remember the monomer ng : (LuxR.AHL) is obtained by
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means of an algebraic equation that depends on LuxR and AHL (ny and ny4, respecti-
vely) and also interacts with the dimer n3 : (LuxR.AHL)y. Recall the output of this
system is the co-expression of proteins Pol and Lux| denoted as n;.

For equation the stoichiometry matrix S, whose elements for the i-th cell are
the stoichiometry sub-matrices Scep and the extracellular stoichiometry Sext, has the
following structure

Scen ® In | Oanix1
S = 4.43
Sext ® 11xN ‘ -1 ( )

where ® is the Kronecker product, In the identity matrix of dimension Nx N, O4nx1
and 174N are vectors of zeroes and ones respectively, J=13 is the total number of
reactions, and the coefficients in the stoichiometry matrices Scen [4x ) and Sext [1xJ]
were obtained from the set of pseudo-reactions as follows

1 -1 00 0 0 0 0O 0 0 0O 0 0

g _|0 0 11 -1 -100 000 00

ecel™1 9 0 00 0 0 1 -1 -1 0 0 0 0] (4.44)
0O 0 01 -1 0 0 0 0 1 -1 -1 1

Sext=[0 0 0 0 0000000 1 —1].

Also in (4.42)), the term a(n) ([4.45]) is the associated vector of reaction propensities,
whose elements are in turn the a(n)* propensities vector for every i-th cell in the whole
population.

am)=| |, am)i=| kg |, (4.45)

In addition, the intrinsic noise term ./\/(JNH)X(JNH) is a diagonal matrix of continuous
normal random variables with zero mean and unit variance (N (p,02) = N(0,1)),
where again there are J = 13 biochemical reactions for every cell.
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Now, we can extend the CLE-based model to add extrinsic noise. Extrinsic
noise was modeled by randomizing the values of the model parameters as in (Joo
et al.} 2013; |Toni and Tidor, 2013)). The approach can easily be integrated within the
CLE framework. Here, extrinsic noise assumes a normal distribution with zero mean
and fifteen percent variance A(0,0.15) to generate the model parameters of every
i-th cell in the population of N cells.

Figure illustrates the results obtained with the resulting model (4.42)). The spe-
cies abundance in a temporal window of 800 min for N=240 cells were simulated.
Each species has a normalized endpoint distributions computed over one realization
of the model , including intrinsic and extrinsic noise. Each species mean and
its standard deviation (1 £ o) was computed using the last one third data of each

species in the whole population, in order to avoid the effect of the transient. The
same parameters and initial conditions as the ODE model ([4.36]) were used.

Note that the average molecules of species Pol/Luxl, LuxR, (LuxR.AHL)2, and AHL
show slight differences between the deterministic (Fig and the mean trajectories
from the CLE simulation. The comparison between both the deterministic and stoch-
astic models of the QS/Fb circuit is illustrated in Fig All parameters and initial
conditions in both cases are the same. This difference comes from both intrinsic and
extrinsic noise, and it arises from the nonlinearity of the propensity of n} together with
the variance of extrinsic noise added.

As we saw in section [2.4] noise level in biological systems can be measured by the
noise strength (n? = 02/1?) that expresses how close to Poisson a given process is.
From the CLE simulations, we see that the noise level at low number of molecules
is higher than the one at large amount of molecules. This is clearly appreciated in
the AHL case (see Figl4.4 and Fig[4.5 bottom), where the noise strength of AHL is
the highest (7% = 0.2) compared to the other ones (17, = 0.18, 1%, = 0.17, and
n%; = 0.1). Additionally, all endpoint histograms of the population show a well-shaped
normal distribution, and they differ only in their means and noise strengths.

Finally, to validate this model, it is necessary to consider three important aspects: i)
could the NoQS/NoFb stochastic model can be deduced from the QS/Fb one?, ii)
can we justify the use of non-linear functions as propensities in the stochastic model?,
and iii) how do we assess the population density effect in the QS/Fb circuit to obtain
representative data?.
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Figure 4.4. Stochastic simulation of the QS/Fb CLE-based model for a cell population. (Left)
A single run computed over 800 minutes for cells for the four intracellular species, considering a
population of 240 cells. A step time § = 2.5 x 10~3 seconds and the same parameters of Table
were used. (Right) Normalized endpoint histograms for the whole population with their corresponding
probability density functions (solid line).
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NoQS/NoFb CLE-based model

The term ka in the propensity vector corresponds to the synthesis rate of
AHL by Luxl protein (ni). Luxl protein is not present in the NoQS/NoFb circuit as
was described in sections [3.3] and Therefore, the value of the rate kp in the
NoQS/NoFb CLE-based model is set to zero (ka = 0), and the initial condition of
AHLeyt n5(0) will be changed to model pulse-like (bolus) addition of external AHL
in the medium. This slight difference between both QS/Fb and NoQS/NoFb models
will be used in the next Chapter [5] for system identification.

Validation of the non-linear propensities

In many cases the use of higher-order terms in stochastic simulation is indeed justified
for the stochastic modelling and computational implementation (Cao et al., 2005}
Rao and Arkin| 2003). Usually, stochastic algorithms treat all the reaction events
alike. They will spend the great majority of their time simulating the many relatively
uninteresting fast reaction events than explicitly simulate only the slow reactions.

In biological systems, it is common that fast and slow reactions share some species. For
instance, slow reactions dependency on the fast ones is mathematically approximated
using different approaches e.g. QSSA, species invariance, or deterministic reaction-
rate equation. The first two methods have been used in this Thesis. Then, these
approaches try to treat the new rational slow reaction stochastically, and consequently
their approximations lead to the appearance of higher-order terms known as propensity
functions.

In the QS/Fb case, there is one lumped propensity function derived from the CLE-
based model and its set of reactions ([4.40)): the Hill-like function f(ns,t) for the
Pol/Luxl repression effect. A similar framework has already been used in (Woods et al.,
2016). This high-order propensity function was validated by simulating the pseudo-
reaction associated to f(ng,t) using CLE, and then comparing this result with the
one obtained by simulating the set of corresponding original reactions using Gillespie's
direct method SSA.

Particularly denoting nj :[(R.A)2] for the i-th cell, the Hill-like function f(n},t) £

Clpl kdlux“l‘alﬂé
dm; karux+nj

DNA from the corresponding gene pol/lux! into messenger RNA of pol/lux! (mPl),
which in turn is translated into protein Pol/Luxl (Pl). Recalling the fast reactions ((3.4))
involving messenger mPlI

) represents how the dimer (LuxR.AHL)y inhibits transcription of
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gPT “Ls 6P + mPI

Kux
Kdlux

gPI+ (R-A), gPI- (R-A),

lux

gPI- (R-A)y 2% gPI- (R-A)y + mPI

d
mPI <25, ¢

(4.46)

They were approximated into two equivalent reactions as ([4.40) describes

f(n3,t)
2

(R-A), (R-A), + mPI

mPT 22, ¢

(4.47)

where f(ng,t) describes the time evolution of mPI in the same way than in ((4.46]).

To validate the propensity function f(ns,t), both set of reactions were simulated. For
one single-cell (i = 1) and with the same conditions, reactions (4.47]) were ran using
the CLE, and reactions ([4.46]) were simulated using the Gillespie direct method (SSA).

Figure depicts, for one realization, how the SSA trajectory (left-top) matches very
well with the CLE trajectory (right-top) during the whole simulation time. Both SSA
and CLE trajectories have similar distributions with small differences between their first
statistical moments (ussa ~ pore, and ossa =~ ocrr) (see Figlt.6B). It can be
seen that the noise strength of mRNA ;1 /11 for the SSA distribution (n¢s4 = 0.008)
matches closely with the same for the CLE (nZ, , = 0.0072).

Finally, figure shows the Box-and-Whisker plots of messenger RNA of pol/lux!
SSA and CLE realizations. Their medians (red line) are practically the same, and
the Kruskal-Wallis test (Kruskal and Wallis, |1952)) reveals that there is no stati-
stically significant difference between their medians at the 95.0 % confidence level
([test statistic, p — value] = [—2.09067 x 106, 1.0]).

Population density effect

The CLE-based modeling approach for cell populations allow us to analyze synthetic
gene circuits with cell-to-cell communication. For the QS/Fb circuit, quorum sensing
is the signaling language among cells to send information and achieve its specific
function. As a consequence, defining the amount of interconnected microorganisms
in a culture is a key parameter to be discuss.
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The optical density (OD) is a common method for estimating the concentration of
bacterial or other cells in a liquid culture (Sutton| [2006]). Typically, the OD of a cell
sample is measured at a wavelength of 600 nm, and it is denoted as ODggg. The
OD (adim) of a cell culture depends on the number of cells, and the volume of that
culture. In the CLE-based model simulations, the number of N cells were changed in
order to obtain different OD values following the equation

1 1
R * [
Vext  Nop=i

where N is the number of cells (N = 240 bringing the OD to 0.3), Ve, = 1 x 1073
pL, N= 8 x 10° is the quantity of cells contained in 1 uL of bacterial culture when the
OD is 1 (Source: Agilent, E. coli Cell Culture Concentration from ODggo Calculator).

OD= N (4.48)

In order to see whether quorum sensing effect on our circuit depends on the cell density,
the OD was changed as a function of the number of cells and the volume. Figure[d.7A
shows the Pol/Luxl noise strength obtained at different values of OD ranging from
0.005 to 5. First, the number of cells was kept constant (N=240 cells), and the culture
volume Vet was changed from 0.06 to 0.0003 plL (blue squares). The OD ratio is
tabulated in Table[4.7] Next, we changed the cell number N and the external volume
Vext simultaneously, so as to have volumes in more realistic range for microfluidic
settings (green squares). Their values (see Table were chosen trying to keep the
same cell densities as in the first case.

Table 4.7. OD changing the cell number and volume.

Cell number fixed
N (cells) 240 240 240 240 240 240
Vext (L) 0.06 0.03 0.006 0.003 0.0006 0.0003
ODsoo 0.005 0.01 0.05 0.1 0.5 1
Cell number and external volume are variable

N (cells) 240 240 1200 2400 4800 12000
Vext (pL) 0.03 0.006 0.015 0.006 0.006 0.003
ODsgoo 0.01 0.05 0.1 0.5 1 5

Table 4.8. OD fixed.

N (cells) 240 1200 | 2400 | 4800 | 12000
Vext (pL) | 0.001 | 0.005 | 0.01 0.02 0.05
ODeoo 0.3 0.3 0.3 0.3 0.3

Moreover, to evaluate how representative of a cell population is a simulation with N
= 240 cells, the number of cells and the volume were changed to achieve a constant
cell density at different cell numbers. The cell numbers and volumes used in this case
are in the intervals: N = [240, 12000] cells and Vey, = [0.001, 0.05] uL (see Table
. Figure B shows the Pol/Lux| noise strength for different values of N ranging
from 240 cells to 12000 cells. In all cases Pol/Luxl noise strength did not appreciably
change.
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Figure 4.7. Luxl noise strength comparison at different ODggo values. (A) Lux| noise strength does
not appreciably change for different OD= [0.005, 0.01, 0.05, 0.1, 0.5, 1, 5], obtained either changing
only the volume and keeping the cell number constant in N=240 (blue squares) or when changing
both the cells number together with the volume (green squares). (B) Lux| noise strength for different
number of cells and volume, but keeping constant ODggg = 0.3.

4.4.2 Efficient stochastic simulation

This subsection revolves around four different improvements of the stochastic simula-
tion for the CLE-based model for a cell population in synthetic gene circuits. Using the
QS/Fb circuit, the improvements include: i) selection of the simulation step time, ii)
defining the number of realizations for each simulation, iii) decimation, and iv) setting
simulations using a particles simulation method.

Time step selection

Probability theory says that a Poisson random variable with large mean is well approxi-
mated by a normal random variable with the same mean and variance. For instance, if
every reaction is expected to fire many times over [t, ¢ + dt), its corresponding propen-
sity would change from Poisson to normal. Section pointed out that a reaction
firing has a Poisson distribution probability with mean X ;¢ if we consider a short time
interval.

The requirement of dt being small enough assumes a constant propensity during the
interval [0, T]. It is the first condition required to use CLE approximation. The second
condition demands Jt to be large enough so that the expected number of occurrences
of each reaction in [t,t + §t) be much larger than 1. Even though both conditions
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obviously present a trade-off, they can be simultaneously satisfied by having large
molecular population numbers (Gillespi€, [2000).

In this Thesis, the discretized Euler-Maruyama paths were specifically computed to
generate the increments §t needed in the CLE-based model . The resulting step
time is 6t = 2.5 ms. This step size was selected as the largest one that ensures the
stability and convergence of the simulation (Higham|, 2001)). In turn, initial conditi-
ons for proteins Pol/Luxl, LuxR, (LuxR.AHL)2, and the inducers AHL and AHLy
were defined as at least double than the maximum molecules number involved in one
reaction.

Number of realizations

For stochastic simulations, it is necessary quantify the number of CLE realizations
or CLE runs. Thus, it was analyzed if one realization of the CLE-based model for
the whole population is enough to characterize the long-term statistics such as mean,
variance or the noise strength of each modeled species.

Three experiments where performed with the same set of parameters and conditions
as in section First, only the steady-state portion of CLE simulations for every
cell in each experiment were selected. Then, these portions were performed on time
average, resulting in an averaged number of molecules for each species in the i-
th cell of the population. In Fig[4.8]is possible to see the matrix scatter plot of the
three realizations together. It is evident that each one of the four species long-term
distributions is unimodal and well shaped.

A Multivariable Analysis of Variance (MANOVA) (Hair and Sudrez, [1999)) analysis on
the three realizations of the four species together was performed. The MANOVA re-
sults reflect no statistically significance to reject the hypothesis of the three realizations
having the same mean and variance, with p—value = [0.1374, 0.7403], Wilk's lambda
A = [0.9829, 0.9983], and the Mahalanobis distance between the means resulted in
[0.0106, 0.0748, 0.0700]. These results justify that one realization of the population
of N interconnected cells provided with enough time to perform the time average, is
useful to obtain representatives of the long-term moments of the population.

Analyzing the QS/Fb output protein Pol/Luxl when quorum sensing (QS) occurs,
another three experiments were ran. There are three CLE realizations under the same
parameters and conditions for two different circuits: QS/Fb and NoQS/NoFb. As
above, the steady-state portion (120 last samples) of the CLE simulation of every
i-th cell in each experiment was chosen and performed the time average, resulting
in an averaged number of molecules for protein Pol/Lux| in each cell. The obtained
distributions of protein Pol/Luxl (three for each circuit) are shown in Figld.9 Again,
these long-term distributions for each NoQS/NoFb and QS/Fb circuit (Figl4.9|top and
bottom, respectively) are unimodal, well shaped, and match closely between them.
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Figure 4.9. Three different realizations for the QS/Fb and NoQS/NoFb circuits. The Kruskal-
Wallis test shows there is not a statistically significant difference amongst the medians of the 3
different realizations (under the same conditions) for both NoQS/NoFb (top) and QS/Fb (bottom)
circuits.

For the NoQs/NoFb circuit in Fig[4.9] (top), the results of the Kruskal-Wallis analy-
sis on the three realizations demonstrate no statistically significance to reject the
hypothesis of the three realizations having the same Pol/Luxl median and average
noise strength n?> = 0.1307, with [test statistic, p — value] = [0.0018, 0.9991].
The same conclusion is shown in Fig[d.9) (bottom) for the QS/Fb network with
[test statistic, p — value] = [0.0006, 0.980714]. Since the p-value is greater than
or equal to 0.05, there is not a statistically significant difference amongst the medians
at the 95.0 % confidence level.

Decimation

One realization for a population of 240 cells as in section [4.4.1} and the first moments
were evaluated for each of the species under decimation of the signals. In this case
there is only one realization. We are taking into advantage the ergodicity of the
gene expression process for only one cell. So, the moments were calculated using
the temporal average and quadratic error to estimate the mean and variance of the
process (Gupta et al.| [2014). The sampling rate of the signals was decreased following
an iterative decimation process. In every iteration we reduced the sampling rate to
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the half of its previous value, obtaining in this way a new signal with half number of
samples and double time between samples.
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Figure 4.10. Relationship between the noise strength of each species after decimation of the signals.
The noise strength starts damaging after the time step d¢t = 0.2 min, specially at low number
molecules as in the AHL case.

Figure[£.10] plots how the decimation affects the noise strength measurement in all the
species of the QS/Fb circuit. Degradation of the moments after decimation starts to
occur when increasing the step time ¢ (or decreasing the sample rate 1/§) by two orders
of magnitude in the stochastic simulations. Notice the species where degradation starts
early is the one with smaller mean (AHL).
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Figure 4.11. Decimation analysis for one species of the QS/Fb circuit. (Left top) Decimation
effect in one species noise (% ;) vs. iteration number. (Left bottom) Time step increases its value
as function of the iteration number. (Rigth) The use of memory for saving simulation data decreases
when the iteration number increases.

Figure shows how the use of memory decreases when the number of samples is
reduced by the decimation process in every iteration. From this result is possible to
see that, e.g. decimation to a time step of 10~! implies a reduction of the required
memory space to the 5% of the original. These improvements allows us to manage
the simulation results in a more easier and flexible way, when we deal with in silico
experiments including cells population like the QS/Fb circuit.

Particles simulation with OPEN FPM

In this Thesis, the CLE-based model was numerically solved using the Euler-
Maruyama discretization generating stochastic sample paths corresponding to every
CLE, where each fluctuation is a scalar independent Brownian motion (Higham)| [2008]).
The implementation of the Euler-Maruyama algorithm, of the QS/Fb circuit with a
population of N cells, was done in C++ using OpenFPI\/E} a scalable open framework
for particle and particle-mesh codes on parallel computers (Incardona et al.| 2018).
OpenFPM is a new improved version of the framework PPM (Sbalzarini et al., [2006)
allowing efficient parallel computation. The framework provides a transparent and
scalable infrastructure for shared-memory and distributed-memory implementations

2Software available at http://openfpm.mpi-cbg.de/
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of particle and mesh-particles algorithms. Among other features, it has a number
of abstractions including parametric data structures (particles and meshes), domain
decomposition strategies of the physical domain into several sub-domains to distribute
the work load between the different calculation nodes (processors), mappings, dynamic
load-balancing and iterators together with file 1/0.

The implementation of any algorithm is transparent, meaning that it is the same work
to code an algorithm for a single core, than for a multi-processors workstation or even a
cluster using always the same sets of data structures and iterations. All this allowed us
to use this implementation within an optimization design, where the objective function
includes the simulation of the circuit and has to be evaluated thousands of times. For
N= 240 cells and 6t = 2.5 x 102 sec, and during 400 min, the load of computational
cost is &2 7 sec per simulation of one set of model parameters (one evaluation of the
cost function). This, compared with the previous Matlab implementation, is 500-fold
faster (Matlab implementation took around 2 hours).

4.5 Summary

As we have seen to analyze how our genetic circuit affects intrinsic and extrinsic
noise, we needed an appropriate model and a computationally efficient simulation. For
either deterministic or stochastic models, both aspects are intertwined. This chapter
aimed at obtaining a reduced model more amenable for computational analysis, but
avoiding excessive reduction that would lead to lack of biological relevance. For both
the I1-FFL and the QS/Fb circuits, the model reduction process started from semi-
mechanistic biological models based on first-principles with high dimension and a large
number of parameters. The resulting reduced nonlinear models present incomplete
parameter identifiability, so that many parameter combinations could fit the data
equally well. We will deal with this in Chapter 5| where the type of measurements
collected from a gene circuit can and should impact the choice of model for the system
being studied.



Chapter 5

Model parameter estimation

5.1 Introduction

Identification of model parameters is an established problem in control systems tech-
nology. The new uprising of synthetic biology complexity, together with mathematical
models and several reduction techniques associated to this kind of systems have re-
vived the problem. Now, synthetic biology is reaching the situation where traditional
approaches from systems theory and identification of model parameters no longer ful-
fill the needs of the field, due to the complexity and nonlinear character of the gene
circuits being designed.

Chapter [4] exposed how to obtain a deterministic or stochastic model of a synthetic
gene circuit at a single-cell or a population levels. However, parameter estimation of
these models remains as a challenging issue because system identification is highly
dependent on the collected data, and they can typically be measured for only a few
outputs at limited time resolution. Furthermore, the interest in finding parameter
values is that a well-characterized mathematical model of a gene circuit can be used
to accurately explain the system behaviour, and design e.g. novo feedback controllers
as we will see in the next Chapter [0

The problem of parameter identification, that is, the indirect determination of the un-
known parameters from measurements of other quantities, is a key issue in computati-
onal and systems and synthetic biology (Lillacci and Khammash| 2010). Some model
parameters like binding and unbinding rates, or production and degradation coefficients
have a physical meaning. Other parameters are lumped arising from model reductions
and/or approximations. This makes more difficult the biological interpretation of their
values. Nevertheless, generally both kind of parameters have unknown values for a
particular model. Accurate parameter identification is crucial whenever one wants to
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obtain quantitative, or even qualitative information from the models. Recently, much
attention has been given to this problem in the systems biology community, either
building experimental platforms to obtain better data (Fiore et al., [2013), or using
optimization techniques such as linear and nonlinear least squares (Mendes and Kell,
1998]), genetic algorithms (Srinivas and Patnaik| (1994)), and evolutionary computation
(Ashyraliyev et al., 2008} |Moles et al.| [2003). Evolutionary computation is one of the
suggested optimization techniques for the large parameter estimation problems present
in systems and synthetic biology.

Structural identification approaches of synthetic gene circuits have been proposed as a
first step of parameter estimation (Cinquemani, 2017} [Porreca et al. [2008)). Authors
in (Chis et al| [2011) suggest the lack of identifiability is related to the structure of
the model, i.e. the system dynamics plus the observation function. So, methods
including local analyses are based on the computation of local sensitivities, the Fisher
Information Matrix, the covariance matrix, or the Hessian of the least-squares function
(Rodriguez-Fernandez et al.l [2006; Srinath and Gunawan) [2010) have been proposed.
Nevertheless, the problem becomes especially hard in models where the ratio between
the number of observables and the number of parameters is low, or when complicated
nonlinear terms, such as Michaelis-Menten or Hill kinetics, are present (Balsa-Canto
et al., 2010). This means that for both the I11-FFL and the QS/Fb models already
developed in Chapter [4] the structural identifiability shows limited operation modes.
That is, because both circuits have nonlinearities such as the monomer evolution,
and Hill functions to model the promoters dynamics. Hence, it will be impossible to
compute a unique value for the parameters independently of the available experimental
data.

Estimating parameters in nonlinear dynamic models remains a very challenging inverse
problem due to its nonconvexity, and ill-conditioning caused by over-parametrization,
experimental measurement errors, data scarcity and uncertainty (Gabor and Bangal
2015} [Kaltenbach et al.| |2009)). Moreover, for nonlinear models, the amount of infor-
mation collected from an experiment may strongly depend on the true value of the
parameters (Pronzato and Pazman| [2013)). Thus, parameter identification has been
mostly addressed by optimizing the weighted combination of different prediction errors
to obtain a single solution. Typically, this single-objective approach has demonstrated
be inadequate to address often problems found in gene networks: i) the lack of iden-
tifiability of some of them, ii) multimodal circuits with separated parts of parameter
space providing adequate fits to the experimental data, and jii) when the parameter
selection must somehow trade-off model fit against model complexity, or against extra
desired objectives. To address these situations, in this Thesis parameter identification
is approached using a Multi-objective optimization design (MOOD) (see Fig5.1))
including a global multi-objective evolutionary algorithm, and a multi-criteria decision
making strategy to select the most suitable solutions. One of the more important
applications of optimization is to use it for parameter estimation, so-called inverse
problem. That is, given a set of experimental data, calibrate the model so as to repro-
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duce the experimental results in the best possible way (Moles et all 2003)). As said
in section in the Multi-objective optimization (MO) all objectives are important.
Therefore all of them are optimized simultaneously to obtain a set of the best solutions
called the Pareto Front (not a unique solution).

S (1] NS

Experimental and Simulation

Parameters estimation
data

Obtaining parameter values

1 2 3

Cost function definition Multi-objective Visualization
Objectives with a trade-off optimization for Pareto front and decision
Identification variables

Figure 5.1. MOOD framework for model parameter estimation of synthetic gene circuits.

The first case to show the applicability of this novel methodology is the MO-based
identification of the I1-FFL model parameters that present a trade-off between dif-
ferent experimental scenarios. As a result, ensembles of local models with/without
different parameters appropriate for all experimental scenarios describe the 11-FFL ci-
rcuit's dynamics when the input is changing. The MOOD framework uses a global
multi-objective evolutionary algorithm, and a multi-criteria decision making strategy
to select the most suitable solutions. It finds an approximation to the Pareto opti-
mal set of model parameters that correspond to each experimental scenario. Thus,
the MO-based identification can fully harness parameter estimation to ensemble local
models for gene circuits. These results have been published in

e Y. Boada, A. Vignoni, G. Reynoso-Meza, and J. Picé. Parameter identification
in synthetic biological circuits using multi-objective optimization. volume 49,
pages 77 — 82, 2016c. Foundations of Systems Biology in Engineering FOSBE.

In the second case, the QS/Fb model parameters were estimated using the same
methodology. To enhance the information content of the measurable variables, we
first identify an open-loop version of the circuit (NoQS/NoFb circuit) using averaged
time-course experimental data obtained from plate readers. Then, we use steady-state
stochastic distributions provided by flow cytometry to identify the remaining feedback
gain in the QS/Fb circuit. The MO-based identification gives good identification
results for ensemble models and it is particularly useful for easily combining both
experimental flow cytometry with experimental plate reader data. Part of these results
have been published in the articles

e Y. Boada, A. Vignoni, and J. Picé. Multi-objective identification of synthetic
circuits stochastic models using flow cytometry data. Proceedings 25th Me-
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diterranean Conference on Control and Automation MED, pages 1077-1082,
2017c.

e Y. Boada, A. Vignoni, and J. Picé. Model reduction and multi-objective iden-
tification of a feedback synthetic gene circuit. IEEE Transactions on Control
Systems Technology .

The outline of this Chapter goes as follows: The first section describes the use of
local models as a result of the MO-based identification framework of the I1-FFL model
parameters. In the next section the MO-based stochastic parameter estimation
for the QS/Fb model using diverse nature of experimental data is presented. At the
end of this Chapter, section present some important remarks.

5.2 Using local models to identify the I11-FFL circuit

One of the main problems associated with standard optimization methods for perfor-
ming parameter estimation, is that they may not perform well in the case of significant
difference in the system response to different inputs. One of the reason is related to
the large-order of mechanistic models involving several variables, and used as a start
point to explain the systems'’s behavior. As we saw in sections [4.2.2] and if the
order model was reduced, it would not entirely capture the system dynamics previously
modeled. However, reduction process is especially needed to perform model parameter
estimation using experimental data of a limited number of model variables. Additio-
nally, most identification methods rely on single-objective optimization, and try to find
only one solution (i.e. only one value for each parameter)-that is, the best fit. This
best solution can be good for one set of experiments and bad for others, or it can be
acceptable for all the experiments but not really good for any one.

Several approaches have been proposed to tackle these problems. Among them, en-
sembles of local models have received much attention in the last years, when a single
set of parameters is not appropriate for all experimental scenarios. In (Steuer et al.|
2006)), local linear models at each point in parameter space where used to circumvent
lack of knowledge about the structure of kinetics by a parametric representation of the
Jacobian matrix. Then, the authors used the ensemble of models to elucidate the pa-
rameter regions associated with experimentally observed specific dynamical behaviors.
A similar approach was used by (Samee et al.| [2015). Ensembles of models, i.e. sets
of models with different structures and/or parameter values have also been used in
(Villaverde et al., [2015)), where the final prediction is obtained from a consensus one
among the models.

Here, the multi-objective optimization design (MOOD) to perform parameter iden-
tification leading to nonlinear local models of gene circuits is proposed to carry out
parameter estimation using local models for the 11-FFL circuit. Figure [5.2] recalls
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the main species involved in the circuit and their roles. But, active green fluorescent
protein (aGFP) is the output taking into account in this section.

AHLext © ®
.Yy ©

' LuxR @ 4
P,/ @ AHL aGFP%ﬁDﬂ

e T

( (RA2  Plux/cl '>
P =L {7

maturation

Figure 5.2. Representation of a I1-FFL synthetic circuit incorporating the maturation process of GFP.
Active GFP (aGFP) is the system output, whose fluorescence is measured in the lab.

5.2.1 Obtaining experimental data

The first step of parameter estimation is collected enough experimental data from the
system behavior. The I1-FFL gene circuit has two plasdmis Therefore, all plasmids
mentioned in this Chapter and the next ones were entirely built in this Thesis, and
they can be found in section

Following the implementation in (Basu et al., [2004)), the I1-FFL circuit was engineered

and implemented in the laboratory using two plasmids already described in section
[3:3:2] Their components were taken from the Lux operon in the V. fisheri
and Greenberg, (1985) quorum sensing system, the lambda cl repressor promoter and
a green fluorescent protein (GFP) as a reporter.

The next temporal experiments were performed. E. colicells (Top 10, NEB) carrying
the pCB1la and pCB1l6mut plasmids were grown overnight in Luria-Bertani (LBﬂ
medium with the appropriate antibiotics. Then, 96 well-plates were inoculated at an
optical density ODggg & 0.025 and incubated to reach an ODggpg & 0.2. At this point,
selected wells were induced with appropriate concentrations of AHL (N-3-Oxohexanoyl-

LB broth is the most widely used medium for the growth of bacteria (Bertani, et al., 1951).
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Figure 5.3. Procedure for I11-FFL identification using experimental (dashed line) and simulation (solid
line) data.

L-homoserine lactone, Santa Cruz Biotecnology Catalog Number SC205396) and incu-
bated for 200 minutes.

From each well, we obtained bulk temporal data (see section for fluorescence (F)
and absorbance (OD). These data were also post-processed following the procedure
detailed in section [2.1.4] Assuming that F is proportional to the amount of GFP
per unit of volume, and OD to the number of cells per unit of volume (Leveau and
Lindow, [2001]), then the quotient F/OD (FOD, in RLU per OD unit) is the cell density-
normalized fluorescence, and it is proportional to the amount of GFP per cell. For
example, the FOD ratio for the I11-FFL gene circuit was directly compared with the
GFP output from the 11-FFL ODE model during the MO-based identification as in
Figl5.3l Additionally, the growth rate (1) min~! deduced from the OD data will be
used for the 11-FFL model to compute the expanding number of cells in the culture,
as it was described in section

For instance, both OD and F measurements were taken with a POLARstar Omega
plate reader (BMG Labtech GmBh) with the following protocol: 2 min shaking, OD
measurement, then 15 sec pause, and Fluorescent measurement. Each condition was
performed in 4 replicates (samples under the same conditions) for 2 different days,
making a total of 8 data sets for each condition. In summary, each experiment has
5 conditions (ranging from 0 nM to 55 nM AHL), 8 data sets, absorbance and flu-
orescence measurements every At =~ 5 min during 200 min of incubation after AHL
induction. These experimental
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Table 5.1. Variables of the |1-FFL model including maturation.

Variable  Description Units
1 luxR messenger RNA nM
T2 LuxR protein nM
T3 AHL intracellular inducer nM
M LuxR and AHL monomer (LuxR.AHL) nM
x4 Dimer of (LuxR.AHL) nM
5 cl messenger RNA nM
6 cl protein nM
T7 Dimer of cl nM
g gfp messenger RNA nM
g GFP protein nM
10 Active GFP protein nM
11 AHL extracellular inducer nM
T12 Number of cells in the culture cells

5.2.2 11-FFL extended model

As a second step of parameter estimation, the ODE model was adapted to
closely relate simulation results with the obtained experimental fluorescence and ab-
sorbance data. For the I1-FFL circuit, the new model will quantify the output GFP
fluorescence emitted from individual bacteria in the growing population as a function
of the input signal AHL.,;. This leads to extend the model with two additional
states: the mature GFP concentration, and the number of cells of the culture.

Once a fluorescent protein is expressed, it must be fold into its fluorescent state in
a process known as maturation (Miyawaki et al., 2003; |Lippincott-Schwartz et al.,
2001)). Maturation can take different times depending on the fluorescent protein, its
chemical structure and its efficiency. Maturation times range from 20 (lab-enhanced
proteins) to 120 min (wild-type proteins). Maturation can be modeled as a first-order
reaction (see section[2.3)), where its rate can be calculated as In(2) divided by the time
constant of the fluorescent protein maturation, k..

On the other hand, the cells population growth among time in a realistic environment
is subject to constraints like lack of nutrients or oxygen that eventually prevent ex-
ponential growth. Hence, the number of cells (the population size x) considering a
maximum carrying capacity is given by the logistic equation z = px (1 — 2/Kpax)-
i is the specific growth rate, and K,.x is the maximum growth capacity for that
particular population (Nowak, 2006)).

Including GFP maturation and population size leads to the ODE extended model
that describes the I1-FFL dynamics using 12 states: messengers RNA with their corre-
sponding proteins mLuxR and LuxR, mcl and cl, mGFP and GFP with its mature form
aGFP, the input AHL.ys, the intracellular AHL, the transcription factors (LuxR.AHL)
and (cl)2, and finally the number of cells in the culture (see Table [5.1)).
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M is the ratio between cell population and medium. It is used

where Kcois = cell-2

to transform between extra and intracellular concentrations. Notice that the term
for the leakiness of Py cr (817426 in the model (4.27)) was eliminated from the
mGFP dynamics (ig), because the experimental value /31 is very low. Additionally,
Veel = 1 x 10715 L is the typical volume of an E.coli cell, and Vyedium = 180 L
is the cell culture used in each 96-well plate reader in the experimental set up. The
values for both the specific growth rate g and the maximum growth capacity K ax

were extracted from the corresponding OD bulk data.

The model has 35 parameters enumerated in Table Out of them, 18 are
known from the literature and were kept fixed (top of Table . Parameter esti-
mation was carried out to find values for the remaining model parameters (bottom
of Table . The model allows easier theoretical and computational analysis
than the model (4.27). However, it will be difficult if not impossible that a single set
of parameters will be appropriate for all experimental scenarios anymore. This is due
to several reasons. One is practical identifiability from just one available measured
variable (active fluorescent protein x1p). Most important, approximations done during
the model reduction process and un-modeled dynamics may show up. The strongly
nonlinear character of the model may amplify the effect of model structure mismatch
for certain regions of the state space, and/or magnitudes of the input signal.
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Table 5.2. Parameters of the 11-FFL model.

Fixed Parameter Description Value

Kmiuxr luxR transcription rate 1 min—1

[ LuxR translation rate 50 min—!

ka,k_q AHL diffusion rate 2 min—1

ka,k_y (cl)2 association, dissociation rate 0.0009, 0.6 min—1!
Cp1 Plasmid pBR322 copy number 17

Cp2 Plasmid pACYC184 copy number 15

Y2 Hybrid pLuxR/cl promoter coefficient ~ 0.02 nM
dmluxR7dmcI7dmgfp mRNAs degradation rates 0.23 min—1!

druxR LuxR degradation rate 0.0174 min—1!

dAHL, dAHL, AHL degradation rates 0.01 min—1!

dyr Monomer degradation rate 0.0174 min—1

Kmax maximum growth capacity 1.62 x 108 cells

m Specific growth rate 0.028 min~!
Unknown Parameter  Description Range of values

der, darp cl, GFP degradation rate [0.01 0.3] min—!

Y1 pLux Promoter Hill constant [50 100] nM

3 Hybrid pLuxR/cl promoter coefficient ~ [0.0001 0.5]

o Hybrid pLuxR/cl promoter coefficient  [0.0005 5]

5 Hybrid pLuxR/cl promoter coefficient  [1 100]

Epers Fpgp cl, GFP translation rate [1 60], [1 100] min—!
B1 Hybrid promoter basal expression [0 0.01]

B2 Hybrid promoter leakiness [0 0.01]

kmcl7kmgfp cl, gfp transcription rate [0.1 75], [0.1 25] min—!
k_2, k_3 Monomer and dimer dissociation rate  [0.05 0.3], [0.1 1] min—1!
k2, k3 Monomer and dimer association rate  [0.0006 0.06] min~—!

Ekmat GFP maturation time [20 120] min
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5.2.3 MO-based identification of the 11-FFL extended model

In order to successfully implement this multi-objective optimization for identification
approach (see Fig, at least three fundamental steps are required as it was exhibited
in section i) the multi-objective problem definition (MOP), ii) the optimization
process, and iii) the multi-criteria decision making stage (MCDM). This overall pro-
cedure enables us to analyze trade-offs between the objectives, and accordingly select
a preferable solution.

In the spirit of an ensemble modeling approach, the error measurements between
the experimental data and the model predictions for each inducer concentration or
condition were formulated as independent objectives to be optimized. Thus, the mean
squared errors (MSE) of the active GFP fluorescence for each input concentration
AHL.x = {5,15,25,35,55} nM are the 5 objectives to be optimized. Several
samples for every inducer concentration were taken at every ¢ = 5.65min during
approximately 200 min. Again, the bottom part of Table enumerates the model
parameters of to be identified. These will be the 17 decision variables of the
MO-based identification.

The design objectives J(#) as a function of the decision variables ¢ can be expressed
by using the mean squared error (MSE) indexes

n

Joot @ = =303 (a5, () — w0, (7)) (52)

q=1 k=1

where i is the design objective for each input value, n is the number of observation
copies measured at the instant time & for the same objective, m is the total number of
experimental observations, x4 and x1¢ are the experimental and predicted observati-
ons of active GFP at the instant k respectively. The external input signal is applied
by using the AHL inducer stimulus at tg = 0.

We look for a set of values for the 17 decision variables 6 that minimize all objectives
J(#). These five objectives are in conflict. If one tries to identify a single ensemble
of parameters, as it will be described later in Figl5.4} the best parameters achieving
minimum MSE for one concentration of the external inducer worsen the model predi-
ction performance at other concentrations of the external input signal. So, a trade-off
must be reached, treating this problem as a multi-objective case

min J(0) = [J1(0), ..., J5(0)] € R®
0eR1 (5_3)
subject to: I1-FFL model (5.1))

A first optimization of ([5.3) to obtain an initial estimation of the Pareto front and
the unknown parameters in the model was carried out. This preliminary optimization
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Figure 5.4. MO-based identification results. LD-modified representation of the Pareto Front for
each objective J;(0) colored with the three resulting clusters. Each point represent a solution of the
MOP.

can find minimum and maximum limits for the MSE of each objective J;(6), where
i = [1,...,5]. In this way, the so-called pertinency of each J;(f) was assessed.
Pertinency enclosures and enhances the search of the Pareto front, making the search
region of the decision variables space narrower. Thereby, the subsequent MO-based
identification process was done using the spMODE algorithm, with an initial population
of candidate solutions chosen randomly from a uniform distribution in the narrowed
parameters space.

In the next step, an approximation of the Pareto front with 17 solutions was obtained
(Figure [5.4), together with the Pareto set (Figl5.5]) containing their corresponding
parameters. These solutions were classified using the kmeans algorithm into three
clusters showing a trade-off between the different objectives corresponding to the
different AHLcy; induction levels. This hierarchical clustering helps to choose best
parameters for different cases. It is seen that parameters in cluster 1 (in red dots)
present small errors for the 5 nM induction, but they present larger errors for medium
and/or higher induction values. Meanwhile, solutions in clusters 2 and 3 (green and
blue respectively) perform better for medium (15 nM) and high (from 25 to 55 nM)
inductions than solutions in cluster 1. The Pareto front shows the classical trade-offs.
Thus, the red point, which the best solution for J; (5 nM) is the worst solution for all
the other objectives. Green solutions in cluster 2, are better for J; (15 nM) but not
that good for J;. Finally, blue solutions in cluster 3 are good for J5, Jy and J5 (from
25 to 55 nM) , but not so good for J2, and bad for J;.
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Figure 5.5. MO-based identification of parameters. The decision variables represented in the Pareto
set have different values depending on the cluster (blue, red, and green).

The Pareto front looks quite similar for objectives Js3, Jy and J5, corresponding to
inputs ranging from 25 nM to 55 nM respectively, as seen in Figure 5.4 Moreo-
ver the minimum values for these objectives are slightly larger than those obtained
for objectives J; and J,. Recall that these all three objectives fell within the same
cluster. This similarity may be related to the high dependence of promoter activity
on the concentration of the AHL.; induction. Although it has been shown this de-
pendence can saturate and reduce the Py and Py /o1 promoters activity at levels
of AHLcy¢ > 40 nM, there is no much difference in promoters activity for inductions
larger than 20 nM (Egland and Greenberg, [2000). This saturation is observed in the
experimental data (see Figl5.6)), and captured by the model (5.1]). Yet, also a delayed
peak is observed in the experimental results for large concentrations of the AHLy
inducer that is not completely captured by the model.

Out of the 17 estimated parameters, 5 parameters had the same value in all clusters:
v4 = 1.42, B; = 0.008, By = 0.0014, ks = 0.0006 min~! and k_5 = 0.2 min—!.
Figure shows the range of values obtained for the 12 parameters with different
values in each cluster. Notice that parameter values in clusters 2 (15 nM) and 3
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(from 25 to 55 nM) are quite alike, and distinctively different from parameter values
in cluster 1 (5 nM). As said before, this is a consequence of the saturation when the
AHL,,: concentration is increased.

A few parameters account for the difference between the model for low inducer concen-
tration (5nM), and for medium-high one (clusters 2 and 3). Note, in particular, the
difference in the monomer (LuxR.AHL) association rate ko and the dimer dissociation
rate k_3. The LuxR-family of transcription factors are believed to be largely disordered
(i.e., unfolded) in the monomeric form, becoming folded only upon dimerization in the
presence of the external inducer (Buchler et al.| [2005). Thus, for low values of inducer
one may expect larger formation of monomer (larger k3), and dissociation of dimer

(lower k_3), as is depicted in Fig[5.5]

In this context, the results presented also enable us to see that there is a big difference
between values of the degradation rate dg in the different clusters. The turnover of
active GFP clearly decreases in presence of inducer. This may be related to the maximal
capacity of the proteases that are present in a bacterial cell (Leveau and Lindow, [2001)).
Beyond a certain concentration of active GFP, their combined proteolytic activity is
not enough to reduce the increment of the GFP content.

In addition, the parameters associated with the formation of the monomer and dimer,
and the degradation rate of GFP vary, as already suggested by other studies. A
difference in the peak time between the experimental and estimated circuit output is
observed for large concentrations of the inducer. The delayed experimental response
(dots in Fig may be due to saturation effects not taken into account in the model,
and deserve further work. Although the estimated maturation time of GFP was large,
it cannot fully account for the peak delay. Some extra dynamics seem to be at play.
The overall agreement between experimental and predicted data is remarkable.

Finally, from the resulting clusters the median value of every parameter in each cluster
was selected. Figure illustrates the comparison between model predictions using
the selected values of the parameters (solid lines), and experimental data (points with
bars) for different AHL input concentrations. This validation was performed with data
sets not previously used for identification. Note that responses to induction levels
from 25nM to 55nM are very similar among them, in agreement with the Pareto front
analysis done before.

5.3 Using stochastic data to estimate the QS/Fb model

Parameter estimation in nonlinear stochastic dynamic models remains a very ch-
allenging inverse problem due to its nonconvexity, and ill-conditioning caused by
over-parametrization, experimental measurement errors, data scarcity and uncertainty
(Gabor and Banga, 2015} [Kaltenbach et al) 2009). As we have seen, the multi-
objective optimization for identification (MO-based identification) technique discussed
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spond to mean values of experimental data (different data sets that the ones used for identification),
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Figure 5.7. QS/Fb circuit rejects perturbations. Output Pol/Lux| fluorescence recovers to its
previous level after adding a concentration of AHLext = 10nM as a perturbation signal. Perturbation
is an impulse-like signal added at t = 10min, and its effect lasted around 1 hour.

in the previous section is extremely powerful, and its applicability was demonstrated
with deterministic models and using bulk time course data at the population level.
In this section, we address the problem of estimating the parameters of a stochastic
model corresponding to the QS/Fb circuit.

Recall the circuit is a feedback one devised to regulate the mean expression level of a
protein of interest, while minimizing its variance. It is not only for an individual cells,
but also across the population of cells. The strong feedback regulation embedded in
the circuit hampers the possibility of obtaining enough experimental data for parameter
estimation purposes. Indeed, perturbations can be induced in the circuit, i.e. by adding
external AHL..;. Yet, as seen in figure the circuit reacts with very fast dynamics,
so the data is not sufficiently exciting to be used for parameter estimation.

To address this problem, this Thesis propose an approach based on a two-stage esti-
mation. Recall from section the QS/Fb circuit (hereinafter referred to as the
closed-loop circuit) has its counterpart NoQS/NoFb circuit (hereinafter the open-loop
circuit). As depicted in figure the QS/Fb circuit results from introducing extra
feedback dynamics on the NoQS/NoFb one.

In the two-stage estimation described in more detail later, first the NoQS/NoFb model
parameters are obtained using time-series data of population averaged values. note
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the open-loop circuit does not present problems when excited externally, so sufficiently
rich experimental data can be gathered. In a second stage, the NoQS/NoFb stochastic
model obtained from the results in the first stage, and steady-state flow cytometry
data giving information at the individual cell level are used to estimate the parameters
of the extra feedback dynamics.

5.3.1 Obtaining experimental data

Figure explains how the two types of measurements were taken: i) bulk time-series
data of the population from the open-loop NoQS/NoFb circuit, and ii) flow cytometry
data of many individual cells across the population corresponding to the closed-loop
QS/Fb circuit.
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Figure 5.9. a) Procedure for the QS/Fb identification using bulk data (time-series) and model
predictions. b) Parameters estimation using population snapshot (flow cytometry) and the stochastic
simulation results.

Time-series data at the population level were measured in the culture samples that
followed the same protocol for bacterial growth as in section Remember that the
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input and output of the open-loop is the number of molecules of the inducer AHL ¢,
and the fluorescence signal of GFP protein (see Fig[5.9p). E.coli cells (Top 10, NEB)
carrying the pCB2tc together with the pAV02ta plasmids for the open-loop circuit,
and the pCB2tc with the pYB06ta plasmids for the closed loop circuit were grown
overnight in LB medium with the appropriate antibiotics. Then, 96 well-plates were
inoculated at ODggg & 0.05 and incubated to reach an optical density of ODggg =~ 0.1.
At this point, selected wells were induced with appropriate concentrations of AHL
(N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Biotecnology Catalog Number
SC205396) and incubated for 400 minutes. Measurements were taken with a Bio-
tek Cytation3 Imaging Plate Reader with the following protocol: 7 min of shaking,
absorbance (OD, 600 nm) and fluorescence (F) measurements. Each condition of
induction has 4 replicates, that is 4 time data sets for each one. Therefore, the input
AHLgy¢ ranges from 0 nM to 50 nM, generating time course data with OD and F
measurements every 10 minutes during 400 minutes of incubation after induction (the
full protocol is in annex . Afterwards the data was analyzed using custom scripts
implemented in Matlab as in ssection

For the flow cytometry data, both QS/Fb and NoQS/NoFb circuits were measured.
But since the QS/Fb circuit is an auto-regulated system, there is no input reference
and the output represents the GFP/Luxl dynamics together (see Figl5.9b). E. coli
cells (cloning strain DH-5«) carrying the closed-loop and the open-loop (QS/Fb and
NoQS/NoFb circuits, respectively) were inoculated from -80°C stocks into 3 mL of
LB with appropriate antibiotics, followed by an overnight incubation at 37 °C and
250 rpm in 14 mL culture tubes. When the culture samples reached an OD of 4
(600 nm, Eppendorf BioPhotometer D30), the overnight cultures were diluted 500-
fold (ODggo of 0.02) into M9 medium broth?| (MOCA amresco, Code J864-100G) with
appropriate salts and antibiotics. These were used to inoculate new cultures, which
latter were incubated for 7 hours (37°C , 250 rpm,14 mL culture tubes) until they
reached an ODggg between 0.2-0.3. At this point, cell growth and protein expression
were interrupted by transferring the culture into an ice-water bath for 10 min. Next,
50 upL of each tube were transferred into 1 mL of phosphate-buffered saline with 500
ug/mL of the transcription inhibitor rifampicin (PBS + Rif) in one 5 mL cytometer
tube, and incubated during 1 hour in a water bath at 37°C, so that transcription kept
blocked and GFP had time to mature and fold properly (see section[5.2.2)). After that,
culture samples were measured using the BD FACSCalibur flow cytometer (original
default configuration parameters), and data were analyzed using custom scripts in
Matlab (further details in annex|C.2)).

The time-series data represent the open-loop NoQS/NoFb circuit dynamics across the
cell population for AHLy inducer input values [0, 1, 10, 50] nM. As in sections[2.1.3]
and in order to compare these measurements with the NoQS/NoFb model si-
mulations, first the effect of background from the culture medium absorbance ODy,,

2M9 medium broth is a highly-referenced microbial growth medium used for the cultivation of E.
coliat slower growth rate than other ones corresponding to typical mediums like LB.
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Table 5.3. Species of the QS/Fb and NoQS/NoFb circuits.

. Species .
Variable QS/Fb circuit ° | NoQS/NoFb circuit Unit
ni GFP/Lux| protein [ GFP protein molecules
ng LuxR protein molecules
ns Dimer of (R.A) molecules
ng AHL intracellular inducer molecules
ns AHLext extracellular inducer [ AHLext input molecules
ne Monomer (R.A) molecules

and the auto-fluorescence F}, of the cells was eliminated by subtracting these measu-
rements from their corresponding temporal data. Therefore, OD = OD,,y, — ODy,
and F = F,.w — Fp. Additionally, the Plate Reader gain was also removed. Then,
the fluorescence per cell FOD = F/OD for each induction was obtained following the
same procedure from At AHLqy; = 0 nM, the NoQS/NoFb circuit shows higher
fluorescence (higher FOD) than the remaining data sets, as expected. Therefore, it
was defined as the input reference FOD,. The corresponding experimental data sets
for AHLy concentrations of 1, 10 and 50 nM were normalized with respect to the
reference before they were used in the identification process. For example, the FOD
at AHL. = 1 nM was computed as FOD; = Fl,,w — FOD,.

5.3.2 QS/Fb and NoQS/NoFb stochastic models

Recall the QS/Fb CLE-based model with the species listed in Table [4.6] Syn-
thesis of intracellular AHL molecules by Luxl protein does not take place in the
NoQS/NoFb circuit. Therefore, the model also represents the NoQS/NoFb CLE-
based model, if the synthesis rate is ky = 0 (refer section [4.4.1)). Table recalls
the species for both circuits. Table[5.4] enumerates the model parameters for both the
QS/Fb and the NoQS/NoFb circuits with 24 and 23 parameters, respectively. Out
of them, 18 parameters are known from the literature, and they were kept fixed (top
of Table . The parameters marked with an asterisk * in Table refer to the
QS/Fb system, where the gene pol/luxl is actually gfp/luxl. Yet, they also work for
the NoQS/NoFb circuit with only the gene gfp.

The parameters at the bottom of Table are the ones to be estimated. Recall for
the open-loop NoQS/NoFb circuit ka is set to zero.
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Table 5.4. Parameters of the QS/Fb and NoQS/NoFb models.

Fixed Parameter Description Value

Cr* Plasmid copy number times [ux/ transcription rate 17.5 molecules-min—1!
Cr Plasmid copy number times /uxR transcription rate 7.9 molecules-min—1!
«a Pluxr promoter basal expression 0.01

k-1 Dissociation rate of (R.A) 10 min~—!

k_o Dissociation rate of dimer (R.A)2 1 min~!

ka1 Dissociation constant of (R.A) 100 molecules

kao Dissociation constant of (R.A)2 20 molecules

dr R degradation rate 0.2 min—!

da A degradation rate 0.057 min—!

da, A degradation rate in culture medium 0.04 min—1!

dra (R.A) degradation rate 0.156 min—1!

dra, (R.A)2 degradation rate 0.017 min—1

dmr* mPI degradation rate 0.247 min~—!

dmpg mR degradation rate 0.247 min—1!

D Diffusion rate of AHL through the cell membrane 2 min—1!

Veell Typical volume of E. coli. 1.1x107? puL/cell
Vext Typical volume of microfluidic device 1x 1073 mL
Unknown Parameter  Description Range of values

pr* gfp/luxl messenger RNA translation rate [01 10] min~!
dr* Pl degradation rate [0.005 0.1] min—!
Kdlux Dissociation constant of (R.A)z to the Pjuxr promoter [1 1000 ] molecules
PR luxR messenger RNA translation rate [01 10] min—?
Kpr Fluorescence to number of molecules ratio (plate reader gain only) [0.04 5]

Kye Fluorescence to number of molecules ratio (flow cytometer gain only) [0.04 5]

ka Synthesis rate of AHL by Luxl (QS/Fb circuit only) [0.005 0.1] min—!

5.3.3 MO-based identification of the QS/Fb circuit

As in the following subsections describe the multi-objective optimization design
(MOOD) to perform the MO-based identification. First, open-loop characterization
of the NoQS/NoFb circuit using time-course data was carried out. Next, the best
resulting parameters were replaced in the QS/Fb CLE-based model, in order to perform
closed-loop identification of the QS/Fb circuit using flow cytometry.

Open-loop identification using time-course data

For the open-loop characterization, the mean square error (MSE) between the temporal
profile of fluorescence per cell (FOD) and the model predictions at different input values
was minimized, as having three different objectives, one for each of the three input
stimulus evaluated

Jla=1,...3)(0) = % > % > (fn,, (k) - n1,, (kT))* (5.4)

q=1 k=1

where 7 is the experimental observation of FOD at the instant k&, a is the objective,
q=11,...,n] is the observation replicate at time k for each objective, m is the total
number of temporal samples. The input stimulus is applied at t5 = 0. The predicted
observation nj is the result of the model simulation.
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The first five parameters from the bottom of Table are the ones to be identified
for the NoQS/NoFb CLE-based model ([4.42)), that is, the decision variables § for the
MO-based identification. Their corresponding range is also shown in Table [5.4]

Finally, the MO-based identification looked for the values of & that minimize all ob-
jectives J(0). These three objectives are in conflict if one tries to identify a single
acceptable set of parameters for all induction levels. So, a trade-off between them
must be reached. This problem can be formulated as a multi-objective one

min J(0) = [J1(0), ..., J3(0)] € R?
9ER> (5.5)
subject to: NoQS/NoFb model

As in section the selection of the preferable solution according to designer’s
criteria takes place in an a-posteriori multi-criteria analysis of the Pareto front ap-
proximation. Again, the visualization tool Level Diagram (LD) already described in
section allows users to correlate design objectives with decision variables by pro-
viding two graphs. Remember that the first graph contains each objective, where its
Y-axis is the p-norm || J(6)||, of the objectives vector, and the X-axis corresponds to
each objective value J,(0) (see Figure[5.10]A). The second graph provided by the LD-
Tool shows [|.J(0)]|,, with respect to each decision variable (see Figure[5.10B). Thus, a
given solution will have the same y-value in all graphs. In addition, the solutions were
clustered using the kmeans algorithm and all the graphs were colored by the resulting
clusters.

Closed-loop identification using flow cytometer data

After the selection of the preferable solution obtained from the open-loop identifica-
tion process, the QS/Fb stochastic model was used with the flow cytometer data to
perform another optimization in order to obtain values for the closed-loop parameters,
i.e. feedback gain or the intracellular AHL synthesis rate ko (Table .

In this context, flow cytometry data provide the distributions of each species coming
from many individual cells. These distributions are steady-state measurements of the
population fluorescence at a given time ¢. In the QS/Fb case, the output fluorescence
measured is the GFP/Luxl| content. The measurements were taken with the BD
FACSCalibur flow cytometer with the protocol shown in annex[C.2] Thus, the absolute
value of the relative errors for the mean e,, and the noise strength e,: were
optimized. The new objectives are derived by the indexes
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ﬂQSFb _KfcﬁQSFb
J4(9) = €u(QS/Fb) = @5/ L(Qs/Fb)( -

® (5.6)
Mas/Fe) ~ 1 (Qs/Fb)

J5(0) = ep2(qs/Fp) = )
(QS/Fb)

where ((gs/Fy) is the mean of the experimental data obtained by flow cytometry
for the protein GFP/Luxl, and n(QQS/Fb) is its corresponding noise strength. The

simulated mean and noise strength (i and 7?2, respectively) of GFP/Lux| (n; in the
model ) were computed from the QS/Fb stochastic model simulation, using the
previously selected preferable solution obtained in the open-loop identification stage,
and the corresponding identified parameter values.

The GFP/Lux| mean [z, and its total noise strength 77A2 are obtained from the steady-
state of the GFP/Luxl dynamics over the population of cells, where the law of total
expectation, and the law of total variance (Basak and Chabakauri, 2010)) are used. As
we will see, this procedure is also used in Chapter[6] The result is the set of equations
where nt (kT) is the value of protein GFP/LuxI (in number of molecules) at time
instant kT for the i-cell , k € N, koT is the time instant when the steady-state is
reached, k¢T is the end of the simulation, and N is the total number of cells in the
population. The mean of GFP/Lux| over the population at the time kT is m(kT) ant

is variance is s%(kT'), the long-term mean of GFP/Luxl is 1i and the variance 72.

N
=1
kg
~ 1
W= m(kT) (5.7)
ks —ko)T
(ks = ko) k=ko
- 1 & 1 o 2
2o 4 26T) + —— kT) — 1
(kg — ko)T Z s D)+ (kg — ko)T Z (m( ) u)
k=ko k=ko
~ o2
==
2

The MO-based identification process looked for the values of the closed-loop decision
variables 6 = [ka, Kqa| that minimize all objectives Jy 5(0c1). These two objectives
are in conflict, if one tries to identify a single value of parameters. Thereby, achieving
a trade-off between them can be formulated as a multi-objective problem
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min_J(0c) = [Ja(0a), J5(0a1)] € R?
Oct €3 (5.8)
subject to: QS/Fb model(4.42)

Taking the above into consideration, identification of the open-loop parameters for
the NoQS/NoFb model obtained before, together with the closed-loop parameters for
the QS/Fb model is completed.

A first optimization to obtain an initial estimation of the Pareto front and the unknown
parameters of the open-loop circuit was carried out using the equation . From
this preliminary optimization, the appropriate minimum and maximum limits for each
objective, the so-called pertinency of Jji—i ... 3(0) were found. They can be used to
enhance the search of the Pareto front in a narrower region of the parameters space
0. In both cases, the optimization was done using spMODE starting with an initial
population of candidate solutions chosen randomly from a uniform distribution in the
parameters space.

In the next step, an approximation of the Pareto front with 6 solutions was obtained
(Figure [5.10]A), together with the Pareto set (Figure [5.10B) containing their corre-
sponding parameters. These solutions were classified using the kmeans algorithm into
three clusters showing a trade-off among the different objectives. This clustering can
help to choose better parameters for different cases. The solutions are well distributed
in the pertinency range. All of them were found with less than 8% noise error, and
some of them (in particular the red cluster) even with less than 10% mean error leading
to an overall good estimation.

The Pareto front (Figure[5.10]A) analysis depicts the classical trade-offs. For instance,
red points, which are best solutions for J3 correspond to one of the worst solutions
for J1. The blue solutions, are the best solutions for J; but not so good for J; and
Js. However, in the Pareto set (Figure [5.10B) some trends can be seen. GFP/Luxl
translation rate p; has an opposite trend to the one of translation rate of LuxR pg.
The degradation of the measured protein d; has consistent values for both clusters (for
all the solutions). This value is in the limit of the initial interval for this parameter,
and it is compatible with the slowest measured growth rate of the microorganisms 140
min (see section , and equivalent to a degradation rate of d; = 0.005min~".

Figure illustrates the resulting range of values for the 5 parameters with different
values in each cluster. Out of the 5 estimated parameters, 2 parameters had appro-
ximately the same value in both clusters: d; = 0.005 min~!, Kpr = 0.05. Notice
that even the parameters with different values in both clusters share a common order
of magnitude: py is around 2 min~!, and pg is in the order of 8 min~!. Also, kqjux
has a range in the hundreds of molecules (500 to 1000 molecules), which is a smaller
interval than the initial considered optimization range (1 to 1000 molecules).

125



Chapter 5. Model parameter estimation

126

e
(o] o
= 1 o =
S ¢ < *
™ o5 =
— ° =
®
ol - 0 e
10°% 102 107 102 10" 10° 102 10" 10°
Jl : MSElnM JZ . MSElOnM J3 . MSE50nM
B o
= 4 ® = 4
~~ ~~
S S ¢
~ 05 ~ 05
p— . p—
®
0 0
12345 5 10
PI dp x10°
@
0.2 0.4 0.6 0.8

Kp:

Figure 5.10. ldentification results for the open-loop stage. (A) LD-modified representation of the
Pareto Front for each objective colored with the two resulting clusters. LD-modified representation
of the Pareto Set (B) for the 5 parameters colored with the two resulting clusters.

As a first validation of the open-loop circuit identification, one solution was chosen
from the resulting clusters (red cluster) as a preferred solution. As we can see in figures
[6.10]and [5.11] the point is suitable for minimizing the MSE in all objectives .J;, J2, and
J3. The values corresponding to this solution are listed in Table[5.5] Figure[5.12] plots
the comparison between predictions from the model and experimental temporal data for
different AHL,y; induction levels (see section , showing good agreement. This
validation was performed with time-course data not previously used for identification.

As was mentioned in section the parameters 0, = [ka, Ks] of the closed-loop
circuit were estimated using equation ((5.8)), and the solution in Table . The GFP/Luxl
protein estimations coming from long-term distributions generated by the QS/Fb sto-
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Figure 5.11. Clustering results for the open-loop stage. Values of the estimated parameters in the
three different clusters.

Table 5.5. Selected solution for open-loop circuit.

Parameter  Description Value

PR luxR messenger RNA translation rate 10 min—?!

PI gfp/luxl messenger RNA translation rate 1.98 min—!
Kdlux Dissociation constant of (LuxR.AHL)2 to the Pj,xr promoter 1000 molecules
dr GFP/Luxl degradation rate 0.005 min—1!
Kpr Fluorescence to number of molecules ratio (plate reader only)  0.04

chastic model with the previously estimated parameters were used to optimize the
best values for 6. Particularly, we used the estimation errors for both mean and noise
strength formulated in equation . The Pareto front and set obtained are depicted
in Fig. As it seen, one of these optimal solutions is the ideal one (lowest norm
to the ideal point). Following a MCDM process, the values for both the feedback and
the flow cytometer gain were optimized to

ka = 0.048 min~!

5.9
K =0.1 (5.9)

Finally, we used the values in equation for validation. The resulting histograms
are shown in Figure Histograms corresponding to the simulations of the stoch-
astic model are shown in solid colors. The purple histogram corresponds to the open
loop circuit and the orange histogram to the closed loop circuit. Experimental data
obtained via flow cytometry are plotted in black dashed lines and black lines, for the
open and closed-loop circuits respectively. As it is evident, the superposition of the
histograms are in agreement, validating both the open-loop identification process and
most importantly the reduced model obtained for the QS/Fb synthetic gene circuit.
The NoQS/NoFb stochastic model was simulated to validate the population distri-
bution using the flow cytometer experimental data of steady-state GFP fluorescence
content. In the open-loop circuit NoQS/NoFb , the GFP fluorescent output at dif-
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Figure 5.12. Comparison of predicted and experimental temporal data of the open-loop circuit
(NoQS/NoFb ) using a solution from the Pareto front.

ferent AHL induction levels were compared with their corresponding stochastic GFP
model distributions.

5.4 Summary

We have proposed a methodology based on multi-objective optimization design (MOOD)
to perform model parameter estimation of synthetic gene circuits. Minimizing the
errors between experimental data and model predictions, the MOOD found sets of
optimal values for the parameters in a Pareto front sense. Particularly, for the 11-
FFL circuit the MOOD led to an important hint when one has to calibrate biological
circuit models using experimental data: 'an ensemble of local models’. On the other
hand, for the QS/Fb circuit one of strongest feature of the MOOD technique was
dealing with large number of parameters to be identified, as well as simultaneously
including measurements from different nature like time-course data from a cell popula-
tion, or distributions data from a individual cells. The values estimated for the model
parameters will be used in Chapter [f] to perform stochastic analysis of the feedback
control included in the QS/Fb circuit.
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Chapter 6

Stochastic analysis of a
feedback control synthetic
gene circuit

6.1 Introduction

In Chapter , we discussed about the QS/Fb synthetic gene circuit, which was en-
gineered to control noise in protein expression across a cell population, leading to
robust protein production in industrial biotechnology. Chapters[4] and [f] proposed two
methodologies to model and fully characterize the QS/Fb circuit via Chemical Lan-
gevin Equation for a whole population, and Multi-objective Optimization for system
identification respectively.

Once the stochastic model has been validated, this Chapter focuses on the analysis of
the QS/Fb gene circuit. Stochastic simulations of the QS/Fb CLE-based model for
a cell population will be used to analyze the capability of the circuit to reduce noise
in protein expression as a function of its model parameters. Eventually, a sensitivity
analysis of these parameters can elucidate if some of them will require fine tuning to
achieve better performance. This will be done in Chapter[7]

Many bioprocesses aim to develop efficient production systems for heterologous protein
expression. As we have seen, heterologous protein production starts by introducing
an exogenous protein-coding gene in the cell. Traditionally, for the design, optimiza-
tion and control of bioprocesses, the population of microorganisms has been typically
considered as an aggregate quantity, characterized by averaged properties (Carlquist
et al} 2012)). Vet, it is a fact that even isogenic (i.e. with the same genetic content)
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microbial populations have certain degree of heterogeneity. Indeed, individual mi-
croorganisms, even if part of a 'clonal’ or isogenic population, may differ greatly in
terms of genetic composition, physiology, biochemistry, or behavior (Elowitz et al.).

In particular, the phenomenon of phenotypic noise is described as variation within an
isogenic population due to fluctuations in gene expression of single cells (Toni and
Tidor} [2013). This heterogeneity at the population level has been shown to be one of
the causes of productivity decrease in bioprocesses, when protein expression is scaling-
up to industrial production, as mentioned in Characterization and control of
protein expression moments (mean and variance) across the cells population is, thus,
a challenging topic (Sanchez and Kondev, 2008; Weber and Buceta, 2011} |Vignoni
et al., |2013b}; IMélykati et al., [2014} |Oyarzin et al.) of relevance also for synthesis of
commodities through synthetic pathways (Oyarzin) [2011)).

Dealing with the problems above requires both appropriate dynamic predictive models,
and designing dynamic controls of synthetic pathways and protein expression systems
(Vignoni et al.l 2013b} [Menolascina et al.| 2011} |Singh; Holtz and Keasling)). There-
fore as said earlier, the QS/Fb circuit was designed to control the mean and variance
of protein expression across a population of cells, using an interplay between an intra-
cellular negative feedback loop, and an external loop based on quorum sensing (QS)
for cell-to-cell communication (see Fig[6.1)).

Part of the contents of this Chapter appeared in the following journal and congress
articles

e Y. Boada, A. Vignoni, and J. Pic6. Engineered control of genetic variability
reveals interplay among quorum sensing, feedback regulation, and biochemical
noise. ACS Synthetic Biology, 6(10):1903-1912, 2017a. doi: 10.1021/acssynbio.
7b00087.

e E. Picé-Marco, Y. Boada, J. Picd, and A. Vignoni. Contractivity of a genetic ci-
rcuit with internal feedback and cell-to-cell communication. /FAC-PapersOnLine,
49(26):213 — 218, 2016. ISSN 2405-8963. Foundations of Systems Biology in
Engineering FOSBE.

This Chapter is organized as follows. Section revolves around the methods used to
perform in silico and in vivo experiments, respectively. Section demonstrates how
the proposed QS/Fb circuit attenuates gene expression noise of the protein of interest.
In both sections and the benefits of having feedback and/or QS are analyzed
with respect to both intrinsic and extrinsic noise. In turn, sections[6.6] and[6.7] describe
how to improve noise reduction by tuning some circuit parameters. Finally, in section
[6.8] some conclusions are exposed.
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Figure 6.1. QS/Fb circuit combines an intracellular negative feedback loop and quorum sensing based
cell-to-cell communication system to attenuate gene expression noise of the protein of interest.

6.2 QS/Fb gene circuit analysis

Once the QS/Fb stochastic model was characterized and validated, it is important to
highlight some aspects. The circuit uses the repressible promoter Pj,xr to implement
a negative feedback loop over the gene that codes for the protein of interest (Pol),
and adds a QS mechanism based on N-acyl-L-homoserine lactone (AHL) to induce
population consensus, as was mentioned in [3.3] Using the CLE-based model for a
cell population stochastic described in and the impact on noise strength
of some key circuit parameters such as promoters or RBS was explored. Remember
the promoter is a biopart that can restrict the transcription rate of a gene into its
messenger RNA, and the RBS is another biopart which defines the translation rate of
the messenger RNA into its corresponding protein (see Fig.

Recalling the five species for both gene circuits are properly distinguish in Table
According to figure [6.2p) to assess the role played by feedback and QS and, the
proposed circuit was compared with:

1. NoQS/NoFb circuit. Recall this circuit has no quorum sensing to control ex-
pression of the protein of interest (see Fig). Its model was characterized in

section with (ka = 0 min™1),

2. NoQS/Fb circuit. It has a feedback loop but no quorum sensing, making the
diffusion rate of AHL molecules null (D=0 min~1).

The stochastic model of the QS/Fb circuit (see section was used to
explore the impact of some key circuit parameters on noise. As control circuit to
compare with, the second model of the NoQS/NoFb circuit, which removes both QS
and the feedback loop was considered. For the computational analysis, this accounts
to setting the synthesis of AHL to zero (ka = Omin~') in the model (4.42). This
condition is achieved in the lab experimental implementation by taking out the gene
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Figure 6.2. (A) QS/Fb scheme has each Pol and Luxl protein with its corresponding promotor and
two different RBS downstream of LuxR protein (not represented). (B) NoQS/NoFb circuit has no LuxI
protein, so one RBS of the protein of interest is the only difference with respect to the QS/Fb system.

Table 6.1. QS/Fb and NoQS/NoFb species.

Species

Variable |\ —ao 7t circuit [ NoQS/NoFb circuit | O™t
ni GFP/Lux| protein [ GFP protein molecules
no LuxR protein molecules
ns Dimer of (R.A) molecules
ng AHL intracellular inducer molecules
ns AHLext extracellular inducer [ AHLext input molecules
ne Monomer (R.A) molecules

coding for Luxl, as mentioned in subsection @} To asses the effect of cell-to-
cell communication, a hypothetical circuit with feedback but without quorum sensing
(NoQS/Fb, D = 0min~!) was also analyzed. Notice the circuit NoQS/Fb cannot
actually be implemented for it assumes there is no diffusion of the autoinducer molecule
across the cell membrane. Yet, it is useful as a computational thought experiment to
account for the contribution of the cell-to-cell communication.

6.2.1 Getting statistical moments and minimising stochastic
realizations

Gene expression noise was evaluated using the squared coefficient of variation, i.e. the
noise strength measure that was described in section This measure properly
captures the contributions of both intrinsic and extrinsic noise, and allows comparisons
for different expression rates.
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The general procedure illustrated in Fig[6.3] was followed, using the guidelines defined
in[4.4.2) for efficient simulations to obtain the noise strength. In this way, we performed
for different combinations of model parameters temporal simulations of each species
in the QS/Fb circuit (in number of molecules) inside every i-th cell in the population.
Again, extrinsic noise was modeled by randomizing the values of the model parameters
using a normal distribution with a variance of 15%. The models were implemented
using OpenFPM (refer to . The corresponding code is available in annex

The procedure goes as follows:

1.

First, a simulation was ran with a population of N = 240 cells in a culture
volume of 1073 uL, corresponding to an optical cell density ODggg = 0.3, for
400 minutes. Cell density variations did not appreciably change the results,
confirming the results in (Tanouchi et al.,|2008]). The defined value of N provided
a good representative of a cell population, as confirmed by comparing with
cell populations up to N=12000 without significant variations in the population
distributions obtained for each species. It was described in section From
this simulation, 240 time courses corresponding to the protein expression levels
in time for each one of the 240 cells in the population were obtain. The first 134
minutes of simulation were discarded to ensure the system has reached steady-
state, using the time samples corresponding to the last 266 minutes (around
100.000 time samples). This is depicted in Figl6.3A.

With these 240 time courses, the first two statistical moments mean (u) and
the variance (02) for each species in the cell across the population at every time
instant ¢, were calculated. From these moments, long-term distributions were
computed to infer the noise strength of each species (see Fig[6.3B).

Then, using the time-mean across the population, the temporal mean was ca-
Iculated. This gave us representative long-term means of the protein levels in
the population (see Fig[6.3|C). We used the law of total expectation (Basak and
Chabakauril, [2010]).

The long-term variance was also calculated by using the law of total variance,
that is, the total variance is the sum of the mean of the variance plus the variance
of the mean (Basak and Chabakauri, [2010). In particular, each stochastic model
was checked if one realization of the population of N cells is enough to obtain
unbiased values of the long-term moments of the population as in section [4.4.2
The results confirmed that 400 min is enough time to perform the corresponding
average among time described in Fig6.3C.

Finally, the noise strength (n? = (o/u)?) is then calculated with the total mean
and total variance of the system. In this way we incorporate and aggregate all
the noise (intrinsic) coming from the different cells in the population (extrinsic).
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The last two steps were performed to obtain the long-term statistics using only one
realization of the simulation, so the computational burden was reduced. One can do
this if the system is ergodic, that is, if enough time averaging along one realization
is equivalent to getting statistics from many realizations at each time instant. Th-
eoretically proving ergodicity is difficult for the proposed system, so ergodicity was
computationally assessed. Consequently, both QS/Fb and NoQS/NoFb circuits are
ergodic systems unless their stochastic simulations have not enough time.
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Figure 6.3. Methodological procedure to obtain the statistical moments from stochastic simulati-
ons of the circuit. (A) Temporal evolution of one species in the population of cells. (B) Distribution of
the number of molecules across the population at each time instant. (C) Acquisition of the long-term
distribution for each species. (D) Noise strength map for varying model parameters.

6.2.2 Computational analysis

Noise strength maps for different sets of varying model parameters were generated
(see Fig). Hence, the effect of variations in parameters associated to expression
of Luxl and LuxR, as they are as key parameters in the QS/Fb circuit were explored.
Table lists all the parameters of the QS/Fb CLE-based model, including the six
ones for Luxl and LuxR expression. In the case of Lux| production, there are three
parameters whose values were changed: the dissociation constant kgy,x between the
transcription factor (LuxR.AHL)y and the repressible Py g promoter, the translation
rate pr, and the leakage «a of the Pjxg promoter. They were sampled in the ranges
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Table 6.2. Parameters of the QS/Fb and NoQS/NoFb models.

Fixed Parameter

Description

Value

Cr Plasmid copy number times lux/ transcription rate 17.5 molecules-min—1!
Cr Plasmid copy number times luxR transcription rate 7.9 molecules-min—!
ka Synthesis rate of AHL by Luxl (QS/Fb circuit only) 0.04 min—1!

k_1 Dissociation rate of (R.A) 10 min—!

k_o Dissociation rate of dimer (R.A)2 1 min~!

k41 Dissociation constant of (R.A) 100 molecules

kqo Dissociation constant of (R.A)2 20 molecules

da A degradation rate 0.057 min—!

da, A degradation rate in culture medium 0.04 min—!

dra (R.A) degradation rate 0.156 min~—!

dra, (R.A)2 degradation rate 0.017 min~!

dmjy mPI degradation rate 0.247 min—!

dmpg mR degradation rate 0.247 min—!

dy Pl degradation rate 0.027 min—!

D Diffusion rate of AHL through the cell membrane 2 min—!

Veell Typical volume of E. coli. 1.1 x 1079 L /cell
Vext Typical volume of microfluidic device 1x 1073 mL
Changed parameter  Description Range of values

« Pluxr promoter basal expression [0.01 0.1]

pr* gfp/luxl messenger RNA translation rate [02 10] min~!
Kalux Dissociation constant of (R.A)z to the Pj,xg promoter  [10 2000 ] molecules
PR luxR messenger RNA translation rate 2 or 10 min—!

dr R degradation rate [002 0.2]min!

Kdiux = [10 — 2000] molecules, o = [0.01 — 0.1], and p; = [0.2 — 10] min~! selected
from the literature (Salis et al.} 20093} [Egbert and Klavins| 2012} |Schmidl et al.,2014)),
and experimentally achievable in the lab.

As for LuxR, two values were considered for the translation rate pg: a strong RBS
(pr = 10 min™!), and a medium-weak one (pr = 2 min~!). In addition, the effect
of different degradation rates dg in the range [0.02 — 0.2] min~! was analyzed. For
the case of the low mean scenario in Fig[6.7} simulations in the following range p; =
[0.004 — 0.02] min—! were also included.

Notice from the ODE model (4.36]) that although only variations in the translation

rates p; and pr were considered, these are tantamount to considering variations in

the lumped values g:fl’l, %RPR corresponding to the products of protein burst size,
1 mpg

transcription rate and gene copy number. Variations in translation rates were assumed,

just because they are relatively simple to modify in a graded way by tuning the RBS

(Salis et all [2009a)), though also transcription rates could be easily tuned (Brewster

et al.| [2012).
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Figure 6.4. Representative computational (A) and experimental (B) population histograms of Luxl
noise strength for QS/Fb (orange) showing a narrower gaussian-like distribution as compared to the
Poisson-like one of NoQS/NoFb (purple).

6.2.3 Experimental analysis

To validate the in silico computational results, the QS/Fb and NoQS/NoFb circuits
were implemented in vivo according the protocol Strains and plasmids already mentio-
ned in section There are two types of data that were collected on the QS/Fb and
NoQS/NoFb circuits operating in vivo: i) time-series data for the whole population,
and ii) flow cytometer distributions for every cell in the population (refer section
5.3.1)).

6.3 Quorum sensing and negative feedback attenuate
gene expression noise

In the Thesis, the question whether the proposed QS/Fb circuit effectively reduces
noise strength with respect to the circuit NoQS/NoFb (Figl6.2B) was addressed. The
last one consists of the LuxR expression on the one hand, and the protein of interest
(Pol) downstream the Py,xr repressible promoter, without the /ux/ gene coding for
Luxl protein, on the other. Since no autoinducer AHL is neither produced nor externally
introduced, there is no repression, so the expression of Pol is essentially a constitutive
one. This corresponds to the Poisson distribution observed in the purple population
histogram in the left panel of Fig. Conversely, the QS/Fb histogram departs
from the Poisson distribution to become a narrow Gaussian-like one in the orange
population histogram in the left panel of Fig[6.4] This fact, and the reduction in the
mean expression value, indicate the strong presence of regulation. In both cases the
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nominal circuit parameters defined in Table were used. Since the protein Pol is
co-expressed together with Luxl in the QS/Fb system, this Pol/Lux| co-expression will
be referred hereinafter Luxl.

Reduction in noise strength was not due to a particular choice of the circuit
parameter values, but a property of the proposed topology. Figure depicts
Luxl noise strength vs. mean expression for 60 different combinations of the Pru g
characteristics for both QS/Fb (orange points) and NoQS/NoFb (purple points). The
points in the figure correspond to the mean values across the cells population for each
combination of parameters using both QS/Fb and NoQS/NoFb CLE-based models
from section [6.2.2] The magnitude of noise strength reduction was larger for medium
values of mean protein expression. Noise strength levels were similar for all mean
expression values in the case of the NoQS/NoFb circuit. Mean expression values in
this case depend only on the translation rate p; for which five discrete values were
used, inducing the five mean values seen in the figure. In contrast, the QS/Fb circuit
showed lower values of noise strength and more graded values of the mean expression
level, as it depends on the combination of all three parameters varied.

More importantly, noise strength was consistently lower for the QS/Fb circuit. Taking
together all the different combinations of promoter parameters for each circuit, and
the average noise strength was significantly reduced by 41% in the presence of quorum
sensing and negative feedback as shown in Figl6.5B.

For the given fixed LuxR expression parameters, the noise strength reduction in LuxI
showed a clear dependence on its mean expression level. In Figure [6.5C the minimum
and maximum values of Luxl noise reduction are plotted as a function of its mean
value. In the range between 600 and 6000 Lux| molecules it was possible to reduce
the noise variance at least in 35% in the worst case scenario, with a maximum reduction
of around 70% for means between 2000 and 3000 molecules.

In this context, the Lux| expression parameters in the ranges of kqjux = [10—2000] nM,
a =[0.01—0.1], and p; = [0.2—10] min~!, together with the LuxR parameters in the
intervals of dg = [0.02 — 0.2 min~—!, and pg = [0.2 — 10] min~! were also sampled.
The simulation results are showed in Fig In the top panel, dg = 0.02min~! and
the different colors code for several values of pg. The same, for the central panel
with dg = 0.07min~! and the bottom panel dg = 0.2min~'. Thereby, changing the
parameters of LuxR protein expression showed a trend consistent with the findings in
(Tanouchi et all [2008)), that is, the higher values of translation pg and degradation

dr are, the larger the noise reduction (see Figl6.6] and Fig[6.10).
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Figure 6.6. Luxl noise strength vs. Luxl mean. Increasing the LuxR turnover as a function of the
degradation rate attenuates Lux| noise strength: dg = 0.02min~?! (top panel). dg = 0.07 min—1!
(central panel). dg = 0.2min~! (bottom panel).

6.3.1 Experimental results confirm computational predictions

Experimental implementation of the proposed QS/Fb circuit would not only allow
a preliminary experimental validation of its capability to reduce noise strength, but
would also further validate the model parameters used throughout this study, as was
already demonstrated in section for system identification. The experimentally
implemented NoQS/NoFb and QS/Fb circuits and their data were compared with the
computational ones using the ad hoc Matlab scripts for gating the appropriate culture
samples (refer annex for further details). As model parameters, p; = 0.4 min~!,
kaiux = 200 molecules, oy = 0.01, dg = 0.07min"!, pr = 4min~"' were used, and
nominal values in Table[6.2] otherwise. Notice that from the closed-loop identification
in section @ we obtained the feedback gain (synthesis rate of AHL) as ky = 0.048
min~?! (see Fig ED In practice, this value is the same to the one showed in literature
ka = 0.04 min—!. Thereby, this last one was used in all simulations.

The steady-state population histograms of Luxl for the circuits QS/Fb (orange) and
NoQS/NoFb (purple) under the same experimental conditions are depicted in Fig.
The computational predictions are in the left panel, while the right panel shows flow
cytometry experimental results. Both results were qualitatively comparable without
any tuning, fitting or change in the model parameters. This only required a common
scaling factor to convert from relative units of fluorescence to number of molecules (see
annexfor further details). The experimental results showed Lux| noise strength re-
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Figure 6.7. Comparison between experimental data and different scenarios evaluated computatio-
nally. (A) Experimental data of protein abundance and noise in E. coli taken from (Taniguchi et al.
2010) is plotted as black dots. The dashed red and blue lines are the intrinsic noise limit and the
extrinsic noise limits respectively, taken from the same reference. Simulations of the gene circuits in
our study, including both intrinsic and extrinsic noise, are plotted using purple dots (NoQS/NoFb),
green (NoQS/Fb) and orange ones (QS/Fb). Simulations including only intrinsic noise are plotted
as crosses: violet (NoQS/NoFb), green (NoQS/Fb) and orange (QS/Fb). (B) Zoom of the scenarios
considering both intrinsic and extrinsic noise (top) and only intrinsic noise (bottom).

duced by 31.5% meanwhile the computational simulations predicted a 33.6% reduction

(Fige.5pP).

6.4 Feedback pays-off when extrinsic noise dominates

At this point the question arises as to what are the roles of quorum sensing and
feedback in noise strength reduction, and what are their effects in view of both intrinsic
and extrinsic noise.

To answer this question, first of all, the computational results using available experi-
mental data of noise strength and protein abundance in E. coli were contextualized.
Experimental data taken from (Taniguchi et al., |2010) were plotted against the com-
putational results in three scenarios: i) base control circuit with no quorum sensing or
feedback (NoQS/NoFb, ks = 0), ii) only the QS/Fb circuit , and iii) the hypothetical
circuit with feedback but without quorum sensing (NoQS/Fb, D = 0). For each sce-
nario, different combinations of parameters were considered. The values of the mean
protein number are in the range [1 — 105], as was enumerated earlier.
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Figure shows the experimental data plotted as black dots. The dashed red
and blue lines are the intrinsic and extrinsic noise limits respectively, taken from the
same reference above. Simulations including both intrinsic and extrinsic noise are
plotted as purple dots (NoQS/NoFb), green (NoQS/Fb) and orange ones (QS/Fb)
using the same data as in Fig. [6.5]C. These computational results closely match with
the experimental data and derived limits in (Taniguchi et al.,, 2010). The results
corresponding to the base control circuit NoQS/NoFb clearly were over the noise
limits.

Unexpectedly, noise strength of both circuits QS/Fb and NoQS/Fb showed very similar
behavior. As shown in the upper panel of Fig. , the QS/Fb and NoQS/Fb points
lay in the same region. For medium and high mean protein expression values noise
strength in QS/Fb and NoQS/Fb decreased just below the reported extrinsic noise li-
mit, and well below the noise strength for the base NoQS/NoFb circuit. Though high
protein expression are of main interest for the intended application of the QS/Fb ci-
rcuit in an industrial biotechnological context of heterologous protein production, it
is also interesting to analyze the performance of these circuits at low mean protein
numbers. Essentially, the situation in this region was reversed. The open-loop circuit
NoQS/NoFb showed consistent lower noise strength values than QS/Fb and NoQS/Fb.
Therefore, feedback contributed to reducing noise strength for medium-high protein
expression where extrinsic noise dominates.

6.5 Quorum sensing helps feedback to cope with intrinsic
noise

The last result was inconclusive about the contribution of quorum sensing to reduce
noise strength. To settle this issue, | concentrated the analysis in the medium-high
protein expression region where feedback contributed to reduce noise strength and
extrinsic noise dominates.

Here it is important to elucidate whether QS mainly contributed reducing the in-
trinsic component of noise. If this was the case, its effect could be masked by the
dominant extrinsic noise. To that end, simulations for the same combinations of para-
meters as before, but suppressing extrinsic noise, and considering the three scenarios
NoQS/NoFb, QS/Fb, and NoQS/Fb were carried out. The results are shown in Fig.
6.7, plotted as violet (NoQS/NoFb, ky = 0), green (NoQS/Fb, D = 0) and orange
crosses (QS/Fb). The bottom panel of Fig. shows a zoom into the relevant
region. Introducing either feedback alone or feedback plus quorum sensing increased
noise strength values with respect to the minimal base control circuit representing
plain constitutive protein expression. The results for this base NoQS/NoFb circuit
were along the intrinsic noise limit (Taniguchi et al.| [2010). These results were con-
sistent with the findings at low mean protein values where intrinsic noise dominates.
The circuit NoQS/Fb with feedback and no cell-to-cell communication showed higher
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Figure 6.8. Luxl noise strength reduction as a function of circuit parameters. Color map of the
reduction of Lux| noise strength when QS is added to Fb w.r.t. the dissociation constant kqgjux and
the Luxl translation rate py. All other parameters were set to their values from Table Left) Tight
promoter o = 0.01. Right) Leaky promoter o = 0.1. (A) Only intrinsic noise is present. (B) Intrinsic
noise and additive extrinsic noise. (C) Intrinsic and parametric extrinsic noise.

values of noise strength, specially for lower values of mean protein number. Finally,
reintroducing quorum sensing (QS/Fb) was able to slightly improve noise strength.

To confirm this outcome, the difference between the noise strength in Lux| between
the circuits QS/Fb and NoQS/Fb when only intrinsic noise is present, was evaluated
as a function of circuit parameters associated to Lux| expression. As the LuxR para-
meters used before were close to be a best case scenario (see Fig, this time a
smaller translation rate pg = 2 min~—! was used, corresponding to an average scena-
rio. Figure [6.8A depicts the noise strength map difference for different combinations
of the dissociation constant kqjuy vs. the Luxl translation rate py for a tight promoter
Pruxr, @ = 0.01 and a leaky one a = 0.1 in both noise scenarios. The noise strength
reduction when QS was added reached a 100% for low values of pr. Increasing the
dissociation constant improved noise reduction, specially for a leaky promoter.

This previous result suggested that the effects reported in the literature showing a
reduction in noise strength as function of QS, are a consequence of modeling extrinsic
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noise as an additive signal. In the Thesis, this hypothesis was confirmed when besides
intrinsic noise, an additive extrinsic noise was added to the QS/Fb system. Extrinsic
noise has variance independent of the system states. Figure [6.8B illustrates that, in
this case there was also a generalized noise strength reduction for most parameter
combinations.

Finally when extrinsic noise as parametric variability was restored, the results showed
that adding QS may increase or decrease noise strength (see Fig) strongly depen-
ding on the values of the circuits parameters, and suggesting that getting benefit of
QS for medium-large mean expression values requires fine-tuning and optimizing the
circuit parameters. This will be further developed in Chapter [7]
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Figure 6.9. Luxl noise strength and mean as a function of circuit parameters. Color map of Lux|
noise strength w.r.t. the dissociation constant kqj,x and the Luxl translation rate p;. The level curves
correspond to the mean number of Luxl molecules. (A) Strong LuxR RBS with pg = 10 (1/min).
(B) Medium-weak LuxR RBS with pg = 2 (1/min).

Dependence of mean expression and noise strength on the Qs/Fb circuit parameters
is a key factor to understand for the circuit to be of potential practical usage. In
this perspective, in silico experiments were ran in order to estimate the noise strength
and mean expression value of Luxl, as a proxy of the protein of interest (Pol), for
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different sets of the circuit parameters associated to Luxl expression, as we saw in
section Only two values for the basal expression, corresponding to a tight Prucr
promoter (o« = 0.01), and a leaky one (« = 0.1) were evaluated. As for LuxR, |
also considered two values corresponding to the two scenarios before: i) a strong RBS
(pr = 10 min~1) close to a best scenario for noise reduction, and ii) a medium-weak
one (pr = 2 min~1). All other parameters kept their nominal values from Table
Notice that although some variations in the translation rates p; and pr have been
considered, in the QS/Fb model these are tantamount, making equivalent variations
in the lumped values of the corresponding products of protein burst size, transcription
rate and gene copy number (refer section [6.2.2).

Figure [6.9] shows the noise strength map for different combinations of the dissociation
constant kqjux vs. the Luxl translation rate py considering both a tight promoter Py xr

(a =0.01, Figl6.9A), and a leaky one (o = 0.1, Figl6.9B). Different Lux| expression
levels computed in protein number are shown as contour lines.

The mean expression levels of Lux| presented general monotonous trends in all cases. It
increased for simultaneous rising of the dissociation constant and the Luxl translation
rate. On the other hand, increasing leakiness of the Luxl promoter did tend to lower
mean expression levels of Luxl| for low values of the dissociation constant. Finally,
using a weaker RBS controlling the translation of LuxR (see Fig. ) produced a
steeper increasing of the mean expression level as the dissociation constant, and the
Lux| translation rate increased.

Noise strength did not show simple patterns as a function of the circuit parameters.
Larger variations between high and low noise strength values were observed for stronger
LuxR RBS (Fig. ) independently of the leakiness from the P g promoter. In this
case, the lowest values of noise strength were achieved for values of the dissociation
constant kqpux in the range [100 — 500] molecules, and values of Luxl| translation rate
p1 in the range [2—10] min~!. The mean expression levels in this region were between
2-10% and 4-102 proteins, in agreement with the results shown in Fig. Decreasing
the LuxR RBS strength kept the the values of minimal noise strength essentially in
the same region, but with higher values (Fig. [6.9B). The same trend towards higher
values of noise strength was observed when the tight promoter Pj,xg was changed for
a leaky one. This was more evident when a stronger LuxR RBS was used (Fig. [0.9]A).

6.7 Fast LuxR turnover reduces Luxl noise strength

Finally, the effect of LuxR expression parameters over Luxl mean expression level and
its noise strength we analyzed. In particular, we were interested in the effect of the
LuxR translation rate pg, as the main tuning knob of Luxl mean expression level, and
the one of the degradation rate dg.
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On the one hand, LuxR synthesis rates proved to be a good sensitive tool to tune
the desired Luxl mean expression level, with larger values of the last as the former
decreased. Fig. [6.10] plots the Luxl noise strength maps and mean expression level
curves as a function of the LuxR translation rates in the range 0.2 to 10 min—!, and
LuxR degradation rate in the range 0.02 to 0.2 min—!. The Luxl translation rate was
fixed to two values py = 2 min~! and p; = 4 min~! around its nominal value , and
considered both a tight Pjuxr promoter (o = 0.01) and a a leaky one (o = 0.1). All
other parameters were kept to their nominal values described in Table [6.2}

On the other hand, Luxl noise strength decreased with LuxR fast turnover was confir-
med. Unlike suggested in (Tanouchi et al., 2008), the decrease is not uniform, having
optimal values for dg in the range 0.07 to 0.2 min~! when LuxR translation rate pg
had medium to high values in the range 2 to 10 min—!, as was described in section
[6:2:2] The mean expression level was not very sensitive to the LuxR degradation rate,
with a slight increase as the degradation rate increased.
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Figure 6.10. Luxl noise strength vs. LuxR parameters. Luxl noise strength maps and mean
expression level curves for a tight Pj,xg promoter (oo = 0.01, top) and a a leaky one (o = 0.1,
bottom) with Luxl translation rates p; = 2min~! (left) and p; = 4min—! (right) around its nominal
value.
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6.8 Discussion

The results show that the proposed QS/Fb synthetic gene circuit benefits from the
interplay between feedback and cell-to-cell communication, allowing us to control of
the mean expression level and noise strength of a protein of interest. A few circuit
parameters easy to tune in the wet-lab can be used to achieve noise strength reductions
up to a 60% with respect to constitutive expression of the protein of interest Pol.

Mean expression level and noise strength are not independent goals. At low mean
values intrinsic noise dominates and sets the minimum noise strength attainable. At
high mean values extrinsic noise dominates. Thus, there is a trade-off between ex-
pression level and noise strength, as revealed both by system-wide experimental data
and theoretical analysis reported in the literature. Our computational results fitted
well in this scenario, and suggest that tuning synthetic gene circuits to minimize noise
while achieving a desired expression level will require a multi-objective optimization
approach.

For high mean expression values, a clear benefit of having feedback as compared to
constitutive expression was observed. Even if achieving best noise suppression requires
an optimal feedback tuning, as already seen e.g. in (Toni and Tidor, [2013), noise
reduction due to feedback was essentially structural, i.e. independent of its parameters,
in this high mean expression region. Yet, adding quorum sensing on top of feedback
did not decrease noise strength unless the circuit parameters are tuned. That is,
the benefit from adding cell-to-cell communication is not structural, but depended
on proper choice of the circuit parameters. This result is somewhat counter-intuitive
and does not fully agree with previous works reporting a reduction of extrinsic noise
in quorum sensing-based gene circuits, e.g. (Tanouchi et al., [2008)), that reported
a structural benefit. This may be explained by the different approaches to model
extrinsic noise.

While in the Thesis, extrinsic noise has been modeled as parametric variability, most
often in the literature extrinsic noise has been added as an additive stochastic signal.
This is essentially analogous to the intrinsic noise term. Thus, if we considered a
scenario with intrinsic noise and no extrinsic one while keeping medium-high expression
means, our results also showed an important reduction of noise strength when quorum
sensing was added to feedback. Although the amount of reduction depended on the
circuit parameters, noise reduction was observed for almost any combination of them.
Moreover, considering additive extrinsic noise, then qualitatively similar results to the
ones when only intrinsic noise is present were obtained.

Two different gene circuits (QS/Fb and NoQS/NoFb ) will result in different levels of
noise because their physiological effects on the cell will be different. Yet, the chances
that adding an extra random structure on top of a given circuit will result in a extremely
low noise reduction. Thus, in the hypothetical scenario with no extrinsic noise, we also
found that adding either feedback or feedback and quorum sensing increased the noise
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strength with respect to the open-loop (NoQS/NoFb) constitutive gene expression
circuit. This result might be explained by the increased complexity introduced by these
circuits (Potvin-Trottier et al.,[2016). However, circuit complexity is not the only factor
contributing. On the one hand, the circuit with quorum sensing and feedback (QS/Fb)
achieved lower average noise strength values than the less complex only-feedback one
in this scenario (NoQS/Fb). On the other hand, when extrinsic noise was present
constitutive expression was clearly noisier than any of the more complex QS/Fb and
NoQS/Fb circuits for high protein mean expression values, though not for low ones
where intrinsic noise dominates. Thus, the circuit complexity contribution to noise
depends not only on its size, but in the interplay between size and noise structure. Also,
at the mean expression of the protein of interest for industrial biotechnology (medium-
high range), tuning circuit parameters with both quorum sensing and feedback clearly
allows both intrinsic and extrinsic noise to be coped with, independently of the circuit
structure.

The experimental results, though preliminary, showed a high concordance with the
computational ones and confirmed the capability of the proposed QS/Fb circuit to
reduce noise strength.
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Chapter 7

Performance tuning via
multi-objective optimization

7.1 Introduction

Up to now, we have discussed about how to extract information from a gene circuit
model to design and construct this circuit in the lab. Nevertheless, several problems
arise when building up biological devices by combining parts. First, composing different
biological parts and devices together can be difficult, even if assuming a synthetic
circuit structure has been properly designed to have a pre-specified dynamic behavior.
This is because the desired input and output levels of a module are often unknown,
difficult to measure quantitatively, or difficult to compare. Next, the ratio part/device
performance may be altered due to the interaction of loads in the combined system, the
so-called retroactivity (Jayanthi et al.,[2013]). Along with this, there is an ever-growing
appreciation for biological complexity, which requires new circuit modeling and design
principles to overcome barriers such as metabolic load, cross-talk, resource sharing,
and gene expression noise (Church et al., 2014} IMélykati et al.} [2014; |Oyarzin et al.;
Picé et al. 2015). Finally, one must never forget the gap between computational
or dry-lab design, and wet-lab implementation. In practice, biological parts are
subject to uncertainty. Circuit structure design and parameters tuning methods must
cope with this uncertainty in the biological parts and context to narrow the gap.

To this end, the modular and systematic design of gene circuits saw in Chapter [} i.e.
the systematic way of finding combinations of components from a library of standard
parts allowing to optimally perform a pre-defined function, can be formulated using
an optimization framework (Feng et al.| [2004; [Dasika and Maranas| 2008} |[Rodrigo
et al} [2007). Advanced optimization-based methods, capable of handling high levels
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of complexity and multiple design criteria have been proposed for the modular and sy-
stematic structural design of genetic circuits (Otero-Muras and Bangal, [2014)). These
new approaches combine the efficiency of global Mixed Integer Nonlinear Program-
ming solvers with multi-objective optimization techniques (Bangal [2008; Sendin et al.,
2010).

A natural approach to model-based tuning of synthetic circuits consists of the analysis
of the effect of key parameters that can be used as tuning knobs in the experimental
implementation. In this approach, selection of biological parts is understood as choice
of the values of key parameters that yield the device's desired dynamical behavior. A
current challenge is to devise methods to provide the set of circuit parameters that
satisfies a specified circuit behavior in a way that can be readily used for their wet-
lab implementation (Miller et al., 2012)). Thus, for instance, in (Ellis et al., [2009),
the authors synthesize regulatory promoter libraries, characterize key parameters, and
use them to guideline the construction of synthetic networks with different predicted
input-output characteristics. Global sensitivity analysis is used in (Feng et al., [2004]).
The sensitivity information is used to guide the selection of circuit components and
thereby reduce the wet-lab implementation effort. In (Koeppl et al., [2013)) the authors
express the desired behavior as a functional cost index of the desired circuit trajectories.
Then, the inverse sensitivity of the mapping between parameters and cost index is
obtained after linearising the functional cost index around an initial value of the model
parameters. This local inverse mapping is used to map a region of specifications into
a one of parameters.

Although the specification of the desired circuit’s dynamic is most often naturally
expressed as a multi-objective global optimization problem, this approach has not been
used so far. Instead, current approaches define independent thresholds set a priori
for each of the functional goals characterizing the desired behavior of the circuit.
Then, global Monte Carlo-like approaches are used, sampling the parameters space
and simulating the circuit time response. The result of these simulations is used
to assess the circuit behavior, so as to profile the subset of the parameters space
that result in circuit behavior fulfilling all thresholds. After this, some statistical
post-treatment of the results is used, like clustering or correlation analysis or global
sensitivity analysis to draw conclusions between the distribution of the parameters, and
the circuit behavior (Chiang and Hwang, 2013). This Monte Carlo based framework
has a huge computational cost. Given a defined search space in the parameters space,
the Monte Carlo sampling does not ensure that a solution will be found, thus requiring
a large number of samples to find solutions. This problem increases as the thresholds
defining the acceptable circuit behavior are more stringent. Also, the solution space
obtained weighs, either equally or ad hoc, all the functional goals of the circuit. Thus,
besides missing many possible optimal solutions, there may be little variability among
the different solutions in the parameters space, making the statistical post-treatment
less sensitive.
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Regarding the multi-objective optimization design (MOOD) framework described in
section this Thesis proposes this approach to build a given functional device with
desired dynamic behavior, and obtain a model-based set of guidelines for the selection
of its biological parts. Thus, the optimal design of both I1-FFL and QS/Fb gene
circuits was developed by using the MOOD methodology. Some of the contents of
this Chapter have appeared in the following journal and congress publications

e Y. Boada, G. Reynoso-Meza, J. Picé, and A. Vignoni. Multi-objective optimiza-
tion framework to obtain model-based guidelines for tuning biological synthetic
devices: an adaptive network case. BMC Syst Biol, 10(1):27, 2016b.

e Y. Boada, A. Vignoni, and J. Pic6. Multi-objective optimization for gene ex-
pression noise reduction in a synthetic gene circuit. /FAC-PapersOnLine, 50(1):
4472 — 4477, 2017b. ISSN 2405-8963. 20th IFAC World Congress.

e Y. Boada, J. Pitarch, A. Vignoni, G. Reynoso-Meza, and J. Picé. Optimization
alternatives for robust model-based design of synthetic biological circuits. IFAC-
PapersOnLine, 49(7):821 — 826, 2016a. ISSN 2405-8963. 11th IFAC Symposium
on Dynamics and Control of Process Systems Including Biosystems DYCOPS-
CAB.

The outline of this Chapter goes as follows: The first section is dedicated to the
MOOD framework and its three steps (1) Defining the circuit behavioral specificati-
ons, (2) optimization of the cost function, and (3) deducing guidelines for the wet-lab
implementation (see Fig. In section the MOOD is applied to the I11-FFL gene
circuit trying to achieve the important biological function so-called adaptation. The
advantages of the proposed framework are analyzed by comparing two different opti-
mization algorithms with the Monte Carlo approach. Then, section[7.4]focuses on how
to minimize the protein noise but maintaining a desired mean level in the QS/Fb ci-
rcuit by using MOOD. In the final section the main conclusions of the Chapter
are drawn.

7.2 Multi-objective optimization design framework
(MOOD)

Achieving a synthetic biological circuit to fulfill some behavioral specifications requires
in practice an iterative process through three main steps: i) choosing a gene circuit
structure capable to perform the desired behavior after proper tuning of its parameters,
ii) tuning the circuit parameters, and jii) validating the circuit with the selected tuned
components. The use of models to solve the first two subproblems in silico, before
attempting the wet-lab implementation to validate the circuit, reduces the wet-lab
effort and speeds-up the design process. This part of the Thesis focuses on the second
subproblem: in silico tuning of the circuit model parameters, so as to achieve the
desired behavioral specifications.

153



Chapter 7. Performance tuning via multi-objective optimization

154

First, a topology for the functional module or gene circuit is needed, capable to accom-
plish the desired behavior after the suitable tuning of its parameters. This will provide
the circuit model structure. Although currently there are no catalogues as such fu-
nctional modules, there is a vast literature in the systems biology area on network
motifs producing a variety of dynamic behaviors, as was described in section Al-
ternatively, one may find the potential circuit structure casting the problem as an
optimization one, starting from coarse-grained models of the potential circuit stru-
ctural components, and looking for the optimal circuit topology (Otero-Muras and
Bangal [2014).

Models may have different degrees of detail. The key goal of this Chapter is to tune
the model parameters using a degree of detail in the model amenable to serve as
basis to provide guidelines for the experimental implementation of the circuit. That
is, the parameters to be tuned should correspond to biological tuning knobs that
can be modified experimentally (Arpino et al.) 2013). In certain cases such as the
reduced-order models for both 11-FFL and QS/Fb gene circuits, even if aggregated,
the parameters clearly match with experimental biological tuning knobs (Hancock
et al| 2015; |Anderson et al., [2011} |Prescott and Papachristodouloul 2014)).

From this starting point, one can proceed to tune the model parameters so that
eventually the circuit fulfills the behavioral specifications. In this Thesis, the general
case when a set of specifications is desired will be considered, and thus leading to a
multi-objective problem. A usual approach to face a multi-objective problem consists
of building an aggregate function in order to assemble the design objectives in a unique
index, normally by means of a weighting vector. This approach is followed for example
in (Chiang and Hwang, 2013). However, the solution obtained depends too much
on the correct selection of the weighting factors, and it might not possibly reflect
with enough clarity the designer's preferences in relation with the desired balance of
requirements.

An alternative option is to use multi-objective optimization (section . This is
a natural choice to face this kind of problems. Chapter [5| showed that in multi-
objective optimization all design objectives are important to the designer, so all of
them are optimized simultaneously. Thus, the solution rarely is unique, but a set of
solutions is obtained called the Pareto Front (already described in section [2.5). In
this sense all solutions are Pareto-optimal and differ from each other in the trade-off
of objectives each one represents. Again from Chapter [ this overall multi-objective
optimization design (MOOD) procedure enables to analyze design objectives trade-
offs to implement a preferable solution (see Fig. Furthermore, it may provide a
better understanding of the problem at hand by the so-called process of innovization
through optimization as stated by (Deb et al., 2014). Next, the MOOD steps involved
in tuning model parameters are described.
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Figure 7.1. MOOD framework for optimal design and wet-lab implementation of a synthetic gene
circuit.

7.2.1 Defining the circuit behavioral specifications

The first step of the proposed methodology is the multi-objective problem definition,
that is, the specification of the desired dynamical behavior for the circuit to be designed
(see Fig. This can be done in several ways. From the designer’s point of view,
specifying the circuit behavior in terms of the desired output signal profile for a given
input signal profile is a natural approach (Ang et al.,[2010b]). The input signal is chosen
as the one that is going to be used in working conditions, or as simple standard probing
input-signals (e.g. step-like, sinusoidal, or pulse ones). Once the desired input-output
relationship is defined, the set of circuit parameters achieving it can be obtained by

optimization-based system identification (Bangal [2008]).

This approach is useful for linear dynamical systems, as their time-response to these
probing signals fully characterizes the circuit dynamical behavior. This is not the case
for nonlinear circuits as the ones typically encountered in synthetic biology. Thus,
the particular signal to be used in working conditions should be chosen. Yet, this
may be very restrictive. Indeed, usually the input signal to a circuit will have varying
characteristics. In the best case, it will belong to a given class (e.g. step-like signal with
varying amplitude). Therefore, the dynamical behavior, i.e. the desired circuit time-
response to a given input signal, is better given as a set of input-output performance
indexes to be optimized.

Specifying the desired circuit behavior in terms of performance indexes to be optimized
has many advantages. In the general case, the indexes will take the form of functionals
mapping the circuit trajectories to the reals. Thus, for a circuit with dynamics given
by the model

(7.1)
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where z € IR"™ is the state, § € IRP the parameters, and function g(.) represents
algebraic constraints in the system. The indexes can be expressed as

Ji(0) = / ' h(z(r,0),7)dr (7.2)

to

for some function possibly time-dependent function h(.) of the system trajectories
during a time interval of interest [to,ts], being i = 1...n; is the number of indexes.
These can be made valid for a whole class of input signals. The indexes may consider
other signals in the circuit besides the input and output ones, robustness with respect to
uncertainty in the circuit parameters can be included, etc. They will typically consider
the desired performance at steady-state (precision), and some measure of the quality
of the transient. Proper definition of the optimization indexes representing the desired
behavior is a key point. An incorrectly specified objective, which does not properly
represent the actual desired behavior will lead the optimization in a wrong direction.
It will return a parameter set that will give misleading design guidelines. Moreover, for
the proper interpretation of results by the designer, one must pose meaningful design
objectives.

7.2.2 Multi-objective parameters tuning

As mentioned above, representing the desired behavior will eventually lead to several
objectives to be optimized . That is, the optimization problem will be a multi-objective
one in the general case. Typically, some of the objectives will be in conflict, so a
trade-off among solutions is required. In the Thesis, the problem is addressed as a
truly MOOD problem, following the same principles used in Chapter 5]

Section[2.5|exposed that the multi-objective optimization process seeks to approximate
the best parameters 6% that give the best Pareto front approximation J}. Such search
could be done through a random Monte Carlo sampling in the decision variables space
0 —the set of parameters determining our biological model—, followed by filtering of
the solutions in order to obtain the 6% that defines the Pareto front approximation
Jp. This could be a good option for problems with few decision variables. But, for
problems with a large number of decision variables, as the 11-FFL or the QS/Fb case,
it is more efficient to use an appropriate multi-objective optimization algorithm to
approximate this solution.
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7.2.3 Obtaining tuning guidelines for implementation

Figure shows the three steps of the MOOD. in the second one, a set of solutions
is obtained: values for the kinetic parameters that represent a trade-off between the
objectives. Then, the third and final step consists of deducing tuning guidelines and
select the values of the kinetic parameters of the model, which also enable the gene
circuit construction in the lab.

In this Thesis, two interconnected tools are used: i) an optimized clustering of the
solutions, and ii) a visualization of the Pareto front and set using suitable tools. In
both cases the goal is to provide guidelines on the tuning of those parameters that
have been identified as proper tuning knobs for experimental lab implementation.
In other words, the kind of information extracted represents qualitative levels for the
kinetic parameters that can be commonly modified in the wet-lab as was explained in
section 212l For instance:

e Plasmid copy number . It can be tuned by selecting the appropriate replication
origin of the plasmid.

e Promoter strength. It can be modified by selecting the appropriate promo-
ter with predicted strength; for example from the Anderson Promoter library
(Anderson|, [2006)) available at the iGEM Parts Registry.

¢ Ribosome Binding Site strength, and is one of the easiest parameters to tune
in the wet-lab using RBS libraries, the RBS Calculator from Sallis Lab (Salis
et al., [2009b)), or nucleotides repetition (Egbert and Klavins| [2012]).

e Protein degradation rate. It also can be tuned globally by changing the growth
rate of the microorganism, or by adding a protein degradation tag to include the
protein in an active degradation pathway.

In order to facilitate obtaining the guidelines, a hierarchical clustering is performed with
the solutions (see Matlab script in annex|E.T)), including the values of the objectives and
also the kinetic parameters of each solution. This process is achieved by using a cluster
tree based on the Euclidean distance among the vectors containing the attained values
of the objectives for all points along the Pareto front. The distance among clusters
is obtained by means of the weighted center of mass distance. Then, the number
of clusters is set in an iterative manner from 10 to 2. After that, a Kruskal-Wallis
(Kruskal and Wallis, [1952)) test is performed for each iteration in order to analyze the
correlation between the kinetic parameters and the clusters. With this process the
optimal number of clusters is selected by choosing the one that maximizes the number
of significantly correlated parameters with the clusters.

All the resulting correlated parameters has different value ranges in each cluster, which
in turn represents a guideline for this parameter. For example, one parameter can range
around low values (w.r.t. the initial interval for that parameter) for some clusters, and
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high values for other clusters. These parameters with strong correlation between their
values and the cluster they belong to are used as guideline ones.

The parameters that do not exhibit a significative correlation between their values and
the clusters are parameters whose range of values will not affect to which cluster the
solution belongs. This range may be ideally a narrow one, but could be wide in some
cases. The width of the solutions range will be an indicator of the sensitivity of the
optimal solutions with respect to that parameter.

It is accepted that visualization techniques are valuable in order to analyze the trade-
off among competing objectives. As in Chapter Level Diagrams (LD) was the
visualization tool chosen in this Thesis (further details in section to analyze the
different Pareto front and Pareto set approximations. Remember that LD allows to
correlate design objectives with decision variables.

A graph f9r each objective is displayed (see section , where the Y-axis is the
p-norm ||J(8)]|, of the objectives vector, and the X-axis corresponds to the objective
value or decision variable depending on the case. A second graph displays ||.7(8)],
with respect to each decision variable. These characteristics make it helpful in order
to share the clustering information from thedesign objectives space and the decision
variables space.

In order to incorporate the information obtained from the clustering, the Y-axis of the
LD plot was modified to show the membership of a solution to a cluster, therefore
improving completeness for this problem. The solutions were also color-coded in all
graphs, improving persistence and simplicity. This correspondence of colors helps to
evaluate general tendencies along the Pareto front and compare solutions according to
the clusters they belong to. Additionally, a complete analysis was achieved by plotting
the dynamic response of each species in the system using the same color code.

All these steps were performed using Matlab scripts that are described in annex [E. 1]
Finally, it is interesting to note that the selection of the preferable solution according to
designer's criteria, or equivalently the extraction of qualitative levels for the parameters,
takes place in an a-posteriori multi-criteria analysis of the Pareto Front approximation.

7.3 11-FFL tuning using MOOD

Using the framework above, the kinetic model parameters of the I11-FFL gene circuit
were tuned to achieve adaptation behaviour. The idea is to apply the three steps of the
MOOD considering the 11-FFL model presented in section with the same
species listed in Table[7.1] The desired behavior of the output protein xs depends on
the input level 29, which are highlighted in Table[7.1] Later | will show two scenarios
related with the lab-implementation and usability of the obtained guidelines.

IMatlab scripts are also publicly available at http://sb2cl.ai2.upv.es/content/software
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Table 7.1. Variables of the 11-FFL model.

Variable Species  Description Units
x1 mR luxR messenger RNA nM
x2 R LuxR protein nM
x3 A AHL intracellular inducer nM
M (R.A) LuxR and AHL monomer nM
T4 (R.A)2  dimer of (R.A) nM
5 ml cl messenger RNA nM
6 | cl protein nM
T7 mG gfp messenger RNA nM
g G GFP protein (output) nM
T9 AHLext  AHL extracellular inducer (input) nM

Sensitivity

11-FFL

h | circuit
—_—

time

AHLe, input

GFP output
Precision Sensitivity with
detects if the output returns to its value of the peak after the Adaptation
previous value after the application application of the stimulus.
of the stimulus.

Figure 7.2. Input-output adaptive behavior. Adaptation is an important property of biological
systems, related to homeostasis. After an input stimulus the output signal responds by first quickly
reaching a peak value, after which it returns to its previous value even if the stimulus persists.

7.3.1 Multi-objective problem definition

The first step of the MOOD framework is to formulate the circuit specifications as
design objectives to be optimized. Recall the desired input-output behavior for the
[1-FFL circuit, depicted in Fig[7.2]

Two basic objectives can be considered for this circuit (Ma et al| [2009; |Ang et al.|
2010a; [Chiang and Hwang, [2013} [Rodrigo and Elenal [2011)):

e Sensitivity: after input stimulation, a clear transient peak value is desired for the
output. Sensitivity can be defined in relative terms as the relationship between
the input and output variation during the transient. In this case, sensitivity was
defined as the ratio between the absolute total variation of the output signal
—the GFP protein concentration xg—, and the variation of the input signal —the
external AHL inducer x9— (both highlighted in Table .

e Precision: after the peak transient, the output must go back to its value pre-
vious to circuit stimulation. Thus, precision can be defined as the inverse of
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Table 7.2. I1-FFL model parameters selected for optimization.

Parameter Wet-lab implication Range of values
kmiCr, kmaCq  Promoter strength and Plasmid origin of replication  [L  200] min—1!

di, dg Degradation tag sequence [0.01 0.3] min~!
kp1, kpa RBS Strength [1 100] min—?!

Y1 Plux promoter Hill constant [50 200]

3 Plux/c1 promoter coefficient [1 x10=* 0.5] nM
V4 Plux/c1 promoter coefficient [5x10=% 5]

75 Piux/c1 Promoter coefficient [T 100] nM~1!

the normalized output error. The lower the steady-state error, the higher the
precision.

Let 6 denote the parameters selected for optimization from the 11-FFL model ((4.27)

in Chapter il 0 := [kmCyB, kmcCyc, kpp, kpcs dp, do,v1,73,74,75] is the set of
decision variables. All these parameters are suitable of wet-lab modification (further
information in Table[7.2).

The two design objectives for the 11-FFL circuit can be mathematically expressed by
means of the indexes

2 (wo(ty) — z9(to))
o7 |42 |a

zs(ty) — zs(to)

zy(ts) — z9(to)

where t; is the time length of the experiment, and the input stimulus is applied at ¢o.

J1(0) =
(7.3)
Jo(0) =

Sensitivity is the inverse of J1(6). Notice the total absolute variation of the GFP
protein concentration is obtained as half the accumulated absolute value of the time
derivative of the GFP concentration (xg). The lower J1(0) (larger output peak w.r.t.
input variation), the higher the sensitivity.

Precision is the inverse of Jy(6), i.e. the inverse of the ratio between the variation
of the GFP protein concentration between to and ¢f, and the variation of the external
inducer concentration between ¢y and ¢;. If the GFP protein concentration zg at time
ty is the same as the initial one at time ¢y, precision is infinite.

Note that both objectives are defined as the inverses of Sensitivity and Precision in
order to use them in the minimization problem, as it is the standard for optimization
problems (Miettinen et al, [2008]).

Additionally, other objectives could be considered. For instance, fulfillment of con-
straints on the species. In the I1-FFL case, in order to obtain realistic solutions
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regarding the concentration values of the cl protein (z4), its absolute total variation
was taken into account as a constraint. This can be expressed as

Hence, the considered constraint is
1 < P(#) < 10000 (7.4)

To make precision higher (that is, low output error) the easiest option is to have very
high concentration values of the protein cl, which acts as repressor of the protein
GFP. To avoid this unrealistic solution, it is possible to force the concentration of the
protein cl to have an upper bound. In case of not having this restriction, the solutions
may have higher precision at the cost of unrealistically high values of cl concentration.
The restriction penalizes this fact and drives the search to a different region of the
parameter space (going away from the undesired region, corresponding to high values
of protein cl).

Another relevant issue is the definition of the limits for .J1(#) and J2(#) beyond which
precision and sensitivity degrade and adaptive behavior is not achieved anymore (Ma
et al., [2009)). This is the so-called pertinency range of the objectives. The limits
established in this Thesis are: J1(6) € [1 x 1072, 200], and J2(#) € [1 x 10~%, 20].

Finally, optimization looks for a set of values for the 10 decision variables 6 that
minimize both objectives. Yet, precision and sensitivity are conflicting objectives. So
a trade-off must be reached. Therefore, this problem can be formulated as a multi-
objective problem (MOP)

in J() = 0 0 2

min J(6) J1(0), J2(0)) € R

subject to: I1 — FFL dynamics (4.27)
1x 107 < Jy1(6) < 200 (7.5)

1x107% < Jy(h) < 20
1< P®) <1x10*
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Figure 7.3. Pareto Front as the distance to ideal point. Ji(0) is the sensitivity and J2(8) is the
precision objectives. Both objectives show a typical trade-off. Cluster 1 is plotted in red circles and
cluster 2 is plotted in blue circles.

7.3.2 Optimization

As a second step, dynamic optimization of using the multi-objective differential
evolutionary algorithm spMODE (see section was carried out. Starting from an
initial random population of candidate solutions, 15.000 iterations as the maximum
number of evaluations of the objective functions were set. A Pareto front containing 33
solutions that achieve adaptation, together with the Pareto set 6 containing the model
parameters corresponding to the Pareto front solutions resulted from the optimization.
The original Level Diagrams of the Pareto front and set are illustrated in Fig[7.3] these
diagrams are useful in case the designer needs to get more insight for the guidance of
its multi-criteria decision-making.

As expected, the solutions show as expected, a trade-off. Solutions range from high
sensitivity (low values of .J1) and low precision (high values of J3) ones to low sensitivity
(high values of J;) and high precision (low values of J2) ones. Note in all cases these
solutions are the optimal ones, in the sense of Pareto.

Additionally, a Monte Carlo sampling (MCS) and a Latin Hypercube sampling (data
not shown) with the same computational cost were performed for the sake of com-
parison. In both cases, the solutions must be selected with a dominance filter so as
to detect the ones actually fulfilling the constraints and yielding adaptive dynamics
(Chiang and Hwang, [2013)). Note this functional association step is not required in
our approach, as the optimal sets of parameters obtained already correspond to functi-
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Figure 7.4. Pareto Front comparison. Pareto Front representation for J; and Jo obtained with the
spMODE algorithm for the MOO (blue line). Monte Carlo random sampling results are colored in
red and the dominant solutions are in green. The time response of the C protein concentration for
three representative points are shown.

onal ones. From the functional solutions obtained with these sampling techniques, the
corresponding Pareto front was approximated. Figure shows the results achieved.
The Pareto front from the MCS (dominant solutions in green) covers a larger region
of the objectives space, but outside of our region of interest (pertinency box), and it
is far away behind the optimal one obtained with spMODE.

7.3.3 Guidelines for implementation

The third step consists on obtaining guidelines and guidance for the implementation
of the circuit. To do this, the solutions gathered from the optimization were clustered
hierarchically in an agglomerative tree (see annex. The optimal number of clusters
were obtained with the procedure explained in section |[7.2.3] The parameter intervals
corresponding to each cluster are enumerated in Table [7.3]

The intervals for the I11-FFL model parameters from Table can be expressed as
general guidelines that are necessary for achieving adaptation:

e d;: the degradation rate of the protein cl has to be the lowest possible in all
cases.

e kyr: the RBS strength of gene ¢/ has to be the lowest possible in all cases.

e ~1: the promoter strength (activation strength), has to be the high in general,
but it does not has an apparent effect.
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Table 7.3. Optimal parameter intervals providing design guidelines.

Each one of the optimized

parameters either has a common range for all clusters, or is a trade-off tuning knob determining

specific clusters.

Parameter Initial parameter Design Guideline

range Common Cluster 1 Cluster 2

range

kmgCr*  [1 200] - [1171.91] 1*
kmCy [1 200] - 1 [1 200 ]
kmgCq [1 200] - [1171.91] 1
kpr [1 100] 1 - -
kpa [1 100] - [1 15.68] 1
dr [0.01 0.3] [0.01 0.0792] - -
dg [0.01 0.3] - [0.2784 0.3] 0.3
Y1 [50 200] [78.93 200] - -
V3 [L x107* 05] - [1 x10™* 0.013] [1x10~* 0.0141]
4 [5x107% 5] - [65x107% 1.4424] [0.0697 5]
5 [1 100] - [1 9.2546] [12.125 100]

* kmpg CR is the same as kmgCgq as they physically in the same plasmid.
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Figure 7.5. Pareto front representation in the cluster-modified LD tool. A. Value of the objectives
J1 and Js for each solution where each cluster is identified by a different color. Clusters range from
high sensitivity-low precision (red) to low sensitivity-high precision ones (blue). B. Time courses of
protein C concentration for the different solution in the clusters.
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e ~3: the hybrid promoter strength (activation strength) has to be the lowest
possible in all cases.

Depending on whether high sensitivity or high precision are chosen, specific guidelines
(see Table can be given for the tuning knobs to be modified in the wet-lab. In
turn, these guidelines could tune the behavior of the circuit:

High Sensitivity Strategy

® kgCq and kpq: increasing values of the promoter strength and the plasmid
copy number of the gene gfp, and the RBS strength of the same gene lead to
increasing values of sensitivity (higher peak values). These are tuning knobs for
sensitivity.

e dq: the degradation of the GFP protein has to be slightly lower for high sensi-
tivity.

e 74 and 75: the hybrid promoter strengths (repression, and activation - repression
cross combined strength) must be kept low.

e k.,;Cr: the promoter strength and the plasmid copy number of the gene c/ have
to be kept the lowest possible.

High Precision Strategy

e k,,1Cy: the promoter strength and the plasmid copy number of the gene ¢l is a
tuning knob for Cluster 2, increasing precision proportionally to its value.

e 74 and ~y5: increasing values of the hybrid promoter strengths lead to increasing
values of precision (lower error).

® k;,gCq and kpg: the promoter strength and the plasmid copy number of gene
gfp, and the RBS strength of the same gene must be keep low.

e dg: the degradation of the protein GFP has to be the highest.

The results show that the degradation rate dg of the GFP protein is a key parameter
to correctly achieve adaptation. With high values of this parameter, the concentration
of the GFP protein will to return faster to its original level. Some parameters such
as v in the hybrid promoter of GFP are also required to take certain values for the
system to attain the adaptive behavior. In particular, it is interesting to note that the
repression strength -4 plays an important role, which is in agreement with the analysis
in (Basu et all} [2004)), where a mutation was performed on the hybrid promoter so
as to affect the same parameter. In the case the designed needs more insight, the
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tools for visualization to allow a proper decision making procedure and selection of the
appropriate parameters for the design were provided.

A clusterized representation of the Pareto front together with the time response of GFP
protein concentration for each point are shown in Fig[7.5] Clusters range from high
sensitivity and low precision (cluster 1) to low sensitivity-high precision ones (cluster
2). In Figurethe Pareto set is plotted, including the value of each parameter and
its membership to the corresponding cluster. This way is easy to directly find the
implication of each parameter in the design. Finally, analyzing the Pareto set plot, it
is possible to find that parameters dy, kyr and 73 have uniform (and tight) values for
both clusters, and ; has a uniform and wide range of values also for both clusters.

In case the designer needs further information and insight for guidance of its multi-
criteria decision making, the figures in annex [E.2] show the original LD of the Pareto
front and set.

7.3.4 Application scenario I: Selecting parameters for an
implementation

As a proof of concept, and also to validate the guidelines obtained for the I11-FFL
system, we will proceed as we would do in the lab. Let us suppose we have built two
implementations according to the guidelines proposed earlier: (1) one designed with
the High Sensitivity Strategy (Case A), and (2) one with a High Precision Strategy
(Case B).

High Sensitivity Strategy

This case is a solution with low precision, but high sensitivity as it belongs to cluster
number 1. It is located in the low extreme of J1, and in the high end of J5 in Figure|7.5
For this design will use the High Sensitivity Strategy and we will choose, for example,
kpc as a tuning-knob. Changing the value of this parameter will affect the position
of the solution in the Pareto front. Although moving exactly along the Pareto front
requires modifying more parameters as shown in the guidelines before, we can see (by
looking at the reddish dots in Figure[7.7)) how the initial solution chosen moves almost
on top of the Pareto front. This shows that the obtained guidelines are robust so that
we can use the selected parameter as a tuning knob in the wet-lab implementation.
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Figure 7.7. Application scenario I. Pareto Front in blue line connected dots. A. Dots with reddish
color are obtained when using the RBS strength of gene gfp as a trade-off tuning knob and represented
by modifying kg € [6 0.05] starting at the extreme solution. Notice, that decreasing only kg it
is possible to increase the sensitivity, almost without losing optimality (without getting away from
the Pareto front). Inset shows the time course of GFP protein. As expected, sensitivity of the
solution is increased, i.e. the peak of protein concentration after stimulus is higher. B. Dots blueish
color are obtained when using the promoter strength and plasmid copy number gene B by modifying
km1Cr € [200 1].

High Precision Strategy

For the high precision implementation, it is shown how changing one of the tuning-
knobs from our High Precision Strategy (for example k.,;C;) one can almost move
along the Pareto front and obtain higher sensitivity solutions without losing precision,
as shown by the blueish dots. In the insets of Figure is possible to see the tem-
poral behavior of the obtained solutions. Conversely to this, changing values of key
parameters like dg completely destroy the adaptation behavior independently of the
selected solution (see FiglE.1]in annex [E.2).

7.3.5 Application scenario |l: Qutput robustness analysis

This framework is also useful to analyze the output performance of the designed
functional device when connecting it to other devices.

Here, a simple binding reaction is used as a load to demonstrate the procedure (see
Fig is used. This is one of the most common types of load. For example, GFP
protein (or a generic protein C) could be a transcription factor and bind to a promoter
region in the DNA. The next equations model this load binding reaction as
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Connecting our module to a load.

g = kpary — dgrs — Kizszio + Koz
10 = —Kyzgwi0 + Koz (7.6)

211 = Kyzgwio — Koz11

where x1 represents the empty load species (e.g. an unbound promoter or protein),
x11 represents the complex GFP bound to the load species, and K; and K are the
binding constants. For this case, K; = 40nM'min~"! and Ky = 20min~"', which
correspond to a mildly fast binding. The initial condition is z1¢(to) + x11(t0) = 800
nM. Since the model did not consider degradation terms, the initial condition
represents the total amount of available loading species.

In Figure[7.9] the Pareto front of the loaded device is shown in pink colored diamonds,
and the original Pareto front in green circles. Notice that the analysis needs to be
performed only along the Pareto front solutions. Thus, it is computationally very
efficient. As it is shown for the I1-FFL circuit, solutions with low sensitivity are more
affected by the load effect at high values of Ji, i.e. lower peak values of GFP protein.
This happens when the concentration of GFP protein is in the order of 800 nM, which
is the total amount of loading species concentration in this example.

Finally in the inset of Figl[7.9] the loaded time courses of the protein GFP concentration
after stimulus (pink line) are shown and compared with the original ones (green line)
for values of the parameters corresponding to solutions 1, 2 and 3. As we see, solution
1 is practically not influenced; but solution 2 is considerably affected. Besides, solution
3 is way out from its location and actually looses adaptation behavior. Consequently,
it is possible to use this framework to evaluate the output performance of our designed
circuit.

169



Chapter 7. Performance tuning via multi-objective optimization

170

103 g T T al
£ 4000 400
g 3000 £ a0
102+ & Y i
G 2000
c 9 200
2 g
1< o
a 1000 T 100
¢
¢ 0
0
c ‘ 0 10 » 20 » 30 40 0 10 20 20 0
o time (min) 60 time (min)
@ %
® 1000 ¢ |
jud
g 9
- *
10 20 30 40
10'2 E 00 0 0 oD . 3
£ time (min) 3
Q Pareto Front (with Load) 3
@ Pareto Front (without Load) 3
10°%E. Ll Ll Ll Ll Ll L3
10° 107 10 10° 10* 102

J; Sensitivity

Figure 7.9. Application scenario Il. Pareto front of the functional module without load (green circles)
and with load (pink diamonds). Inset: temporal responses of the solutions 1, 2 and 3 with (pink line)
and without load (green line).

7.3.6 Optimization alternative algorithms

In this section, different optimization algorithms are compared. In particular the
spMODE algorithm based on differential evolution, and the large-scale NLP solver
(Wachter and Biegler, [2006) embedded in simulation and automatic-differentiation
frameworks (Andersson, Joel and Akesson, Johan and Diehl, Moritz, 2012). Optimi-
zers based on nonlinear programming like IPOPT, or genetic algorithms like spMODE
have been used in the past to solve problems with sizes including 15 objectives, and
hundreds of decision variables with reasonable computational cost. Their main features
are:

e spMODE is a MOEA based on the differential evolution algorithm, which uses a
spherical pruning to approximate the Pareto front. Given the stochastic nature
of multi-objective differential evolution algorithms like the spMODE, the search
for all the possible solutions in the parameters space along the Pareto front
is feasible. However, convergence cannot be guaranteed and the tuning the
algorithm parameters setting to obtain good performances may be a non-trivial
task too.
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e IPOPT is an interior-point NLP solver with an automatic-differentiation frame-
work (CasADED for numerical optimal control which, following the direction of
the cost-function gradient, finds an efficient and suitable path from the initial
guess to the (possible local) optimum. This has been successfully used in dy-
namic programming with sequential and simultaneous approaches (Andersson,
Joel and Akesson, Johan and Diehl, Moritz| 2012} [Marti et al.| 2014).

In contrast to differential evolutionary algorithms, deterministic algorithms are very
robust and can guarantee local convergence. Unfortunately, they are very sensitive
to the initial guess required for the optimization process, so they may be stuck in a
local optimum. Recent developments in gradient-based nonlinear programming, which
implement automatic differentiation algorithms have provided a good alternative to
compute an approximation of the Pareto front by means of these NLP solvers. The
main advantage of such tools is feeding the solver (SQP-type (Gill et al., [2005), or the
interior-point ones (Wachter and Biegler, 2006))) with the exact Jacobians and Hessi-
ans of the objective function and the constraints. This provides a fast and accurate
convergence, contrarily to what happens for instance with finite-differences approxi-
mations of these derivatives. Also memory handling in the mentioned algorithms is
very efficient, as the only information that propagates from generation to generation
is the population.

Consequently, here the spMODE and IPOPT optimizers will be tested using the 11-
FFL gene circuit to achieve adaptation (the desired behaviour), but comparing perfor-
mance, and pointing out particular advantages and drawbacks of both alternatives.

The dynamic optimization of equation ([7.5)) using the spMODE and IPOPT tools was
carried out. As in section in order to evaluate the I11-FFL dynamic behavior in
(4.27)), the system initial conditions correspond to the equilibrium, that is

[kmBCgB kmBCgB ' kpA

0 =
x( ) dm,A ’ dmA : dA

,0,0,0,0,0,0,0]

Recall the external inducer concentration AHL..; is added as a pulse input to the
culture in the lab (see section . However, the |1-FFL circuit inside the cell
senses the input as a step-like function due to the passive diffusion process of the
AHLcy molecules across the cellular membrane. Therefore, x9(0) = 50 nM acts as a
pulse input until the I1-FFL gene circuit is relaxed, and reaches again the steady-state.

The spMODE optimization started with an initial population of candidate solutions,
chosen randomly within a normal distribution in the parameters search space (provided
in Table . An approximation of the Pareto front with 46 solutions of the multi-
objective problem was obtained (green curve in Fig[7.10), together with the
Pareto set containing their corresponding kinetic model parameters 6. These solutions

2Tool available in https://github.com/casadi/casadi/wiki
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show as in section a trade-off between good sensitivity (low values of .J;(6)) and
good precision (low values of J3(0)).

In order to allow a parallel implementation of the IPOPT algorithm, equation is
slightly modified. An additional constraint with an user-defined upper bound in J;(6)
denoted by .J; was set, whereas only J2(0) is in the objective function. In this way
the original multi-objective problem is cast as a set of single-objective optimization
problems given by

min Jy(f) € R
HER1O

subject to: 11 — FFL dynamics (4.27))
1< P(#) <1x10*
Ji(0) <y

First, a common initial guess for all the independent optimizations of were
randomly chosen as 6y = [5,20,0.02,0.02,150,0.005,1,10,10,10]. Besides, a well
distributed grid of 46 points within the pertinency range for J;(0) was defined, so an
approximation of the Pareto front was computed (squared curve in Fig). As it
can be seen, both solutions found by IPOPT and spMODE are practically the same.
Note that all these dominant solutions are the “optimal ones” in the Pareto sense.

The output protein evolution (GFP concentration in this case) for some characteristic
optimal points is also depicted in Fig[7.10p. The different responses go from high
sensitivity-low precision (H peak in red) to low sensitivity-high precision ones (L peak
in blue). Table shows the parameters obtained by the two algorithms for two
different types of solutions within the Pareto front: one with high sensitivity, and
other with high precision.

The spMODE computed its Pareto front approximation in 42.7 minutes when it was
running in parallel in an Intel Core i7-4510U machine. In contrast, the IPOPT so-
Iver took 2.69 minutes to obtain its Pareto front, also running in parallel in the same
machine (5.84 minutes in a single core). The number of objective function evaluati-
ons performed by the spMODE was 3100. The IPOPT algorithm ran 3624 (in total
for all optimizations) plus 2231 evaluations of the objective function gradient, 2277
constraints Jacobian evaluations, and 2185 Lagrangian Hessian evaluations.

To complete the spMODE and IPOPT comparison, a random Monte Carlo (MC)
sampling was performed (orange points in Fig[7.10b). In this case, a dominance
filter is required in order to select the best solutions that will allow to the Pareto
front approximation (green dotted curve in Fig). Results demonstrate the MC
sampling covers a large region in the objectives space, but sometimes outside of the
pertinency box, as expected, because there is no simple way to focus a random search
in it. In addition, the Pareto front approximation obtained from the MC sampling is
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Figure 7.10. a) Time evolution of the protein GFP concentration for two sets of Pareto optimal
solutions (H = high sensitivity, L = high precision). b) Pareto front estimation obtained with the MC
sampling (orange dots), spMODE (purple dotted curve), and with the NLP solver IPOPT (purple
squared curve).
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Table 7.4. Pareto set optimal results.

Parameter Initial Sensitivity Precision
Range IPOPT spMODE IPOPT spMODE

kmrCRr™ [1 200] 13.041  19.123 1.0012 1
km1Cr [1 200] 1 1 14913 1
kmcCa [1 200] 13.041  19.123 1.0012 1

kpr [1 100] 1 1 10.565  19.742
kpa [1 100] 9.5174  5.8916 1.0012 1

dr [0.01 0.3] 0.01 0.01 0.0221 0.01
dg [0.01 0.3] 0.2611 0.3 0.2996 0.3

Y1 [50 200] 161.6 200 146.92  107.16
¥3 [t x107*0.5] 0.0001 0.0001 0.0205  0.0001
Ya [5x 1074 5] 0.8886  0.0005 0.5703  0.0005
s [1 100] 1 1 4.162 12.121

*kmr CRr, takes the same value as k,,,cCq because gene luxR and gene gfp are physically in the
same plasmid.

clearly worse than the ones obtained using optimization algorithms, both in accuracy
(in the considered pertinency region), and in computational effort (the MC sampling
time computing was 2 hours and 10 min).

In summary, all these results show that using a NLP solver (IPOPT) with automatic
differentiation to estimate the actual Pareto front is more efficient than a MOEA
algorithm (spMODE). Nevertheless, an evolutionary algorithm is a global optimizer,
which means that it may obtain better approximations of the Pareto fronts in other
cases (or allowing a higher number of objective function evaluations). In addition,
the performance of a gradient-based optimizer highly depends on the provided initial
guess, and depends on the particular system “smoothness”, so it may be stuck in
a local optimum. If this is the case, a combined evolutionary gradient-based
approach would be a good option, where the fast NLP solver computes a preliminary
set of suboptimal solutions to be used later as the initial population for the MOEA.
The approach described can be extended to the analysis of interconnection of several
devices. However, this will be led in further work, as evident difficulties arise when
dealing with larger networks.

7.3.7 Discussion

Computer-aided model-based methods and tools are being increasingly used in synth-
etic biology to guide the design of synthetic biochemical pathways so as to achieve
user-defined functions and behaviors [Marchisio and Stelling| (2011); [Rodrigo et al.
(2012); |Crook and Alper] (2013).

In this work, in order to obtain a set of guidelines to aid the design of synthetic
genetic networks with a predefined functionality (functional modules), we developed a
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framework using a multi-objective optimization design (MOOD) procedure. Compared
to previous studies (Chiang and Hwang), 2013)), a novel feature of our framework is
that the result of the optimization is already a set of parameters that optimally achieve
the desired function and dynamics, as encoded in the objective indexes. Specifying
the desired circuit behavior in terms of performance indexes to be optimized has many
advantages. The indexes or objectives can be made valid for a whole class of input
signals, they may consider other signals in the circuit apart from input and output, the
robustness with respect to uncertainty in the circuit parameters can be included, etc.
The proper definition of the optimization indexes representing the desired behavior is
a key point. An incorrectly specified objective, not properly representing the actual
desired behavior, will lead the optimization in a wrong direction, thus returning a
parameters set that will give misleading design guidelines. This is a drawback, but
easier to handle than setting the thresholds defining the acceptable circuit behavior
after a Monte Carlo sampling, for these do not ensure that a solution will be found
(Chiang et al., 2014} |Chiang and Hwang, 2013)).

The solutions obtained, i.e. the design objectives together with the respective para-
meter sets, may be clustered hierarchically, or post-processed with any multivariate
statistical analysis tool in order to get further insight into the role of the different
parameters. The importance of this, is that the spMODE and LD-tools already order
the Pareto front solutions with respect to the objective functions. The LD-tool, as a
matter of fact, already provides insight into the role of the different solutions. Further
statistical processing is very efficient, as only a small set of data has to be processed
(the solutions at the Pareto front), and this set is already ordered. This allows us
to reveal and understand associations of parameters and functionality. For example,
cluster 1 (red) in the Results Section has the highest sensitivity together with the
lowest precision. To implement in the wet-lab a system with this functionality, the
RBS in gene cl has to be weak, and it should be cloned in a low copy plasmid, as
reflected by the guidelines obtained for parameters kp; and Km;Cgl, respectively.
On the contrary, to implement a cluster 2 (blue) system, the guidelines obtained for
the same parameters tell us to put gene ¢/ with also in a weak RBS and but in a high

copy plasmid (Figure [7.6)).

For a given circuit design with a desired functionality, the guidelines for the kinetic pa-
rameters (Figure TabIe are very useful to decide which biological components
to use out of the ones available from a library of biological parts, such as the MIT Re-
gistry of Standard Biological Parts (Biobrick Foundation|, [2006)) by iGEM Foundation,
the BIOSS Toolbox (BIOSS| 2006)), or BioFab (BioFabl 2006). In particular, for the
I1-FFL, we showed that important tuning knobs are:

o KmxCgX is the lumped value of plasmid copy number and promoter strength.
It can be tuned by selecting the appropriate replication origin of the plasmid
and the promoter; for example from the Anderson Promoter library (Anderson,
2006)) available at the iGEM Parts Registry.
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e kpx represents the Ribosome Binding Site (RBS) strength. It is one of the
easiest parameters to tune in the wet-lab using, for instance, RBS libraries, the
RBS Calculator from Sallis Lab (Salis et al., [2009b)), or nucleotides repetition
(Egbert and Klavins| [2012)).

e dx is the protein degradation rate. It can be tuned globally by changing the
growth rate of the microorganism. It also can be tuned by adding a protein
degradation tag to include the protein in an active degradation pathway.

As more and more parts are deposited and characterized in these libraries, frameworks
providing guidelines for the design and wet-lab implementation, like the ones presented
here, will gain more applicability and the design of synthetic genetic circuits will become
more rationale-based than intuition-based.

The analysis performed in the Application Scenario |, shows that it is possible to use
only one parameter to move from the Pareto front to a sub-optimal solution. For
example, starting from a solution with high precision and low sensitivity, one can
move to a solution with higher sensitivity and lower precision; with the almost no
losing optimality. This is very useful in the wet-lab, because it means that once you
have the system implemented in the wet-lab, it is possible to change the output of
your system in a controlled way by performing the minimum amount of changes to
it. The methodology easily allows to check how the initial solution will deteriorate
by changing the value of only one parameter (see Figure . Of course, moving
along the Pareto front solutions requires modifying more parameters, i.e. changing
the values of the parameters from a cluster to another one; however we showed that
the obtained guidelines are really robust and that we can use a particular parameter
as a tuning knob in the wet-lab implementation.

In the Application Scenario Il, we saw that it is straightforward to have an idea of
how much the functionality of the system can be compromised by loading it, i.e. by
connecting it to another module. The proposed methodology allows to design the
system taking this into account. The analysis is computationally efficient, as it has
to be performed only for the Pareto front solutions, and not for the whole objective
space. Thus, we foresee that extending the approach to the analysis of interconnecting
several devices will not be difficult. In a way, as advocated in (Church et al. [2014),
the approach is less like highly modular electrical engineering, and more like civil and
mechanical engineering in its use of optimization of modeling of whole system-level
taking into account loads and flows.

Notice that the analysis needs to be performed only along the Pareto front solutions.
In this case, we are performing a robustness analysis a posteriori with the Pareto
optimal solutions approximated. That is, the decision making process is carried out at
the end of the MOOD process using additional information, in order to select a robust
configuration. This is congruent with similar analysis of uncertainties and decision
making (Vallerio et al [2015).
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In case the decision maker wants to seek actively for a robust set of solutions, a different
approach will be required. In this case, in order to get such solutions the robustness
measure analysis should be included a priori within the optimization process. This
leads to different optimization approaches known as robust design optimization (RDO)
and reliability based design optimization (RBDO) (Frangopol and Maute), 2003). The
former seeks to minimize the sensitivity of a solution; the latter to provide a measure
of risk failure. In any case, such optimization approaches are out of the scope of this
work and are proposed as future work.

The general applicability of the framework allows us to use it with different functional
modules and topologies, as soon as the ODE model can be obtained from reactions,
although evidently difficulties will arise when dealing with larger networks. In that
sense it is interesting to note the difference between the problem of expensive compu-
tation and the one of large-scale optimization. Expensive computation arises when the
complexity of the system makes the evaluation of the objective function an expensive
task. On the contrary, large-scale is related with the amount of decision variables and
the size of the objective space. In the cases we are dealing with, these two problems
are coupled. For a larger network, there will be more kinetic parameters (decision
variables) and more expensive computation of the dynamics of the system to evalu-
ate the objectives. Nevertheless, one of the key issues will be to obtain a reasonable
reduced model to be used by the optimization algorithms. As for these task, genetic
algorithms like spMODE have been used in the past with problems with sizes inclu-
ding 15 objectives and hundreds of decision variables with reasonable computational
cost, and related research is a hot topic (Lozano et al., [2011} [Santana-Quintero et al.,
2010). Also memory handling in the mentioned algorithms is very efficient, as the only
information that propagates from generation to generation is the population.

In the Thesis we have compared the spMODE (differential evolution) and the IPOPT
(gradient-based) optimization algorithms. The performance of the last one highly
depends on the provided initial guess, and is related with the particular system “smoo-
thness”, so it may be stuck in a local optimum. To avoid this, a combined evolutionary
gradient-based approach would be a good option, where the fast NLP solver computes
a preliminary set of suboptimal solutions to be used later as the initial population for
the MOEA.

7.4 QS/Fb tuning using MOOD

The multi-objective optimization design (MOOD) methodology (see section will
now be used for tuning the kinetic model parameters of the QS/Fb gene circuit, which
was designed in Chapter @ Recall that the QS/Fb circuit aims to reduce protein
expression variability by using a cell-to-cell communication via quorum sensing and a

negative feedback loop (see[3.3).
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Figure 7.11. Output desired behavior. Tuning the QS/Fb parameters, the desired mean level of the
protein of interest can be achieve with the minimum noise strength.

Table 7.5. Variables of the QS/Fb CLE-based model.

Variable Species Unit
ni Pol/Lux| protein molecules
ng LuxR protein molecules
n3 Dimer of (R.A) molecules
ng AHL intracellular inducer molecules
ns AHLext extracellular inducer  molecules
ne Monomer (R.A) molecules

The main species of this synthetic gene circuit are enumerated in Table where
ny is the protein of interest Pol co-expressed with the protein Luxl| in the i-th cell
of the population (see section . Chapter @ described how different sets of the
QS/Fb model parameters can modify gene expression noise of the protein of interest,
by affecting its mean (1), variance (%) and noise strength (7% = 02 /u?).

Now, we will look for the best kinetic model parameter combinations that minimize
the noise strength for a desired mean (see Fig[7.11]). As in section[7.3] this problem
can be formulated using an optimization framework. Again, the MOOD framework is
applied to address the Pareto optimal outline of the QS/Fb system, regulating gene
expression noise due to both extrinsic and intrinsic fluctuations in a cell population.

The problem of finding the model parameters to minimize gene expression noise will
be cast as a multi-objective problem. A global multi-objective evolutionary algorithm
(spMODE) and a multi-criteria decision making (MCDM) strategy will be used to
select the most suitable solutions that minimize the noise strength for a given mean
value of the protein level. The spMODE will be applied to find the best approximation
to the Pareto front of model parameters corresponding to two scenarios: one with only
intrinsic noise, and a second one with both extrinsic and intrinsic noise. Then, MCDM
will be performed to analyze how model parameters affect the noise level in each
scenario. The Pareto sets obtained in the parameters space from the two scenarios
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are clustered together, allowing not only to capture parameter groups corresponding
to both, but also to find differentiated groups within the scenarios.

7.4.1 Multi-objective problem definition

As a first step, intrinsic noise (1) and the intrinsic plus extrinsic noise (E/I) are defined
as two different scenarios, where the mean and noise strength of protein n; : Pol/Luxl
(1 and n?, respectively) are formulated as objectives to be optimized as follows

Jl(e) = Hny, JQ(Q) = 7772Ll (78)

The cost function ([7.8)) computes the mean and noise strength of protein Pol /Lux| for
the population of N cells following the expressions

N
1 9
o, (kT) = Zl nf (kT)
1Y ; 2
na () = D (3 (KT) = pun, (KT))
i=1
1
Mnl kf _ ko Z mnl kT
o (7.9)
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2 _07211
’r]nl _/J‘%l

For both scenarios | and E/I, the mean of protein Pol/Luxl p,,, and its total noise
strength 7],%1 are obtained from the steady-state of the Luxl dynamics over the popu-
lation of cells. The laws of the total expectation and the total variance (Basak and
Chabakauri, 2010) were used. The resulting set of equations in implies that
ni (kT) is the value of protein Pol/Luxl (in number of molecules) at time instant kT’
for the i-th cell, k € NV, koT is the time instant when the steady-state is reached and
k¢T is the end of the simulation, and N is the total number of cells in the population.

The goal is to obtain the QS/Fb model parameters yielding a given mean with mini-
mum noise strength. Notice that p,, and 777211 are interrelated magnitudes that are in
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Table 7.6. QS/Fb parameters to be optimized.

Parameter  Wet-lab implication Range of values

« Piluxr promoter leakage [0.01 0.2]

Cr Plasmid copy number times /uxR transcription rate  [4 60] molecules - min—1!
pI pol/luxl messenger RNA translation rate [0.2 10] min—?!

dr LuxR degradation rate [0.02 0.2] min—!

Kdlux Dissociation constant of (R.A)2 to the Pjyxr [10 2000] molecules

conflict. In other words, when one tries to minimize them by finding a single ensem-
ble of parameters, (i, improves but 77,%1 worsens. That means a trade-off must be
reached. Thus, this problem can be solved by minimizing both p,, and 771211 as two
competing objectives. The Pareto front will provide for a given mean, the parameters
achieving minimum noise strength. Thus, the optimization problem is defined as

min J(6) = [J1(6), J2(0)] € R?
9eR> (7.10)
subject to: QS/Fb dynamics

Table enumerates the five parameters of the QS/Fb CLE-based model (4.42),
which were used as decision variables for optimization, and collectively denoted as 6.
Also, Table [7.6] describes the wet-lab implication of these parameters and the ranges
wherein they can be modified.

7.4.2 Optimization

As in the |1-FFL case, for this second step two separate optimizations of to
estimate the Pareto fronts for both scenarios were carried out. Then, the solutions were
analyzed to deduce how changes in the decision variables modify the mean and the
noise strength of protein Pol/Luxl (2 and 72, respectively). In both cases, optimization
was done using spMODE, starting with an initial population of candidate solutions
chosen randomly from a uniform distribution in the parameters space, and setting
15.000 iterations as the maximum number of evaluations of the objective functions
were set.

Two approximations of Pareto fronts together with the Pareto sets containing the
corresponding parameters for the scenarios | and E/| were obtained. As in section
[7.3.2] the solutions in figures[7.12] and Fig[7.13] were plotted using the LD-tool. Since
the interest for the QS/Fb gene circuit is in decreasing the variability of Pol/Luxl
production, the solutions are illustrated depending on the noise strength results for
both scenarios. Each solution from the objectives space or the decision variables space
(X-axis) has the same noise strength (Y-axis) in all graphs. The Pareto front analysis
in section shows the classical trade-off. Figure depicts the Pol/Lux| noise
strength 12 as a function of its mean p. The solutions of the Pareto front for intrinsic
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Figure 7.12. Pareto front of both scenarios: considering only intrinsic noise (1) and considering both
intrinsic and extrinsic noise (E/l). Each Pareto front is split into two groups: high noise (H) and low
noise (L). The Y-axis showing the noise strength is kept in the Pareto set representations following
the Level Diagram philosophy, and it is useful to correlate one solution point in both Pareto front
and Pareto set spaces.

noise (l) are in red/orange dots, and the ones for the extrinsic and intrinsic (E/I)
Pareto front are in blue/light blue. The Pareto front for the | scenario contains 16
solutions that minimize noise with a defined mean, while 12 solutions were obtained
for the Pareto front of the E/I noise case. As expected, the E/I front further away
from the ideal point (origin X-Y axis of Fig[7.12) than the | one.

7.4.3 Guidelines for implementation

Next, the Pareto sets from both scenarios were gathered and clustered using the
kmeans algorithm. Interestingly, the clustering is able to capture both scenarios and
also finds two subgroups in each scenario: a high noise, and a low noise group. Note
that the noise strength of each solution was not given to the clustering algorithm. This
highlights a correlation between the noise level and the value of the decision variables
(i.e. parameters values). Analyzing the solutions obtained, it is seen that the noise
strength for E/| case is at least ~ 2-fold larger than the one in the case I. It was
expected since the E/I scenario exhibits additional fluctuations from both extrinsic and
intrinsic sources. These findings are in total agreement with the experimental evidence
(see Fig[7.14) of genome-wide proteomics and transcriptomics in E. coli (Taniguchi
et al.| [2010).
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Figure 7.13. Pareto set representation with the value of the model parameters according each scenario
I in red/orange and E/I in blue/light blue.
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Figure 7.14. Comparison with experimental data and test of noise reduction design strategies.
Experimental data of protein abundance and noise in E. coli taken from (Taniguchi et al., [2010)) is
plotted in black dots. Dashed red and blue lines are the intrinsic noise limit and the extrinsic noise
limits respectively. The Pareto front obtained in the | scenario is plotted in red dots, and the one in
the E/I scenario in blue dots. The green dots are the solutions from the | scenario evaluated in the
presence of both extrinsic and intrinsic noise.

Note that the results obtained when only intrinsic noise is taken into account coincide
with the experimental limit (red dots lay over red dashed line). Conversely, for the
extrinsic noise E/I some parts of the Pareto front (in blue) lay below the experimental
limit obtained in (Taniguchi et al.,[2010). This is related with the fact that the MOOD
is only optimizing 5 parameters (see Table , and also that the extrinsic noise was
fixed to 15 % while in reality it might be larger than that.

Figure [7.13] illustrates the range of values obtained for 5 parameters with different
noise strength values in each scenario. These parameters represent the dynamics of
the two principal species in our system: Pol/Luxl (top of Fig, and LuxR (bottom
of Fig. There are several interesting observations deduced from the optimization
results and clustering. On the one hand, within the | scenario the kinetic model
parameters pr and «a show a clear segregation in the high and low noise groups. They
also present a tendency within these groups: the large value for the parameter
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the lower noise. Recall py is the pol/luxl messenger RNA translation rate and « is
the Puxr promoter leakage. On the contrary, the plasmid copy number times /uxR
transcription rate Cg and the LuxR protein degradation rate dg have not a explicit
impact on the reduction of the fluctuations in the protein Pol/Luxl. But they do have
a preferred ranges of values: Cr € [30 60] molecules:min~!, and dr € [0.02 0.09]
min—!.

On the other hand, within the E/I scenario the parameters pr, o and dr present
a separation in the high and low noise groups (see Fig. As before, Cr has
not a clear impact on the reduction of the Pol/Luxl fluctuations, although it does
have a preferred range of values: Cgr € [12 43] molecules:-min~!. In both scenarios,
the dissociation constant of the transcription factor kdj,, can take different values

(kdjux = 10 or kgjux = 880 molecules), and still the noise strength 1? _; decreases.

Focusing in the low noise groups (I low and E/I low), two different and opposite
strategies arise. For a low intrinsic noise (I low, red) a high level of transcription for
Pol/Luxl and LuxR are required, together with a slow degradation rate of LuxR protein.
On the contrary, for a low extrinsic/intrinsic noise (E/I low, blue) the opposite strategy
is needed. E/I low demands small levels of transcription for both proteins Pol/LuxI
and LuxR, together with a fast degradation rate of LuxR.

Finally, in order to test these two strategies obtained, a computational experiment was
performed. The solutions obtained from the | low strategy were evaluated in the E/I
scenario to see how they perform. Figure shows the results of this experiment.
The original Pareto fronts are in dotted (1) and dashed (E/I) lines. The | solutions
evaluated in the E/I| scenario (green crosses) are sub-optimal (i.e. they lay above
the dotted line), and moreover its performance deteriorates considerably. The noise
strength increases in approximately 3-fold for solutions in the low noise group.

To sum up, the MOOD approach finds the best set of model parameters that minimi-
zes the noise strength for each given mean of the target protein expression. This was
performed in two different scenarios corresponding to the design taking into account
only intrinsic noise, and accounting for both extrinsic and intrinsic noises. The ap-
proach allowed us to identify the most relevant parameters that affect both scenarios.
The parameters obtained are indeed the ones achieving the minimum possible noise
in accordance with genome-wide experimental data available from the literature. The
design strategies obtained are not transferable, that is, the strategy obtained conside-
ring only intrinsic noise becomes sub-optimal, and its performance decreases when it is
evaluated in an extrinsic plus intrinsic scenario. We emphasize the fact that the Pareto
front obtained computationally for our circuit fully matches the available genome-wide
experimental values of noise strength and mean protein expression for E. coli. This
strongly supports the hypothesis that the E. coli gene network has evolved to minimize
noise strength for each protein expression level, reaching a Pareto-optimal solution.
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7.5 Summary

The proposed multi-objective optimization design framework (MOOD) was able to
provide effective guidelines to tune biological parameters so as to achieve a desired
circuit behavior. The MOOD was applied to gene circuits of different nature and with
different kinds of models such as the 11-FFL or the QS/Fb circuit. In both circuits,
we obtained guidelines that successfully allow us to implement the circuits in the wet-
lab with confidence. Moreover, it is easy to analyze the impact of the context on
the synthetic device to be designed. Therefore, we analyzed how the presence of a
downstream load influences the performance of the designed circuit, and assessed .
The results of the multi-objective optimization approach suggest that —although system
dynamics actually put constraints on the possible values of the kinetic parameters—
robust design guidelines can be obtained to build a biological systems with a desired
functionality.
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Chapter 8

Conclusions

- Good night, and good luck.

Edward R. Murrow

The contributions of this work were listed in Chapter[I] and particular conclusions can
be found at the end of each main chapter. Here some general conclusions are drawn
and discussed together. Besides, some proposed lines for future work are discussed.
The main contributions of the thesis were contained in Chapters [ to[7] Thus:

e Chapter[d]addressed the modeling of synthetic gene circuits using first-principles
to obtain an appropriate model and a computationally efficient simulation. We
have seen that for both deterministic and stochastic models both aspects are
intertwined. The presented model reduction approach relieved the fact that gene
circuits models often contain many parameters and species to describe the sy-
stem dynamics. The resulting reduced-order nonlinear models have incomplete
parameter identifiability. Nevertheless, they helped the system identification pro-
cess to be more tractable and obtain reliable values for the parameters.

e In Chapter [5] a methodology based on multi-objective optimization design for
model parameter estimation of synthetic gene circuits has been proposed. This
methodology ensures all values obtained for the model parameters are the opti-
mal ones that fit the system model with the experimental data collected. If it
is necessary, the solutions obtained can be post-processed with a multivariate
analysis statistical tool to get more details about the role played by the different
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parameters. The multi-objective optimization methodology successfully handled
the experimental data integration coming from the most common type of me-
asurements for gene circuits, that is, cells population bulk data and single-cell
snapshot data. The thesis adapted a practical approach. Model parameters were
estimated using the ensemble modeling framework implicit in the multi-objective
formulation. The parameter intervals instead of crisp values were used in most
cases as proper representation of the estimated values.

In Chapter [6] a stochastic feedback control synthetic gene circuit for noise
regulation of protein of interest under extrinsic and intrinsic fluctuations was
designed. The stochastic differential model was formulated using the Chemical
Langevin Equation, generating more accurately random paths at a reasonable
computational cost. The controller within each cell benefits from the interplay
between a feedback loop and cell-to-cell communication, having direct impact
at the cells population level. In silico results showed that few easy to tune in the
laboratory gene circuit parameters can be used to achieve noise strength reducti-
ons up to a 60% with respect to unregulated expression of the protein of interest.
Extrinsic noise disturbing the controller was modeled as parametric variability.
This differs from the approach found in the literature, i.e. an additive stocha-
stic signal, analogous to the intrinsic noise term. This consideration allowed us
to foresee an important reduction of noise strength when quorum sensing was
added to feedback. Even knowing that the amount of reduction depended on
the circuit parameters, noise reduction was observed for almost any combination
of them. Finally, we concluded there is a trade-off between protein expression
and its noise level as revealed both the system-wide experimental data and the
theoretical analysis of the stochastic feedback control synthetic gene circuit.

Finally in Chapter [7] a multi-objective optimization framework to provide ef-
fective guidelines for tuning the gene circuits parameters when their desired
function has trade-off has been proposed. The guidelines drawn from the obtai-
ned Pareto front obtained are all optimal ones, and the final solution is chosen
depending on the designer's criteria. It was seen that parameters con be split in
two broad groups. Those that must attain a common range of values for all solu-
tions at the Pareto front, and those parameters that must take different values,
thus acting as practical tuning knobs. The relevance of the thesis approach lies
in the fact that both groups are not set a-priori but found by the optimization
process. Although synthetic gene circuits dynamics actually put constraints on
the possible values of their kinetic parameters, the multi-objective optimization
framework provides design guidelines that lead to the confidently construction
of those circuits in the laboratory.



Future work

The study carried out in this Thesis opens new research avenues. Additional work
would be required to extend dynamic models of synthetic circuits with considera-
tion of metabolism, use of cellular resources and environmental conditions. Detailed
first-principles dynamic models of the synthetic circuits can be combined with the
constraint-based metabolic models of the organisms used as hosts, and models of use
of shared resources. In the latter case, mechanistic approaches as in (WeiBe et al.,
2015)) take into account cell growth and substrates uptake. They could be used along
with approaches like (Qian et al., [2017) that capture the dynamic loading effects on
the circuit. This will improve the characterization process of a circuit-host interaction,
elucidating how its insertion affects the growth of the host, and what are the capacities
of the synthetic circuit in the metabolic context of the receiving microorganism.

The stochastic analysis of the feedback control synthetic genetic circuits may require
a supplementary stability analysis. Stability analysis of complex genetic circuits via
Lyapunov methods is in general not feasible. An alternative is contractivity analysis,
that can in addition be applied to analyze cell population consensus. One can take
advantage of the quasi-polynomial, degree two, structure of the models and their po-
sitivity. In addition, an interpretation in terms of graphs allows in a manageable way
to establish a connection with the qualitative vision of the system. The contractive
analysis can be applied reducing the problem to determining the consistency of a sy-
stem of inequalities. To do this, the Fourier-Motzkin method can be applied, focusing
on finding sufficiency conditions that are easy to apply but not at the price of being
excessively conservative, drastically reducing the set of parameters that ensure compli-
ance with certain specifications. The set of conditions obtained depend on the values
of the system parameters. Thus, one could outline a method for stability analysis
of gene circuits providing a region of their parameters where sufficient conditions for
contractivity are fulfilled. Interestingly, the stability analysis via contractivity could be
cast as additional inequality constraints within the thesis framework of multi-objective
optimization for determining parameters achieving a desired performance.

The groundwork established in Chapters [5] and [7] agrees to go beyond, combining the
results there, and developing a multi-objective optimization-based closed-loop tuning
of synthetic gene circuits. This standard model-based circuit tuning as done in this
thesis assumes that first an in silico parameter tuning is carried out. Then, in a
second stage, the resulting gene circuit is constructed in vivo. if the model is good
enough, only minor additional fine tuning may be required. This, in many practical
cases is too optimistic. Closed-loop tuning iterates between the in silico optimization
and the in vivo construction. So, that at each iteration the in vivo optimal Pareto
front becomes closer to the in silico computational one. In essence the idea is to
perform a multi-objective standard optimization with evaluation on the model at each
iteration. From the theoretical Pareto front obtained a subpopulation can be selected
that can be evaluated experimentally taking into account the material and temporal
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restrictions involved. The result of the evaluation will be used, on the one hand for the
improvement of the model (subset of nominal parameters not used in the optimization)
and, on the other, as initial seed population for the next iteration. The objective is to
obtain effective closed-loop parametric adjustment algorithms of synthetic biological
circuits in order to achieve desired output specifications. These algorithms should
provide parametric tuning guidelines in the sense of qualitative rules about parameter
values that can be effectively modified in the laboratory; continuing, completing and
extending the work performed in this Thesis. To this end, recalling that solutions
along the Pareto front define circuits with different behaviors, the appropriate way to
translate this information on practical tuning guidelines could be improved by using
not only clustering techniques as done in the thesis, but also local sensitivity analysis
along the points of the Pareto front. This is an inverse problem, in which you have to
move from the value space of the cost functions to the parameter space. The inverse
problem can be solved using several tools, like SIVIA interval inversion algorithms.
Finally, the procedure will be integrated into the tuning methodology through mixed
closed-loop optimization.
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Appendix A

Foundations

A.1 BioBrick assembly

The most used library of biological parts in synthetic biology is the Registry of Standard
Biological Parts (Biobrick Foundation| 2006)). It has physical samples of specified parts
in its database. This parts are available for request or they can been sent through a
DNA kit. All parts in here are compatible with the BioBrick RFC[10] assembly method
(Knightl 2007). An assembly method defines how part samples will be assembled
together by the engineer. An assembly standard ensures compatibility between parts,
allowing part samples to be assembled together creating new longer and more complex
parts (e.g. a basic gene circuit), while still maintaining the structural elements of the
assembly standard.

Figure illustrates the traditional assembly done through cutting and ligating (use
of restriction sites) biological parts. The following description uses BioBrick assembly
method to put 2 parts of the genetic circuit together:

1. Parts and backbone in circular plasmids must be compatible with the BioBrick

method (see FiglA.1h)

2. Restriction digests (cutting). The upstream part sample is cut out with EcoRl
and Spel enzymes. The downstream part is cut out with Xbal and Pstl enzymes.
The plasmid backbone is a linear piece of DNA previously cut with EcoRI and
Pstl enzymes. Both parts and the plasmid backbone have 3 different antibiotics
(A, B and C respectively) to eliminate unwanted background cells (see Fig/A.1b).

3. Ligation. It is a reaction with an equimolar quantity of all 3 restriction digest
products that produces a new composite part in a new plasmid (see Fig).
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a) Parts in plasmids
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Figure A.1. 3A assembly and BioBrick assembly methods. a) Two parts contained in the plasmids
and the linearized plasmid backbone with their 3 different antibiotics. b) Three digestions made with
four restriction enzymes as the BioBrick assembly method. Upstream part cut out with EcoRI/Spel
enzymes. Downstream part cut with Xbal/Pstl enzymes. Backbone digestion is made with EcoRI/Pstl
enzymes. c) A new composite part is the product of the mix and ligation of the three digestions.

4. The desired result is the upstream part sample’s Spel overhang ligated with the
downstream part sample’s Xbal overhang resulting in a scar that cannot be cut
with any of our enzymes.

5. When the ligation is inserted into cells and grown with antibiotic C, only cells
with the correct construction survive. This are represented as circular plasmids

like Fig24b.

In this way, any newly composed part will adhere to its assembly standard without need
for manipulation, and can be used in future assemblies without problems to obtain the
functional designed gene circuit. But synthetic gene circuits can be designed by simple
or more elaborate control theoretic principles making their behaviour within a single
cell or across a cell population more reliable, predictable and robust to perturbations.
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A.2 Gibson assembly

Few years back, Daniel G. Gibson, of the J. Craig Venter Institute, described a ro-
bust exonuclease-based method to assemble DNA seamlessly and in the correct order,
eponymously known as Gibson Assembly. The reaction is carried out under isothermal
conditions using three enzymatic activities: a 5’ exonuclease generates long overh-
angs, a polymerase fills in the gaps of the annealed single strand regions, and a DNA
ligase seals the nicks of the annealed and filled-in gaps. This method has been widely
adopted and is a major workhorse of synthetic biology projects worldwide. Applying
this methodology, the 16.3 kb mouse mitochondrial genome was assembled from 600
overlapping 60-mers (Gibson et al., 2009).

B NEB Gibson Assembly Cloning Kit
A EEE—— (NEB #E5510)
C— )
+ + Gibson Assembly Master Mix

Linear
vector
(REase-

! DNA inserts with 15-20 bp (NEB #E2611)
digested) overlapping ends (PGR-amplifiad) » NEB 5-alpha Competent E. coli
(NEB #C2987)
B
= 5 i
s
\\:\ // Single-tube reaction

- Gibson Assembly Master Mix
- 5" exonuclease
= — DMNA polymerase
£ — DMA ligase

Incubate at 50°C
for 15-60 minutes

Assembled
DNA

Transformation
and plating

Figure A.2. Gibson Assembly method employs three enzymatic activities in a single-tube reaction:
5 exonuclease, the 3’ extension activity of a DNA polymerase and DNA ligase activity. The 5’
exonuclease activity chews back the 5’ end sequences and exposes the complementary sequence for
annealing. The polymerase activity then fills in the gaps on the annealed regions. A DNA ligase
then seals the nick and covalently links the DNA fragments together. The overlapping sequence of
adjoining fragments is much longer than those used in Golden Gate Assembly, and therefore results
in a higher percentage of correct assemblies. Adapted from New England Biolabs®
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A.3 Transformation into cells

Transformation is the process by which foreign DNA is introduced into a cell. Tran-
sformation of bacteria with plasmids is important not only for studies in bacteria but
also because bacteria are used as the means for both storing and replicating plasmids.
Because of this, nearly all plasmids (even those designed for mammalian cell expres-
sion) carry both a bacterial origin of replication and an antibiotic resistance gene for
use as a selectable marker in bacteria.

Scientists have made many genetic modifications to create bacterial strains that can be
more easily transformed and that will help to maintain the plasmid without rearrange-
ment of the plasmid DNA. Additionally, specific treatments have been discovered that
increase the transformation efficiency and make bacteria more susceptible to either
chemical or electrical based transformation, generating what are commonly referred to
as 'competent cells’.

Many companies sell competent cells, which come frozen and are prepared for optimal
transformation efficiencies upon thawing. However, there are several protocols to
make different kinds of competent cells in the lab, without the need for buying them.
The different kinds of competence are electrocompetent, chemical competent, mix
and go (Zymo Research) and RT electrocompetent. They differ in the efficiency of
the transformation and the elements required. The majority of the transformations
needed for this Thesis were performed with lab-made electrocompetent cells using the
following adapted and improved protocol from the Tabor Lab, the Georgiev Lab, and
the Knust Lab.

A.3.1 Electrocompetent E. coli preparation protocol
1. Streak an LB agar plate from a 80°C stock, grow overnight at 37°C.

2. Pick a well isolated colony with a sterile toothpick or pipet tip and inoculate
3mL LB + appropriate antibiotics in a 14mL culture tube.

3. Shake at 37°C, 250rpm until culture reaches ODggg ~ 1 (6 to 10 hours, depen-
ding on the strain).

4. Dilute the culture 1:1000 or 1:2000 in 100mL to 1L (depending the desired
number of aliquots) of fresh LB + antibiotics.

5. Shake at 37°C, 250-300rpm until ODggp = 0.4-0.8 (=12 hours).
(Optional) Shake at 19°C, 250-300rpm until ODgpy = 0.6-0.8
Note: If the culture overgrows, backdilute 1:10 and allow to reach the appropri-
ate ODggp.



A.3 Transformation into cells

6. When the culture is at ODggp = 0.6-0.8 chill the cells in an ice/water slurry for
15 minutes.
It is critical that the cells stay on ice or at 4 ° C for the entire remainder
of the procedure.

7. Pellet the cells by spinning them at 3250g, 4°C for 8 minutes.

8. Discard the supernatant and resuspend pellet in 50 ml ice cold sterile MilliQ
water. Do not vortex (it can damage the cells).

9. Pellet the cells by spinning them at 3250g, 4°C for 8 minutes.
10. Discard the supernatant and wash the cells in 10% glycerol for 1 hour.
11. Pellet the cells by spinning them at 3250g, 4°C for 8 minutes.

12. Carefully remove supernatant, and resuspend pellet in 1/100 volumes 10% gl-
ycerol.

13. Cells can now be aliquoted into 50 L. aliquots in 1.7mL microcentrifuge tubes,
flash frozen in liquid nitrogen and stored at -80°C for /1 year.

14. Alternatively cells can be electroporated immediately. This results in =10x higher
transformation efficiency.

A.3.2 Protocol for electroporation of E. coli

1. Place the electrocompetent aliquot, the electroporation cuvette and the DNA
on ice.

2. Preheat at 37°C the necessary LB agar plates carrying appropriate antibiotics
(2 plates per transformation).

3. Add 10 - 50ng of plasmid DNA (1 - 5 uL) to the 50 uL. of electrocompetent
E.coli (in its own tube) with and mix by flicking with your finger.

4. Transfer the mix into a cold electroporation cuvette.
5. Sit on ice for 5 minutes.

6. Clean the cuvette to remove moist and place cuvette in electroporator chamber,
then pulse at 2.5kV.

7. Immediately add 750 puL ice cold SOB to cuvette, pipette up and down gently
to mix and transfer the entire 800 uL to a labeled 14mL culture tube.

8. Recover by shaking at 37°C, 250rpm for 1 hour to permit expression of antibiotic
resistance gene.
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9. Plate on LB agar + appropriate antibiotics. If transforming circular plasmid,
plate 10 pL. and 100 uL of culture (or even less). If transforming a DNA
assembly reaction plate 50 uL. on one plate and the remaining 750 uL. on a
second plate.

A.4 Linear Noise Approximation (LNA)

The LNA tries to deal with noise in a deterministic setting, where analytical solutions
are locally valid close to macroscopic trajectories (deterministic reaction rates) plus
an additive noise called fluctuation term. This section follows the arguments from
(Ullah and Wolkenhauer, 2011)) to derive the LNA from the Chemical Master Equa-
tion (CME). An alternative notation more suited for Taylor expansion using the step
operator E; for the j-th in the CME.

(A.1)

The LNA can anticipate the way in which the solution of the CME P (n, t) will depend
on the system size €. Assuming that the continuous approximation n(t) of the system
fluctuates around a macroscopic trajectory (deterministic reaction rate) of order Q with

a fluctuation of order v/

n(t) = Qp(t) + VOE(t)

A.2
n; = Qi + VO, (A2)

where n; is the molecules number of species i, ¢ is the macroscopic concentration
defined in section ?? (n;(t) = Qx;(t)), and £ is a random variable from the random
matrix Z(t), which models the fluctuations around ¢(t). The probability distribution
P (n,t) transforms into the probability distribution II (§,¢) of Z(¢)

P(nt) =P (Q@- + \/ﬁgi) —T1(E,1) (A.3)

The time derivative of ((A.2)) at constant number of molecules n implies that % =
—QY2¢. It can be used in the time derivative of (A.3))

I
owrmn ol gy 20T (A4)

ot dat &

i=1



A.4 Linear Noise Approximation (LNA)

Before comparing equation (A.4) with the CME (A.1)), it is necessary to define the
propensity function a; (n) in terms of the fluctuation ¢, the deterministic rate v;(z),
and the operator E; for each j-th reaction through

ajm) = [y (64 97%¢) v 0 (2]

Replacing a; (n) in the CME ([2.31)

—o3 (5 ) [ (s 07t vo@ e a9

where O(z) is the first neglected order with respect to = in an expansion. Taylor

. . _q-1/2 .
expansion of the reaction rates v; and the operator E; Q@ around ¢ in several
dimensions

vy (649772 =0, (9) + @ 1/22(§2@+0 BE

Q72 _ . H-1/2 e e Q. 0* —3/2
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Inserting the above two expressions into ((A.5]), and comparing the results with (A.4)
leads to the linear Fokker-Planck equation (Ullah and Wolkenhauer, 2011])

- dv; 8 (&) 1

R z:: Z i a¢] o, T2Yi ZS” " 0¢:06, ag ag
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where A = Z}I:l Sij% is the Jacobian matrix, and B = Z'jzl v;Si;Sy; is the

diffusion matrix. Both of these matrices depend on time thorough the deterministic
rate concentration qb( ). The terms of order 2~ 1/2 are proportional to 65 , and ¢ was

dt E : Sijvj (¢

The stationary solution of (A.7)) is a multidimensional Normal distribution P (§) =
—1
((2#)1/2 \/detE) exp (ffTEf/Z), which has a covariance matrix 2 = (¢¢7), and

(A7)

choosing as
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follows a Lyapunov equation A= +ZAT + BB” = 0. Recall I is the total number of
species in the system. The correlation matrix of the stationary process is (£()¢7(s)) =
Eexp (A |t —s|). Thereby, we can determine the symmetric covariance matrix as
C = QE. The LNA solutions together with the matrix C often give very accurate
descriptions of the size of molecule number fluctuations and how they are correlated.



Appendix B

Two case studies: incoherent
feedforward and quorum
sensing /feedback gene circuits.

B.1 11-FFL Strains and plasmids

Figures [B.1] and [B.2] illustrate the two low copy plasmids that were built and co-
transformed into the same cell to implement the I1-FFL gene circuit.

B.2 QS/Fb Strains and plasmids

Figures[B.3and[B.4]depict the two low copy plasmids that were built and co-transformed
into the same cell in order to implement the QS/Fb gene circuit.

B.3 NoQS/NoFb Strains and plasmids

The plasmid in figure [B.5] together with the previous one pCB2tc (Fig[B.3)) were also
co-transformed into the same cell to obtain the NoQS/NoFb circuit. This synthetic
gene circuit requires the inducer AHL; as external input.
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pCB14mut

6337 bp

Figure B.1. Plasmid pCB14mut carrying both genes the /uxR and the gfp+LVA. LVA tag sequence
speeds up the GFP degradation. Both genes have their respective transcriptional units assembled in
the same direction.
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B.3 NoQS/NoFb Strains and plasmids

500

gBa_R0062
D§ gBa_B0033

Figure B.2. Plasmid pCB11a carrying the transcriptional unit to express protein cl+LVA tag.
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Figure B.3. Plasmid pCB2tc carrying the transcriptional unit to express protein LuxR.
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B.3 NoQS/NoFb Strains and plasmids

pYBO06ta

5895 bp

Figure B.4. Plasmid pYBO0G6ta has two coding sequences to co-expresses the protein of interest (Pol)
and the Luxl protein.

205



Appendix B. Two case studies: incoherent feedforward and quorum sensing/feedback gene circuits.

pAV02ta

5292 bp

Figure B.5. Plasmid pAV02ta carrying the transcriptional unit to express only protein GFP as the
protein of interest.
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Appendix C

Model parameter estimation

The protocols presented in this section have been adapted from (Olson et al [2014)).

C.1 Time-course experimental conditions

This protocol was used to collect time-course data for the I1-FFL , QS/Fb and
NoQS/NoFb synthetic gene circuits.

1.

Start a 37 °C, shaking overnight culture from a -80 °C stock in a tube containing
3 mL LB medium and the appropriate antibiotics (100 pug/mL ampicillin, 12.5
ug/mL tetracycline and 34 ug/mL chloramphenicol for either I1-FFL , QS/Fb or
NoQS/NoFb circuit in 14 mL culture tubes).

After the overnight culture has grown for 12-16 h, prepare M9 medium (200 mL
is made with: 151.58 mL autoclaved, distilled H20, 40 mL 5x M9 salts, 4 mL
10 % amino acids, 4 mL 20 % glucose, 400 uL 1 M MgS04, 20 L CaCl2). Add
appropriate antibiotics to medium and stir the container to ensure the antibiotics
are mixed well in the medium.

Measure the ODggg of the overnight culture.

Dilute the overnight culture into the M9 + antibiotics, bringing the ODggp to
0.004. Shake the container to ensure the cells are mixed well in the medium.

Distribute 3 mL of inoculated medium into each 8 BD Falcon round-bottom 14
mL polypropylene test tubes (BD Biosciences catalog £352006).

Incubate tubes at 37 °C with shaking at 250 rpm for 3 h.
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7.

10.
11.

12.

13.

14.

Dilute 5 mg of AHL (N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Bi-
otecnology Catalog Number SC205396) into 468.98 uL of DMSO to reach a
solution 50 mM. This stock was stored at -20 °C until use.

Successively dilute AHL 50 mM into M9 reaching different AHL concentrati-
ons to induce the culture samples. Take into account the final desired AHL
concentration and the total test volume (&~ 200 ul each well).

. After 2 h of growth, quickly induce the test tubes at the defined AHL concen-

trations.
Incubate tubes at 37 °C with shaking at 250 rpm for 4 h.

After 4 h of induction and growth, harvest all test tubes by immediately tran-
sferring them into an ice-water bath. Wait 10 min for the cultures to equilibrate
to the cold temperature and for gene expression to stop.

Transfer the samples in a 96-well plate (= 200wl each well), and measure
absorbance and fluorescence (Biotek Cytation 3 plate reader) for 1 h before
induction.

Induced as quickly aas possible each sample at the desired AHL concentration
from step

Continue measuring absorbance and fluorescence for around = 6 h.

C.2 QS/Fb and NoQS/NoFb flow cytometer conditions

This protocol was used to measure snapshot data from individual cells via flow cyto-
metry in both the QS/Fb and the NoQS/NoFb gene circuits.

1.

Start a 37 °C, shaking overnight culture from a -80 °C stock in a tube contai-
ning 3 mL LB medium and the appropriate antibiotics (100 ug/mL ampicillin,
12.5 pg/mL tetracycline and 34 pg/mL chloramphenicol for both Qs/Fb and
NQs/NFb systems in 14 mL culture tubes).

. After the overnight culture has grown for 12-16 h, prepare M9 medium (200 mL

is made with: 151.58 mL autoclaved, distilled H20, 40 mL 5x M9 salts, 4 mL
10 % amino acids, 4 mL 20 % glucose, 400 uL 1 M MgSO4, 20 pL CaCl2). Add
appropriate antibiotics to medium and stir the container to ensure the antibiotics
are mixed well in the medium.

. Measure the ODggq of the overnight culture.

Dilute the overnight culture into the M9 + antibiotics, bringing the ODggg to
0.004. Shake the container to ensure the cells are mixed well in the medium.



C.2 QS/Fb and NoQS/NoFb flow cytometer conditions

10.
11.

12.

13.

14.

15.

16.
17.
18.

Distribute 3 mL of inoculated medium into each 8 BD Falcon round-bottom 14
mL polypropylene test tubes (BD Biosciences catalog £352006).

Incubate tubes at 37 °C with shaking at 250 rpm for 3 h.

Dilute 5 mg of AHL (N-3-Oxohexanoyl-L-homoserine lactone, Santa Cruz Bi-
otecnology Catalog Number SC205396) into 468.98 uL of DMSO to reach a
solution 50 mM. This stock was stored at -20 °C until use.

Successively dilute AHL 50 mM into M9 reaching different AHL concentrations
to induce the culture tubes. Take into account the final desired AHL concentra-
tion and the total test tube volume. We induce AHL 10 and 50 nM to measure
final repression levels |[Egland and Greenberg (2000).

After 2 h of growth, quickly induce the test tubes at AHL 0, 10 and 50 nM.
Incubate tubes at 37 °C with shaking at 250 rpm for 4 h.

After 4 h of induction and growth, harvest all test tubes by immediately tran-
sferring them into an ice-water bath. Wait 10 min for the cultures to equilibrate
to the cold temperature and for gene expression to stop.

Prepare a solution of phosphate-buffered saline (PBS: 137 mM NaCl, 2.7 mM
KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH to 7.4) + 500 ug/mL of the
transcription inhibitor rifampicin (Rif, Tokyo Chemical Industry, cat. $R0079).
Prepare at least 1 mL for each culture tube to be measured via flow cytometry.
Rif dissolves slowly, so allow 45 - 60 min of stirring. Also at this time, begin
preparing a 37 °C water bath.

Filter the dissolved solution of PBS + Rif through a 0.22-um 20-mL syringe
filter.

Transfer 1 mL of the filtered PBS + Rif into one 5 mL cytometer tube per
culture sample, and chill tubes in an ice-water bath.

Transfer 50 ul of each chilled culture from step 7 into the chilled PBS + Rif
solution.

Incubate the PBS + Rif + culture tubes in a 37 °C water bath for 1 h.
Transfer the tubes back into ice-water bath.

Wait 15 min, and then begin measuring each tube on a flow cytometer.
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C.2.1 Measuring different inductions at defined time instants via
flow cytometry

1. Repeat steps 1 to[g

2. Induce AHL 10nM (4 uL of AHL 7.5 uM in 3mL of the sample culture) every
30 min during 3 h, and then every 10 min during the last 1 h (See Note 1 at
the end of this protocol). After each induction, incubate all tubes at 37 °C with
shaking at 250 rpm.

3. Repeat steps [11] to

Flow cytometry data acquisition. Cytometry acquisition and analysis was performed
using a BD FACSCalibur (Serie Nr. E14600085) flow cytometer with the laser system
blue (488 nm) and red (635 nm). The FL1 (GFPmut3b) acquisition channel emission
filter has a 510/21-nm filter. Acquisition is performed with typical count rates of
1,000-2,000 events/sec. Approximately 40,000 events are stored for each sample.
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Stochastic analysis of a feedback
control synthetic gene circuit

D.1 Experimental data post-processing

Data from flow cytometry were processed with our scripts (see SI Section . First,
cytometry data were read using the fca__readfcs Matlab function. Then, the first 250
and last 100 events were removed from the data set to avoid transient errors introduced
owing to uneven pressurization of the sample tube. After this, the highest and lowest
measured histogram channel for each of the measured values (FSC, SSC, and FL1)
were removed, as the events in these channels have an undetermined fluorescence
value. All this was done using the trim Matlab function. Next, the 2D binning of FSC
and SSC was performed together with a smooth representation of the 2D histogram
using the function smoothing, shown in Fig. [D.IA. The fluorescence histogram from
FL1 raw data, corresponding to the all this events is plotted in Fig. [D.IB. From
this, the normalized and smoothed representation of the histogram was used to obtain
contour level curves. Then, it is possible to use them as gate to select the events
that are enclosed by the desired contour level using the function contour_gating.
This contour level curve was used to isolate a uniformly sized population of cells,
and it is naturally aligned with the observed cell population. The gating procedure
leaves N = 15000 — 20000 events shin in Fig. [D.IIC. This events were then scaled
back to linear (detectors were set to log scale) using the parameters from the header
of the FCS file. Next, a trim was performed on FL1 to remove a small number of
apparent noncellular events with very low and very high fluorescence, the fluorescence
corresponding to the gated events is shown in Fig. [D.ID.
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Figure D.1. Flow cytometry experimental data postprocessing. (A) Forward scatter vs. side scatter
plot of the raw data. Colormap show numbers of events (from low in blue to high in dark red).
(B) Fluorescence histogram from FL1 raw data, corresponding to the events plotted in panel A. (C)
Forward scatter vs. side scatter plot showing the contour gated events. (D) Fluorescence histogram
corresponding to the gated events plotted in panel C.

Finally experimental data were multiplied by a scale factor of 2.72 to obtain the
histograms shown in section [6.3.1] of the main text of this Thesis.

D.2 Matlab and OpenFPM CODE

A short description of the main functions integrating the code used to simulate the mo-
del and process experimental data is given below. It has been divided in three groups:
files related to parameters setting (Matlab), files to simulate the model (OpenFPM
client in C++), and files used to process experimental data from flow cytometry
(Matlab). All them can be downloaded from http://sb2cl.ai2.upv.es/content/
software.

The stochastic simulation of our synthetic circuit is implemented using /angevin, an
OpenFPM client in C++. Information about OpenFPM installation can be found in
its webpage http://openfpm.mpi-cbg.de/. The best option for a system that is na-
tively supported (i.e. Linux based systems, Mac, etc.) is to run the code: clone https:


http://sb2cl.ai2.upv.es/content/software
http://sb2cl.ai2.upv.es/content/software
http://openfpm.mpi-cbg.de/
https://github.com/incardon/openfpm_pdata.git && \ cd openfpm_pdata && ./install
https://github.com/incardon/openfpm_pdata.git && \ cd openfpm_pdata && ./install

D.2 Matlab and OpenFPM CODE

//github.com/incardon/openfpm_pdata.git&&\cdopenfpm_pdata&&./install,
and follow the installation instructions therein.

C++ code - OpenFPM client

e main.cpp is the OpenFPM client langevin code. It implements the main body
and two auxiliary functions. The first function opens the file param.dat created
by the Matlab script and sets the parameters values for each cell. The second
function is called at each simulation time step to update the system states
(number of molecules of species) using the Euler-Maruyama algorithm.

e Makefile has the information for make to compile the C4++ source code.

e langevin.mk has the information for Makefile to obtain all the paths and libra-
ries. Should be replaced by the example.mk file generated by the OpenFPM
instalation.

Computational cost Execution of 120 parameter sets takes around 20 minutes when
performed in a Intel XEON Server with 8 cores and 32 Gb of RAM Memory.

Model code - Parameter setting

e Evaluate__CLE_ Extrinsic.m is a script to set the parameters for the model
and run the /angevin OpenFPM client. It generates a matrix with all required
parameters,runs langevin and saves the results obtained both as a variable in the
Matlab workspace and as a Matlab .mat file.

e struct2csv_append.m is a function to convert a Matlab structure into a csv
file that can be open with the /angevin OpenFPM client.

Model code - Flow cytometry data postprocessing

e plot_tubes.m is the main script used to read, trim, smooth and gate the data.
It plots the FSC vs SSC scatter and the FL1 histogram before and after the
gating procedure. Then it calculates the mean and noise strength of the gated
data.

e fca_readfcs.m is a function obtained from Matlab Central by Laszlo Balkayﬂ
The function reads the raw data and returns the header of the file with infor-
mation about the acquisition and the raw data (FSC, SSC, FL1).

Download available at www.mathworks.com/matlabcentral/fileexchange/
9608-fcs-data-reader
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e trim.m is a function that trims the raw data. First, the first 250 and last 100
events are removed from the data set to avoid transient errors introduced owing
to uneven pressurization of the sample tube. Then each channel is trimmed
to the user defined limits. In general this limits are the highest and lowest
measured histogram channel for each of the measured values (FSC, SSC, and
FL1), as these events have an undetermined fluorescence value.

e smoothing.m is a function that binds the 2D (FSC,SSC) raw data and returns
a smoothed version of the 2D histogram.

e contour_gating.m is a function that gates FSC and SSC data based on the
contour obtained from smoothing.m. The user can select the contour level.
Then all the events inside the contour are gated in.
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Performance tuning via
multi-objective optimization

E.1 Matlab CODE for optimization of the
11-FFL parameters

A short description of the main functions integrating this code, a description of the
value sets, and supplementary results are given below. It has been divided in two
groups: files related to the model computational characterization, and files used by
the optimizer, which link to the first set.

Model code

e model_3genes.m is a function for the ODEs of the reduced model. Receives
the value of the state vector = at time t, the parameters, initial conditions and
time point; and returns a vector with the derivatives defined in it. When used
with the command ode23s in the function objective_func.m one obtains the
solution of the ODEs system for the given parameters.

e objective_func.m is the objective function. It receives the parameters and
returns the objectives values vector, after calculating J; and Js for the corre-
sponding dynamic response obtained with the given parameters.

The 14 variables are initialized, and the 10 parameters are not because the
optimizer will work with a given range in its code.
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The ode23s algorithm gives the variables values Y for each t, using model_3genes.m.
This ode algorithm was selected because our system model is what it is known

as stiff, in terms of the numerical solution of ordinary differential equations, i.e.

it has both slow and fast dynamics. An ordinary differential equation problem is
stiff if the solution being sought is varying slowly, but there are nearby solutions
that vary rapidly, so the numerical method must take small steps to obtain sa-
tisfactory results. For our integration problem we use an absolute tolerance of

1 x 10~%, and a relative tolerance of 1 x 1076,

For computational simulation, we start from the equilibrium initial conditions
(pre-computed) and give a jump of 50nM to the concentration of xg to simu-
late the induction. With respect to the simulation parameters, the simulation
sampling time (dt) was fixed to 1 x 1073 minutes, and a total simulation time
Tsim = 300 minutes was used.

e eval_obj_fun.m is the function that receive a population of parameters, eva-
luates the objective functions in this population, and accumulates the results in
a matrix to return it. It is executed at each iteration of the spMODE algorithm.

MOO code First, highlight that we use the script Tutorial.m to run all the functions
used to obtain the results shown in the main paper.

The first step is to run the spMODEparam file to build the variable ‘'spMODEDat’
with the variables required for the optimization. Here the number of objectives are
defined, also the number of decision variables and the ‘Cost Function’, which brings
the objectives matrix after previous ode simulations (by means of interlinked functions
mentioned above, constituting in essence the problem ‘nucleus’ or characterization).
The field of search, and bounds to improve pertinency of solutions in the objective
space so as to cut solutions with no interest to the DM, are defined here too. Also
other aspects, such as maximum Pareto optimal solutions required and a bound on
the number of function evaluations.

Once the Pareto set and the Pareto front are found by the optimizer, results can be plot
with optional features through the Leveltool. This tool provides the LD visualization
for the MCDM.

e spMODEparam.m generates the required parameters to run the spMODE opti-
mization algorithm. In this file the variables regarding the multi-objective pro-
blem are defined. The values of interest for our problem are:

1. Number of objectives.
spMODEDat.NOBJ = 2

2. Number of decision variables.
spMODEDat.NVAR = 10
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E.2 Supplementary results of the 11-FFL optimization

3. Cost Function.
spMODEDat.mop = str2func(’CostFunction’)

4. Problem Instance.
spMODEDat.CostProblem = ‘modelo3genes’

5. Maximum and minimum values for the parameters or decision variables are
fixed in order to give a range to the optimizer to search the optimal soluti-
ons, (spMODEDat.FieldD). kq and dy. were fixed to avoid the optimizer to
modify the model input I, as | want an step input determined by K. (t).

6. Bounds on objectives.
spMODEDat.Pertinency=[1 x 1073200; 1 x 10=%20]; A row for each ob-
jective, with the minimum and maximum values desired.

e CostFunction.m calls the cost function of your own multi-objective problem.
In this case eval_obj_fun.m. It also includes a default mechanism to improve
pertinency (Objective space bounded).

Clustering and Visualization

e clustering.m is a script that performs the hierarchical clustering with the solu-
tions obtained from the spMODE optimization algorithm, and uses the modified
LD-tool to plot the LD plots with the cluster number as Y-axis.

Computational cost Execution of our MOO using the spMODE algorithm (15.000
evaluations of the objective function) took around 10 hours and 25 minutes and was
performed in a Intel XEON Server with 12 cores and 32 Gb of RAM Memory.

E.2 Supplementary results of the I11-FFL optimization
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