Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

TRABAJO FINAL DE GRADO

MEMORIA PRESENTADA POR:
Iulian Catalin Badica

DIRECTOR:
Manuel Llorca Alcón

Convocatoria de defensa: Julio 2018
La finalidad de este trabajo final de grado es ver y entender la transformación que ha sufrido el grupo de empresas AQUACLEAN. Y también sirve de ayuda para mejorar cualquier tipo de empresa grande (más de 250 trabajadores). Hoy en día la tecnología ha avanzado rápidamente y las empresas poco a poco se tienen que adaptar a ella.

Por una parte, el departamento de informática, “obligado” por dicho avance tecnológico ha puesto en marcha una modificación “global” de la empresa, una modificación que afecta a las infraestructuras de seguridad, servidores, switches y también una parte importante que es el correo electrónico.

Por otra parte, debido a la gran demanda de eficiencia y eficacia de sus operarios, el gerente de la empresa ha ordenado que se innove todos los dispositivos anticuados por dispositivos de alta gama, como switches, puntos de acceso, tabletas, pc.

En el presente TFG voy a intentar “contar” la evolución que ha sufrido el grupo AQUACLEAN, desde prácticamente su inicio como una grande empresa hasta ahora. Y también posibles mejoras para el futuro de la empresa.
Contenido
RESUMEN TFG... 2
RESUMEN Y PALABRAS CLAVE.. 2
SUMMARY AND KEYWORDS... 2
1. INTRODUCCIÓN .. 6
 1.1 MOTIVACIÓN Y CONTEXTO .. 6
 1.2 DESCRIPCIÓN Y ACTIVIDAD DE LA EMPRESA .. 6
 1.3 OBJETIVOS ... 10
 1.3.1 OBJETIVOS GENERALES ... 10
 1.3.2 OBJETIVOS ESPECÍFICOS ... 10
 1.4 PLAZOS .. 11
 1.5 RESTRICCIONES ... 11
 1.5.1 LA TRIPLE RESTRICCIÓN ... 11
 1.5.1.1 COSTE ... 12
 1.5.1.2 TIEMPO .. 12
 1.5.1.3 ALCANCE .. 12
 1.5.2 LA TRIPLE RESTRICCIÓN AMPLIADA ... 12
 1.6 CARÁCTER INNOVADOR ... 13
 1.7 RETOS TECNOLÓGICOS ... 14
2. DESCRIPCIÓN DE LAS HERRAMIENTAS UTILIZADAS EN EL DESARROLLO DEL PROYECTO .. 15
 2.1 MATERIAL FÍSICO ... 15
 2.2 SOFTWARE PRINCIPAL ... 17
 2.3 INFRAESTRUCTURA ANTERIOR .. 17
 2.3.1 INFRAESTRUCTURA DE SEGURIDAD ... 17
 2.3.2 INFRAESTRUCTURA DE “SWITCHING” ... 21
 2.3.3 INFRAESTRUCTURA DE SERVIDORES .. 23
 2.3.4 INFRAESTRUCTURA DE MAIL .. 24
3. PROYECTO .. 26
 3.1 VODAFONE ... 26
 3.2 NUEVA INFRAESTRUCTURA DE SEGURIDAD .. 27
 3.3 NUEVA INFRAESTRUCTURA DE “SWITCHING” .. 32
 3.4 NUEVA INFRAESTRUCTURA DE SERVIDORES ... 38
 3.5 NUEVA INFRAESTRUCTURA DE MAIL ... 43
4. DIFICULTADES MÁS NOTABLES .. 46
Unificación de sistemas y servicios de comunicación del grupo
AQUACLEAN

5. CONCLUSIONES Y TRABAJO FUTURO ... 47
 5.1 RESULTADOS ... 47
 5.2 CONCLUSIONES ... 47
 5.3 TRABAJO FUTURO .. 47

6. BIBLIOGRAFÍA ... 49

Índice de ilustraciones y tablas

Ilustración 1-Flocado Antecuir ... 7
Ilustración 2-Comercializadora Interfabrics ... 7
Ilustración 3- Tintura Pascual y Bernabeu ... 8
Ilustración 4- Estampación SerpisColor .. 8
Ilustración 5- Fabricación de la tela Textiles Pascual ... 9
Ilustración 6- Fabricación del Flok TextiFlok ... 9
Ilustración 7- Triple restricción .. 12
Ilustración 8- Triple restricción ampliada ... 13
Ilustración 9- Tabla material físico ... 16
Ilustración 10- SIE Firewall .. 18
Ilustración 11- UNTANGLE Firewall ... 20
Ilustración 12- Switch HP ... 22
Ilustración 13- Switch TP-LINK ... 22
Ilustración 14- Switch D-LINK ... 22
Ilustración 15- Switch 3COM .. 22
Ilustración 16- Plan del proyecto ... 27
Ilustración 17- FORTINET Firewall ... 29
Ilustración 18- Switch HP OfficeConnect 1920S ... 33
Ilustración 19- Office365 ... 44
Unificación de sistemas y servicios de comunicación del grupo
AQUACLEAN

Autor del TFG: Iulian Catalín Badica
Localidad y Fecha: Alcoy, 5 de julio 2018
Tutor Académico: Manuel Llorca Alcón
Cotutor colaborador:
Dedicatorias:

Agradecer en especial a Kiko Richart, como ingeniero de la empresa, que me ayudó con sus conocimientos y experiencia a llevar a cabo este proyecto. A Jorge Belda como tutor de prácticas y también a Xavi Gisbert, un exalumno que lleva 3 años en la empresa, por sus consejos. I en especial, a mi familia.
1. INTRODUCCIÓN

La unificación de sistemas y servicios de comunicación es una solución que se presenta debido a la evolución de las nuevas tecnologías que hace que la mayoría de las empresas modifique toda su estructura de red para poder alcanzar sus objetivos de manera óptima.

1.1 MOTIVACIÓN Y CONTEXTO

Este TFG (Trabajo Final de Grado) está motivado por la necesidad urgente de empresas grandes que necesitan mejorar su red y sus servicios de comunicación. En este caso, se trata de una empresa grande que cuenta con más de 500 trabajadores, AQUACLEAN GROUP.

En relación con el contexto, en general, la mayoría de las empresas tienen más o menos estructuras parecidas teóricamente, pero a la hora de ponerlo en práctica no es, digamos tan fácil. Pero lo que es obvio es que, si incorporamos distintos dispositivos de un alto nivel tecnológico, las empresas deben de evolucionar su infraestructura de red y comunicaciones y diseñar diversas soluciones para mejorar. Pero no solo pensando en el presente sino pensando también en el futuro.

1.2 DESCRIPCIÓN Y ACTIVIDAD DE LA EMPRESA

Actualmente el grupo AQUACLEAN, que es la empresa que he escogido porque es el sitio donde he realizado mis respectivas prácticas de la/el carrera/grado, ha adquirido nuevos servidores en la nube que necesitan gran ancho de banda. Este hecho ha sido catastrófico porque todos los usuarios de la empresa hacen peticiones al servidor, entonces la velocidad y la ganancia de tiempo suponía un factor importantísimo para la empresa. Debido a ese factor se ha tenido que reestructurar toda la infraestructura de red y comunicaciones, así como la compra de nuevos dispositivos. Otro factor importante es que, todos los dispositivos que tenía la empresa eran muy antiguos.

AQUACLEAN GROUP es un sólido grupo textil español formado por 6 empresas industriales que se ubican en el área de Alcoy, en la Comunidad Valenciana y una comercializadora ubicada en Varsovia, Polonia.

Esta empresa lleva más de 50 años en el sector textil, las empresas o sub-empresas del grupo Antecuir y Interfabrics son las principales representantes de este Grupo. Estas dos empresas tienen como especialidad los tejidos para sofás, la decoración y automoción.

Su principal producto es una tela que para limpiarla se necesita solamente agua y un trapo. Esta tecnología la llaman AQUACLEAN y llevan más de 10 años usándola. Durante este tiempo han vendido más de 30 millones de metros y se distribuye en más de 60 países.
Contando un poco de su historia, la empresa comienza su aventura empresarial en el año 1962 a mano de D. Rafael Pascual, un hombre que ha demostrado a lo largo de estos años que el esfuerzo y la dedicación tienen sus recompensas. Solo 5 años más tarde la empresa se convierte en el primer fabricante de flocado para tapicería. Y debido a una gran demanda, en el año 1972 comenzó a fabricar su propia maquinaria para el terciopelo. Aproximadamente 20 años más tarde, la empresa consigue su mayor éxito en ventas con Courtisane, un producto que se vendió en más de 80 países.

La empresa ha desarrollado varias tecnologías, estas están repartidas en cada una de sus sub-empresas:

- Flocado (ANTECUIR)

![Ilustración 1-Flocado Antecuir](image1)

- Comercializadora (INTERFABRICS)

![Ilustración 2-Comercializadora Interfabrics](image2)

- Tintura (PASCUAL Y BERNABEU)
Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

Ilustración 3- Tintura Pascual y Bernabeu

- Estampación (SERPISCOLOR)

Ilustración 4- Estampación SerpisColor

- Fabricación de la tela (TEXTILES PASCUAL)
En primer lugar, tenemos la empresa Textiles Pascual que es donde se realiza la tejeduría, es decir donde mediante unas máquinas llamadas telares se fabrica la tela. En el momento en que la tela ya está confeccionada se convierte en piezas de tela. Una vez convertida en piezas se repasa la tela por si existe algún defecto, para eso tienen dos formas de repasar:

- La primera es en la misma empresa
- La segunda en repasadoras externas que también pertenecen al grupo

Cuando las piezas ya están repasadas se envían a acabados. En acabados las piezas se separan según lo que se desea hacer con la tela, para eso disponen de 2 tipos de acabados:

- Para estampar la tela se enviará a SerpisColor, empresa que pertenece al grupo.
- Pero en el caso de que la tela se quiere tintar se enviara a Pascual y Bernabeu, además aquí es donde se suministran las propiedades químicas a la tela.

La diferencia entre estampar y tintar es que tintar colorea la tela por los 2 lados y estampar solo por el lado que se va a ver.

Si la tela no se finaliza en la etapa anterior deberá pasar por Antecuir que es también una empresa del grupo, donde la tela se “floc”a, es decir, introducir pelo artificial cortado muy fino en el textil.

El flock se fabrica en otra empresa también del grupo llamada Textilfok, esta solamente se dedica a la fabricación del flock.

Una vez introducido el flock las empresas Antecuir, SerpisColor y Pascual y Bernabeu tienen una sección llamada rollado de tela, en esta sección se vuelve a repasar la tela por si hay algún fallo de tintura o estampación.

Finalmente, la tela se envía a Interfabrics que se encarga de almacenaje mediante un almacén inteligente nominado ULMA y posteriormente su venta.

1.3 OBJETIVOS

1.3.1 OBJETIVOS GENERALES

La finalidad general de este proyecto es satisfacer las exigencias y necesidades que presentan los usuarios de la empresa:

- Velocidad a la hora de trabajar sobre los servidores
- Velocidad de navegación por internet sobre diferentes páginas web de la empresa
- Velocidad de comunicación entre los diferentes dispositivos electrónicos.
- Evitar posibles “cuellos de botellas” en los diferentes dispositivos de comunicación.

1.3.2 OBJETIVOS ESPECÍFICOS

Por otra banda tenemos diferentes objetivos que tiene que cumplir la nueva reforma de la empresa:

- Cambiar todos los dispositivos antiguos por nuevos que usen tecnología giga-ethernet como pueden ser los switch de todos los armarios de la empresa
- Cambiar todo el cableado horizontal y vertical que sea de categorías inferiores a 6.
- Cambiar los ordenadores con tarjetas de red antiguas.
- Unificar todos los dispositivos en una interfaz para poder tener una fácil administración de estos en caso de averías.
- Comprobar las velocidades en los puntos de acceso y si es necesario cambiarlos por unos nuevos.
- Renovar todos los equipos con sistema operativo Windows XP o anterior.

1.4 PLAZOS

En un principio se sabía que iba a ser un gran cambio y con un plazo bastante amplio, pero como se trataba de un proyecto grande e importante se tenía que hacer bien y bastante más rápido de lo que en un principio se pensaba.

<table>
<thead>
<tr>
<th>FECHAS</th>
<th>AVANCE DEL PROYECTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/01/2018</td>
<td>Inicio del proyecto</td>
</tr>
<tr>
<td>15/02/2018</td>
<td>Instalación de la línea</td>
</tr>
<tr>
<td></td>
<td>Cambio de firewall</td>
</tr>
<tr>
<td>01/03/2018</td>
<td>Constitución de la transmisión</td>
</tr>
<tr>
<td></td>
<td>Cambio de switches</td>
</tr>
<tr>
<td></td>
<td>Cambio del cableado</td>
</tr>
<tr>
<td></td>
<td>Cambio de los servidores</td>
</tr>
<tr>
<td>20/05/2018</td>
<td>Pruebas E2E</td>
</tr>
<tr>
<td>01/06/2018</td>
<td>Fin del proyecto</td>
</tr>
</tbody>
</table>

El tiempo está estimado en días, pero realmente no se trabajaba durante todo el día, se trabajaban 8 horas al día.

1.5 RESTRICCIONES

1.5.1 LA TRIPLE RESTRicción

Todos los proyectos tienen desafíos que afectan el éxito de este. Cada vez los desafíos son más restrictivos debido a la competencia. La competencia tiene un lado bueno y uno malo. El lado bueno es que las empresas cada vez más desarrollarán productos más eficientes. Y el lado malo es que las empresas que no pueden mantener el ritmo se van a “pique”, es decir quiebran porque no pueden satisfacer las necesidades de sus clientes.

Principalmente y la que todos conocemos es “la triple restricción”, esta se representa en forma de triángulo y representa el concepto de que cuando las tres partes del triángulo trabajan al mismo tiempo se alcanzará la calidad deseada del proyecto.

Triple restricción
Ilustración 7- Triple restricción

Estas 3 partes del triángulo son:
- COSTE
- TIEMPO
- ALCANCE

1.5.1.1 COSTE

El presupuesto de los proyectos siempre es limitado por lo cual, si se reduce el coste, se reducirá su alcance o aumentará su tiempo.

1.5.1.2 TIEMPO

Todos los proyectos tienen una fecha de entrega asignada, por lo cual, si se quiere reducir el tiempo del proyecto, aumentará su coste o se reducirá su alcance.

1.5.1.3 ALCANCE

La mayoría de los proyectos no cumplen este lado del triángulo ya que el proyecto no se define bien o no está bien entendido desde el principio.

1.5.2 LA TRIPLE RESTRICCIÓN AMPLIADA

Hoy en día se sigue utilizando la triple restricción, pero ahora ya no hay 3 variables sino 6:

La triple restricción ampliada
La satisfacción del cliente es la clave en todo proyecto. No sirve de nada si cumplimos con coste, tiempo y alcance si el cliente al que va dirigido no está satisfecho con el producto.

Hoy en día, la triple restricción engloba estas 6 variables y se debe tener claro que a la hora de formular un proyecto se pueden fijar de manera arbitraria.

1.6 CARÁCTER INNOVADOR

En este TFG la innovación afecta a la sección de redes y sistemas en un contexto tecnológico porque gracias a la incorporación de nuevos dispositivos se puede trabajar con mayor velocidad y mayor eficiencia.

La innovación es un cambio que introduce novedades, es decir, modificar elementos ya existentes con el fin de mejorarlos o renovarlos. En nuestro caso se trata de cambiar toda la infraestructura de red y sistemas de la empresa mediante la adquisición de nuevos dispositivos electrónicos más potentes y con más rendimiento que los que posee la empresa.

Otro carácter innovador es que gracias a las interfaces que poseen los dispositivos, se pueden controlar vía remoto o vía web para ver que está pasando en cada momento y para ver el correcto funcionamiento.
1.7 RETOS TECNOLÓGICOS

El proyecto dispone de los siguientes retos tecnológicos:

- La empresa disponía de una infraestructura que conectaba todas las sedes entre ellas, pero la conexión entre las sedes no era la óptima.
- Aumentar la velocidad de enlace entre las diversas sedes e incluso dentro de cada una de ellas.
- Controlar el acceso de los usuarios mediante un firewall propio.
- Controlar el estado de los dispositivos instalados.
- Tener todos los dispositivos y usuarios en un Active Directory (Directorio Activo).
- Tener un servidor como controlador de dominio.
2. DESCRIPCIÓN DE LAS HERRAMIENTAS UTILIZADAS EN EL DESARROLLO DEL PROYECTO

2.1 MATERIAL FÍSICO

En este apartado se especificarán todos los dispositivos utilizados para cambiar/renovar toda la infraestructura de red y sistemas de la empresa.

- Tabla material físico

| PC HP Thin Client | Windows 10 IoT
| 8GB DDR3 RAM
| 64 GB MLC FLASH
| AMD G-Series SOC Processor |

| PC HP EliteDesk 800 | Windows 10 Pro
| Intel Core i5-7500T
| 8GB DDR4 RAM
| SSD 256GB |

| SWITCH HP OfficeConnect 1920s | 8/16/24/48 ports
| 100 Mb Latency: < 7 µs
| 1000 Mb Latency: < 2.4 µs
| PoE+ available, depending on model |

| RJ 45 Categoría 6 | Frecuencias de hasta 250MHz
<p>| Velocidad por encima de 100 Mbps |</p>
<table>
<thead>
<tr>
<th>Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT 6</td>
</tr>
<tr>
<td>Wireless Unifi Ubiquiti</td>
</tr>
</tbody>
</table>
| 2,4Ghz -> 450Mbps
5 Ghz -> 1300Mbps
196.7 x 35 mm |
| Pantallas HP EliteDisplay |
| FHD 23” antirreflejo
1920 x 1080 a 60Hz
IPS con retroiluminación LED
HDMI
USB 3.0 |
| Laptop Mac iOS |
| Intel Core i5
8GB RAM
256GB SSD
13” |
| Apple TV |
| Con este aparato conectado a un proyector o una televisión, cualquier usuario que dispone de un MAC podrá enviar su contenido |
| Fortinet Firewall |

Ilustración 9-Tabla material físico
2.2 SOFTWARE PRINCIPAL

Como se trata de una mejora física de la infraestructura de red y sistemas no se ha utilizado casi software para llevarlo a cabo, pero algunos programas de gestión sí, como pueden ser los siguientes:

- Microsoft Office 365: Aquí se han utilizado programas como el Word o Excel para gestionar los usuarios y equipos que se han puesto en dominio. También se utilizará el Outlook para gestionar y visualizar los correos electrónicos.
- El software de los propios switch para poder gestionarlos e incluso se pueden gestionar vía web
- Software Unifi Ubiquiti que es para gestionar los puntos de acceso, disponemos de una versión online.
- Microsoft Dynamic Navision, es un software de gestión empresarial (ERP) que permite impulsar y automatizar los procesos de negocios de las pymes (empresa pequeña o mediana). Este software se instala en todos los equipos de la empresa.
- TeamViewer, es un software informático de fácil gestión que permite conectarse remotamente a diferentes equipos de distintos sitios, este a su vez, también se instala en todos los equipos de la empresa.
- Windows Server 2016, que se utiliza para el servidor Cloud.

2.3 INFRAESTRUCTURA ANTERIOR

El trabajo de final de grado fue una propuesta por parte de mi tutor después de llegar a un acuerdo con todos los miembros del departamento. A parte del avance tecnológico, que es hoy en día uno de los factores más importantes a la hora de hacer cambios en una empresa o en cualquier otro lugar o sitio público, el gerente de la empresa le transmitió a nuestro tutor que los operarios perdían mucho tiempo para realizar los pedidos y como todos sabemos “tiempo es dinero”, es decir, cuanto más tiempo se perdía, menos dinero dejaba de ganar la empresa. También el crecimiento de la empresa fue otro factor clave para cambiar toda la infraestructura. Ya que hace poco se puso en marcha la construcción de 3 naves nuevas en Muro de Alcoy.

2.3.1 INFRAESTRUCTURA DE SEGURIDAD

En cuanto a la salida a internet y seguridad la empresa disponía:

- Las sedes Interfabrics, Antecuir, Textiles Pascual y Textiflok tenían un Firewall nominado SIE Firewall, que se trata de un sistema pensado para proteger la red de una empresa de posibles ataques de Internet. El firewall actúa de barrera separando la red de su empresa del servidor de aplicaciones Internet. Para que este actúe correctamente todo el
Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

El tráfico de información tendrá que pasar por él.

![Diagrama de red]

Ilustración 10- SIE Firewall

- Las otras sedes, Pascual y Bernabéu y SerpisColor y tenían otro firewall nominado Firewall Untangle
Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

El estado de la aplicación Firewall proporciona información básica, incluidas sesiones pasadas, marcadas, bloqueadas, etc.

Puede agregar reglas fácilmente a la aplicación Firewall en la pestaña "Reglas". Puede configurar cualquier tipo de regla personalizada, por ejemplo bloquear e indicar todo el tráfico hacia o desde un puerto específico.
A continuación, tenemos un plano con todo el sistema de salida a internet y Firewall que tenía la empresa antiguamente:
La empresa disponía de 6 dispositivos para el control de malware y virus, 4 de ellos eran del proveedor SIE.FIRWALL y 2 de UNTANGLE FIREWALL como se aprecia en el esquema. Esto suponía un gran consumo de energía eléctrica y una gestión costosa, ya que para ver el tráfico hacia internet tenías que entrar firewall por firewall cada uno con diferentes credenciales.

Los diferentes dispositivos hacían su fusión de protección, pero no era lo que se buscaba, se buscaba algo más sencillo de gestionar y tenerlo todo unificado. Eso lo veremos en la nueva infraestructura de seguridad.

2.3.2 INFRAESTRUCTURA DE “SWITCHING”

Antiguamente la empresa disponía de una variedad de marcas de “switches” repartidos por todas las sedes de la empresa. A continuación, veremos las marcas usadas por la empresa:

- Switch HP 8/16/24 puertos. Se trata de una marca top en “switching” pero se tuvieron que cambiar debido a su velocidad de enlace que era 10/100 Mbps
Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

Ilustración 12- Switch HP

- TP LINK se trata de una marca normal pero también se cambiaron debido a su velocidad FastEthernet 10/100

Ilustración 13- Switch TP-LINK

- D-LINK switch se trata de una marca normal también que cuenta con switches de diversos puertos, pero todos los que tenían montados estaban viejos y tenían una velocidad de enlace 10/100.

Ilustración 14- Switch D-LINK

- 3COM se trata de una marca antigua que en su día tenía éxito.

Ilustración 15- Switch 3COM
Prácticamente estas fueron las principales marcas que usaba la empresa en todas sus sedes que posteriormente iban a pasar todos los switch a HP como veremos en los apartados de abajo.

2.3.3 INFRAESTRUCTURA DE SERVIDORES

En cuanto a servidores la empresa disponía de varios servidores repartidos por cada sede:

![Diagrama de infraestructura de servidores]

Esto supone un coste muy elevado porque cada servidor tiene su propio software y por lo tanto se tienen que gestionar uno por uno, no desde una sola interfaz.

Además de tener diferentes servidores también se trataban de servidores de diferentes marcas. Por lo tanto, si teníamos problemas muy graves teníamos que tener el contacto de atención al cliente de cada servidor. Y cada servidor tenía diferentes características y si teníamos que ampliar en RAM o DISCO DURO teníamos que mirarlo muy bien para que servidor era porque sino no funcionaba.

Cada sede disponía de incluso más de un servidor. Por eso se decidió hacer un cambio radical en cuanto a la infraestructura de servidores y pasar a algo más unificado y fácil de gestionar.
2.3.4 INFRAESTRUCTURA DE MAIL

En cuanto a este apartado he preferido resaltarlo porque es una de las partes que más tiempo nos ha llevado para poder hacer el cambio.

El servidor de correo lo teníamos contratado con Albasoft (SIE Servers), debido a que estos servidores se quedaban muy antiguos y que costaban de mantener se ha pasado a Office 365. Con esta empresa el grupo AQUACLEAN llevaba bastantes años y según me han dicho se trata de una empresa seria, pero como no mejoraban sus productos, estos se quedaron anticuados y por eso fue necesario hacer el cambio.

A continuación, os muestro algunas capturas del servidor SIE con el correo electrónico, con los contactos y con los usuarios.

Esta es la pantalla principal del SIE. Aquí podemos acceder a todos los servicios disponibles que tengamos. La siguiente captura muestra un correo que he creado de prueba para hacer las capturas.
Esta es la pantalla principal donde cada usuario ponía su contraseña para acceder a su correo electrónico.

Y, por último, al acceder, tenemos el Horde que es donde cada usuario veía su correo electrónico sus contactos, sus tareas, sus notas etc.

Como se observa la interfaz para hoy en día se queda un poco antigua y no muy agradable a la vista, por lo menos de mi parte.
3. PROYECTO

3.1 VODAFONE

En primer lugar, se hizo la toma de datos por la empresa, en nuestro caso Vodafone, para arrancar con el cambio de infraestructura de red y sistemas de comunicación. Paso siguiente, AQUACLEAN GROUP contrató un servicio en el Data Center, un Cloud Server, un firewall dedicado y la actualización de las sedes de VPN.

Para ofrecer este servicio, Vodafone desplegará su Red de Acceso para alcanzar las dependencias de nuestra empresa. Se contrató Vodafone porque cuenta ya con una amplia experiencia derivada de las soluciones que hay en el mercado actualmente.

Para poder arrancar con su proyecto y con el nuestro, Vodafone dividió la implantación en 5 fases:

- Fase 1 – Toma de datos: La primera fase constaba en tomar los datos de la empresa y analizar la situación actual para adaptarse a las necesidades de la empresa.
- Fase 2 – Instalación de línea y provisión del servicio (Tesa o Vodafone): Realizarán una visita conjunta el técnico de Tesa y Vodafone. Tesa se encarga de instalar los accesos necesarios para provisionar el servicio contratado. Posteriormente se habilitará el PTR (Punto de Terminación de Red) en la empresa. Vodafone instalará el router y provisionará el servicio contratado.
- Fase 3 – Constitución de la transmisión: Se creará el diseño de la transmisión entre la sede de la empresa y Vodafone.
- Fase 4 – Pruebas E2E (Enfoque END to END): Una vez entregada la línea y construida la transmisión se realizarán pruebas E2E para asegurar la conectividad entre la empresa y Vodafone.
- Fase 5 – Integración y estabilización del servicio: Integración del router.

Plan del proyecto inicial fecha inicio 12/01/2018
Algunas de las fases mostradas en el gráfico de arriba hay momentos que empiezan en paralelo. El proyecto duró 139 días.

3.2 NUEVA INFRAESTRUCTURA DE SEGURIDAD

Viendo el gasto que suponía la infraestructura anterior (vista en el punto 2.3.1) tanto fijos como gastos flexibles, la diferencia entre estos 2 tipos de gastos es que los fijos no se pueden evitar que es como el contrato del ancho de banda, como las líneas de teléfonos fijos o móviles, se propuso la siguiente solución:
Viendo esta solución solo queda hacer una explicación de lo que se ha modificado y cómo funciona el nuevo firewall de la empresa.

Por un lado, se han quitado los dos proveedores de firewall de la empresa junto con los 6 dispositivos que había 4 sie firewall y 2 untangle firewall y se ha adquirido un nuevo firewall dedicado, FORTINET. Se trata de una empresa multinacional que se dedica al desarrollo y comercialización de software, dispositivos y servicios de ciberseguridad.

La diferencia entre tener diferentes dispositivos, cada uno con un servicio, de seguridad perimetral y tener un solo dispositivo que tenga todos esos servicios es que el coste de los dispositivos se elevaría y el mantenimiento sería muy difícil ya que cada dispositivo tiene su propio software. Con Fortinet tenemos todos estos servicios (App control, Antivirus, Firewall, Web Filtering, VPN… etc) en el mismo dispositivo que es fácilmente accesible desde la versión web entrando con la IP del dispositivo. De esta manera se reducen los costes en adquisición de equipos y personal de mantenimiento. Fortinet se adapta a cualquier arquitectura de red ya que posee servicio de enrutamiento, balanceo de carga, alta disponibilidad y creación de VLANS. También dispone de una nube que se llama Forticloud que nos permite acceder desde cualquier lugar del mundo y ver en tiempo real el tráfico de la red, alertas, informes y análisis.

A continuación, tenemos una breve introducción en FORTINET:
Una vez nos autenticamos en el sistema nos sale la siguiente pantalla, aquí observamos la información del sistema, la consola y los mensajes de alerta del sistema. También podemos agregar más pestañas con el botón de abajo a la derecha “Add Widget”.

Ilustración 17: FORTINET Firewall
Aquí observamos las interfaces que se están usando físicamente en el Fortinet. También tenemos los DNS con sus respectivos servidores, las rutas estáticas etc.

En la pestaña “System” tenemos los administradores, donde debemos crear un usuario administrador con el que entraremos a la interfaz de Fortinet, también tenemos las opciones de HA (Alta disponibilidad)

Aquí observamos las diferentes políticas de seguridad que hay en la empresa. También hay listas de control de acceso y diferentes servicios que podemos activar o desactivar.
Aquí tenemos los diferentes servicios de seguridad que proporciona Fortinet y como queremos activarlos. También podemos controlar aplicaciones.

En esta pestaña es donde se crean todos los usuarios que por ejemplo luego se usen para creación de VPN o para dar acceso o quitar en diferentes sitios. También se pueden crear grupos de usuarios para asignar accesos grupales.
En el apartado de “log and reports” observamos todos los dispositivos que se han logado en el sistema, así como sus respectivos reportes de tráfico y de acceso a los diferentes sitios web.

Por otro lado, el hecho de habér quitado todos los firewalls anteriores ha ayudado a la empresa a unificar todas sus sedes. Fortinet es un firewall muy potente que si lo estudias a “fondo” puedes hacer muchísimas cosas. En mi caso, solo se lo básico para poder explicar que es y cómo funciona.

Como hemos observado con esta modificación se han rebajado muchísimo los costes de gestión y los costes de los dispositivos y electricidad porque se ha pasado de tener 6 dispositivos gestionados uno por uno a tener un dispositivo que hace la misma función que los otros 6 y además incluso más potente que los otros dispositivos.

3.3 NUEVA INFRAESTRUCTURA DE “SWITCHING”

Debido a la demanda de alta velocidad por parte de los operarios, al cambio de las nuevas tecnologías y a la variedad de marcas de switch que hay en el mercado, la empresa se decantó por quitar todas las marcas que tenían de switch y comprar nuevos dispositivos HP. Se trata de:

- HPE OFFICECONNECT 1920S SERIES SWITCH
Todos los switch de este modelo son de capa 3, es decir tienen la capacidad de conmutar, pero también enruta. Hay distintos modelos de 8/24/48 puertos con POE o sin POE. Cada dispositivo dispone de su propia interfaz web pero también tienen un software desde donde se pueden gestionar todos los switch que tienes disponibles del mismo modelo y ahí puedes ver si pasa algo con alguno de ellos, errores, informes etc.

Esta serie de conmutadores HPE OfficeConnect 1920S ofrece un despliegue de plug-and-play fácil y listo para usar. Los modelos con POE 24 y 48 puertos dispone de conectividad de fibra SFP (small form-factor pluggable transceptor).

Por la parte de seguridad, esta serie es compatible con Ethernet eficiente energéticamente para reducir el consumo de energía y ofrece un conjunto de funciones mejoradas para lograr un funcionamiento más sólido.

A continuación, vamos a ver unas capturas del software que presentan los switch de esta serie:
Normalmente, la IP por defecto del switch es 192.168.1.1, para poder entrar hay que cambiar la nuestra del adaptador a una de la misma red como podría ser 192.168.1.2 y el usuario suele ser admin y sin contraseña.
Una vez dentro tenemos la página principal del switch donde nos aparece el nombre, la localización, que sistema operativo lleva y que CPU y Memoria se está usando.

Aquí tenemos la IP por defecto que tiene el switch, que se puede cambiar. Si no la cambiamos cogerá por DHCP una de nuestra red y tendremos que buscar cual es para volver a acceder.
En esta pantalla se hace un resumen de los puertos que se están utilizando y a qué velocidad van, si tienen permisos de administrador y si están activos o no. Como vemos arriba solo tenemos el puerto 1 utilizado.

También nos da la posibilidad de crear VLAN de forma visual y no por consola, al igual que hacer troncales.
Como se trata de un switch de capa 3, aparte de commutar dentro de una misma red, también enruta redes diferentes.

Con respecto a la seguridad, esta serie de switch nos permite crear un Radius para que solamente entrando con usuario y contraseña tengas conexión y puedas administrar y gestionar el switch.
Y por último como se trata de una herramienta potente de switching dispone, a parte de una diagnosis, un medio de backup (copia de seguridad) en caso de que algo se haya configurado mal para volver atrás en el tiempo y configuración.

El software que puedes ver todos los switch no lo he tocado prácticamente, sé que es un software de pago. Y que desde el puedes gestionar todos los switch que tengas de HP, es decir hace una unificación de todos los switch que dispones y así no hace falta que vayas switch por switch conectándote para poder gestionarlo. Es un software muy interesante que en el futuro tendré la oportunidad de probarlo para ver realmente lo potente que es.

3.4 NUEVA INFRAESTRUCTURA DE SERVIDORES

El grupo AQUACLEAN disponía de un servidor físico por cada sede como se puede observar en el apartado 2.3.3. Esto suponía un gran coste, aparte de que tenías que tener el servidor físico en algún sitio bien refrigerado. Debido a que era muy difícil de gestionar todos los servidores se propuso la siguiente solución:
Como observamos se ha pasado de tener un servidor o más de uno por cada sede a tener un servidor en la nube. Este servidor está contratado por Vodafone y al cual tenemos gestión nosotros (el departamento de informática) y si algo no funciona bien tenemos un soporte técnico ofrecido por profesionales. Este hecho de reducir todo a un servidor en la nube ha supuesto una mejora en la empresa en cuanto a coste y gestión. Ya que con un servidor potente se consigue lo que se conseguía con 6 o más.

En esta solución se utilizan varios softwares interesantes de analizar como el ESXi y el Veeam.

Por una parte, tenemos ESXi, ESXi es un hypervisor, el corazón de la estructura vSphere, es decir, es una capa de virtualización que nos permite ejecutar varias máquinas virtuales sobre la misma máquina física. Una máquina virtual es un software que simula un sistema de computación y puede ejecutar programas como si se tratara de un equipo físico y normal.
Aquí vemos un ejemplo de una máquina virtual. Podemos observar varias cosas, por ejemplo, podemos ponerle hasta 1 TB de memoria RAM, hasta 20 puertos USB, de 1-10 NICs (tarjetas de red) etc. Un servidor ESXi soporta hasta 512 máquinas virtuales por HOST.

Por otra parte, tenemos Veeam Backup, se trata de un software de gestión de la virtualización, copia de seguridad (backup) y plan de recuperación ante desastres (Disaster Recovery) para entornos virtuales de VMware vSphere y Microsoft Hyper-V.

Backup es una copia adicional de los datos en producción y se hace para garantizar que los datos no se pierdan. Veeam Backup tiene 3 formas de hacer una copia de seguridad:

- SAN modo directo FC/iSCSI: Los datos de la máquina virtual se recuperan directamente del almacenamiento compartido Fibre Channel/iSCSI utilizando VMware vStorage API.
SAN modo directo NFS: Los datos de la máquina virtual se recuperan directamente del almacenamiento NFS utilizando VMware vStorage API.

- **Virtual Appliance**: El modo virtual appliance utiliza la capacidad de hot-add de SCSI de ESX para adjuntar discos de una VM respaldada en la copia de seguridad de proxy VM.
- **Modo de red**: los datos se recuperan a través del servidor ESX (i) a través de LAN utilizando el protocolo de dispositivo de bloque de red (NBD).

También se pueden hacer “snapshots” de una máquina virtual. Un “snapshot” captura el estado actual de la máquina. Por lo tanto, si queremos volver a un punto donde sabemos que la máquina virtual funciona correctamente también puede ser una solución válida de copia de seguridad.

El grupo AQUACLEAN usa el Virtual Appliance ya que es el que se adapta a sus necesidades y hoy en día es uno de los más utilizado.

Para el backup hay distintas formas de hacerlo, la que la empresa escogió es una copia de seguridad incremental directa con copia de seguridad activa.
Unificación de sistemas y servicios de comunicación del grupo AQUACLEAN

Esto significa un backup completo el domingo seguido de un conjunto de copias de seguridad incrementales hacia adelante, una segunda copia de seguridad programada o manual seguido de copias de seguridad incrementales hacia adelante.

Para el backup se utiliza hardware específico, EMC Data Domain.

Esta es la forma perfecta para hacer backups, pero es la más costosa y cara.

3.5 NUEVA INFRAESTRUCTURA DE MAIL

Como he especificado en el punto 2.3.4, el mail lo destaco porque es el punto en el cual más tiempo se ha pasado para poder trasladarlo al servidor nuevo e implantar Office 365 a todos los operarios.

Office 365 hace referencia a los planes de suscripción que incluyen acceso a todas las aplicaciones de office dependiendo siempre de la licencia adquirida. En muchos planes Office 365 también incluye aplicaciones de escritorio como puede ser el Word, Excel, PowerPoint, Outlook etc. Todos estos planes son adquiridos y se pagan por suscripción mensual o anual.
Esta es la pantalla principal de administrador en este caso el departamento de informática, desde donde se puede controlar a todos los usuarios, gestionar cambios de contraseñas, añadir y quitar licencias, como creación/eliminación de usuarios. Arriba a la parte superior se observan unos 16 puntos si pulsamos ahí nos aparece lo siguiente.

Ilustración 19- Office365
Aquí cada usuario puede entrar a todas las aplicaciones online que dispone, dependiendo de la licencia.

En esta captura tenemos el correo electrónico, como observamos tenemos a la parte izquierda todas las carpetas disponibles que tengamos creadas y todas las que por defecto van creadas, después tenemos una lista con todos los correos entrantes y a la derecha un correo abierto. También disponemos de distintos botones como puede ser Nuevo, Eliminar, Archivar... Estos botones están en la parte superior y sirven para interactuar con el correo electrónico deseado o en caso de Nuevo para crear un correo nuevo.

Esto nos llevó varios meses para poder implantarlo y que todo funcionara perfectamente, porque por una banda a parte de pasar los correos viejos al nuevo se tenía que explicar a los operarios como funciona el correo electrónico y poco a poco ir aprendiendo más cosas sobre este nuevo software.

También nos llevó tiempo porque muchos usuarios disponían de contactos que también había que pasar al servidor nuevo. Para eso era necesario un proceso pequeño pero que se tenía que hacer por cada usuario o por la mayoría de ellos.
4. DIFICULTADES MÁS NOTABLES

En principio, el planteamiento del proyecto era bastante claro y conciso, pero a la hora de ponerlo en marcha nos han surgido diversos problemas o dificultades notables que había que solucionar por el buen funcionamiento de la empresa.

El primer problema surgió con el cambio de switch de todos los armarios. Ya que había un pequeño parón para poder cambiar todos los dispositivos, teníamos que buscar alguna solución para que los operarios de la empresa siguieran trabajando con normalidad. Entonces lo que hicimos fue conectar el switch nuevo, hacer un puente del switch viejo al nuevo para que el nuevo tuviera salida a internet e ir conectando los cables del viejo al nuevo, eso solo suponía un parón de 10-15 segundos que es algo prácticamente irrelevante.

El segundo problema surgió cuando teníamos que mover todos los datos al servidor nuevo, ya que teníamos el servidor de correo, el fax y diversos dispositivos que tenían almacenamiento en los servidores antiguos al igual que varias carpetas compartidas. También disponíamos de equipos que hacían escritorio remoto a algún de los servidores y también teníamos que ver que equipos eran y volver a hacer la conexión, pero al servidor nuevo.

El tercer problema surgió a la hora de pasar los correos viejos a los nuevos porque teníamos que pasar todos los correos antiguos y todos los contactos que disponía cada operario, eso es lo que más tiempo nos llevo porque tardaban mucho en moverse los correos. También a la hora de pasar los contactos teníamos problemas porque la cabecera de los contactos del SIE no coincidía con la del Office, entonces se tenia que hacer un proceso intermedio, pasarlos a GMAIL, y luego exportarlos y aun así teníamos que poner algunas cosas de forma manual. Pero al averiguar que se podía así, nos adelantó mucho tiempo.

Por otra parte, también nos causó problema los DNS porque teníamos problemas a la hora de enviar y recibir correos al exterior. Esto poco a poco se soluciono migrando todos los DNS al servidor nuevo.

Otros problemas quizá diarios es que con la implantación de nuevos dispositivos siempre hay cosas que se desconfiguran por actualizaciones como impresoras de etiquetas, conexiones remotas a equipos, perdida de conexión a internet por culpa del cableado, cambio de componentes como discos duros SSD porque los HDD ya van muy lentos y otras cosas que diariamente siempre le pasa a algún operario.
5. CONCLUSIONES Y TRABAJO FUTURO

En este proyecto se ha conseguido el objetivo en el tiempo propuesto y con el presupuesto acordado por la empresa: garantizar la conectividad, la velocidad y el mantenimiento de las infraestructuras de la empresa, principalmente las estructuras comentadas en los apartados anteriores.

5.1 RESULTADOS

Los resultados se pueden dividir en los siguientes puntos:

- Unificación de todos los firewalls que tenía la empresa, hemos pasado de tener 2 marcas a tener solo 1, eso nos ha quitado tiempo y el mantenimiento es mucho más fácil.
- Unificación de todo el cableado a categoría 6 y unificación de todos los switches, todos de la marca HP, ya que Cisco era una marca muy potente pero muy cara.
- Unificación del correo electrónico usando Office 365. Una interfaz fácil de usar y con muy poco mantenimiento.
- Unificación del acceso a internet mediante Wireless y unificación de equipos para los distintos operarios.

5.2 CONCLUSIONES

Las conclusiones realmente son excelentes porque he tenido la oportunidad de hacer el proyecto en una empresa de este calibre y de hacer un proyecto real que le sirva a la empresa en un futuro.

Se han hecho diversas reuniones con gente experimentada de las cuales he aprendido muchas cosas. Se ha experimentado límites de tiempo y de coste. Pero lo más importante ha sido el miedo de hacer un gran cambio y por suerte o por sabiduría ha salido todo perfecto.

Se ha visto la limitación de varios productos como los servers o switches o incluso el cableado estructurado e incluso los nuevos dispositivos que tenían que ser compatibles entre ellos para que funcionara todo perfectamente.

Y por último gracias a este gran proyecto se ha llegado a ver muchísima diversidad de cosas, el funcionamiento de las redes, virtualización de servidores, funcionamiento de puntos de acceso, funcionamiento de la plataforma Microsoft Office. Y muchas más herramientas que seguro me vendrán de gran ayuda en el futuro.

5.3 TRABAJO FUTURO

Por una banda, para el trabajo futuro la empresa tiene pensado unificar aún más en cuanto a seguridad, se ha empezado de hecho la creación de rutas estáticas y la creación de diferentes VLANS para tener todo el tráfico de red separado y controlado.
Una VLAN es una red de área local virtual, es un método para crear y separar
el tráfico de diversas redes virtuales dentro de la misma red física. Los switches
adquirido tienen y soportan VLANS de hecho todos o casi todos los switch llegan
hasta enrutar VLANS. En un mismo switch puede haber varias VLANS.

Una VLAN consiste en dos o más redes de computadoras que se comportan
como si estuviesen conectados al mismo conmutador, aunque se encuentren
físcamente conectados a diferentes segmentos de una red de área local (LAN).

Y por otra banda, pero también de vital importancia es ir cambiando poco a
poco a medida que la tecnología avance.
6. BIBLIOGRAFÍA

A continuación, se va a presentar toda la bibliografía utilizada en este presente TFG:

- EXPANSIÓN: http://www.expansion.com/directorio-empresas/interfabrics-sl_733357_C22_03.html
 REF: Página 2

- AQUACLEAN PRINCIPAL: https://www.aquaclean.com/es-es
 REF: Página 6

- AQUACLEAN QUienes SOMOS: https://www.aquaclean.com/es-es/quienes-somos
 REF: Página 9

- AQUACLEAN TECNOLOGÍAS: https://www.aquaclean.com/es-es/nuestras-tecnologias
 REF: Página 7-8

- UNIFI UBIQUITI: https://store.ubnt.com/collections/wireless/products/unifi-ac-pro
 REF: Página 16

 REF: Página 9

 REF: Página 30-35

- RESTRICCIONES DE PROYECTOS: https://blogs.imf-formacion.com/blog/mba/restricciones-direccion-de-proyectos/
 REF: Página 11-13

- INNOVACIÓN: https://es.wikipedia.org/wiki/Innovación
 REF: Página 2

- TEAMVIEWER: https://es.wikipedia.org/wiki/TeamViewer
 REF: Página 17

- TIENDA HP: http://store.hp.com
- CABLE CATEGORIA 6: https://es.wikipedia.org/wiki/Cable_de_categor%C3%ADa_6
 REF: Página 16

 REF: Página 30-35

- APPLE TV: https://www.apple.com/tv/
 REF: Página 16

- OFFICE 365: https://www.office.com/
 REF: Página 39-41

- FORTINET: https://www.fortinet.com/
 REF: Página 25-29