

Dimensionado y selección de los equipos de impulsión para el transporte de materias primas en el proceso de fabricación del PVC

MEMORIA PRESENTADA POR:

Noel Ferriz Navarro

GRADO DE INGENIERÍA MECÁNICA

Convocatoria de defensa: Septiembre de 2018

RESUMEN

El presente trabajo consiste en el dimensionado y selección de los equipos de impulsión para el transporte de materias primas en el proceso de fabricación de PVC. Los procesos utilizados en la empresa para la que se realiza el proyecto son el granceado y extrusión de PVC.

Para comenzar con el dimensionado, se realizará una programación lineal de la producción, con la que se consigue la optimización de la producción para el mínimo coste.

Una vez obtenidas las necesidades de material a almacenar y transportar, se dimensionan los silos de almacenamiento de las materias primas y de la granza de PVC, y los métodos de transporte de estos, tanto por transporte neumático como por transporte mecánico mediante tornillos sin fin.

Finalmente, se realizará el estudio de amortización de la instalación.

This project consists of the dimensioning and a selection of driving equipment for the transport of raw materials for the PVC manufacturing process. The processes used in the company in which the project is carried out are the PVC grainy and PVC extrusion.

To begin with the dimensioning, a linear programming of the production will be done in order to achieve the minimum cost of the mentioned production.

Once the material's needs are obtained for the purpose of storing and transporting, the capacity of the silos of the raw materials as well as the PVC pellets will be dimensioned. In addition, the transport methods will be done by pneumatic transport and mechanical transport by means of worm screw This transport methods will be dimensioned too.

Finally, the amortization of the project will be calculated.

PALABRAS CLAVE

Granza de PVC, Extrusión de PVC, Programación Lineal de la Producción, Optimización de la Producción, Silos Almacenamiento, Transporte Neumático, Tornillo sin fin.

INDICE

RI	ESUMEI	N	1
P	ALABRA	S CLAVE	1
1.	INTE	RODUCCIÓN	4
2.	OBJ	ETIVOS	8
3.	PER:	SIANAS PERSAX	9
	3.1.	DIAGRAMA DEL PROCESO ACTUAL	10
	3.2.	SITUACIÓN DE LA INSTALACIÓN	14
	3.3.	DIAGRAMA DEL PROCESO MEJORADO	18
4.	PRO	BLEMA LINEAL DE PRODUCCIÓN DE GRANZA PVC	20
5.	DIM	ENSIONADO INSTALACIÓN DE TRANSPORTE DE MATERIA PRIMA	31
	5.1.	Dimensionado Tuberías Fase 1 instalación de transporte	35
	5.2.	Dimensionado Tuberías Fase 2 instalación de transporte	37
	5.3.	Dimensionado Tuberías Fase 3 instalación de transporte	38
	5.4.	Dimensionado Tuberías Fase 4 instalación de transporte	39
	5.5.	Dimensionado soplante Fase 1 instalación de transporte	39
	5.6.	Dimensionado tornillo sin-fin Fase 2 instalación de transporte	45
	5.7.	Dimensionado tornillo sin-fin Fase 3 instalación de transporte	50
	5.8.	Dimensionado soplante Fase 4 instalación de transporte	51
6.	ESTU	JDIO PAYBACK	53
	6.1.	Instalación silos interiores y suministro granza extrusoras	53
	6.2.	Instalación silos exteriores materia primas	54
	6.3.	Coste y payback de la instalación proyectada	54
7.	CON	ICLUSIONES	55
8.	BIBL	IOGRAFÍA	56
9.	IND	CE DE ILUSTRACIONES	57
10). A	NEXOS	60
	10.1.	ANEXO I	61
	10.2.	ANEXO II	63
	10.3.	ANEXO III	65
	10.4.	ANEXO IV	67
	10.5.	ANEXO V	69
	10.6.	ANEXO VI	72
	10.7.	ANEXO VII	76

10.8.	ANEXO VIII	83
10.9.	ANEXO IX	87
10 10	ANEXO X	98

1. INTRODUCCIÓN

El PVC, policloruro de vinilo $(C_2H_3Cl)_n$, es el producto de la polimerización del monómero de cloroetileno, cloruro de vinilo. La resina resultante de esta polimerización es un plástico muy versátil, con él se pueden producir objetos flexibles o rígidos.

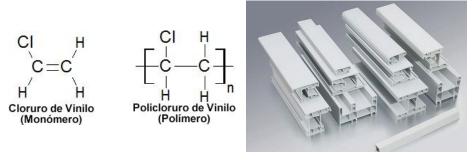


Ilustración 1. Estructura química

Ilustración 2. Perfiles de PVC

Este polímero sintético pertenece a la familia de los termoplásticos, un plástico que funde a altas temperaturas, alrededor de 80 °C, pudiéndose de esta manera moldearse con facilidad. Al enfriarse recupera la solidez anterior sin perder la nueva forma.

Esta propiedad es de gran ayuda para su reciclaje, pero teniendo en cuenta que con la repetición del proceso de moldeado se van perdiendo gradualmente propiedades físicas, por lo que llegado un momento ya no será posible su reutilización.

Las principales propiedades del PVC son:

- Elevada resistencia a la abrasión, buena resistencia mecánica y al impacto
- Baja densidad, 1400 kg/m³
- Buen aislante
- Es inerte y estable
- Material muy resistente, pueden mantener un buen estado hasta más de 60 años
- Buen aislante eléctrico
- No se quema con facilidad, ni autocombustiona
- Resistente al agua y muy resistente a la corrosión
- Alto valor energético
- Bajo coste de instalación
- Muy versátil, permite su combinación con un gran número de aditivos, lo que le permiten que pueda transformarse en un material rígido o flexible.

En la industria existen dos tipos de productos finales de PVC:

- Rígidos: envases, ventanas, tuberías, persianas...
- Flexibles: cables, juguetes, calzados, pavimentos, recubrimientos...

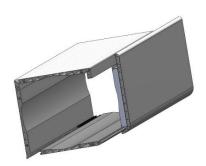


Ilustración 3. Perfiles de Cajón de PVC para persiana

Ilustración 4. PVC Flexible

El policloruro de vinilo fue descubierto por casualidad en dos ocasiones durante el siglo XIX, una primera vez por Henri Víctor Regnault en 1835 y la segunda en 1872 por Eugen Baumann.

En 1918 Klatte de Grieskein descubrió los procesos que se emplean en la actualidad para la producción de cloruro de vinilo.

Waldo Semon en colaboración con la B.F. Goodrich Company mediante la mezcla con aditivos desarrolló en 1926 un método de plastificación del PVC ayudando a que el material fuese más flexible y con mejor fabricabilidad.

Ilustración 5. Henri Víctor Regnault

Ilustración 6. Eugen Baumann

Ilustración 7. Waldo Lonsbury Semon

Existen varios procesos con los que conformar un producto acabado de PVC: calandrado, extrusión, inyección, soplado, compresión o prensado, recubrimiento, y moldeo rotacional.

En Persiana Persax S.A. producen sus perfiles de PVC mediante el proceso de extrusión. Es un proceso en continuo, que por compresión y temperatura se fuerza al material a fluir a

través del orificio de una matriz, la cual determina la forma del producto. Con este proceso se obtienen productos masivamente y de la longitud deseada.

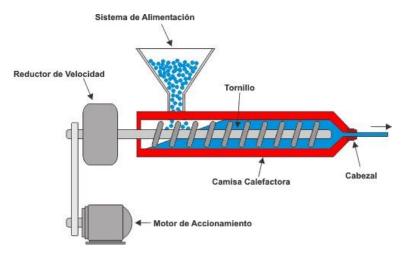


Ilustración 8. Proceso de Extrusión de PVC

Para la obtención de los perfiles como producto acabado, es necesario que una serie de equipos acompañen a la extrusora y la matriz, lo que se llama, línea de extrusión.

Una línea de extrusión se compone de:

• Extrusora: mediante una serie de resistencias se le da temperatura al material para fluidificarlo y con uno o dos husillos, o un pistón, se transporta el material por la extrusora a la vez que se le da presión para que el material fluya por el cabezal, este cabezal está conectado a la matriz.

Ilustración 9. Extrusora de doble husillo Battenfeld-cincinnati

• Matriz o hilera: fabricadas en acero inoxidable, la conforman una serie de placas cada una con un orificio con una determinada forma para ayudar a que el

material fluya correctamente, la última placa tiene el orificio con la geometría que queremos extruir.

• Bancada de calibración: esta bancada es la que enfría rápidamente el material con agua para que el PVC se endurezca y mantenga la forma final requerida.

Ilustración 10. Hilera Perfil PVC

Ilustración 11. Bancada de calibración Battenfeldcincinnati

- Arrastre: dos orugas de tacos de goma que estiran del perfil, para ayudar a la extrusora a mover el material, determina la velocidad de extrusión de la línea.
- Sierra de corte: esta sierra trabaja en continuo, por lo que al paso de perfil y a la medida requerida, la sierra de desplaza junto con el perfil para realizar el corte.

Ilustración 12. Arrastre Battenfeld-cincinnati

Ilustración 13. Sierra de corte Battenfeldcincinnati

2. OBJETIVOS

Con la implementación de una nueva instalación de almacenamiento, pesaje y transporte de materias primas y granza de PVC se pretenden conseguir los siguientes objetivos:

- Optimización de la producción de Extrusión de PVC:
 Se realizará una programación lineal de la producción para calcular la producción semanal con el mínimo coste.
- Optimización de los procesos de Granceado y Extrusión de PVC:
 Mejora de la productividad, ya que se producirá más producto en menos tiempo y con menos personas.
- 3. Liberación de espacio de almacenamiento:
 Este es uno de los puntos a tener más en cuenta, dado el problema acuciante de falta
 de espacio que hay en la planta, se liberaría una gran cantidad de espacio que en estos
 momentos está ocupada de almacén de materias primas y de granza.
- 4. Mejora de calidad de producto de los artículos de PVC extruido: Al ser un proceso semiautomático, se tendría mayor uniformidad en las formulaciones, además que el almacenaje de la granza en silos conseguiría mayor limpieza de ésta.

Otro punto que se conseguiría con la implementación de esta instalación es la limpieza de la sección, dado que al estar el proceso más "cerrado", y de que no se abrirían sacos de material, se reduciría drásticamente la generación de polvo y suciedad que existe actualmente.

3. PERSIANAS PERSAX

Persianas de Sax, S.A nace en 1976 al fusionarse varios persianeros que llevaban ejerciendo su actividad desde los años 55-60.

Cambia de nombre a Persianas Persax, S.A. en 1992, convirtiéndose así en una compañía líder en el sector de las persianas y cajones de aluminio.

Con más de 30 años de experiencia, una base sólida y una estudiada política de expansión y desarrollo, ha sabido posicionarse en un lugar destacado dentro del sector del cerramiento. Hoy es líder en la fabricación de todos sus productos, por ofrecer el sistema más avanzado y los materiales más actuales que hay en el mercado.

Ilustración 14. Sede Central Persianas Persax

La organización se dedica al diseño y la producción de persianas, compactos y puertas enrollables. La producción de perfiles de PVC, perfiles de aluminio con espuma aislante, mosquiteras, celosías, toldos, cortinas de exterior e interior y alicantinas de PVC y madera. La venta de puertas seccionales, puertas plegables, venecianas, motores y accesorios para el cerramiento.

Su sede central y principal centro productivo está localizada en VILLENA (Alicante), Autovía de Levante, Km. 48,2 – Polígono Santa Eulalia.

Dispone de 5 delegaciones en el territorio nacional y dos internacionales (Croacia y México) para la distribución directa de sus productos mediante su propia flota de transporte, esto les permite mantener una estrecha relación con sus clientes y garantizar la máxima calidad y rapidez de servicio.

De los distintos procesos productivos que tiene la organización este proyecto se enfocará en el proceso de Extrusión de PVC.

3.1. DIAGRAMA DEL PROCESO ACTUAL

A continuación, se describe el proceso completo para la producción de PVC rígido, desde que llegan las materias primas a las instalaciones hasta el conformado de perfiles en largo.

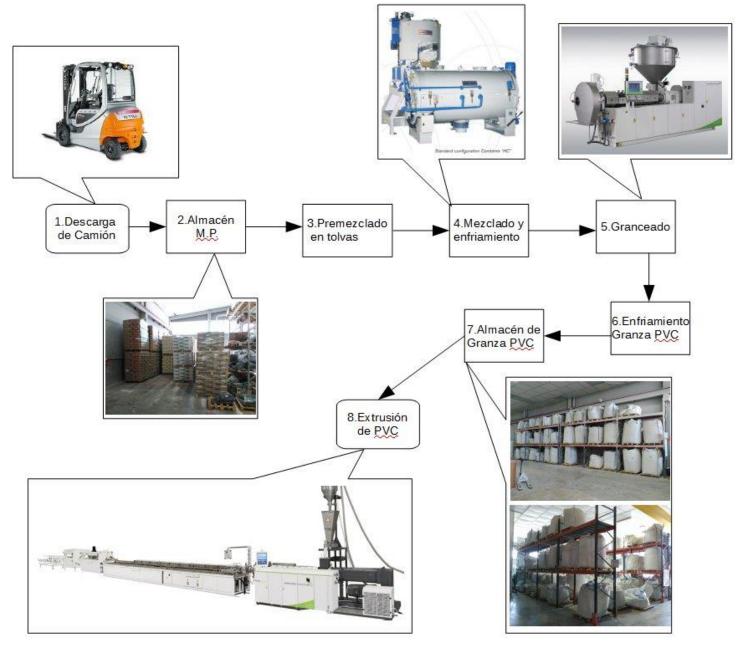


Diagrama 1. Diagrama de flujo proceso Extrusión PVC

Para la producción de perfiles de PVC rígido en la empresa Persianas PERSAX se dispone de la sección de Extrusión de PVC, la cual está compuesta por 3 procesos:

- Granceado
- Extrusión

Embalado

Para comenzar el proceso de granceado necesitamos Materia Prima, la cual debe de estar almacenada. Actualmente se consumen 33000 kg de Resina de PVC y 20000 kg de CaCO₃ a la semana (14 turnos), estos son los componentes mayoritarios para la producción de PVC Rígido.

1. Descarga de camión

La descarga de los camiones de materia prima se realiza mediante carretilla elevadora, esta materia prima es servida paletizada en sacos de 25 kg, sumando cada palé 1000 kg. También se puede recibir materia prima en big bags de 1000-1200 kg. Cada camión se tarda entre 30 min y 1 h ser descargado por el operario de la carretilla.

2. Almacén M.P.

La materia prima descargada se almacena en la nave de producción y en un "techado" exterior ocupando un total de 217 m².

Ilustración 15. Almacén Materias Primas

Ilustración 16. Almacén Materias Primas

3. Premezclado en tolvas

Actualmente se realizan 3 turnos de 8h al día, cada turno es realizado por un operario distinto. El cual, dependiendo de la producción programada, se prepara la materia prima necesaria para realizar las formulaciones, posteriormente va abriendo los sacos de los distintos componentes y echándolos en la tolva de premezclado. Una vez se ha realizado la fórmula se pone en marcha el transporte hasta los turbomezcladores, este se realiza mediante tornillos sinfín.

4. Mezclado y enfriamiento

Se disponen de dos turbomezcladores, uno marca Caccia de 600 l y capacidad de 800 kg/h, y otro, marca Plasmec de 800 l y capacidad de 1000 kg/h.

El máximo tiempo de preparación de una mezcla de 22'49"

Turbomezclador: 12'47"

Enfriador: 10'02"

Ilustración 17. Turbomezclador Caccia

Ilustración 18. Turbomezclador Plasmec

5. Granceado

Desde los turbomezcladores se trasporta el material, que sigue siendo polvo, por transporte mecánico hasta la granceadora, ésta tiene una capacidad de 600 kg/h.

Se va a estudiar la posibilidad de la instalación de una segunda granceadora con una capacidad de 1000 kg/h, ya que ahora la única granceadora es el cuello de botella del proceso.

Ilustración 19. Granceadora Cincinnati Extrusión

6. Enfriamiento granza de PVC

Una vez termina el proceso de granceado, el material pasa de ser polvo, a tener forma de 'pellet'. Este pellet se transporta desde la granceadora hasta el enfriador de granza mediante soplantes.

La enfriadora tiene una capacidad de 1000 kg/h.

Ilustración 20. Enfriador de granza de PVC

7. Almacén de granza de PVC

El almacén de granza de PVC está distribuido en dos zonas dentro de la nave de producción ocupando un total de 248 m². El material es almacenado en big bags y apilado en estanterías de 3 alturas.

Ilustración 21. Almacén-1 de big bags de granza PVC

Ilustración 22. Almacén-2 de big bags de granza PVC

También se dispone de varios silos de almacenamiento, uno cilíndrico de 60 m³, dos cilíndricos de 20 m³, y seis esféricos de 10 m³.

Ilustración 23. Silos cilíndricos de 20m3

Ilustración 24. Silos esféricos de 10m3

8. Extrusión de PVC

Los silos dejan caer el material en unas "cubetas", tanto en estas cubetas como en los big bags se introduce una manguera con la que por aspiración se realiza el movimiento del material hasta las 9 extrusoras, este trabajo es realizado con tres bombas con un caudal de 1000 kg/h en total.

Ilustración 25. Bombas aspiración

Ilustración 26. Extrusora Battenfeld-cincinnati

3.2. SITUACIÓN DE LA INSTALACIÓN

La planta de producción dispone de una superficie total de 16000 m^2 , la sección de producción de PVC rígido dispone de 2500 m^2 y la zona donde se desarrolla el proyecto es una superficie de 990 m^2 .

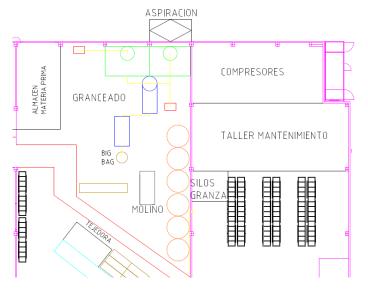


Ilustración 27. Plano ampliado planta productiva Persianas Persax, zona granceado PVC

La primera parte que modificar son las zonas de almacenaje de materias primas, éstas serán liberadas con la instalación de 3 silos en el exterior de las instalaciones.

Con las densidades aparentes de la Resina PVC y de los CaCO₃ y el consumo semanal, se dimensiona el volumen de los silos de almacenamiento, para una frecuencia de abastecimiento bisemanal por parte de los proveedores.

Densidades aparentes:

Resina PVC = 580 kg/m³ (certificado de análisis de proveedor)

 $CaCO_{3}_{1} = 1001 \text{ kg/m}^{3}$ (calculado con ensayo en laboratorio)

CaCO₃_2 = 905 kg/m³ (calculado con ensayo en laboratorio)

Ilustración 28. Imagen ensayo densidad aparente del CaCO₃

Ilustración 29. Imagen ensayo densidad aparente del CaCO₃

Ilustración 30. Imagen ensayo densidad aparente del $CaCO_3$

Con estos datos, las capacidades resultantes para los silos de almacenamiento de Materias Primas mayoritarias son de:

1 silo de 120 m³ para Resina PVC y 2 silos de 60 m³ uno para cada tipo de CaCO₃.

Seguidamente se sustituirán los silos existentes en el interior de las instalaciones, excepto el cilíndrico de 60 m³, por una batería de 20 silos que tendrán una capacidad de 180 m³, siendo 10 silos de 10 m³ y 10 silos de 8 m³, de esta manera las zonas de almacenamiento de granza de PVC en big bags también serán liberadas.

Para el dimensionado de los silos se usará la norma UNE-ENV 1991-4:2006 Eurocódigo 1: Bases de proyecto y acciones en estructuras. Parte 4: Acciones en silos y depósitos.

Los materiales de construcción de los silos de almacenamiento pueden ser los siguientes: hormigón, acero al carbono con o sin revestimiento plástico, acero inoxidable, aluminio, acero galvanizado, material plástico o material de fibra. Se seleccionará el material de construcción dependiendo del producto a almacenar.

Ilustración 31. Silos de hormigón

Ilustración 32. Silos de acero al carbono.

Ilustración 33. Silos de acero inoxidable.

Ilustración 34. Silos de aluminio.

Ilustración 35. Silos de acero galvanizado.

Ilustración 36. Silos de material compuesto, GRP.

Los silos están diseñados según normas API-650 (Norma Americana), las cuales indican tipos de diseño a elegir teniendo en cuenta la ley, y ha sido calculado para resistir las presiones laterales y verticales ejercidas por el material almacenado. También se tendrá en cuenta la presión reducida indicada por la norma UDI-3676 así como los vaciados excéntricos no uniformes y la posible formación de una bóveda y su posterior caída.

Los silos de almacenamiento se usan en una gran variedad de industrias, para almacenar muy distintos volúmenes. La descarga de éstos puede ser por gravedad o mediante procedimientos mecánicos.

También se pueden clasificar por su geometría, siendo las más típicas los tipos de las Ilustraciones 28, 29 y 30.

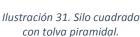


Ilustración 32. Silo cilíndrico de flujo de masa.

Ilustración 33. Silo cilíndrico de flujo de embudo.

Para los silos exteriores se instalarán unos silos cilíndricos de flujo de masa en acero inoxidable y para los silos interiores se optará por silos cuadrados con tolva piramidal en acero al carbono y pintados para proteger de la corrosión, se eligen cuadrados para una mayor optimización del espacio.

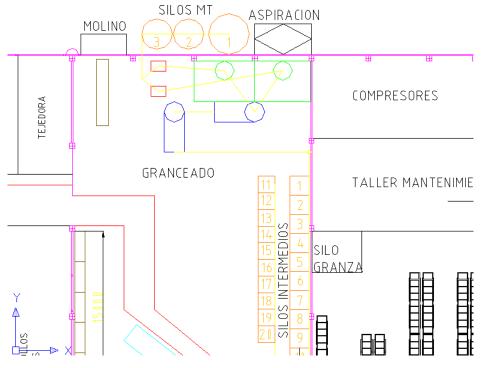


Ilustración 34. Plano ampliado planta productiva Persianas Persax, zona granceado PVC mejorado

3.3. DIAGRAMA DEL PROCESO MEJORADO

A continuación, se describe el proceso completo para la producción de PVC rígido mejora para conseguir los objetivos marcados con el desarrollo de este proyecto.

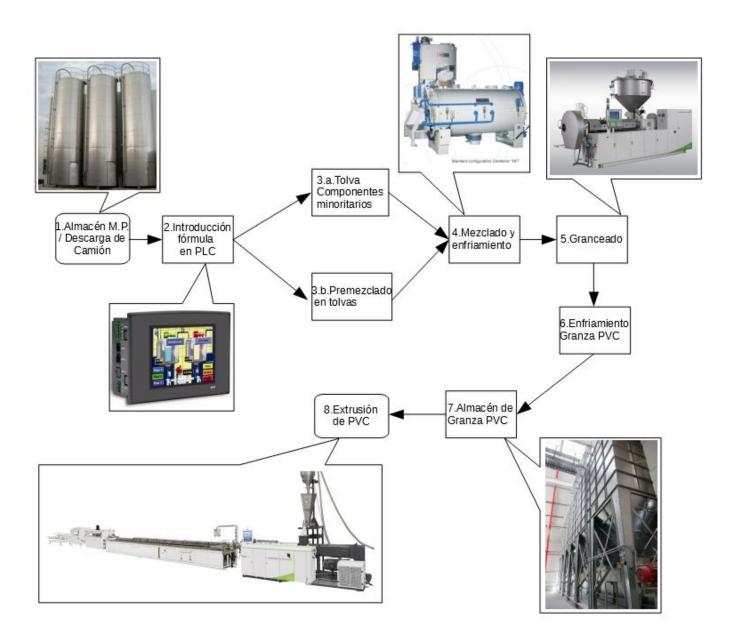


Diagrama 2. Diagrama de flujo proceso Extrusión PVC mejorado

1. Almacén M.P. / Descarga de camión

Como ya se ha dicho anteriormente, se debe de disponer de un silo de 120 m³ de Resina de PVC y dos silos de 60 m³ de CaCO₃.

Estos silos deben de estar equipados para poder ser cargados independientemente de cómo sea suministrado el material por el proveedor, en camión cisterna con material a granel o en camión con caja con material en big bags. En caso se recibir el material en big bag, se deberá de instalar un descargador de big bag además de una bomba para realizar la carga de los silos.

El tiempo máximo de descarga de un camión (24000 kg) será de 2-3h, por lo que hay que dimensionar la bomba para un flujo másico de 134 kg/min.

2. Introducción fórmula en PLC

Se instalará un PLC, el cual dispondrá en su memoria las formulaciones de todas las fórmulas de la que dispone PERSAX para la fabricación de granza de PVC rígido.

El operario seleccionará la fórmula que necesite para cumplir con su producción programada y el PLC dará la orden de transportar las cantidades de materia prima necesarias, estas mayoritariamente tienen un porcentaje de 60% Resina de PVC, y 40% CaCO3, y se calculan mediante un pesaje con células de carga.

Esta materia prima podrá ser transportada directamente desde los silos a las tolvas de los turbomezcladores o a una tolva intermedia donde se complete la formulación con los componentes minoritarios (TiO₂, Complejo, Pigmentos, Lubricantes...)

Hay dos posibles maneras para realizar las formulaciones.

3.a. Tolva componentes minoritarios

Transportar material en polvo mediante transporte mecánico desde los silos de materias primas hasta las tolvas de uno de los dos turbomezcladores.

Además, se deberá de disponer de una tolva donde se depositarán los componentes minoritarios, los cuales serán transportados mediante transporte neumático hasta las tolvas de uno de los dos turbomezcladores.

3.b. Premezclado en tolvas

Transportar material en polvo mediante transporte neumático desde los silos de materias primas hasta unas tolvas de premezclado, una por cada turbomezclador.

En estas tolvas se añadirían los componentes minoritarios. Una vez se añaden los componentes minoritarios se transportará la fórmula hasta las tolvas de los turbomezcladores mediante transporte mecánico.

Para nuestra instalación se va a optar por la solución 3.b.

4. Mezclado y enfriamiento

Se disponen de dos turbomezcladores, uno marca Caccia de 600 l y capacidad de 800 kg/h, y otro, marca Plasmec de 800 l y capacidad de 1000 kg/h.

El máximo tiempo de preparación de una mezcla de 22'49"

- Turbomezclador: 12'47"

- Enfriador: 10'02"

5. Granceado

Desde los turbomezcladores se trasporta el material, que sigue siendo polvo, por transporte mecánico hasta la granceadora, ésta tiene una capacidad de 600 kg/h.

Se va a estudiar la posibilidad de la instalación de una segunda granceadora con una capacidad de 1000 kg/h, ya que ahora la única granceadora es el cuello de botella del proceso.

6. Enfriamiento granza de PVC

Una vez termina el proceso de granceado, el material pasa de ser polvo, a tener forma de 'pellet'. Este pellet se transporta desde la granceadora hasta el enfriador de granza mediante soplantes.

La enfriadora tiene una capacidad de 1000 kg/h.

7. Almacén de granza de PVC

Desde el enfriador se mueve la granza por transporte neumático a uno de los 20 silos de almacenamiento de granza. Se dispondrá de una manguera extensible a la salida del enfriador la cual se conectará a una de las 20 bocas de entrada para los silos. Estas bocas estarán ordenadas y señalizadas en una mesa de conexiones.

Los 20 silos tendrán una capacidad de 180 m3, siendo 10 silos de 10 m³ y 10 silos de 8 m³. Estos serán silos rectangulares para mayor optimización del espacio y la altura máxima podrá ser de 4,4 m dado que se debe dejar habilitado el paso del puente grúa.

8. Extrusión de PVC

A la salida de los silos de almacenamiento de granza se dispondrá de otra mesa de conexiones, en esta mesa habrá una o varias bocas de salida para cada silo, dependiendo de si de una formulación fuese necesario alimentar varias extrusoras. Las extrusoras dispondrán cada una de una manguera extensible para conectarlas a la mesa de conexiones de salida de los silos de almacenamiento de granza.

El movimiento del material desde los silos de almacenamiento de granza hasta las extrusoras se hará mediante transporte neumático. Las bombas deberán de estar dimensionadas para alimentar la capacidad de las 9 extrusoras, la cual es de 1000 kg/h.

4. PROBLEMA LINEAL DE PRODUCCIÓN DE GRANZA PVC

Para el dimensionado de la instalación, se va a realizar el cálculo de las necesidades de producción mediante programación lineal, es decir, teniendo en cuenta la disponibilidad de las materias primas, la demanda de los productos, y el coste de producción.

Revisando el histórico de ventas de productos de PVC en los años 2015, 2016, 2017 y con una previsión de crecimiento del 10% para 2018 y del 12% para 2019 se calculan los kg y/o m³ que se consumirán en el 2019:

Tabla 1. Tabla previsión producción por colores

COLOR	kg/año	kg/semana	m³/año	m³/semana
PIZARRA MOTEADO	1975,77	42,95	2,56	0,056
7048	2221,28	48,29	2,88	0,063
8017	2524,35	54,88	3,28	0,071
7022	3180,48	69,14	4,13	0,090
NEGRO	3375,95	73,39	4,38	0,095
BRONCE	4280,79	93,06	5,56	0,121
BLANCO ALICANTINA	5945,96	129,26	7,72	0,168
VERDE OLIVA	7981,19	173,50	10,36	0,225
7011	12888,91	280,20	16,73	0,364
MADERA	17239,21	374,77	22,37	0,486
GRIS	21087,06	458,41	27,37	0,595
MARFIL ALICANTINA	24645,61	535,77	31,98	0,695
BASE MARRON	27847,28	605,38	36,14	0,786
7016	30686,07	667,09	39,82	0,866
8014	38400,64	834,80	49,84	1,083
MARFIL NORMAL	43512,63	945,93	56,47	1,228
BLANCO BR	83004,10	1804,44	107,72	2,342
BLANCO NORMAL	90112,89	1958,98	116,95	2,542
BLANCO W	271556,68	5903,41	352,42	7,661
BLANCO COMPACTO	431541,10	9381,33	560,04	12,175
TOTAL MES		24434,96		31,711

Se han descartado los colores de los cuales se han consumido menos de 2.5 m³ en un año. Quedando un total de 20 colores, los cuales podemos agrupar en 13 fórmulas distintas.

Las formulaciones de granza de PVC tienen muchos componentes: Resina PVC, CaCO₃, complejo (one-pack), TiO₂, pigmentos, cera, filtro UV, ácido esteárico, ricino.

Estos componentes los podemos dividir en 3 familias:

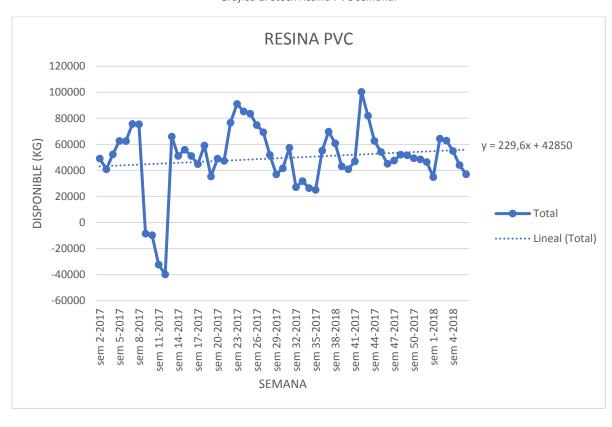
- Componentes mayoritarios A: Son el 90% del total de la fórmula, Resina PVC y CaCO₃
- Componentes mayoritarios B: Son el 9% del total de la fórmula, complejo y TiO₂
- Componentes minoritarios: Son el 1% del total de la fórmula, resto de componentes

En PERSAX se disponen de dos tipos de CaCO3 y dos tipos de complejo, estas son las formulaciones de los colores que se van a tener en cuenta:

Tabla 2. Tabla cantidades materia prima por formulación

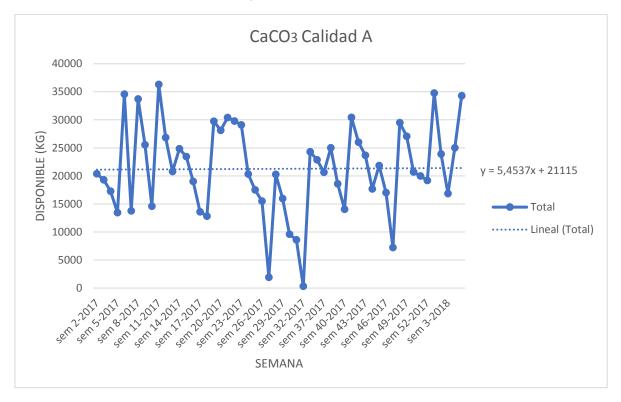
COLOR	RESINA PVC (kg)	CaCO₃ A (kg)	CaCO₃ B (kg)	Complejo (kg)	Complejo con modificador de impacto (kg)	TiO₂ (kg)	Pigmento (kg)	Otros (kg)	TOTAL (kg)
BLANCO									
COMPACTO	200	120	-	-	14,67	13,65	-	2,5195	350,8395
BLANCO W	200	-	140	11	-	10,66	-	3,604	365,264
BLANCO									
NORMAL	200	-	100	10,67	-	21,376	-		332,38318
BLANCO BR	200	-	80	10,7	-	18,67	-	0,9903	310,3603
MARFIL									
NORMAL	200	-	100	10,67	-	10,977	3,42	0,25	325,317
8014	200	120	-	-	14,67	-	6,835	0,2	341,705
7016	200	120	-	-	14,67	-	6,835	0,2	341,705
BASE									
MARRON	200	125	-	-	14,67	-	-	2,239	341,909
MARFIL									
ALICANTINA	200	-	80	10,667	-	4,67	12	0,963	308,3
GRIS	200	-	100	10,67	-	9,726	-	0,3503	320,7463
MADERA	200	-	80	10,667	-	2,88	3,067	-0,034	296,58
7011	200	120	-	-	14,67	-	6,835	0,2	341,705
VERDE									
OLIVA	200	-	80	10,667	-	-	3,067	-0,034	293,7
BLANCO									
ALICANTINA	200	-	80	10,667	-	10,667	12	0,666	314
BRONCE	200	80	-	-	14,67	-	6,0177	0,2	300,8877
NEGRO	200	120	-	-	14,67	-	6,835	0,2	341,705
7022	200	120	-	-	14,67	-	6,835	0,2	341,705
8017	200	120	-	-	14,67	-	6,835	0,2	341,705
7048	200	120	-	-	14,67	-	6,835	0,2	341,705
PIZARRA MOTEADO	200	120	-	-	14,67	-	6,835	0,2	341,705

Para reducir la cantidad de variables de 26 fórmulas a las 13 fórmulas nombradas anteriormente no se han tenido en cuenta los componentes minoritarios, ya que se puede decir que son valores residuales comparados con los mayoritarios.

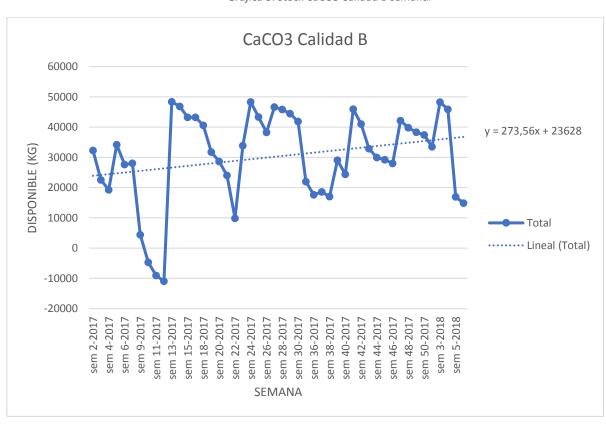

Tabla 3. Tabla cantidades materia prima por formulación agrupada

FORMULA	RESINA PVC (kg)	CaCO₃ A (kg)	CaCO₃ B (kg)	Complejo (kg)	Complejo con modificador de impacto (kg)	TiO₂ (kg)
1	200	120	-	-	14,67	13,65
2	200	120	-	-	14,67	-
3	200	-	140	11	-	10,66
4	200	-	100	10,67	-	21,376
5	200	-	80	10,7	-	18,67
6	200	-	100	10,67	-	10,977
7	200	125	-	-	14,67	-
8	200	-	80	10,667	-	4,67
9	200	-	100	10,67	-	9,726
10	200	-	80	10,667	-	2,88
11	200	80	-	-	14,67	-
12	200	-	80	10,667	-	-
13	200	-	80	10,667	-	10,667

La disponibilidad semanal de las materias primas es de:


Resina PVC: 42850 kg

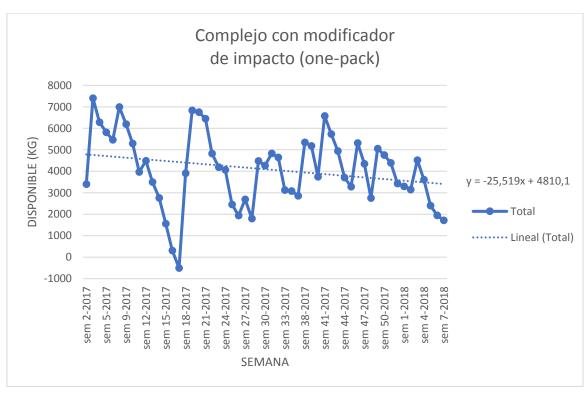
Gráfica 1. Stock Resina PVC semanal


CaCO₃ Calidad A: 21115 kg

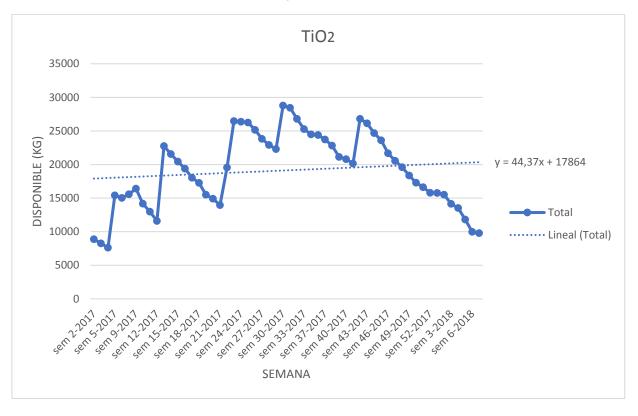
Gráfica 2. Stock CaCO3 Calidad A semanal

CaCO₃ Calidad B: 23628 kg

Gráfica 3. Stock CaCO3 Calidad B semanal


Complejo (one-pack): 2807,5 kg

Gráfica 4. Stock Complejo semanal


Complejo con modificador de impacto (one-pack): 4810,1 kg

Gráfica 5. Stock Complejo con modificador de impacto semanal

TiO2: 17864 kg

Gráfica 6. Stock TiO2 semanal

Los costes de producción son los siguiente:

Materia prima:

Tabla 4. Costes Materia Prima

COMPONENTE	PRECIO	UNIDAD
RESINA	0,98	€/kg
CaCO₃ A	0,08	€/kg
CaCO₃ B	0,06	€/kg
Complejo	2,15	€/kg
Complejo con modificador	2,17	€/kg
TiO ₂	2,75	€/kg

Mano de obra:

Coste de operario: 15 €/h

Energía:

Coste de energía: 0,146 €/kW

En la producción del material acabado intervienen los siguientes equipos los cuales tienen las siguientes potencias de consumo:

Tabla 5. Potencias equipos

EQUIPO	P (kW)
GRANCEADORA ARGOS 93	70
TURBO. PLASMEC	85
L1 BC CONEX 50	31
BOMBA IMPULSIÓN	8
COMPRESOR	26
EQUIPO FRÍO	57

La capacidad productiva de la sección de granceado es de 600 kg/h la cual necesita de un operario, además la capacidad productiva de la sección de extrusión es de 1000 kg/h la cual necesita de tres operarios.

Finalmente, los costes de producción son:

Tabla 6. Costes producción por fórmula

FORMULA	COSTE FORMULA (€)	COSTE M.P. (€/kg)	COSTE ENERGÍA (€/h)	COSTE (€/kg)
1	274,97	0,78	40,44	0,92
2	237,43	0,69	40,44	0,80
3	257,37	0,70	40,44	0,77
4	283,72	0,85	40,44	0,92
5	275,15	0,89	40,44	0,95
6	255,13	0,78	40,44	0,85
7	237,83	0,70	40,44	0,76
8	236,58	0,69	40,44	0,76
9	251,69	0,74	40,44	0,80
10	231,65	0,75	40,44	0,82
11	234,23	0,79	40,44	0,85
12	223,73	0,76	40,44	0,83
13	253,07	0,81	40,44	0,87

Variables de decisión:

 $x_I = n^{\circ}$ fórmulas a fabricar semanalmente de Blanco Compacto (Fórmula 1)

 $x_2 = n^{\circ}$ fórmulas a fabricar semanalmente de Colores Compacto (Fórmula 2)

 $x_3 = n^{\circ}$ fórmulas a fabricar semanalmente de Blanco W (Fórmula 3)

 $x_4 = n^{o}$ fórmulas a fabricar semanalmente de Blanco Normal (Fórmula 4)

 $x_5 = n^{\circ}$ fórmulas a fabricar semanalmente de Blanco BR (Fórmula 5)

 $x_6 = n^{\circ}$ fórmulas a fabricar semanalmente de Marfil Normal (Fórmula 6)

 $x_7 = n^{\circ}$ fórmulas a fabricar semanalmente de Base Marrón (Fórmula 7)

 $x_8 = n^{\circ}$ fórmulas a fabricar semanalmente de Marfil Alicantina (Fórmula 8)

 $x_9 = n^9$ fórmulas a fabricar semanalmente de Gris (Fórmula 9)

 $x_{I0} = n^{o}$ fórmulas a fabricar semanalmente de Madera (Fórmula 10)

 $x_{II} = n^{\circ}$ fórmulas a fabricar semanalmente de Bronce (Fórmula 11)

 $x_{12} = n^{\circ}$ fórmulas a fabricar semanalmente de Verde Oliva (Fórmula 12)

 $x_{I3} = n^{o}$ fórmulas a fabricar semanalmente de Blanco Alicantina (Fórmula 13)

Restricciones con respecto a la disponibilidad de materias primas:

Limitación de Resina PVC: 42850 kg

$$200 * (x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} + x_{12} + x_{13}) \le 42850$$
 (1)

• Limitación de CaCO₃ Calidad A: 21115 kg $120*(x_1+x_2)+125x_7+80x_{11} \le 21115 \tag{2}$

• Limitación de CaCO₃ Calidad B: 23628 kg
$$140x_3 + 100 * (x_4 + x_6 + x_9) + 80 * (x_5 + x_8 + x_{10} + x_{12} + x_{13}) \le 23628$$
 (3)

• Limitación de Complejo (one-pack): 2807.5 kg

$$11x_3 + 10,67 * (x_4 + x_6 + x_9) + 10,7x_5 + 10,667 * (x_8 + x_{10} + x_{12} + x_{13}) \le 2807,5$$
 (4)

• Limitación de Complejo con modificador de impacto (one-pack): 4810.1 kg $14,67*(x_1+x_2+x_7+x_{11}) \le 4810,1$ (5)

• Limitación de TiO2: 17864 kg

$$13,65x_1 + 10,66x_3 + 21,376x_4 + 18,67x_5 + 10,977x_6 + 4,67x_8 + 9,726x_9 + 2,88x_{10} + 10,667x_{13} \le 17864$$
(6)

Restricciones con respecto a la demanda:

Demanda Fórmula 1

$$350,8395x_1 \ge 8990,44 \tag{7}$$

• Demanda Fórmula 2

$$341,705x_2 \ge 1984,45 \tag{8}$$

Demanda Fórmula 3

$$365,264x_3 \ge 5657,43 \tag{9}$$

• Demanda Fórmula 4

$$332,3832x_4 \ge 1877,35 \tag{10}$$

•	Demanda Fórmula 5			
		$310,3603x_5 \ge 1729,25$	(1	11)
_	Domanda Fórmula 6			

$$325,317x_6 \ge 906,513 \tag{12}$$

$$341,909x_7 \ge 580,15 \tag{13}$$

$$308,3x_8 \ge 513,45 \tag{14}$$

$$320,7463x_9 \ge 439,31\tag{15}$$

$$296,58x_{10} \ge 359,15 \tag{16}$$

$$300,8877x_{11} \ge 89,18 \tag{17}$$

Demanda Fórmula 12

$$293,7x_{12} \ge 166,28\tag{18}$$

Demanda Fórmula 13

$$314x_{13} \ge 123,87\tag{19}$$

Restricciones con respecto a la capacidad:

$$350,8395x_1 + 341,705x_2 + 365,264x_3 + 332,3832x_4 + 310,363x_5 + 325,317x_6 + 341,909x_7 + 308,3x_8 + 320,7463x_9 + 296,58x_{10} + 300,8877x_{11} + 293,7x_{12} + 314x_{13} \ge 57600$$
 (20)

$$350,8395x_1 + 341,705x_2 + 365,264x_3 + 332,3832x_4 + 310,363x_5 + 325,317x_6 + 341,909x_7 + 308,3x_8 + 320,7463x_9 + 296,58x_{10} + 300,8877x_{11} + 293,7x_{12} + 314x_{13} \le 72000$$
 (21)

Función objetivo: Coste

$$323,1933x_1 + 274,8333x_2 + 282,2395x_3 + 306,1249x_4 + 296,0527x_5 + 277,04x_6$$
(22)
$$+ 261,0133x_7 + 234,2155x_8 + 257,7197x_9 + 242,8397x_{10} + 254,5209x_{11} + 243,536x_{12} + 274,2476x_{13}$$

Finalmente, la formulación del problema que hay que resolver queda de la siguiente manera:

 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13} = \mathbb{Z} +$

Para la resolución de este problema hemos usado una hoja Excel con el módulo Solver. Obteniendo el siguiente resultado:

$x_1 = 26$	$x_5 = 6$	$x_9 = 2$
$x_2 = 6$	$x_6 = 3$	$x_{10} = 2$
$x_3 = 16$	$x_7 = 28$	$x_{11} = 1$
$x_4 = 6$	$x_8 = 79$	$x_{12} = 1$
		$x_{13} = 1$

Los consumos semanales de cada formulación son:

$F \acute{o} rmula \ 1 = 9121,83 \ kg$	Fó r mula 5 = 1862,16 kg	Fórmula 10 = 593,16 kg
Fó r mula 2 = 2050,23 kg	Fó r mula 6 = 975,95 kg	Fórmula 11 = 300,89 kg
$F \acute{o} rmula \ 3 = 5844,22 \ kg$	Fó r mula 7 = 9573,45 kg	Fórmula 12 = 293,70 kg
Fó r mula 4 = 1994,30 kg	Fó r $mula 8 = 24355,70 kg$	Fórmula 13 = 314,00 kg
	$F \acute{o} rmula 9 = 641,49 \text{ kg}$	$CONSUMO\ TOTAL = 57921,10\ kg$

Con unas holguras semanales de materia prima sobrante de:

- Resina PVC = 7450 kg
- CaCO₃ Calidad A = 13695 kg
- CaCO₃ Calidad B = 13168 kg
- Complejo (one-pack) = 1564,57 kg
- Complejo con modificador de impacto (one-pack) = 3915,23 kg
- $TiO_2 = 16660,52 \text{ kg}$

5. DIMENSIONADO INSTALACIÓN DE TRANSPORTE DE MATERIA PRIMA

Existen diferentes tipos de transportes de materias primas dependiendo del estado del material, solido, líquido o polvo, del tamaño del material a transportar, velocidad, densidades... Estos tipos de transporte son:

- Transporte por gravedad
- Transporte hidráulico
- Transporte neumático
- Transporte mecánico

Los sistemas de transporte neumático son simples y sirven para el transporte, carga y/o descarga de productos granulares, pulverulentos y micronizados de cualquier densidad. Basándonos en el movimiento de sólidos en una corriente de aire a una velocidad determinada y en una dirección concreta, calculamos el volumen y presión de aire necesarios en cada caso, en función de la distancia a recorrer y de la naturaleza del producto a transportar.

Las instalaciones de transporte neumático pueden ser diseñadas para trabajar por aspiración o presión negativo, o por impulsión o presión positiva.

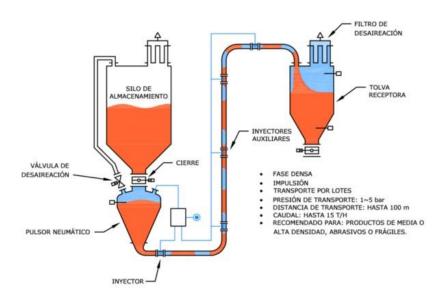


Ilustración 35. Esquema funcionamiento del transporte por impulsión

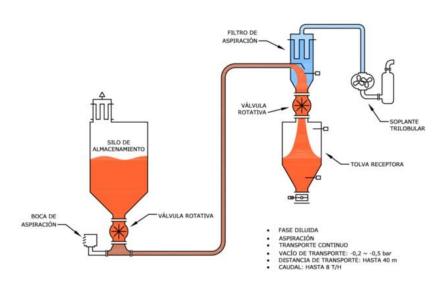


Ilustración 36. Esquema funcionamiento del transporte por aspiración

Dependiendo de la velocidad y del contenido de sólidos en el aire el transporte se puede clasificar como:

- Transporte en fase diluida
- Transporte en fase densa

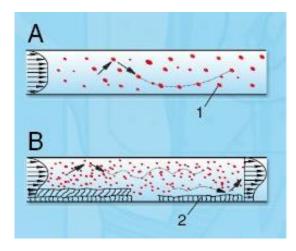

El flujo en fase diluida se caracteriza por trabajar a altas velocidades, presiones reducidas, grandes volúmenes de aire y concentraciones bajas del material a transportar, las partículas van suspendidas en el flujo.

Tabla 7. Principales diferencias entre los transportes en fases diluida y densa

Propiedad	Transporte en fase diluida	Transporte en fase densa
Velocidad del gas, m/s	20	1-5
Concentración de sólidos, %	<1	>30
en volumen		
ΔP/L, mbar/m	<5	>20

El flujo en fase densa se caracteriza por trabajar a bajas velocidades, altas presiones, y concentraciones altas de material, las partículas no se encuentran completamente suspendidas en el flujo y la interacción entre ellas es mucho mayor. Las bajas velocidades de las partículas del material implican que los materiales abrasivos y frágiles pueden ser transportados sin gran erosión de las tuberías ni degradación del producto. En las llustraciones 37 y 38 se muestran los diferentes patrones de flujo (Ingeniería de las operaciones básicas mecánicas, Gunt).

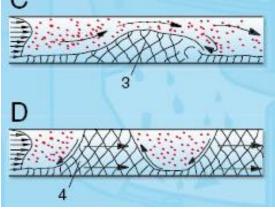


Ilustración 37. Tipos de transporte neumático: A- Transporte en fase diluida (1- partículas sólidas) B- Transporte en madeja (2- madeja)

Ilustración 38. Tipos de transporte neumático: C- Transporte en fase densa, en dunas (3- formación de conglomerado a partir de una duna) D- Transporte en fase densa, en tapón (4- tapón conmovedor)

El material a transportar por la instalación en determinadas fases es polvo y en otras son sólidos de pequeño tamaño, dependiendo del recorrido y la distancia de la instalación en unas partes se instalará transporte neumático y en otras, transporte mecánico mediante un sinfín.

El transporte neumático se realizará en fase densa, ya que las velocidades a las que se necesitan trabajar son lentas y este tipo de trasporte necesita menores requerimientos de energía. Si bien la ecuación de la energía mecánica utilizada para el cálculo del transporte neumático en fase diluida también es válida para la fase densa, tiene poca aplicabilidad ya que los resultados no son confiables. Por lo general el diseño de la instalación de transporte en fase densa se basa en la experiencia previa por prueba y error, y el cálculo de forma empírica.

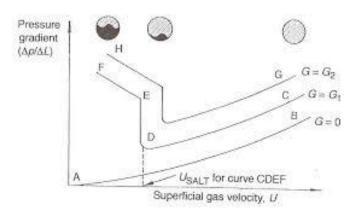


Ilustración 39. Diagrama de fases en transporte neumático horizontal. Fuente: Rhodes (2003)

Dado que no se dispone de experiencia en el diseño de este tipo de instalaciones y tampoco de medios para realizar cálculos experimentales, se realiza el cálculo para el transporte en fase diluida.

Uno de los términos que se calculan en el transporte en fase diluida es la velocidad de sedimentación, esta es la velocidad en la que las partículas que se están moviendo en fase diluida empiezan a sedimentarse en el fondo de la línea de transporte o lo que es lo mismo, la velocidad en la que el transporte cambia de fase densa a fase diluida.

Esta velocidad tampoco puede obtenerse de forma teórica, por lo que se utilizan correlaciones. Rhodes (2003) sugiere la siguiente ecuación:

$$\frac{m_p}{\rho_f u_{salt} A} = \left[\frac{1}{10^{(1440x+1.96)}} \right] \left(\frac{u_{salt}}{\sqrt{g D}} \right)^{(1100 x+2.5)}$$
 (23)

Donde m_p es el flujo másico de sólidos, u_{salt} es la velocidad de sedimentación, x es el tamaño de partícula y A el área transversal del tubo.

A continuación, se describen las distintas fases del transporte de material en la instalación a calcular:

La primera fase de la instalación se trata de transporte neumático desde los silos exteriores de materias primas hasta las tolvas de premezclado, la Resina PVC recorrerá un total de 16,7 m con 2,5 m de desnivel y los CaCO₃ de cada calidad 12,7 m y 9,7 m, respectivamente, con el mismo desnivel.

La segunda fase es el transporte mecánico desde las tolvas de premezclado hasta los distintos turbomezcladores, hasta el Caccia tenemos una distancia de 8m con un desnivel de 4,6 m y hasta el Plasmec 13,5 m con el mismo desnivel.

Los turbomezcladores tardan de media unos 10 minutos en realizar la mezcla, por lo que en 10 minutos el material tiene que llegar hasta las tolvas de premezclado, el operario debe de completar la fórmula con los componentes faltantes, Complejo, TiO₂, y componentes minoritarios y por último una vez completada la fórmula llegar hasta los turbomezcladores.

Por lo que vamos a contemplar que el recorrido de la fase uno y dos se realiza cada uno en 4 min y que el operario tarda 2 min en completar la fórmula, tardando la operación un total de 10 min.

La tercera fase es el transporte mecánico de la fórmula mezclada desde los turbomezcladores hasta la granceadora habiendo una distancia de 5,83 m con un desnivel de 3 m desde cada uno de ellos.

La cuarta fase es el transporte neumático de la granza de PVC desde la enfriadora de granza hasta los silos de almacenaje de granza, hasta el silo más lejano tenemos una distancia de 38 m con un desnivel de 4,5 m

5.1. Dimensionado Tuberías Fase 1 instalación de transporte

Una vez calculado el movimiento semanal de materia prima (57921,1 kg) podemos comenzar con el dimensionado de la instalación. El flujo másico será 57921,1 kg entre 15 turnos por semana entre 8 h por turno, lo que es igual a 482,68 kg/h.

Resina PVC

Teniendo la distancia a recorrer y el tiempo necesario, la velocidad de arrastre es:

$$v = d/t \tag{24}$$

$$v = \frac{16.7}{4} = 4.175 \frac{m}{min} \rightarrow v = 250.5 \, m/h$$

El flujo de masa es igual a la densidad del material por la velocidad de arrastre:

$$G = \rho \times v \tag{25}$$

$$G = 580 \times 250,5 = 145290 \, \frac{kg}{m^2 h}$$

Dado que la Resina PVC es el 60% de las fórmulas el flujo másico es:

$$m = 482.68 \times 0.6 = 290 \, kg/h$$

Con los resultados obtenidos podemos calcular la sección necesaria conseguir el flujo requerido:

$$m = G \times S \to S = \frac{m}{G} \tag{26}$$

$$S = \frac{290}{145290} = 0.001996 \, m^2$$

$$S = \pi \times r^2 \to r = \sqrt{\frac{S}{\pi}} \tag{27}$$

$$r = \sqrt{\frac{0,001996}{\pi}} = 0,02521 \, m = 25 \, mm$$

$$d = 25 \times 2 = 50 \, mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), pasa de 48.3 mm a 60.3 mm, seleccionamos la inmediatamente superior, tubería de acero inoxidable de 60.3 x 1.6 mm.

Tuberia ISO Acero Inoxidable								
DN pu	ılgadas	Tubos						
ым ри	iigauas	medidas (mm)	peso (kg/m)					
3/8"	DN-10	17,2 x 1,6	0,646					
		$17,2 \times 2,0$	0,766					
1/2"	DN-15	21,3 x 1,6	0,817					
		$21,3 \times 2,0$	0,973					
		21,3 x 2,6	1,285					
3/4"	DN-20	$26,9 \times 1,6$	1,049					
		26,9 x 2,0	1,255					
		$26,9 \times 2,6$	1,6					
1"	DN-25	33,7 x 1,6	1,332					
		$33,7 \times 2,0$	1,598					
		33,7 x 2,6	2,05					
1 - 1/4"	DN-32	$42,4 \times 1,6$	1,694					
		42,4 x 2,0	2,036					
		42,4 x 2,6	2,6					
		42,4 x 3,0	2,979					
1 - 1/2"	DN-40	48,3 x 1,6	1,939					
		48,3 x 2,0	2,333					
		48,3 x 2,6	3,04					
		48,3 x 3,0	3,424					
2"	DN-50	60,3 x 1,6	2,438					
		60,3 x 2,0	2,938					
		60,3 x 2,6	3,77					
		60,3 x 3,0	4,331					
2 - 1/2"	DN-65	76,1 x 1,6	3,095					
		76,1 x 2,0	3,734					
		76,1 x 2,6	4,82					
		76,1 x 3,0	5,526					
3"	DN-80	88,9 x 1,6	3,627					
		88,9 x 2,0	4,379					

Ilustración 40. Fragmento tabla tamaños estándar de tubos de acero inoxidable del Catálogo de Eduardo Cortina

CaCO₃

Sólo tendremos en cuenta el silo de CaCO₃ más alejado de las tolvas de premezclado.

La velocidad de arrastre es:

$$v = \frac{12.7}{4} = 3.175 \frac{m}{min} \rightarrow v = 190.5 \, m/h$$

El flujo de masa:

$$G = 1001 \times 190,5 = 190690 \, \frac{kg}{m^2 h}$$

Dado que el CaCO₃ es el 40% de las fórmulas el flujo másico es:

$$m = 482,68 \times 0,4 = 193 \, kg/h$$

Sección necesaria:

$$S = \frac{193}{190690} = 0,00101 \, m^2$$

$$r = \sqrt{\frac{0,00101}{\pi}} = 0,01795 \, m = 18 \, mm$$

$$d = 18 \times 2 = 36 \, mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), pasa de 33,7 mm a 42,4 mm, seleccionamos la inmediatamente superior, tubería de acero inoxidable de 42,4 x 1,6 mm.

5.2. Dimensionado Tuberías Fase 2 instalación de transporte

Turbomezclador Caccia

La velocidad de arrastre es:

$$v = \frac{8}{4} = 2 \frac{m}{min} \rightarrow v = 120 \, m/h$$

Dado que las fórmulas de granza son en un 90% Resina de PVC y $CaCO_3$ a un 60/40 estimamos que la densidad aparente de la fórmula es igual a $(580 \times 0.6) + (1001 \times 0.4) = 748.4$ kg/m³, el flujo de masa es:

$$G = 748.4 \times 120 = 89808 \frac{kg}{m^2h}$$

Como se ha dicho anteriormente el flujo másico es:

$$m = 482,68 \, kg/h$$

Con los resultados obtenidos podemos calcular la sección necesaria conseguir el flujo requerido:

$$S = \frac{482,68}{89808} = 0,00537 m^{2}$$

$$r = \sqrt{\frac{0,00537}{\pi}} = 0,04136 m = 41 mm$$

$$d = 41 \times 2 = 82 mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), pasa de 76,1 mm a 88,9 mm, seleccionamos la inmediatamente superior, tubería de acero inoxidable de 88,9 x 1,6 mm.

• Turbomezclador Plasmec

La velocidad de arrastre es:

$$v = \frac{13.5}{4} = 3.375 \frac{m}{min} \rightarrow v = 202.5 \, m/h$$

El flujo de masa:

$$G = 748,4 \times 202,5 = 151551 \frac{kg}{m^2h}$$

Como se ha dicho anteriormente el flujo másico es:

$$m = 482,68 \, kg/h$$

Sección necesaria:

$$S = \frac{482,68}{151551} = 0,00319 \, m^2$$

$$r = \sqrt{\frac{0,00319}{\pi}} = 0,03184 \, m = 32 \, mm$$

$$d = 32 \times 2 = 64 \, mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), pasa de 60,3 mm a 76,1 mm, seleccionamos la inmediatamente superior, tubería de acero inoxidable de 76,1 x 1,6 mm.

5.3. Dimensionado Tuberías Fase 3 instalación de transporte

Teniendo que pasar la fórmula desde los turbomezcladores a la granceadora en 1 minuto, la velocidad de arrastre es:

$$v = \frac{5.83}{1} = 5.83 \frac{m}{min} \rightarrow v = 350 \, m/h$$

El flujo de masa es:

$$G = 748,4 \times 350 = 261790,32 \frac{kg}{m^2h}$$

Como se ha dicho anteriormente el flujo másico es:

$$m = 482,68 \, kg/h$$

Con los resultados obtenidos podemos calcular la sección necesaria conseguir el flujo requerido:

$$S = \frac{482,68}{261790,32} = 0,001844 \, m^2$$

$$r = \sqrt{\frac{0,001844}{\pi}} = 0,02423 \, m = 25 \, mm$$

$$d = 25 \times 2 = 50 \, mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), pasa de 48,3 mm a 60,3 mm, seleccionamos la inmediatamente superior, tubería de acero inoxidable de 60,3 x 1,6 mm.

5.4. Dimensionado Tuberías Fase 4 instalación de transporte

Teniendo que pasar la granza de PVC desde el enfriador de granza hasta el silo más lejano en 5 minutos, la velocidad de arrastre es:

$$v = \frac{38}{5} = 7.6 \frac{m}{min} \rightarrow v = 456 \, m/h$$

La granza de PVC tiene una densidad aparente media medida en laboratorio de 770,55 kg/m³, siendo el flujo de masa:

$$G = 770,55 \times 456 = 351370,8 \frac{kg}{m^2h}$$

Como se ha dicho anteriormente el flujo másico es:

$$m = 482,68 \, kg/h$$

Con los resultados obtenidos podemos calcular la sección necesaria conseguir el flujo requerido:

$$S = \frac{482,68}{351370.8} = 0,00137 \, m^2$$

$$r = \sqrt{\frac{0,00137}{\pi}} = 0,02091 \, m = 21 \, mm$$

$$d = 21 \times 2 = 42 \, mm$$

Viendo los diámetros estándar de tuberías en acero inoxidable (Tabla), seleccionamos la tubería de acero inoxidable de 42,4 x 1,6 mm.

5.5. Dimensionado soplante Fase 1 instalación de transporte

Se debe de obtener la caída de presión a lo largo de la línea de transporte y para ello es necesario plantear el balance de energía mecánica para el sistema. Se considera la sección diferencial de la tubería descrita en la Ilustración 39, para este sistema el balance de cantidad de movimiento conduce a:

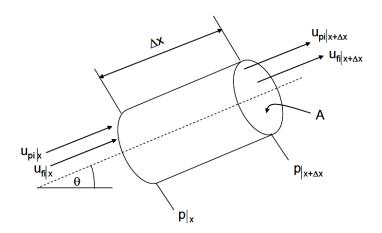


Ilustración 41. Sección de una línea de transporte. Adaptado de Rhodes (2003)

Haciendo el balance de energía mecánica en estado estacionario, asumiendo densidad y porosidad constantes, e integrando resulta:

$$p_{1} - p_{2} = \frac{1}{2} \varepsilon \rho_{f} u_{fi}^{2} + \frac{1}{2} (1 - \varepsilon) \rho_{p} u_{pi}^{2} + F_{fw} L + F_{pw} L + (1 - \varepsilon) L \rho_{p} g \sin \theta + \varepsilon L \rho_{f} g \sin \theta = 0$$

$$(1) \qquad (2) \qquad (3) \qquad (4) \qquad (5) \qquad (6)$$

La ecuación xx indica la caída de presión en un tramo de línea recta que transporta sólidos dad por los siguientes términos:

- 1. Pérdida de carga por aceleración del gas
- 2. Pérdida de carga por aceleración de los sólidos
- 3. Pérdida de presión debido a la fricción del gas con la pared
- 4. Pérdida de presión debido a la fricción de los sólidos con la pared
- 5. Pérdida de carga por la energía potencial de los sólidos
- 6. Pérdida de carga por la energía potencial del gas
- Resina PVC

Tabla 8

		VALOR	UNIDADES
Gravedad	g	9,81	m/s ²
flujo másico	тр	0,081	kg/s
Tamaño partícula	Х	0,25 x 10 ⁻⁴	m
Densidad material	ρρ	580	kg/m³
Longitud vertical	Lv	2,5	m
Longitud horizontal	Lh	16,7	m
Codos 90°	n	5	uds
Viscosidad del fluido	μ	1,845 x 10 ⁻⁵	Pa*s
Densidad del flujo	ρf	1,187	kg/m³
Diámetro tubería	D	60,3 x 10 ⁻³	m
Sección tubería	Α	2,86 x 10 ⁻³	m ²

Con los datos disponibles y/o calculados hasta ahora (Tabla 8) se calculan las pérdidas de carga de la línea de transporte de Resina de PVC, obteniendo los resultados que se muestran en la Tabla 9:

Tabla 9

		VALOR	UNIDADES
Velocidad de sedimentación	usalt	7,483	m/s
Velocidad superficial	uf	11,224	m/s
Caudal volumétrico de fluido	Qf	0,032	m³/s
Velocidad intersticial de las partículas	ирі	10,506	m/s
Porosidad (tramos horizontales)	ε	0,995	
Velocidad intersticial del fluido	ufi	11,276	m/s
Nº Reynolds	Red	43542,366	
Factor de fricción	f	0,005	
Pérdida de presión debido a la fricción del gas con la pared (tramos horizontales)	Ffw L (3)	449,921	Pa
Nº Reynolds	Rep	1,239	
Coeficiente de arrastre	Cd	16,271	
Factor de fricción	fp	0,162	
Pérdida de presión debido a la fricción de los sólidos con la pared (tramos horizontales)	Fpw L (4)	26563,709	Pa
Pérdida de carga por aceleración del gas	(1)	75,113	Pa
Pérdida de carga por aceleración de los sólidos	(2)	148,175	Pa
Pérdidas de carga en los tramos horizontales	Δphor	27236,918	Pa
Pérdida de presión debido a la fricción del gas con la pared (tramo vertical)	Ffw L (3)	67,353	Pa
Pérdida de presión debido a la fricción de los sólidos con la pared (tramo vertical)	Fpw L (4)	51,244	Pa
Porosidad (tramos verticales)	ε	0,996	
Pérdida de carga por la energía potencial de los sólidos	(5)	61,383	Pa
Pérdida de carga por la energía potencial del gas	(6)	28,956	Pa
Pérdidas de carga en los tramos verticales	Δpvert	208,936	Pa
Pérdidas de carga en codos	Δpcodos	3134,035	Pa
Pérdidas de carga instalación	Δρ	30579,888	Pa
3	Δр	0,306	bar

Ilustración 42. Soplante tipo Roots trilobular

El soplante que se instalará capaz de soportar las pérdidas calculadas es un soplante tipo Roots trilobular (Ilustración 40) del fabricante Pedro Gil, referencia PG30.10 F1 (Ilustración 41) de 3 kW de potencia, 400 mbar de presión diferencial máxima, y 2,3 m³/min de flujo volumétrico máximo a 2900 rpm (Ilustración 42).

Ilustración 43. Soplante Pedro Gil serie PG30 F1 en cabina insonorizada

Consultar cuando se requieran presiones y caudales no contemplados. / Ask when requested pressures and intake capacities are not shown.

	de la companya de la		_		200				D.			1000	71.0				9.5				
Δp/mbar	TAMA	NO/SIZE		30	10 / D	N - 50				3	30 20	DN - 8	0				30	30 / D	N - 80		
	Q ₁	m ³ /min.	0,74	1,87	2,43	3,45	4,24	4,58	1,15	2,7	3,47	4,87	5,95	6,42	1	55	3,62	4,66	6,52	7,97	8,59
	Δt	°C	53	36	34	31	30	30	47	34	32	30	29	29		47	34	32	30	29	29
	R.P.M	sopl.	1.400	2.400	2.900	3.800	4.500	4.800	1.400	2.400	2.900	3.800	4.500	4.800	1.4	100	2.400	2.900	3.800	4.500	4.800
300	R.P.M	mtr.	2.860	2.850	2.895	2.895	2.895	2.910	2.850	2.895	2.895	2.895	2.910	2.910	2.0	850	2.895	2.910	2.910	2.910	2.910
		∫ N. abs	1	1,7	2	2,6	3,1	3,3	1,3	2,3	2,8	3,6	4,3	4,6		1,7	2,9	3,5	4,6	5,4	5,8
	kW	N. motor	1,5	2,2	3	3	4	5,5	2,2	3	3	5,5	5,5	5,5		2,2	4	5,5	7,5	7,5	7,5
	JD/A)	∫ s. cab.	66	72	75	79	83	85	68	74	77	80	83	84		73	78	79	82	86	86
	dB(A)	c. cab.	63	63	64	64	65	65	63	64	64	64	65	65		64	65	65	66	67	67
	Q ₁	m ³ /min.	0,61	1,74	2,3	3,32	4,11	4,45	0,99	2,54	3,31	4,71	5,79	6,26	1	34	3,41	4,45	6,31	7,76	8,38
	Δt	°C	86	52	47	43	41	40	73	49	45	42	40	39		72	48	45	41	40	39
	R.P.M	sopl.	1.400	2.400	2.900	3.800	4.500	4.800	1.400	2.400	2.900	3.800	4.500	4.800	1.4	100	2.400	2.900	3.800	4.500	4.800
400	R.P.M	mtr.	2860	2.895	2.895	2.895	2.910	2.910	2.850	2.895	2.895	2.910	2.910	2.910	2.8	95	2.910	2.910	2.915	2.915	2.915
400	11112	∫ N. abs	1,2	2,1	2,6	3,3	4	4,2	1,7	2,9	3,5	4,6	5,4	5,8		2,2	3,7	4,5	5,9	7	7,5
	kW	N. motor	1,5	3	3	4	5,5	5,5	2,2	4	4	5,5	7,5	7,5		3	5,5	5,5	7,5	11	11
	OD/A)	∫ s. cab.	66	72	75	79	84	85	68	75	78	80	84	85		74	78	80	83	88	88
	dB(A)	C. cab.	63	64	64	64	65	65	63	64	64	64	65	65		65	65	66	67	68	68
	Q ₁	m ³ /min.		1,62	2,19	3,2	4	4,33	0,85	2,4	3,17	4,57	5,65	6,12	1	16	3,23	4,26	6,13	7,58	8,2
	Δt	°C		69	62	56	53	52	106	64	59	54	51	50	100	04	64	58	53	51	50
	R.P.M	sopl.		2.400	2.900	3.800	4.500	4.800	1.400	2.400	2.900	3.800	4.500	4.800	1.4	00	2.400	2.900	3.800	4.500	4.800
500	R.P.M	mtr.		2895	2.895	2.910	2.910	2.910	2.895	2.895	2.910	2.910	2.910	2.910	2.8	95	2.910	2.910	2.915	2.915	2.915
300	00000	∫ N. abs		2,6	3,1	4,1	4,8	5,1	2,1	3,5	4,3	5,6	6,6	7		2,7	4,6	5,5	7,2	8,6	9,1
	kW	N. motor		3	4	5,5	7,5	7,5	3	4	5,5	7,5	7,5	7,5		4	5,5	7,5	11	11	11
	ID/A)	∫s. cab.		72	77	82	86	86	69	75	78	80	85	85		75	78	80	84	87	87
	dB(A)	l c. cab.		63	63	64	67	67	63	64	64	64	65	65		65	66	66	67	69	69

Ilustración 44. Información técnica de soplantes, catálogo fabricante Pedro Gil

CaCO₃

Este soplante de encargará de impulsar los CaCO₃ de las dos calidades, ya que la demanda de estos materiales será alterna, para realizar los cálculos se coge el CaCO₃ de mayor densidad ya que éste será el que necesite mayor presión para ser transportado.

Tabla 10

		VALOR	UNIDADES
Gravedad	g	9,81	m/s ²
flujo másico	тр	0,054	kg/s
Tamaño partícula	Х	0,3 x 10 ⁻⁵	m
Densidad material	ρр	1001	kg/m³
Longitud vertical	Lv	2,5	m
Longitud horizontal	Lh	12,7	m
Codos 90°	n	5	uds
Viscosidad del fluido	μ	1,845 x 10 ⁻⁵	Pa*s
Densidad del flujo	ρf	1,187	kg/m³
Diámetro tubería	D	42,4 x 10 ⁻³	m
Sección tubería	Α	1,41 x 10 ⁻³	m ²

Con los datos disponibles y/o calculados hasta ahora (Tabla 10) se calculan las pérdidas de carga de la línea de transporte de CaCO3, obteniendo los resultados que se muestran en la Tabla 11:

Tabla 11

		VALOR	UNIDADES
Velocidad de sedimentación	usalt	7,182	m/s
Velocidad superficial	uf	10,773	m/s
Caudal volumétrico de fluido	Qf	0,015	m³/s
Velocidad intersticial de las partículas	ирі	9,817	m/s
Porosidad (tramos horizontales)	ε	0,996	
Velocidad intersticial del fluido	ufi	10,815	m/s
Nº Reynolds	Red	29387,381	
Factor de fricción	f	0,006	
Pérdida de presión debido a la fricción del gas con la pared (tramos horizontales)	Ffw L (3)	484,982	Pa
Nº Reynolds	Rep	1,926	
Coeficiente de arrastre	Cd	12,484	
Factor de fricción	fp	0,081	
Pérdida de presión debido a la fricción de los sólidos con la pared (tramos horizontales)	Fpw L (4)	18103,881	Pa
Pérdida de carga por aceleración del gas	(1)	69,149	Pa
Pérdida de carga por aceleración de los sólidos	(2)	186,372	Pa
Pérdidas de carga en los tramos horizontales	Δphor	18844,384	Pa
Pérdida de presión debido a la fricción del gas con la pared (tramo vertical)	Ffw L (3)	95,469	Pa
Pérdida de presión debido a la fricción de los sólidos con la pared (tramo vertical)	Fpw L (4)	82,258	Pa
Porosidad (tramos verticales)	ε	0,996	
Pérdida de carga por la energía potencial de los sólidos	(5)	86,306	Pa
Pérdida de carga por la energía potencial del gas	(6)	28,979	Pa
Pérdidas de carga en los tramos verticales	Δpvert	293,0123	Pa
Pérdidas de carga en codos	Δpcodos	4395,184	Pa
Pérdidas de carga instalación	<u>Δ</u> ρ Δρ	23532,581 0,235	Pa bar

El soplante que se instalará capaz de soportar las pérdidas calculadas es un soplante tipo Roots trilobular del fabricante Pedro Gil, referencia PG30.05 F1 de 2,2 kW de potencia, 300 mbar de presión diferencial máxima, y 1,06 $\,$ m³/min de flujo volumétrico máximo a 2400 rpm.

5.6. Dimensionado tornillo sin-fin Fase 2 instalación de transporte

Un tornillo sin-fin es un sistema diseñado para el transporte en continuo de todo tipo de productos en polvo, gránulos, molidos y mezclas. El transporte se realiza mediante el giro sobre su propio eje de un tornillo sin-fin helicoidal introducido en una camisa tubular o de canal.

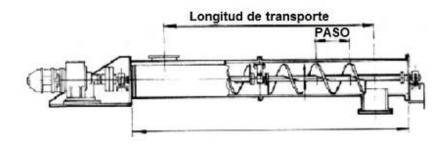


Ilustración 45. Sección de una línea de transporte mecánico mediante un tornillo sin-fin

El caudal se calcula a partir de la siguiente ecuación:

$$Q = 3600 \, S \, v \, \rho \, i \tag{29}$$

donde, S es el área de relleno del transportador, v la velocidad de desplazamiento e i el coeficiente de disminución del flujo debido a la inclinación del transportador.

Los valores del coeficiente de disminución de flujo en función de la inclinación del transportador se muestran en la siguiente tabla:

Tabla 12. Coeficientes de disminución de flujo en función de la inclinación del transportador

Inclinación del canalón	0°	5°	10°	15°	20°	25°	30°	35°
i	1	0,9	0,8	0,74	0,65	0,42	0,3	0,22

El área de relleno del transportador es:

$$S = \lambda \, \frac{\pi \, D^2}{4} \tag{30}$$

donde, λ es el coeficiente de relleno de la sección.

Este coeficiente toma un valor en función del tipo de carga que se transporta.

Tabla 13. Coeficientes de relleno en función del tipo de carga

Tipo de carga	Coeficiente de relleno, λ
Pesada y abrasiva	0,125
Pesada y poco abrasiva	0,25
Ligera y poco abrasiva	0,32
Ligera y no abrasiva	0,4

La velocidad de desplazamiento es:

$$v = \frac{p \, n}{60} \tag{31}$$

donde, p es el paso del tornillo.

Como ejemplo se incluye la siguiente tabla donde aparecen algunos datos relativos a la capacidad de transporte de un sin-fin de tipo comercial:

Tabla 14. Capacidad de transporte de un sin fin

Ø del tornillo (mm)	160	200	250	315	400	500	630	800
Paso de hélice (mm)	160	200	250	300	355	400	450	500
Velocidad normal (r.p.m.)	70	65	60	55	50	45	40	35
Capacidad en horizontal al 100% (m³7h)	14	26	45	78	130	217	342	525

El cálculo de la potencia total de accionamiento del sinfín se compone de la suma de las siguientes potencias:

1. Potencia para el desplazamiento horizontal del material (P_H)

$$P_H = c_0 \frac{Q \ L_H \ g}{3600} \tag{32}$$

donde, c_0 es el coeficiente de resistencia del material transportado. Este coeficiente se puede estimar para los materiales a transportar mediante la siguiente tabla:

Tabla 15. Coeficientes de resistencia en función del tipo de material

Material	Coeficiente de resistencia del material, c ₀
Harina, serrín, productos granulosos	1,2
Turba, sosa, polvo de carbón	1,6
Antracita, carbón, sal de roca	2,5
Yeso, arcilla seca, tierra fina, cemento, cal, arena	4

2. Potencia de accionamiento del tornillo en vacío (P_N)

$$P_N = \frac{D L_H}{20} \tag{33}$$

3. Potencia para el caso de un tornillo inclinado (P_i)

$$P_i = \frac{Q \ L_V \ g}{3600} \tag{34}$$

Con lo que la potencia total de accionamiento será:

$$P = P_H + P_N + P_i \tag{35}$$

Caccia

Tabla 16

		VALOR	UNIDADES
Velocidad de desplazamiento del transportador	v	0,033	m/s
Flujo másico	тр	0,134	kg/s
Densidad material	ρρ	748,4	kg/m³
Longitud vertical	Lv	4,6	m
Longitud horizontal	Lh	8	m
Diámetro exterior sin-fin	D	0,085	m
Sección tubería	Α	5,67 x 10 ⁻³	m²
Coeficiente de relleno	λ	0,32	
Inclinación del canalón	٥	35	۰
Coeficiente de disminución de flujo	i	0,22	
Flujo volumétrico	Q	0,645	m³/h
Gravedad	g	9,81	m/s ²
Coeficiente de resistencia del material transportado	C ₀	4	

Con los datos disponibles y/o calculados hasta ahora (Tabla 15) se calculan la capacidad del transportador y la potencia de accionamiento, obteniendo los resultados que se muestran en la Tabla 16:

Tabla 17

		VALOR	UNIDADES
Paso del tornillo sin-fin	р	0,085	m
Velocidad de giro del tornillo sin-fin	n	23,529	rpm
Área de relleno del canalón	S	1,815 x 10 ⁻³	m²
Capacidad del transportador	Q	35,877	kg/h
Velocidad de desplazamiento del transportador (2)	v2	0,167	m/s
Diámetro exterior sin-fin (2)	D2	0,14	m
Paso del tornillo sin-fin (2)	р2	0,14	m
Velocidad de giro del tornillo sin-fin (2)	n2	71,429	rpm
Área de relleno del canalón (2)	52	4,93 x 10 ⁻³	m²
Capacidad del transportador (2)	Q2	486,635	kg/h
Potencia para el desplazamiento horizontal del material	Ph	42,391	W
Potencia para el accionamiento del tornillo en vacío	Pn	0,056	W
Potencia para un tornillo inclinado	Pi	6,094	W
Potencia total de accionamiento	P	48,541	W

Una vez realizados los cálculos la capacidad del transportador es menor que el flujo másico que debemos de transportar, por lo que aumentamos la velocidad de desplazamiento del transportador de 2 m/min (v) a 10m/min (v2) y el diámetro exterior del sin-fin de 85mm (D) a 140mm (D2).

Este tornillo será accionado mediante un motorreductor del fabricante Pujol Muntalà, referencia RAX030M0E0 de 61 W de potencia y una velocidad de giro de 93,3 rpm.

Plasmec

Tabla 18

		VALOR	UNIDADES
Velocidad de desplazamiento del transportador	v	0,056	m/s
Flujo másico	mp	0,134	kg/s
Densidad material	ρр	748,4	kg/m³
Longitud vertical	Lv	4,6	m
Longitud horizontal	Lh	13,5	m
Diámetro exterior sin-fin	D	0,08	m
Sección tubería	Α	5,03 x 10 ⁻³	m ²
Coeficiente de relleno	λ	0,32	
Inclinación del canalón	۰	20	۰
Coeficiente de disminución de flujo	i	0,65	
Flujo volumétrico	Q	0,645	m³/h
Gravedad	g	9,81	m/s ²
Coeficiente de resistencia del material transportado	c0	4	

Con los datos disponibles y/o calculados hasta ahora (Tabla 17) se calculan la capacidad del transportador y la potencia de accionamiento, obteniendo los resultados que se muestran en la Tabla 18:

Tabla 19

		VALOR	UNIDADES
Paso del tornillo sin-fin	р	0,08	m
Velocidad de giro del tornillo sin-fin	n	42,188	rpm
Área de relleno del canalón	S	1,61 x 10 ⁻³	m²
Capacidad del transportador	Q	158,45	kg/h
Velocidad de desplazamiento del transportador (2)	v2	0,117	m/s
Diámetro exterior sin-fin (2)	D2	0,1	m
Paso del tornillo sin-fin (2)	p2	0,1	m
Velocidad de giro del tornillo sin-fin (2)	n2	70	rpm
Área de relleno del canalón (2)	<i>S2</i>	2,513 x 10 ⁻³	m²
Capacidad del transportador (2)	Q2	513,495	kg/h
Potencia para el desplazamiento horizontal del material	Ph	75,484	W
Potencia para el accionamiento del tornillo en vacío	Pn	0,068	W
Potencia para un tornillo inclinado	Pi	6,430	W
Potencia total de accionamiento	P	81,981	W

Una vez realizados los cálculos la capacidad del transportador es menor que el flujo másico que debemos de transportar, por lo que aumentamos la velocidad de desplazamiento

del transportador de 3,375 m/min (v) a 7m/min (v2) y el diámetro exterior del sin-fin de 80mm (D) a 100mm (D2).

Este tornillo será accionado mediante un motorreductor del fabricante Pujol Muntalà, referencia RAX030M0Y0 de 92 W de potencia y una velocidad de giro de 70 rpm.

Ilustración 46. Motorreductor

PROGRAMA	DE FABRICA	CIÓN	FERTI	GUNGSPI	ROGRAN	IM MANUFACTURING PROGRAM	PROGRAMMI	DE FABRICATI
ARCMX - LAR	D C	CMX - LA	CMFX					
P [kW]	n2 [1/min]	M2 [Nm]	IR	FRs [N]	fb	Tipo Typ Type	Código Referenz Ref.	Intens.nomina Nennstrom Nominal intens 400 V (A)
0,092	14	29	100	3118	1	LACM 40X/56B-4/14 D18	RAX040M060	(0,5)
0,092	14	29	100	3118	1	LACM 40X/56B-4/14 D19	RAX040M061	
	17,5	26	80	2895	1.3	LACM 40X/56B-4/17,5 D18	RAX040M070	-
	17,5	26	80	2895	1,3	LACM 40X/56B-4/17,5 D19	RAX040M071	
	23,3	22	60	2630	1,8	LACM 40X/56B-4/23,3 D18	RAX040M080	
	23,3	22	60	2630	1,8	LACM 40X/56B-4/23,3 D19	RAX040M081	
	28	19	50	2475	2,2	LACM 40X/56B-4/28 D18	RAX040M090	
	28	19	50	2475	2,2	LACM 40X/56B-4/28 D19	RAX040M091	_
	23,3	19	60	1367	0,8	LACM 30X/56B-4/23,3 D14	RAX030M0N0	_
	23,3	19	60	1367	0,8	LACM 30X/56B-4(80)/23,3 D14	RAX030M0P0	<u> </u>
	28	17	50	1286	1	LACM 30X/56B-4/28 D14	RAX030M0Q0	
	28	17	50	1286	1	LACM 30X/56B-4(80)/28 D14	RAX030M0R0	
	35	15	40	1194	1,3	LACM 30X/56B-4/35 D14	RAX030M0S0	
	35	15	40	1194	1,3	LACM 30X/56B-4(80)/35 D14	RAX030M0T0	
	46,7	12	30	1085	1,7	LACM 30X/56B-4/46,7 D14	RAX030M0U0	
	46,7	12	30	1085	1,7	LACM 30X/56B-4(80)/46,7 D14	RAX030M0V0	it
	56	11	25	1021	2,1	LACM 30X/56B-4/56 D14	RAX030M0W0)
	56	11	25	1021	2,1	LACM 30X/56B-4(80)/56 D14	RAX030M0X0	
	70	9	20	948	2	LACM 30X/56B-4/70 D14	RAX030M0Y0	J
	70	9	20	948	2	LACM 30X/56B-4(80)/70 D14	RAX030M0Z0	- -
	93,3	7	15	861	2,6	LACM 30X/56B-4/93,3 D14	RAX030M100	

Ilustración 47. Información técnica de motorreductores, catálogo fabricante Pujol Muntalà

5.7. Dimensionado tornillo sin-fin Fase 3 instalación de transporte

Esta parte de la instalación se compone de dos tornillos ya que como se mencionó anteriormente las distancias desde cada turbomezclador hasta la granceadora son iguales.

Ilustración 48. Transportador de tornillo sin-fin

Tabla 20

		VALOR	UNIDADES
Velocidad de desplazamiento del transportador	ν	0,097	m/s
Flujo másico	тр	0,134	kg/s
Densidad material	ρр	748,4	kg/m³
Longitud vertical	Lv	3	m
Longitud horizontal	Lh	5,83	m
Diámetro exterior sin-fin	D	0,07	m
Sección tubería	Α	3,85 x 10 ⁻³	m ²
Coeficiente de relleno	λ	0,32	
Inclinación del canalón	۰	30	۰
Coeficiente de disminución de flujo	i	0,3	
Flujo volumétrico	Q	0,645	m³/h
Gravedad	g	9,81	m/s ²
Coeficiente de resistencia del material transportado	c0	4	

Con los datos disponibles y/o calculados hasta ahora (Tabla 19) se calculan la capacidad del transportador y la potencia de accionamiento, obteniendo los resultados que se muestran en la Tabla 20:

Tabla 21

		VALOR	UNIDADES
Paso del tornillo sin-fin	р	0,07	m
Velocidad de giro del tornillo sin-fin	n	83,286	rpm
Área de relleno del canalón	S	1,23 x 10 ⁻³	m²
Capacidad del transportador	Q	96,719	kg/h
Velocidad de desplazamiento del transportador (2)	v2	0,167	m/s
Diámetro exterior sin-fin (2)	D2	0,12	m
Paso del tornillo sin-fin (2)	р2	0,12	m
Velocidad de giro del tornillo sin-fin (2)	n2	83,333	rpm
Área de relleno del canalón (2)	<i>S2</i>	3,62 x 10 ⁻³	m²
Capacidad del transportador (2)	Q2	487,538	kg/h
Potencia para el desplazamiento horizontal del material	Ph	30,950	W
Potencia para el accionamiento del tornillo en vacío	Pn	0,035	W
Potencia para un tornillo inclinado	Pi	3,982	W
Potencia total de accionamiento	P	34,967	W

Una vez realizados los cálculos la capacidad del transportador es menor que el flujo másico que debemos de transportar, por lo que aumentamos la velocidad de desplazamiento del transportador de 5,83 m/min (v) a 10m/min (v2) y el diámetro exterior del sin-fin de 70mm (D) a 120mm (D2).

Estos tornillos serán accionados mediante unos motorreductores del fabricante Pujol Muntalà, referencia RAX030M0E0 de 61 W de potencia y una velocidad de giro de 93,3 rpm.

5.8. Dimensionado soplante Fase 4 instalación de transporte

Tabla 22

		VALOR	UNIDADES
Gravedad	g	9,81	m/s²
flujo másico	тр	0,134	kg/s
Tamaño partícula	X	4,09 x 10 ⁻³	m
Densidad material	ρρ	770,55	kg/m³
Longitud vertical	Lv	38	m
Longitud horizontal	Lh	4,5	m
Codos 90°	n	5	uds
Viscosidad del fluido	μ	1,845 x 10 ⁻⁵	Pa*s
Densidad del flujo	ho f	1,187	kg/m³
Diámetro tubería	D	42,4 x 10 ⁻³	m
Sección tubería	Α	1,41 x 10 ⁻³	m ²

Con los datos disponibles y/o calculados hasta ahora (Tabla 21) se calculan las pérdidas de carga de la línea de transporte de Granza de PVC, obteniendo los resultados que se muestran en la Tabla 22:

Tabla 23

		VALOR	UNIDADES
Velocidad de sedimentación	usalt	11,282	m/s
Velocidad superficial	uf	16,923	m/s
Caudal volumétrico de fluido	Qf	0,024	m³/s
Velocidad intersticial de las partículas	ирі	11,165	m/s
Porosidad (tramos horizontales)	ε	0,989	
Velocidad intersticial del fluido	ufi	17,111	m/s
Nº Reynolds	Red	46162,187	
Factor de fricción	f	0,005	
Pérdida de presión debido a la fricción del gas con la pared (tramos horizontales)	Ffw L (3)	387,401	Pa
Nº Reynolds	Rep	1564,589	
Coeficiente de arrastre	Cd	0,44	
Factor de fricción	fp	0,0007	
Pérdida de presión debido a la fricción de los sólidos con la pared (tramos horizontales)	Fpw L (4)	168,173	Pa
Pérdida de carga por aceleración del gas	(1)	171,859	Pa
Pérdida de carga por aceleración de los sólidos	(2)	530,129	Pa
Pérdidas de carga en los tramos horizontales	Δphor	1257,562	Pa
Pérdida de presión debido a la fricción del gas con la pared (tramo vertical)	Ffw L (3)	3271,383	Pa
Pérdida de presión debido a la fricción de los sólidos con la pared (tramo vertical)	Fpw L (4)	3126,970	Pa
Porosidad (tramos verticales)	ε	0,985	
Pérdida de carga por la energía potencial de los sólidos	(5)	4258,140	Pa
Pérdida de carga por la energía potencial del gas	(6)	435,479	Pa
Pérdidas de carga en los tramos verticales	Δpvert	11091,973	Pa
Pérdidas de carga en codos	Δpcodos	10946,026	Pa
Pérdidas de carga instalación	Δр	23295,561	Pa
r craidas de carga mistaración	Δр	0,233	bar

El soplante que se instalará capaz de soportar las pérdidas calculadas es un soplante tipo Roots trilobular del fabricante Pedro Gil, referencia PG30.05 F1 de 3 kW de potencia, 300 mbar de presión diferencial máxima, y 1,71 m³/min de flujo volumétrico máximo a 3300 rpm.

6. ESTUDIO PAYBACK

- 6.1. Instalación silos interiores y suministro granza extrusoras.
 - Costes por mala calidad de granza y rotura o volcado de big bags
 - Mermas extrusión año 2017: 46000 kg
 - Mermas por cambios de color: 17000 kg
 - Mermas por variaciones de tonalidad entre big bags: 30% $17000 \times 0.3 = 5100 \text{ kg}$
 - Mermas por variaciones en la reología de la granza (material más denso, sin mezclar correctamente): 3% →46000 x 0,03 = 1380 kg
 - Granza desechada por rotura de big bags o volcado de los mismos
 2017: 2 big bags rotos y 2 volcados: 4 x 1250 = 5000 kg
 - Granza desechada por contaminación de la zona superior del big bag (aproximadamente 0.9 %).
 - 1. Capacidad de un big bag: 1250 kg
 - 2. Desperdicio por contaminación: 12 kg
 - 3. Stock Persax big bags: 72 big bags
 - 4. Desperdicio general por contaminación: 72 x 12 = 864 kg/ año
 - 5. A un precio estimado de 0,9 €/kg granza.

Total pérdidas granza: 5100 + 1380 + 5000 + 864 = 12344 kg x 0,9 €/kg = 11109.6 €/año

- Espacio liberado por instalación de silos:
 - N5: 18 m² (estantes junto a tejedora), 62 m² (muelle granza).
 - N6: 230 m² (estantes junto a Dpto. Mantenimiento), 258 m² (quitando techado exterior y prolongando N6-bis hasta transformador, 155 m², sólo quitando techado exterior).
 - El espacio liberado, proporciona un volumen para almacenar 81 jaulas de 1,07 x 1,20 x 6 m.
 - Precio estimado suelo = 2,5 €/ m².

Precio suelo: 18 + 62 + 230 + 258 = 568 m2 x 2,5 €/m² = **1420** €/ **mes = 17040** €/ **año**

• Coste operario rellenar big bags:

15 min/ op turno x 3 op/ turno = 0,75 h·15 €/h = 11,25 €/ turno, o lo que es lo mismo, 1,4 €/ h x 1752 h/ operario·3 turnos = **7391,25 €/ año**

- 6.2. Instalación silos exteriores materia primas.
 - Pérdidas por roturas de sacos.
 - Suponemos 1 % de pérdidas, que viene a ser aprox. 10 kg/ palé
 - Consumo resina 2017: 906 ton, precio: 0,97
 906000 x 0,01 = 9060 kg x 0,97 €/kg = 8788 €/año
 - Consumo carbonato A 253 ton, precio 0,091
 253000 x 0,01 = 2530 kg x 0,091 €/kg = 230 €/año
 - Consumo carbonato B: 204 ton, precio 0,062
 204000 x 0,01 = 2040 kg x 0,062 €/kg = 126 €/año

Coste pérdidas material: 8788+230+126 = 9144 €/ año

- 6.3. Coste y payback de la instalación proyectada
 - Ahorro anual Instalación almacenaje y dosificación:

11109.06 + 17040 + 7391.25 + 9144 = 44684,85 €/ año

- Coste total de la instalación:
 - Componentes instalación (desglosado en el Anexo X): 567964.97€
 - Para la instalación completa del proyecto se necesitará de todo el personal de mantenimiento por una semana completa además del asesoramiento de un técnico:
 - 1. Coste mano de obra técnico: 30 €/h →40 h x 30 = **1200** €
 - 2. Coste mano de obra personal: 15 €/h → 40 h x 15 x 4 = **2400** €

Coste mano de obra: 1200 + 2400 = 3600 €

Coste total de la instalación: 567964.97 + 3600 = 571564.97 €

Payback instalación:

 $PAYBACK = \frac{COSTE\ INSTALACIÓN}{AHORRO\ INSTALACIÓN}$ $PAYBACK = \frac{571564.97}{44684.85} = 12.8\ años = 12\ años\ y\ 10\ meses$ (36)

7. CONCLUSIONES

A lo largo de este proyecto se han ido desarrollando los puntos que se habían marcado como objetivos del mismo.

Se ha diseñado una instalación para la optimización del proceso de Extrusión de PVC rígido en la planta de producción de Persianas Persax.

Teniendo en cuenta las necesidades de la empresa, las previsiones de ventas y los stocks semanales de Materias Primas, se ha realizado un Programación lineal de la producción para producir con el mínimo coste.

Se ha dimensionado y seleccionado los equipos necesarios para el correcto funcionamiento de la instalación diseñada.

Con todo lo nombrado se ha realizado el estudio de payback de la instalación, resultando éste de 12 años y 10 meses.

Teniendo en cuenta que no es una instalación pensada para ser amortizada en un corto periodo de tiempo el plazo de retorno de la inversión resultante es un plazo más que satisfactorio, dado que la vida útil de dicha instalación puede superar los 20 años, siempre y cuando se realice un mantenimiento preventivo adecuado.

La realización de dicho proyecto por la empresa Persianas Persax le reportaría números beneficios ya enumerados anteriormente, mayor productividad, mayor calidad de producto, mayor limpieza de las instalaciones, mayor calidad laboral de los operarios de la sección y liberación de espacio para realizar otras actividades.

8. BIBLIOGRAFÍA

AENOR (1998). Eurocódigo 1. Bases de proyecto y acciones en estructuras. Parte 4: Acciones en Silos y Depósitos. UNE-ENV 1911-4. Madrid: AENOR.

Cálculo de Transportadores de Tornillo Sin Fin.

 [Consulta: 5 de junio de 2018].

CONEJERO CALVO DE LEÓN, E. *Programación lineal: Aplicación a la producción de helados.* Proyecto Final de Grado.

Diseño de un silo cilíndrico para el almacenamiento de productos granulares. Proyecto Final de Carrera. Barcelona: Escola Tècnica Superior d'Enginyeria Industrial de Barcelona.

GEANKOPLIS, C. J. (2006). *Procesos de transporte y principios de procesos de separación*. México D.F.: Compañía Editorial Continental.

GONZALES SEABRA, P. *Sistema transporte neumático para quinua.* Tesis. Lima: Pontificia Universidad Católica del Perú

HASTINIK (2015). Aceros inoxidables y aleaciones especiales. Catálogo General.

LORANDI SILOS (2016). Bulk Material Handling.

MATAIX Y PLANA, C. (1986). *Mecánica de fluidos y máquina hidráulicas*. Madrid: Ediciones del Castillo.

PAREDES LÓPEZ, J.J. *Diseño de las redes de aire comprimido y transporte neumático en un astillero*. Proyecto Final de Carrera. Cartagena: Universidad Politécnica de Cartagena.

PEDRO GIL (2018) Catálogo Soplantes.

PÉREZ PORTO, J., GARDEY, A. (2015). *Definición de PVC.* < https://definicion.de/pvc/ [Consulta: 15 de marzo de 2018].

Policloruro de vinilo – PVC. < https://www.textoscientificos.com/polimeros/pvc> [Consulta: 15 de marzo de 2018].

Policloruro de vinilo. [Consulta: 20 de febrero de 2018].

Principios del procesado de los polímeros.

https://es.wikiversity.org/wiki/Principios del procesado de los pol%C3%ADmeros [Consulta: 16 de marzo de 2018].

PUJOL MUNTALÀ (2011). Reductores de tornillo sin fin.

SANCHEZ CARRILLO, A. *Estudio del transporte neumático de biomasa en tubos con rascadores alternativos*. Proyecto Final de Carrera. Cartagena: Universidad Politécnica de Cartagena.

UNIVERSIDAD NACIONAL DEL SUR (2013). "Capítulo 5: Fluidización" en *Procesamiento de sólidos.* < http://www.criba.edu.ar/cinetica/solidos/> [Consulta: 24 de mayo de 2018].

UNIVERSIDAD NACIONAL DEL SUR (2013). "Capítulo 6: Transporte neumático" en Procesamiento de sólidos. < http://www.criba.edu.ar/cinetica/solidos/ [Consulta: 24 de mayo de 2018].

UNIVERSIDAD POLITÉCNICA DE VALENCIA. La extrusión de materiales poliméricos. https://www.upv.es/bin2/caches/miw/visfit?id=510532&idioma=C [Consulta: 16 de marzo de 2018].

VARELA J. (2015). El inventor del policloruro de vinilo (PVC); Lonsbury Semon. https://ahombrosdegigantescienciaytecnologia.wordpress.com/2015/09/10/el-inventor-del- cloruro-de-polivinilo-pvc-lonsbury-semon/> [Consulta: 10 de abril de 2018].

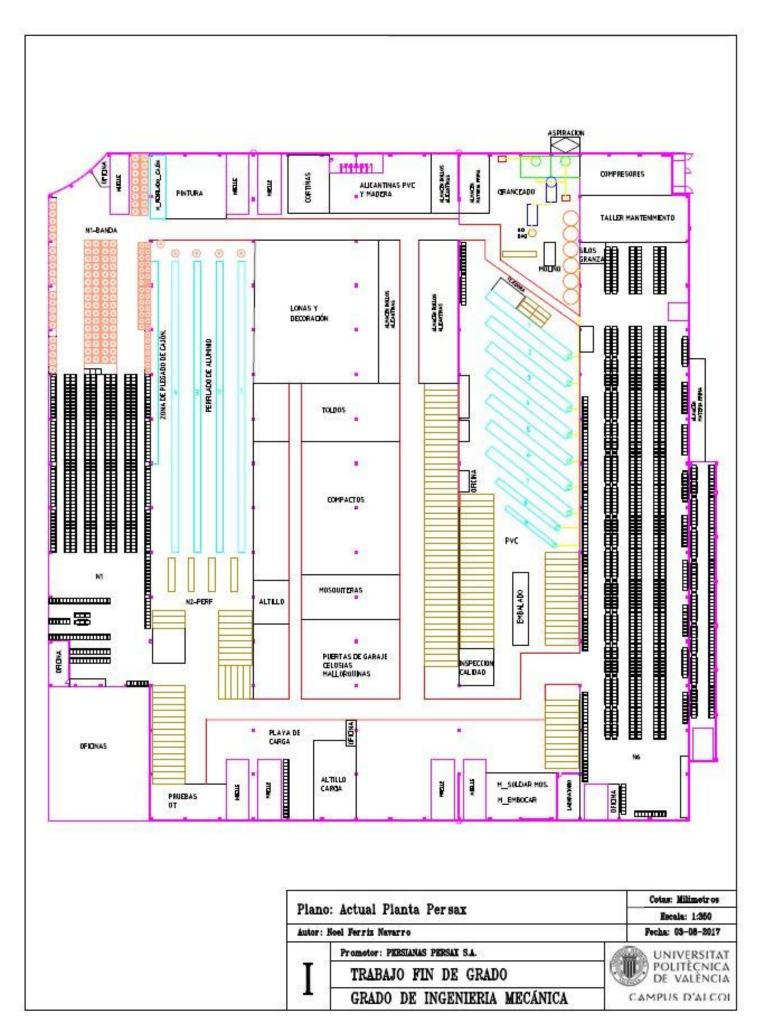
YOUTUBE, "Transporte neumático de Aserrín" en Youtube https://www.youtube.com/watch?v=MA60awV109c [Consulta: 22 de mayo de 2018].

9. INDICE DE ILUSTRACIONES

Ilustración 1. Estructura químicawww.textoscientificos.com	4
Ilustración 2. Perfiles de PVCes.made-in-china.com	4
Ilustración 3. Perfiles de Cajón de PVC para persiana Ilustración 4. PVC Flexible www.isomaltmayterodriguez.com	
Ilustración 5. Henri Victor Regnaultes.wikipedia.org	5
Ilustración 6. Eugen Baumannes.wikipedia.org	5
Ilustración 7. Waldo Lonsbury Semonahombrosdegigantescienciaytecnologia.wordpress.com	5
Ilustración 8. Proceso de Extrusión de PVCwww.aristegui.info	6
Ilustración 9. Extrusora de doble husillo Battenfeld-cincinnatiwww.plastico.com	6
Ilustración 10. Hilera Perfil PVC	7
Ilustración 11. Bancada de calibración Battenfeld-cincinnati	7
Ilustración 12. Arrastre Battenfeld-cincinnati	
Ilustración 13. Sierra de corte Battenfeld-cincinnati	7
Ilustración 14. Sede Central Persianas Persax	9
Diagrama 1. Diagrama de flujo proceso Extrusión PVC	
Ilustración 15. Almacén Materias Primas	
Ilustración 16. Almacén Materias Primas	
57	UNIVERSITAT

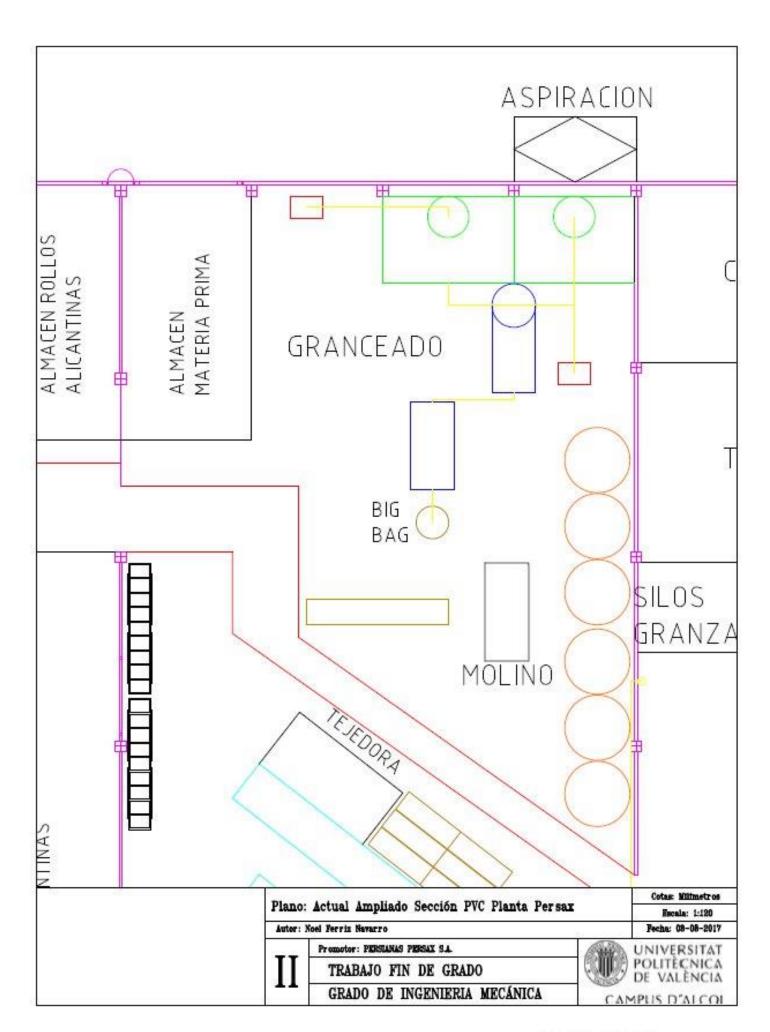
Ilustración 17. Turbomezclador Caccia	12
Ilustración 18. Turbomezclador Plasmec	12
Ilustración 19. Granceadora Cincinnati Extrusion	12
Ilustración 20. Enfriador de granza de PVC	13
Ilustración 21. Almacén-1 de big bags de granza PVC	13
Ilustración 22. Almacén-2 de big bags de granza PVC	13
Ilustración 23. Silos cilíndricos de 20m³	13
Ilustración 24. Silos esféricos de 10m ³	13
Ilustración 25. Bombas aspiración	14
Ilustración 26. Extrusora Battenfeld-cincinnati	14
Ilustración 27. Plano ampliado planta productiva Persianas Persax, zona granceado PVC	14
Ilustración 28. Imagen ensayo densidad aparente del CaCO₃	15
Ilustración 29. Imagen ensayo densidad aparente del CaCO₃	15
Ilustración 30. Imagen ensayo densidad aparente del CaCO₃	15
Ilustración 31. Silos de hormigón	16
www.inteco.com	
Ilustración 32. Silos de acero al carbono	16
www.directindustry.es	
Ilustración 33. Silos de acero inoxidable	16
www.conal.es	
Ilustración 34. Silos de aluminio	16
www.directindustry.es	10
Ilustración 35. Silos de acero galvanizado	1.0
	16
www.agriexpo.online	
Ilustración 36. Silos de material compuesto, GRP	16
www.directindustry.es	
Ilustración 31. Silo cuadrado con tolva piramidal	17
www.agroterra.com	
Ilustración 32. Silo cilíndrico de flujo de masa	17
www.sodimateiberica.com	
Ilustración 33. Silo cilíndrico de flujo de embudo	17
Ilustración 34. Plano ampliado planta productiva Persianas Persax, zona granceado PVC	
mejorado	17
Diagrama 2. Diagrama de flujo proceso Extrusión PVC mejorado	
Gráfica 1. Stock Resina PVC semanal	
Gráfica 2. Stock CaCO3 Calidad A semanal	
Gráfica 3. Stock CaCO3 Calidad B semanal	
Gráfica 4. Stock Complejo semanal	
Gráfica 5. Stock Complejo con modificador de impacto semanal	
Gráfica 6. Stock TiO2 semanal	
Ilustración 35. Esquema funcionamiento del transporte por impulsión	32
www.durafix.es	

Ilustración 36. Esquema funcionamiento del transporte por aspiración
Ilustración 37. Tipos de transporte neumático: A- Transporte en fase diluida (1- partículas sólidas) B- Transporte en madeja (2- madeja)
Ilustración 38. Tipos de transporte neumático: C- Transporte en fase densa, en dunas (3- formación de conglomerado a partir de una duna) D- Transporte en fase densa, en tapón (4- tapón conmovedor)
Ilustración 39. Diagrama de fases en transporte neumático horizontal. Fuente: Rhodes (2003)
Ilustración 40. Fragmento tabla tamaños estándar de tubos de acero inoxidable del Catálogo de Eduardo Cortina
Ilustración 41. Sección de una línea de transporte. Adaptado de Rhodes (2003)
llustración 43. Soplante Pedro Gil serie PG30 F1 en cabina insonorizada
llustración 44. Información técnica de soplantes, catálogo fabricante Pedro Gil
Ilustración 45. Sección de una línea de transporte mecánico mediante un tornillo sin-fin 45 ingemecanica.com
llustración 46. Motorreductor
llustración 47. Información técnica de motorreductores, catálogo fabricante Pujol Muntalà 49 www.colombes.es
Ilustración 48. Transportador de tornillo sin-fin


10. ANEXOS

10.1. ANEXO I

PLANO ACTUAL PLANTA PERSAX

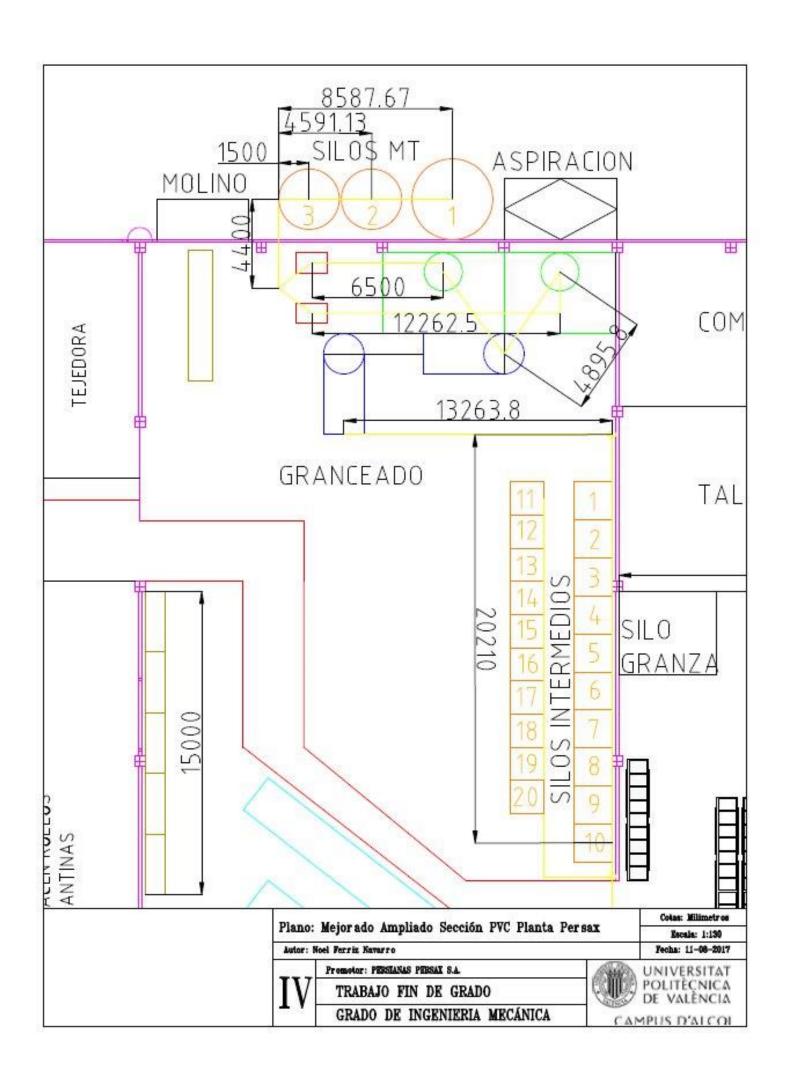


10.2. ANEXO II

PLANO ACTUAL AMPLIADO SECCIÓN EXTRUSIÓN PVC PLANTA PERSAX

10.3. ANEXO III

EXCEL TIEMPOS TURBOMEZCLADORES


TIEMPOS TURBOMEZCLADORES

NÚMERO FECHA MÁQUINA (kg) (s) (s) (5) TOTAL (s) (s/kg)		CARCA MEZCLADO ENERLAMIENTO TIEMPO/CARCA						
1 18/10/2017 PLASMEC 307 433 602 1035 2 19/10/2017 PLASMEC 307 638 507 1145 3 19/10/2017 PLASMEC 307 652 529 1181 4 24/10/2017 CACCIA 308 730 270 1000 5 24/10/2017 CACCIA 308 722 270 992 6 26/10/2017 PLASMEC 351 612 489 1101 7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 PLASMEC 355 665 552 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 644 523 1167 15 10/01/2018 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 365 626 514 1140 15 15/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 22 12/02/2018 PLASMEC 365 641 502 1143 22 12/02/2018 PLASMEC 365 641 502 1143 23 23/02/2018 PLASMEC 365 642 551 1193 22 22/02/2018 PLASMEC 365 644 525 1167 23 23/02/2018 PLASMEC 365 641 502 1143 24 23/02/2018 PLASMEC 365 641 502 1143 25 12/04/2018 PLASMEC 365 644 525 1167 26 12/04/2018 PLASMEC 365 641 502 1143 27 22/02/2018 PLASMEC 365 641 502 1143 28 23/02/2018 PLASMEC 365 641 502 1143 29 22/02/2018 PLASMEC 365 641 502 1143 20 21/02/2018 PLASMEC 365 641 502 1143 21 22/02/2018 PLASMEC 365 641 502 1143 22 22/02/2018 PLASMEC 365 644 553 1167 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 25 12/04/2018 PLASMEC 351 644 496 1140 26 23/04/2018 PLASMEC 351 597 537 1134 25 12/04/2018 PLASMEC 351 597 537 1134 25 12/04/2018 PLASMEC 351 597 537 1134 25 12/04/2018 PLASMEC 351 596 548 541 1089 27 17/04/2018 PLASMEC 351 596 548 541 1089 28 17/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 35	NIÍMEDO	EECHA	ΜΑΘΙΙΝΙΑ				TOTAL (c)	TIEMPO/CARGA
2 19/10/2017 PLASMEC 307 638 507 1145 3 19/10/2017 PLASMEC 307 652 529 1181 4 24/10/2017 CACCIA 308 730 270 1000 5 24/10/2017 CACCIA 308 722 270 992 6 26/10/2017 PLASMEC 351 612 489 1101 7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 PLASMEC 365 652 516 1168 9 21/11/2017 CACCIA 342 768 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 3 06/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 630 511 1141 13 10 114 18/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 644 523 1167 15 10/01/2018 PLASMEC 365 626 514 1140 15 10/01/2018 CACCIA 308 687 270 957 17 26/01/2018 CACCIA 308 687 270 957 17 26/01/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 730 270 990 20 21/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 730 270 990 20 21/02/2018 PLASMEC 365 641 502 1143 21 22/02/2018 PLASMEC 365 641 502 1143 22 22/02/2018 PLASMEC 365 641 502 1143 23 23/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 CACCIA 342 720 782 26 12/04/2018 CACCIA 348 51 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 512 270 782 27 17/04/2018 PLASMEC 351 642 551 1193 28 27 17/04/2018 PLASMEC 351 586 548 541 1089 29 24/04/2018 PLASMEC 351 586 554 554 1090 29 24/04/2018 PLASMEC 351 586 536 554 1090 29 24/04/2018 PLASMEC 351 586 554 554 1090 31 25/04/2018 PLASMEC 351 586 554 554 1090 31 25/04/2018 PLASMEC 351 586 556 554 1090 31 25/04/2018 PLASMEC 351 585 548 541 1089 32 26/04/2018 PLASMEC 351 586 562 548 541 1089 33 26/04/2018 PLASMEC 351			-					3,37
3								3,73
4 24/10/2017 CACCIA 308 730 270 1000 5 24/10/2017 CACCIA 308 722 270 992 6 26/10/2017 PLASMEC 351 612 489 1101 7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 PLASMEC 365 652 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 342 733 270 957 17 26/01/2018 CACCIA 342 733 270 957 12 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 351 641 502 1143 20 21/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 351 548 541 1089 28 17/04/2018 PLASMEC 351 586 542 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 593 511 1104 31 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 594 594 598 591 599 34 08/05/2018 CACCIA 294 531 270 798 MAXIMOS 365 767 602 1207								3,85
5 24/10/2017 CACCIA 308 722 270 992 6 26/10/2017 PLASMEC 351 612 489 1101 7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 CACCIA 365 652 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1007 11 22/11/2017 CACCIA 342 767 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 644 523 1167 14 18/12/2018 PLASMEC 310 589 496 1085 15 10/01/2018 PLASMEC 365								3,25
6 26/10/2017 PLASMEC 351 612 489 1101 7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 PLASMEC 365 652 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 732 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 630 511 1141 13 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 342 733 270 1003 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 24 22/02/2018 PLASMEC 351 642 551 1193 25 12/04/2018 CACCIA 308 498 270 782 26 12/04/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 554 10990 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 593 511 1104 31 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 594 528 270 798 48XIMOS 365 767 602 1207								3,22
7 14/11/2017 PLASMEC 351 663 544 1207 8 15/11/2017 PLASMEC 365 652 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 732 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 351 642 551 1193 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 CACCIA 308 512 720 782 25 12/04/2018 CACCIA 308 512 77 782 26 12/04/2018 CACCIA 308 512 77 782 26 12/04/2018 CACCIA 308 512 77 782 27 17/04/2018 PLASMEC 351 586 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 548 541 1089 20 25/04/2018 PLASMEC 365 548 541 1089 20 25/04/2018 PLASMEC 365 548 541 1089 21 25/04/2018 PLASMEC 365 548 541 1089 22 26/04/2018 PLASMEC 365 548 541 1089 24 25/04/2018 PLASMEC 365 548 541 1089 25 12/04/2018 PLASMEC 365 548 541 1089 26 12/04/2018 PLASMEC 365 548 541 1089 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 548 541 1089 30 25/04/2018 PLASMEC 365 548 541 1090 31 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 PLASMEC 351 548 504 1052 34 08/05/2018 PLASMEC 351 548 504 1052 34 08/05/2018 PLASMEC 351 548 504 1052 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,14
8 15/11/2017 PLASMEC 365 652 516 1168 9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 732 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365								3,44
9 21/11/2017 CACCIA 342 748 270 1018 10 22/11/2017 CACCIA 342 767 270 1037 11 22/11/2017 CACCIA 342 732 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 512 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 365 536 554 1090 31 25/04/2018 PLASMEC 351 593 511 1104 33 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 593 511 1104 34 08/05/2018 PLASMEC 351 548 504 1052								3,20
10								2,98
11 22/11/2017 CACCIA 342 732 270 1002 12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 PLASMEC 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3,03</td>								3,03
12 05/12/2017 PLASMEC 365 630 511 1141 13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 367 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 644 496 1140 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 512 270 768 26 12/04/2018 PLASMEC 355 548 541 1089 28 17/04/2018 PLASMEC 365 548 541 1089 29 24/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 662 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 597 537 1134 31 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 593 511 1104 31 25/04/2018 PLASMEC 351 593 511 270 801 31 25/04/2018 PLASMEC 351 593 511 270 801 31 25/04/2018 PLASMEC 351 593 511 270 801 31 207 801 31								2,93
13 06/12/2017 PLASMEC 365 644 523 1167 14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3,13</td></t<>								3,13
14 18/12/2017 PLASMEC 365 626 514 1140 15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541								3,20
15 10/01/2018 PLASMEC 310 589 496 1085 16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 367 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 597 537 1134 31 25/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 593 511 1104 31 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 798 MAXIMOS 365 767 602 1207								3,12
16 15/01/2018 CACCIA 308 687 270 957 17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365								3,50
17 26/01/2018 PLASMEC 365 641 502 1143 18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3,11</td></td<>								3,11
18 13/02/2018 CACCIA 342 733 270 1003 19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3,13</td></td<>								3,13
19 13/02/2018 CACCIA 342 720 270 990 20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207		-						2,93
20 21/02/2018 PLASMEC 307 485 589 1074 21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 600 555 1155 31 25/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 </td <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2,89</td>		-						2,89
21 22/02/2018 PLASMEC 351 642 551 1193 22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 798 MAXIM								3,50
22 22/02/2018 PLASMEC 351 621 526 1147 23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA <								3,40
23 23/02/2018 PLASMEC 351 644 496 1140 24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3,27</td></td<>								3,27
24 23/02/2018 PLASMEC 351 597 537 1134 25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,25
25 12/04/2018 CACCIA 308 512 270 782 26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,23
26 12/04/2018 CACCIA 308 498 270 768 27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								2,54
27 17/04/2018 PLASMEC 365 548 541 1089 28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								2,49
28 17/04/2018 PLASMEC 365 536 554 1090 29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								2,98
29 24/04/2018 PLASMEC 351 586 562 1148 30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								2,99
30 25/04/2018 PLASMEC 351 612 538 1150 31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,27
31 25/04/2018 PLASMEC 351 600 555 1155 32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,28
32 26/04/2018 PLASMEC 351 593 511 1104 33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,29
33 26/04/2018 PLASMEC 351 548 504 1052 34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207		-						3,15
34 08/05/2018 CACCIA 294 531 270 801 35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								3,00
35 08/05/2018 CACCIA 294 528 270 798 MAXIMOS 365 767 602 1207								2,72
MAXIMOS 365 767 602 1207								2,71
			J. COOIT					3,85
MINIMOS 294 433 270 768							2,49	
PROMEDIOS 336,91 620,00 441,06 1061,06			•					3,15

10.4. ANEXO IV

PLANO MEJORADO AMPLIADO SECCIÓN EXTRUSIÓN PVC PLANTA PERSAX

10.5. ANEXO V

EXCEL CAPACIDAD DE ALMACENAMIENTO

KG VENDIDO POR COLOR

COLOR	Suma de Suma de PREVISIÓN 2019	Suma de CAPACIDAD (M3)	Suma de MOLIDO
7021	0,00	0,00	0,00
7015	0,00	0,00	0,00
7040	0,00	0,00	0,00
5010	0,00	0,00	0,00
9001	0,00	0,00	0,00
7042	0,00	0,00	0,00
7012	0,00	0,00	0,00
7044	0,00	0,00	0,00
7006	0,00	0,00	0,00
1013	0,00	0,00	0,00
8014 ALICANTINA	0,00	0,00	
8023	0,00	0,00	0,00
3007	10,74	0,01	0,02
7037	415,52	0,54	0,60
7043	647,97	0,84	0,94
6009	665,38	0,86	0,96
8019	684,98	0,89	0,99
6005	1147,20	1,49	1,66
1015	1165,62	1,51	1,69
3005	1222,38	1,59	1,77
6008	1236,20		
9022	1755,70	2,28	2,54
PIZARRA MOTEADO	1975,77		
9007	2082,96		
7048	2221,28		
8017	2524,35	3,28	3,66
7022	3180,48		
NEGRO	3375,95	4,38	
BRONCE	4280,79		
BLANCO ALICANTINA	5945,96	7,72	
VERDE OLIVA	7981,19	10,36	
7024	12340,35		
7011	12888,91		
MADERA	17239,21		
GRIS	21087,06	27,37	14,95
MARFIL ALICANTINA	24645,61		
BASE MARRON	27847,28		
7016	30686,07		
8014	38400,64	10.000	
MARFIL NORMAL	43512,62		1201101
BLANCO BR	83004,10		
BLANCO NORMAL	90112,89		
BLANCO W	271556,68		
BLANCO COMPACTO	431541,10		

CAPACIDAD GRANCEADORA	600	kg/h h	
TURNO	8		
TURNOS/SEMANA	14	turnos	
TURNOS/MES	56	turnos	
CAPACIDAD GRANCEADORA/MES	268800	kg/mes	

CAPACIDAD DE ALMACENAMIENTO

COLOR	kg/año	kg/semana	m3/año	m3/semana
PIZARRA MOTEADO	1975,768	42,951	2,56	0,056
7048	2221,276	48,289	2,88	0,063
8017	2524,347	54,877	3,28	0,071
7022	3180,477	69,141	4,13	0,090
NEGRO	3375,950	73,390	4,38	0,095
BRONCE	4280,792	93,061	5,56	0,121
BLANCO ALICANTINA	5945,961	129,260	7,72	0,168
VERDE OLIVA	7981,192	173,504	10,36	0,225
7011	12888,911	280,194	16,73	0,364
MADERA	17239,208	374,765	22,37	0,486
GRIS	21087,060	458,414	27,37	0,595
MARFIL ALICANTINA	24645,610	535,774	31,98	0,695
BASE MARRON	27847,281	605,376	36,14	0,786
7016	30686,069	667,088	39,82	0,866
8014	38400,636	834,796	49,84	1,083
MARFIL NORMAL	43512,625	945,927	56,47	1,228
BLANCO BR	83004,098	1804,437	107,72	2,342
BLANCO NORMAL	90112,885	1958,976	116,95	2,542
BLANCO W	271556,678	5903,406	352,42	7,661
BLANCO COMPACTO	431541,104	9381,328	560,04	12,175

10.6. ANEXO VI

EXCEL PROGRAMACIÓN LINEAL

FORMULAS

COLOR	RESINA PVC (kg)	CaCO3 A (kg)	CaCO3 B (kg)	Complejo (kg)	Complejo con modificador de impacto (kg)	TiO2 (kg)	Pigmento (kg)	Otros (kg)	TOTAL (kg)
BLANCO COMPACTO	200	120	<u></u> 7	2	14,67	13,65	_	2,5195	350,8395
BLANCO W	200	<u>14</u>	140	11	-	10,66	-	3,604	365,264
BLANCO NORMAL	200	-	100	10,67	; - :	21,376	-	0,33718	332,38318
BLANCO BR	200	-	80	10,7	-	18,67	-	0,9903	310,3603
MARFIL NORMAL	200	-	100	10,67		10,977	3,42	0,25	325,317
8014	200	120	-	=	14,67	·=	6,835	0,2	341,705
7016	200	120	7		14,67	-	6,835	0,2	341,705
BASE MARRON	200	125	-	<u>20</u>	14,67		-	2,239	341,909
MARFIL ALICANTINA	200	<u>~</u>	80	10,667	-	4,67	12	0,963	308,3
GRIS	200	<u> </u>	100	10,67	<u>(20)</u>	9,726	-	0,3503	320,7463
MADERA	200	-	80	10,667	-	2,88	3,067	-0,034	296,58
7011	200	120	₩8	¥	14,67	14 0	6,835	0,2	341,705
VERDE OLIVA	200	-	80	10,667	*	(=)	3,067	-0,034	293,7
BLANCO ALICANTINA	200	=	80	10,667	:=:	10,667	12	0,666	314
BRONCE	200	80	-8	1 2	14,67	-	6,0177	0,2	300,8877
NEGRO	200	120	₹0.	7 4	14,67	1573	6,835	0,2	341,705
7022	200	120	-	i i	14,67	-	6,835	0,2	341,705
8017	200	120	14/	旦	14,67	12	6,835	0,2	341,705
7048	200	120	-	_	14,67	-	6,835	0,2	341,705
PIZARRA MOTEADO	200	120	48	12	14,67	-	6,835	0,2	341,705

FORMULA	RESINA PVC (kg)	CaCO3 A (kg)	CaCO3 B (kg)	Complejo (kg)	Complejo con modificador de impacto (kg)	TiO2 (kg)	COSTE FORMULA (€)	COSTE M.P. (€/kg)	COSTE ENERGÍA (€/h)	COSTE (€/kg)
1	200	120	0	0	14,67	13,65	274,9714	#¡VALOR!	40,442	#jVALOR
2	200	120	0	0	14,67	0	237,4339	0,69485053	40,442	0,8043
3	200	0	140	11	0	10,66	257,365	0,70459996	40,442	0,7727
4	200	0	100	10,67	0	21,376	283,7245	0,85360667	40,442	0,9210
5	200	0	80	10,7	0	18,67	275,1475	0,88654219	40,442	0,9539
6	200	0	100	10,67	0	10,977	255,12725	0,78424199	40,442	0,8516
7	200	125	0	0	14,67	0	237,8339	0,69602113	40,442	0,7634
8	200	0	80	10,667	0	4,67	236,57655	0,69234149	40,442	0,7597
9	200	0	100	10,67	0	9,726	251,687	0,73612277	40,442	0,8035
10	200	0	80	10,667	0	2,88	231,65405	0,75139166	40,442	0,8188
11	200	80	0	0	14,67	0	234,2339	0,77847616	40,442	0,8459
12	200	0	80	10,667	0	0	223,73405	0,76177749	40,442	0,8292
13	200	0	80	10,667	0	10,667	253,0683	0,80595	40,442	0,8734

COMPONENTE	PRECIO	UNIDAD
RESINA	0,98	€/kg
CaCO3 A	0,08	€/kg
CaCO3 B	0,06	€/kg
Complejo	2,15	€/kg
Complejo con modificador	2,17	€/kg
TiO2	2,75	€/kg

PROD.EXT	RUSORAS	CON	SUMO
EXTRUSORA	kg/h	EXT	kW/h
1	120	M1	31
2	120	M2	31
3	140	М3	31
4	150	M4	38
5	100	M5	30
6	100	M6	30
7	120	M7	45
8	80	M8	15
9	70	M9	18

COSTE MP	0,9	€/kg
COSTE MO	15	€/h
COSTE MO'	9	€/h
COSTE E	0,146	€/KWh

DATOS

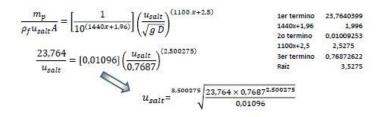
EQUIPO	P (kW)	Observaciones
GRANCEADORA ARGOS 93	70	Incluye lanzas y enfriador
TURBO, DIOSNA	55	1800 22
TURBO. PLASMEC	85	
TURBO, CACCIA	3	
L2 BC CONEX 50	31	
L2 BC CONEX 50	31	
L3 BC CONEX NG 54	31	
L4 CINCINNATI CMT 58	38	
L5 CINCINNATI TITAN 45	30	
L6 CINCINATTI TITAN 45	30	
L7 CINCINNATI KONOS 50	45	
L8 BC ALPHA 60	15	
L9 AMUT	18	
BOMBA IMPULSIÓN	8	
COMPRESOR	26	CON TODAS SECCIONES Y CABINA PINTURA, 38 kWh
EQUIPO FRÍO	57	
L1 PERFILADO	34	
L2 PERFILADO	34	
L3 PERFILADO	34	
L4 PERFILADO	34	
PLEGADORA CAJÓN 2P	14	
LÍNEA CAJÓN PF 4P	3,5	PERFILANDO 45 PERFILES / h

PROGRAMACIÓN LINEAL

	x1	x2	х3	x4	c5	х6	x7	x8	x9	x10	x11	x12	x13			Límite	Holgura
/alor final	26,000000	6,000000	16,000000	6,000000	6,000000	3,000000	28,000000	79,000000	2,000000	2,000000	1,000000	1,000000	1,000000			- CAMPONOSO	
Coste	323,193347	274,833332	282,239493	306,124909	296,05269	277,039957	261,0133306	234,21551	257,719652	242,839704	254,520905	243,53604	274,2476	46596,866			
Restricciones																	
RESINA	200	200	200	200	200	200	200	200	200	200	200	200	200	35400	<	42850	745
CaCO3 A	120	120					125				80			7420	<	21115	1369
CaCO3 B			140	100	80	100		80	100	80		80	80	10460	<	23628	1316
Complejo			11	10,67	10,7	10,67		10,667	10,67	10,667		10,667	10,667	1242,931	<	2807,5	1564,50
Complejo con																	
modificador	14,67	14,67					14,67				14,67			894,87	<	4810,1	3915,2
TiO2	13,65		10,66	21,376	18,67	10,977		4,67	9,726	2,88			10,667	1203,476	<	17864	16660,53
Demanda 1	350,8395													9121,827	>	8990,44	-131,38
Demanda 2		341,705												2050,23	>	1984,45	-65,
Demanda 3			365,264											5844,224	>	5657,43	-186,79
Demanda 4				332,38318										1994,29908	>	1877,35	-116,9490
Demanda 5					310,3603									1862,1618	>	1729,25	-132,91
Demanda 6						325,317								975,951	>	906,513	-69,43
Demanda 7							341,909							9573,452	>	580,15	-8993,30
Demanda 8								308,3						24355,7	>	513,45	-23842,2
Demanda 9									320,7463					641,4926	>	439,31	-202,182
Demanda 10										296,58				593,16	>	359,15	-234,0
Demanda 11											300,8877			300,8877	>	89,18	-211,70
Demanda 12											98	293,7		293,7	>	166,28	-127,4
Demanda 13												10.5	314	314	>	123,87	-190,:
Capacidad 1	350,8395	341,705	365,264	332,38318	310,363	325,317	341,909	308,3	320,7463	296,58	300,8877	293,7	314	57921,1014	>	57600	-321,101
Capacidad 2	350,8395	341,705	365,264	332,38318	310,363	325,317	341,909	308,3	320,7463	296,58	300,8877	293,7	314	57921,1014	<	72000	200000000000000000000000000000000000000

10.7. ANEXO VII

EXCEL PERDIDAS DE CARGA


DISEÑO DE UN SISTEMA DE TRANSPORTE NEUMÁTICO DE PRESIÓN POSITIVA EN FASE DILUIDA RESINA PVC

PROBLEMA RESINA PVC fase 1 DATOS: gravedad 0,08055556 kg/s flujo másico 0,000025 Tamaño partícula Densidad material 580 ke/m3 Longitud vertical Lv 2,5 Lh 16,7 Longitud horizontal Codos 90° uds 0.00001845 Pa*s μ Densidad del flujo ρf 1,187 kg/m3 D 0,0603 Diámetro tuberia

m2

Cálculo de la velocidad del gas:

Cálculo de la velocidad de sedimentación. Transporte horizontal.

1er/2o*3er 1211,178712

salt 7,48254105 m/s

of 0,03205272 m3/s

Cálculo de la caida de presión:

0.00286

Tramos horizontales.

$$p_1 - p_2 = \frac{1}{2} \varepsilon \rho_f u_{fi}^2 + \frac{1}{2} (1 - \varepsilon) \rho_p u_{pi}^2 + F_{fw} L + F_{pw} L + (1 - \varepsilon) L \rho_p g \sin \theta + \varepsilon L \rho_f g \sin \theta = 0$$
(1)
(2)
(3)
(4)
(5)

Velocidad intersticial de las particulas

$$u_{pi} = u_f (1 - 0.0638 \, x^{0.3} \, p_p^{0.5})$$
 $m_p = A u_{pi} (1 - 0.0638 \, x^{0.3} \, p_p^{0.5})$

Velocidad intersticial del fluido

 $n_p = Au_{pi}(1-\varepsilon)p_p$

Porosidad

$$u_{fi} = \frac{Q_f}{A_{\varepsilon}} = \frac{v}{A_{\varepsilon}}$$

Terminos 5, 6 = 0

20000

Sección tuberia

ε 0.99537077

27077

ufi 11,2760108 m/s

Cálculo de Ffw L - Termino (3)

Cálculo № Reynolds

Perdida de carga

$$\frac{\Delta P}{L} = \frac{2f \rho u^2}{D}$$

Ffw L 449,920762 Pa

f 0,0054322

Cálculo de Fpw L - Termino (4)

43542,3664

Cálculo Nº Revnolds

$$Re_{p} = \frac{\rho_{f}(u_{fi} - u_{pi})x}{\mu} \qquad \qquad \begin{cases} \text{Rep} & < & 1 & C_{D} = \frac{24}{Re_{p}} \\ 1 & < & \text{Rep} & < & 500 & C_{D} = 18.5 Re_{p}^{-0.6} \\ 1 & < & \text{Rep} & < & 2*10^{AS} & C_{D} = 0.44 \end{cases} \qquad f_{p} = \frac{3}{8} \frac{\rho_{f}}{\rho_{p}} \frac{D}{x} C_{D} \left(\frac{u_{fi} - u_{pi}}{u_{pi}} \right)^{2} \qquad \qquad F_{pw} L = \frac{2 f_{p} (1 - \varepsilon) \rho_{p} u_{pi}^{2} L}{D}$$

Cd 16,2708768

Cálculo Termino (1)

Cálculo Termino (2)

$$\frac{1}{2} \epsilon \rho_f u_{fi}^2$$
 (1) 75,1132537 Pa

$$\frac{1}{2}(1-\varepsilon)\rho_p u_{pi}^2$$
 [2] 148,175093 Pa

Cálculo Ap horizontal total :

$$\Delta P_{Horiz} = \frac{1}{2} \varepsilon \rho_f u_{fi}^2 + \frac{1}{2} (1 - \varepsilon) \rho_p u_{pi}^2 + F_{fw} L + F_{pw} L = 0$$

Tramos verticales.

$$p_{1} - p_{2} = \frac{1}{2} \varepsilon \rho_{f} u_{fi}^{2} + \frac{1}{2} (1 - \varepsilon) \rho_{p} u_{pi}^{2} + F_{fw} L + F_{pw} L + (1 - \varepsilon) L \rho_{p} g \sin \theta + \varepsilon L \rho_{f} g \sin \theta = 0$$
(1)
(2)
(3)
(4)
(5)
(6)

Los términos 1 y 2 son mucho más dominantes en el transporte horizontal que en el vertical, por eso se desprecian.

$$\Delta P_{Vert} = F_{fw}L + F_{pw}L + (1 - \varepsilon)L\rho_p g \sin\theta + \varepsilon L\rho_f g \sin\theta = 0$$

Cálculo de Ffw L - Termino (3)

67,3534074 Pa

Cálculo de Fpw L - Termino (4)

$$G = \frac{m_p}{\Delta}$$

 $F_{pw}L = 0.057 G L \frac{g}{D}$

Fpw L 51,2436714 Pa

Cálculo Termino (5)

Para realizar este cálculo es necesario estimar la porosidad en la línea transp. vertical

$$(1-\varepsilon)L\rho_p g$$

Se necestia evaluar la up para la línea vertical

Si asumimos que las partículas se comportan individualmente, la velocidad relaitva puede asumirse igual a la velocidad terminal, es decir:

$$u_{pi} = \frac{u_f}{5} - u_t$$

$$m_p = Au_{pi}(1 - \varepsilon)\rho_p$$

Relacionando estas dos expresiones resulta:

$$m_p = A \left(\frac{u_f}{\varepsilon} - u_t\right) (1 - \varepsilon) \rho_p$$

Si se conoce ut es posible determinar la porosidad, ut para esferas

$$u_t = \sqrt{\frac{4}{3} \frac{(\rho_p - \rho_f)g}{C_D \rho_f}}$$

$$C_D = \frac{24}{Re_p}$$
< 500
< 2*10^5

$$Re_p = \frac{\rho_f \, u_t x}{\mu}$$

ut	Rep	CD	ut
0,6	0,96504065	24,8694187	0,080031945
0,08003195	0,12872347	186,44619	0,029229369
0,02922937	0,04701255	510,502004	0,017664342
0,01766434	0,02841135	844,732923	0,013732085

820,888113 0,04863434 -11,286178 0,013732085 11,22381158 0,99568032

61,38270279 Pa

Cálculo Termino (6)

Cálculo AP vertical total :

$$\varepsilon L \rho_f g$$

28,9558771 Pa

$$\Delta P_{Vert} = F_{fw}L + F_{pw}L + (1 - \varepsilon)L\rho_p g\sin\theta + \varepsilon L\rho_f g\sin\theta = 0$$

208,935659 Pa

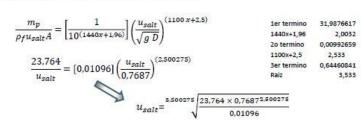
Codos

Cálculo AP codo:

 $\Delta P_{Codos} = n.7,5 \frac{\Delta P_{Vert}}{r}$

3134,03488 Pa

$$\Delta P = \Delta P_{Horiz} + \Delta P_{Vert} + \Delta P_{Codos}$$


30579,8883 Pa

DISEÑO DE UN SISTEMA DE TRANSPORTE NEUMÁTICO DE PRESIÓN POSITIVA EN FASE DILUIDA CaCO3

PROBLEMA CaCO3 fase 1 gravedad DATOS: m/s2 0,05361111 kg/s flujo másico Tamaño partícula Densidad material Lv 2.5 Longitud vertical Lh 12,7 Longitud horizontal Codos 90° uds 0,00001845 Pa*s 1,187 Densidad del flujo D 0.0424 Diámetro tuberia 0,00141 Sección tuberia

Cálculo de la velocidad del gas:

Cálculo de la velocidad de sedimentación. Transporte horizontal.

1er/20*3er 1059,56884

7,18206635 m/s

10,7730995 m/s

0,01521116 m3/s

Cálculo de la caida de presión:

$$p_{1} - p_{2} = \frac{1}{2} \varepsilon \rho_{f} u_{fi}^{2} + \frac{1}{2} (1 - \varepsilon) \rho_{p} u_{pi}^{2} + F_{fw} L + F_{pw} L + (1 - \varepsilon) L \rho_{p} g \sin \theta + \varepsilon L \rho_{f} g \sin \theta = 0$$
(1)
(2)
(3)
(4)
(5)
(6)

Velocidad intersticial de las particulas

$$u_{pi} = u_f \big(1 - 0.0638 \, x^{0,3} \, p_p^{0,5} \big) \qquad \qquad m_p = A u_{pi} \big(1 - 0.0638 \, x^{0,3} \, p_p^{0,5} \big)$$

Velocidad intersticial del fluido

10,8148868 m/s

$$\Delta P_{Horiz} = \frac{1}{2} \varepsilon \rho_f u_{fi}^2 + \frac{1}{2} (1 - \varepsilon) \rho_p u_{pi}^2 + F_{fw} L + F_{pw} L = 0$$

20000

0.99613614

Cálculo de Ffw L - Termino (3)

<u>Cálculo № Reynolds</u>

Perdida de carga

9,81697433 m/s

$$\frac{\Delta P}{L} = \frac{2f \rho u^2}{D}$$

484,981955 Pa

0,00587659

Cálculo de Fpw L - Termino (4)

29387,3806

Cálculo № Reynolds

$$Re_{p} = \frac{\rho_{f}(u_{fi} - u_{pi})x}{\mu} \qquad \text{Rep} \qquad \begin{cases} & 1 & C_{D} = \frac{24}{Re_{p}} \\ & 1 & \leq & Rep \\ & 500 & < & Rep \\ & & < & 2^{*}10^{*}5 & C_{D} = 0.44 \end{cases} \qquad f_{p} = \frac{3}{8} \frac{\rho_{f}}{\rho_{p}} \frac{D}{x} C_{D} \left(\frac{u_{fi} - u_{pi}}{u_{pi}}\right)^{2} \qquad F_{pw} L = \frac{2f_{p}(1 - \varepsilon)\rho_{p}u_{pi}^{2}L}{D}$$

12,484493

Cálculo Termino (1)

69,1485968 Pa

186,372089 Pa

Cálculo Ap horizontal total:

$$\Delta P_{Horiz} = \frac{1}{2}\varepsilon \rho_f u_{fi}^2 + \frac{1}{2}(1-\varepsilon)\rho_p u_{pi}^2 + F_{fw}L + F_{pw}L = 0$$

18844,384 Pa

Tramos verticales.

$$p_1-p_2=\frac{1}{2}\varepsilon\rho_fu_{fi}^2+\frac{1}{2}(1-\varepsilon)\rho_pu_{pi}^2+F_{fw}L+F_{pw}L+(1-\varepsilon)L\rho_pg\sin\theta+\varepsilon L\rho_fg\sin\theta=0$$

Los términos 1 y 2 son mucho más dominantes en el transporte horizontal que en el vertical, por eso se desprecian.

 $\Delta P_{Vert} = F_{fw}L + F_{pw}L + (1 - \varepsilon)L\rho_p g \sin\theta + \varepsilon L\rho_f g \sin\theta = 0$

Cálculo de Ffw L - Termino (3)

Ffw L 95,4688888 Pa

Cálculo de Fpw L - Termino (4)

$$G = \frac{m_p}{A}$$

$$F_{pw}L = 0.057 G L \sqrt{\frac{g}{D}}$$

Fpw L 82,2580079 Pa

Cálculo Termino (5)

Para realizar este cálculo es necesario estimar la porosidad en la línea transp. vertical

$$(1-\varepsilon)L\rho_{p}g$$

Se necestia evaluar la up para la línea vertical

Si asumimos que las partículas se comportan individualmente, la velocidad relaitva puede asumirse igual a la velocidad terminal, es decir:

$$u_{pi} = \frac{u_f}{\epsilon} - u_t$$

$$n_p = Au_{pi}(1 - \varepsilon)\rho_p$$

Relacionando estas dos expresiones resulta:

$$m_p = A \left(\frac{u_f}{\varepsilon} - u_t\right) (1 - \varepsilon) \rho_p$$

Si se conoce ut es posible determinar la porosidad, ut para esferas

$$u_t = \sqrt{\frac{4}{3} \frac{(\rho_p - \rho_f)g}{C_D \rho_f}} x$$

$$C_D = \frac{a}{Rep}$$

Kep
 $<$ 500 $C_D = 18.5 Residue $<$ 2*10^5 $C_D = 0.44$$

$$Re_p = \frac{\rho_f u_t x}{\mu}$$

ut	Rep	CD	ut
0,6	1,15804878	16,9408664	0,1396076
0,13960766	0,26945414	89,0689603	0,060885
0,0608855	0,11751396	204,231048	0,0402083
0,04020834	0,07760537	309,256943	0,0326751

330,867717 766 0,03793142 -10,8437061 0,03267513 10,7730995 855 ε 0,99648082 ε 0,99648082 0,99648082

86,3062303 Pa

Cálculo Termino (6)

Cálculo AP vertical total :

$$\varepsilon L \rho_f g$$

$$\Delta P_{Vert} = F_{fw}L + F_{pw}L + (1 - \varepsilon)L\rho_p g \sin\theta + \varepsilon L\rho_f g \sin\theta = 0$$

293,012284 Pa

Codos

Cálculo AP codo:

$$\Delta P_{Codos} = n 7,5 \frac{\Delta P_{Vert}}{L}$$

TOTAL $\Delta P = \Delta P_{Horiz} + \Delta P_{Vert} + \Delta P_{Codos}$

23532,5806 Pa 0,23532581 bar

DISEÑO DE UN SISTEMA DE TRANSPORTE NEUMÁTICO DE PRESIÓN POSITIVA EN FASE DILUIDA GRANZA PVC

<u>s:</u> g	SRANZA	fase 4													
_		9,8	m/s2	gravedad			Cálculo de la	velocidad de	el gas:						
T.	np	0,134077778	kg/s	flujo másico					sedimentación. Tra	nsporte horizontal					
×		0,00409	m	Tamaño part			Cuiculo de la	reioesass ac	Scomemación, no	isperite mericanical.					
p		770.55	kg/m3	Densidad ma											
		C. C					***	9	1	(1100 x+2.5)	***************************************	70 00000770	4 (2 - 82	201700335 3	
L		38	m	Longitud ver			- mp	<u></u>	1 /	salt	1er termino	79,99898738	1er/2o*3er	261786325,2	
	.h	4,5	m	Longitud hor	izontal		Dellas	-A 100	1440x+1,96)	$\frac{t_{salt}}{\sqrt{g D}}$ (1100 x+2,5)	1440x+1,96	7,8496			
in	1	5	uds	Codos 90°			1) 54	Mana (117.7)	. (1	92)	2o termino	1,41384E-08	usalt	11,2817096	m/s
							1414				1100x+2,5	6,999			
p	I.	0,00001845	Pa*s				23	3,764	accord usa	t \((2,500275)	3er termino	0,644608408			
p		1,187	kg/m3	Densidad de	fluio			=[0	$[.01096] \left(\frac{u_{sa}}{0.766} \right)$	27)	Raiz	7,999	uf	16,9225644	m/s
		0,0424	m	Diámetro tul			L	salt	(0,70	0//	\$2000C		1-9	20,0220011	1
4		270000000	m2	Sección tube									of	0.03300304	36
-	*	0,00141	mz	Seccion tube	11d				7	3,500275 23,764			of	0,02389394	nis/s
										v v	0,01096				
	Cálculo de	e la caida de l	presión:												
S.	¥ %	2 337	(astronomical property)								10000000 2000000				2107020 200000
1	ramos hor	24	4								Velocidad intersticial de las p	articulas	<u>Porosidad</u>	82	Velocidad intersticial del fi
	n	$n_{r} = \frac{1}{-\epsilon n_{r}}$	$u^2 + \frac{1}{2}(1$	$-\varepsilon$) $0.u^2$	$+ F_{e} \cdot I + F_{e}$	L + (1	- 8)1.0	$a \sin \theta +$	$\varepsilon L \rho_f g \sin \theta$	= 0	(4 00000	0.2 0.5\	4 /1	A	Or ur
	P1	2 2 2	"fi 2 (1	Суррар	i ' fw' ' '	pw 2 1 (1	С)прр	gomo	cup; g sin o	_ •	$u_{pi} = u_f(1 - 0.0638)$	$x^{o,o} p_p^{o,o}$	$m_p = Au_{pi}(1 \cdot$	$-\varepsilon p_p$	$u_{fi} = \frac{Q_f}{A_e} = \frac{u_f}{\varepsilon}$
			(1)	(2)	(3)	(4)	E.	(5)	(6	1			T		A _E &
			(-)	1-1	m (5)	170		1-1	1-		upi 11.165458	m/c			
904	erminos 5,	e-0			1 (3)					, l	ирі 11,103438	m/s	$\varepsilon = 1 - \frac{m}{Au_p}$		ufi 17,111426
	ermanos 5,	0-0											$\varepsilon = 1 - \frac{m}{2}$	<u>p</u>	uji 17,111420
		9929	929							/1	2/	S.	Au_p	niPp	
	A D	1	2 1 1	-) 2		1 0					ε 0,98896283			9 88	
	ΔP_{Hor}	$r_{iz} = -\frac{\varepsilon \rho_f u}{2}$	fi + - (1	$-\varepsilon ho_p u_{pi}$	$+F_{fw}L+F_{p}$	$_{w}L=0$									
5	álculo de F	fw L - Termino (3	1												
	álculo № Re	launalde.									Perdida de car				
	alculo IV= N	$= \frac{D_p \ u \ \rho}{\mu}$									Peraida de car	<u>qo</u>			
	-	$D_{p}u\rho$	•	200	16/Red	para	Red	<=	2x10^3		ΔP 2f	ou^2			
	ReD =	- Table 1	,	0 = 0						******	$\frac{\Delta P}{I} = \frac{2f}{I}$				
		μ	I		0,079Red^-0,25	para	2x10^3	<	Red	<= 2*10^4	L	D			
			f	=	0,046Red^-1/5	para	Red	>	2*10^4		8		330		
			335								Ffw L	387,4005905 Pa			
F	Red	46162,18749	>	20000											
-															
f		0,005369088	3												
200			30												
2	álculo de F	pw L - Termino (4	1)												
6	álculo № R	eynolds													
35	Carrie Charles		1				24								
	n	$\rho_f(u_{fi}-u_i)$	oi) x	Rep	<	1	$C_D = \frac{24}{Rc}$			2 3 Pf	$D = (u_{fi} - u_{pi})^2$	(<u>192</u>) - 10200	$2 f_p(1-\varepsilon) \rho_p u_{ni}^2$	L	
	Kep=	$=\frac{\rho_f(u_{fi}-u_{fi})}{u}$	-	Rep 1	* *	Rep	Kep S	500	$C_0 = 18.5 Re^{-1}$	$f_{p} = \frac{1}{2}$	$\frac{D}{x}C_D\left(\frac{u_{fi}-u_{pi}}{u_{ni}}\right)^2$	$F_{nw}L$	pt	- 3	
	5/	μ		500	<	Rep	<	2*10/15	$C_D = 18,5 Re_p^{-1}$ $C_D = 0,44$	· Γ 8 ρ _p	$x - (u_{pi})$	P.10	D		
				200	(5.70)	risk.	10.70	2 10 3	Op 0,44						
			- 10							fp	0,00074725	Fpw I	168,173233	Pa	
E S	Гер	1564,58888	3 <	2*10^5											
5	Rep	1564,58888	<	2*10^5							- 65				
	Rep Ed	75		2*10^5									1.10		
	101	1564,58888 0,44		2*10*5											

 $\frac{1}{2}\varepsilon\rho_f u_{fi}^2$

171,859327 Pa

 $\frac{1}{2}(1-\varepsilon)\rho_p u_{pi}^2$

530,129234 Pa

Cálculo Ap horizontal total :

$$\Delta P_{Horiz} = \frac{1}{2}\varepsilon \rho_f u_{fi}^2 + \frac{1}{2}(1-\varepsilon)\rho_p u_{pi}^2 + F_{fw}L + F_{pw}L = 0$$

Tramos verticales.

$$p_{1} - p_{2} = \frac{1}{2} \varepsilon \rho_{f} u_{fi}^{2} + \frac{1}{2} (1 - \varepsilon) \rho_{p} u_{pi}^{2} + F_{fw} L + F_{pw} L + (1 - \varepsilon) L \rho_{p} g \sin \theta + \varepsilon L \rho_{f} g \sin \theta = 0$$
(1)
(2)
(3)
(4)
(5)
(6)

Los términos 1 y 2 son mucho más dominantes en el transporte horizontal que en el vertical, por eso se desprecian.

$$\Delta P_{vert} = F_{fw}L + F_{pw}L + (1 - \varepsilon)L\rho_p g \sin\theta + \varepsilon L\rho_f g \sin\theta = 0$$

Cálculo de Ffw L - Termino (3)

3271,38276 Pa

Cálculo de Fpw L - Termino (4)

$$=\frac{m_p}{A} \qquad F_{pw}L = 0.057 G L \sqrt{\frac{g}{D}}$$

3126,9704 Pa

Cálculo Termino (5)

Para realizar este cálculo es necesario estimar la porosidad en la línea transp. vertical

 $(1-\varepsilon)L\rho_{v}g$

Se necestia evaluar la up para la línea vertical Si asumimos que las partículas se comportan individualmente, la velocidad relaitva puede asumirse igual a la velocidad terminal, es decir:

$$u_{pi} = \frac{u_f}{\epsilon} - u_t$$

del tramo vertical.

$$m_p = Au_{pi}(1 - \varepsilon)\rho_p$$

Relacionando estas dos expresiones resulta:

$$m_p = A \left(\frac{u_f}{\varepsilon} - u_t\right) (1 - \varepsilon) \rho_p$$

Si se conoce ut es posible determinar la porosidad, ut para esferas

$$u_t = \sqrt{\frac{4}{3} \frac{(\rho_p - \rho_f)g}{C_D \rho_f}}$$

$$Re_p = \frac{\rho_f \, u_t x}{\mu} \qquad \Longrightarrow \qquad$$

ut	Rep	CD	ut
0,6	157,88065	0,88751231	6,247368979
6,247368979	1643,8978	0,44	8,872745214
8,872745214	2334,72464	0,44	8,872745214
8,872745214	2334,72464	0,44	8,872745214

1,93598071 0,12323509 -25,9185447 8,87274521 16,9225644 0,98516083

4258,14033 Pa

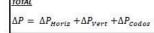
Cálculo Termino (6)

Cálculo AP vertical total:

 $\varepsilon L \rho_f g$

435,479313 Pa

$$\Delta P_{vert} = F_{fw}L + F_{pw}L + (1-\varepsilon)L\rho_p g\sin\theta + \varepsilon L\rho_f g\sin\theta = 0$$


11091,9728 Pa

Codos

Cálculo AP codo:

$$\Delta P_{codos} = n \, 7.5 \, \frac{\Delta P_{vert}}{L}$$

10946,0258 Pa

23295,561 Pa

10.8. ANEXO VIII

EXCEL TORNILLO SIN FIN

Se iguala la velocidad de arrastre a la velocidad de desplazamiento del transportador

DISEÑO DE UN SISTEMA DE TRANSPORTE MECÁNICO POR TORNILLO SIN-FIN CACCIA

velocidad de arrastre

48,5411006 W

		ka/s	flujo másico											
mp	0,13407778	A								_	1			
ρр	748,4	kg/m3	Densidad material	Tipo de carga	Coeficiente de relleno, λ	Inclinación del canalón	0°	5°	10°	15°	20°	25°	30°	35°
Lv	4,6	m	Longitud vertical	Pesada y abrasiva	0,125	1	1	0,9	0,8	0,74	0,65	0,42	0,3	0,22
Lh	8	m	Longitud horizontal	Pesada y poco abrasiva	0,25									
D	0,085	m	Diámetro exterior sin-fin	Ligera y poco abrasiva	0,32	26		-	8			2.0	20	
Α	0,00567	m2	Sección tuberia	Ligera y no abrasiva	0,4	Mate	rial	Į.	Coefic	iente de resist	encia del mate	erial, c o	ie.	
λ	0,32		Coeficiente de relleno		-	Harina, serrín, prod	ductos granuk	osos		1	2	2:		
0	35	0	Inclinación del canalón			Turba, sosa, po	lvo de carbór	r.		1	6	91	2SI	
i.	0,22		Coeficiente de disminución de flujo			Antracita, carbo	ón, sal de roca	r .		2	2.5	93	98	
Q	0,64494923	m3/h	flujo volumétrico			Yeso, arcilla seca, tierra f	ina, cemento,	cal, arena			4	91	600	
g	9,8	m/s2	gravedad										•	
c0	4		Coeficiente de resistencia del material tr	ransportado										
	sionado sin-fin I de desplazamient		rtador	Área de relieno del canalón				Capacidad del	transportado	r				
	d de desplazamient	o del tranpo netro del tor 0,0	millo tiene que ser igual al paso 185	Área de relleno del canalón $S = \lambda rac{\pi D^2}{4}$	λ	0,32 00181584 m2		Capacidad dei $Q=3600$.		i Q	0,22 35,8769419] <	482,68
$v = \frac{p r}{60}$	d de desplazamient Como el dián p n 0,16666667	o del tranpo netro del toi 0,0 23,52941 m/s	nillo tiene que ser igual al paso 85 18 rpm	πD^2	λ 5 0 n2 7	.4285714 rpm				i Q dado que la c	35,8769419 apacidad es m la velocidad y		e necesita en la	instalación
$v = \frac{p r}{60}$	d de desplazamient Como el dián p n	o del tranpo netro del tor 0,0 23,52941	millo tiene que ser igual al paso 185	πD^2	λ 5 0 n2 7	00181584 m2				dado que la c se aumentará de capacidad	35,8769419 apacidad es m í la velocidad y	kg/h enor a la que se /o el diámetro	e necesita en la para llegar al v	instalación alor necesitado
$v = \frac{p r}{60}$ v^2 D2	d de desplazamient Como el dián p n 0,16666667	o del tranpo netro del toi 0,0 23,52941 m/s m	nillo tiene que ser igual al paso 185 18 rpm Diámetro exterior sin-fin	πD^2	λ 5 0 m2 7 52 0	.4285714 rpm		Q = 3600.	Svpi	i Q dado que la c se aumentará	35,8769419 apacidad es m i la velocidad y 486,635336	kg/h enor a la que se /o el diámetro	e necesita en la	instalación

PROBLEMA CACCIA

fase 2 0,03333333 m/s

POTENCIA TOTAL DE ACCIONAMIENTO $P = P_H + P_N + P_i$

DISEÑO DE UN SISTEMA DE TRANSPORTE MECÁNICO POR TORNILLO SIN-FIN PLASMEC

PROBLEMA	PLASMEC	fase 2					
DATOS:	v	0,05625	m/s	velocidad de arrastre	Se iguala la velocidad de ar	rastre a la velocidad de desplazam	iento del transportador
	mp	0,13407778	kg/s	flujo másico	AND THE REPORT OF THE PARTY OF		
	ρр	748,4	kg/m3	Densidad material	Tipo de carga	Coeficiente de relleno, à	Inclinación de
	Lv	4,6	m	Longitud vertical	Pesada y abrasiva	0,125	1
	Lh	13,5	m	Longitud horizontal	Pesada y poco abrasiva	0,25	
	D	0,08	m	Diámetro exterior sin-fin	Ligera y poco abrasiva	0,32	20
	A	0,00503	m2	Sección tuberia	Ligera y no abrasiva	0,4	
	λ	0,32		Coeficiente de relleno	·		Harir
	•	20	0	Inclinación del canalón			I
	i	0,65		Coeficiente de disminución de flujo			A
	Q	0,64494923	m3/h	flujo volumétrico			Yeso, arcilla
	g	9,8	m/s2	gravedad			100
	c0	Δ		Coeficiente de resistencia del material tr	ansportado		

	3	94	20 00	36	8 8	8	36	120 (2)
Inclinación del canalón	0°	5°	10°	15°	20°	25°	30°	35°
i	1	0,9	0,8	0,74	0,65	0,42	0,3	0,22

Material	Coeficiente de resistencia del material, c o
Harina, serrín, productos granulosos	1.2
Turba, sosa, polvo de carbón	1.6
Antracita, carbón, sal de roca	2.5
Yeso, arcilla seca, tierra fina, cemento, cal, arena	4

Dimensionado sin-fin

Velocidad de desplazamiento del tranportador

60

D2

Potencia para el desplazamiento horizontal del material

Área de relleno del canalón

70 rpm 0,00251327 m2

Potencia para el accionamiento del tornillo en vacio

$D L_H$	Pn	0,0675 W	
$P_N = \frac{1}{20}$	**		

Capacidad del transportador

 $Q = 3600 \, S \, v \, \rho \, i$ 158,44991 kg/h

> dado que la capacidad es menor a la que se necesita en la instalación se aumentará la velocidad y/o el diámetro para llegar al valor necesitado de capacidad

482,68

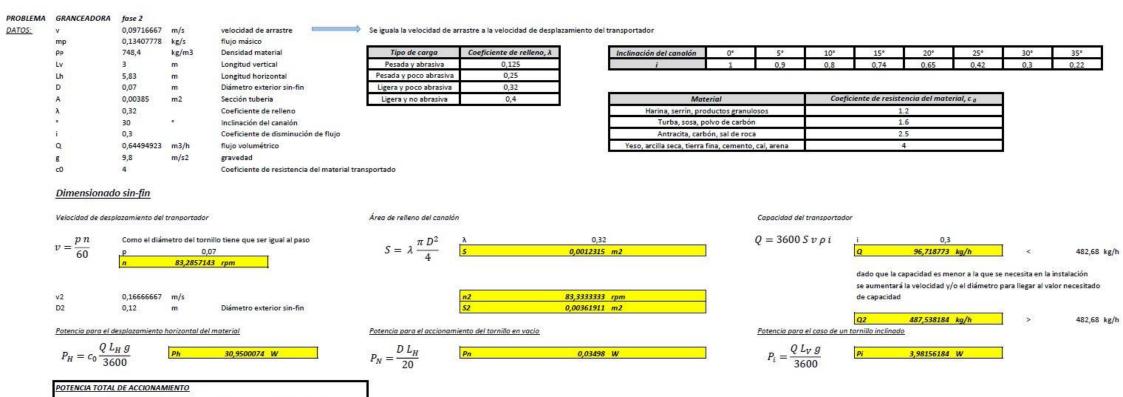
482,68

513,495079 kg/h

Potencia para el caso de un tornillo inclinado

$$P_i = \frac{Q \ L_V \ g}{3600}$$
 P_i 6,43009948 W

POTENCIA TOTAL DE ACCIONAMIENTO


 $P = P_H + P_N + P_i$

81.981376 W

Diámetro exterior sin-fin

DISEÑO DE UN SISTEMA DE TRANSPORTE MECÁNICO POR TORNILLO SIN-FIN GRANCEADORA

34,9665492 W

 $P = P_H + P_N + P_i$

10.9. ANEXO IX

LISTADO COMPONENTES INSTALACIÓN

Pos.	Cant.	Descripción	Valor (€)
10.	1 ud	SILO ALMACENAMIENTO RESINA PVC en Acero Inoxidable 304	91910
		de 120 m³ de capacidad.	
		Diámetro: 3,5 m	
		Altura cilíndrica: 12,5 m	
		Altura total: 16 m	
		Faldón hasta el suelo	
		 Aro perimetral inferior de 60x20 mm de acero al 	
		carbono	
		Anillo para posicionamiento con 4 placas para	
		cimentación.	
		 4 patas de HEB 180x3000 mm preparadas para células 	
		de pesaje	
		 Cono 60° con brida de descarga DN250 	
		Escalera tipo gato con quitamiedos construida en acero	
		inoxidable 304	
		 Techo superior cónico, con bocas para: Niveles, 	
		inspección, carga, etc.	
		Barandilla perimetral superior de 1,2 m en acero	
		inoxidable 304, con rodapiés	
		Espesor Techo: 3 mm	
		Espesor Cono: 4 mm	
		Espesor 1ª Virola: 4 mm	
		• Espesor 2, 3, 4ª Virola: 3 mm	
		• Espesor 5, 6, 7, 8, 9 y 10 ^a Virola: 2,5 mm	
10.	1 ud	TUBERIA DE CARGA DE SILO de Resina PVC.	-
		Longitud tubería: 21,5 m	
		Diámetro tubería: 100 mm	
		Tubo recto de acero inoxidable 304	
		Curva de 90° de radio amplio R = 10D de acero	
		inoxidable 304	
		Acoplamientos tipo Eurac	
		Manguera flexible de transporte neumático con	
		acoplamientos rápidos tipo Guillemín, con tapa y	
		detector inductivo.	
20	4 .1	FUTDO de managa entre/bles	5000
20.	1 ud	FILTRO de mangas extraíbles.	5000
		Secuenciador de limpieza automática por aire comprimido	
		comprimido • Fabricado en acero inoxidable 304	
		Mangas de tejido antiestáticoMaterial a tratar: Resina PVC	
		 Superficie filtrante: 16 m² Diámetro exterior: 1 m 	
		Altura total: 1,5 m Presión de trabajo: 6 har	
		 Presión de trabajo: 6 bar Presión máxima admisible: -positiva: 0,075 bar 	
		-negativa: -0,05 bar	

30.	1 ud	VÁLVULA DE SEGURIDAD por sobrepresión en acero inoxidable 304. • Diámetro exterior: 273 mm • Tara presión: 0,05 bar • Tara depresión: 0,005 bar	350
40.	1 ud	 VÁLVULA CIERRE, de tajadera, con boca circular. Fabricada con cuerpo y rodamiento en acero al carbono y tratados con pintura RAL 7001 Medida de boca: 300 mm Mando manual 	2430
50.	1 ud	 VÁLVULA ROTATIVA para dosificación Resina PVC. Cuerpo en fundición de acero con recubrimiento interno de Níquel Rotor soldado y montado sobre cojinetes de bolas en los extremos, construido en acero inoxidable 304 Tapas laterales de cierre con soportes Accionamiento mediante moto-reductor con transmisión mediante poleas y correas. Motor de 0,55 kW Toma neumática para conexión de la descarga de la rotativa en la línea de transporte neumático, construida en acero inoxidable 304 	5580
60.	3 uds	INDICADORES DE NIVEL ROTATIVOS de paleta. • Eje y paleta en acero inoxidable 304 • Señales de nivel máximo, intermedio y mínimo • Micromotor e interruptor	1200
70.	1 ud	VALVULA DE MARIPOSA para el barrido de la línea de transporte neumático. • Partes en contacto con el producto en acero inoxidable 304 • Mando electroneumático incorporado	186
80.	1 ud	FILTRO DE INICIO DE LÍNEA, construido en acero inoxidable 304, con rejilla de luz de malla de 3 mm.	1000

90.	1 ud	BOMBA DE PRESIÓN, para generar las condiciones de caudal y	4761,92
90.	1 uu	presión óptimas para realizar el transporte neumático de la	4/61,92
		Resina de PVC desde los silos de almacenamiento hasta las	
		tolvas de premezclado.	
		Fabricante: Pedro Gil	
		Tipo: Root trilobular This is a second trilogram to the second trilogram trilogram to the second trilogram t	
		Fluido vehicular: aire	
		Motor IP55: 3 kW	
		Presión diferencial: 400 mbar	
		Caudal impulsado: 2,3 m3/min	
		Velocidad de soplado: 2900 rpm	
		 Filtro-silenciador de aspiración 	
		 Transmisión por correas y poleas con taper-lock 	
		 Protección de transmisión 	
		 Soportes antivibratorios 	
		Manguito elástico de conexión	
		Válvula de seguridad	
		Válvula de retención	
		Cabina insonorizante	
		Ventilación interna	
		Nivel sonoro: 64 Db	
100.	1 ud	LÍNEA DE TUBERÍA DE TRANSPORTE NEUMÁTICO PARA RESINA	180
		PVC.	
		Longitud tubería: 16,7 m	
		Diámetro tubería: 60,3 mm	
		Tubo recto de acero inoxidable 304	
		 4 curvas de 90° de radio amplio R = 10D de acero 	
		inoxidable 304	
		Acoplamientos tipo Eurac	
		Manguera flexible de transporte neumático con	
		acoplamientos rápidos tipo Guillemín, con tapa y	
		detector inductivo	
		Suportación de la tubería: soporte verticales y	
		horizontales en acero al carbono pintado, soportes	
		auxiliares en acero galvanizado y abarcones en acero	
		zincado	
1		•	

110	2 uds	CILO ALMACENAMIENTO COCO, on Acoro Inovidable 204 de 60	152020
110.	2 uds	SILO ALMACENAMIENTO CaCO ₃ en Acero Inoxidable 304 de 60	153920
		m³ de capacidad.	
		Diámetro: 3,4 m	
		Altura cilíndrica: 5,5 m	
		Altura total: 9,2 m	
		Faldón hasta el suelo	
		 Aro perimetral inferior de 60x20 mm de acero al 	
		carbono	
		Anillo para posicionamiento con 4 placas para	
		cimentación.	
		4 patas de HEB 180x3000 mm preparadas para células	
		de pesaje	
		Cono 60° con brida de descarga DN250	
		Escalera tipo gato con quitamiedos y descansillo	
		intermedio, construida en acero inoxidable 304	
		 Techo superior cónico, con bocas para: Niveles, 	
		inspección, carga, etc.	
		Barandilla perimetral superior de 1,2 m en acero	
		inoxidable 304, con rodapiés	
		Espesor Techo: 3 mm	
		Espesor Cono: 4 mm	
		Espesor 1º Virola: 4 mm	
		• Espesor 2, 3, 4ª Virola: 3 mm	
		Lispesor 2, 3, 4- Virola. 3 IIIIII	
110.	2 uds	TUBERIA DE CARGA DE SILO de CaCO₃.	_
110.	2 443	Longitud tubería: 10 m	
		Diámetro tubería: 100 mm	
		Tubo recto de acero inoxidable 304	
		 Curva de 90° de radio amplio R = 10D de acero inoxidable 304 	
		Acoplamientos tipo Eurac	
		Manguera flexible de transporte neumático con	
		acoplamientos rápidos tipo Guillemín, con tapa y	
		detector inductivo.	
120.	2 uds	FILTRO de mangas extraíbles.	10000
		Secuenciador de limpieza automática por aire	
		comprimido	
		Fabricado en acero inoxidable 304	
		Mangas de tejido antiestático	
		Material a tratar: CaCO₃	
		Superficie filtrante: 16 m²	
		Diámetro exterior: 1 m	
		Altura total: 1,5 m	
		Presión de trabajo: 6 bar Presión másica a designada a continua o 0.75 hans	
		Presión máxima admisible: -positiva: 0,075 bar	
		-negativa: -0,05 bar	

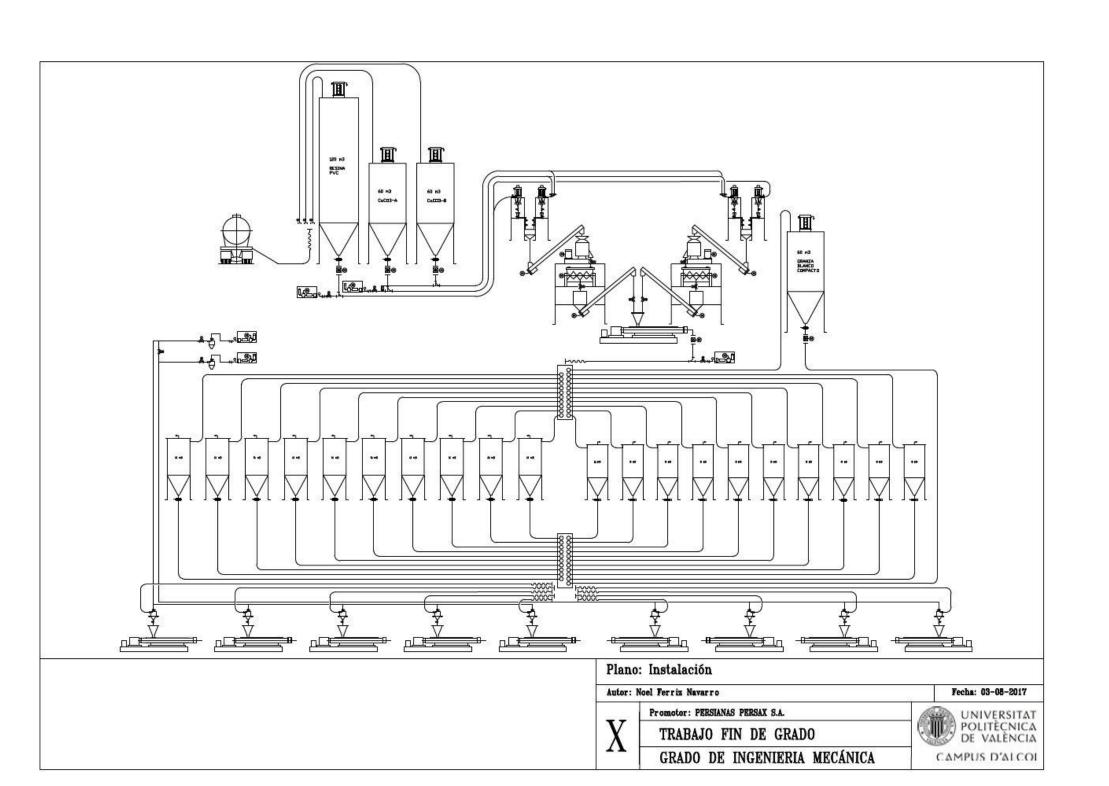
130.	2 uds	VÁLVULA DE SEGURIDAD por sobrepresión en acero inoxidable 304.	700
		Diámetro exterior: 273 mm	
		Tara presión: 0,05 bar	
		Tara depresión: 0,005 bar	
140.	2 uds	FONDO VIBRANTE para materiales granulares o pulverulentos.	11600
		Material de construcción: Acero al carbono y junta de	
		SINTER, polímero antiabrasivo.	
		Diámetro del fondo vibrante: 1,5 m	
		Número de suspensiones: 8	
		Diámetro boca de descarga: 323 mm (sin brida)	
		Deflector de 45°	
		• 1 Motovibrador: 0,62 kW. 230/400V. 50 Hz.	
150.	2 uds	VÁLVULA CIERRE, de tajadera, con boca circular.	4860
		Fabricada con cuerpo y rodamiento en acero al carbono	
		y tratados con pintura RAL 7001	
		Medida de boca: 300 mm	
		Mando manual	
160.	2 uds	VÁLVULA ROTATIVA para dosificación CaCO₃.	11160
		Cuerpo en fundición de acero con recubrimiento	
		interno de Níquel	
		Rotor soldado y montado sobre cojinetes de bolas en	
		los extremos, construido en acero inoxidable 304	
		Tapas laterales de cierre con soportes	
		Accionamiento mediante moto-reductor con transmisión mediante poloss y corress. Motor do 0.55.	
		transmisión mediante poleas y correas. Motor de 0,55 kW	
		Toma neumática para conexión de la descarga de la	
		rotativa en la línea de transporte neumático, construida	
		en acero inoxidable 304	
170.	6 uds	INDICADORES DE NIVEL ROTATIVOS de paleta.	2400
		Eje y paleta en acero inoxidable 304	
		Señales de nivel máximo, intermedio y mínimo	
		Micromotor e interruptor	
180.	2 uds	VALVULA DE MARIPOSA para el barrido de la línea de transporte	372
		neumático.	
		Partes en contacto con el producto en acero inoxidable	
		304	
		Mando electroneumático incorporado	
190.	2 uds	FILTRO DE INICIO DE LÍNEA, construido en acero inoxidable 304,	1000
		con rejilla de luz de malla de 3 mm	

200	1	DOMPA DE DDECIÓN, para caparar las condiciones de condel y	4004.05
200.	1 ud	BOMBA DE PRESIÓN, para generar las condiciones de caudal y	4684,05
		presión óptimas para realizar el transporte neumático de la	
		Resina de PVC desde los silos de almacenamiento hasta las	
		tolvas de premezclado.	
		Fabricante: Pedro Gil Add L. D. B. S.	
		• Modelo: PG30.05 F1	
		Tipo: Root trilobular	
		Fluido vehicular: aire	
		Motor IP55: 2,2 kW	
		Presión diferencial: 300 mbar	
		Caudal impulsado: 1,06 m3/min	
		 Velocidad de soplado: 2400 rpm 	
		 Filtro-silenciador de aspiración 	
		 Transmisión por correas y poleas con taper-lock 	
		 Protección de transmisión 	
		Soportes antivibratorios	
		Manguito elástico de conexión	
		Válvula de seguridad	
		Válvula de retención	
		Cabina insonorizante	
		Ventilación interna	
		Nivel sonoro: 64 dB	
210.	1 ud	LÍNEA DE TUBERÍA DE TRANSPORTE NEUMÁTICO PARA CaCO ₃ -B.	90
	1	Longitud tubería: 12,7 m	
		Diámetro tubería: 42,4 mm	
		Tubo recto de acero inoxidable 304	
		4 curvas de 90° de radio amplio R = 10D de acero	
		inoxidable 304	
		Acoplamientos tipo Eurac	
		Manguera flexible de transporte neumático con	
		acoplamientos rápidos tipo Guillemín, con tapa y	
		detector inductivo	
		Suportación de la tubería: soporte verticales y	
		horizontales en acero al carbono pintado, soportes	
		auxiliares en acero galvanizado y abarcones en acero	
		zincado	
		1	

222		LÍNEA DE TUDEDÍA DE TRANSPORTE MELITAÉTICO DADA O CO.	70
220.	1 ud	 LÍNEA DE TUBERÍA DE TRANSPORTE NEUMÁTICO PARA CaCO₃-A. Longitud tubería: 9,7 m Diámetro tubería: 42,4 mm Tubo recto de acero inoxidable 304 4 curvas de 90° de radio amplio R = 10D de acero inoxidable 304 Acoplamientos tipo Eurac Manguera flexible de transporte neumático con acoplamientos rápidos tipo Guillemín, con tapa y detector inductivo Suportación de la tubería: soporte verticales y horizontales en acero al carbono pintado, soportes auxiliares en acero galvanizado y abarcones en acero zincado 	70
230.	4 uds	 TOLVA DE RECEPCIÓN T-250 en acero inoxidable 304 con: Techo Klopper para soportar la depresión Ø 812 / Conicidad 60° Brida lateral para insertar el filtro poligonal horizontal Capacidad útil 250 l. Cuatro cartelas de soporte Manguito de entrada del material Ø 76 Brida inferior para colocar el fondo vibrante Ø 600 Control de nivel rotativo tipo IRP 	92848
230.	4 uds	 FILTRO POLIGONAL HORIZONTAL INSERTABLE, con bolsas. Secuenciador de limpieza automática por aire comprimido Fabricado en acero inoxidable 304 Mangas de tejido antiestático Material a tratar: Resina PVC / CaCO₃ Superficie filtrante: 9 m² Medida filtro: 1,296x0,765 m Altura filtro: 0,75 m Presión de trabajo: 0,6 bar Presión máxima admisible: -positiva: 0,05 bar -negativa: -0,6 bar Resistencia estructural: Pred = 1 bar Capacidad calderín: 5 l Posición salida aire: Tipo E 	-

			1
230.	4 uds	EXTRACTORES DE FONDO VIBRANTE D.600 para materiales en	-
		polvo	
		Material a extraer: Resina PVC / CaCO ₃	
		Material de construcción: Acero al carbono	
		Junta de SINTER, polímero antiabrasivo	
		Diámetro fondo vibrante: 0,6 m	
		Número de suspensiones: 4	
		Boca de descarga: Ø 273 mm, con brida redonda	
		Deflector: 45° D	
200		• 1 Motovibrador: 0,13 kW. 230/400 V. 50 Hz.	
230.	4 uds	VÁLVULA DE MARIPOSA D.250 mm	-
		Material de construcción: Aluminio con disco de cierre	
		en poliuretano SINT®	
		Diámetro interior: 250 mm	
		Actuador neumático	
		Electroválvula de 5 vías, efecto simple, 1 bobina	
		Microcontacto final de carrera	
230.	4 uds	MANGUERA FLEXIBLE Ø 250	-
230.	4 uds	EXTRACTOR-DOSIFICADOR ROMPEBÓVEDAS TIPO ZFP-800	-
		Tolva de almacenamiento, capacidad 400 l, con tapa en	
		dos mitades	
		Rejilla protección	
		Cubo central con álabes giratorios	
		Motorreductor (380 V)	
		2 Controles de Nivel rotativo tipo IRP	
		1 Distribuidor tipo 80 P long. 1 metro, provisto de:	
		- Conducto dosificador tipo 80	
		- Espiral dosificadora tipo 80 P	
		- Boca de descarga preparada para conexión tipo PV	
		- Motorreductor (380 V)	
230.	4 uds	DISPOSITIVO DE PESAJE, formado por:	-
		3 Células de carga mod. M300:	
		- Accesorios de acoplamiento a Silentblocks	
		• 1 Caja suma	
200		• 1 Transmisor tipo DAT 400	200
300.	4 uds	ESTRUCTURA DE SOPORTE, para el conjunto del dispositivo de	800
310.	1 ud	alimentación ARMARIO ELÉCTRICO	2000
310.		AUTÓMATA PROGRAMABLE CON PANTALLA	-
	1 ud		245
330.	1 ud	TRANSPORTADOR DE TORNILLO SIN-FIN	6327
		• Longitud: 8 m	
		Diámetro: 0,14 m Dosnivol: 4.6 m	
		Desnivel: 4,6 m Velocided do transporte: 10 m/min	
240	1	Velocidad de transporte: 10 m/min MOTORPEDI ICTOR Buiol Muntalà referencia RAY020M0E0 de	
340.	1 ud	MOTORREDUCTOR Pujol Muntalà, referencia RAX030M0E0 de	_
		61 W de potencia y una velocidad de giro de 93,3 rpm.	
		1	<u> </u>

250	4 1	TRANSPORTADOR DE TORNIULO SIN FIN	0677
350.	1 ud	TRANSPORTADOR DE TORNILLO SIN-FIN	8677
		• Longitud: 13,5 m	
		Diámetro: 0,1 m	
		Desnivel: 4,6 m	
		Velocidad de transporte: 7 m/min	
360.	1 ud	MOTORREDUCTOR Pujol Muntalà, referencia RAX030M0Y0 de	-
		92 W de potencia y una velocidad de giro de 70 rpm.	
370.	2 uds	TRANSPORTADOR DE TORNILLO SIN-FIN	11044
		• Longitud: 5,83 m	
		Diámetro: 0,12 m	
		Desnivel: 3 m	
		Velocidad de transporte: 10 m/min	
380.	2 uds	MOTORREDUCTOR Pujol Muntalà, referencia RAX030M0E0 de	-
		61 W de potencia y una velocidad de giro de 93,3 rpm.	
390.	1 ud	BOMBA DE PRESIÓN, para generar las condiciones de caudal y	4718.44
		presión óptimas para realizar el transporte neumático de la	
		Resina de PVC desde los silos de almacenamiento hasta las	
		tolvas de premezclado.	
		Fabricante: Pedro Gil	
		• Modelo: PG30.05 F1	
		Tipo: Root trilobular	
		Fluido vehicular: aire	
		Motor IP55: 3 kW	
		Presión diferencial: 300 mbar	
		Caudal impulsado: 1,71 m3/min	
		Velocidad de soplado: 3300 rpm	
		Filtro-silenciador de aspiración	
		Transmisión por correas y poleas con taper-lock	
		Protección de transmisión	
		Soportes antivibratorios	
		 Manguito elástico de conexión 	
		Válvula de seguridad	
		Válvula de retención	
		Cabina insonorizante	
		Ventilación interna	
		Nivel sonoro: 64 dB	
400.	1 ud	LÍNEA DE TUBERÍA DE TRANSPORTE NEUMÁTICO PARA GRANZA	1800
		PVC	
		• 20 Racors hembra Ø 42,4 con tapón con cadena	
		• 40 Codos Inox Ø 42,4 90° Radio 500 L-200	
		• 228m tubería lnox Ø 42,4	
		• 96 Racors presión Ø 42,4	
		40 Soportes tubería a la pared del primer silo	
		40 Soportes sobre los techos de los depósitos	


COSTE TOTAL INSTALACIÓN			
		montaje	
		Fabricados en 3 partes desmontables para facilitar el	
		Válvula de cierre tajadera manual de 150x150 mm	
		ingreso del material y malla de desaireación	
		Tapa de plancha en acero atornillado con tubo de	
		2 mirillas de inspección	
		4 pies de soporte al suelo	
		• Conicidad 45°	
		• Dimensiones: 1,8x1,8x4,4 m	
420.	10 uds	SILO ALMACENAMIENTO GRANZA PVC en Acero al carbono pintado de 11 m³ de capacidad.	70000
420	40 1	montaje	70000
		Fabricados en 3 partes desmontables para facilitar el	
		Válvula de cierre tajadera manual de 150x150 mm	
		ingreso del material y malla de desaireación	
		 Tapa de plancha en acero atornillado con tubo de 	
		2 mirillas de inspección	
		4 pies de soporte al suelo	
		Conicidad 45°	
		• Dimensiones: 1,5x1,5x4,4 m	
		pintado de 8 m³ de capacidad.	
410.	10 uds	SILO ALMACENAMIENTO GRANZA PVC en Acero al carbono	60000

10.10. ANEXO X

PLANO INSTALACIÓN

