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Abstract 

A series of hybrid hydrogels of poly(2-hydroxyethyl acrylate), PHEA, and graphene 

oxide, G-O, with G-O content up to 2 wt% has been prepared by in situ polymerization. 

Because PHEA has been used as biomaterial in various applications, has a side chain 

with the hydroxyl functional group and its mechanical properties are poor, it is a good 

candidate for reinforcement with G-O. FT-IR, AFM, DSC, the thermal, mechanical and 

water sorption properties of neat PHEA and PHEA/G-O composites have been studied 

in order to elucidate the dispersion and interaction between both components. An 

increase in the water diffusion coefficient and dramatic changes in its mechanical 

properties are the most remarkable results. Thus, at a nanofiller load of 2 wt%, the novel 

materials present an increased diffusion coefficient higher than 380% and the elastic 

modulus is enhanced by more than 650% in dry state and by more than 100% in swollen 

state, both compared to neat PHEA. These results have been attributed to the excellent 

interaction between the matrix, PHEA, and the reinforcement, G-O, and could open the 

door to new applications in the field of biomaterials with higher structural requisites. 



1. Introduction 

Synthetic polymeric hydrogels have been proposed for many biomedical applications 

[1–4] due to their good biocompatibility and water permeation properties. 

Biocompatibility is mainly due to the great sorption of water due to the presence of 

hydrophilic molecular groups able to form hydrogen bonds with water, such as: –OH, –

COOH, –CONH, –CONH2, –SO3H, etc., which act as a medium for transport of gases 

and nutrients and gives similar surface properties to those of the living tissue, 

minimizing surface energy differences. 

Poly (2-hydroxyethyl acrylate), PHEA, is a synthetic hydrogel of the acrylates family 

whose properties, such as water sorption, mechanical, thermal and surface energy have 

previously been studied [5–8]. Specifically, PHEA has been used as a matrix in hybrid 

PHEA-silica systems for aspirin release [9], as a component of interpenetrated networks 

for cartilage implants [10], as a component of nanoparticles [11], microcapsules [12], 

micelles for controlled release [13], as component of water-soluble copolymers with 

thermoresponse [14], as polymeric nanogel vector for cellular gene and antisense 

delivery [15], as substrates for differentiation of postnatal neural stem cells [16], and as 

hybrid scaffolds for mimicking natural dentin [17]. However, in general, the main 

disadvantage of hydrogels is their poor mechanical properties, which limits their field of 

application. 

Graphene oxide, G-O, is obtained from chemical oxidation of graphite, increasing the 

interlaminar distance between platelets, and subsequent mechanical stirring or 

ultrasound. Thus, oxidized graphite flakes are separated, giving rise to graphene oxide. 

G-O is amphiphilic, since its basal plane is hydrophobic whereas there are hydrophilic 

groups at its periphery. In the oxidation process epoxy groups and hydroxyls are 



generated anchored to the basal plane and carbonyl and carboxyl groups are anchored at 

the edges of the laminae [18,19]. G-O is therefore easily dispersible in water and in a 

large number of organic solvents [20]. 

Regarding biocompatibility, it can be said that in vitro exposure to graphenes from 

mammalian cells and bacteria causes a decrease in cell viability due to physical damage 

to the membrane [21–23]. However, the intrinsic properties of G-O affect cellular 

responses and its behavior in a real biological environment is still poorly understood. 

When graphenes are incorporated into a polymeric matrix their potential toxicity is 

reduced in mammalian cells [25-28]. Furthermore, it has been reported that bacterial 

proliferation decreases at the composite surface [24–26], this being an important issue 

because infection is frequent in biomaterial implantation procedures [27]. 

The presence of the oxygen groups in G-O improves the interaction with polymer 

matrices, and a good number of nanocomposites have been described in the scientific 

literature. The key aspects for a good interaction between matrix and reinforcement are 

that good interactions be established between both components and an adequate 

dispersion of the reinforcement in the matrix [28–38]. The manufacturing methods of 

hybrid materials can be divided into methods without covalent bonds: solution mixing, 

and melt mixing, as well as in situ polymerization and manufacturing methods of 

hybrids with covalent bonds between the matrix and the reinforcement. 

In solution mixing, G-O or functionalized G-O is incorporated into the polymer matrix 

by the use of a solvent compatible with both and its subsequent removal by evaporation 

[39–45]. In melt mixing, the polymer matrix is brought to a low viscosity state and the 

G-O is mixed therewith through mechanical processes such as extrusion, pressing, 

etc.[46–49]. In in situ polymerization, the G-O is mixed with monomer units to form a 



solution. The polymerization reaction takes place in the presence of G-O to form a 

hybrid [50–57]. 

A different approach used for the incorporation of G-O into the polymer matrix is the 

chemical modification of G-O with functional groups and subsequent polymerization, in 

which covalent bonds are established [54,58–61]. 

Due to the presence of the -OH groups in its side chain, PHEA is a good candidate for 

reinforcement with graphene oxide, since it can establish multiple hydrogen bonds 

between the side groups of PHEA and the functional groups of G-O anchored to their 

basal plane (-COOH, -OH). Several graphene-based hydrogels have been described in 

the literature for  different applications such as adsorbent for water purification [62], 

temperature-sensitive hydrogels [63], enhanced antimicrobial properties [64],  electrode 

material, tissue engineering, aerogels, transdermal systems for controlled delivery of 

vitamin C and biosensors [65–68]. 

Thus, the aim of this work is to obtain mechanically-enhanced PHEA hydrogels which 

could be used as potential candidates for biomedical applications, e.g. in tissue 

engineering constructs. 



2. Experimental Section 

2.1. Nanocomposite-Hydrogel Preparation 

2-hydroxyethyl acrylate, HEA, (Sigma-Aldrich 96% pure, stabilized with 200-600 

ppm of monomethyl ether hydroquinone), ethyleneglycol dimethacrylate, EGDMA, 

(Sigma-Aldrich 98% pure, stabilized with 100 ppm of monomethyl ether 

hydroquinone), graphene oxide powder, G-O, (Graphenea) and benzoin (Scharlau 98% 

pure) were used as received. 

HEA with 1 wt% of EGDMA as crosslinker, 1 wt% of benzoin as photoinitiator and 

different G-O contents as nanofiller were polymerized at room temperature under 

ultraviolet light for 24h. The polymerization took place in a two-glass mold with a 

polytetrafluoroethylene spacer to prepare polymer sheets ∼ 0.9 mm thick. Thus, a series 

of samples were prepared with HEA/G-O weight ratios 100/0, 99.5/0.5, 99/1 and 98/2 

(which will hereafter be called: PHEA, PHEA/0.5%G-O, PHEA/1%G-O and 

PHEA/2%G-O, respectively). All the mixtures were sonicated for 20 minutes before 

polymerization to improve the dispersion of G-O platelets in the monomer solution. 

After polymerization, the samples were washed in ethanol at room temperature for 72 h, 

changing the alcohol three times in order to remove low molecular substances. Finally, 

the samples were dried at 40°C in a vacuum to constant weight. 

2.2. Visual examination and Field Emission-SEM 

The morphologies of the hybrids were detected using a Zeiss Ultra 55 Field Emission 

Scanning Electron Microscopy, (Zeiss Oxford Instruments, Abingdon, United 

Kingdom). The acceleration voltage was 2 kV and the working distance (WD) was set 

to 5 mm. 



The samples surface was milled with Ga+ ions in order to visualize the G-O flakes 

distribution inside the samples. 

2.3. AFM 

AFM was performed with a Bruker MultiMode 8 SPM operating in tapping mode in 

air and with the NanoScope V Controller and NanoScope 8.15 software version. An 

antimony (n) doped silicon cantilever from Bruker was used with a nominal force 

constant of 3 N/m and resonance frequency of 75 kHz. The phase signal was set to zero 

at the resonance frequency of the tip. The tapping frequency was 5–10% lower than the 

resonance frequency. The drive amplitude and amplitude setpoint were 270 mV and 600 

mV, respectively, and the ratio between the amplitude setpoint and the free amplitude 

was 0.83. 

2.4. FT-IR Analysis 

The spectra shown in this work were taken with a Bruker Tensor 27 FT-IR 

spectrometer in the wavenumber region between 400 and 4000 cm−1 at room 

temperature. All measurements were performed by attenuated total reflectance 

spectroscopy (ATR) with the Smart Multi-Bounce HATR accessory for solids with a 

KBr crystal. The spectra shown in this work were the result of 64 scans at the speed of 1 

scan per second. 

2.5. Liquid Water Sorption and Diffusion 

Equilibrium liquid water uptakes, h, defined as g water/g dry sample, were determined 

by weighing the samples in dry state at 60°C for 48 hours in vacuum and after 

immersion in liquid water in equilibrium at 24±1 °C. Dynamic liquid sorption 

experiments were conducted immersing the dry samples in water at 24±1 °C and 



measuring their weight at selected immersion times. The equilibrium water uptake 

experiment was conducted in triplicate. If the liquid sorption process is assumed to obey 

Fick’s law, the constant diffusion coefficient D can be calculated with the slope of the 

plot ( )
( ) l

t.vs
m
m t

∞∆
∆  [69]. 

2.6. Differential Scanning Calorimetry 

Samples for DSC were cut from the plates and subsequently pressed into the DSC 

pans. DSC was performed in a PerkinElmer 8000. Helium gas was passed through the 

DSC cell with a flow rate of 20 ml/min. The temperature of the equipment was 

calibrated with water and indium. The melting heat of indium was used for calibrating 

the heat flow. The samples were subjected to a heating scan from ambient temperature 

to 50°C, followed by a cooling scan from 50°C to −70 °C and, finally, a heating scan 

from that temperature to 50 °C—both scans at a rate of 20 °C/min. The characteristic 

transition temperatures were calculated from the DSC thermograms. The temperature of 

the extrapolated half Cp of the thermogram was taken as the glass transition 

temperature, Tg, of the samples. The thermograms observed were obtained from three 

replicates. 

2.7. Thermogravimetric Analysis 

Thermogravimetric analyses (TGA) of the samples were carried out in a TGA/DSC 2 

STAR System (Mettler Toledo) thermobalance, at 10 °C·min-1 from 30 to 800 °C in a 

nitrogen atmosphere of 50 mL·min-1 to determine the actual inorganic contents and 

determine the thermodecomposition profiles. Samples of ∼4 mg were analyzed each 

time. The thermograms observed were obtained from three replicates. 



2.8. Stress-strain Assay 

The mechanical properties of poly(2-hydroxyethyl acrylate)/graphene oxide samples 

were measured on a universal tensile testing machine (Microtest, Deben UK Ltd.) at 20 

°C in dry and swollen states. The distance between clamps was 10 mm and the sample 

dimensions were 30 mm in length, 5 mm in width and 0.9 mm in thickness. The 

extension rate was 0.2 mm/min and the load cell was 150 N. The experiment was 

performed in three replicates. 

2.9. Dynamic Mechanical Spectroscopy 

Rectangular samples (20 x 9.25 x 0.9 mm3) were cut from the plates for dynamic-

mechanical analysis in a DMA 800 (Perkin Elmer) at 1 Hz. The temperature 

dependence of storage modulus (E′), loss modulus (E′′) and loss tangent (tan δ) was 

measured from −50 to 80 °C at a heating rate of 2 K·min-1. 



3. Results and Discussion 

3.1. Visual examination and Field Emision-SEM 

 

Figure 1. Photographs of samples with different GO content; (a1) neat PHEA, (b1) PHEA/0.5%G-O, (c1) 
PHEA/1%G-O; (d1) PHEA/2%G-O. 

As can be seen in Fig. 1 the series of samples shows intense blackening with the G-O 

content. Furthermore, there were no significant differences in color between 

PHEA/0.5%G-O,  PHEA/1%G-O and PHEA/2%G-O.  

   

Figure 2. FESEM images of the samples inside with different G-O content; (b2) PHEA/0.5%G-O, (c2) 
PHEA/1%G-O; (d2) PHEA/2%G-O. 

Fig.2 shows the FESEM images of the samples inside. As expected, an increase of G-

O flakes with the G-O content as well as an intimate union between the matrix and the 

reinforcement can be observed. 

 

 

a1 b1 c1 d1 

b2 c2 d2 500 nm 500 nm 1 µm 



3.2. AFM 

Figure 3 shows the AFM images of the different G-O content composites over a scan 

area of 5µm×5µm. The pictures of the topography and phase angle clearly indicate that 

the surface of the PHEA is completely homogeneous. However, different viscoelastic 

properties are clearly revealed in the composites. In order to obtain the surface 

roughness parameters as a function of G-O content an area of 30µm×30µm was scanned 

for each sample. The results are shown in Table 1. The mean roughness (Ra) and the 

root mean square of the Z data (Rq) were found to increase monotonously with G-O 

content. These results suggest that that G-O flakes induce a distortion in the 

macromolecular structure. 

 

  

  

PHEA 

PHEA/0.5%G-O PHEA/0.5%G-O 

PHEA 



  

  
Figure 3. AFM topography images (left) and phase images (right) recorded in tapping mode of the 

composites with different G-O content scanning a 5 µm x  5 µm area. 

 Image Ra (nm) Image Rq (nm) 

PHEA 9.93 29.3 

PHEA/0.5%G-O 212 285 

PHEA/1%G-O 236 342 

PHEA/2%G-O 634 795 

Table 1. Mean roughness (Ra) and the root mean square of the Z data (Rq) for PHEA/G-O composites over 
a scan surface of 30µm×30µm . 

PHEA/1%G-O 

PHEA/2%G-O 

PHEA/1%G-O 

PHEA/2%G-O 



3.3. FT-IR 

FT-IR spectra of G-O and G-O composites are shown in Fig. 4. Characteristic peaks 

are C=O stretching mode at 1719 cm-1, O–H bending mode at 1412 cm-1, C–OH 

stretching mode at 1226 cm-1 and the C–O stretching mode at 1053 cm-1. [70–72] The 

presence of O–H stretching mode appears as a broad peak between 3000 and 3600 cm-1 

(data not shown). The spectrum of G-O also shows a band at 1621 cm-1, attributed to 

aromatic carbon double bonds [73] and the C–O vibrations of the epoxy groups at 

around 1139  cm-1 and 873 cm-1. [74,75] The FT-IR results show no significant change 

between PHEA and PHEA nanohybrids spectra. 
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 Figure 4. FT-IR spectra for G-O and nanohybrids with different G-O contents. 



3.4. Water Interaction. Liquid Water Sorption and Diffusion 

Figure 5 shows the liquid water uptake for neat PHEA and hybrids. As can be seen, 

the slope of the plot increases as the G-O content increases monotonously. Results of 

diffusion coefficients and water uptake are summarized in Table 2. As the G-O content 

increases, the water absorption capacity of the samples decreases, probably due to the 

inaccessibility of water to interact with the hydroxyls of PHEA (partially interacting 

with the G-O), but mainly because PHEA chains have a reduced mobility constricted by 

the G-O plates, which reduces the reorganization of the macromolecules, thus reducing 

the hydroxyl groups exposed to water. Because the network is constrained by the 

graphene plates, it cannot expand to accommodate higher water content and its water 

uptake is smaller. 

However, the speed at which the water molecules interact with the hybrids increases 

substantially with graphene content, from 2.24·10-7 s0.5·cm-1 for the neat PHEA to 

8.67·10-7 s0.5·cm-1 for PHEA/2%G-O, which represents a remarkable increase of more 

than 380%. The increase of diffusion coefficient can be explained because the incoming 

water molecules interact with the hydroxyls of PHEA and this takes a while, i.e., the 

reverse dependence of D on the hydrophilicity of the sample can be explained by the 

additional time needed to rupture and restore the hydrogen bonds during the motion of 

the water molecules along their diffusion paths[76]. 

These results are indicative that there is a strong interaction between PHEA and G-O. 
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Figure 5. Water uptake for neat PHEA and PHEA/G-O hybrids as a function of time. 

 
Diffusion coefficient (x107) 

(s0.5·cm-1) 

Water Uptake 

(%) 

PHEA 2.24 ±0.24 208±10 

PHEA/0.5%G-O 2.69±0.54 160±9 

PHEA/1%G-O 4.25±0.86 125±11 

PHEA/2%G-O 8.67±0.82 95±4 

Table 2. Diffusion coefficients and water uptakes for neat PHEA and PHEA/G-O hybrids. 



3.5. Thermal Characterization 

3.5.1. DSC 

The DSC traces of pure PHEA and PHEA/G-O nanocomposites are shown in Figure 

6. Pure PHEA shows a glass transition temperature at 3.17±2.25 °C. All of the 

nanocomposites showed higher Tg values than neat PHEA. Figure 7 shows Tg mean 

values and standard deviation vs. G-O content of the nanohybrids shown in Table 3. 
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Figure 6. DSC traces of PHEA and PHEA/G-O composites. 

 
Tg (°C) 

PHEA 3.17±2.25 

PHEA/0.5% G-O 5.33±1.53 

PHEA/1% G-O 5.33±1.53 

PHEA/2% G-O 8.00±2.18 

Table 3. Glass transition temperatures mean values and standard deviations of PHEA and hybrids as a 
function of G-O content. 
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Figure 7. Glass transition temperature as a function of G-O content. 

It can be observed that Tg increases with G-O content, and it is attributed to the 

difficulty imposed by the G-O sheets on conformational movements of the polymeric 

macromolecules. Interestingly, the results seem to indicate a pronounced increase in Tg 

with low G-O contents, which indicates that the distortion of the network occurs with 

inclusion of the first G-O flakes. 

In figure 8, Cp increments per PHEA gram has been represented as a function of G-O 

in order to elucidate if the addition of G-O induces a modification in the mass of 

polymer that contributes to glass transition. Dot line represents ∆Cp for neat PHEA and 

as it is shown mean values for the hybrids are over the neat PHEA one, what indicates 

that part of the polymer matrix of neat PHEA does not contribute to glass transition (e.g. 

nanocrystals formation); the addition of G-O flakes destroys the immobilized zones, so 

a higher polymer mass is disposable to contribute the transition. 
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Figure 8. Glass transition temperature as a function of G-O content. 

 

3.5.2. TGA 

The thermogravimetric (TG) and derivative thermogravimetric (DTG) curves of 

PHEA and PHEA/G-O nanocomposites are shown in Figures 9 and 10, respectively. 

For G-O, three stages are distinguished: the first between room temperature and 130 

°C with a mass loss of around 20%, which can be attributed to the removal of adsorbed 

water; a second one between 130 °C and 210 °C with a mass loss of around 20% can be 

attributed to the removal of labile oxygen functionalities; finally, more stable oxygen 

functionalities are removed above 300 °C. 

Table 4 shows the initial decomposition temperature, IDT (the temperature of 5 wt% 

weight loss), the Tmax (temperature of maximum rate degradation), the residue at 800°C 

and the theoretical residue that the samples would have had if their behavior had been 

an ideal mixture. That is the criteria to be used to understand if there are interactions 

between both components. In order to calculate the theoretical residue of each sample 

the Equation (1) has been used 



    (1) 

As observed, IDT of hybrids decreases with the increases in G-O, which could be 

related to the loss of labile oxygen G-O groups. 

The DTG curves (Figure 7) of neat PHEA and its nanocomposites reveal a two-stage 

degradation process: the first at around 200 °C with a mass loss of ∼10%, and a second 

at around 435 °C. The temperatures of the maximum rate of degradation (Tmax) for 

PHEA and its G-O nanocomposites remain fairly constant, showing a slight increment 

with G-O content, probably due to the fact that G-O prevents diffusion of the mass of 

PHEA. 
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Figure 9. TG plots of PHEA and PHEA/G-O nanocomposites 
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Figure 10. DTG plots of PHEA and PHEA/G-O nanocomposites 

 IDT (ºC) Tmax (ºC) 
Residue at 800ºC 

(%) 

Theoretical Residue at 800ºC 

(%) 

G-O 71.82 193.8 37.7  

PHEA 334.61 431.52 0.28  

PHEA/0.5%G-O 213.48 433.30 0.79 0.47 

PHEA/1%G-O 203.06 436.93 4.75 0.65 

PHEA/2%G-O 193.51 436.36 5.76 1.02 

Table 4. Thermal properties of PHEA and PHEA/G-O nanocomposites 

The equation [1] predicts that residues at 800ºC should be 0.47%, 0.65 and 1.02% for 

0.5% of G-O, 1% of G-O and 2% of G-O, respectively.  Nonetheless, the real residues 

are higher than those predicted by equation [1] being 0.79%, 4.75% and 5.76% for 0.5% 

of G-O, 1% of G-O and 2% of G-O. Figure 11 shows the theoretical and real curves for 

PHEA/G-O 5%. This result indicates an excellent interaction between both components. 
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Figure 11. PHEA/2% G-O thermogravimetric curves. Black line represents real weight loss. Grey line 
represents the theoretical prediction. 



3.6. Mechanical Properties  

3.6.1. Stress-Strain Assay 

Figure 12 shows the tensile stress-strain plot of neat PHEA and the different 

nanohybrids in dry state. As can be observed, the modulus of the hybrids increases 

significantly with G-O content. At a nanofiller load of 2 wt%, the hybrid presented an 

enhancement of the elastic modulus by more than 650% thus confirming a good 

interaction between the polymer matrix and G-O. The enhancement of the mechanical 

properties of the PHEA/G-O nanocomposites in dry state can be ascribed to the 

dispersion of graphene sheets in the polymer matrix and the strong interfacial 

interactions between both components. 
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Figure 12. Tensile stress-strain of neat PHEA and PHEA hybrids as a function of G-O content. 

Table 5 summarize the modulus and the ultimate tensile stress in dry and swollen state 

as a function of G-O content. 

 

 



 

 Dry state Swollen state 

 
Modulus 

(MPa) 
Ultimate Tensile Stress 

Modulus 

(MPa) 

Ultimate Tensile 

Stress 

PHEA 0.77±0.05 
No break at 100% 

Tensile Strain 
0.57±0.14 

0.077 MPa at 14.2% 

Tensile Strain 

PHEA/0.5%G-O 13.33±0.64 
No break at 100% 

Tensile Strain 
0.71±0.06 

0.166 MPa at 27.1% 

Tensile Strain 

PHEA/1.0%G-O 22.60±1.29 
13 Mpa at 70% Tensile 

Strain 
1.78±0.10 

0.454 MPa at 40.3% 

Tensile Strain 

PHEA/2.0%G-O 26.67±0.98 
13.5 Mpa at 55% 

Tensile Strain 
1.36±0.50 

0.134 MPa at 9.73% 

Tensile Strain 

Table 5. Modulus and ultimate tensile stress of net PHEA and PHEA composites. 

As expected, when hybrids are immersed in water the mechanical properties decrease. 

It important to notice that G-O flakes inside the polymer matrix increase the mechanical 

modulus and the ultimate tensile stress and at a nanofiller load of 2 wt%, the hybrid 

presented an enhancement of the elastic modulus by more than 100% in swollen state, 

what it is a remarkable difference between neat PHEA and the hybrids. 

3.6.2. Viscoelastic Characterization 

Figure 13 shows the viscoelastic behavior of the nanohybrids evaluated by DMTA 

analysis. It can be observed that the main relaxation of PHEA increases with G-O 

content, from 17.1 °C for neat PHEA to 22.3°C for PHEA/2%G-O nanocomposite. The 

main relaxation (Table 6) shows the same trend as observed in DSC, which indicates 

that the polymer chains are constrained by the interactions between the polymer matrix 

and G-O, affecting the mobility of the polymer chains. 

Furthermore, in consonance with the stress-strain assay results in dry state, adding G-

O to PHEA induces an increase of the storage modulus, from 0.488 MPa for neat PHEA 

to 3.181 MPa, which represents an increase of 651.8%. This is a remarkable result, 



since it clearly highlights the considerable increase in mechanical performance achieved 

by the composites, probably due to the good interaction between the polymeric chains 

and the graphene platelets, with the consequent increase on stiffness values. 
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Figure 13. Temperature dependence of the elastic modulus (left) and the loss tangent (right) of the different 
samples. 

 
E'50°C (MPa) E’ increase (%) Tan δ peak (ºC) 

PHEA 0.488 - 17.1 

PHEA-0.5% G-O 1.402 287,3% 19.7 

PHEA- 1% G-O 1.965 402,7% 20.8 

PHEA - 2% G-O 3.181 651,8% 22.3 

Table 6. Elastic modulus at 50°C, increase in % of the elastic modulus respect to neat PHEA and 
temperature of the peak in loss tangent of the different samples. 

4. Conclusions 

A series of hybrid hydrogels of PHEA and G-O with different G-O contents were 

characterized in order to elucidate the interaction between both components. An 

increased water diffusion coefficient and the mechanical properties of the novel 

materials as compared to neat PHEA were the most remarkable results, thus confirming 



the excellent interaction between both components. The interaction constrains the 

mobility of polymer chains, thus modifying the properties of the hybrids as compared to 

neat polymer. These results could open the door to new applications in the field of 

biomaterials with higher structural requisites. 
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