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Abstract

Many real world-problems can be modelled as mathematical problems with nonnegative
magnitudes, and, therefore, the solutions of these problems are meaningful only if their
values are nonnegative. Examples of these nonnegative magnitudes are the concentration
of components in a chemical compound, frequencies in an audio signal, pixel intensities
on an image, etc.

Some of these problems can be modelled to an overdetermined system of linear equa-
tions, that is, a system of equations with more equations than unknowns. When the
solution of this system of equations should be constrained to nonnegative values, a new
problem arises. This problem is called the Nonnegative Least Squares (NNLS) prob-
lem, and its solution has multiple applications in science and engineering, especially for
solving optimization problems with nonnegative restrictions.

Another important nonnegativity constrained decomposition is the Nonnegative Matrix
Factorization (NMF). The NMF is a very popular tool in many fields such as document
clustering, data mining, machine learning, image analysis, chemical analysis, and audio
source separation. This factorization tries to approximate a nonnegative data matrix with
the product of two smaller nonnegative matrices. Furthermore, this matrix decomposition
usually creates parts based representations of the data in the original matrix.

The algorithms that are designed to compute the solution of these two nonnegative prob-
lems have a high computational cost. Due to this high cost, these decompositions can
benefit from the extra performance obtained using High Performance Computing (HPC)
techniques. Nowadays, there are very powerful computational systems that offer high
performance and can be used to solve extremely complex problems in science and engi-
neering. From modern multicore CPUs to the newest computational accelerators (Graph-

v



ics Processing Units(GPU), Intel Many Integrated Core(MIC), etc.), the performance of
these systems keeps increasing continuously. To make the most of the hardware capabil-
ities of these HPC systems, developers should use software technologies such as parallel
programming, vectorization, or high performance computing libraries.

While there are several algorithms for computing the NMF and for solving the NNLS
problem, not all of them have an efficient parallel implementation available. Further-
more, it is very interesting to group several algorithms with different properties into a
single computational library. This thesis presents a high-performance computational li-
brary with efficient parallel implementations of the best algorithms to compute the NMF
in the current state of the art. In addition, an experimental comparison between the dif-
ferent implementations is presented. This library is focused on the computation of the
NMF supporting multiple architectures like multicore CPUs, GPUs and Intel MIC. The
goal of the library is to offer a full suit of algorithms to help researchers, engineers or
professionals that need to use the NMF. As the NMF is a tool that is transversal to mul-
tiple disciplines, not all professionals that could benefit from this decomposition have
the knowledge to take advantage of modern, high-performance computing systems. This
library tries to solve that need by offering an easy-to-use library that includes top-tier
high-performance algorithms that are designed to solve the NMF.

Another problem that is dealt with in this thesis is the updating of nonnegative decom-
positions. The updating problem has been studied for both the solution of the NNLS
problem and the NMF. Sometimes there are nonnegative problems that are close to other
nonnegative problems that have already been solved. The updating problem tries to take
advantage of the solution of a problem A, that has already been solved in order to obtain
a solution of a new problem B, which is closely related to problem A. With this approach,
problem B can be solved faster than solving it from scratch and not taking advantage of
the already known solution of problem A. In this thesis, an algorithmic scheme is pro-
posed for both the updating of the solution of NNLS problems and the updating of the
NMF. Empirical evaluations for both updating problems are also presented. The results
show that the proposed algorithms are faster than solving the problems from scratch in
all of the tested cases.
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Resumen

Muchos problemas procedentes de aplicaciones del mundo real pueden ser modelados
como problemas matemáticos con magnitudes no negativas, y por tanto, las soluciones
de estos problemas matemáticos solo tienen sentido si son no negativas. Estas magni-
tudes no negativas pueden ser, por ejemplo, la concentración de los elementos en un
compuesto químico, las frecuencias en una señal sonora, las intensidades de los pixeles
de una imagen, etc.

Algunos de estos problemas pueden ser modelados utilizando un sistema de ecuaciones
lineales sobredeterminado, es decir, un sistema de ecuaciones con más ecuaciones que
incógnitas. Cuando la solución de dicho problema debe ser restringida a valores no
negativos, aparece un problema llamado problema de mínimos cuadrados no negativos
(NNLS por sus siglas en inglés). La solución de dicho problema tiene múltiples aplica-
ciones en ciencia e ingeniería, concretamente para resolver problemas de optimización
con restricciones de no negatividad.

Otra descomposición no negativa importante es la Factorización de Matrices No negati-
vas (NMF por sus siglas en inglés). La NMF es una herramienta muy popular utilizada
en varios campos, como por ejemplo: clasificación de documentos, minado de datos,
aprendizaje automático, análisis de imagen, análisis químicos o separación de señales
sonoras. Esta factorización intenta aproximar una matriz no negativa con el producto
de dos matrices no negativas de menor tamaño. Además, esta descomposición matricial
suele crear representaciones por partes de los datos en la matriz original.

Los algoritmos diseñados para calcular la solución de estos dos problemas no negativos
tienen un elevado coste computacional, y debido a ese elevado coste, estas descomposi-
ciones pueden beneficiarse mucho del uso de técnicas de Computación de Altas Presta-
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ciones (HPC por sus siglas en inglés). Hoy en día existen sistemas computacionales muy
potentes capaces de ofrecer mucha potencia de computo que son utilizados para resolver
problemas extremadamente complejos necesarios en diversos campos de la ciencia y la
ingeniería. La potencia de estos sistemas continua aumentando continuamente desde los
modernos computadores multinucleo a lo último en aceleradores de calculo (Unidades
de Procesamiento Gráfico (GPU), Intel Many Integrated Core (MIC), etc.). Para obtener
el máximo rendimiento de estos sistemas de computación de altas prestaciones, los de-
sarrolladores deben utilizar tecnologías software tales como la programación paralela, la
vectoración o el uso de librerías de computación altas prestaciones.

A pesar de que existen diversos algoritmos para calcular la NMF y resolver el problema
NNLS, no todos ellos disponen de una implementación paralela y eficiente. Además,
es muy interesante reunir diversos algoritmos con propiedades diferentes en una sola
librería computacional. Esta tesis presenta una librería computacional de altas presta-
ciones que contiene implementaciones paralelas y eficientes de los mejores algoritmos
existentes actualmente para calcular la NMF. Además la tesis también incluye una com-
paración experimental entre las diferentes implementaciones presentadas. Esta librería
centrada en el cálculo de la NMF soporta múltiples arquitecturas tales como CPUs mult-
inucleo, GPUs e Intel MIC. El objetivo de esta librería es ofrecer un abanico de algo-
ritmos eficientes para ayudar a científicos, ingenieros o cualquier tipo de profesionales
que necesitan hacer uso de la NMF. Debido a que la NMF es una herramienta transversal
que puede ser utilizada en múltiples disciplinas, no todos los profesionales que puedan
beneficiarse del uso de la NMF tienen los conocimientos para aprovechar al capacidad
de cómputo de los sistemas de altas prestaciones actuales. Esta librería trata de resolver
dicho problema ofreciendo un librería fácil de utilizar que incluye implementaciones de
altas prestaciones de los mejores algoritmos diseñados para resolver la NMF.

Otro problema abordado en esta tesis es la actualización de las factorizaciones no negati-
vas. El problema de la actualización se ha estudiado tanto para la solución del problema
NNLS como para el calculo de la NMF. Existen problemas no negativos cuya solución
es próxima a otros problemas que ya han sido resueltos, el problema de la actualización
consiste en aprovechar la solución de un problema A que ya ha sido resuelto, para obtener
la solución de un problema B cercano al problema A. Utilizando esta aproximación, el
problema B puede ser resuelto más rápido que si se tuviera que resolver sin aprovechar
la solución conocida del problema A. En esta tesis se presenta una metodología algo-
rítmica para resolver ambos problemas de actualización: la actualización de la solución
del problema NNLS y la actualización de la NMF. Además se presentan evaluaciones
empíricas de las soluciones presentadas para ambos problemas. Los resultados de estas
evaluaciones muestran que los algoritmos propuestos son más rápidos que resolver el
problema desde el inicio en todos los casos examinados.
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Resum

Molts problemes procedents de aplicacions del mon real poden ser modelats com prob-
lemes matemàtics en magnituts no negatives, i per tant, les solucions de estos problemes
matemàtics només tenen sentit si son no negatives. Estes magnituts no negatives poden
ser, per eixemple, la concentració dels elements en un compost químic, les freqüències
en una senyal sonora, les intensitats dels pixels de una image, etc.

Alguns d’estos problemes poden ser modelats utilisant un sistema d’equacions llineals
sobredeterminat, es a dir, un sistema d’equacions en mes equacions que incògnites.
Quant la solució de este problema deu ser restringida a valors no negatius, apareix un
problema nomenat problema de mínims quadrats no negatius (NNLS per les seues sigles
en anglés). La solució de este problema te múltiples aplicacions en ciències i ingenieria,
concretament per a resoldre problemes de optimisació en restriccions de no negativitat.

Un atra descomposició no negativa important es la Factorisació de Matrius No nega-
tives(NMF per les seues sigles en anglés). La NMF es una ferramenta molt popular
utilisada en diversos camps, com per eixemple: classificacio de documents, minat de
dades, aprenentage automàtic, anàlisis de image, anàlisis químic o separació de senyals
sonores. Esta factorisació intenta aproximar una matriu no negativa en el producte de
dos matrius no negatives de menor tamany. Ames, esta descomposició matricial sol
crear representacions a parts de les dades en la matriu original.

Els algoritmes dissenyats per a calcular la solució de estos dos problemes no negatius
tenen un elevat cost computacional, i degut a este elevat cost, estes descomposicions po-
den beneficiar-se molt del us de tècniques de Computació de Altes Prestacions (HPC per
les seues sigles en anglés). Hui en dia existixen sistemes computacionals molt potents
capaços de oferir molta potencia de còmput que son utilisats per a resoldre problemes
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extremadament complexos necessaris en diversos camps de la ciència i la ingenieria. La
potencia de estos sistemes continua aumentant contínuament, des dels moderns com-
putadors multinucli a lo últim en acceleradors de càlcul (Unitats de Processament Gràfic
(GPU), Intel Many Core (MIC), etc.). Per a obtindre el màxim rendiment de estos sis-
temes de computació de altes prestacions, els desenrolladors deuen utilisar tecnologies
software tals com la programació paralela, la vectorisació o el us de llibreries de com-
putació de altes prestacions.

A pesar de que existixen diversos algoritmes per a calcular la NMF i resoldre el problema
NNLS, no tots ells disponen de una implementació paralela i eficient. Ademés, es molt
interessant reunir diversos algoritmes en propietats diferents en una sola llibreria com-
putacional. Esta tesis presenta una llibreria computacional de altes prestacions que conté
implementacions paraleles i eficients dels millors algoritmes existents per a calcular la
NMF. Ademés, la tesis també inclou una comparació experimental entre les diferents
implementacions presentades. Esta llibreria centrada en el càlcul de la NMF soporta
diverses arquitectures tals com CPUs multinucli, GPUs i Intel MIC. El objectiu de esta
llibreria es oferir una varietat de algoritmes eficients per a ajudar a científics, ingeniers
o qualsevol tipo de professionals que necessiten utilisar la NMF. Degut a que la NMF
es una ferramenta transversal que pot ser gastada en diverses disciplines, no tots els pro-
fessionals que poden beneficiar-se del us de la NMF tenen els coneiximents necessaris
per a aprofitar la capacitat de còmput dels sistemes de altes prestacions actuals. Esta
llibreria tracta de resoldre eixe problema oferint una llibreria fàcil de utilisar que inclou
implementacions de altes prestacions dels millors algoritmes dissenyats per a resoldre la
NMF.

Un atre problema abordat en esta tesis es la actualisació de les factorisacions no nega-
tives. El problema de la actualisació se ha estudiat tant per a la solució del problema
NNLS com per a el càlcul de la NMF. Existixen problemes no negatius la solució dels
quals es pròxima a atres problemes no negatius que ya han sigut resolts, el problema de
la actualisació consistix en aprofitar la solució de un problema A que ya ha sigut resolt,
per a obtindre la solució de un problema B pròxim al problema A. Utilisant esta aprox-
imació, el problema B pot ser resolt molt mes ràpidament que si tinguera que ser resolt
des de 0 sense aprofitar la solució coneguda del problema A. En esta tesis es presenta
una metodologia algorítmica per a resoldre els dos problemes de actualisació: la actual-
isació de la solució del problema NNLS i la actualisació de la NMF. Ademés es presenten
evaluacions empíriques de les solucions presentades per als dos problemes. Els resultats
de estes evaluacions mostren que els algoritmes proposts son més ràpits que resoldre el
problema des de 0 en tots els casos provats.
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Chapter 1

Introduction

1.1 Background

The solution of the least squares problem is used to approximate the solution of overde-
termined systems of equations, in other words, it is used to solve a system of linear
equations where there are more equations than unknowns. There are lots of problems
that can be modelled to an overdetermined system of linear equations and thus solved by
solving the least squares problem [1]. The least squares problem (LSQ) can be defined as
obtaining the solution x ∈ Rn which minimizes ||Ax−b||2 where A ∈ Rm×n and b ∈ Rm.
There are several methods for obtaining the solution of the least squares problem (e.g.,
using the QR decomposition, the normal equations [2, Ch. 5], the SVD decomposition
[1, Ch. 4], etc.).

There are many problems that arise from real-world applications that are represented by
nonnegative magnitudes (e.g. chemical concentrations in a compound, pixel intensities
on an image, different frequencies on an audio wave, etc.). Those problems only make
sense with nonnegative solutions, so the methods used to solve them need to take care of
that restriction in order to produce a meaningful solution once it is translated to the real
world application.

When the LSQ problem to be solved has the nonnegativity restriction mentioned above, it
is commonly called the nonnegative least squares (NNLS) problem. The NNLS problem
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detailed in Section 2.1 is particularly interesting for those fields in which optimization
techniques are used with nonnegativity restrictions. This problem adds the restriction
x ≥ 0 to the solution of the least squares minimization problem. A common approach
for solving the NNLS problem is to solve the corresponding least squares problem and
then project the solution to the nonnegative space by moving the negative entries of the
solution vector to 0. This approach usually gives a solution that is not even close to the
optimal solution, and a much better solution is obtained by using a properly constrained
method. Numerous algorithms have been proposed to solve the NNLS problem [3, 4, 5,
6, 7, 8, 9, 10, 11, 1, 12, 13]. Despite the accuracy of the methods to solve the NNLS
problem, they have a higher complexity. Also, from a computational point of view, they
require more execution time to achieve a solution than the unconstrained version.

An extension of the NNLS problem is the NNLS problem with multiple right hand sides.
When there are multiple NNLS problems that share the same coefficient matrix A, it
is more efficient to tackle the problem as a whole instead of solving multiple NNLS
problems. The NNLS problem with multiple right hand sides consists of obtaining the
solution X ∈ Rn×k

+ which minimizes ||AX−B||F where A ∈ Rm×n and B ∈ Rm×k.

The NNLS problem is also a key component of the algorithms that solve the Nonnegative
Matrix Factorization (NMF), which is the core of this thesis and is detailed in Section
2.2. The NNLS problem needs to be solved in some of the methods that are used to
calculate the NMF, especially in those methods that are based on the technique of alter-
nately solving two convex optimization problems with nonnegativity constraints, which
are, in fact, two NNLS with multiple right hand sides problems (see Section 2.4.4).

The NMF was first presented in [14] as Positive Matrix Factorization, but its use and
popularity increased after the publication of [15]. It is a matrix factorization that approx-
imates a nonnegative matrix A ∈ Rm×n

+ with the product of two matrices W ∈ Rm×k
+ and

H ∈ Rk×n
+ where k its usually smaller than m and n.

One of the advantages of this factorization is that when k << m,n, a big reduction in
the size of the represented data is achieved, and that is why the NMF is used in the
field of data compression [16]. However, taking into account that the factorization is an
approximation to a non unique solution, there will be some data loss in the process.

Another key point of the NMF is that it creates a parts based representation of the data on
matrix A, which makes the factorization suitable to model any problem in which a parts
based decomposition is needed( e.g., signal source separation, speech separation, etc.).
This is easy to understand when looking at the example presented in [15], which is shown
in Figure 1.1. In that example, a matrix A created from a face image database where each
column represents a face is factorized with k = 49. In the resulting factorization, each
column of W represents a basis image that contains parts of faces and each row of H
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contains the coefficients of the linear superposition needed to create an approximate face
image. The approximate image is created by superposing the basis images according to
the linear coefficients. Each cell of the 7x7 grid on the left side of Figure 1.1 represents
one column of W , while the 7x7 grid in the middle represents a row of H. The resulting
face on the right represents a column of the approximated matrix WH, and the original
face on top represents a column of matrix A. This small example intuitively shows how
an approximate face is formed by adding parts of faces from the basis images learned by
the NMF.

Figure 1.1: Parts based decomposition of a face image database obtained by means of NMF

These two properties of data compression and automatic learning of parts based rep-
resentations have made the NMF a widely used tool in many science and engineering
areas such as document clustering, data mining, machine learning, image analysis, audio
source separation, and bioinformatics [17, 18, 19, 20, 21, 22].

There are several algorithms that are designed to compute the NMF, and the most relevant
ones are presented in Section 2.4. Those algorithms, along with the ones for solving the
NNLS problem presented on Section 2.3, are iterative methods with a high computational
cost. The computational power needed to solve these problems can be achieved by means
of High Performance Computing (HPC) techniques.
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The evolution of computing systems and the increasing performance of their hardware,
together with the increasing computational needs of science and engineering to solve
complex problems, have caused the emergence of a discipline called High Performance
Computing (HPC). HPC includes both the hardware and software technologies to aggre-
gate high amounts of computing power and to use it efficiently to solve large problems
with the highest performance possible. On the hardware side, multiple architectures that
are detailed in Section 3.2 can be used depending on the problem to be solved and the
resources that are available. Nowadays, multicore computers with their increasing num-
ber of cores, together with the General Purpose Graphics Processing Units (GPGPUs)
deliver high performance with an affordable price. These systems can produce a large
amount of computing power when used properly. On the software side, HPC offers de-
velopers parallel computing technologies and libraries to make the most of the hardware
available and to be able to unveil the true performance of their computer systems.

By taking advantage of HPC technologies, efficient algorithms for solving nonnegative
factorizations can be designed in order to decrease the execution time needed to solve
the factorizations. If the execution time is reduced, the limiting high computational cost
can be overcome, and the advantages of the factorizations can be exploited in practical
applications.

1.2 Motivation

Nowadays, there are several implementations of different algorithms for computing the
NMF in different programming languages and with different levels of efficiency. How-
ever, to our knowledge, there is no HPC package that contains a suite of different algo-
rithms to compute the NMF. Usually, the authors of each algorithm share their source
code and, at best, create a software library that includes their algorithms. However, if
some scientists using the NMF as a tool in their work need to use different NMF algo-
rithms for different problems, they must install different libraries in order to access the
different algorithms. This represents a loss of time that could be better spent on improv-
ing their research. Moreover, in the case that only source codes are presented, the use
of those algorithms may be not trivial for scientists that are not specialized in computer
science. Also, some of those algorithms do not offer efficient or parallel versions.

This situation has motivated the creation of an HPC library containing different algo-
rithms that have been chosen from the best ones to compute the NMF. The library should
contain efficient parallel versions of each algorithm that can take advantage of the com-
putational capabilities of modern HPC systems like multicores or GPUs. Furthermore,
the library should be easy to use and include interfaces to the most commonly used lan-
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guages in scientific computation, so that experts of different areas that are not related to
computer science can use the library in their own computer programs.

The problem of updating the solution of NNLS problems and updating the NMF has
not yet been studied. The idea behind the updating problem is the following: when the
coefficient matrix of a NNLS problem is a slightly modified version of the coefficient
matrix of another NNLS problem that has been already solved, the solution of the solved
problem can be used to solve the modified problem with a lower computational cost. This
has motivated our group to study the updating problem and to develop a methodology to
solve it.

An equivalent updating problem arises from the NMF. The updating of the NMF consists
of using the matrices obtained from a previous factorization to solve a new factorization
where the matrix to be factorized is a modified version of the previous factorized matrix
(for example, by adding or removing rows or columns). The use of this information can
reduce the execution time needed to find the new factorization which is very convenient
for real-time applications. Consider, for example, a problem of signal separation that is
solved by means of the NMF where the whole signal is not available from the beginning
and new columns are added to the matrix to be factorized when the next part of the
signal is received. This problem can be solved by updating the factorization each time
that new columns are added instead of recomputing the whole NMF from scratch. In this
example, updating the NMF reduces the execution time needed to process each new part
of the signal and makes the NMF suitable for real-time problems. The updating of the
NMF allows the NMF factorization to be used for many real-time problems where the
NMF was too slow to be used due to its complexity.

Finally, the Active Set Newton algorithm for nonnegative representations is a very good
algorithm for solving the problem of signal separation that it was designed for, but it lacks
of an efficient implementation. An efficient parallel implementation could increase the
performance and make it usable in real-time speech separation problems. The algorithm
solves a problem similar to the NNLS with multiple right hand sides but minimizing the
Kullback-Leibler divergence instead of the Frobenius norm. Since the algorithm fits the
nonnegative factorizations scope of this thesis and offers a great potential, the author of
this work decided to implement an efficient parallel version of this particular algorithm,
even thought the problem solved by the algorithm is not exactly an NMF problem.
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1.3 Objectives

The main objective of this thesis is to develop an HPC computational library that contains
efficient parallel implementations of the best algorithms from the current state of the art
in order to solve the NMF. This library should include implementations for different HPC
architectures so that the users can make the most of the hardware available. The main
goal of this library is to offer the user a set of algorithms to compute the NMF with
an easy-to-use interface and without the need for detailed knowledge of HPC hardware
or programming. To achieve the main objective, other specific objectives need to be
fulfilled. These necessary objectives are listed below:

• A study of the NMF, its properties, and the existing algorithms to compute the
factorization. Research about existing implementations and libraries also needs to
be performed. The algorithms need to be studied not only from a mathematical
and algorithmical point of view, but also from a computational execution point of
view. This is because an algorithm that has a lower theoretical cost does not always
translate to a lower execution time. The study of algorithms for computing the
NMF has shown the importance of the NNLS problem within the decomposition
and the needs for its study.

• A study of the NNLS problem and the different algorithms used to solve it focusing
on their computational capabilities.

• Development and testing of a methodology to update the solution of NNLS prob-
lems given the solution of a closely related NNLS problem.

• Development of an updating scheme for the NMF. Different algorithmic approaches
for the updating of the NMF have been developed and tested.

• Development of efficient implementations of the studied algorithms for different
HPC architectures in order to make the most of the available hardware.

• Comparison of the implementations developed to test the different algorithms with
current hardware and software tools. This comparison has a double purpose: to
test the performance of the implementations developed and to verify the accuracy
and reliability of previous scientific works performed with those algorithms and
the claims of the authors of the original algorithms.
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1.4 Organization and key contributions of the Thesis

This document is structured in 11 chapters that cover most of the work performed. Chap-
ters 2 to 4 include the known state of the art previous to this thesis. Chapters 5 and 6
describe algorithmic work and innovative solutions to problems, while Chapters 7 to 10
focus on the efficient implementation and evaluation of known algorithms using HPC
technologies. Finally, chapter 11 presents some practical applications of the work per-
formed during the development of this thesis and the final conclusions. A brief descrip-
tion of the chapters and the key contributions of this thesis are listed in the following:

• Chapter 2: This chapter contains a description and the mathematical definition of
the Nonnegative Least Squares Problem and the Nonnegative Matrix Factorization.
Furthermore, the chapter includes the main algorithms that are used nowadays to
solve the NNLS problem and to compute the NMF. The chapter represents the state
of the art of the methods that are used to compute the factorizations, which are the
main topic of this PhD thesis. The algorithms introduced in this chapter are used
in the work showed in later chapters.

• Chapter 3: This chapter introduces the basic high performance computing con-
cepts and enumerates the different computing architectures that are currently most
widely used in HPC environments. In addition, the software technologies needed
to make the most of those architectures and the mathematical libraries that are key
in the development of efficient HPC mathematical algorithms are described.

• Chapter 4: This chapter describes the existing NNMFPack library developed by
the University of Oviedo and the Polytechnic University of Valencia. This library
is the precursor of the library that has been developed during this thesis. There has
been close collaboration with the developers of the NNMFPack library to continue
the project and create the new NNMFPack library.

• Chapter 5: This chapter introduces the problem of updating the solution of NNLS
problems. In the chapter, the different problems related to the updating of the
NNLS problem are defined and an algorithmic methodology is proposed to solve
them. Furthermore, some empirical analyses are performed using MATLAB coded
algorithms to test the performance and accuracy of the proposed methodology. The
key contributions of this chapter are the mathematical description of the updating
problem and its different variations, and the algorithmic methodology developed
to find the solution to the updating problem. The algorithms developed under that
methodology proved to solve the updating problem faster than solving the related
NNLS problem from scratch.
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• Chapter 6: This chapter follows the ideas of Chapter 5 to tackle the updating of
the NMF. In the chapter, an algorithmic methodology is presented and several so-
lutions to the problem are proposed. Then an experimental analysis is performed
using MATLAB coded algorithms to evaluate the proposed solutions and to show
the advantages and disadvantages of each one. The key contributions of this chap-
ter are the proposed algorithms that are designed to solve the updating of the NMF.
Furthermore, a real application on automatic music transcription has been pre-
sented to show the potential of the updating of the NMF.

• Chapter 7: In this chapter, the efficient implementation of the ASNA algorithm
is presented. The ASNA is an algorithm that was developed to solve a problem
that is equivalent to a NNLS with multiple right hand sides but that minimizes the
β -divergence instead of the Frobenius norm. The algorithm was developed to per-
form speech separation with overcomplete dictionaries. In the chapter, an efficient
MATLAB version of the algorithm and two C versions are presented together with
an experimental evaluation to compare all of the proposed implementations. Then
the use of bigger dictionaries is tested motivated by the reduction of execution time
achieved by the proposed versions with respect to the original implementation.
The key contribution of this chapter is the reduction in execution time obtained
by the implementations developed. That reduction in the execution time allowed
to approach real-time applications such as speech enhancement with the ASNA
algorithm.

• Chapter 8: This chapter shows the implementation details of all of the algorithms
implemented during the development of this thesis, together with some discussion
about the different implementations. The key contribution of this chapter is the
presentation of a GPU implementation of the fHALS algorithm.

• Chapter 9: This chapter shows an experimental evaluation of the proposed imple-
mentations. It also shows a comparison between the different implementations and
some discussion of the experimental results. Also, a comparison between CPU and
GPU is performed for the algorithms that have been implemented on both architec-
tures. Furthermore, the results of an evaluation of the influence of the β parameter
performed with the multiplicative β -divergence algorithm for NMF are presented.
This chapter contributes to deepening the knowledge about the studied algorithms
from a computational point of view by means of empirical experimentation. In
addition, it shows the difference between the theoretical performance of the algo-
rithms and the performance obtained by implementing them in an efficient way
using HPC technologies.
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• Chapter 10: This chapter describes the HPC library for the NMF and NNLS devel-
oped during this thesis. The improvements with respect to the existing NNMFPack
library ( presented in Chapter 4) are discussed and the new implementations of the
algorithms are explained. This chapter presents the key contribution and main ob-
jective of the thesis. The algorithms developed and tested in the previous chapters
are finally included in an easy-to-use HPC computational library, which is the main
contribution of this thesis to the scientific community.

• Chapter 11: This chapter presents the conclusions of this thesis and enumerates
the scientific publications derived from the work performed during the develop-
ment of the thesis.

9





Chapter 2

Nonnegative factorizations:
definition and algorithms

2.1 Nonnegative least squares problem

There are many problems in several science and engineering fields whose data is non-
negative and therefore the least squares problem usually used to solve those problems
needs to be adapted to this restriction [1]. Applying that restriction, the Nonnegative
least squares problem (NNLS) problem is defined as follows:

Given a coefficient matrix A ∈ ℜm×n and a right hand side vector b ∈ ℜm, the NNLS
problem associated to A,b consists of finding a vector, w ∈ℜn

+ , with wi > 0, i = 1, . . . ,n,
such that

w = argmin
x>0

‖Ax−b‖2. (2.1)

The NNLS problem (2.1) is a convex optimization problem for which an optimal solution
can be found.
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A natural extension of this problem occurs when several NNLS problems share the same
coefficient matrix A ∈ ℜm×n. This problem is called NNLS with multiple right hand
sides and can be defined in matrix form as

W = argmin
X>0

‖AX−B‖F . (2.2)

where B ∈ ℜm×k and W ∈ ℜ
n×k
+ . This problem is named half NMF by some authors,

because it is equivalent to find the NMF of B without updating matrix A.

2.2 Nonnegative Matrix factorization

The Nonnegative Matrix Factorization (NMF) is a very popular tool in fields such as
document clustering, data mining, machine learning, image analysis, audio source sepa-
ration or bioinformatics [17, 18, 19, 20, 21, 22]. The goal of the NMF of a nonnegative
data matrix A ∈ Rm×n

+ ,(ai, j ≥ 0 ∀i, j) is to obtain two nonnegative matrices W ∈ Rm×k
+

and H ∈ Rk×n
+ with k ≤ min(m,n), such that A ≈WH.The problem can be addressed as

the computation of two matrices Ws, Hs such that

Ws,Hs = argmin
W,H≥0

‖WH−A‖F (2.3)

It is important to note that problem (2.3) is a nonconvex optimization problem, and there-
fore, there may not be not a unique optimal solution for the problem.

In certain science fields, the NMF is computed minimizing other target functions in-
stead of the Frobenius norm, for example, alpha-divergence, beta-divergence, Kullback-
Liebler divergence, etc. [23, 24, 25, 26, 27, 28, 29, 30, 31].

Many algorithms have been proposed for NMF calculation [20, 23, 14, 32, 33, 34], the
current most relevant algorithms will be addressed on Section 2.4.
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2.3 Algorithms to solve the Nonnegative Least Squares problem

Most algorithms to solve the NNLS problem (2.1) are based on the search for a pair of
vectors x,y verifying the Karush-Kuhn-Tucker (KKT) conditions, which for this problem
are

y = AT Ax−AT b,
y > 0, (2.4)
x > 0,

xiyi = 0, i = 1 . . .n.

Given a NNLS problem (2.1), equations (2.4) form its linear complementary problem
(LCP). If matrix A has full column rank, the product AT A is positive definite and the
strictly monotone LCP (2.4) has unique solutions for each vector b. In this section the
most used algorithms to find those vectors x and y will be outlined.

2.3.1 Active set algorithms

One of the main families of algorithms designed to solve problem (2.1) (and, more gen-
erally, linear least squares problems with linear restrictions) is the family of active set
algorithms ( also know as principal pivoting algorithms). See, for example, [8, 35, 12].
These algorithms divide the set of indexes {1,2, . . .n} into two sets, F and G, such that
F ∪G = {1,2, . . .n} and F ∩G = /0. Let xF , xG, yF , and yG denote the subsets of vari-
ables with corresponding indices in F or G, and let AF and AG denote the submatrices
of A with corresponding column indices. A complementary basic solution is obtained
by setting xG = 0 and yF = 0 in the conditions (2.4). The values of xF and yG may be
computed as follows:

1. Solve the unconstrained linear least squares problem min‖AF xF −b‖2.

2. Set yG = (AG)
T (AF xF −b).

If a complementary basic solution (xF ,yG) satisfies xF ≥ 0 and yG ≥ 0, then it is called
feasible. In this case current x is the optimal solution of (2.1), and the algorithm ter-
minates. Otherwise, the solution (xF ,yG) is infeasible. Then, the principal pivoting
algorithms search the optimal sets F and G, by exchanging indexes between F and G.
Once the optimal set is found, the solution is given by
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xi =

{
xF i ∈ F
0 i ∈ G

The Active Set method proposed in [1] is arguably the simplest principal pivoting method.
As shown in Algorithm 1, the main distinguishing features of this algorithm are that only
one index is exchanged between sets in each iteration, and that in the first iteration one
set of indices (G) is initialized to {1,2, . . .n} and the other one (F) is taken as the empty
set. Only the indices that violate the KKT conditions (2.4) can be exchanged. After some
iterations, the optimal sets of indices will be found, as well as the optimal solution. This
algorithm has been one of the most popular algorithm to solve the NNLS problem, and
several improved algorithms based on it have been developed for certain scenarios [4, 5,
6, 12].

Block principal pivoting algorithm (BPP)

In many cases, it is more efficient to exchange several indices in each iteration of the
algorithm. This idea is the basis of the Block Principal Pivoting algorithm (BPP) [32, 12].
This algorithm is similar to the Active Set method shown in Algorithm 1, but it allows
any index partition to be used as initialization, and also allows to exchange multiple
indices between the two sets at each iteration.

Algorithm 2 summarizes the BPP algorithm. Using the full exchange rule in Line 16 of
Algorithm 2 when V = V̂ may lead to an infinite cycle. To avoid that, in lines 6-15 the
algorithm changes to a single index exchange after α iterations without decreasing the
number of infeasibilities (|V |) , when |V | starts to decrease again the algorithm returns to
the full exchange rule. Parameter α can be chosen arbitrarily. For example, in [12] the
authors proposed α 6 10; in [8], a value α = 3 is proposed.

An extension of the BPP algorithm for the NNLS problem with multiple right hand sides
was presented in [35, Alg. 2]. This algorithm (shown in Algorithm 3) is designed to
solve problem (2.2) and involves interesting ideas to increase the performance of the
computation. The column grouping strategy groups columns with the same F and G sets
in order to avoid computing multiple times the Cholesky decomposition of AT

F AF . That
decomposition is used to solve the equation on Line 21.
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Algorithm 1 Lawson & Hanson Active Set algorithm

1: Input: A ∈ℜm×n,b ∈ℜm

2: Output: x ∈ℜn
+ such that x = NNLS(A,b)

3: F =∅; G = [1 : n]; x = 0;
4: y = AT (b−Ax);
5: while G 6=∅ and y j > 0, for any j ∈ G do
6: Find t ∈ G such that yt = max{y j : j ∈ G} ;
7: F = F ∪{t}; G = G−{t};
8: ẑ = argminz∈ ℜ|F |‖AF z−b‖2, with AF =

[
Ai1 ,Ai2 , ...,Aik

]
, i j ∈ F , k = |F |;

9: z = 0;
10: for i = 1 : |F | do
11: zF(i) = ẑi;
12: end for
13: if z j > 0, for all j ∈ F then
14: x = z;
15: else
16: while z j 6 0, for any j ∈ F do
17: Find q ∈ F such that xq/(xq− zq)=min j∈F,z j60{x j/(x j− z j)};
18: α = xq/(xq− zq);
19: x = x+α(z− x);
20: F = F−{ j ∈ F such that x j = 0};G = G

⋃
{ j ∈ F such that x j = 0};

21: ẑ = argminz∈ ℜ|F |‖AF z−b‖2 with AF =
[
Ai1 ,Ai2 , ...,Aik

]
, i j ∈ F , k = |F |;

22: z = 0;
23: for i = 1 : |F | do
24: zF(i) = ẑi;
25: end for
26: end while
27: x = z;
28: end if
29: y = AT (b−Ax);
30: end while
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Algorithm 2 Block Principal Pivoting algorithm (BPP)

1: Input: A ∈ℜm×n,b ∈ℜm,F,G
2: Output: w ∈ℜn

+ such that w = NNLS(A,b)
3: x = 0;y = AT (b−Ax)
4: β = n+1; α = 3;
5: while xFi < 0, for some i or yGi < 0, for some i do
6: V = {i ∈ F : xi < 0}∪{i ∈ G : yi < 0} ;
7: if |V |< β then
8: β = |V |; α = 3; V̂ =V ;
9: else if |V |> β and α > 1 then

10: α = α−1; V̂ =V ;
11: else if |V |> β and α = 0 then
12: V̂ ={i : i = max{i ∈V}};
13: end if
14: F = (F−V̂ )∪{V̂ ∩G} ; G = (G−V̂ )∪{V̂ ∩F};
15: aux = argmin

z∈ ℜ|F |
‖AF z−b‖2;

16: yG = AT
G(AF aux−b) ;

17: x = 0 ∈ℜn;
18: for i = 1 : |F | do
19: xF(i) = auxi;
20: end for
21: end while
22: w = x
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Algorithm 3 Block Principal Pivoting algorithm for the NNLS problem with multiple
right hand sides

1: Input: A ∈ℜm×n,B ∈ℜm×r,F,G
2: Output: W ∈ℜ

n×r
+ such that W = NNLS(A,B)

3: Compute AT A and AT B
4: Initialize X = 0;Y =−AT B
5: Fj =∅ and G j = {1, ...,q} for all j ∈ {1, ...,r}
6: β = n+1; α = 3; α,β ∈ℜr

7: Compute XF j solving AT
F AF xF = AT

F b using column grouping
8: Compute YG j solving yG = AT

GAF xF −AT
Gb using column grouping

9: while any(XF j,YG j) is infeasible do
10: Find infeasible columns I = { j : (XF j,YG j)is infeasible}
11: for all j ∈ I do
12: Vj = {i ∈ Fj : xi < 0}∪{i ∈ G j : yi < 0} ;
13: if |Vj|< β j then
14: β j = |Vj|; α j = 3; V̂j =Vj;
15: else if |Vj|> β j and α j > 1 then
16: α j = α j−1; V̂j =Vj;
17: else if |Vj|> β j and α j = 0 then
18: V̂j={i : i = max{i ∈Vj}};
19: end if
20: Fj = (Fj− ˆVj)∪{V̂j ∩G j} ; G j = (G j− ˆVj)∪{V̂j ∩Fj};
21: Compute XF j solving AT

F AF xF = AT
F b using column grouping

22: Compute YG j solving yG = AT
GAF xF −AT

Gb using column grouping
23: end for
24: end while
25: W = X
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2.4 Algorithms for the NonNegative Matrix Factorization

Nowadays, there are a wide range of known algorithms to compute the NMF and one of
the goals of this thesis was to study them in order to achieve efficient implementations of
the best algorithms to compute the factorization. In this chapter the most used algorithms
will be summarized and commented from the computational point of view.

2.4.1 Multiplicative algorithms

One of the most used algorithms to compute the NMF are the multiplicative updates pro-
posed by Lee and Seung in [23]. This well known algorithm uses a set of multiplicative
rules to update the matrices W and H:

H← H · W T A
W T (WH)

W ←W · AHT

WHHT (2.5)

where the division and the · are taken entrywise.

The convergence of the algorithm to a solution of problem 2.3 was also proven in [23].

This multiplicative update rules are widely used due to its simplicity and good perfor-
mance. The convergence per iteration is slow. But the low computational cost of each
iteration allows the algorithm to be competitive against other NMF algorithms [36].

An efficient algorithm to compute the NMF based on the Lee and Seung algorithm was
presented in [37]. This algorithm keeps the same cost per iteration but improves the
convergence per iteration by updating the matrix W using the matrix H computed in the
same iteration. The modified Lee and Seung algorithm (MLSA) is shown in Algorithm
4 and its computational cost per iteration is:

O(4mnk+4k2(m+n)) f lops/iteration (2.6)
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Algorithm 4 Modified Lee and Seung Algorithm (MLSA)

Input: A ∈ Rm×n
+ , W0 ∈ Rm×k

+ ,H0 ∈ Rk×n
+

1: k < min(m,n),maxIter > 0
Output: W ∈ Rm×k

+ ,H ∈ Rk×n
+

2: W =W0;H = H0
3: for iter = 1,2, ...,maxIter do
4: B =W TWH;C =W T A;
5: for i = 1,2, ...,k do
6: for j = 1,2, ...,n do
7: H(i, j) = H(i, j)·C(i, j)

B(i, j)
8: end for
9: end for

10: D =WHHT ;E = AHT ;
11: for i = 1,2, ...,m do
12: for j = 1,2, ...,k do
13: W (i, j) = W (i, j)·E(i, j)

D(i, j)
14: end for
15: end for
16: end for

2.4.2 Affine NMF algorithm

Sometimes, when there exists a common part in all the observations in the data matrix
A, the standard NMF algorithm fails to obtain a proper parts decomposition due to that
common part. The affine NMF model proposed in [38, Ch. 3.6] and shown in Algorithm
5 tries to solve that problem by introducing an offset w0 to the general NMF model:

A≈WH +w01
T (2.7)

where 1 denotes an all one vector. The offset w0 should absorb the common part offering
a better parts decomposition than the obtained with the general multiplicative algorithm.

The advantages of this algorithm is clearly shown in the swimmer benchmark example
in [38, Ch. 3.9]. The benchmark is included in Figure 2.1 for the sake of clarity. In
that benchmark the difference between the multiplicative algorithm and the Affine NMF
algorithm is clearly seen. With the Affine NMF algorithm, the "body" of the swimmer
is absorbed by the offset w0. While with the multiplicative algorithm, the "body" is split
between all basis contaminating them.
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Algorithm 5 Affine NMF algorithm

Input: A ∈ Rm×n
+ W0 ∈ Rm×k

+ ,H0 ∈ Rk×n
+ ,w0 ∈ Rm

+

1: k < min(m,n),maxIter > 0
Output: W ∈ Rm×k

+ ,H ∈ Rk×n
+ ,w ∈ Rm

+

2: W =W0;H = H0;w = w0
3: for iter = 1,2, ...,maxIter do
4: Â =WH +w1T

5: N = AHT ;D = ÂHT

6: W =W ·N./D
7: Column normalization of W using 1-norm
8: N =W T A;D =W T Â
9: H = H ·N./D

10: n = A1;d = Â1
11: w = w ·n./d
12: end for

(a) Original data matrix (b) Basis components obtained by
the Multiplicative algorithm

(c) Basis components obtained by
the Affine NMF algorithm

Figure 2.1: Comparison of the basis components (matrix W ) obtained by the multiplicative algorithm
(b) and by the Affine NMF algorithm (c) for the swimmer benchmark (a). On (c) the upper rigth element
corresponds to the offset w0.
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2.4.3 Beta divergence multiplicative algorithms

As stated in Section 2.2 different norms or divergences can be used to define the NMF
minimization problem. Problem (2.3) can be redefined as:

W,H = argmin
W,H≥0

Dβ (A,WH) (2.8)

where Dβ is the β -divergence between two matrices that can be expressed as:

Dβ (X ,Y ) =
m

∑
i

n

∑
j

dβ (Xi, j,Yi, j) (2.9)

The β -divergence was introduced by Eguchi and Minami, see [39], as an error measure.
It can be defined as (see, e.g. [40]):

dβ (x|y) :=


1

β (β−1)(x
β +(β −1)yβ −βxyβ−1), if β ∈ R\{0,1},

x(logx− logy)+(y− x), if β = 1
x
y − log x

y −1, if β = 0.

(2.10)

The previous cost function is defined for all real numbers, but values of β between 0 and
2 are usually considered on practical applications. Mathematically, this divergence is
equal to other distances and divergences for some particular values of β : the Frobenius
norm (β = 2), the Kullback-Leibler divergence (β = 1) and the Itakura-Saito divergence
(β = 0).

As exposed in [40, sec. 2.1], by using the gradient of Dβ (X ,Y ) is possible to obtain the
following rules to update matrices H and W :

H← H ·W
T ((WH).β−2 ·A)
W T (WH).β−1 , W ←W · ((WH).β−2 ·A)HT

(WH).β−1HT , (2.11)

where X .n denotes the matrix with entries ([X ]i j)
n and the division is taken entrywise.

This multiplicative β -divergence algorithm maintains the advantages of simplicity and
low cost per iteration of the multiplicative update rules from Lee and Seung but with
the flexibility offered by the β -divergence, which is the ability to adapt the divergence
measure of the algorithm to the one that best suits the application approached [28, 39,
29]. Choosing the appropriate divergence can improve the quality of the decomposition.
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2.4.4 Alternating Least Squares algorithms

Another well know scheme used to compute the NMF is the Alternating Least Squares
(ALS) family of algorithms. This algorithms first presented in [14] perform a Least
Square step to compute H keeping W fixed followed by another Least Square step to
compute W keeping H fixed, there comes the Alternating Least Squares name. The
main advantage of this scheme is that while problem 2.3 is a nonconvex problem, the
subproblems 2.12 and 2.13 are convex, therefore an optimal solution can be found.

H = argmin
H≥0

||WH−A|| (2.12) W = argmin
W≥0

||HTW T −AT || (2.13)

The basic approach for this algorithm [14, 20] is to perform an unconstrained least
squares step followed by a projection of the negative values to 0 to enforce nonnega-
tivity. This approach produces Algorithm 6.

Algorithm 6 Alternating Least Squares Algorithm (ALS)

Input: A ∈ Rm×n
+

1: k < min(m,n),maxIter > 0
Output: W ∈ Rm×k

+ ,H ∈ Rk×n
+

2: W = rand(m,k) %initialize positive W
3: for iter = 1,2, ...,maxIter do
4: H = argmin ||WH−A||
5: ∀i, j H(i, j) = max(H(i, j),0)
6: W = argmin ||HTW T −AT ||
7: ∀i, j W (i, j) = max(W (i, j),0)
8: end for

This ALS algorithm does not solve properly problems (2.12) and (2.13), and does not
ensure convergence to an optimal solution. However, it is a widely used algorithm be-
cause it is faster than the algorithms that try to solve problems (2.12) and (2.13) exactly.
There are various NMF algorithms based on this framework (e.g. [14, 20, 35, 32] or [38,
Sec. 4.1]). The MATLAB function to solve the NMF uses this algorithm as its default
algorithm.

Nevertheless, if a proper nonnegative least squares (NNLS) constrained algorithm (see
Section 2.3) is used to solve the alternated problems, the convergence to a stationary point
is proved in [41]. This framework is commonly named Alternating Nonnegative Least
Squares (ANLS) and there are several implementations following it [35]. The ANLS
framework has the advantage of guaranteeing convergence to a local minimum. But
due to the greater computational cost of solving two NNLS problems in each iteration
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(greater than the cost of solving unconstrained least squares steps), is much slower than
the ALS framework.

In [42], the authors proposed an algorithm based on the ANLS framework focused on
lowering the computational cost and using efficient operations to decrease the execution
time. The algorithm called ALSA is shown in Algorithm 7.

Algorithm 7 Alternating Least Squares Algorithm (ALSA)

Input: A ∈ Rm×n,A(i, j)≥ 0∀i, j
1: k < min(m,n)

Output: W ∈ Rm×k,H ∈ Rk×n,W (i, j),H(i, j)≥ 0∀i, j
2: W = rand(m,k) % initialize positive W
3: for iter = 1,2, ...,→ convergence do
4: [Q,R] = qr(W );
5: B = QT A
6: for j = 1,2, ...,n do
7: H(:, j) = argminh≥0 ||Rh−B(:, j)||
8: end for
9: [Q,R] = qr(HT );

10: B = QT AT

11: for j = 1,2, ...,m do
12: W ( j, :) = argminw≥0 ||Rw−B(:, j)||
13: end for
14: end for

ANLS-BPP

An algorithm based on the ANLS framework using the Block Principal Pivoting (BPP)
algorithm [8] is presented in [35]. In this algorithm a version for multiple right hand
sides of the Block Principal Pivoting algorithm, which solves the NNLS problem, is
used to solve problems (2.12) and (2.13) (see Section 2.3.1). It is also shown in [35] that
the ANLS-BPP algorithm is faster than other algorithms using the ANLS framework.
Furthermore ANLS-BPP can compete with the fast HALS algorithm (see Section 2.4.5)
outperforming it in some datasets. ANLS-BPP is usually faster than fast HALS with
sparser factors.

23



Chapter 2. Nonnegative factorizations: definition and algorithms

2.4.5 Hierarchical Alternating Least Squares (HALS) algorithms

The Hierarchical Alternating Least Squares (HALS) algorithm first presented in [34] and
developed in [43] is an algorithm derived from the ALS algorithm. But due to its good
performance it deserves its own section. The performance of the HALS algorithm has
been proved against other state of the art algorithms in numerous studies [43, 35, 44, 45]
and [38, Sec. 4.8]. The HALS algorithm shown in Algorithm 8 uses a set of alternating
update rules until some convergence criterion (not stated by the author of the algorithm)
is met.

Algorithm 8 Hierarchical Alternating Least Squares Algorithm (HALS)

Input: A ∈ R+
m×n, k < min(m,n)

Output: W ∈ R+
m×k,H = BT ∈ R+

k×n,
1: Initialize nonnegative matrix W and/or X = BT using ALS
2: Normalize the vectors w j (or b j) to unit l2−norm length
3: E = A−WBT

4: while convergence criterion not reached do
5: for j = 1,2, ...,k do
6: A( j)⇐ E +w jbT

j

7: b j⇐ [A( j)T w j]+
8: w j⇐ [A( j)b j]+
9: w j⇐ w j/||w j||2

10: E⇐ A( j)−w jbT
j

11: end for
12: end while

Beta divergence HALS

As seen with the multiplicative update algorithm in Section 2.4.1, there is a version of the
HALS algorithm that minimizes β -divergence instead of Frobenius distance. The update
rules needed to minimize the β -divergence in Algorithm 8 are 2.14 in place of line 7 and
2.15 in place of line 8.

b j⇐
([A( j)T ]+)w

[β−1]
j

wT
j w[β−1]

j

(2.14) w j⇐
([A( j)]+)b

[β−1]
j

(bT
j )

[β−1]b j
(2.15)
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These update rules are developed in [38, Sec. 4.7.9] but the β -divergence is defined in
a different way in that book ( e.g. the value of the β parameter which is equivalent to
Frobenius distance is β = 1 instead of β = 2). Due to that, the update rules presented
here are adapted to the β -divergence function defined on Section 2.4.3.
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Fast HALS

In [43, Sec 3] an improved version of HALS algorithm called fast HALS (fHALS) was
introduced. This version has a lower computational cost than the basic version and there-
fore is much faster. Fast HALS algorithm is shown in Algorithm 9. It can be seen that the
most of the algorithm cost comes in form of matrix-matrix products, so implementing
this algorithm with BLAS3 operations (see Chapter 3) can yield a tremendous perfor-
mance in modern systems and even more in GPUs.

There is some confusing reference to HALS algorithm in the bibliography because most
of the times the HALS algorithm is referenced, the fHALS version is in fact the one used
(e.g. in [35] the HALS algorithm is compared with other NMF algorithms, but checking
the results of the executions makes clear that fHALS is the algorithm used in the tests).

The fHALS algorithm is currently one of the fastest methods to compute the NMF and the
ones that are faster or equivalent do not overcome fHALS for all cases. Furthermore, the
fHALS algorithm is very easy to implement and usually easier than other fast algorithms
for NMF. The fHALS algorithm is the fastest algorithm between all the algorithm tested
during this tesis (see Chapter 9). The computational cost per iteration of the fHALS
algorithm is:

O(4mnk+4k2(m+n)) f lops/iteration (2.16)

Despite having the same higher order computational cost per iteration than MLSA, fHALS
algorithm has a better overall performance because it has a faster convergence per iter-
ation than MLSA. Usually fHALS algorithm needs less iterations (around one order of
magnitude) than MLSA to achieve the same approximation error.

A version of the fHALS algorithm for β -divergence can be derived from the β -divergence
HALS algorithm, following the same procedures that led to the fHALS algorithm from
the HALS algorithm.
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Algorithm 9 Fast HALS Algorithm

Input: A ∈ R+
m×n

1: k < min(m,n)
Output: W ∈ R+

m×k,H = BT ∈ R+
k×n,

2: Initialize nonnegative matrix W and/or X = BT using ALS
3: Normalize the vectors w j (or b j) to unit l2−norm length
4: while convergence criterion not reached do
5: %Update B
6: X = ATW
7: V =W TW
8: for j = 1,2, ...,k do
9: b j⇐ [b j + x j−Bv j]+

10: end for
11: %Update W
12: P = AB
13: Q = BT B
14: for j = 1,2, ...,k do
15: w j⇐ [w jq j j + p j−Wq j]+
16: w j⇐ w j/||w j||2
17: end for
18: end while
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2.4.6 Greedy Coordinate Descent algorithm (GCD)

The Greedy Coordinate Descent algorithm (GCD) was introduced in [44] with the goal
of improving the fHALS algorithm using an individual variable selection approach. The
authors of [44] claim that their algorithm is more efficient than the fHALS algorithm
because fHALS uses a cyclic coordinate descent schema that may perform unneeded
descent steps on unimportant variables. On the other hand, GCD algorithm performs a
variable selection to decide which are the important variables in which to perform the
gradient descents, so the number of variables updated is much lower (specially in the
sparse case). Furthermore, theoretical convergence guaranties are presented.

On top of that, the authors claim that GCD is faster than fast HALS in practice, but
experiments during the development of this thesis had shown that Fast HALS is faster
than GCD in modern computing systems so that claim seems to be incorrect. This topic
will be addressed in depth in the experiments shown in Chapter 9.

In Algorithm 10 an overview of the algorithm is presented. In the inner loop on line
11, the variable selection strategy and the one-variable update are performed. Before the
inner loop, the gradient GW and objective function decrease DW matrices are initialized.
Before the main loop (line 4), some matrix-matrix products are precomputed to decrease
the cost during the iterations. The cost of each iteration of the algorithm (loop of line4)
depends on the number of coordinate updates performed in each iteration of the inner
loop (line 11), which depends on the data in matrix Hnew.

2.4.7 Online NMF

There are scenarios where all the data matrix A is not available or is too large to be
loaded into memory for its processing. To solve that problem, several authors developed
algorithms capable of estimating a NMF for large or incomplete datasets with tractable
memory complexity. These algorithms are usually named Online NMF, because they are
designed to compute the NMF as soon as new data points are available. Although the
basic approach computes a NMF using the Frobenius norm [46, 47, 48], there are several
Online NMF algorithms designed to minimize other divergences [49, 48]. The online
NMF is often used for dictionary generation. This is why most Online NMF algorithms
emphasise in obtaining an accurate approximation of matrix W , sacrificing the accuracy
of matrix H.

In [47] an easy to understand approach to the Online NMF problem is presented. Al-
gorithm 11 shows the structure used by the algorithms presented in [47]. Matrix W is
updated using the projected gradient methods presented in [50], specifically the second
order projected gradient descent (PGD).
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Algorithm 10 Greedy Coordinate Descent algorithm

Input: A ∈ R+
m×n,k < min(m,n)

1: ε(typically,ε = 0.001)
Output: W ∈ R+

m×k,H ∈ R+
k×n,

2: Compute PAH = AHT ,PHH = HHT ,PWA =W T A,PWW =W TW
3: Initialize Hnew← 0
4: while not converged do
5: Compute PAH ← PAH +A(Hnew)T according to the sparsity of Hnew

6: W new← 0
7: GW ←WPHH −PAH

8: SW
ir ← max(Wir−

GW
ir

PHH
rr

,0)−Wir for all i,r

9: DW
ir ←−GW

ir SW
ir −

1
2 PHH

rr (SW
ir )

2 for all i,r
10: qi← argmax jDW

i j for all i = 1, ...,m and pinit ←maxi DW
i,qi

11: for i = 1,2, ...,m do
12: while DW

i,qi
< ε pinit do

13: s∗← SW
i,qi

14: PWW
qi,: ← PWW

qi,: + s∗Wqi,:(Also do a symmetric update for PWW
:,qi

)
15: W new

i,qi
←W new

i,qi
+ s∗

16: GW
i,: ← GW

i,: + s∗PHH
qi,:

17: SW
ir ← max(Wir−

GW
ir

PHH
rr

,0)−Wir for all r = 1, ...,k

18: DW
ir ←−GW

ir SW
ir −

1
2 PHH

rr (SW
ir )

2 for all r = 1, ...,k
19: qi← argmax jDW

i j
20: end while
21: end for
22: W ←W +W new

23: For updates to H, repeat analogue steps to Step 5 through Step 22
24: end while

Algorithm 11 Online NMF structure

Input: A ∈ Rm×n
+ , where not all n data points are available from the beginning, W0 ∈

Rm×k
+ , r ∈ N

1: W =W0
2: for t = 1 : n/r do
3: A(t) = Draw r data points from A.
4: Compute H(t) by solving the NNLS problem H(t) = argminH>0 ‖WH−A(t)‖F .

5: Update matrix W using H(t) and A(t)

6: end for
7:
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Chapter 3

High performance computing
technologies

3.1 High performance computing basics

High Performance Computing (HPC) can be defined as the use of high performance com-
putational hardware in order to obtain the highest performance possible to solve complex
problems. HPC computing is widely used in the scientific and engineering communities
due to the high complexity and computational cost that arises from the problems tack-
led nowadays. For example, natural phenomena simulation, solving high dimensionality
mathematical problems or data analysis coming from scientific experiments. At present
time, HPC is gaining relevance in other fields like the financial sector.

Due to the increasing need of computing power, different hardware architectures have
evolved to obtain systems with great compute power. Those architectures will be ex-
plained in Section 3.2.

Together with the development of high performance hardware, HPC includes the soft-
ware technologies developed to obtain the maximum performance from that hardware.
To take advantage of the multiple processors present in HPC systems, the developers
should use parallel programming. Parallel programming is a programming paradigm in
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which several computations are performed simultaneously. Using parallelism improves
the performance of the applications while increasing the programming difficulty due to
the need of handling concurrency problems. Furthermore, depending on the hardware
architecture of the system, there are several programming models to take advantage of
that architecture (shared memory, distributed memory, coprocessor offloading etc.). In
section 3.3 some software technologies used in HPC are described.

3.2 Current HPC architectures

The Flynn taxonomy [51] is a good entry point to the HPC architectures section, Flynn
made a logical classification of computer architectures into 4 groups:

1. SISD: Simple Instruction Simple Data category describes the basic sequential
computer, where one instruction at a time interacts with one data stream.

2. MISD: In Multiple Instruction Single Data multiple instructions are executed over
the same data stream. Nowadays there are not common computers based on this
paradigm.

3. SIMD: In Single Instruction Multiple Data architectures the same instruction is
executed synchronously over multiple data. Vectorial computers and Graphics Pro-
cesing Units (GPU) fall into this category.

4. MIMD: The Multiple Instruction Multiple Data architectures are the most ex-
tended architectures nowadays. Into this category multiprocessors and multicom-
puters can be clasified.

This simple classification gives an overview of the mayor computing architectures used
in HPC and in general purpose computation. Traditionally the main architectures used
for HPC were MIMD, but nowadays with the improvement of the GPUs, most of the
high end HPC systems are combinations of MIMD and SIMD architectures.

From an evolution point of view, the sequential processors (SISD) improved during years
by means of increasing the number of transistors on chip and the CPU frequency. But
this improvement in performance was paid with an increment of the power consumption
of the processors. Furthermore the increment of CPU frequency and the decrease on the
lithography size to increase the number of transistors was getting close to the physical
limits of the semiconductors, on which the current processors are based. This problems
were addressed by the processor manufacturers decision of including multiple CPUs in a
single chip, and that decision changed the trend of SISD sequential processors to MIMD
multicore processors. The number of cores (independent CPUs) on a single processor
increased up to 8 or 16 cores in public commercial versions and up to 24 in professional
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versions. Furthermore, the manufacturers developed technologies to execute several ex-
ecution streams (threads) into the same physical core, doubling the number of logical
cores obtained and increasing even more the performance. These architectures started
the need to develop parallel computing programming techniques and environments to
make the most of the hardware available.

In HPC and professional environments, due to the high computational requirements, sev-
eral processors were build into the same computer to increase the performance of the
system giving us the multiprocessor computers that are also MIMD machines. These
multicore and multiprocesor computers can be classified as shared memory architectures
because all the processors have direct access to all the memory on the system. This
architecture is detailed in Section 3.2.1.

Due to the cost of scaling up the performance of a system increasing its number of pro-
cessors and memory, another approach with lower cost became popular. Connecting
different computers with high bandwidth and low latency interconnection networks was
cheaper than building a computer alone with the same computational power. Those sys-
tems called multicomputers (commonly known as computer clusters) can be easily scaled
to achieve massive amounts of compute power with a reasonable economic cost. This
systems are MIMD and are commonly classified as distributed memory architectures be-
cause each process only has access to its own local memory, communicating with other
processes by means of message passing. More detailed information can be found in
Section 3.2.2.

Another architecture currently being used in HPC are the Graphics Processing Units
(GPUs). This SIMD architecture was developed for the videogame industry, but when
its compute power started to grow, the interest on those architectures in the HPC com-
munity grew with it. But it was with the release of CUDA (see Section 3.3.3) when
the GPUs started to take a very important position in HPC systems. CUDA is a pro-
gramming environment for GPUs based on the C programming language developed by
the GPU manufacturer NVIDIA. See Section 3.2.3 for more information about the GPU
architecture.

Currently, most of the high end HPC systems are a combination of multiprocessor com-
puters with GPUs interconnected in a cluster with huge combined computational power.
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3.2.1 Shared memory

In shared memory architectures all processors can access the whole memory pool of the
system (the processors share the same address space). The communication between pro-
cesses is made by reading and writing positions of the memory. Another subclassification
addresses the access time of the different processors to memory: if the memory access
time is the same for all positions of memory in the address space, the system is classified
as Uniform Memory Access (UMA), if the memory access time differs between different
memory addresses, the system is classified as Non Uniform Memory Access(NUMA).

Developing software over shared memory architectures is usually easier because the de-
veloper does not need to handle the communications between processes as in distributed
memory architectures. The only problem to take care in this architecture is to avoid con-
currence problems, using synchronization methods when several threads are reading and
writing over the same memory addresses. A thread is an execution stream that can be
executed by a core of the processor, a multicore processor can execute concurrently as
many threads as its number of physical cores. Nowadays, most multicore CPU manu-
facturers include technologies to overlap the execution of several (typically two) threads
into the same physical core, but in HPC applications this core sharing technologies usu-
ally have a negative impact in the application performance. Thus, is usually advised to
disable it in massively parallel applications.

There are many parallel programming utilities to program over shared memory machines
like POSIX threads, Intel TBB or OpenMP. But due to its simplicity and performance
OpenMP is the most extended paradigm for shared memory architectures. A brief de-
scription of OpenMP standard is given in Section 3.3.1.

In the past, shared memory machines were shadowed by distributed memory machines
due to the high cost of scaling the computational power of shared memory machines,
but nowadays with the improvement of the hardware capabilities there are very pow-
erful shared memory machines within a reasonable price. That is why shared memory
machines regained relevance nowadays in some research groups.

3.2.2 Distributed memory

The popularity of this architecture relies on its lower cost to achieve huge amounts of
processing power and on its great scalability. In a computer cluster, each individual
computer called node has one or more processors and its own memory pool. Then, sev-
eral nodes are connected with high bandwidth and low latency interconnection networks
to merge all of them into a single powerful system. From the scalability point of view,
a new node can be easily added to the system if more computational power is needed,
while scaling a shared memory machine is more difficult and expensive.
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A computer cluster can range from a low cost system where the nodes are commodity
workstations, to the most powerful supercomputers where each node is formed by high
performance multiprocessors. Nowadays most of the high end supercomputers are made
of multiprocessor nodes with accelerators (GPUs and/or manycores).

In distributed memory systems each processor can only access its local memory and has
its own memory address space. When a process needs to access data in the local memory
of a different processor, it will communicate with the process running in that processor
via message passing to receive that data. Nowadays most of the nodes are shared memory
multiprocessors themselves sharing a address space between the processors of the same
node and communicating via message passing with the processors in different nodes.

Programming over distributed memory architectures is harder than over shared memory
computers, because the developer should be aware of the node which contains the data
needed by a process, and he should explicitly send or receive messages in order to move
the data to the desired nodes. The communication time between the processes has a
big impact in the overall performance of the parallel program executed on the cluster.
Furthermore, the communication time between different nodes can be different, so the
developer should acknowledge this to exploit the data locality to minimize the messages
between the processors with higher communication times. There has been different mes-
sage passing libraries to help the developers with higher level interfaces and tools to
manage the process communications( e.g. Parallel Virtual Machine (PVM) or Message
Passing Interface (MPI)). Nowadays the MPI standard is the most used paradigm to de-
velop parallel applications for computer clusters. A brief description of the standard will
be given in Section 3.3.2.

3.2.3 Graphical Processing Units

The Graphical Procesing Uints (GPUs) are SIMD coprocessors designed to accelerate
computer graphics. The improvements in performance of the GPUs was motivated by the
videogame industry, and the increasing needs of compute power to improve the graphical
aspects of videogames. Due to the improvement of the overall performance of the GPUs
the HPC and scientific communities started to use GPUs to solve problems non related
to graphics, that trend was called General Purpose Computing on Graphics Preocesing
Units (GPGPU).

GPUs have a higher number of cores than CPUs, but GPU cores are more limited and
simple, with a smaller instruction set. Furthermore, due to its SIMD architecture all the
cores are used to execute synchronously the same instruction, but nowadays, the modern
GPU architectures are partitioned into multiprocessors that can execute different instruc-
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tions concurrently. Each multiprocessor is a SIMD processor with a variable number of
cores (depending on the architecture) executing the same instruction.

Nowadays the main GPU manufacturers AMD [52] and NVIDIA [53] have solutions
for GPGPU but in the last years the dominating manufacturer in the HPC field has been
NVIDIA. It was with the launch of the CUDA framework (see Section 3.3.3) and the
Tesla architecture by NVIDIA when the GPUs presence in HPC systems started to grow.
This proprietary framework together with the high performance of their GPGPU products
keeps NVIDIA in a dominant position.

The latest computation accelerator, with the latest NVIDIA architecture called Volta [54],
achieves up to 7.8 TFlops on double precision and 15.7 TFlops on single precession.
But the research group in which this thesis has been carried out owns a machine with
the previous generation of NVIDIA GPGPUs which architecture is called Pascal [55]
and achieves upt to 5.3 TFlops on double precision. In the following lines the Pascal
architecture will be briefly described.

Figure 3.1: Overviwe of the NVIDIA Pascal architecture

The Pascal architecture has a hierarchical structure to manage its Multiprocessors which
are called Streaming Multiprocessors (SM). The GPU has 6 Graphics Procesing Clusters
(GPC), each one with 5 Texture Processing Clusters (TPCs) that contain 2 SMs. Figure
3.1 shows an overview of the Pascal GP100 GPU. Each SM has 64 single precision
CUDA cores (32 when working with double precision) partitioned into two processing
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blocks, each one with its own warp scheduler. A warp is a scheduling unit created by
NVIDIA to gather the threads, each warp executes the same SIMD instruction and has
32 threads. Figure 3.2 shows a schematic view of a Pascal SM.

Figure 3.2: Schematic view of a Pascal GP100 SM Unit

From the memory point of view each SM has 64KB of shared memory and a L1 cache
that can serve as texture cache too. The L2 cache of the full GP100 is a unified 4096
KB cache. Finally, the main device memory has changed from DDR5 to HBM2 which
gives a better memory performance with higher bandwidth. The Tesla P100 accelerator
has 16GB of main memory.

3.2.4 Intel Many Integrated Core processors

The Intel Many Integrated Core (MIC) is an architecture especially developed for parallel
computing and HPC environments by the processor manufacturer Intel. That architecture
was presented in the Intel Xeon Phi coprocessors (codename Knights Corner) [56] and
was the strategy of Intel to compete with GPUs for massive parallel computing.

The initial Xeon Phi coprocessors followed the offload processing paradigm from the
main host CPU to the coprocessor. The developer could send data from the host memory
to the coprocessor and then process it in the coprocessor taking advantage of the highly

37



Chapter 3. High performance computing technologies

parallel architecture. The Knights corner coprocessors have more than 60 cores with
Intel Architecture in a ring interconnect. Each core has 4 hardware threads adding more
than 240 threads in the coprocessor. Each core has a scalar unit and a SIMD vector unit
512 bit wide, which allows to process 8 double precision or 16 single precision floating
point numbers in a single operation. The 512KB coherent L2 cache of each core unifies
in a fully coherent L2 cache of 30MB across the 60 cores (more with higher number of
cores versions).

From the programming point of view, the Xeon Phi processors share the same software
tools with the Intel Xeon architecture, so it is easier to adapt parallel codes developed
for Intel Xeon architectures. Most of the Intel development tools like profilers and code
optimizers can be used over the Intel MIC architecture. But in order to exploit all the
benefits of the architecture, the developer should work at a lower level using all the hard-
ware capabilities that the MIC architecture offers like the SIMD instructions. However
some HPC libraries like Intel MKL (see Sec 3.3.5) have been ported to the MIC architec-
ture so the developer can take advantage of the architecture performance without needing
a fine grain knowledge of it.

One of the disadvantages of this coprocessor was the overhead produced by the data
transfer from the host memory to the coprocessors memory and by the computation of-
floading. Its peak performance was very limited due to this factor. Thus with the next
iteration of the MIC architecture called Knigths Landing, Intel presented two form fac-
tors for its architecture: they kept the old coprocessor form factor and they presented a
new host processor form factor. This host processor is cabable to boot an OS and has
access to the full memory of the system, avoiding the offloading problems of its predeces-
sor. The newest Intel Xeon Phi host processors are used as independent node processors
in some high end clusters of the TOP500 list [57] like Trinity and Cory. The top 2 cluster
in the TOP500 list uses the old Knigths Corner MIC architecture that was able to achieve
very good performance in highly parallel environments despite the offload limitations.

3.2.5 Heterogeneous computing

As seen in the previous Sections each of the architectures has its own advantages and dis-
advantages. From this mixture of architectures with different capabilities a new problem
arises: a system can have an heterogeneous composition made of different architectures.
To make the most of the performance of that systems, the heterogeneous computation
programming models try to optimize the performance of the system by maximizing the
benefits of each architecture, while minimizing its inconveniences. For example, an het-
erogeneous cluster with multiprocessors of different speed in different nodes needs to
adapt the computational load distribution to the speed of each node of the cluster. If the
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load is distributed homogeneously all the nodes of the cluster will work at the speed of
the slowest node. Hence, wasting hardware on the most powerful nodes.

In modern HPC systems, the different architectures used into each node (multiproces-
sors, GPUs, coprocessors...) turn the cluster into an heterogeneous cluster even if all the
nodes are homogeneous. In a cluster with multiprocessor nodes with GPUs an applica-
tion should distribute the work between the nodes, then each node should use a shared
memory approach to distribute its work between their processors/cores and it should
offload computations to GPU when the computations can take benefit of the SIMD ar-
chitecture.

3.3 HPC software technologies

To make the most of each HPC architecture described in Section 3.2, specific software is
needed. This software can range from specific parallel programming models/languages
to HPC libraries or complementary HPC tools. In this section the most used technologies
in HPC will be briefly outlined.

3.3.1 OpenMP

OpenMP is an Application Program Interface (API) designed for shared memory archi-
tectures. The API supports C/C++ and fortran programming languages.

OpenMP is based on compiler directives and its own library functions. Being based on
compiler directives has two main advantages: first, the same code can be sequential or
parallel depending on flags at compilation time; second, it can be applied to an existing
sequential code to parallelize it without changing most of the code. This makes OpenMP
a very powerful and simple tool to parallelize legacy codes without too much effort.
This trivial parallelization can not always be done due to data dependences between the
threads.

On OpenMP, the runtime manages all the aspects regarding the thread creation and
scheduling transparently for the developer, while some optional parameters are avail-
able to fine tuning the management of the threads. Thus, the developer can focus on
the parallelization of its application and the problems related to shared memory parallel
programming: thread synchronization, critical multithread data accesses, etc.

After OpenMP version 4, the target and simd construct were added, enabling OpenMP
code to offload execution to accelerators like GPUs or the Intel MIC described above.
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For a full detail of the OpenMP API check the latest specification, currently version 4.5
[58].

3.3.2 MPI

The Message Passing Interface (MPI) [59] is a standard API designed for distributed
memory architectures. There are several implementations of the standard like OpenMPI
[60] or MPICH [61], each implementation should implement all the functions present on
the MPI standard, but the internal aspects of each library are implementation dependent.

While designed for distributed memory, an MPI application can be executed in a shared
memory system. However, the application will get some disadvantages of the distributed
memory architecture without getting the advantages of a shared memory architecture.

An MPI application consists of a group of different processes which work together to
solve a problem. Each process is independent from the other and has its own memory
address space, sharing the necessary information to complete the job through message
passing. The application starts when each process calls the MPI_Init function and fin-
ishes when all processes reach the end of the program calling the MPI_Finalize function.

The basic functionality of the standard is given by the MPI_Send and MPI_Recv func-
tions. Those functions define a one to one message between two processes. One process
uses the MPI_Send function to send a message to another process, who should use the
MPI_Recv function to receive that message.

The standard defines more complex communication patterns between groups of pro-
cesses called collective communications. These communications share a message be-
tween a group of processes defined by a communicator in a more efficient way than
doing one to one message passings. A communicator is a way of grouping processes
inside the standard, the communicator MPI_COMM_WORLD is the default commu-
nicator that groups all the processes in an MPI application. Some examples of these
collective communications are MPI_Broadcast to send a message from one process to
several processes, MPI_Scather to split some data contained in one process and send
each part to a different process or MPI_Gather to collect data from different processes
and mix it into one process.

All the functions named previously are blocking functions that enforce synchronous com-
munications. However the standard includes equivalent functions for non-blocking com-
munications that enable the application to communicate in an asynchronous manner. In
than case, the developer should explicitly control the synchronization between the pro-
cesses using the MPI_Barrier function. That function acts as a software wall stopping
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the execution of all the processes of the communicator until all of them arrive to the
barrier.

The MPI standard includes other general management functionalities like the topology
definition or the datatype creation. For the entire standard definition check [62].

3.3.3 CUDA

The Computer Unified Device Architecture (CUDA) is a hardware-software platform
presented in 2007 created to develop parallel applications over NVIDIA GPUs. The
CUDA toolkit [63] contains the CUDA driver , the runtime library, a C/C++ com-
piler, GPU-Accelerated libraries and debugging and optimization tools. While there are
some interfaces for Fortran and Python, CUDA devices are programmed with CUDA
C. CUDA C is a C/C++ extension created to develop applications over CUDA capable
GPUs. When the nvcc compiler compiles the CUDA C source files (.cu), the host code
is compiled with the system compiler, then PTX code (an intermediate pseudo-assembly
code) is generated for the CUDA kernels and finally the CUDA driver generates the
machine code for the specific GPU on the system.

The kernels are functions designed to be executed by N threads in parallel by N CUDA
threads in the GPU. Those kernels are the core of the CUDA C extension and are defined
using the __global__ declaration specifier together with the execution configuration en-
closed between <<< ... >>>. That configuration has a particular syntax to define the
number of threads that will execute the kernel and the thread hierarchy used. Each thread
executing the kernel receives a unique thread ID within a block, contained in the built-in
threadIdx variable.

The threadIdx variable is a 3-component vector, so threads can be grouped into one-
dimensional, two-dimensional or three-dimensional blocks. All threads within a block
will be executed by the same SM, and thus will share the resources of that SM. Then
the blocks are organized into a one-dimensional, two-dimensional or three-dimensional
grid of blocks. This hierarchy confers the developer the ability to map the threads to the
problem at block level and to the hardware at grid level.

From the memory point of view, each thread has access to its own private memory, to a
shared memory with all the threads in its thread block (only valid during the execution
of that block) and to the global memory shared between all threads. There are also two
read-only memories: the constant and the texture memories. The global, constant and
texture memory spaces are persistent across kernel launches by the same application.
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A basic execution of a CUDA kernel will involve the following steps:

1. Allocate memory on device (cudaMalloc).

2. Transfer data from host to device (cudaMemcpy)

3. Execute kernel (__global__myKernel<<< N,M >>> ())

4. Transfer result from device to host (cudaMemcpy)

For more information about the CUDA programming model check the CUDA C pro-
gramming guide [64].

3.3.4 MATLAB for HPC

MATLAB [65] is a mathematical software tool that offers a development environment
together with its own programming language. It is a widely used tool used for devel-
opment in various scientific fields. While MATLAB itself is not an HPC software and
its language is focused in programmability instead of performance, it has very good
performance when working with matrix operations. Furthermore, the MATLAB Paral-
lel Computing Toolbox lets MATLAB developers create parallel applications within the
MATLAB programming language syntax. This allows the developers to get more per-
formance from HPC architectures (multicore processors, computer clusters and GPUs)
without the need of learning new programming languages or technologies.

Another interesting feature is the MEX interface, which allows to call functions written
in C/C++ or Fortran directly from MATLAB. This allows to reuse already programmed
algorithms in those languages into larger MATLAB projects without the need of coding
them again in MATLAB’s programming language. Additionally, the developers can call
more efficient code or efficiently developed libraries to improve the performance when
MATLAB’s performance is not enough. To use the MEX interface, an intermediate MEX
file should be created containing a function callable from MATLAB that contains the
C/C++/fortran function to call and the necessary steps to pre/post process the function
arguments. Furthermore, CUDA code can be called from MATLAB using the MEX
interface. For more information on the implementation of MEX files check [66].
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3.3.5 HPC mathematical libraries

In the HPC community there are some very well known mathematical libraries optimized
for different HPC architectures which can be used to improve the performance of math-
ematical algorithms. In this section some of them used during the development of this
thesis will be introduced.

Basic Linear Algebra Subprograms (BLAS)

The Basic Linear Algebra Subprograms (BLAS) [67, 68] is a collection of computational
routines designed to perform basic linear algebra operations like vector-matrix or matrix-
matrix products. These routines originally designed in Fortran, were designed from
a computational point of view to achieve the maximum performance of the available
hardware. Nowadays, there is a C interface called CBLAS designed to make it easier
to use the BLAS routines while developing in C. The BLAS routines are divided into 3
categories:

1. BLAS 1: Routines that perform vector-vector operations.

2. BLAS 2: Routines that perform vector-matrix operations.

3. BLAS 3: Routines that perform matrix-matrix operations.

Developers are encouraged to use higher level operations (BLAS 3) while designing their
algorithms because they have a more efficient memory access pattern and carry out more
flops per memory access, offering a better performance.

There are several implementations of the original routines adapted and optimized to the
hardware characteristics of the system in where they are executing. These implementa-
tions achieve a great performance close to the peak performance of the hardware. Some
of them are listed below.
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Linear Algebra PACKage (LAPACK)

Linear Algebra PACKage (LAPACK) [69] is a set of routines for solving systems of
linear equations, least-squares solutions of linear systems of equations, eigenvalue prob-
lems, and singular value problems. This routines are designed on top of the BLAS rou-
tines to improve the performance of existing packages on shared memory parallel proces-
sors. To get the most of the hardware performance, LAPACK is designed to use BLAS
3 operations in order to exploit the computational benefits of the operations in this level
of BLAS. Designed originally in Fortran, there are C interfaces for the package. Those
C interfaces (like LAPACKE from Intel and CLAPACK from netlib) were specific from
each implementation of the routines, but nowadays the official C interface for LAPACK
is LAPACKE (coming from a collaboration of the LAPACK team with the Intel Math
Kernel Library Team).

The different LAPACK implementations which depend of a BLAS implementation in-
stalled on the system, they are commented below.

Implementations of BLAS and LAPACK

There are several implementations of BLAS and LAPACK packages, most times shipped
together. First of all, there are the original implementations from the Netlib [70, 71].
These implementations are the core of all BLAS and LAPACK implementations but they
are not tuned for every particular architecture or system. Most of the UNIX distributions
include versions of BLAS and LAPACK libraries in its package managers.

The ATLAS (Automatically Tuned Linear Algebra Software) [72] is a software that au-
tomatically generates an optimized BLAS library for the architecture of the system in
which is installed, with some LAPACK routines too. The software performs a series of
tests during the installation process in order to optimize the library to the current system.

The GotoBLAS [73] was an open source implementation of the BLAS interface devel-
oped by Kazushige Goto with many manual low level optimizations for certain proces-
sors. Nowadays is a discontinued project, but an open source fork called OpenBLAS
[74] continues its development. OpenBLAS includes the LAPACK interface along with
threaded versions of the functions in the library.
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The Intel Math Kernel Library [75] is a proprietary software library developed by Intel
and optimized for Intel architecture processors it contains implementations of the BLAS
and LAPACK interfaces with some other BLAS-like extensions that are not present in
the BLAS interface. Additionaly, includes some other mathematical packages like vector
functions, FFT or nonlinear optimization problem solvers. Most of the BLAS and some
of the LAPACK routines are threaded inside MKL [76]. Furthermore, the ScaLAPACK
and PBLAS interfaces for distributed memory systems are included in the library. There
is a version of the Intel MKL for the Intel MIC architecture too.

There are some implementations of BLAS and LAPACK available for GPU architec-
tures. For example, CULA [77] is a LAPACK implementation for CUDA capable GPUs
developed by EM Photonics in partnership with NVIDIA and cuBLAS [78] is a BLAS
implementation for CUDA capable GPUs developed by NVIDIA.

Finally the MAGMA project [79] develops a library similar to LAPACK for heteroge-
neous architectures (e.g. Multicore + GPU systems).
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Existing NNMFPack HPC library

4.1 Library overview

The NNMFPack library first presented in [36] and used in [80] was originally developed
by researchers from the Information Retrieval and Parallel Computing group (IRPCG)
from the University of Oviedo and from the Interdisciplinary Computation and Com-
munication Group (INCO2) from the Universitat Politecnica de Valencia. The goal of
this library was to provide a HPC framework to compute the NMF, in order to help
researchers of different fields of science and engineering who use the NMF to take ad-
vantage of the newest technologies and computational architectures. Having a reliable
and efficient HPC framework can free the researchers from the work of implementing al-
ready known methods to compute the NMF. Allowing them to focus in their applications
while they make the most of their computational resources. The library source can be
found in [81].
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4.2 Technologies under the hood

At the beginning of the development of this thesis the library was at its version 2.1 which
was released on April 2015 and in this section we are going to describe the supported
technologies and architectures of that version. The library routines are developed in C
programming language and the library has been designed for Linux-compatible operating
systems. The library is not an heterogeneous-coprocessor library, the library supports
several architectures but its not designed to work with different coprocessor architectures
at the same time.

4.2.1 Supported architectures

The NNMFPack library v2.1 supports three architectures (see Section 3.2):

1. CPU: The library supports multicore and single-core CPUs. The multicore par-
allelization is performed through OpenMP and Intel development technologies.
Originally compatible with x86_64 CPUs, the support of ARM CPU was added in
version 2.2.

2. Graphic Processing Unites (GPU): The current version of the library only supports
CUDA compatible GPUs.

3. Intel MIC: The library supports the Intel Many Core Integrated (MIC) architecture,
present on the Intel Xeon Phi coprocessors.

4.2.2 Supported compilers

The library supports gcc and Intel C compiler (icc) which needs to be configured on
installation. The Intel development technologies for parallelization are used only with
the icc compiler. If the library is configured to use accelerators, it will need nvcc to
compile for GPU architecture and icc for the Intel MIC architecture.

4.2.3 Required mathematical libraries

NNMFPack needs an implementation of BLAS and LAPACK linear algebra libraries in-
stalled in the system in order to work. By default, it uses the system implementation
of the libraries, which may come from the package manager itself or from the ATLAS
software (recommended). When using GPU, the library needs cuBLAS and MAGMA
libraries and when using Intel MIC, the Intel Math Kernel library is required too. NN-
MFPack supports MKL for CPU computations too. The user should configure which
implementation to use during the installation process.
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4.2.4 Other technologies

Another interesting point from the usability part of the library is the integration with
MATLAB/Octave through MEX interfaces. With these interfaces, developers that are
used to work with MATLAB/Octave can benefit from the performance of the library
without the need of learning to program in C language.

4.3 Implemented algorithms

The main algorithm currently available in the library is the multiplicative β -divergence
algorithm (see Section 2.4.3). The main function prototype is as follows:

i n t <p>bdiv_ <ARCH>( c o n s t i n t m, c o n s t i n t n , c o n s t i n t k ,
c o n s t double ∗A, double ∗W, double ∗H,
c o n s t double be ta , c o n s t i n t uType ,
c o n s t i n t n I t e r ) ;

where < p > represents the floating point precision (s for single precision or d for double
precision) and < ARCH > corresponds to the target architecture (cpu, gpu or mic).

The input parameters of the function are detailed bellow:

• m: Rows of matrix A.

• n: Columns of matrix A.

• k: Number of columns of matrix W and number of rows of matrix H.

• A: Contains the original matrix to factorize of size m×n.

• W : Contains the W0 initialization matrix of size m× k.

• H: Contains the H0 initialization matrix of size k×n.

• beta: States which β -divergence to use.

• uType: Type of update. There are three update types available: UpdateAll which
performs a complete NMF, UpdateW which only updates matrix W and UpdateH
which only updates matrix H.

• nIter: Number of iterations to perform.

On output, matrices W and H contain the solution of the decomposition.
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The mex interface for MATLAB/Octave follows a similar convention:

[W,H]= mex_bdiv <ARCH>(A, W0, H0 , beta , uType , n I t e r ) ;

There are only two differences on the parameters. The first one is that the matrix sizes
are not necessary in MATLAB/Octave. The other one is that matrices W0 ∈ Rm×k and
H0 ∈ Rk×n are the initialization matrices while W ∈ Rm×k and H ∈ Rk×n contain the
solution of the decomposition on exit.

As explained in Section 2.4.3 some β parameter values correspond to different known
divergences, for example, the Frobenius norm with β = 2 and the Kullback-Leibler diver-
gence with β = 1. For these cases, which are the most used, using a dedicated algorithm
is more efficient than using the general β -divergence algorithm. That is why the library
contains an efficient version of the mlsa algorithm (see Section 2.4.1) for the β = 2 case
and an specific algorithm simplified from the general version for the β = 1 case. Inter-
nally, the library chooses which algorithm to use based on the β parameter selected by
the user to achieve the best performance.
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Chapter 5

Updating the solution of
Nonnegative least squares problems

5.1 Introduction

While there are efficient algorithms for solving the NNLS problem introduced in Section
2.1, little attention has been paid to the problem of updating solutions of NNLS prob-
lems. There are well known solutions in the case of unconstrained Linear Least Squares
problem (LSP), as can be seen, for example, in [2], where the updating of the QR de-
composition is studied as a tool which allows the LSP to be efficiently solved for special
cases where the coefficient matrix changes slightly.

The main objective of the work presented in this chapter, is to obtain efficient algorithms
to solve the problem of updating a solution of the NNLS problem. In other words, given a
matrix A ∈ℜm×n and a vector b ∈ℜm, and assuming we know the solution of the NNLS
problem for this case (w∈ℜn

+,w = NNLS(A,b)), find the solution of the NNLS problem
for another matrix Â (and sometimes for a new vector b̂), x = NNLS(Â, b̂), which is
obtained from A in a simple way, for example, by adding a row or column, or deleting
a row or column. Obviously, it is always possible to compute the NNLS solution x =
NNLS(Â, b̂) by tackling the problem from scratch, regardless of the information provided
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by the NNLS solution w of the problem (A,b). However, the use of this information can
decrease the computational cost of the solution of the new problem.

In the case of the updating of the QR decomposition, which can be used to solve the
unconstrained least squares problem, the use of techniques that leverage the information
about the initial problem allows the computational cost to be decreased by an order of
magnitude. The cost decreases from O(n3) if the QR decomposition of Â is done from
scratch, to O(n2) if the information on the QR decomposition of A is used (e.g. see [2]
Chap.6).

The abilities of the BPP algorithm, presented in section 2.3.1, to exchange multiple in-
dices between the two index sets (F and G) at each iteration and to initialize the index
sets to any index partition makes BPP algorithm suitable to be used as basic algorithm
in updating problems. For convenience of notation, a function called IterateNNLS has
been developed implementing the BPP algorithm. The function prototipe is as follows:

w = IterateNNLS(Â,b,x,y,F,G)

the user must provide an initial vector x ∈ℜn , with xi > 0, i = 1, . . . ,n, and initial index
sets F and G such that F∪G= {1,2, . . .n},F∩G= /0, and xF = argmin

z∈ℜ|F |
‖AF z−b‖2,xG =

0. Then y is computed as yG = AT
G(AF xF − b),yF = 0. Even though x and y can be

computed directly, it is more convenient to use them as input arguments.

It is easy to verify experimentally that the computational cost of principal pivoting algo-
rithms (and BPP in particular) depends directly on the number of exchanges of indices
between the sets F and G. (This will become clear when experimental results are pre-
sented).

The idea behind the update algorithms is relatively simple. If the initial sets F and G
are the optimal ones, the solution is obtained immediately. If the sets F and G are not
optimal but are close to the optimal ones, then the optimal sets will be obtained in a few
iterations. If the initial sets are very different from the optimal ones, then the algorithm
must carry out a large number of index exchanges, thereby increasing the computational
cost.

The fundamental idea in all cases is to use the vector w as an initial guess for the solution
of the NNLS(Â,b) problem in order to generate the initial sets F and G. Since the new
problem is close to the original one, the optimal sets for the new problem are expected
to be similar to the optimal sets of the original problem. Therefore, the number of ex-
changes needed should be small. Please note that the improvement of performance of the
updating algorithms proposed, compared with solving the problems from scratch, can-
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not be theoretically guaranteed. However, it will be empirically shown that the updating
algorithms are indeed faster in most cases.

In sections 5.2, 5.3 and 5.4 we define more precisely different possible updates and solu-
tions for column modifications, row modifications and low-rank modifications.

5.2 Column modifications of NNLS.

5.2.1 Appending a column.

The simplest case is to append a new column to the coefficient matrix; more precisely,
the problem is stated as:

Case 1. Given A ∈ℜm×n, b ∈ℜm, v ∈ℜm, and w ∈ℜn
+, such that w = NNLS(A,b), find

a vector x ∈ℜ
(n+1)
+ such that x = NNLS(Â,b), with Â = [A v].

Since the vector w is the solution to the NNLS(A,b) problem, it must verify the KKT
conditions (2.4) for this case, i.e., w > 0,y = AT (Aw−b)> 0,wiyi = 0,∀i. To solve the
NNLS(Â,b) problem, let us define F as the set of those indices i such that wi > 0 and
take x = [w;0] as initial solution.

Note that

ŷ = ÂT (Âx−b) =
[

AT

vT

]
(
[

A v
][ w

0

]
−b) = (5.1)[

AT

vT

]
(Aw−b) =

[
y

vT (Aw−b)

]

Besides, [
w
0

]
= argmin

z∈ℜ|F |
‖[A v]F z−b‖2 = argmin

z∈ℜ|F |
‖AF z−b‖2

Since w and y meet the conditions w > 0,y = AT (Aw− b) > 0,wiyi = 0, for all i, the
pair (x, ŷ) is a solution of NNLS(Â,b) if vT (Aw− b) is greater than or equal to zero
(x > 0, ŷ > 0,xiŷi = 0 for all i).

However, if vT (Aw− b) < 0, the pair (x, ŷ) is not a solution for NNLS(Â,b) and new
iterations should be carried out to find the solution for NNLS(Â,b). These ideas are
summarized in the following algorithm:
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Algorithm 12 Appending a column

1: Input: A,b,v,w such that w = NNLS(A,b)
2: Output: x = NNLS([A v],b)
3: x = [w;0];
4: b̂ = Aw−b;
5: α = vT b̂;
6: if α < 0 then
7: F = {i : xi > 0};G = {1,2, · · · ,n+1}−F ; ŷ = [AT b̂;α];Â = [A v];
8: x = IterateNNLS(Â,b,x, ŷ,F,G);
9: end if

If the new column must be added in an intermediate position between 1 and n, and not as
column n+1, it suffices to calculate the permutation P that reorders the columns of the
matrix [A v] as desired:

[A1,A2, ..,A j,v,A j+1, ..An] = [A v]P (5.2)

and solve the problem

argmin
x>0

‖[A1,A2, ..,A j,v,A j+1, ..An]PT Px−b‖= argmin
x̂>0

‖[A v]x̂−b‖, (5.3)

to obtain the solution of the initial problem as x = PT x̂.

5.2.2 Appending a block of columns.

The ideas of the previous section can be easily extended to the case when a column block
must be added.

Case 2. Given A ∈ℜm×n, b ∈ℜm, V ∈ℜm×r, and w ∈ℜn
+, such that w = NNLS(A,b),

find a vector x ∈ℜ
(n+r)
+ such that x = NNLS(Â,b), with Â = [A V ].

As in the case where a single column must be added, the vector w is the solution to
the NNLS(A,b) problem. Therefore the KKT conditions must be verified for this case,
w > 0,y = AT (Aw−b)> 0,wiyi = 0, for all i.

To solve the NNLS(Â,b) problem, let us define now F = {i : wi > 0} and take x =[
w;0;

r· · ·;0
]
∈ℜn+r as initial solution. Note that
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ŷ = ÂT (Âx−b) = [A V ]T ([A V ][w;0;
r· · ·;0]−b) = (5.4)[

AT (Aw−b)
V T (Aw−b)

]
=

[
y

V T (Aw−b)

]
.

Besides, 
w
0
...
0

= argmin
z∈ℜ|F |

‖[A V ]F z−b‖2 = argmin
z∈ℜ|F |

‖AF z−b‖2

Since w and y meet the conditions w > 0,y = AT (Aw− b) > 0,wiyi = 0, for all i, the
pair (x, ŷ) is a solution to NNLS(Â,b) if V T (Aw− b) is greater than or equal to zero
(x > 0, ŷ > 0,xiŷi = 0, for all i).

However, if a component of vector V T (Aw−b) is smaller than 0, the pair (x, ŷ) is not a so-
lution to NNLS(Â,b) and some iterations of the algorithm IterateNNLS(Â,b ,x, ŷ,F,G)
must be applied to find the solution. This gives the following algorithm:

Algorithm 13 Appending a block of columns

1: Input: A,b,V,w such that w = NNLS(A,b)
2: Output: x = NNLS([A V ],b)

3: x =
[
w;0;

r· · ·;0
]
;

4: b̂ = Aw−b;
5: aux =V T b̂;
6: if auxi < 0 for some i, 1 6 i 6 r then
7: F = {i : xi > 0}; G = {1,2, · · · ,n+ r}−F ; ŷ = [AT b̂;aux]; Â = [A V ];
8: x = IterateNNLS(Â,b,x, ŷ,F,G);
9: end if

5.2.3 Deleting a column.

Case 3. Given A∈ℜm×n, b∈ℜm, and w∈ℜn
+, such that w = NNLS(A,b), find a vector

x ∈ℜ
(n−1)
+ such that x = NNLS(Â,b), with Â = A(:,1 : n−1).
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Chapter 5. Updating the solution of Nonnegative least squares problems

Let us construct the vectors x = w(1 : n− 1) and ŷ = ÂT (Âx− b). Note that if wn = 0,
then ŷ = y(1 : n−1) and the set F corresponding to w would be the same than the set F
corresponding to x (xF = wF ), thus the pair (x, ŷ) satisfies the KKT conditions and would
be the solution of the problem.

Otherwise, it is sufficient to take F = {i : xi > 0}, G = {1,2, · · · ,n− 1} − F , xF =
argmin
z∈ℜ|F |

‖ÂF z−b‖2, ŷG = ÂT
G(ÂF xF −b), xG = 0,yF = 0, iterating afterwards if the KKT

conditions are not verified for the pair x,y. The algorithm is summarized below:

Algorithm 14 Deleting a column

1: Input: A,b,w such that w = NNLS(A,b)
2: Output: x = NNLS(A(:,1 : n−1),b)
3: x = w(1 : n−1);
4: if wn 6= 0 then
5: Â = A(:,1 : n−1);
6: F = {i : xi > 0}; G = {1,2, · · · ,n−1}−F ;
7: xF = argmin

z∈ℜ|F |
‖ÂF z−b‖2; xG = 0; ŷG = ÂT

G(ÂF xF −b); ŷF = 0;

8: if ŷi < 0, for some i ∈ G or xi < 0, for some i ∈ F then
9: x = IterateNNLS(Â,b,x, ŷ,F,G);

10: end if
11: end if

If the column to be deleted is in an intermediate position j , 1 ≤ j < n (i.e., not the last
column) it is enough to calculate the permutation P which reorders the columns of the
matrix [A1,A2, ...,An] into the desired order:

Â = [A1,A2, ..,A j−1,An,A j+1, ..A j] = AP (5.5)

and solve the problem
argmin

x>0
‖APPT x−b‖= argmin

x̂>0
‖Âx̂−b‖ (5.6)

to obtain the solution of the original problem as x = Px̂.
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5.2.4 Deleting a block of columns.

Case 4. Given A∈ℜm×n, b∈ℜm, and w∈ℜn
+, such that w = NNLS(A,b), find a vector

x ∈ℜ
(n−r)×1
+ such that x = NNLS(Â,b), with Â = A(:,1 : n− r).

In this case, it is enough to take F = {1 <= i < n− r : xi > 0}, G = {1,2, · · · ,n− r}−F ,
xF = argmin

z∈ℜ|F |
‖ÂF z− b‖2; xG = 0; ŷG = ÂT

G(ÂF xF − b); ŷF = 0, iterating afterwards if

the KKT conditions for the x chosen and for the complementary vector y = ÂT (Âx−b)
are not verified. Note that if w(n− r + 1 : n) = 0, the iteration stage can be avoided.
Therefore, the following algorithm is obtained:

Algorithm 15 Deleting a block of columns

1: Input: A,b,w such that w = NNLS(A,b)
2: Output: x = NNLS(A(:,1 : n− r),b)
3: x = w(1 : n− r);
4: if w j 6= 0 for some j ∈ [n− r+1,n+ r+2, · · · ,n] then
5: Â = A(:,1 : n− r);
6: F = {i : xi > 0}; G = {1,2, · · · ,n− r}−F ;
7: xF = argmin

z∈ℜ|F |
‖ÂF z−b‖2; xG = 0; ŷG = ÂT

G(ÂF xF −b), ŷF = 0;

8: if ŷi < 0, for some i ∈ G or xi < 0, for some i ∈ F then
9: x = IterateNNLS(Â,b,x, ŷ,F,G);

10: end if
11: end if

5.3 Row modifications of NNLS.

5.3.1 Appending a row.

Case 5. Given A∈ℜm×n, b∈ℜm, v∈ℜn, t ∈ℜ and w∈ℜn
+, such that w=NNLS(A,b),

find a vector x ∈ℜn
+ such that x = NNLS(Â, b̂), with Â = [A; vT ] and b̂ = [b; t].

Note that the pair (x,y), with y = AT (Ax− b) and x = w, fulfils the KKT conditions.
Constructing the new complementary vector ŷ = ÂT (Âx− b̂):
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ŷ =
[

AT v
]
(

[
A
vT

]
x−
[

b
t

]
) (5.7)

= AT (Ax−b)+(vT x− t)v = y+ z,

with z = (vT x− t)v.

If the new pair (x, ŷ) verifies the KKT conditions, then x is the solution of the NNLS(Â, b̂)
problem. Given the sets F = {i : xi > 0} and G = {1, . . . ,n}−F , let us construct the
components of ŷ in G: ŷG = AT

G(AF xF −b)+ vG(vF xF −B) = yG + zG. If yi + zi < 0 for
some i∈G, a new stage of iteration must be carried out with initial values x, F = {i : xi >
0}; G = {1, · · · ,n}−F ; ŷ = yG + zG. The following algorithm summarizes these ideas.

Algorithm 16 Appending a row

1: Input: A,b,w,v, t such that w = NNLS(A,b)
2: Output: x = NNLS([A;vT ], [b; t])
3: x = w; z = (vT x− t)v; y = AT (Ax−b);
4: if zi + yi < 0, for some i OR xizi 6= 0 for some i then
5: Â = [A; vT ] ; b̂ = [b; t];
6: ŷ = y+ z; F = {i : xi > 0}; G = {1, · · · ,n}−F ;
7: x = IterateNNLS(Â, b̂,x, ŷ,F,G);
8: end if

Note that this algorithm also solves the problem x=NNLS(Â, b̂), with Â= [A(1 : j−1, :);
vT ;A( j : m, :)] and b̂ = [b(1 : j−1); t;b( j : m)]. This is the case in which the row must
be appended in an intermediate position and not at the bottom of the matrix. Indeed, if P
is the permutation matrix such that

P[A(1 : j−1, :);vT ;A( j : m, :)] = [A;vT ];
P[b(1 : j−1); t;b( j : m)] = [b; t],

then the following holds:
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min
x>0
‖[A(1 : j−1, :);vT ;A( j : m, :)]x− [b(1 : j−1); t;b( j : m)]‖= (5.8)

min
x>0
‖P[A(1 : j−1, :);vT ;A( j : m, :)]x−P[b(1 : j−1); t;b( j : m)]‖=

min
x>0
‖[A;vT ]x− [b; t]‖.

5.3.2 Appending a block of rows.

Applying the ideas of the previous section to the case in which a row block must be
added.

Case 6. Given A ∈ ℜm×n, b ∈ ℜm, V ∈ ℜn×r, t ∈ ℜr×1, and w ∈ ℜ
n×1
+ , such that w =

NNLS(A,b), find a vector x∈ℜn
+ such that x=NNLS(Â, b̂), with Â= [A; V T ] and b̂= [b;

t].

For this case, a vector z, which is similar to the previous one, must be calculated in the
form z =V (V T x− t).

If the new pair (x, ŷ) verifies the KKT conditions, then x is the solution of the NNLS(Â, b̂)
problem. Otherwise, a new stage of iteration is needed to find the solution.

Algorithm 17 Appending a block of rows

1: Input: A,b,w,V, t such that w = NNLS(A,b)
2: Output: x = NNLS([A;V T ], [b; t])
3: x = w; z =V (V T x− t);
4: y = AT (Ax−b);
5: if z+ yi < 0, for some i OR xizi 6= 0 for some i then
6: Â = [A; V T ] ; b̂ = [b; t];
7: ŷ = y+ z; F = {i : xi > 0}; G = {1, · · · ,n}−F ;
8: x = IterateNNLS(Â, b̂,x, ŷ,F,G);
9: end if
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5.3.3 Deleting a row

Case 7. Given A∈ℜm×n, b∈ℜm, and w∈ℜn
+, such that w = NNLS(A,b), find a vector

x ∈ℜn
+ such that x = NNLS(Â, b̂), with Â = A(1 : m−1, :) and b̂ = b(1 : m−1).

Let us choose x = w and observe that

y = AT (Ax−b) = ŷ+A(m, :)T (A(m, :)x−b(m)) (5.9)

with ŷ = ÂT (Âx− b̂). Hence, ŷ = y−A(m, :)T (A(m, :)x− b(m)).Therefore, if the pair
(x, ŷ) fulfills the KKT conditions, x = NNLS(Â, b̂). Otherwise, a new iteration stage is
needed to find the solution.

Algorithm 18 Deleting a row

1: Input: A,b,w such that w = NNLS(A,b)
2: Output: x = NNLS(A(1 : m−1, :),b(1 : m−1)
3: x = w; y = AT (Ax−b); α = (A(m, :)x−b(m));
4: Aux = αA(m, :)T ;
5: ŷ = y−Aux;
6: if ŷi < 0, for some i OR xiŷi 6= 0 for some i then
7: Â = A(1 : m−1, :); b̂ = b(1 : m−1);
8: F = {i : xi > 0}; G = {1, · · · ,n}−F ;
9: x = IterateNNLS(Â, b̂,x, ŷ,F,G);

10: end if

Note that, as in Case 5, this algorithm also solves the problem when the row to be elimi-
nated is in an intermediate position and not at the bottom of the matrix.

60



5.4 Adding low-rank matrices to NNLS.

5.3.4 Deleting a row block.

Case 8. Given A∈ℜm×n, b∈ℜm, and w∈ℜn
+, such that w = NNLS(A,b), find a vector

x ∈ℜn
+ such that x = NNLS(Â, b̂), with Â = A(1 : m− r, :) and b̂ = b(1 : m− r).

As in the previous case, if we choose x = w, then ŷ can be expressed as ŷ = y− z, with

y = AT (Ax−b);

z = A(m− r+1 : m, :)T (A(m− r+1 : m, :)x−b(m− r+1 : m)).

If the pair (x, ŷ) fulfills the KKT conditions, x = NNLS(Â, b̂). Otherwise, a new iteration
stage is needed to find the solution.

Algorithm 19 Deleting a row block

1: Input: A,b,w such that w = NNLS(A,b)
2: Output: x = NNLS(A(1 : m− r, :),b(1 : m− r))
3: x = w; y = AT (Ax−b);
4: Aux = A(m− r+1 : m, :)T ((A(m− r+1 : m, :)x−b(m− r+1 : m)));
5: ŷ = y−Aux;
6: if ŷi < 0, for some i OR xiŷi 6= 0 for some i then
7: Â = A(1 : m− r, :);b̂ = b(1 : m− r); F = {i : xi > 0};G = {1, · · · ,n}−F ;
8: x = IterateNNLS(Â, b̂,x, ŷ,F,G);
9: end if

5.4 Adding low-rank matrices to NNLS.

5.4.1 Adding a rank-one matrix.

Case 9. Given A ∈ ℜm×n, b ∈ ℜm, v ∈ ℜm, z ∈ ℜn, and w ∈ ℜn
+, such that w =

NNLS(A,b), find a vector x ∈ℜ
(n+1)
+ such that x = NNLS(Â,b), with Â = A+ vzT .

To deal with this case, let us choose x = w and construct ŷ = (A+vzT )T ((A+vzT )x−b).
It holds ŷ = AT (Ax−b)+(zT x)AT v +(vT (Ax−b)+(zT x)(vT v))z.
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Therefore ŷ = y+aux, with aux = γ(AT v)+δ z, and γ = zT x, δ = vT (Ax−b)+ γ(vT v).
If the pair (x, ŷ) fulfills the KKT conditions, x = NNLS(Â,b). Otherwise, a new iteration
stage is needed to find the solution. The following algorithm summarizes these ideas:

Algorithm 20 Adding a rank-one matrix

1: Input: A,b,v,z,w such that w = NNLS(A,b)
2: Output: x = NNLS(A+ vzT ,b)
3: x = w; c = (Ax−b); y = AT c;
4: γ = zT x;
5: δ = vT c+ γ(vT v);
6: Aux = γ(AT v)+δ z;
7: ŷ = y+Aux;
8: if ŷi < 0, for some i OR xiŷi 6= 0 for some i then
9: Â = A+ vzT ; F = {i : xi > 0};G = {1, · · · ,n}−F ;

10: x = IterateNNLS(Â,b,x, ŷ,F,G);
11: end if

5.4.2 Adding a low-rank matrix (rank > 1).

Case 10. Given A ∈ ℜm×n, b ∈ ℜm, V ∈ ℜm×r, Z ∈ ℜn×r, and w ∈ ℜn
+, such that w =

NNLS(A,b), find a vector x ∈ℜn
+ such that x = NNLS(Â,b), with Â = A+V ZT .

As in the previous case, let us choose x = w and construct ŷ = (A+V ZT )T ((A+V ZT )x−
b). It holds that ŷ = y+ aux with aux = AT p+ Z(V T (c+ p)) where c = Ax− b and
p = V (ZT x). If the pair (x, ŷ) fulfills the KKT conditions, x = NNLS(Â,b). Otherwise,
a new iteration stage is needed to find the solution. The following algorithm summarizes
these ideas:
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Algorithm 21 Adding a low-rank matrix

1: Input: A,b,V,Z,w such that w = NNLS(A,b)
2: Output: x = NNLS(A+V ZT ,b)
3: x = w;c = (Ax−b); y = AT c;
4: p =V (ZT x);
5: Aux = AT p+Z(V T (c+ p));
6: ŷ = y+Aux;
7: if ŷi < 0, for some i OR xiŷi 6= 0 for some i then
8: Â = A+V ZT ; F = {i : xi > 0};G = {1, · · · ,n}−F ;
9: x = IterateNNLS(Â,b,x, ŷ,F,G);

10: end if

5.5 Empirical analysis of the proposed algorithms

In this section, empirical evidence about the performance of the proposed algorithms is
offered. The experiments have been divided into two groups: single algorithms and block
algorithms. For each single updating algorithm, a row dimension m for matrix A with
values m = { 2000, 4000, 6000, 8000, 10000} and a number of columns n with values
n = {m/2,3m/4,m} have been chosen. On the other hand, for the block algorithms
a problem size of m = 10000 and n = 7500 has been established and the number of
columns (or rows) r removed (or added) has been incremented to see its effect in the
performance.

For each case, the execution time and the number of exchanges of indices between sets F
and G has been analysed, and a comparison between the solution of the NNLS problem
carried out from scratch and the updating approaches has been performed. The block al-
gorithms are extensions of their simpler versions that depend on the number r of columns
(or rows) added (or deleted), that is why the results are shown for a determined problem
size and relative to the parameter r.

The actual performance of the BPP algorithm for the NNLS problem depends on the
number of exchanges needed. Because of this, the execution time is strongly correlated
with the number of exchanges. A lower execution time is achieved with fewer exchanges
(see Section 5.5.1). The proposed algorithms focus on reducing the number of exchanges
by taking advantage of the initial problem solution in order to reduce the execution time.
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Each experimental value shown in this section is the average of 10 executions with dif-
ferent random instances. The random matrices have been generated using the rand com-
mand of MATLAB [65], that is, matrices with random numbers between 0 and 1 with a
uniform probability distribution. However, the results can change for any other type of
matrix. Therefore, these results should only be interpreted as just a hint of the perfor-
mance that the updating algorithms can obtain. All of the experiments were performed
using MATLAB R2016b in the machine described in Appendix A.2.

To evaluate the performance of the proposed algorithms, an implementation of the Block
Principal Pivoting algorithm developed by the author and its collaborators has been taken
as the basic reference. Therefore any other NNLS algorithm can be used to obtain the
basic reference solution.

The following routines have been developed and evaluated:

Case 1. Appending a column: NNLS_UP_C1.m (Algorithm 12)

Case 2. Appending a column block: NNLS_UP_Cr.m (Algorithm 13)

Case 3. Deleting a column: NNLS_DOWN_C1.m (Algorithm 14)

Case 4. Deleting a column block: NNLS_DOWN_Cr.m (Algorithm 15)

Case 5. Appending a row: NNLS_UP_R1.m (Algorithm 16)

Case 6. Appending a row block: NNLS_UP_Rr.m (Algorithm179)

Case 7. Deleting a row: NNLS_DOWN_R1.m (Algorithm 18)

Case 8. Deleting a row block: NNLS_DOWN_Rr.m (Algorithm 19)

Case 9. Adding a rank-one matrix: NNLS_UP_ro.m (Algorithm 20)

Case 10. Adding a low-rank matrix: NNLS_UP_lr.m (Algorithm 21)

Implementations in Matlab code of these routines can be found in the following GIT
repository: https://gitlab.com/P.SanJuan/UpdatingNNLS

First, Case 1 will be discussed. The conclusions in this case are the same as for Cases
2-8; therefore Cases 2-8 are discussed together. Finally, we will comment on Cases 9
and 10, which present some special features.
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5.5.1 Case 1

This case consists of updating the solution when one column is appended to the problem
matrix. In the first experiment shown in Table 5.1, there is a comparison of execution
times between our Matlab implementation of the BPP algorithm (NNLS BPP), and the
implementation of Algorithm 12 NNLS_UP_C1.m. The first algorithm computed the
solution of the extended problem from scratch, and Algorithm 12 computed the solu-
tion using the solution of the base problem as input data. As shown in Table 5.1 the
implementation NNLS_UP_C1.m outperforms the NNLS BPP algorithm for all matrix
sizes.

Table 5.1: Execution times (seconds) comparison when one column is appended to the problem
matrix.

NNLS BPP NNLS_UP_C1

Size m/2 3m/4 m m/2 3m/4 m

2000 0.5583 1.0566 1.6815 0.0211 0.0065 0.0053
4000 2.8797 5.0255 9.3407 0.0339 0.0079 0.0145
6000 8.7455 17.5797 35.6248 0.0606 0.0326 0.1749
8000 22.0365 45.6946 78.5715 0.1454 0.2273 0.2830
10000 36.5626 74.7961 135.8823 0.0266 0.0399 0.0412

As mentioned at the beginning of Section 5.5, the execution time is strongly correlated
with the number of exchanges performed by the algorithm. In Table 5.2, a comparison
between the number of exchanges executed in both algorithms shows that the updating
algorithm performs many fewer exchanges than the BPP algorithm. This fact explains
the large difference in execution times between those algorithms shown in Table 5.1.

Once the correlation between exchanges and execution times has been shown, the author
does not consider necessary to show the number of exchanges in the rest of the exper-
iments, because the execution times offer similar information. Some number of index
exchanges are lower than one because the results have been averaged from the 10 execu-
tions performed for each problem size and not all the problem sizes performed exchanges
to obtain the solution.

65



Chapter 5. Updating the solution of Nonnegative least squares problems

Table 5.2: Comparison of index exchanges when one column is appended to the problem matrix.

NNLS BPP NNLS_UP_C1

Size m/2 3m/4 m m/2 3m/4 m

2000 2.000e+03 3.290e+03 5.297e+03 7.000e-01 0.000e+00 1.000e-01
4000 4.049e+03 6.654e+03 1.066e+04 2.000e-01 0.000e+00 0.000e+00
6000 6.116e+03 9.969e+03 1.603e+04 4.000e-01 0.000e+00 3.000e-01
8000 8.181e+03 1.328e+04 2.142e+04 2.000e-01 1.000e-01 4.000e-01
10000 1.023e+04 1.662e+04 2.671e+04 0.000e+00 0.000e+00 0.000e+00

5.5.2 Cases 2-8

In Cases 2-8, the results are similar; in all of them except Case 4, the updating algorithm
is clearly faster than solving the modified problem from scratch. Case 4 does not show
any improvement by using the updating algorithm. The results for these cases are pre-
sented as follows: Case 2 in Figure 5.1; Case 3 in Table 5.3; Case 4 in Figure 5.2; Case
5 in Table 5.4; Case 6 in Figure 5.3; Case 7 in Table 5.5; and Case 8 in Figure 5.4.

When compared with the performance of solving the problem from scratch, the experi-
ments show that the performance of the block deletion algorithms (cases 4 and 8, Fig-
ures 5.2 and 5.4), may suffer if the size of the block (parameter r) becomes too large.
This is quite logical because, if r is too large, the sets F and G of the original problem
may be very different from the optimal ones. Furthermore, when many columns/rows
are deleted, the cost of solving the problem from scratch decreases. Figures 5.2 and
5.4 show that the updating algorithms are faster than NNLS BPP, when the number of
columns/rows to be deleted is small.
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Figure 5.1: Evolution of execution times (seconds) from appending a block of columns of size r with
a problem size of m=10000, n=7500.

Table 5.3: Comparison of execution times (seconds) when one column is deleted from the problem
matrix.

NNLS BPP NNLS_DOWN_C1.m

Size m/2 3m/4 m m/2 3m/4 m

2000 0.532 0.917 1.489 0.000 0.000 0.000
4000 2.168 4.101 7.910 0.000 0.000 0.105
6000 7.123 15.192 30.121 0.219 0.230 0.000
8000 18.464 36.837 69.731 0.000 0.000 0.000
10000 35.509 71.184 128.247 0.000 0.000 0.000
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Figure 5.2: Evolution of execution times (seconds) when deleting a block of columns of size r with a
problem size of m=10000, n=7500.

Table 5.4: Comparison of execution times (seconds) when one row is appended to the problem matrix.

NNLS BPP NNLS_UP_R1.m

Size m/2 3m/4 m m/2 3m/4 m

2000 0.543 0.936 1.493 0.044 0.052 0.060
4000 2.271 4.322 8.276 0.236 0.291 0.415
6000 7.276 16.056 30.440 0.391 0.544 0.687
8000 18.007 37.685 70.795 0.633 0.758 1.132
10000 34.645 74.845 131.440 0.816 1.074 1.491
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Figure 5.3: Evolution of execution times (seconds) when appending a block of rows of size r with a
problem size of m=10000, n=7500.

Table 5.5: Execution time comparison(seconds) when one row is deleted from the problem matrix.

NNLS BPP NNLS_DOWN_R1.m

Size m/2 3m/4 m m/2 3m/4 m

2000 0.551 0.944 1.487 0.047 0.048 0.058
4000 2.217 4.229 8.050 0.233 0.286 0.360
6000 7.243 15.962 30.649 0.377 0.558 0.654
8000 17.825 39.112 74.540 0.569 0.813 0.996
10000 34.498 72.285 134.046 0.805 1.293 1.757
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Figure 5.4: Evolution of execution times (seconds) when deleting a block of rows of size r with a
problem size of m=10000, n=7500.

5.5.3 Cases 9-10

The cases of adding a rank-one/low-rank matrix to the original problem matrix have been
included for reasons of completeness. However, these two algorithms seem to be more
sensitive to the data in the target problem. When the matrices are generated using random
numbers between 0 and 1, the performance of these algorithms is poor. Here some results
where the random numbers of the matrix A and vector b are in the interval [0, 100] and
the numbers of the added matrix in the interval [0,1] are presented. Table 5.6 shows
the results for the rank-one case. In the low-rank case shown in Table 5.7, m/50 was
used as the second dimension of vectors V and Z to make the rank of the added matrix
proportional to the problem size.
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Table 5.6: Comparison of execution times (seconds) when a rank-one matrix is appended to the
problem matrix.

NNLS BPP NNLS_UP_ro.m

Size m/2 3m/4 m m/2 3m/4 m

2000 0.540 0.910 1.230 0.031 0.043 0.052
4000 2.224 4.184 4.965 0.173 0.257 0.353
6000 7.134 15.873 15.596 0.311 0.415 0.551
8000 18.053 40.504 43.683 0.482 0.660 0.854
10000 35.818 74.228 75.785 0.712 1.209 1.238

Table 5.7: Comparison of execution times (seconds) when a low-rank matrix is appended to the
problem matrix.

NNLS BPP NNLS_UP_lr.m

Size m/2 3m/4 m m/2 3m/4 m

2000 0.540 0.961 1.243 0.053 0.061 0.076
4000 2.186 4.273 5.059 0.303 0.402 0.527
6000 7.086 15.667 15.809 0.529 0.723 0.886
8000 17.948 37.456 39.695 0.855 1.192 1.550
10000 36.500 74.066 83.306 1.054 1.628 2.238

5.6 Conclusion

The algorithms proposed in this paper allow for a faster solution of NNLS problems in
a number of possible situations, where the problem to be solved is a slight modification
of a NNLS problem that has already been solved. The efficiency of these algorithms
has been compared for randomly generated matrices. Obviously, the relative efficiency
may change in other problems, where the coefficient matrices have different properties.
However, given that the idea behind these algorithms is simple and sound (i.e., if the
modification of the problem is small, the sets of indices F and G of the original and of
the modified problem should be similar), then the updating algorithms proposed should
be reasonably efficient for any case.
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Chapter 6

Updating the Non-negative matrix
factorization

6.1 Introduction

There are situations where the matrix whose NMF is needed, changes slightly but very
often. As an example, this may happen in real time Automatic Music Transcription (a
technique that obtains the music score of a piece that is being played) or in real time
automatic source separation. The different notes in the incoming sound recordings can
be detected through a NMF factorization, and the data matrix receives new data items
(sound recordings in a concrete time) very fast.

If the NMF is recomputed from scratch after each new data item is received, the com-
putational cost becomes excessive. On the other hand, since new data items are being
added, the data matrix grows with time (and so does the cost of any computation as-
sociated with the matrix). Therefore, it makes sense that the oldest data items may be
discarded, so that the computational cost remains under control.
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This example shows the need of studying two problems related to NMF: the updating of
the NMF (recalculating the NMF when a new column or row is added to the data matrix)
and the downdating of the NMF (recalculating the NMF when a column or row of the
data matrix is discarded). This work is focused on dense matrices.

The idea of updating numerical factorizations is not new; indeed, the different updatings
of the QR factorization [2] are routinely used in many fields, most often in Signal Pro-
cessing. There are also other factorizations whose update has been proposed and studied.
However, the study of the update of the NMF was proposed first in [82] and extended in
[83]. This work will be presented in the current Chapter.

The most popular method to compute the NMF is the Multiplicative Algorithm of Lee
& Seung [23, 84, 85, 86]. This algorithm has many advantages: its simplicity, it is
easily parallelizable and there are many implementations readily available (there is an
implementation in MATLAB [65]). However, there are other algorithms for this prob-
lem, mainly based on the Alternating Least Squares technique (ALS). There are several
variations of the ALS technique [35, 87]. One of the most successful seems to be the
Hierarchical Alternating Least Squares method (HALS), proposed in [85, 86, 43], and
more precisely, the fast HALS (fHALS) implementation proposed in the Algorithm 2 of
[43]. This method obtains an important reduction of the factorization error, with a small
computational cost. In [44] a modification of HALS method, denoted Greedy Coordinate
Descent (GCD) is presented. GCD method is based on a variable selection scheme that
uses the gradient of the objective function to arrive at a new coordinate descent method.
In this work the fHALS method and the GCD method are used in the experiments. These
methods can be combined to construct some updating algorithms.

6.2 Description of the NMF updating problem

The first problem to solve is the updating of the NMF. Given two matrices W ∈Rm×k
+ and

H ∈ Rk×n
+ which are a solution for the NMF problem A ≈WH, and a new column b ∈

Rm×1
+ , the updating needs to compute two new matrices W1 ∈ Rm×k

+ and H1 ∈ Rk×(n+1)
+

which are a solution for the following NMF problem:

V = [A b]≈W1H1 (6.1)

Note that Matlab notation [88] will be used throughout this chapter to describe matrices.

This problem can be solved from scratch factorizing matrix V , but the proposed algo-
rithms take advantage of the knowledge of W and H (such that A≈WH) to solve problem
(6.1) with a lower computational cost, and thus in less execution time.
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A generalization of this problem can be obtained adding, instead of a single column, a
group of new data columns B ∈ Rm×r

+ where r is the number of new columns. The block
problem can be rewritten as:

V = [A B]≈W1H1 (6.2)

The second problem is the downdating of the NMF. For that, the following problem needs
to be solved:

V2 = A(:,r+1 : n)≈W2H2 (6.3)

where V2 ∈ Rm×(n−r)
+ , W2 ∈ Rm×k

+ and H2 ∈ Rk×(n−r)
+ . Again, this problem can be ad-

dressed without the need to compute the NMF of V2 from scratch.

Both problems are presented in terms of adding and removing columns because is the
most natural form of update. The problem of adding/deleting rows can be addressed
with the same techniques, just by transposing the data matrix.

A natural extension of this problem happens when new columns are added and old
columns are removed from the data matrix; from now on named "window" problem.
This problem needs an update and a downdate, but both operations can be processed at
the same time to save computational resources.

6.3 Algorithmic approach

The main idea behind the different update algorithms is to process the resultant matrices
of the initial factorization and then use these matrices as initialization of a low iteration
factorization. These algorithms aim to obtain the minimum error with the lowest com-
putational cost. Thus, two stages can be established in every updating algorithm. In a
first preprocessing stage some operations are carried out on the W and H input matrices.
Then, a few iterations of a base algorithm are performed to compute the new factoriza-
tion in the postprocessing stage. There are several options to perform both stages. Some
possibilities are analysed in Section 6.4.

As stated in the introduction, there are several algorithms to compute the NMF. In this
section a modified version of the multiplicative Lee & Seung algorithm (from now on
MLSA), the fast HALS algorithm and the GCD algorithm are compared by analysing
the theoretical costs of all three algorithms.
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The MLSA has a cost of 4mnk+ 4k2(m+ n) flops per iteration, and fHALS algorithm
has a cost of 4mnk + 4k2(m + n) +O(k(m + k)) flops per iteration. These costs are
theoretically calculated from the implementations found in equations (4) and (5) from
[23] and Algorithm 2 in [43] respectively. A similar counting of flops can be found
in [87]. Despite the fact that fHALS has a greater cost per iteration, it has a faster
convergence than MLSA. In comparison, 10 iterations of fHALS algorithm obtain lower
error than 100 iterations of MLSA. That is why fHALS is much faster that MLSA in
practice.

However, MLSA remains one of the most widely used algorithms in many applications,
for example in the field of music processing. See references [26, 27, 28, 89].

A similar cost in terms of superior order, can be found in [44] for GCD Algorithm, al-
though it uses a different strategy. fHALS conducts a cyclic coordinate descent, and it
first updates all variables in W in a cyclic order, and then updates variables in H, and
so on. Thus, the number of updates performed for each variable is exactly the same.
However in GCD, variables are updated with a frequency proportional to their impor-
tance, choosing to update the coordinate that can reduce more significantly the objective
function value. A convenient election of stop criterion can decrease the number of times
(denoted as inner iterations) that the updating of variables is carried out [44]. Thus, GCD
algorithm has a cost of 4mnk+4k2(m+n)+O(kt) flops per iteration, where t represents
the average number of inner updates.

All algorithms exposed in the previous paragraph (and several more) are suitable to be
used in both stages of the proposed methods. For example, MLSA algorithm was used
as base algorithm in [82]. fHALS algorithm has a faster convergence, for this reason,
in this Chapter we use the fHALS algorithm as base algorithm. However, GCD method
will be used in the preprocessing stage.

The convergence of the updating algorithms presented in this Chapter is a direct conse-
quence of the convergence of the base algorithms, that is proved in [23] for MLSA, in
[85] for fHALS algorithm and in [44] for GCD algorithm.

All algorithms presented contain parts that could be implemented efficiently on multicore
computers using high performance libraries or parallel multithread programming envi-
ronments. In particular, the most costly operations in these algorithms are matrix-matrix
products, easily parallelizable using, for example, a threaded LAPACK implementation.
In addition, implementations of block algorithms are also presented whose runtime can
be decreased by using parallel programming techniques( e.g. the OpenMP programming
environment).
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6.4 Proposed solutions

In the experiments, the initial factorization was computed using the fHALS algorithm
with 10 iterations over matrix A. This algorithm prototype is

[W,H] = f HALS(M,k,maxIters,W0,H0)

where M is the matrix to factorize, k is the inner dimension of the factorization, maxIters
is the number of iterations to be computed and W0,H0 are the initialization matrices.

At the postprocessing stage, 2 iterations of fHALS were executed because it is the mini-
mum number of iterations to get a better error than the initial 10 iteration factorization.

The base problem against which we compare our solutions, is the factorization of V
(or V2) using the fHALS algorithm with 10 iterations too and the solution of the initial
factorization as initialization matrices (W0 = W , H0 = H). The cost of one iteration
of fHALS algorithm shown in section 6.3 will be referred to as cIterHals, so the base
factorizations will have a cost of 10∗ cIterHals.

6.4.1 Updating problem

Four algorithms to solve the updating problem are proposed in this Section:

1. rand fHALS: The first approach is to add a randomly generated column to matrix H
and use that new matrix H0 = [H x] (x∈Rk

+) as initialization matrix of a 2 iteration
fHALS of V . The cost of this method is 2∗ cIterHals which is clearly lower than
the cost of the base factorization. If we discard the cost of generating the random
columns, the block version of this algorithm (H0 = [H X ] (X ∈ Rk×r

+ )) keeps the
same cost, depending only on the size of the column block r.

Algorithm 22 Update rand fHALS

1: X = rand(k,r)
2: [W1,H1] = f HALS(V,k,2,W, [H X ])

2. LSQ fHALS: The second algorithm seeks to start the fHALS iterations with a
better initial approximation for the new column added to H. So, instead of using a
random column, we obtain the new column x as the solution of an unconstrained
Linear Least squares problem, where in order to preserve the non-negativity, the
negative components of x are set to zero:
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x = max(0, argmin
x∈Rk

‖Wx−b‖2). (6.4)

Then it uses H0 = [H x] and W as initialization matrices of a 2 iteration fHALS
of V . The cost of this algorithm is 2k2(m− k/3)+ k2 +2 ∗ cIterHals flops which
is the highest of the proposed algorithms but still lower than the base cost of 10 ∗
cIterHals.

Algorithm 23 Update LSQ fHALS

1: [Q,R] = qr(W ) . Economy size QR
2: c = Q′ ∗b
3: x = R(1 : k,1 : k)\c(1 : k) . Solve a triangular system of linear equations
4: [W1,H1] = f HALS(V,k,2,W, [H x])

3. Block LSQ fHALS: The third algorithm solves problem (6.2). This algorithm is
useful when more than one column is available in each update. The cost of this
algorithm is 2(k+ r)2(m− k/3)+ rk2 +2∗ cIterHals which is more efficient than
doing the updates one by one. But the main advantage of this algorithm is that
the solving of the system of linear equations with multiple right had sides (line
3) and its previous matrix-matrix product (line 2) can be computed in parallel.
Solving this in parallel, the time needed to compute the LSQ part of the algorithm
decreases, in a ideal scenario, to the time needed to compute the LSQ for a single
column.

Algorithm 24 Update Block LSQ fHALS

1: [Q,R] = qr(W )
2: C = Q′ ∗B
3: X = R(1 : k,1 : k)\C(1 : k, :) . Solve a triangular system of linear equations with

multiple right hand sides
4: [W1,H1] = f HALS(V,k,2,W, [H X ])

4. GCD fHALS: In this case, GCD algorithm is used in the preprocessing stage, only
over one column of H without updating W. Then, 2 iterations of fHALS are per-
formed in post processing stage. The GCD algorithm is very efficient when used on
a single column of the matrix H, because it gets the maximum possible reduction
in the objective function with few iterations.
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In this case, the cost of preprocessing is 2k2n+2mnk+O(kt) flops, where t repre-
sents the average number of inner updates on matrix H. Hence, the total cost of the
algorithm will be 2k2n+2mnk+O(kt)+2∗cIterHals. Note that B ∈Rm×r

+ , when
r > 1 the algorithm performs one GCD iteration for each new column added.

Algorithm 25 Update GCD fHALS

1: Hg = upGCD(V,k,B,W,H)
2: [W1,H1] = f HALS(V,k,2,W,Hg)

All these algorithms can be easily modified to admit the addition of the column or group
of columns not only at the right side of the matrix, but also at any position in the matrix.

6.4.2 Downdating problem

Following the same conventions of the updating problem, 2 iterations of the fHALS
algorithm are computed for V2 (6.3) using W and H(:,r+1 : n) as initialization matrices.
This approach has a cost of 2∗ cIterHals.

This algorithm can be easily modified to admit the removal of the column or group of
columns not only at the left side of the matrix, but also at any position in the matrix.

6.4.3 Window problem

As stated in the introduction, the main use of the downdating problem is to keep the
problem size fixed as we increase the initial problem with new columns. Solving an
updating and then a downdating is a waste of computational resources, since both can
be done at the same time. We named window NMF to the combination of both updating
and downdating in one problem:

V3 = [A(:,r+1 : n) B]≈W3H3 (6.5)

where V3 ∈ Rm×n
+ , B ∈ Rm×r

+ ,W3 ∈ Rm×k
+ and H3 ∈ Rk×n

+ .

Combining the downdating with each updating approach four algorithms are obtained:

1. Window rand fHALS: In this algorithm the initialization matrices for the V3 fHALS
iteration are W and H0 = [H(:,r+ 1 : n) X ] where X ∈ Rk×r

+ is a set of randomly
generated columns. The cost of this algorithm is 2∗ cIterHals, the same cost of a
single downdate or update.
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2. Window LSQ fHALS: In this algorithm the initialization matrices are W and H0 =
[H(:,r+1 : n) x] where x ∈ Rk

+ is the solution of the LSQ problem. Here we keep
the same cost of second update algorithm, avoiding again the cost of the downdate.

3. Window Block LSQ fHALS: Same as in the update case, if more than one column
is added we use the Block LSQ algorithm to compute X =W\B. So the initializa-
tion matrices for this case are W and H0 = [H(:,r+1 : n) X ] where X ∈ Rk×r

+ .

4. Window Block GCD fHALS: In this algorithm we use the matrix Hg(:,r+ 1 : n)
as initialization matrix, where Hg is the result of our GCD preprocesing algorithm.

To sum up, in Table 6.1 and Table 6.2 the theoretical costs of the algorithms presented in
this section are shown.

Table 6.1: Theoretical cost summary (flops)

Algorithm 1 column
cIterHals update 4mnk+4k2(m+n)+O(k(m+n))
update form scratch 10∗ cIterHalsU p
update rand fHALS 2∗ cIterHalsU p
update LSQ fHALS 2k2(m− k/3)+ k2 +2∗ cIterHalsU p
cIterHals downdate 4m(n−1)k+4k2(m+(n−1))+O(k(m+(n−1)))
downdate from scratch 10∗ cIterHalsDown
downdate fHALS 2∗ cIterHalsDown

Table 6.2: Theoretical cost summary (flops)

Algorithm r columns
cIterHals update 4m(n+ r)k+4k2(m+n+ r)+O(k(m+n+ r)
update form scratch 10∗ cIterHalsU p
update rand fHALS 2∗ cIterHalsU p
update LSQ fHALS 2(k+ r)2(m− k/3)+ rk2 +2∗ cIterHalsU p
cIterHals downdate 4m(n− r)k+4k2(m+n− r)+O(k(m+n− r)
downdate from scratch 10∗ cIterHalsDown
downdate fHALS 2∗ cIterHalsDown
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6.5 Experimental analysis

In this section the results obtained from the experiments are shown and explained. Both
the error obtained and the computation time needed to solve each problem are compared.

In the experiments the following error measure was used:

Err = ‖WH−A‖F/
√

m∗n (6.6)

Regarding computational time, each algorithm was executed 10 times registering the
time needed to solve the problem. Then the times measured were averaged in order to
avoid outliers and obtain a more accurate measurement. Each execution was computed
with different initial matrices but the same initial matrices were used in all the algorithms
tested.

To evaluate the performance of the algorithms presented, two types of matrices were
used. One type of matrices correspond to a real case of Automatic Music Transcription.
The other matrices were generated using Algorithm 26, they are random matrices but
incorporating some relationship between data to simulate a more realistic behaviour.

Algorithm 26 Matrix generation

1: W = rand(m,k)
2: H = rand(k,n+ r)
3: V =WH +0.01∗ rand(m,n+ r)
4: A =V (:,1 : n)
5: B =V (:,n+1 : n+ r);

The specifications of the machine where the experiments were executed are described in
the Appendix A.2. The experiments were performed using MATLAB 2014b.

6.5.1 Updating experiments

The evaluation of algorithms related to NMF is never easy because the performance of
the algorithms depends strongly on the size of the matrices and, most importantly, on the
parameter k. For the evaluation of the updating problem with a single column, we have
chosen 4 experiments where the matrices have been generated using Algorithm 26, and
the size of the matrices and the parameter k grows proportionally. The chosen sets of
values of m, n, k are as follows: 1) (m=10000, n=4000, k=1000); 2) (m=20000, n=8000,
k=2000) ; 3) (m=30000, n=12000, k=3000); 4) (m=40000, n=12000, k=4000).
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The execution times of the base fHALS algorithm for a single column update are shown
in Table 6.3.

Table 6.3: Base execution times with r=1

Base times (s) 10000 20000 30000 40000
fHALS 21.772 295.646 1101.299 2967.827

We want to compare visually the execution times of the updating algorithm against those
of the base fHALS algorithm; however, since there are figures of very different magni-
tude, it is not appropriate to display them as raw data. Instead, we will present the results
as relative to the base fHALS execution times; that is, the execution times of the 4 experi-
ments displayed in Figure 6.1 have been divided by execution times of the corresponding
base fHALS experiment.

In Figure 6.1(a) we show the computation time needed to update the data matrix adding
one column, with the proposed algorithms and with the NMF from scratch. The errors
obtained in these experiments are shown in Table 6.4.
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Figure 6.1: Execution times of updating experiments with synthetic matrices relative to fHALS base
algorithm

Table 6.4: Approximation errors of updating algorithms with r=1

Algorithm Approximation errors
10000 20000 30000 40000

fHALS 2.488 6.102 10.562 15.722
update rand fHALS 2.459 6.053 10.509 15.651
update LSQ fHALS 2.450 6.032 10.473 15.599
update GCD fHALS 2.448 6.032 10.470 15.593
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It can be seen that the proposed algorithms require around 30% of the computational time
of the complete NMF, and rand fHALS (Alg. 22) is the fastest. Its simpler initialization
renders this algorithm faster, but also less accurate. The error of the proposed algorithms
is slightly lower than the error of the complete NMF and all proposed algorithms have
almost the same error.

The experiment was executed again adding 200 columns and using the Block LSQ
fHALS (Alg. 24). Execution times and errors are shown in Figure 6.1(b) and Table
6.6. The execution times of the base fHALS algorithm for a 200 columns block update
are shown in Table 6.5.

Table 6.5: Base execution times with r=200

Base times (s) 10000 20000 30000 40000
fHALS 22.440 310.253 1127.891 3020.869

Table 6.6: Approximation errors of updating algorithms with r=200

Algorithm Approximation errors
10000 20000 30000 40000

fHALS 2.497 6.111 10.563 15.730
update rand fHALS 3.601 8.863 15.357 22.895
update LSQ fHALS 2.464 6.060 10.480 15.611
update GCD fHALS 2.695 6.429 11.229 16.689

As shown in the figures, in this experiment computation times keep the same ratio as
in the experiment with one column, but the error measures indicate that rand fHALS
algorithm (Alg. 22) offers greater errors than the full factorization that grow with the
problem size and the block size. The GCD fHALS algorithm (Alg. 25) keeps showing a
higher performance than the LSQ fHALS algorithm (Alg. 23) but now its error is greater
than the base fHALS algorithm error.

An interesting experiment is to test empirically what is the difference between single
column updates and block updates. In this experiment we added 2000 columns to the
initial matrix (m = 10000, n = 4000 and k=1000). In one case we updated the initial
matrix column by column using the LSQ fHALS algorithm (Alg. 23) and in the other
case we updated the initial matrix in groups of 200 columns using the Block LSQ fHALS
algorithm (Alg. 24).

Results in Table 6.7 show that block updates are much faster than single column updates.
But due to the single column updates involves more fHALS iterations, it achieves a
smaller error.
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Table 6.7: Comparison of single column update and block updates

Algorithm Time (s) Error
single column update 12371.793 0.781
block update 85.481 2.019

6.5.2 Downdating experiments

The first downdating experiment was to delete a column from the initial matrix and to
recompute the NMF, either by applying a full NMF or by applying the downdating algo-
rithm. The results are summarized in Table 6.8. Table 6.9 shows the results of a similar
experiment, where 200 columns are removed. The matrix dimensions maintain the same
evolution than in the update experiments.

Table 6.8: Execution time and approximation error of downdating algorithm with r=1

Algorithm 10000 20000 30000 40000

Times (s) fHALS 22.260 277.759 1085.258 2943.336
downdate fHALS 5.145 61.082 236.412 625.144

Error fHALS 12.479 6.101 10.551 15.720
downdate fHALS 2.443 6.040 10.457 15.598

Table 6.9: Execution time and approximation error of downdating algorithm with r=200

Algorithm 10000 20000 30000 40000

Times (s) fHALS 21.374 305.390 1122.552 2945.313
downdate fHALS 5.119 64.026 237.727 608.619

Error fHALS 2.493 6.111 10.561 15.724
downdate fHALS 2.459 6.040 10.465 15.591

As shown by the results, the proposed algorithm obtain a slightly lower error in a much
lower amount of time than the factorization from scratch.

6.5.3 Window experiments

To check the expected lower cost of the window algorithm, it was tested against an up-
date followed by a downdate. The results are shown in Table 6.10. Due to the difference
in fHALS iterations between both approaches, the window algorithm has a little bit more
error than the updating + downdating approach. But its notorious speed advantage com-
pensates it.
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Table 6.10: Execution time and approximation error of window algorithm

Algorithm 10000 20000 30000 40000

Times (s) updating + downdating 12.475 151.725 566.963 1451.319
window algorithm 7.303 87.008 312.521 806.234

Error updating + downdating 2.433 5.983 10.384 15.489
window algorithm 2.468 6.049 10.479 15.618

6.5.4 Real Application: Automatic Music Transcription

Automatic Music Transcription is an active area of research [90]. Usually, the audio file
to be studied is transformed into an spectrogram (data matrix)V ∈ Rm×n

+ where m is the
number of possible frequencies and n is the number of frames or time instants. Some of
the methods of determination of pitches in V are based on different forms of the NMF
[89, 26, 27]. The main idea is that a NMF of X is computed V = W ∗H, W ∈ Rm×k

+ ,
H ∈Rk×n

+ where each column of W must contain the frequency information of a concrete
pitch, and the i-th column of H contains the information about what pitches (columns of
W) are active in the i-th time instant. The parameter k must be selected as larger than the
possible number of pitches.

One of the main areas in this field is real time music transcription, where the pitches in
the music part must be determined in real time [91, 28]. However, the computational
cost of the NMF has limited its use as a real time tool. This has sometimes been tackled
through different simplifications, such as using predetermined sounds for the W matrix,
but in general NMF is considered not suitable for real time [91].

Nevertheless, the updating/downdating techniques described above may change this view.
Without updating techniques, a NMF should be computed in each time instant, or maybe
after a few new sounds (columns) have been received and appended to the spectrogram
V . Furthermore, the data matrix or spectrogram V and the H matrix would increase their
size continuously, therefore the computational cost of each new NMF would increase as
well.

Through updating, the new columns can be processed with small cost, and the computa-
tional cost per time step can be fixed by downdating the data matrix, possibly discarding
the older columns.

A simple experiment was designed to illustrate the improvement that can be achieved. A
relatively long piano part ([92], that lasts 624 seconds) was chosen and its spectrogram
matrix was computed. (The data matrix can be downloaded from [93]; the procedure
to obtain the spectrogram from an audio file is the described in [94]). The procedure
used to obtain the spectrogram causes that each second corresponds to 43 new columns.
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The full spectrogram V has 401 rows and 26836 columns. As a reference, we have
computed the full NMF of the data matrix, selecting k as 88 (number of piano keys,
[89]). It must be noted that this computation is quite fast, lasting only 8 seconds (150
fHALS iterations, obtaining an error of 0.67). However, this can only be done if the
whole matrix is available, which is not true in a real time environment.

This large matrix was used to simulate real time processing. In such environment, the
NMF of the part of the music already played in each time instant needs to be obtained.
The computations were started with the matrix formed with the first 436 columns of V .
The NMF of this submatrix was computed, and then one column (or several columns) at
a time was added, performing the needed computations.

To use a full NMF for each new column (using 10 fHALS iterations) takes 10036 sec-
onds, and therefore is obviously not appropriate for real time processing. The error in
this case is 1.41.

On the other hand, updating/downdating can be used in different ways to try to decrease
the computational time. Given that the LSQ-fHALS has a good and stable performance
either in single column or in block form, this updating procedure was chosen for the
experiments.

As a first approach the single column window procedure was used, that is, in each time
instant a new column is added (at the right side of the data matrix) and an old column
is discarded from the left side. Therefore the size of the matrix is fixed to 436 columns.
The results are good from the point of view of time; the whole computation took 432
seconds, carrying out two fHALS iterations per column, since the song lasts 624 seconds,
this would mean that real time processing is possible. The evaluation of the error in this
case must be done carefully, because the W matrix varies along the process. We have
evaluated the error column by column; when a column of H, H(:,J), is discarded (it
will not be modified any more), the column vector aux =V (:, j)−WH(:, j) is computed,
using the "present" W matrix. Then the sum of the squares of the components of the
aux vector is computed. This value will be accumulated to compute the Frobenius norm
of the overall error. The overall error computed in this way was 0.54, even better than
computing the full NMF.

A block window procedure including/removing blocks of 10 columns is clearly faster
(42.26 seconds), and still it gives a similar error (0.53). Of course, using a block proce-
dure can create some sort of delay (the first column of the block will not be processed
until 9 more columns have arrived). An appropriate block size should be determined for
each practical application.

Next, similar experiments to those shown in Section 6.5.1 were performed using matrices
obtained from songs; the experiments were repeated using the base fHALS method and
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LSQ-fHALS with two experiments: (m=10000, n=401, k=88) and (m=20000, n=401,
k=88). The results show that the proposed algorithm perform the same with synthetic
and real matrices.

In Figure 6.2 the execution times of those experiments are shown, while in Table 6.11
the corresponding error measures are shown. As in 6.5.1 the execution times are relative
to execution times of the base fHALS algorithm, the base fHALS execution times are
shown in Table 6.12.
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Figure 6.2: Execution times of updating experiments with real application music matrices relative to
fHALS base algorithm

Table 6.11: Approximation error of updating algorithm with r=1 and r=200 using application matrices

Algorithm Approximation errors
10000 20000

r = 1 fHALS 0.540 1.083
update LSQ fHALS 0.523 1.051

r = 200 fHALS 0.513 1.027
update LSQ fHALS 0.497 0.997

Table 6.12: Base execution times using application matrices

Base times (s) 10000 20000
fHALS r = 1 0.326 0.842
fHALS r = 200 0.245 0.678
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6.5.5 Comparison with Online NMF

The updating algorithms proposed in this chapter can be used to tackle problems previ-
ously solved by means of the Online NMF (see Section 2.4.7). For example, when all
the data points of a dataset are not available from the beginning and more data points
(columns of the data matrix) are received over time. Furthermore, for the cases where
the dataset does not fit entirely into memory, the window algorithm can be used to keep
a constant memory cost.

For the sake of completeness, an experimental comparison between some of the updating
algorithms proposed in this chapter(LSQ-fHALS updating and window algorithms) and
an existing Online NMF algorithm is presented in this section.

The algorithm chosen is the ONMF with mini batch mode presented in [47], whose
structure is shown in Algorithm 11. The matrix W update of line 5 is performed by
using the second order PGD algorithm with diagonal approximation proposed in [47].
The NNLS problem of line 4 is solved using the BPP algorithm with multiple rigth hand
sides (see Algorithm 3).

The updating algorithm used is the LSQ-fHALS due to its good stability and performance
for both single and group updates. The window algorithm used in the test is the one based
on the LSQ-fHALS too.

The main difference between the proposed updating algorithms and the Online NMF is
that the updating algorithms keep updating matrices W and H incrementally with the new
data points, while the Online NMF only updates matrix W . For each new data point (or
data block ), the Online NMF computes a new H losing any influence of the previously
computed H matrices. The algorithm loses any information from the previous data points
except the information contained on W . Even when the window algorithm is used, the
proposed updating algorithms keep updating both matrices and keeping the history of
all previous data points into its decomposition. This behaviour is more desirable when
the data points of the data set are related between them and there is a continuity in the
dataset( e.g. music transcription, sound source separation, etc.).

For the experimental comparison a data matrix of m = 10000,n = 50000 was generated
using Algorithm 26 and the block size to simulate the new incoming data is r = 1000.
The updating algorithms will use a base factorization with the first 11000 columns of the
data matrix. The k parameter of the decomposition is changed during the experiments
because it has a strong effect in the performance of the Online NMF algorithm.

Figure 6.3 shows the execution time of the entire simulation for each one of the three
algorithms compared for different values of the internal size of the NMF k.
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Figure 6.3: Execution time comparison between the Online NMF and the updating algorithms for
different k values
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As shown in Figure 6.3, the Online NMF algorithm is faster than the updating algorithms
for small values of k but its execution time grows rapidly when k is increased, making
it much slower for the biggest values of k tested. The window algorithm is faster than
the update algorithm. This behaviour is meaningful because the window algorithm has
the same cost for each update. On the other side, the cost of one update of the updating
algorithm increases during the simulation because the matrices A and H grow in each
update.

Table 6.13 shows the error obtained by the Online NMF, the updating algorithm and
the window algorithm at the end of the simulation for different values of k. The error
is computed using the same conventions as in Section 6.5.4. The results show that the
Online NMF obtains the worst errors for all the experiments and the error gets worse
when the k parameter increases. Furthermore, the update algorithm obtains a lower error
than the window algorithm as expected, because the updating algorithm is not discarding
any data and updating the factorization with all the available data at every moment.

Finally, despite the Online NMF is faster for small values of k, its error is very large
compared with the updating versions. Furthermore, for bigger values of k it is slower
than the updating algorithms and has a huge error.
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Table 6.13: Error comparison between the Online NMF and the updating algorithms for different k
values

Algorithm Approximation errors
5 10 20 50 100 500

Online NMF 0.943 3.797 12.186 66.559 253.504 6031.6
Updating LSQ-fHALS 0.036 0.101 0.172 0.297 0.455 1.163
Window LSQ-fHALS 0.138 0.205 0.339 0.671 1.146 2.387

The window algorithm is faster than the updating algorithm at the expense of a slightly
higher error. So, the window algorithm is preferable for memory or execution time
bounded problems, while the update algorithm is preferable if the accuracy is the main
goal.

6.6 Conclusions

We can safely conclude that the proposed algorithms solve the problems in less time than
the NMF from scratch in all cases; and that LSQ versions (Alg. 23 and 24) lower the
error measurements in addition to decrease the execution time.

GCD fHALS algorithm (Alg. 25) performs very well with single column updates be-
ing faster and slightly more accurate than LSQ algorithms (Algs. 23 and 24) but its
error increases too much for block column updates. That compromises its usefulness for
practical applications.

If the reduction of computation time is a priority and the update is done column by
column, the rand fHALS update algorithm (Alg. 22) is the fastest and it obtains a good
error value. However it should not be used with block column updates because its error
increases with the number of columns.

The block LSQ fHALS algorithm (Alg. 24) is a good approach when more than one
column is available, and it can benefit of a multicore processor due to its good parallelism
properties.

The window algorithms improve the execution time comparing with a full update and
downdate.

The updating and window algorithms are suitable for large and incomplete datasets used
in Online NMF models. In addition, the window algorithm can estimate the NMF of
those large datasets with a constant memory cost. Both algorithms outperform the com-
pared Online NMF algorithm.
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Chapter 7

Efficient implementation of
Active-Set Newton Algorithm for

NonNegative representations

7.1 Introduction and motivation

One of the most commonly used models in modern audio processing is the representation
of an audio magnitude or power spectrum x∈ℜ

1× f
+ as a non-negative linear combination

of basis vectors belonging to a precomputed "dictionary". This model is used in different
applications, such as source separation [95], automatic music transcription [96], and
sound event detection [97].

Usually the n basis vectors in the dictionary are stored as a matrix B ∈ ℜ
n× f
+ , where

each signal of the dictionary is a row of B. The model of the problem can be written
as x ≈ v = wB subject to w ≥ 0. The simplest solution would be to find the vector
of nonnegative weights w ∈ ℜ1×n such that ||wB− x||2 is minimized. This amounts to
solving a nonnegative least squares problem, which is usually solved through active set
methods [98].
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However, in audio applications (and in some other fields) better results are often obtained
using different measures instead of the 2-norm, such as the Kullback-Leibler (KL) diver-
gence [99].

The KL divergence between vectors x and x́ is defined as

KL(x||x́) = ∑
i

d(xi, x́i)

where function d is

d(p,q) =


p log(p/q)− p+q) p > 0 and q > 0
q p = 0
∞ p > 0 and q = 0

Note that the KL divergence is a particular case of the β -divergence (2.10) presented
in Section 2.4 when β = 1. In the problem of obtaining nonnegative representations of
audio for overcomplete dictionaries approached by [100], for each input signal x ∈ℜ

1× f
+

a nonnegative vector w ∈ ℜ
1×n
+ that minimizes the KL divergence with respect to the

dictionary B ∈ℜ
n× f
+ should be found:

min
w>0

KL(x||wB)

However, the KL divergence is a nonlinear function; therefore, the minimization of the
KL divergence is a nonlinear optimization problem, with the additional restriction of
nonnegativity. In [100], an active-set Newton algorithm (ASNA) was proposed to solve
this problem. The algorithm was implemented in Matlab and the experiments showed
its advantages against some state of the art algorithms like the expectation-maximization
update rules [101] and the projected gradient algorithm [38, pp. 267-268].

Due to the great performance of the ASNA algorithm but the lack of a computational
efficient implementation of the algorithm, the author decided to improve the existing
MATLAB implementation in order to obtain a lower execution time. This reduction of
the execution time is necessary to approach real-time applications. The resulting imple-
mentation is an efficient parallel version suitable for shared memory multicore machines.
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7.2 ASNA algorithm

This work was considered within the scope of these thesis because the model used by the
ASNA algorithm is a partial NMF where only one of the matrices of the decomposition
is updated. Furthermore, NMF and the model used by the ASNA algorithm share some
practical applications that make it worth to work on the algorithm in order to compare
both approaches.

7.2 ASNA algorithm

The ASNA algorithm falls into the category of active set algorithms. These are a family
of iterative matricial algorithms where in each iteration only some of the columns or
rows are used to compute the iterative approximation of the algorithm. Those columns
(or rows) are considered columns (or rows) in the active set, and usually there are steps
in the algorithm where columns (or rows) are added or removed from the active set.

The main principle of the ASNA algorithm is that it estimates and updates a set of active
atoms (which are the rows of the dictionary matrix) that have non-zero weights. The
active set is initialized with a single atom which alone gives the smallest divergence.
Then, it finds the most promising atom not in the active set by identifying the atom
whose weight derivative is the smallest, and adds it to the active set. The weights of
the atoms in the active set are estimated using the Newton method where the step size
is chosen to ensure non-negativity of the weights. Atoms whose weights become zero
or negative are removed from the active set. The algorithm iterates until a convergence
criterion is achieved or a maximum number of iterations given by the user are reached.
A detailed view of the algorithm can be found in [100, Sec. III].

The existing implementation programmed in MATLAB, that can be found in [102], uses
a more general model than the one shown in the original algorithm [100, pp. 5]. The
extended model can work with multiple observations at a time, becoming X ≈ V =WB
subject to (W,V )≥ 0 where the rows of X ,V ∈ℜ

o× f
+ are the observations and the rows of

W ∈ℜ
o×n
+ are the non-negative weights corresponding to each observation. That model

gets some advantages from the fact of computing multiple observations at a time because
some matrix-vector operations are replaced by matrix-matrix operations which are more
efficient. In this model the approximation matrix V in each iteration is defined as

V =WABA (7.1)

where A is the global active set composed of the union of the active sets of each observa-
tion Xm (a). In (7.1) WA denotes a submatrix formed with the columns of W which are in
the global active set A and BA denotes a submatrix formed with the rows of B which are
in the global active set.
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A brief pseudocode of that implementation can be found in Algorithm 27. In that im-
plementation the weights in the active set are represented by the nonzero elements in a
sparse weight matrix W and the active atoms in the dictionary are represented by BA.

7.2.1 Initialization

Under this model, after normalizing each dictionary atom to Euclidean length, the sets of
active atoms are initialized with a single index n that alone minimizes the KL divergence
for each observation Xm, which is defined as (7.2) where the weight of each atom Wm,n is
computed as (7.3) [91].

a = argmin
n

KL(Xm||Wm,nBn) (7.2) Wm,n =
Xm1T

Bn1T (7.3)

Here 1 is an all-one vector of length f .

7.2.2 Adding atoms to the active set

Every K-th iteration with K > 1 the algorithm tries to add one new atom to the active set
of each observation. The atom with the lowest gradient (the one which will decrease the
KL divergence the most) is selected.

The gradients are computed with respect to all weights (the ones corresponding to the
atoms in the active set and not in the active set) and then all the atoms not already in the
active set are used as candidates to add new atoms to the active set. The gradients of the
ones that are already in the active set will be used lately by the algorithm to update the
weighs, so computing them together in this step saves computation time.

Taking advantage of the matricial model, the formula of this gradient computation is

d
dW

KL(W ) = (1− X
V
)BT (7.4)

here the division of matrices is computed entry-wise and V is computed according to
(7.1). Note that 1BT can be precomputed at the initialization to save computation time
during the iterations.
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7.2.3 Updating weights of active atoms

In the updating phase of the algorithm (which corresponds to the inner loop), all opera-
tions are performed for each observation Xm as in the original model with one observation
vector. In this phase the algorithm uses the Newton method to update the weights of the
atoms on the active set, choosing an appropriate step size to ensure non-negativity. Let
us denote a dictionary matrix whose rows consists of atoms in the active set a of Xm as
Ba and a weight row vector which consists of the weights of the active atoms of Xm as
wa. The model (7.1) can be written as Vm = waBa, where Vm is a row of matrix V and
corresponds to an approximated observation. The gradient of the KL divergence with
respect to wa is given as (7.5) and the Hessian matrix with respect to wa computed at wa
is given by (7.6).

grad = (1− Xm

Vm
)BT

a (7.5) Hwa = Badiag(
Xm

V 2
m
)BT

a (7.6)

Here, "diag" denotes a diagonal matrix whose entries consists on the elements of its
argument vector, and V 2

m denotes entry-wise squaring of vector Vm.

When the gradients have been computed in the atom addition steps of the algorithm, the
algorithm uses that gradients instead of computing (7.5).

Finally the weights are updated as (7.7) where α is the step size and the search direction
can be obtained by solving the system of equations (7.8).

wa← wa−α searchDir (7.7) (Hwa + εI)× searchDir = grad (7.8)

An identity matrix I multiplied by a small constant ε is added to ensure numerical sta-
bility.

The step size α is obtained by computing the ratio vector r = wa/searchDir element-
wise and choosing the minimum positive element. If α > 1 the step size α = 1 is used,
which corresponds to the standard Newton algorithm. This computation ensures that the
weights computed in (7.7) are non-negative.
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Algorithm 27 Original ASNA implementation algorithm

Input: X ∈ℜ
o× f
+ B ∈ℜ

n× f
+ . return W ∈ℜ

o×n
+

1: Normalize each dictionary atom to unity norm
2: Pre compute 1BT for the gradient computations
3:

4: Initialize active set for each observation
5: (Active atoms have values in WA and not active are 0)
6: for i = 1 to maximum number o f iterations do
7: Find global active atoms A
8: Compute V =WABA (7.1)
9: R = X/V (element-wise)

10: if i mod K = 0 then
11: Compute gradient w.r.t all weights (7.4)
12: if i mod 10 = 0 then
13: Check convergence for non converged observations
14: Remove converged observations from the computations
15: if all observation have converged then
16: Scale back W and exit
17: end if
18: end if
19: Mark as 0 the gradient of the already active weights
20: Add the atom with the minimum gradient of each observation
21: to the active set, adding a small number to WA
22: end if
23: Compute R2 = X/V 2 (element-wise)
24: Find the indexes of the active atoms
25: Compute sparse product Rcov = RBT

26: for each observation not converged Xm do
27: Find the active atoms of Xm (a)
28: if all gradients computed then
29: Get grad from the already computed gradients
30: else
31: Compute gradients w.r.t active atoms of Xm (grad) (7.5)
32: end if
33: Compute Hessian Hwa (7.6)
34: Compute the search direction (7.8)
35: Compute step size
36: Update weights in WA (7.7). If a weight becomes negative is removed.
37: end for
38: end for
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7.3 Proposed algorithms

The first step was to improve the existing MATLAB implementation before tackling the
reimplementation of the algorithm in a different programming language; then a version
of the algorithm in C programming language was implemented using the HPC mathe-
matical libraries BLAS and LAPACK. Finally, a parallel version of the algorithm was
implemented using threading with OPENMP together with BLAS and LAPACK. A first
approach to the proposed implementations was presented in [103]. The source code of
all proposed implementations can be found in the repository [104]. All line numbers
mentioned in the current section refer to Algorithm 27.

7.3.1 Improved MATLAB implementation

The improved MATLAB implementation has some modifications that affect positively
to the performance of the algorithm.

The first change was transposing the problem. Most of the operations in the original
implementation were made row-wise while MATLAB uses a column-wise memory ar-
rangement. Transposing the problem allows the algorithm to do its operations column-
wise taking advantage of MATLAB’s memory arrangement. The second modification
was changing some conditionals that were checking the existence of a variable contain-
ing all gradients to boolean variables, what caused a surprising improve in the perfor-
mance. Then the sparse product function in line 25 was reworked to use both matrices
in column-wise order and the system of equations solving in line 34 was solved directly
using the Cholesky decomposition instead of using the default MATLAB solver. Finally,
some minor tweaks and structural changes were done to improve performance and code
readability.

7.3.2 C implementation

The author chose the C programming language because it is much more efficient than
MATLAB. The C implementation uses the BLAS and LAPACK linear algebra interfaces
through the Intel Math Kernel Library (MKL) which is a very efficient implementation
for Intel architectures.

The implementation is based on the improved MATLAB implementation and uses all
improvements explained in Section 7.3.1. In this implementation the weight matrix is
stored in memory as a full matrix, and the atoms in the active set are controlled by a
double linked list of “atoms" for each observation. Each “atom" contains a link to the
adjacent active atoms and the index of that atom in the full matrix in memory. Using this
strategy the algorithm still can compute the sparse products in lines 8 and 25 without the
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need of finding the active atoms each time (lines 7 and 24), reducing the computation
time needed for the sparse products. When removing active atoms in line 36 the atom
should be removed from the atom list of observation Xm.

The second main improvement is that the sparse product on line 25, the computation of
R2 (line 23), the computation of the gradient (line 31) and the computation of the Hessian
(line 33) have been combined. All these operations use the same data, so mixing the
computations in the proper way instead of computing them one after the other diminishes
the number of memory accesses and operations.

Finally, the system of linear equations in line 34 has been solved by mean of the LAPACK
functions DPOTRF and DPOTRS. The first function computes the Cholesky factorization
of a symmetric and positive definite matrix, while the second function uses the factor
computed by DPOTRF to solve a triangular system of linear equations. Note that the
DPOTRF function is threaded inside the MKL library, which means that in a multicore
architecture it will benefit from the multiple cores increasing the algorithm performance.
This function is one of the most costly parts of the algorithm, and this is why we do not
name sequential the non-parallel implementation.

7.3.3 Parallel C implementation

The parallel implementation of the ASNA algorithm takes advantage of the data inde-
pendence between all the observations. Due to this, all observations can be processed in
parallel. For the parallel implementation we used the OpenMP pragma parallel for for
all loops which iterate along the observations. These loops correspond to lines 5, 8, 19,
20 and 26. The schedule chosen is dynamic because during the iterative progression of
the algorithm the already converged observations are removed from the computations,
so the thread that tries to compute an already converged observation will skip it. The
dynamic scheduling improves the performance for unbalanced load situations like that.

As said in Section 7.3.2 the DPOTRF functions is already threaded inside the library.
But in the parallel implementation is used sequentially for each observation because the
threading is controlled at observation level. That fact will impact the speedup between
both versions.
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7.4 Analysed problem

The sound separation problem analysed in the original ASNA paper [100] was used
again to test the proposed implementations with a real application. In this problem,
the algorithm should compute the weights matrix W to approximate the mixture matrix
X (created by mixing two speech signals) taking into account the dictionary matrix B,
which contains dictionaries of both speakers from the original speech signals. The goal
is to separate the mixed signal into two individual signals, one for each speaker. For
those experiments, 100 signals were generated mixing 2 random speakers for each sig-
nal from a pool of 34 speakers. Each signal is represented by a magnitude spectrogram
matrix X obtained by using the short-time Fourier transform with o columns (observa-
tions) and f = 751 rows (features). The number of observations o ranges between 94
and 177, with an average of 129.73. The dictionaries for each speaker were generated
by k-means clustering and then combined to form the dictionary B of each test signal.
Different dictionary sizes were evaluated: 100, 1000 and 10000 atoms (50, 500 and 5000
atoms per speaker). In the present Chapter an evaluation with a bigger dictionary size
of 50000 atoms per speaker will be presented. For more detailed information on the
matrix generation process check [100, Sec. V]. Once the weights are estimated using
the ASNA, the models for each speaker in a mixture can be calculated separately, and
signals corresponding to each speaker reconstructed as described in [100].

7.5 Experimental analysis

7.5.1 Evaluation of the proposed implementations

The experimental environment, from now on called Server, consists of a multicore ma-
chine whose especifications are described in Appendix A.3. All the tests were executed
using the 24 cores available. The development process was carried out in a multicore
Workstation described in Apprendix A.5 All the tests were executed using the 4 cores
available. Note that the workstation has a lower number of cores that the Server but with
a higher CPU frequency.

In all proposed versions the KL divergence value obtained is the same and equal to the
KL divergence obtained by the original MATLAB implementation. Due to this, the KL
divergence value was not evaluated in this experiment.
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To compare the results of the proposed implementations with the experiments in the orig-
inal ASNA paper [100], all implementations were tested with three different dictionary
sizes (100, 1000 and 10000) until convergence was achieved. Furthermore, a new big-
ger dictionary with a size of 100000 atoms was tested. We will discuss that experiment
deeper in section 7.5.3.

Table 7.1 shows the execution times in seconds of every proposed implementation for all
the dictionary sizes tested. Each cell represents the averaged execution time of the 100
signals tested, and the execution time of each signal has been obtained by averaging 10
measurements to avoid system load effects on the measured times.

It is necessary to test all the signal database because the algorithm convergence criterion
affects the execution time of each signal. On the other hand, the matrix X representing
each signal has a different number of observations o and this will affect the proposed
implementations execution time, especially the Parallel C Implementation. The signal
duration in seconds range from 1.46 to 2.71, with an average of 1.99 seconds.

100 1000 10000 100000
Original MATLAB Implementation 0.962 3.306 20.021 92.253

Improved MATLAB Implementation 0.552 1.970 11.554 63.171
C Implementation 0.212 0.925 6.588 31.514

Parallel C Implementation 0.021 0.144 1.343 16.084

Table 7.1: Execution times of each ASNA implementation for different dictionary sizes on Server
(seconds)

The results show that there is a huge improvement in the execution time of more than
one order of magnitude. Comparing the three dictionary sizes from the original ASNA
paper, computing the decomposition with the biggest dictionary (10000 atoms) with the
Parallel C implementation is almost as fast as the original MATLAB implementation
with the smallest (100 atoms) and needs less than half of the time of the medium size
dictionary (1000 atoms).

The reduction of execution time obtained by the Parallel C implementation makes pos-
sible to use the ASNA algorithm with 1000 and 10000 atoms for real time applications
because the execution time is lower than the signal duration for almost all cases, with
the exception of three signals with 10000 atoms dictionaries. Furthermore, the execution
time obtained by the improved MATLAB implementation for the 1000 atoms dictionary
is good enough to tackle some real time applications because it is lower than the signal
duration for 60 of the 100 signals.
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In order to clarify the improvement obtained, Table 7.2 shows the speedup obtained from
the different implementations respect the original MATLAB implementation.

100 1000 10000 100000
Original MATLAB Implementation 1.000 1.000 1.000 1.000

Improved MATLAB Implementation 1.742 1.678 1.733 1.460
C Implementation 4.544 3.574 3.039 2.927

Parallel C Implementation 44.986 23.004 14.903 5.736

Table 7.2: Speedup respect to the original MATLAB implementation

7.5.2 Hardware comparison

To check the influence of the CPU frequency and the number of cores available all the
experiments were executed again in Workstation which has a higher CPU frequency but
lower number of cores than Server.

Table 7.3 shows the execution times in seconds of the same experiments presented in the
previous section but in the Workstation machine.

100 1000 10000 100000
Original MATLAB Implementation 0.6612 2.5758 14.5771 76.9163

Improved MATLAB Implementation 0.3909 1.5792 9.2278 61.8698
C Implementation 0.1423 0.7979 7.9010 60.3893

Parallel C Implementation 0.0470 0.3354 4.5072 51.2103

Table 7.3: Execution times of each ASNA implementation for different dictionary sizes on Workstation
(seconds)

The comparison shows that the MATLAB implementations obtain a lower execution time
in Workstation (Table 7.3) than in Server (Table 7.1). The lower execution time in the
MATLAB version is due to the higher CPU frequency on Workstation and the poorer util-
isation of the multicore architecture of MATLAB (compared to the C implementations).
The C implementation still obtains a lower execution time in Workstation for the smaller
dictionary sizes, again due to the higher CPU frequency. However, for the bigger dic-
tionary sizes Server starts to achieve lower execution times than Workstation due to the
higher number of cores. The parallel C implementation obtains always lower execution
times in Server due to the higher number of CPU cores.
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7.5.3 Bigger dictionaries evaluation

Due to the big performance obtained by the parallel C implementations with the original
dictionary sizes, more tests with a bigger dictionary of 100000 atoms were performed.
As shown in Table 7.1 the execution time of the parallel C implementation for the 100000
atom dictionary is lower than the original MATLAB implementation for the 10000 atom
dictionary.

The motivation of these experiments with bigger dictionaries was to check if it was worth
to use that big dictionaries for the sound separation problem, because the 100000 atom
dictionary is much bigger than the usual dictionaries used in the audio field. Some Sig-
nal to Distortion Ratio (SDR) experiments were performed to measure the quality of the
reconstructed signal with the 100000 atom dictionaries. We use the signal-to-distortion
ratio (SDR) as the metric to measure the separation quality. SDR calculates the ratio of
energies of the target signal and the separation error [100, Sec. VI.C], and is a commonly
used objective metric in audio source separation evaluations. Figure 7.1 shows the evo-
lution of the SDR with the progression of the algorithm for different dictionary sizes.
As shown in Figure 7.1 , the bigger dictionaries need more iterations to achieve conver-
gence. Also, the execution time of each iteration increases with the dictionary size. On
the other hand, bigger dictionaries are able to obtain asymptotically the best separation
quality measured by the SDR. The results obtained with the new dictionary size (100 000
atoms) achieves the best separation quality among the tested methods. Table 7.4 shows
the SDR achieved on convergence and the time needed to achieve it for the best proposed
implementation.

100 1000 10000 100000
Signal to distortion ratio (dB) 9.684 9.923 10.246 10.869

Execution time (s) 0.021 0.144 1.343 16.084

Table 7.4: Signal to distortion ratio comparison for the parallel C implementation

7.6 Discussion

The experimental results show a big improvement in the performance of the algorithm
by using the proposed versions. Especially the parallel C implementation obtains an
improvement of more than one order of magnitude in multicore systems. Furthermore,
if only one observation needs to be computed, due to the internal parallelism of the
MKL library , the algorithm will still benefit from the multicore architecture with the C
implementation.
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Number of iterations

0 50 100 150 200 250 300 350 400 450 500

S
ig

n
a

l-
to

-D
is

to
ri
o

n
 r

a
ti
o

 (
d

B
)

3

4

5

6

7

8

9

10

11

100 Atoms

1000 Atoms

10000 Atoms

100000 Atoms

Figure 7.1: Signal to distortion ratio (dB) per iteration for the different dictionary sizes.

Nonnegative sparse representations have recently been used in many audio processing
problems. However, their use in practical applications has been so far limited because of
their high computational complexity. In this Chapter the reduction by more than 10 times
of the execution time of state-of-the-art ASNA algorithm (which itself is significantly
faster than the established expectation-maximization update rules) is shown. This makes
the algorithm appealing for real-time applications such as speech enhancement.

The hardware experiments showed that when using the ASNA algorithm on MATLAB,
a faster CPU frequency with a low number of cores will obtain better results than a
multicore with more CPU cores but slower CPU frequency. On the other hand, the
parallel C implementation will always benefit from a higher number of CPU cores.

To my knowledge, the 100000-atom dictionaries used in this work are the largest used
for NMF-based sound source separation. The previously used dictionary sizes were typ-
ically significantly smaller, the largest used until so far being around 16000 [105] and
10 000 atoms [100]. This Chapter shows that increasing the dictionary size up to 100
000 atoms can still increase the source separation quality, and the large dictionary still
benefits significantly from the proposed efficient implementation. Such large dictionary
sizes may not be feasible in real-time processing, but the methods will still benefit from
the obtained computational savings even in offline processing, where high accuracy is
needed requiring large dictionaries.
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Chapter 8

Implementations developed

During the development of this thesis different algorithms to compute the NMF or mod-
ified versions of the NMF problem have been implemented. While not all the algorithms
have produced successful results, it is interesting to detail the implementations within the
scope of this thesis. The ASNA algorithm implementation is excluded from this chapter
because the implementations are detailed in its own chapter (see Chapter 7).

8.1 Sparsity and smoothness constrained multiplicative algorithms

These algorithms are based on the constrained multiplicative algorithms presented in [38,
Ch. 3.4], which were designed to control the sparsity and smoothness of the factored ma-
trices. The algorithms have been implemented on top of the β -divergence multiplicative
algorithm implementations present on the NNMFPack library (see Chapter 4).

There are two restrictions implemented: smoothness enforcement and sparsity enforce-
ment. For each one a restriction is applied to the numerator of the update rules (2.11).

In order to impose sparsity, problem (2.8) is modified with a regularization term based
on the `1−norm:

W,H = argmin
W,H≥0

(Dβ (A,WH)+αW ||W ||1 +αH ||H||1) (8.1)
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Problem 8.1 leads to the following update rules:

H← H · (W
T ((WH).β−2 ·A))−αH

W T (WH).β−1 , W ←W · (((WH).β−2 ·A)HT )−αW

(WH).β−1HT , (8.2)

where the operation −α is an elementwise subtraction applied to all the elements of the
resulting numerator matrix. In the same way, problem (2.8) can be modified using the
`2−norm in order to impose smoothness to the solution:

W,H = argmin
W,H≥0

(Dβ (A,WH)+αW ||W ||F +αH ||H||F) (8.3)

what leads to the following update rules:

H← H · (W
T ((WH).β−2 ·A))−αH ·H

W T (WH).β−1 , W ←W · (((WH).β−2 ·A)HT )−αW ·W
(WH).β−1HT ,

(8.4)

here the operation −αH ·H is an elementwise subtraction between the numerator and
the scalar-matrix product αH ·H (the same applies for matrix W ). In both constrained
updates, the α parameter is a user defined parameter to control the desired restriction for
each matrix.

In the implemented source code, the restrictions are applied after computing the numer-
ator of each update rule, before updating matrix H or W . The computations needed to
apply these restrictions are trivially paralellizable. The constrained algorithms have been
implemented on top of NNMFPack β -divergence multiplicative algorithms, so there are
also specific restricted versions for the special cases of β = 2 and β = 1. The function
prototype of the constrained algorithms has 3 parameters in addition to the parameters
present in the non constrained function:

i n t <p>bdiv_ <ARCH>( c o n s t i n t m, c o n s t i n t n , c o n s t i n t k ,
c o n s t double ∗A, double ∗W, double ∗H,
c o n s t double be ta , c o n s t i n t uType , c o n s t i n t n I t e r ,
c o n s t double alphaW , c o n s t double alphaH ,
c o n s t i n t r e s t r ) ;
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First alphaW and alphaH are the α scalar to apply on the restriction for each matrix.
Then the parameter restr indicates which restriction to apply and has the following valid
values:

0. No restrictions applied.

1. Smoothness imposed to both matrices H and W .

2. Sparsity imposed to both matrices H and W .

3. Smoothness imposed to matrix W and sparsity imposed to matrix H.

4. Sparsity imposed to matrix W and smoothness imposed to matrix H.

when restr value is 0 or both al phaW = 0 and al phaH = 0, the non constrained version
of the algorithm is called internally.

8.2 Affine NMF

The algorithm for affine NMF shown in Algorithm 5, has been implemented using BLAS
operations which run in parallel if the BLAS implementation used is threaded. The four
matrix multiplications of lines 6 and 9 have been implemented using the BLAS3 dgemm
function and the matrix-vector multiplications of line 11 have been implemented using
the BLAS2 dgemv function. Then line 5 has been implemented using two operations:

• dgemm (BLAS3): Â =WH

• dger (BLAS2): Â = w1T + Â.

The column normalization of line 8 has been implemented by using two BLAS opera-
tions for each column w j of W :

• dasum (BLAS1): norm = ||w j||1

• dscal (BLAS1): w j = w j./norm

Note that the operator ./ represents an elementwise division of all elements on vector w j
by the scalar norm.

The elementwise products and divisions on lines 7, 10 and 12 have been implemented
using OpenMP to paralellize the loop over all the elements on the matrix/vector.
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8.3 Greedy Coordinate Descent (GCD) algorithm

Our implementation is based on the GCD algorithm presented in [44] and shown in
Algorithm 10 of Section 2.4.6. However, the source code presented in that paper has
significant differences with the algorithm. Some of them improved the performance of
the theoretical algorithm in our tests and were used.

The improvement used from the original source code is that the initial matrix-matrix
products of line 2 are performed inside the iteration loop before each update process.
The products of PAH = AHT and PHH = HHT are performed in each iteration before the
update of GW in line 7. In the same way, PWA and PWW are computed at the beginning
of the updating step for H. All this products are implemented with the BLAS3 operation
dgemm. Doing the products inside the iteration process avoids the need of updating that
products on line 5 and line 14. While theoretically it should be better to update only the
modified elements, in practice, its is faster to perform the products.

Another improvement carried out by our implementation is to perform all the operations
over matrix W and H, instead of over the partial matrices W new and Hnew. This speeds up
the convergence and decreases the cost of the algorithm (by avoiding the matrix-matrix
addition on line 22, the initialization of line 6 and its analogue steps in the H updating
step).

The computation of GW on line 7 is performed with the following operations:

• dgemm (BLAS3): GW =WPHH

• daxpy (BLAS1): GW = GW −PAH

and the update of GW on line 16 is performed by:

• daxpy (BLAS1): GW
i = GW

i + s∗PHH
qi

where GW
i is a row of GW and PHH

qi
a row of PHH . Equivalent operations are performed

for GH on the updating step for H.

The computation of SW and DW of lines 8, 9, 17 and 18 has been performed with a
custom function. This function computes each row of SW and DW in parallel using an
OpenMP parallel for pragma, because there is no data dependency between the rows.
When the icc compiler is used, the simd pragma from Intel parallelization technologies
is used.
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8.4 ANLS-BPP

Then the BLAS1 operation idamax is used to compute qi for each row of DW on lines 10
and 19. The idamax function is used to compute pinit on line 10 too.

Again, an analogue function is designed to compute SH and DH in the updating step of
H. Note that in this case the parallelization is made column-wise.

8.4 ANLS-BPP

The ANLS-BPP algorithm has been implemented with two alternate calls to the NNLS-
BPP function, transposing the problem in the second function call. Due to this, in this
section details on the implementation of the NNLS-BPP function are presented.

The NNLS-BPP function implements the BPP algorithm for the NNLS problem with
multiple right hand sides shown in Algorithm 3 of Section 2.3.1. The most time con-
suming parts of the algorithm have been implemented using parallel efficient BLAS and
LAPACK operations.

First, the initial computation of AT A and AT B in line 3 is performed using BLAS 3
dgemm function. Then, the computation of XF j on line 21 is performed with the follow-
ing operations for each group of columns(see the column grouping explanation below):

• dpotrf (LAPACK): L = cholesky(AT
F AF)

• dpotrs (LAPACK): solve XF in LXF = AT
F B

where AT BF is a matrix containing all columns of AT B that share the same F and G sets,
and so is the corresponding XF . With this approach, we only compute one Cholesky
factorization for all columns that share the same sets, saving computational time and re-
sources. Furthermore, more resources are saved by computing the solution of all columns
in AT BF with a single call to dpotrs with multiple right hand sides.

The computation of YG j on line 22 is performed with the following operations:

• dgemm (BLAS3): YG = AT
GAF XF

• dmatSub (custom op.): YG = YG−AT
GB

again following the same grouping convention of the previous operation.
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The sets F and G are disjoint sets. Thus, some computations can be avoided by updating
and storing only set F and computing the elements on G on-line when needed. The F
sets for all columns of X are stored as an integer matrix where each column stores the
set of the corresponding column of X . Each column is an integer vector containing the
indexes on F , hence it follows that the indexes not in the column vector are indexes in G.

Instead of using the set V in lines 12 to 20, the original sets used in [12] H1 and H2 are
used, where H1 = {i ∈ Fj : xi < 0}, H2 = {i ∈ G j : yi < 0} and |V |= |H1|+ |H2|. Using
this sets the updating of the set FJ on line 20 simplifies to:

• Remove indexes on H1 j from Fj

• Add indexes on H2 j to Fj

which is performed by adding and removing indexes to each column j of the sets matrix
containing Fj. Sets H1 and H2 are stored in matrices analogous to the integer matrix that
stores the sets Fj. As said before, the updating of G is omitted.

For each j ∈ I there are no dependencies between the columns of F , H1 and H2, therefore
all operations in lines 12 to 20 are parallelized with an OpenMP parallel for pragma.

The column grouping is performed by comparing all Fj with j ∈ I and grouping all the
indexes j1, j2 where Fj1 = Fj2 . The column grouping is performed before the main com-
putations of lines 21 and 22 in order to save resources during the computation. For each
group, the necessary matrices are extracted from AT A and AT B and then the computations
are performed.

For each group with nElems columns sharing set Fj, the matrices AT
F B ∈ ℜsizeF×nElems

and AT
GB ∈ ℜsizeG×nElems are extracted from the matrix AT B computed in the initial

computations of line 3. The matrix extraction is performed by iterating over the rows
of matrix AT B, copying all columns on the column group to the corresponding ma-
trix AT

F B if the row index is in F and to AT
GB otherwise. Analogously, the matrices

AT
F AF ∈ℜsizeF×sizeF and AT

GAF ∈ℜsizeG×sizeF are extracted from the matrix AT A. In this
case, the iteration over the rows of AT A is performed for each column of AT A whose
index is in F .

The feasibility check and the search of the infeasible columns I of lines 9 and 10 are
performed altogether for each group after computing XF j and YG j. During that check
the feasibility sets H1 and H2 are created too. Each time an element is added to H1 or
H2 for any column j, j is added to I and the general solution is set to infeasible. This
feasibility check operations are independent for all columns of each group, because of
this the computation is performed in parallel using an OpenMP parallel for pragma.
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8.5 HALS algorithm

Due to the initialization, the operations in line 7 and line 8 can be omitted, and the
feasibility check can be simplified to check if Yi, j > 0∀i ∈ {1, ...,q}., adding to H2 j all
indexes that do not suit the condition and j to the infeasible columns set I.

8.5 HALS algorithm

The implementation of the HALS algorithm shown in Algorithm 8 needs to receive ini-
tialized W and H matrices, and a number of iterations to perform in the outer loop (be-
cause no convergence criterion has been implemented). A parallel algorithm has been
implemented using BLAS operations when possible, and implementing custom parallel
functions otherwise.

The nonnegative enforcement operator [ ]+ of lines 7 and 8 has been implemented using
the parallel for construct of OpenMP [58]. This was done to speed up the operation
because it is a strictly parallelizable operation with no dependencies. When using the
Intel Compiler (icc) the simd construct from Intel paralellization technologies is used
instead of the OpenMP construct.

Due to the possibility to receive initialization matrices (W and H) of the proposed im-
plementation, matrix H is transposed on entry into matrix B and transposed again on
exit from B to H. This matrix transposition is implemented using the parallelization
technologies mentioned above. Each column of matrix H is processed by a single thread.

In the same way, each column of the normalization on line 2 is processed by a thread.

The initial error estimation from line 3 is performed with two operations:

• dgemm (BLAS3): E =WBT

• dsub (custom op.): E = A−E

lines 6 and 10 have been optimized by doing in-place rank one updates to matrix E,
instead of using a different matrix to contain A( j):

line 6:

• dger (BLAS2): E = w jbT
j +E

line 10:

• dger (BLAS2): E =−w jbT
j +E
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Then each column update of b j and w j is performed with another two operations:

Update of b j (line 7):

• dgemv (BLAS2): b j = ET w j

• halfwave (custom op.): b j = [b j]+

Update of w j (line 8):

• dgemv (BLAS2): w j = Eb j

• halfwave (custom op.): w j = [w j]+

Finally, the normalization of each column of W performed in lines 2 and 9 is implemented
with the following operations:

• dnrm2 (BLAS1): norm = ||w j||2

• dscal (BLAS1): w j = w j./norm

Note that the operator ./ represents an elementwise division of all elements on vector w j
by the scalar norm.

8.6 fHALS algorithm: CPU and GPU implementations

This algorithm is one of the best algorithms to compute the NMF. Its structure with a high
amount of matrix-matrix and matrix-vector multiplications makes it suitable for building
a high performance parallel implementation of the algorithm for both multicore and GPU
architectures.

In order to maximize the performance of the algorithm, the BLAS package was used for
both CPU and GPU implementations. Furthermore, most of the CPU implementations
of BLAS include threaded implementations for multicore CPUs of some functions. The
functions needed to implement the fHALS algorithm are usually threaded. On the other
side, the cuBLAS library for GPU is implemented to make the most of each NVIDIA
GPU architecture. Therefore cuBLAS performance is hardly achievable by user kernels.

First of all, the details that are common to both CPU and GPU implementations are
exposed, and then the singularities of the GPU implementation are explained. In the
CPU version, all the non BLAS operations are performed as described in Section 8.5.
The line numbers in the following subsections make reference to Algorithm 9.
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8.6.1 Common Implementation Details

The matrix-matrix products on lines 6,7,12 and 13 of algorithm 9 have been implemented
using the BLAS3 dgemm function. This is the most costly part of the algorithm and at
the same time, the dgemm function is the most optimized function of the BLAS interface.
This will have a huge impact in the high performance of the proposed implementations.

Then line 9 is implemented with two operations:

• dgemv (BLAS2): x j =−Bv j + x j

• daxpy (BLAS1): b j = x j +b j

In a similar way line 15 is implemented with 3 operations:

• dgemv (BLAS2): p j =−Wq j + p j

• daxpy (BLAS1): p j = q j jw j + p j

• dcopy (BLAS1): w j = p j

The normalization of each column of W performed in lines 3 and 16 is implemented with
the following operations:

• dnrm2 (BLAS1): norm = ||w j||2

• dscal (BLAS1): w j = w j./norm

Note that the operator ./ represents an elementwise division of all elements on vector w j
by the scalar norm.
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8.6.2 GPU Implementation Details

The nonnegative enforcement operator [ ]+ of lines 9 and 15 has been implemented
using the CUDA kernel listed below. The kernel is executed with a one dimensional
grid of threads, which launches a thread per element of the enforced vector (b j or w j
respectively). There are no dependencies in this operator so it is a perfect scenario for a
SIMT kernel.

_ _ g l o b a l _ _ void vdha l fwave_cuda ( c o n s t i n t n , double∗ _ _ r e s t r i c t _ _ x )
{

unsigned i n t pos = blockDim . x ∗ b l o c k I d x . x + t h r e a d I d x . x ;

i f ( pos < n )
i f ( x [ pos ] < EPS )

x [ pos ] = EPS ;
}

The matrix transposition needed to change the entry matrix H into the matrix B = HT

used in the algorithm is performed using the BLAS-like extension function of cuBLAS
dgeam.

The other peculiarity is the creation of two CUDA streams so the matrix-matrix opera-
tions on lines 6, 7 and lines 12, 13 can be executed concurrently. Each two multiplications
are independent between them, and can be executed concurrently if the GPU has enough
cores to perform both operations simultaneously. This concurrent execution will depend
on the problem size and the hardware resources of the GPU. The planner of cuBLAS is
in charge of that decision. The algorithm flow for a parallel stream execution is shown
on Figure 8.1.
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Figure 8.1: Execution flow of one iteration of the fHALS GPU algorithm with two streams in parallel.
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Chapter 9

Experimental Evaluation

In this chapter, some experimental evaluations performed during the development of
this thesis are presented. First, an evaluation of the β parameter of the multiplicative
β -divergence algorithm for solving the NMF is presented. Then, the best implemen-
tations developed are compared in terms of computational performance and execution
time. In section 9.3, an evaluation of the fHLAS GPU implementation is presented and
the fHALS GPU algorithm is compared with the MLSA algorithm present in the exist-
ing NNMFPack library. Finally, some conclusions about the experimental results are
discussed.

9.1 Beta parameter evaluation

In real applications the choice of the β parameter presents a problem for the users of the
NMF when the Beta divergence multiplicative algorithms are used (see Section 2.4.3.
The users must decide what value to use to obtain the best approximation. Initially,
there is no best β parameter value for the NMF that ensures the minimal error among
different values of β . In practice, the accuracy of the solutions given by the β -divergence
algorithms seems to be related to the target problem. Due to this ambiguity an evaluation
of the influence of the parameter β in the approximation error for different problems was
performed.
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The easiest way to evaluate this relation may be to use artificial datasets, but these ex-
periments may not show the relations among data. That relations can probably influence
the behaviour of the errors in the approximation of A by WH. Therefore to test Machine
description properly the experiments must be performed with real datasets from practical
problems, because these data may contain latent variables that affect to the final result of
the factorization.

Exploiting that feature, this evaluation computed which value of the β parameter is the
best to obtain the best approximation for each type of problem. Obviously, different
matrices of each type were used to generalize the analysis for a given subset of problems.

9.1.1 Algorithms and data

The computational library NNMFPACK (see Chapter 4) was used in the experiments. NN-
MFPACK has an implementation of the multiplicative algorithm (2.11) called dbdiv_cpu.
This routine has eight parameters: dbdiv_cpu(m, n, k, A, W, H, beta, iters). The first
three are the dimensions of the problem (m,n,k). Then, matrix A is the problem matrix.
Matrices W and H, on input, are the initialization matrices W0 and H0; on output they are
the solution matrices W and H. Last, beta is the β parameter and iters is the number of
iterations.

For the evaluation process, the algorithm was executed several times varying some of the
parameters. The β parameter values were selected between 0 and 2 because these are
the values usually used in practical applications [29]. Derived from observations during
the tests, different β values were used in some experiments as it will be explained in
the proper section. The iteration number (iters) was set to 100, 200 and 400 iterations.
Other NMF packages (e.g. MATLAB) use 100 as their default number of iterations that
the algorithm must perform, this number was increased to evaluate the effect on the error
measures. Finally for the k parameter the size selected was min(m,n) divided by 2, 4 and
8. Each k gives us a problem which will be tackled by varying the other two parameters.

In order to assess correctly the influence of the β parameter, the algorithm was tested
over data from different types of problems. So we can look deep through the relation of
the problem data and the β parameter.

Despite the algorithm tries to minimize the β -divergence error the Frobenius norm of
A−WH was used as another measure of quality of the solutions. Both error measures
were computed as:

errF =
‖A−WH‖F√

mn
, errβ =

√
2Dβ (A|WH)
√

mn
. (9.1)
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Observe that dbdiv_cpu tries to minimize errβ but for β = 2 we get errF = errβ . Obvi-
ously the highest decrease in errF is expected to be reached when β = 2.

9.1.2 Test matrices

The matrices used in the experiments are described below.

1. Random matrices: The problem matrix A was generated randomly and so were
the initialization matrices W0 and H0. The matrices were generated using an uni-
form distribution. To avoid side effects coming from the random number genera-
tion method, some tests were performed with normal distribution generation too.
Motivated by the results of the first experiments the tests were repeated with several
ranges of the elements of the matrices:

(a) [0-1]: The basic approach was to generate random matrices with entries be-
tween 0 and 1.

(b) [0-255]: Grey scale images give rise to matrices with entries between 0 and
255. In this case random matrices in the same range of the images (0-255)
were tested.

(c) [x-y]: The results of the experiments with the previous two types showed that
the range of the matrix values is related with the β parameter influence. Some
more tests were executed with different ranges of values to prove this relation
between β and the range of the matrix values.

2. Synthetic matrices: In this experiment two random matrices W and H with a fixed
k were used to create the matrix A. The matrix was created as: A =WH +ε , being
ε a little constant error. The initial matrices W0 and H0 were generated randomly
as in the experiments with type 1 matrices.

3. Images: This experiment was developed using grey-scale images as data matrices.
For each image processed, a set of initial matrices (W0, H0) with certain k were
created. Each set of 3 matrices (A, W0, H0) gives us a complete problem to test the
β parameter and the number of iterations.

(a) [0-255]: The original images were equivalent to matrices valued between 0
and 255.

(b) [0-1]: Using the information of the random matrices experiment, some tests
were done scaling the matrices to 0-1 range.
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4. Audio matrices: The last experiment was to decompose matrices in the frequency
domain [106] extracted from music tracks. These matrices were a great candidate
to obtain information of the relation between the data of the matrix and the best
β value because the matrices are extracted from a real world problem. The initial
matrices W0 and H0 were generated following a uniform 0-1 distribution and a
folded normal distribution in different tests.

(a) without scaling: The elements of the original audio matrices in the spectrum
domain had different ranges of values. The test were performed with 5 audio
matrices called from this point forward: audio matrix 1-5.

(b) scaled: The audio matrices of (a) were scaled down to values between 0 and
1.

9.1.3 Experimental results

All the experiments were performed in Server1, which is described in Appendix A.1.

The NNMFPACK library works over several architectures and can be installed with dif-
ferent software configurations. The NNMFPACK has parallel implementations of the
evaluated algorithm for GPU and many-core (Intel MIC), but this work does not focus
on execution speed so the test were performed only on CPU. The software configuration
used in this installation of the library was: icc as compiler and MKL as mathematical
library.

Random matrices

Tests proved that there was no difference between both types of random number gen-
erated matrices (normal distribution or uniform distribution), when the dbdiv_cpu algo-
rithm is applied. The experiments with the matrices of type 1.(a) [0-1] showed that the
Frobenius error and the β -divergence error always decrease when the number of iter-
ations are increased as expected. With regard to variation of β parameter, both error
measures have their maximum value in β = 0 and decrease continuously as β increases
up to β = 2. In the case of β > 2 a difference between both error measures appears.
The Frobenius error has its minimum in β = 2. On the other hand, errβ decreases while
β increases. In the multiplicative updates (2.11) the β is an exponent and this causes
an overflow when big values of β (e.g. β > 128) are reached. Therefore the best β -
divergence error that can be achieved is the one with the biggest β executable without
overflowing. This behaviour is represented in Figure 9.1(a).
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Figure 9.1: Evolution of Frobenius error and beta-divergence error

In the matrix type 1.(b) [0-255] the Frobenius error keeps the same behaviour, with its
best value in β = 2. Nevertheless the β -divergence error has its minimum value in β = 0
and increases with the increment of β . This behaviour is represented in Figure 9.1(b).
Note the different value of the Frobenius error, which is 20 times lower in the [0-1] case
than in the [0-255] case.

Finally for the matrix type 1.(c) the behaviour was the same as for the type 1.(b) tests.
That is, Frobenius error having its minimum in β = 2 and β -divergence having it in
β = 0. Furthermore, the errors were bigger for bigger values of the upper limit of the
range (y) and for wider range (y− x).

Synthetic matrices

The goal of this experiment was to check the accuracy of the NNMF when an exact
solution exists for a given k. The error added to the matrix creation is to simulate some
noise in the data matrix.

The trends of both error measures were the same as in the case of the random matrices, in
the [0-1] case as well as in the [x-y] case and both errors increase as the noise introduced
in the generation process (ε) does. If ε = 0 the algorithm returned the exact matrices for
all β values.
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Images

For the type 3.(a) [0-255] matrices, the same behaviour is observed for both measures:
With more iterations the error decreases. The lowest error value is obtained always with
β = 0, increasing the error while β is increased (see 9.1(b)).

For the type 3.(b) [0-1] matrices, both error measures decrease when the number of it-
erations increase. The errβ starts from the same value than in the matrices of type 3.(a)
but now decrease while β is increased. In addition, the Frobenius error has a differ-
ent behaviour, keeping its lower value in β = 0 and increasing it as β grows. Despite
maintaining its tendency, the scaling decreases notoriously the Frobenius error for all β

values. Table 9.1 shows an example of these results.

Table 9.1: Image value range comparison 0-255 vs 0-1 with 100 iterations

Case β value
0 0,5 1 1,5 2

errβ 0-255 0.142010 0.465982 1.576253 5.424420 19.030323
errβ 0-1 0.142010 0.116609 0.098708 0.085005 0.0746287

errF 0-255 15.296724 15.663154 16.539595 17.644217 19.030323
errF 0-1 0.059987 0.061424 0.064861 0.069193 0.0746287

Note that this experiments and the corresponding results have been carried out by iter-
ating up to 400 iterations. This is the reason why it seems to have a different behaviour
compared to the random and synthetic matrices experiments. That experiments showed
that the Frobenius error always had its minimum value for β = 2, contrary to the results
of that images test which gives us a minimum value for β = 0. But, increasing the num-
ber of iterations in several tests showed that the minimum Frobenius error value tends to
happen for β = 2. In the image whose data is in the Table 9.1 we achieve the point where
the minimum Frobenius error matches β = 2 with 13200 iterations. This effect will be
detailed in Section 9.1.3. Once achieved that point, the matrix types 3.(a) and 3.(b) be-
have like the matrix types 1.(b) and 1.(a). This behaviour is represented in Figures 9.1(b)
and 9.1(a).

Audio processing matrices

For the matrix type 4.(a) as the number of iteration increases both error measures de-
crease as expected. The β parameter shows the influence of the relation between the data
into the matrices giving us two different behaviours: the Frobenius error has its mini-
mum for β = 1.5 for all audio matrices and the β -divergence error has its minimum in
a different value depending on the matrix as shown in Table 9.2. The Frobenius error

122



9.1 Beta parameter evaluation

being minimal in β = 1.5 implies that each problem has a different optimum value for β .
Furthermore, having β -divergence minimum values for different β values implies that
each matrix can behave differently for the β -divergence error measure.All these mea-
sures were carried out with up to 400 iterations.

Table 9.2: Value of β parameter for the minimum β -divergence error

audio matrix # 1 2 3 4 5
β 0.5 0 0 0.5 0.5

For the audio matrices type 4.(b) [0-1] both error measures decrease notoriously and
behave in the same way as in the type 3.(b) [0-1] (see Figure 9.1(a)). The Frobenius
error decreases when β increases keeping its behaviour and the β -divergence error begins
decreasing with the increment of β instead of increasing.

To ensure the Frobenius error will reach the best value in β = 2, as said in subsection
9.1.3, we tested all audio matrices (4.(a) and 4.(b)) increasing the number of iterations.
The Figure 9.2 shows the evolution of the Frobenius error for each β value. They always
reach the point were the Frobenius error is smaller for β = 2 than for β = 1.5. But there
is no fixed number of iterations where that will occur (e.g. audio matrix 1 arrives to
the point around 1200 iterations, audio matrix 2 around 6200 and audio matrix 3 around
3300).

9.1.4 Result analysis

The main results obtained during the experiments are outlined here:

1. As the experiments showed, increasing the number of iterations always decreases
the error obtained, with independence on the β parameter. This is the expected
behaviour because the multiplicative algorithm used is based on a gradient descent
minimization. Is the user choice to increase the number of iterations to get a better
result. There is a trade-off between computing time and accuracy that the user must
evaluate.

2. The experiments also showed that scaling the matrix to the range 0-1 both error
measures decrease, independently of what is the chosen β value. Also, when the
matrices are scaled to this range, β -divergence error decreases with the increment
of β indefinitely, as seen in Section 9.1.3.
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Figure 9.2: Evolution of the Frobenius error when the iteration number is increased in audio matrix 1.

3. The Frobenius error always has its best value in β = 2 if enough iterations are done.
That is completely logical because for β = 2 the β -divergence is mathematically
equivalent to the Frobenius error. So for β = 2 we are minimizing the Frobenius
error.

4. Taking only the iteration number as measure of algorithm progression, it seems
not worth to increase the number of iterations so much to achieve the minimum
value of the Frobenius error at β = 2. But if total execution time is considered it is
worth. The NNMFPACK library has been optimized for certain values of β . In the
case of β = 2 the library uses an efficient implementation of the MLSA algorithm
[37] which is considerably faster than the generic β -divergence algorithm. Figure
9.3 shows the variation of execution times when iterations are increased. Generic
cases (β = 0, β = 0.5 and β = 1.5) have the same computational cost. As can be
seen, a big amount of iterations for β = 2 are still faster than a few iterations for
β = 1.5 achieving a smaller Frobenius error.

5. Matrices from real applications (image and audio) always reach better error with
the same number of iterations than its random equivalent. This shows that the
NNMF exploits the relation between data as expected.
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Figure 9.3: Execution times.

9.2 Experimental comparison of the proposed implementations

The purpose of the experiments presented in this section is to compare the performance
of the implementations developed. The tests are designed to test the performance of the
proposed implementations (see Chapter 8) and not the performance of the algorithms
themselves. The performance of the algorithms was evaluated by the original authors of
each algorithm when the algorithms were presented [43, 44, 35]. The experiments into
this section have been executed in the machine described in Appendix A.4 using only 40
physical cores to avoid core overlapping. In order to avoid system load effects during
the timing of the algorithms, each test was executed 10 times and the execution time
obtained was averaged.

The experiments show the results obtained by testing the best implementations developed
to solve the general NMF ( 2.3): fHALS and GCD algorithms. These implementations
are tested against the MLSA algorithm present in the existing NNMFPack library (this
algorithm is hidden under the β -divergence multiplicative algorithms with β = 2, check
Chapter 4 for additional information). The HALS algorithm is also tested for reference
against its fast version.
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9.2.1 General implementation comparison

The first tests which results are presented in Table 9.3 were performed using random
matrices with values between 0 and 1 for all three A, W0 and H0 matrices. The random
numbers were generated using a uniform distribution. As each algorithm has a different
error reduction per iteration, all algorithms were executed until they achieved a given er-
ror bound. This is the proper way to test the performance of the implemented algorithms,
because the time needed to achieve the desired error is compared. The error measure used
in all the experiments of this section is the following:

errF =
‖A−WH‖F√

mn
(9.2)

The selected error for the tests was the one given by the MLSA algorithm with 100
iterations. Usually, less than 100 iterations are used when solving problems with the
multiplicative algorithm from Lee and Seung [15, 94, 106]. In some cases the GCD
algorithm obtained a error lower than the MLSA algorithm with only one iteration and
the desired error was adjusted to that one, thus increasing the number of iterations of the
MLSA algorithm.

Table 9.3 shows the results of the experiments for two matrix sizes of m,n,k=(1000,800,200)
and m,n,k = (10000,8000,200). The k dimension is fixed to 200 because k is usually
smaller than m and n and related to the problem solved by the factorization. Together
with the execution time obtained by each algorithm and matrix size, the number of iter-
ations needed too achieve the error bound and the error obtained are shown.

Table 9.3: Experimental comparison of the selected implementations to compute the NMF with random
(0,1) matrices

(1000,800,200) (10000,8000,200)
algorithm Iters Time (s) Error Iters Time (s) Error
MLSA 100 0.199 2.384e-01 200 17.722 2.830e-01
HALS 24 2.216 2.402e-01 10 63.339 2.817e-01
fHALS 10 0.066 2.387e-01 6 0.758 2.826e-01
GCD 3 0.978 2.400e-01 2 7.835 2.825e-01

The results of Table 9.3 show clearly that the proposed fHALS implementation is the
fastest, while the HALS algorithm has a very poor performance being even slower than
the MLSA algorithm. The GCD algorithm obtains good results, being faster than MLSA
for the bigger size but much slower than fHALS algorithm. However, the performance
obtained is far from the claims of the original paper, which claimed that GCD was faster
than fHALS algorithm.
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The NMF has a strong dependence on the data into the matrix to factorize, so the perfor-
mance of the implementations may change depending on the data matrix. Furthermore,
the inner loop of the GCD algorithm has a convergence criterion which may affect the
results obtained in a significant way. Figure 9.4 shows the execution time of the tested
algorithms for three different matrix types of size m,n,k = (1000,800,200): random ma-
trices with values in the range 0−1, random matrices with values in the range 0−1, and
synthetic matrices. The synthetic matrices were generated by creating random 0− 1 W
and H matrices, multiplying them and adding an small error proportional to the norm of
the matrix. In this case the error used was 0.001.

Figure 9.4: Execution time of the tested implementations for three different matrix types of size
m,n,k = (1000,800,200).
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Figure 9.4 shows that MLSA is very stable, offering the same execution time for all ma-
trices tested. On the other hand, the HALS algorithm seems to be sensitive to the values
of the matrix, offering better results with a wider range of values into the matrix. fHALS
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algorithm does not seem to suffer that influence from the data values. Furthermore,
fHALS algorithm keeps being the fastest algorithm for all matrix types. GCD algorithm
is still slower than MLSA but its performance increases for synthetic matrices.

On Figure 9.5 the same matrix type comparison is performed with matrices of size
m,n,k = (10000,8000,200). In this case, MLSA is stable with the matrix type again
but HALS algorithm has a significant performance improvement for the synthetic matri-
ces. This performance improvement is because the algorithm needs only a few iterations
to achieve the error bound selected. Again, fHALS is the fastest algorithm, but GCD is
faster than MLSA as seen in Table 9.3. Furthermore, the performance of GCD is greatly
increased for the synthetic matrices.

Figure 9.5: Execution time of the tested implementations for three different matrix types of size
m,n,k = (10000,8000,200).
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In order to test the performance of the proposed implementations with real application
matrices, the implemented algorithms were tested with two image matrices used in im-
age compression applications. Figure 9.6 shows the performance of each implemented
algorithm for each image. Again fHALS is the fastest algorithm with a notable differ-
ence for both images. The GCD algorithm implementation is faster than MLSA for the
first image and slower for the second image. This may be explained due to the inner
convergence condition of the GCD algorithm, which as said before, may be sensitive to
the data in the matrix.

Figure 9.6: Execution time of the tested implementations for two different image matrices. Image 1
has a size of m,n = (950,950) and the k used in this test is 95. Image 2 has a size of m,n = (1536,2304)
and the k used in this test is 154.
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9.2.2 Influence of matrix dimensions on the performance

In the general implementation comparison the GCD was faster than MLSA on the bigger
size and slower in the smaller. In order to clarify that apparent relation between the matrix
size and the performance of the algorithms, Figure 9.7 shows the execution time of the
four tested algorithms for different matrix sizes. The experiments shown in the figure
were performed using random matrices with values in the range 0− 1 and increasing
the matrix size proportionally while keeping the k fixed (m,n,k = (2500,2000,200),
(5000,4000,200),(10000,8000,200),(15000,12000,200)).

Figure 9.7: Evaluation of the influence of the matrix size in the performance of the proposed imple-
mentations

2,500 5,000 10,000 15,000

0

10

20

30

40

50

60

70

80

90

Ti
m

e
(s

)

MLSA
HALS
fHALS
GCD

Figure 9.7 shows that the execution time of MLSA and HALS algorithm is greatly in-
creased with the problem size. Furthermore, while MLSA algorithm is faster than GCD
algorithm for the smallest sizes, it becomes slower for sizes bigger than m = 5000. The
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execution time of fHALS algorithm only increases slightly with the problem size, which
shows that fHALS algorithm is even better for big problem sizes.

The GCD and fHALS algorithms internal loops iterate over the k dimension of the de-
composition, so the better performance of these algorithms in the bigger matrix sizes
may be due to k << m,n. This may affect specially the GCD algorithm because the
convergence criterion of the inner loop impacts highly the overall performance of the
algorithm. To test that, Figure 9.8 shows an evaluation of the influence of the k dimen-
sion on the performance of the proposed implementations. For that tests, a matrix size
of m,n = (10000,8000) have been chosen and the k dimension have been incremented
from 200 to 3200.

Figure 9.8: Evaluation of the influence of the k dimension in the performance of the proposed imple-
mentations
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Figure 9.8 shows that the performance of GCD, HALS and fHALS (in a smaller pro-
portion) decreases when the k dimension of the problem increases. Furthermore, the
execution time of the GCD implementation was cropped form the figure for k = 3200
because it was too high. With that value of GCD the proportions of the figure did not
allowed to see the differences between MLSA and fHALS and those differences are a
key point of Figure 9.8.

9.2.3 Convergence evaluation of the implemented algorithms

At the beginning of Section 9.2.1 it was stated that the algorithms have different error
reduction per iteration. This may cause that in the previous experiments some algorithms
may benefit of the error bound selected. Those algorithms that decrease the error greatly
in the first iterations but converge to a bigger error value are benefited if the error bound
is bigger than the error achieved after convergence. On the other hand, some algorithms
may converge slower but achieve a lower error bound.

Figure 9.9 shows the convergence properties of the proposed implementations by plotting
the error value as the execution time goes by. The results show that both GCD and
fHALS implementations obtain a lower error value when the convergence is achieved and
their errors decrease faster than the error of the MLSA implementation. More precisely,
the fHALS algorithm has the fastest error decrease and achieves the lower error once
convergence is achieved.
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Figure 9.9: Convergence comparison of the implemented algorithms
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9.3 fHALS GPU evaluation

The performance evaluation was performed in a the machine described in Appendix A.4.
All CPU tests were performed with 40 threads to avoid physical core overlapping and
only one GPU was used.

Like in the general experiments, 10 different executions have been measured and av-
eraged for each test case. This was done to avoid system load side effects in the time
measurement.

Table 9.4 shows the execution time and error result of both algorithms MLSA and fHALS
executed over both architectures GPU and CPU. The evaluation shown in Table 9.4
has been performed with three different test cases of different size. As the size of
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k is usually much smaller than m and n, we have kept a fixed k = 2000 while in-
creasing the size of m and n in order to test the influence of the problem size on the
performance of each implementation. The three test cases evaluated are (m,n,k) =
(5000,4000,2000),(10000,8000,2000) and (20000,16000,2000).

Taking into account that the fHALS algorithm has a larger error reduction per iteration
than MLSA, the number of iterations of each algorithm has been fixed to a certain value
to achieve a similar error in both algorithms. That way a fair execution time comparison
can be performed. As stated before, comparing both algorithms with the same number
of iterations would not be right. All experiments in this section have been performed
with 165 iterations for MLSA algorithm and 3 iterations for fHALS algorithm, except
the smaller problem (5000,4000,2000) which needed 4 fHALS iterations.

Table 9.4: Performance comparison between HALS and MLSA algorithms using both CPU and GPU
architectures for different problem sizes

(5k,4k,2k) (10k,8k,2k) (20k,16k,2k)
arch. algorithm Time Error Time Error Time Error

CPU MLSA 45.75 2.518e-01 136.33 2.767e-01 464.68 2.854e-01
fHALS 10.20 2.513e-01 38.61 2.850e-01 113.89 2.863e-01

GPU MLSA 11.75 2.519e-01 36.55 2.767e-01 130.79 2.854e-01
fHALS 3.05 2.4928e-01 4.28 2.768e-01 9.14 2.833e-01

The results presented in Table 9.4 show that the fHALS algorithm is faster than MLSA
in both architectures tested. Furthermore, the GPU implementation of fHALS algorithm
improves its performance with the increase of the problem size. This is easier to observe
in the speedup comparison presented in Figure 9.10.

Figure 9.10 shows 4 speedup comparisons for the 3 problem sizes evaluated in Table
9.4. The first one labelled as fHals shows the speedup of the GPU implementation of
the fHALS algorithm with regard to the CPU implementation. The second comparison
labelled as MLSA shows the speedup of the GPU implementation of the MLSA algorithm
with regard to the CPU implementation (implementations present in the NNMFPack
library). Then, the third block labelled as CPU represents the speedup between the CPU
versions, showing the speedup of fHALS algorithm with regard to MLSA algorithm.
Finally, the last 3 bars labelled as GPU show the speedup between the GPU versions,
again the speedup of fHals algorithm with regard to MLSA algorithm.
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9.3 fHALS GPU evaluation

Figure 9.10: Speedup comparison
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The first block of Figure 9.10 shows clearly that our GPU implementation of the fHALS
algorithm improves its performance with the increase of the problem size. This is proba-
bly due to the great performance given by the GPU for matrix-matrix multiplications that
represent the most of the cost of the fHALS algorithm. Furthermore, due to the k being
fixed, the inner loops of Algorithm 9 which are less efficient represent a smaller part of
the cost in the bigger problems.

The second block surprisingly shows that the performance of the MLSA algorithm imple-
mentation for GPU decreases slightly respect the CPU implementation when the problem
size grows.

The comparison between the CPU version of both algorithms shows a constant speedup
around 4 independent of the problem size. This is consistent with previous literature
which showed that fHALS algorithm is faster than MLSA algorithm.
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Finally, the comparison between the GPU version of both algorithms again show that
our GPU implementation of the fHALS algorithm has a great performance that increases
with problem size.

Figure 9.11 shows the execution time obtained by the GPU versions of both algorithms
with problems of m = 20000 and n = 16000 with variable k. The figure shows that the
GPU implementation of the MLSA algorithm is more sensitive to the k dimension of the
problem than the fHALS GPU implementation.

Figure 9.11: Evaluation of the influence of k dimension in GPU implementations
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9.4 Conclusions

First of all the β parameter evaluation offered interesting information about the influence
of the β parameter on the NMF when using the β -divergence multiplicative algorithms.
Furthermore, the experiments helped to prove empirically some claims about the NMF
like the exploit of the data relationships within the matrix.

The experimental comparison showed that the proposed fHALS implementation is the
fastest for all cases among all of the implemented algorithms. However, the evaluation
of the influence of the k dimension showed that the proposed fHALS implementation
may be slower than the MLSA implementation for big values of k. Furthermore, the
convergence evaluation shows that fHALS achieves the lowest error with the lowest ex-
ecution time.

Finally, the GPU evaluation shows the great performance obtained by the GPU imple-
mentation of the fHALS algorithm. Furthermore, the performance of the GPU imple-
mentation presented increases with the problem size, making the GPU fHALS imple-
mentation a very powerful tool for those scientists and engineers that use the NMF in
high dimensionality problems. These experiments showed again that both proposed im-
plementations (GPU and CPU) of fHALS algorithm have better performance than its
counterparts for the MLSA algorithm.
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Improved NNMFPack library

During the development of this thesis many efficient parallel algorithms have been im-
plemented to compute the NMF and to find the solution of NNLS problems. This im-
plementations are meant to be used by other scientists, engineers or whoever can benefit
from the properties of the NMF in their work. As the potential users of the proposed im-
plementations may not have computer programming knowledge, it is necessary to build a
computational library containing the implementations developed. The development of an
easy to use NMF computational library is one of the main goals and accomplishments of
this thesis. Because it is the way to share the improvements obtained in the computation
of the NMF with the scientific community and the society.

10.1 Library overview

Instead of developing a new computational library from scratch with the proposed im-
plementations, the author decided to continue the NNMFPack project that was originally
developed by the INCO2 research group in which the author have worked during the
development of this thesis. For more information about the existing NNMFPack check
Chapter 4.

Integrating the proposed implementations into NNMFPack allowed to take profit of the
already developed multi-architecture installation process and some common functions
already integrated into the library. On the other hand, the integration of new algorithms
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improves the overall quality of the library increasing the possibilities offered by the li-
brary. Furthermore, some of the new implemented algorithms outperform the equivalent
algorithms existing into the library.

Due to the introduction of a wide range of algorithms with different purposes the library
has been structured to make it easier to understand for the users. This new structure will
be detailed in Section 10.2.

In addition, a new Python interface have been added to the library. Nowadays there are
many scientist moving from the traditional solutions of MATLAB/Octave towards the
Python programming language for scientific computation. This is due to Python usability
and the availability of powerful scientific packages like numpy or scipy. Including a
Python interface for the library increases the number of potential users of the library.

Together with the addition of the new algorithms, some code maintenance and improve-
ments have been performed to the library. Furthermore, the source code is now hosted in
a public GIT repository[107].

10.2 Implemented algorithms

The new implemented algorithms together with the existing algorithms have been divided
into three main categories:

• NMF General: In this category are included all the algorithms that perform the
computation of the NMF minimizing the Frobenius norm. The algorithms into this
category receive on entry the matrix to decompose A, the initialization matrices
W0 and H0, the factorization dimensions (m,n,k) and the number of iterations to
perform. On output the factorized matrices W and H are obtained.

• NMF Specific: This category groups the algorithms that have special properties or
minimize a different metric to compute the NMF.

• NNLS: In this category are included algorithms to solve the NNLS problem with
multiple right hand sides.

First of all we are going to list the implemented algorithms under the NMF General
category and justify its inclusion into the library. For all of them, matrices W and H are
on input the initialization matrices (W0,H0) and on output the result of the factorization.
In the function prototype definition < p > represents the floating point precision (s for
single precision or d for double precision) and < ARCH > corresponds to the target
architecture (cpu, gpu or mic).
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10.2 Implemented algorithms

• MLSA: The MLSA algorithm was already available into NNMFPack under the
β = 2 case of the β -divergence multiplicative algorithms. With the new structure
of the library it is better to expose the function directly to the user under the General
NMF category. The function prototype of the algorithm is:

i n t <p>mlsa_ <ARCH>( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t i n t n I t e r ) ;

• fHALS: The fHALS implementation is the fastest implementation of the HALS
algorithm and the one that proved to be the best algorithm to compute the NMF
between the tested algorithms. The author decided to include only the fHALS
algorithm into the library because the HALS algorithm yields the same results but
with a higher execution time. The function prototype of this algorithm is:

i n t <p> f h a l s _ <ARCH>( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t i n t n I t e r ) ;

• ANLS-BPP: The ANLS-BPP algorithm has proved to be the only algorithm whose
performance is comparable to fHALS algorithm and it can be faster than fHALS
algorithm for certain datasets. This is a strong enough reason to include the algo-
rithm into the library. The function prototype of this algorithm is:

i n t <p> a n l s b p p _ c p u ( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t i n t n I t e r ) ;

• GCD: While the GCD algorithm is slower than the fHALS algorithm, its variable
selection strategy that decreases the number of variable updates may enable the
CGD algorithms to obtain good resultas with certain datasets, specially sparse and
large datasets. The function prototype of this algorithm has an extra parameter
epCD that represents the accuracy used to solve the internal subproblems (typically
epCD = 0.001):

i n t <p>GCD_cpu ( c o n s t i n t m, c o n s t i n t n , c o n s t i n t k ,
c o n s t double ∗A, double ∗W, double ∗H,
c o n s t i n t n I t e r , c o n s t double epCD ) ;
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Next, the following algorithms are implemented under the NMF Specific category:

• β -divergence multiplicative algorithms: The original algorithms present in NN-
MFPack have classified this category. Furthermore, the option of computing a
partial NMF have been moved to the NNLS category for code clarity and because
it fits better the type of problem under that category. The new function prototype
is:

i n t <p>bdiv_ <ARCH>( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t double be ta , c o n s t i n t n I t e r ) ;

• Constrained β -divergence multiplicative algorithms: The sparsity and smooth-
ness constrained β -divergence multiplicative algorithms have been added.With this
algorithms the user has the possibility to enforce the desired level of sparsity or
smoothness into the computed NMF. The function prototype adds three new pa-
rameters respect to the unconstrained β multiplicative algorithms. The scalars al-
phaW and alphaH to control the strength of the restriction into the correspondent
matrix, and the restr parameter to choose which restriction to apply:

i n t <p> b d i v R e s t r i c t _ c p u ( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t double be ta , c o n s t i n t n I t e r ,
c o n s t double alphaW , c o n s t double alphaH ,
c o n s t unsigned s h o r t r e s t r ) ;

• NMF affine: The affine NMF algorithm is useful to improve the quality of the
NMF decompositions for datasets with constant parts within the observations. While
it computes the NMF minimizing the Frobenius norm, it is classified under the
NMF Specific category because its benefits are limited to certain datasets or prob-
lems. The function prototype includes the vector w which is the offset to absorb
the common parts of the entries of the dataset:

i n t <p> a f f i n e _ c p u ( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, double ∗w, c o n s t i n t n I t e r ) ;

Finally, under the NNLS category are grouped several algorithms that compute a partial
NMF decomposition where only one of the factorized matrices is computed. Which
in the case of frobenius norm minimization corresponds to a multiple right hand sides
NNLS problem.
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• BPP: The BPP NNLS algorithm is the building block of the ANLS-BPP algorithm
to compute the NMF. But on its own, is an excellent algorithm to solve NNLS
problems with multiple right hand sides. The function prototype is as follows:

i n t <p>bpp_cpu ( c o n s t i n t q , c o n s t i n t r ,
c o n s t i n t p , c o n s t double∗ A,
c o n s t double ∗B , double ∗X ) ;

where matrix A ∈ Rp×q is the coeficient matrix, B ∈ Rp×r is the matrix whose
columns are the independent vectors of each NNLS problem and X ∈ Rq×r

+ is the
solution matrix whose columns are the solutions to each NNLS problem.

• Partial β -divergence multiplicative algorithms: The option to perform a partial
decomposition with the β -divergence multiplicative algorithms is the equivalent to
an NNLS with multiple right hand sides but minimizing the β divergence instead
of the frobenius norm. The function prototype is the following:

i n t <p>bdiv_ <ARCH>( c o n s t i n t m, c o n s t i n t n ,
c o n s t i n t k , c o n s t double ∗A, double ∗W,
double ∗H, c o n s t double be ta , c o n s t i n t uType ,
c o n s t i n t n I t e r ) ;

when uType is set to UpdateAll the corresponding β -divergence multiplicative al-
gorithm is called internally.

• ASNA: The ASNA algorithm algorithm performs a equivalent operation to solv-
ing a NNLS problem with multiple right hand sides but minimizing the Kullback-
Leibler divergence. The parallel version of the ASNA algorithm has been included
with the following function prototype:

i n t <p> asna_cpu ( c o n s t i n t f , c o n s t i n t n ,
c o n s t i n t o , c o n s t double∗ X,
c o n s t double∗ B ,
double∗ W , c o n s t i n t i t e r , c o n s t i n t nnz ) ;

where X ∈ R f×o
+ is the matrix to factorize, B ∈ R f×n

+ is the dictionary matrix, W ∈
Rn×o
+ is the weights matrix to compute and nnz is a parameter to restrict the memory

need of the algorithm representing the maximum number of active observations.

Unlike the existing algorithms of the library, the new implemented algorithms are not
available for all the architectures supported by the library. Only the fHALS algorithm has
been implemented for all the supported architectures, due to its good performance shown
in Chapter 9 and its good properties to be implemented into accelerator architectures.

143





Chapter 11

Conclusions

The research performed during the development of this thesis had two main branches:
the updating of nonnegative factorizations and the efficient parallel implementation of
algorithms to solve nonnegative factorizations. In this chapter, the main contributions
arising from both research branches are discussed. The published results are listed in
Section 11.4 and some future work is outlined in Section 11.5. Finally, some acknowl-
edgements are presented in Section 11.6 in thanks for the support and funding received
from several institutions to complete this thesis.

11.1 Updating of Nonnegative factorizations

This branch of the thesis focused on the algorithmic part of the problems, in contrast with
the other branch of the thesis which focused on the computational implementation of the
algorithms. In this branch, the problem of updating nonnegative factorizations has been
studied for the Nonnegative Least Squares problem (NNLS) and for the Nonnegative
factorization (NMF). An algorithmic scheme was developed for each problem. Several
updating algorithms were proposed following the developed scheme, and the experimen-
tal tests offered promising results. In addition, the updating of the NMF was tested with
data that came from a real-world application.
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The key contributions in the updating branch are:

• the idea of using an updating scheme to solve the updating of nonnegative de-
compositions, decreasing the time needed to compute the solution of the updating
problem.

• the mathematical description of the different variants of the updating problem ap-
plied to the NNLS problem.

• the proposed algorithms for solving the updating problem for the Nonnegative
Least Squares problem and for the Nonnegative Matrix Factorization.

11.2 Implementation of algorithms to solve nonnegative factorizations

The main contribution of this branch is the development of an efficient computational
library to compute Nonnegative decompositions, which evolved from the existing NN-
MFPack project. The new library supports several new algorithms to compute the Non-
negative Matrix Factorization, as well as some algorithms to solve the Nonnegative Least
Squares problem. The new algorithms included were selected from the best existing al-
gorithms for solving the NMF. This library allows high performance implementations of
the supported algorithms to be executed in order to compute the NMF with an easy-to-
use interface. Furthermore, the user does not need to know the details of each algorithm
in order to take advantage of its properties. In addition, a new python interface has been
developed to increase the number of potential users of the library. This interface has great
potential due to the increase in popularity in the last few years of python for scientific
computation programming.

During the development of the efficient parallel implementations of the new algorithms
that are included in the library, an experimental evaluation has been carried out to com-
pare the performance of the implemented algorithms. This evaluation was necessary
because the theoretical performance of the algorithms may change once they are imple-
mented using High Performance Computing techniques. The experimental evaluation
showed the difference in performance among the algorithms implemented for a set of
test cases. This difference is shown by comparing the execution time needed to achieve
a given error bound by each algorithm implementation. Furthermore, an empirical con-
vergence comparison was performed to check the convergence over time for the imple-
mented algorithms.
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The fHALS algorithm was implemented for GPU architectures because of the good per-
formance shown in the experimental evaluation and its good algorithmic properties. Most
of the computational cost of the fHALS algorithm comes in the form of matrix-vector
and matrix-matrix products, which are extremely efficient on GPU architectures. This
implementation proved to obtain greater performance in the experiments than the exist-
ing GPU implementation of the MLSA algorithm included in the existing NNMFPack.
Furthermore, the performance of the fHALS algorithm presented increases with the prob-
lem size. These results make the GPU fHALS implementation a very powerful tool for
those scientists or engineers who use the NMF in high dimensionality problems.

The efficient parallel implementation of the fHALS algorithm in both CPU and GPU
architectures is a key contribution of this thesis. On the one hand, the fHALS implemen-
tations offer great performance and they were the fastest in the experimental evaluation.
On the other hand, the GPU implementation of the fHALS algorithm is a novelty itself.

Closer to the practical application, an efficient parallel implementation of the ASNA al-
gorithm was developed to improve the existing MATLAB implementation. With the re-
duction of the execution time obtained by this implementation, real-time problems could
be dealt with. This shows that High Performance Computing techniques can improve
algorithms that are already very good and can open new research lines due to the execu-
tion time reductions achieved. The ASNA algorithm is included in the new NNMFPack
library as a special case.

11.3 Application of the developed solutions

Even though the main focus of this thesis is on the algorithms and their efficient im-
plementation and not on specific applications, during the development the algorithms
implemented were used in some real applications. With these applications the developed
implementations were tested under conditions that are closer to the real ones in order to
validate the results of these algorithms.

Section 6.5.4 presents an updating model for the problem of On-line Automatic Music
Transcription. This application was used to test the algorithms that were developed to
solve the updating of the NMF problem. The NMF was used in a an audio spectrogram
matrix to determine the pitches that are active in a certain time instant, but the high cost
of the factorization does not allow the use of these techniques in real time. By using the
updating algorithms to solve the NMF developed in this thesis, the factorization can be
updated each time a new sound or group of sounds (represented by new columns added
to the data matrix) are received. With the updating model, the new factorizations can be
computed fast enough to achieve real-time music transcription. This updating model was
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tested in a simulation with a piano song and not only achieved real-time factorizations
but also obtained a better transcription.

In Chapter 7, all of the ASNA algorithm implementations developed were tested on
a speech separation problem. The original ASNA algorithm was designed to perform
speech separation, but it can also be used for other related problems like sound source
separation. The implementations presented in Chapter 7 were tested using the original
speech separation test case. In that test case, mixture signals (formed by mixing two
speech signals from different speakers) are separated using the ASNA algorithm to obtain
the original speech signals. The proposed implementations reduced the execution time
needed to perform the speech separation by up to 97.8%, allowing the separation to be
performed in real-time for most of the signals tested.

Among the data matrices that were used to perform the experimental evaluation of the
proposed implementations in Chapter 9, there are two image matrices that were used in
a lossy image compression application. The goal of that application was to store the data
contained in the images in less space by storing the factorized matrix and reconstructing
the image when necessary. These matrices were used to test the influence of real data
that may contain hidden data relationships and the effect that latent dependencies have
on the proposed implementations.

Finally, the developed algorithms were used to improve the works from other researchers
that use the NMF. Some examples of those applications are a percussive-harmonic sep-
aration model or a piano denoising model. In the percussive-harmonic separation, the
NMF is used to separate the harmonic instruments from the percussive instruments in
a musical piece. The result are two audio tracks that contain the separated instruments
from the original song. On the other hand, the piano denoising model uses a multiple
right hand sides NNLS but with Kullback-Leibler divergence minimization (like the one
performed by the ASNA algorithm). The model tries to clean the noise from piano songs
by performing a separation step on the spectrogram matrix with a precomputed noise
database, obtaining a matrix that should contain the denoised piano music.

Furthermore, contacts have been made with other researchers to use the algorithms de-
veloped during this thesis in future applications.
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11.4 Publications and conferences

During the development of this thesis several results have been published as journal
papers and conference papers. Furthermore, the conference papers have been presented
by the author in several conference sessions. In the present section those results are
enumerated.

11.4.1 Journal papers

• P. San Juan, Antonio M. Vidal, and V.M. Garcia-Molla. Updating/Downdating the
NonNegative Matrix Factorization. Journal of Computational and Applied Mathe-
matics. Volume 318. Year 2017. pp. 59–68

• P. San Juan, T. Virtanen, V.M. Garcia-Molla, and A.M.Vidal. Analysis of an Effi-
cient Parallel Implementation of Active-Set Newton Algorithm, Journal of Super-
computing. Year 2018. pp. 1–12 doi: https://doi.org/10.1007/s11227-018-2423-5

• P. San Juan, A. M. Vidal, and V.M. Garcia-Molla Updating the Solution of Non-
negative Least Squares Problems, Computational Optimization and Applications
[UNDER REVIEW]

11.4.2 Conference papers

• P. San Juan et al. Experiments with the NNMFPACK library: influence of β param-
eter in the NNMF approximation error. In: Proceedings of the 15th International
Conference on Computational and Mathematical Methods in Science and Engi-
neering, CMMSE 2015. 2015, pp. 1023–1034

• P. San Juan , A.M. Vidal, and V.M. Garcia-Molla. A first approach to column
updating of NonNegative Matrix Factorization. In: Proceedings of the 16th Inter-
national Conference on Computational and Mathematical Methods in Science and
Engineering, CMMSE 2016. 2016, pp 1125–1131

• P. San Juan, T. Virtanen, V.M. Garcia-Molla and A.M.Vidal. Efficient Parallel
Implementation of Active-Set Newton Algorithm for Non-Negative Sparse Repre-
sentations. In: Proceedings of the 17th International Conference on Computational
and Mathematical Methods in Science and Engineering, CMMSE 2017. 2017, pp.
1023–1034
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11.5 Future work

Following the work performed during the development of this thesis, there are some open
research and development topics that can be studied in the future:

• The updating algorithms designed to solve the updating problem for both the NNLS
problem and the NMF can be implemented efficiently by following the conventions
of the other implementations presented in this thesis. Furthermore, it would be in-
teresting to pack the updating algorithms into a computational library in order to
encourage the use of these methods into practical applications. The updating im-
plementations can be integrated in NNMFPack or bundled in a standalone library
focused in the updating problems.

• While NNMFPack is a heterogeneous library that supports multiple architectures,
their algorithms only use one of the architectures at a time. The implemented al-
gorithms do not take advantage of the different architectures when multiple copro-
cessors are available in the system, nor do they use the coprocessors and the CPU
at the same time. Designing heterogeneous implementations of the algorithms that
are present in the library is a very interesting future line of research. That way
the library can benefit from all of the available hardware in a system. However,
not all of the algorithms can be implemented following a heterogeneous comput-
ing paradigm because the performance obtained may be lower than using a single
architecture alone.

• Currently, of all the new implemented algorithms during this thesis, only the fHALS
algorithm has been implemented for GPU between. A natural extension of the
implementation work is to develop GPU implementations of all of the new imple-
mented algorithms. Note that not all of the algorithms will benefit from the GPU
architectures and some may have poor performance in those architectures.

• As stated in Section 2.2, there are different target functions that can be minimized
when computing the NMF. Since NMFPack has a multiplicative algorithm to com-
pute the NMF by minimizing the β -divergence and there is a version of the HALS
algorithm using β -divergence, it is reasonable to include a HALS algorithm imple-
mentation. Thus, the development of multicore and GPU implementations of the
HALS algorithm for beta-divergence would be an interesting addition to the new
NNMFPack.
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• In order to benefit from the performance increase produced by the use of multiple
GPUs on systems with several GPUs installed, a multi-GPU version of the fHALS
algorithm could be developed. The cuBLASXt API supports the use of multi-
GPU and is a strong candidate for developing a multi-GPU version of the fHALS
algorithm.

• Another general continuation of the work done in this thesis is to develop efficient
implementations for similar decompositions like the K-SVD or the multidimen-
sional NMF. Those new implementations could then be integrated into the library.

• The NNMFPack library has been developed to work with dense matrices, but it is
common to obtain sparse factors with the NMF [11, 99, 44, 35] and even to enforce
sparseness in the solution [11][38, Ch. 3.4]. Furthermore, some of the developed
algorithms such as the GCD and the ANLS-BPP claim to obtain better results with
high dimensionality sparse matrices. An important topic for future development
is to develop a library to compute the NMF of sparse matrices. This problem,
while being very useful, has extreme complexity and could be the subject of an
entire PhD thesis in its own. First of all, to work efficiently with sparse matrices,
an efficient sparse matrix storage scheme should be selected. That storage scheme
should minimize the memory used to store the matrix, but at the same time it should
maximize the performance of the sparse algorithms. Then, the algorithms must be
adapted to work with sparse operations with sparse stored matrices.

11.6 Institutional support

Several institutions have supported the development of this PhD thesis by means of in-
stitutional or financial support. The institutions and projects that supported this work are
listed below:

• FPU: "Ayudas para la Formación de Profesorado Universitario" grant funded by
"Ministerio de Educación, Cultura y Deporte" from Spain, under the reference
"FPU13/03828".

• Discosound: "Procesado distribuido y colaborativo de señales sonoras: control
activo" project funded by "Ministerio de Economía, Industria y Competitividad"
from Spain, under the reference "TEC2012-38142-C04-01".

• SSPressing: "Smart Sound Processing for the digital Living" project funded by
"Ministerio de Economía, Industria y Competitividad" from Spain, under the ref-
erence "TEC2015-67387-C4-1-R (MINECO/FEDER)".
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the reference "Proyecto Prometeo II/2014/003"
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alelas Heterogeneas" research network funded by "Ministerio de Economía y Com-
petitividad" from Spain.

• ARG: The Audio Research group at the Laboratory of Signal Processing of the
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month research intern-ship where some of the works of this thesis were performed.
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Appendix A

Execution environments

In this appendix the hardware and software configurations of the different machines used
in the experiments carried out while developing this thesis are listed.

A.1 Server 1

1. Hardware:

a) CPU: 2x Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

b) CPU physical cores: 2x 12 = 24

c) RAM: 128 GB

2. Software:

a) Compilers: gcc, icc.

b) Parallelism libraries: OpenMP, Intel OpenMP

c) Generic Mathematical Libraries: Intel MKL, Atlas (BLAS, LAPACK)

d) Specific libraries: NNMFPACK v2.0
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A.2 Server 2

1. Hardware:

a) CPU: 2x Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.70GHz

b) CPU physical cores: 2x 13 = 26

c) RAM: 128 GB

2. Software:

a) S.O: Ubuntu 14.04

b) MATLAB: MATLAB 2014b

c) MATLAB: MATLAB 2016b

A.3 Server 3

1. Hardware:

a) CPU: 2x Intel(R) Xeon(R) CPU E5-2697 v2 @ 2.70GHz

b) CPU physical cores: 2x 12 = 24

c) RAM: 128 GB

2. Software:

a) S.O: Ubuntu 16.04

b) MATLAB: MATLAB 2016b

c) Compilers: icc v17.0.1.

d) Parallelism libraries: OpenMP, Intel OpenMP

e) Generic Mathematical Libraries: Intel MKL v2017
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A.4 Server 4

A.4 Server 4

1. Hardware:

a) CPU: 2x Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

b) CPU physical cores: 2x 20 = 40 (80 cores logical)

c) GPU: 4x NVIDIA Tesla P100-SXM2

d) GPU memory: 4 x 16GB = 64GB

e) RAM: 512 GB

2. Software:

a) S.O: Ubuntu 16.04

b) Compilers: icc v17.0.4, nvcc

c) Parallelism libraries: OpenMP, Intel OpenMP

d) Generic Mathematical Libraries: Intel MKL v2017, cuBLAS

e) CUDA Runtime: 9.1

A.5 Workstation

1. Hardware:

a) CPU: Intel Core i7-4790 @ 3,6 GHz

b) CPU physical cores: 4

c) RAM: 16 GB

2. Software:

a) S.O: Redhat

b) MATLAB: MATLAB 2016b

c) Compilers: icc v17.0.1.
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d) Parallelism libraries: OpenMP, Intel OpenMP

e) Generic Mathematical Libraries: Intel MKL v2017
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