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Departamento de Termodina´mica Aplicada, Universidad Polite´cnica de Valencia, Valencia E-46071, Spain

L. F. del Castillo
Instituto de Investigaciones en Materiales, UNAM, Ap. Postal 70-360, Coyoacan, Me´xico,
DF 04510, Me´xico

~Received 29 November 1999; accepted 28 September 2000!

The second-order memory function~SOMF! for the dicyclohexylmetyl-2metyl succinate is obtained
by using simple numerical manipulation of the experimental dielectric data. According to the
prescription given in a previous paper@J. Chem. Phys.109, 9057~1998!#, the frequency behavior of
the real and imaginary parts of the SOMF is discussed in terms of the Havriliak-Negami equation
of the dielectric function, and together with the three-variable model describing the evolution of the
torque-autocorrelation function. Furthermore, in this paper we present the temperature dependence
of the parameters, which characterize the SOMF behavior for two ester substances. ©2000
American Institute of Physics.@S0021-9606~00!51048-4#

I. INTRODUCTION

To describe the time evolution of the correlation func-
tion of a molecular dynamic variable, the concept of the
memory function was given in the projection operator for-
malism of Zwanzig1 and the linear response theory of Kubo.2

Similarly, the second-order memory function~SOMF! was
introduced by Mori in the continued fraction scheme for the
correlation function.3 The application of this formalism to
dielectric relaxation has been discussed in several papers.4–6

Particularly, the central point of the application of the corre-
lation function formalism to understand dielectric friction7,8

and the libration mechanism was the average of the fluctua-
tions of the interacting torque acting on the dipolar
particles.9,10

On the other hand, molecular theories have been pro-
posed in order to have explicit expressions for the friction
coefficient of dielectric relaxation.11–13From that mentioned
physical basis, the memory processes have been worked out
by several authors.14 It is of particular interest for the present
goal to mention the three-variable model, in which the di-
electric response can be described using the SOMF, and
gives in an exponential form the evolution of the torque-
autocorrelation function.15,16

Recently, the physical role played by the SOMF, ob-
tained from experimental data and neglecting the inertial
contribution, was reported elsewhere.17 Nevertheless, several
points were not yet discussed, like the role played by the
dynamic heterogeneity and the thermal behavior of the
SOMF. In the present paper, we deal with these questions for
two ester substances. In Sec. II, we present the definition of
the SOMF and its interpretation based in the three-variable
model. The comparison between the SOMF obtained from
experimental data and from the Havriliak–Negami~HN!
equation is also discussed. In Sec. III the explicit temperature
dependence of the parameters of the three-variable model are
presented and the root mean square~rms! value of the torque
fluctuations is addressed.

We emphasize that the purpose of this paper is not to

present a data processing algorithm as an alternative or com-
petitive way to those of the HN representation. On the con-
trary, our main objective is to show that the SOMF can give
us valuable information about the molecular motions respon-
sible for the dielectric relaxation.

II. THE SOMF AND THE COMPLEX RESPONSE
FUNCTION

A. Physical background

The complex response function of a dielectric material to
a harmonic electric field is usually expressed in terms of the
microscopic decay function as

R* ~v!5
«* ~v!2«`

«02«`
f ~v!512 ivf~v!, ~1!

where functionf (v) is the field factor andf(t) is the nor-
malized autocorrelation function for a system of dipolar mol-
ecules. We identify this autocorrelation function with the
single molecule function by assuming that the collective ef-
fects are of minor relevance. In this wayf(t) is given by

f~ t !5^m~ t !•m~0!&^m~0!•m~0!&21, ~2!

where m(t) is the dipole moment of the molecule and we
takef(0)51.

Equation~1! is known as the Kubo relation2 which re-
lates the dynamic behavior of a collection of dipoles with the
statistical equilibrium properties of this system. The Kubo
relation is an alternative way to the fluctuation-dissipation
theorem1 as a starting point in an attempt to calculate the
dynamic response of the macroscopic system from the mo-
lecular ensemble of dipoles. In other words, dipole moment
fluctuations decay, on the average, to the same law as an
external electric field produced macroscopic polarization.
This is the essence of the fluctuation-dissipation theorem in
our particular case.

Now, according to the generalized linear theory, Mori3

and Zwanzig1 have shown that time-correlation function may
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be projected in a memory-function formalism giving a con-
tinued fraction in such a way that the complex response
function can be cast in the form of a convolution integral
equation. This equation may be transformed into the
Fourier–Laplace space to give the relationship between the
complex response function and the first-order memory func-
tion K1* (v) ~FOMF!. It was discussed in Ref. 14 that the
FOMF can be interpreted in molecular terms considering the
angular velocity correlation function.

The starting equation is

df~ t !

dt
52E

0

t

K1~ t2t!f~t!dt, ~3!

which is a generalized Langevin equation.
After taking the Laplace transformation in Eq.~3!, the

following expression is obtained:

f* ~v!5
1

iv1K1* ~v!
. ~4!

Then from Eq.~1!,

R* ~v!5
K1* ~v!

iv1K1* ~v!
, ~5!

where the field factorf (v) introduced in Eq.~1! is taken
equal to one for the sake of simplicity. As a consequence,
Eq. ~5! can be written as

R* 5F11
iv

K1* ~v!G
21

. ~6!

Now, following the formalism of Mori,3 the first-order
memory function is expressed in terms of the SOMFK2* (v)
by means of the following relationship:

K1* ~v!5K1~0!@ iv1K2* ~v!#21, ~7!

whereK1(0) is the first-order memory function att50.
We also note that this second-order memory function

can be interpreted in molecular terms considering the torque-
torque correlation function.

Now, by combining Eqs.~1! and ~7!, the relation be-
tween the SOMF and the complex response coefficient takes
the following form:

R* ~v!5F11 iv
iv1K2* ~v!

K1~0!
G21

5
K1~0!

K1~0!1 ivK2* ~v!1~ iv!2 , ~8!

and the value of the SOMF is given by

K2* ~v!5K28~v!2 iK 29~v!5
K1~0!~12R* ~v!!

ivR* ~v!
2 iv.

~9!

The corresponding real and imaginary parts of the SOMF are

K28~v!5
K1~0!

v F R9

~R8!21~R9!2G , ~10a!

K29~v!52
K1~0!

v F ~R8!21~R9!22R8

~R8!21~R9!2 G1v. ~10b!

These are theexactrelationships between the SOMF and the
complex response coefficient. However, as it has been
shown,~see Ref. 14!, we can interpretK1(0) as the square of
the rotation frequency of a free rotator, that is

K1~0!5
2kBT

I
, ~11!

wherekB is the Boltzmann constant,T the absolute tempera-
ture andI the inertia moment of the molecule. In our case at
the sight of the values appearing in the literature for the
inertia moment of the small molecules~see, for example,
Ref. 14! it is clear that the following condition is fulfilled:

v2!K1~0!. ~12!

This is consistent with the fact that in the frequency domain
of thea relaxation there is not contribution of any resonance
processes. In other words we can drop the second term of the
right-hand side of Eq.~9! and then the second term of the
right-hand side of Eq.~10b!.

The interpretation of the SOMF can be given consider-
ing the generalized diffusion coefficient

K2* ~v!

K1~0!
5

1

2D* ~v!
. ~13!

An alternative expression for the generalized diffusion coef-
ficient was given by Nee-Zwanzig7 in terms of the dipolar
torque-autocorrelation function

c~ t !5^N~ t !•N~0!&, ~14!

namely,

D* ~v!5kBT@ l ~c!#21, ~15!

wherel (c) is the Laplace transformationc(t). To accom-
plish Eq. ~15!, the three-variable model assumes thatc de-
cays exponentially with a relaxation time (d). Therefore, the
normalized torque-autocorrelation function, in the trans-
formed space, is given by

l ~c~ t !!

c~0!
5

d

11 ivd
, ~16!

where the torque normalization factorc(0) is equal to

c~0!5^N~0!•N~0!&. ~17!

Therefore, in the three-variable model the SOMF takes the
following form,

K2* ~v!

K1~0!
5

t0

11 ivd
, ~18!

wheret0 is the ‘‘microscopic ’’ relaxation time expressed in
terms of some macroscopic parameters

t05
«012«`

2«01«`
tD . ~19!

On the other hand, according to the three-variable model,t0

is also expressed in terms of the torque normalization factor,
namely
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t05
c~0!d

2~kBT!2 . ~20!

Now, we consider that the description given by the three-
variable model in Eq.~18! is the proper behavior for the
description of the interaction torque relaxation dynamics in
liquids in an equilibrium state, while the substances studied
here are glass-forming esters in the undercooled liquid re-
gime.

B. The general characteristic of the SOMF from
experimental data and the HN equation

In Fig. 1, the Cole–Cole plot of the dicyclohexylmethyl-
2-methyl succinate~DCMMS! is shown for two tempera-
tures. The complex response of a dielectric material is usu-
ally expressed by the Havriliak-Negami equation,

R* ~v!5
«* ~v!2«`

«02«`
f ~v!5

1

@11~ ivtD!12a#b
, ~21!

where the parametersa,b and tD which are temperature
dependent have been determined by using a fitting procedure
of the experimental data.18 As before, the field factor will be
taken equal to one.

In Fig. 1, it should be noted that in the high frequency
limit there is a discrepancy between the HN equation and
experimental data. The last does not go to zero in this limit
as predicted by the HN equation.

The frequency dependence of the real and imaginary
parts of the SOMF for DCMMS is shown in Figs. 2 and 3. In

FIG. 1. The Cole–Cole plot of the relaxation data obtained for the DCMMS
for two temperatures:T5230 K ~black points! and T5224 K ~black tri-
angles!. The solid line is the HN equation of the same data. The character-
istic parameters for this representation are given in Table I.

FIG. 2. Variation of the real part of the SOMF obtained from the HN
equation~solid lines! and the experimental data~symbols! plotted logarith-
mically vs the frequency.

FIG. 3. Variation of the imaginary part of the SOMF obtained from the HN
equation~solid lines! and the experimental data~symbols! plotted logarith-
mically vs the frequency.

FIG. 4. Temperature dependence of the maximum of the imaginary part of
the SOMF and the half oft0 for two substances: The DCMMS~squares!
and the IB2G~triangles and points!. Dashed lines give the VFT representa-
tions. The characteristic parameters of these representations are given in
Table II.
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these figures, the symbols lines correspond to the SOMF
obtained directly from the experimental data. The solid lines
correspond to the SOMF obtained from fitting the same ex-
perimental data with the HN equation~this procedure was
reported elsewhere18!. The most relevant feature of these fig-
ures is the relative maximum of the imaginary part of the
SOMF, which coincides with the end of a relative plateau in
the real part. The position of this relative maximum is iden-
tified with the torque correlation time (d).

Furthermore, it should be noted that in Figs. 2 and 3
there are some discrepancies between the SOMFs obtained
directly from the experimental data and from the HN equa-
tion:

~1! For low frequencies, the imaginary part of the SOMF
describes a decreasing function, while the HN equation
shows a smooth region.

~2! For the high frequencies region the discrepancies are
also notorious, but the HN equation fails into this fre-
quency region, as it was previously mentioned concern-
ing Fig. 1.

C. Comparison between the three-variable model and
the SOMF obtained from experimental data

From the comparison between Eq.~18! and results ob-
tained from experimental data, we seek the behavior of the
SOMF. The presence of the relative maximum on the imagi-
nary part is consistent with the description of this model.

Another prediction of the three-variable model is that the
maximum value of the imaginary part of the SOMF is equal
to the half oft0 . These two values are plotted against tem-
perature in Fig. 4 for two substances; one is DCMMS and
the other is 2-biphenylisobutyrate acetate ofcis/trans
~IB2G!, whose SOMF was reported elsewhere.17 For the
former material, the difference of the maximum value of the
imaginary part of the SOMF and the half oft0 is almost
constant~a factor of about 2.4! and for the last material there
is a good agreement for several temperatures.

Now, looking at the high-frequency region, the imagi-
nary and the real parts of the SOMF describe a decaying
memory function with a power-law exponent of 0.55

60.02. The actual decaying function follows to a power law
at high frequencies instead of a simple Lorentzian function
as predicted by Eq.~18!. This is due to the effect of dynamic
heterogeneity,19,20 which relates to a continuous distribution
of Lorentzian functions21 in order to generate the power-law
behavior.

The decaying behavior of the real and imaginary parts of
the SOMF at the low-frequency region is produced by the
factor 1/v at the front of Eqs.~10a! and ~10b!. This factor
modifies the actual shape of the real and imaginary parts of
the SOMF in the representation of Fig. 3. However, consid-
ering that the form of the libration band should be complete,
the power-law exponent of the imaginary part of the SOMF
at the low frequency region is of 0.4660.02.

III. TEMPERATURE DEPENDENCE OF THE MODEL
PARAMETERS OF THE SOMF

We use the Vogel-Tammann-Fulcher~VTF! law22 to
give the temperature dependence of the relaxation times. In
this representation, the characteristic time has the following
expression:

tD~T!5tD0 expS ED

kB~T2T`! D , ~22!

wheretD0 is a reference characteristic time,T` is the Vogel
temperature at the end of the configuration transitions in un-
dercooled liquids21 andED is the activation energy. The pa-
rameters for several relaxation times of the theory are re-
ported in Table II. Note thatt0 is obtained using Eq.~19!.

FIG. 5. Temperature dependence of the characteristic relaxation time (tD)
and the torque correlation time (d) for two substances. The DCMMS
~squares! and the IB2G~triangles and points!. Dashed lines give the VFT
representation. The characteristic parameters of these representations are
given in Table II.

TABLE II. VTF parameters for two ester substances. The reference param-
eters are the logarithm of the corresponding relaxation time reference. The
value for K29 corresponds to the maximum of the imaginary part of the
SOMF, whose temperature dependence is shown in Fig. 4.

DCMMS (Tg5220 K! IB2G (Tg5213 K!

Relaxation E ~J/mol! T` ~K! Reference E ~J/mol! T` ~K! Reference
time parameter parameter

td 10 967 176 29.64 13 826 162 33.30
t0 11 622 174 31.43 22 322 155 44.68
d 12 627 174 32.86 18 057 162 40.83
K29 12 045 175 33.42 16 247 158 36.73

TABLE I. Dielectric measurement parameters used to represent the experi-
mental data in terms of the HN equation and to analyze the characteristic of
the SOMF for the DCMMS.

T~K! «` D« 12a b tD(s) d~s!

220 2.140 4.650 0.85 0.48 1.01 1.0
224 2.200 4.530 0.85 0.48 8.5731022 1.031021

226 2.210 4.520 0.84 0.48 2.9131022 3.231022

228 2.179 4.456 0.90 0.41 1.1431022 8.931023

230 2.162 4.441 0.92 0.40 4.5431023 2.831023

232 2.168 4.410 0.91 0.39 1.8631023 1.131023

234 2.147 4.403 0.92 0.38 8.2631024 4.531024

238 2.114 4.380 0.91 0.38 1.8531024 1.131024

242 1.942 4.496 0.93 0.34 5.3531025 2.831025

246 1.485 4.895 0.94 0.29 1.9131025 8.031026
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The temperature dependency of the characteristic time and
the torque relaxation time is shown in Fig. 5 for two sub-
stances, DCMMS and IB2G. It is interesting to note that the
activation energy of the memory process is about 20% more
than that required in the rotational polarization effect. The
meaning of this difference lies in the fact that the memory
process involves several molecules and so does higher acti-
vation barrier.

In order to make contact with molecular dynamic calcu-
lation, the torque normalization factor can be obtained using
Eqs.~19! and ~20!, namely,

c5
2t0

d
~kBT!2. ~23!

From here, the root mean square~rms! value of the torque
fluctuations is obtained asc1/2. This quantity expresses the
value of the torque acting on the molecular dipoles involved
in a random process of the fluctuations of dipole-dipole in-
teractions. The temperature dependence of the rms value is
shown in Fig. 6 for two substances, the DCMMS and IB2G.
In this figure, the dashed line shows the linear dependence
with kBT for which t05d. It can be observed that some
points deviate from this line, caused by the differences on
temperature behavior of thet0 andd. Notice should be made
that the rms value of the torque fluctuations is proportional to
the factorkBT and then to the kinetic energy of the material.
According to the equipartition principle of the energy, the
dipole-interaction fluctuations make an important contribu-
tion to the memory process if the ratio oft0 andd is of the
order of one. Therefore, the experimental observation of the
SOMF has the limit condition given byt0 .d. Libration
oscillations were reported14,15 for condensed systems of mol-
ecules with permanent dipoles witht0 5 d.

IV. DISCUSSION AND CONCLUSIONS

The SOMF obtained directly from the experimental data
was compared with that obtained using the HN equation and
the three-variable model. This comparison shows that the
HN equation does not describe some important features of

the real and imaginary parts of the SOMF in the used fre-
quency domain (1022– 105 Hz!. The study of these features
is the main goal of this paper.

The comparison between the SOMF obtained from ex-
perimental data and the three-variable model leads to some
interesting observations.

~1! The presence of the relative maximum in the imaginary
part of the SOMF is related to the maximum of the li-
bration peak described by the model. From the knowl-
edge of the position of this peak, the relaxation time of
the torque correlation is obtained.

~2! The value of this relative maximum is proportional to the
half of the microscopic time (t0), while the equality is
predicted by the model.

~3! In the low-frequency limit, the behavior of the SOMF is
not well defined.

~4! In the region of the high frequencies, the actual behavior
of the imaginary part of the SOMF does not follow a
Lorentzian form as the three-variable model predicts.
The decaying is of the power-law form with a fractional
exponent, and this is explained by considering the dy-
namic heterogeneity effect. In this way, the memory and
the dynamic heterogeneity can be separated in the repre-
sentation of the SOMF using experimental data, as it was
prescribed in this paper.

~5! Finally, the relaxation time of the torque-autocorrelation
function and the Debye-characteristic time are tempera-
ture dependent, having the form of the VTF law. The
two main parameters of this law areED andT` . Particu-
larly, the activation energy associated with the memory
process is about 20% more than that of the rotational
diffusion process, whereasT` is almost the same. This
conclusion remains valid for the two substances consid-
ered here.

~6! The rms value of the torque fluctuations is the other
quantity we have reported in this paper, the results of
which are proportional to the kinetic energy of the
sample ift0 is of the same order of magnitude asd.
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