

Máster Universitario en Ingeniería de Análisis de Datos,

 Mejora de Procesos y Toma de Decisiones

Departamento de Estadística e Investigación Operativa Aplicadas y Calidad

Matheuristics for the parallel machine

scheduling problem with resource needs

during setups

Zhang Ling

Supervisor: Federico Perea Rojas Marcos

Contents

1 Introduction 1

2 Scheduling Problems 4

2.1 Introduction to Scheduling Problems 4

2.1.1 Some Areas of Application 5

2.1.2 Classification 6

2.2 Parallel Machines . 8

2.2.1 Identical Parallel Machines 10

2.2.2 Uniform Parallel Machines 12

2.2.3 Unrelated Parallel Machines 15

2.2.4 Unrelated Parallel Machines Scheduling with

Setup Times (UPMS) 17

2.2.5 Unrelated Parallel Machines Scheduling with Re-

sources in Setups (UPMR-S) 22

3 Formal Definition of the Problem 26

3.1 Sets, Variables and Parameters 26

3.1.1 Sets . 27

3.1.2 Variables . 27

1

3.1.3 Parameters . 28

3.2 MILP Model . 28

4 Matheuristics Proposed 31

4.1 Algorithm 1 . 33

4.1.1 Model 1 of Algorithm 1: The Constructive Phase 34

4.1.2 Model 2 of Algorithm 1: The Repairing Phase . 35

4.2 Algorithm 2 . 36

4.2.1 Model 1 of Algorithm 2: The Constructive Phase 36

4.2.2 Model 2 of Algorithm 2: The Repairing Phase . 38

5 Computational Experiments 39

5.1 Solver and Computer 39

5.2 Generation of Instances 40

5.3 Results . 40

6 Conclusion 46

2

Abstract

This thesis proposes two algorithms for the Unrelated Parallel Ma-

chines Scheduling problem with resources in setups (UPMR-S). The

objective of UPMR-S is to minimize the completion time (makespan).

This problem is a NP-hard problem. The problem consists of assigning

a number of jobs to a group of unrelated parallel machines in order

to minimize the makespan. We first introduce a mixed integer linear

programming (MILP) model that has been proposed in an earlier

research. Then, we propose two two-stage matheuristics for the

UPMR-S. Some computational experiments are carried out and the

results verify the effectiveness of the algorithms proposed.

Keywords: Unrelated parallel machine scheduling, limited resources,

setup time, makespan

Chapter 1

Introduction

The Unrelated Parallel Machines Scheduling problem with re-

sources in setups (UPMR-S) is a problem that has not been paid much

attention in the literature.

A real manufacturing system is mostly made up of several parallel

machines that can process jobs at the same time. Because of the com-

plexity of parallel machine scheduling problems, exact methods may not

find the solutions in a reasonable amount of time. Therefore, heuris-

tics are needed to obtain the approximate (near) optimal schedules for

these problems.

(Lenstra et al., 1990), propose a polynomial algorithm and a poly-

nomial approximation scheme for Unrelated Parallel Machine Schedul-

ing problem. Both results are about the theorem of the relationship of

a class of integer programming problems and their linear programming

relaxation.

1

There are many published papers on parallel machine scheduling

problems. To cite a few, (Ruiz & Andrés-Romano, 2011) use heuristic

approaches for Unrelated Parallel Machines Scheduling problem with

resource-assignable sequence dependent setup times. In this paper, the

length of setups can be changed according to the amount of resources

settled for the setups. For this problem, the objective function used is

a linear combination of total completion time and the total amount of

resources allocated.

The paper of (Vallada & Ruiz, 2011) proposes a genetic algorithm

which consists of a rapid local search and a local search enhanced

crossover operator for the unrelated parallel machine scheduling prob-

lem with setups.

The paper of (Edis & Oguz, 2011) presents a Parallel Machine

Scheduling problem with extra resources which uses a Lagrangian based

constraint programming approach to minimize the makespan. The au-

thor first introduces an integer programming model of the problem,

then uses the nonnegative Lagrangian multipliers to relax the resource

constraint and obtain a maximum lower bound. Finally, a constraint

programming model is used to generate feasible schedules with efficient

upper bounds.

In this thesis, we propose two two-stage matheuristics to find so-

lutions for the Unrelated Parallel Machines Scheduling problem with

resources in setups (UPMR-S). The rest of this thesis is organized as

follows: Chapter 2 presents scheduling problems. Chapter 3 presents

a MILP model for the UPMR-S. Chapter 4 introduces two two-stage

2

matheuristics, which are the main contribution of this thesis and Chap-

ter 5 presents computational experiments. Finally, some conclusions are

presented in Chapter 6.

3

Chapter 2

Scheduling Problems

2.1 Introduction to Scheduling Problems

Scheduling is an area of research that can be classified within the

field of computer science and operations research. Scheduling problems

are formulated in different environments, computer systems, manufac-

turing and project scheduling. These processes include complex activi-

ties to be scheduled. We can model scheduling problems through jobs,

machines, relationships between jobs and machines, processors, addi-

tional resources and other parameters. The purpose of modeling is to

apply the most appropriate algorithm to find optimal or sub-optimal

schedules in the sense of a given criterion. The definition of schedul-

ing is the temporary assignment of resources to activities, in order to

achieve some desirable goals, and determining the order of execution of

4

actions in a behavior description (Leung, 2004). A couple of examples

of scheduling problems are:

• Assignment of workers to machines in a factory to increase productivity.

• Allocation of processor and communication computations to network

links to minimize application execution time.

Solution techniques for scheduling problems include constraint

planning, mathematical programming, heuristics and meta-heuristics,

and more. However, most of these technologies are designed for partic-

ular problems, and they require a lot of adjustments to be applied to

different problems. The goal of machine scheduling is to assign a set of

jobs to a group of machines, in order to optimize an objective function

which leads to minimizing operating times and increasing productivity

(Ouazene et al., 2014).

2.1.1 Some Areas of Application

Scheduling problems have been faced at many levels and in many

areas. In general, we can apply them to manufacturing production

and computer systems or project management. Lately, researchers have

been working to solve problems in new applications, such as logistics,

airport operations, management processes, decentralized systems and

self-centered organizations, grid computing and scheduling issues in

bioinformatics (Toksarı et al., 2014).

5

2.1.2 Classification

The classification scheme we will use consists of three parts α\β\γ

(Kayvanfar et al., 2014), where:

• α : The environment of machines.

• β : Characteristics of jobs or resources.

• γ : Objective functions.

We now explain in more detail each of these parts.

Machine Environment α

1. α1 represents the type of machines.

• α1 = P : Identical Machines.

• α1 = Q : Uniform Machines.

• α1 = R : Unrelated Machines.

2. α2 represents the number of machines.

Characteristics and Constraints β

• β1 represents restrictions of preemption.

• β2 represents additional resources.

• β3 represents restrictions of precedence.

• β4 describes available time.

• β5 describes the type of processing time.

6

• β6 describes the type of due dates.

• β7 represents eligibility restrictions.

Objective Function γ

We can divide the optimization goals into two categories: com-

pletion time and costs. For example, some optimization goals mainly

measure the time of completion of the last job (makespan), or measure

lateness of jobs in relation to a deadline. The cost-related optimization

objectives mainly measure the expenses of using machines, and the

waiting cost before and after the machine processing. In the literature,

the goal most commonly encountered is the ”minimax” criteria, which

is used to calculate the maximum completion time of all the jobs: min

Cmax, where Cmax is the total length of a schedule: the completion

time of the last job. Another theory is the ”minisum” criteria, such as

”minisum” of the total tardiness of jobs. (T’kindt & Billaut, 2006)

We now enumerate some ”minisum” criteria and ”minimax” cri-

teria.

1. minisum

• Total completion time (makespan).

• Total flow time.

• Total tardiness.

• Total number of tardy jobs.

2. minimax

7

• Lateness.

• Tardiness.

• Makespan.

2.2 Parallel Machines

In general, Parallel Machines Scheduling implies the assignment

of machines and resources to jobs to complete all the jobs under the

imposed restrictions. The following are some of the restrictions in the

classic scheduling theory:

1. Each job is to be processed by only one machine.

2. Each machine can only handle at most one job at a time.

3. Once a machine starts processing a job, it will continue to run on that

job until the job is completed (no preemption).

The Parallel Machines Scheduling problem is an optimization prob-

lem, which includes decision variables, constraints on the decision vari-

ables, and objective functions defined by decision variables. Decision

variables are unknowns that need to be found. In any standard schedul-

ing problem, there are a set of jobs N = {1, 2, ..., n} and a set of ma-

chines M = {1, 2, ...,m}. A job j ∈ N needs pij time units to process

on machine i ∈M . We assume that a job will not be interrupted when

this job begins processing on a particular machine (no preemption).

The problem we consider consists of scheduling a sequence of jobs on

machines to minimize the maximum completion time (makespan) of

8

the jobs. That is, we want to decrease the time before the last job is

completed to the minimum..

The Parallel Machines Scheduling is subject to feasibility con-

straints and optimization objectives. Some additional constraints may

be related to the resources required during the setup process and setup

times between a pair of jobs. Typically, the optimization objective of

such problems is to find a schedule that minimizes the total amount of

time or expenses required to finish all the assignments.

According to its job processing speed, three types of parallel ma-

chines can be distinguished. If all machines have the same job process-

ing speed, we call them Identical Parallel Machines. When machine

speeds are different, two cases may happen. If the speed of each ma-

chine is constant and independent of the job, they are named Uniform

Parallel Machines; however, if the speed of the machine depends on

the specific job being processed, they are called Unrelated Parallel Ma-

chines.

For Identical Parallel Machines, all machines have the same speed,

and the processing times of the job pij are the same on distinctive ma-

chines, pij = pj, and the processing speed will not be changed because

of changes in machine.

For Uniform Parallel Machines, machines have different speeds and

processing times of a job varied by speed factors, pij = pj/si , where si is

the speed factor of machine i. Lastly, for Unrelated Parallel Machines,

pij is arbitrary and does not have special features (Blazewicz et al.,

9

2007).

2.2.1 Identical Parallel Machines

The Identical Parallel Machines problem is denoted by (Pm||Cmax).

For the Identical Parallel Machines problem, every job requires the

same processing times on each machine; that is, all machines have the

same job processing speed. In this case, the processing times are the

same on all machines, p1j = p2j = p3j = ... = pmj; therefore, minimizing

completion time (makespan), is the equivalent of balancing workload

in the machines. In manufacturing industry, balancing the workload

among the machines is vital to decrease the idle times and work-in-

process. It helps also to get bottlenecks out in manufacturing systems

(Ouazene et al., 2014).

There are the following assumptions in this Identical Parallel Ma-

chines problem :

1. All machines are identical and are able to process all jobs.

2. Each machine can only process one job at a time.

3. Jobs are only allowed to be processed on one machine.

4. At time zero, all jobs are available to be processed (German et al., 2016).

Example of Identical Parallel Machines

We now show an example with three Identical Parallel Machines.

Table 2.1 shows the processing times pij, where we can see the

10

processing times of each job j (each column) are the same on all three

machines.

Job 1 Job 2 Job 3 Job 4

Machine 1 4 6 3 9

Machine 2 4 6 3 9

Machine 3 4 6 3 9

Table 2.1: pij for three identical parallel machines.

Figure 2.1: Example of three identical parallel machines.

11

Figure 2.2: Example of three identical parallel machines.

In this three Identical Parallel Machines (IPM) problem, Figure

2.1 and Figure 2.2 show the same makespan (9 units of time) of the

problem by two different schedules. It can be seen that the job with

the longest processing time is usually the bottleneck, and generates the

most influential constraints of the optimization goal.

2.2.2 Uniform Parallel Machines

The Uniform Parallel Machines problem is denoted by (Qm||Cmax).

The problem of Uniform Parallel Machines shows different proportions

of processing speed between the different machines (pij = pj/si). For

example, the job j may require one unit of processing times on machine

1 or two unit of processing times on machine 2, which depends on si, the

12

speed factor of machine i. In an Identical Parallel Machines problem,

jobs can be processed on any machine with the same speed factors; in

a Uniform Parallel Machines problem, jobs can be processed on any

machine with distinctive speed factors, which are in stable ratios with

each other (Lin & Ying, 2017). The larger the processing factor si of

the machine i, the faster processing speed and the shorter processing

time of the same job j. In this situation, a good solution consists of

processing longer jobs in faster machines to minimize the makespan.

Example of Uniform Parallel Machines

We now show an example of three Uniform Parallel Machines. Ta-

ble 2.2 displays the processing times pij, We can see that the processing

time pij of each job j has changed proportionally on all three machines.

The goal is to decrease the maximum completion time to mimimum and

produce a minimum makespan.

Job 1 Job 2 Job 3 Job 4

Machine 1 1 2 4 3

Machine 2 3 6 12 9

Machine 3 4 8 16 12

Table 2.2: pij for three uniform parallel machines.

13

Figure 2.3: Example of three uniform parallel machines.

Figure 2.4: Example of three uniform parallel machines.

14

The processing time of machine 2 is three times that of machine

1, the processing time of machine 3 is four times that of machine 1

(s1 = 1, s2 = 1/3, s3 = 1/4). In the schedule of Figure 2.3, the job

3 with the longest processing time is assigned to the fastest machine

1. However, the job 4, which also requires a long processing time, is

assigned to machine 2 whose speed is relatively slow. The makespan

of this scheduling is 9 time units. In Figure 2.4, job 3 and job 4 need

longer time to process and are all assigned to the fastest machine 1. The

makespan of this schedule is 7 units of time. In this problem, the speed

factor of the machine i si is a key aspect. It is necessary to match the

machine with the largest speed factor to the jobs that take the longest

times to process.

2.2.3 Unrelated Parallel Machines

Unrelated Parallel Machines Scheduling (UPM) to minimize the

makespan is denoted by Rm||Cmax. This problem has different process-

ing times, which depend both on the machine and the job. Unrelated

Parallel Machines is the most general case of these types of problems.

Each job can be processed on machines with different speed factors,

which are not in fixed ratios with each other. In other words, the pro-

cessing time of each job depends on the machine where it is processed

(Fanjul-Peyro & Ruiz, 2010). Each machine performs differently for

each job, some jobs may be slower, and other jobs may be faster. Un-

like the uniform case, the processing times are not related.

15

Example of Unrelated Parallel Machines

We now show an example of three Unrelated Parallel Machines.

Table 2.3 shows the processing times of different machines, job 1 runs

slow on machine 1, and runs fast on machine 3. Conversely, job 4 runs

fast on machine 1 and slow on machine 3. There is no specific relation-

ship between these processing times.

Job 1 Job 2 Job 3 Job 4

Machine 1 7 8 7 5

Machine 2 5 4 5 9

Machine 3 6 5 9 11

Table 2.3: pij for three unrelated parallel machines.

Figure 2.5: Example of three unrelated parallel machines.

16

Figure 2.6: Example of three unrelated parallel machines.

In Figure 2.5 and Figure 2.6 above, we can see that the two assign-

ments have the same makespan, (makespan equal to 9 unit time). Jobs

loaded on both machine 2 and machine 3 take up the same amount

of processing time. These two assignment methods are equivalent to

exchanging job 1 and job 3. Although makepans are equal, the first

assignment has idler time on the machines, which might be important.

2.2.4 Unrelated Parallel Machines Scheduling

with Setup Times (UPMS)

In this section, we address on unrelated parallel machine prob-

lems with setup times associated with machines and job sequences

17

(UPMS). The setup is a non-production time period, usually simu-

lating the operation to be performed on the machine after processing

the job, in preparation for the processing of the next job in the se-

quence. Sequence-dependent setup times are usually incurred in some

real industrial environments. Setups usually involve cleaning the pro-

duction line when changing from one sort of job to another, or adding

and removing mechanical parts and elements from the production line

(production machine). The great majority of production processes need

these setups (Fanjul-Peyro et al., in press).

Unlike the previous UPM problem, in this case, there is a machine

setup phase between two consecutive jobs. The setup time may be

different depending on which jobs are to be processed. Therefore, it is

not only necessary to assign jobs to machines, but also to decide on the

sequence of jobs to be processed. Setup times vary depending on the

precedence of the job, which are different from the processing times.

We define sijk to represent the setup time between job j and job k

needed to adjust machine i.

The followings are assumptions about the UPMS problem:

Assumptions

• At time zero, all the jobs are available to be assigned and all the ma-

chines are available to process jobs.

• Each machine can process only one job at a time.

• Each job must be processed only once.

18

• The process time of each job on each machine differs from each other.

• The setup time for each job on each machine depends on the sequence.

• It is not allowed to preempt the operation of each job.

• Machines are not related and any available machine can process any

job.

• Machines are available during the entire schedule.

Example of UPMS

Table 2.4 below shows the processing times pij for each job on

Machine 1 and Machine 2. These machines are all unrelated. Table

2.5 and Table 2.6 show the setup times on each machine, assuming the

column job is processed after the row job. These setup times depend on

the order of the job sequences. In Table 2.5, on machine 1, processing

job 2 after job 1 requires only one unit of setup time, but processing

job 1 after job 2 requires five units of setup time. For example, suppose

these jobs are coloring the products. Job 1 is paint white and job 2 is

paint black. If you execute job 1 first, it takes very little time to clean

up the machine. Even if some of the residual color is not cleaned, there

is no effect on the next job 2. However, if you run job 2 first, it will

take a lot of time to clean up the machine, otherwise it will affect the

quality of the next job 1.

19

Job 1 Job 2 Job 3 Job 4

Machine 1 3 2 2 5

Machine 2 4 3 1 3

Table 2.4: pij for two unrelated parallel machines with setup times.

Job 1 Job 2 Job 3 Job 4

Job 1 0 1 4 2

Job 2 5 0 4 5

Job 3 3 2 0 3

Job 4 5 3 1 0

Table 2.5: s1jk setup time between a pair of jobs j and k on machine 1.

Job 1 Job 2 Job 3 Job 4

Job 1 0 2 1 2

Job 2 4 0 4 3

Job 3 2 3 0 4

Job 4 6 3 3 0

Table 2.6: s2jk setup time between a pair of jobs j and k on machine 2.

20

Figure 2.7: Example of two unrelated parallel machines with setup times.

Figure 2.7 above shows the sequences of jobs on machines for the

example. The purple bar in the figure shows the time taken by the

setup phase. In this example, swapping the jobs running on two ma-

chines, or swapping the sequence of jobs on a machine will increase the

makespan. If the number of machines exceeds two, the problem is more

complicated. Whereas in problems without setups it is just needed to

assign jobs to machines, in the UPMS we also need to decide the se-

quences on the machine. Therefore, adding setups implies adding one

more decision to make, which in turn implies an increase in the problem

complexity.

21

2.2.5 Unrelated Parallel Machines Scheduling

with Resources in Setups (UPMR-S)

In this section we introduce the Unrelated Parallel Machines

Scheduling with limited resources in setup problem, which is the topic of

this piece of work. In this thesis, we do not consider that the resources

assigned to each setup will influence the time required for the setup

phase. In other words, the setup time is fixed. We consider allocating

these limited resources to each setup to meet the required amount of

resources for each setup. Due to the limited number of available re-

sources, Rmax, when the time of the setup phase on multiple machines

overlaps, the available resources cannot satisfy the setups on multi-

ple machines at the same time, so some setups have to be rearranged

(Yepes, 2017).

Example of UPMR-S

This example of UPMR-S adds resource constraints to the example

UPMS. Table 2.7 and Table 2.8 below show the resources rijk that are

needed during the setup phase on machine i between job j and job k.

Rmax = 3 .

22

Job 1 Job 2 Job 3 Job 4

Job 1 0 2 2 2

Job 2 2 0 3 1

Job 3 3 3 0 3

Job 4 1 2 1 0

Table 2.7: r1jk resource for setup between a couple of jobs j and k on the

machine 1.

Job 1 Job 2 Job 3 Job 4

Job 1 0 2 1 2

Job 2 3 0 2 3

Job 3 2 3 0 2

Job 4 1 2 3 0

Table 2.8: r2jk resource for setup between a couple of jobs j and k on the

machine 2.

23

Figure 2.8: Example of two unrelated parallel machines with setup times.

In the UPMS example, the resources in the setup phase are un-

limited. Even if the setup phases on both machines overlap, we do

not have to check whether the resources are sufficient or not. In the

UPMR-S example, Rmax is equal to three units, and the two setup

phases that overlap at time 3 require five units of resources. Therefore,

the limited number of resources available cannot satisfy both setups

simultaneously.

In Figure 2.8 above, we can see that on machine 2, the setup phase

is delayed by one time unit until the setup phase on machine 1 ends.

The resources of the two units are released and all three resources are

available for the other setup. The makespan is equal to seven units of

24

time. If the setup phase on machine 2 is done first, the setup phase on

machine 1 needs to be delayed by three units of time, and the makespan

is equal to eight units of time. This illustrates how the order of setups

also affects the completion time. Adding resources to the setups implies

that for the UPMR-S problem, three decisions have to be made:

1. Assignment (Like in problems without setups and resources).

2. Sequencing (Like in problems with setups).

3. Timing (We now need to decide when each job is processed, and when

each setup is done).

25

Chapter 3

Formal Definition of the

Problem

In this Chapter, a mathematical definition of the Unrelated Par-

allel Machine Scheduling problem with limited resources in the se-

tups (UPMR-S) will be given, where the setup times are sequence-

dependent. Furthermore, a mathematical model is introduced to un-

derstand the problem better (Yepes, 2017).

3.1 Sets, Variables and Parameters

In this section, we introduce the sets, variables, and parameters

needed to formulate the UPMR-S problem.

26

3.1.1 Sets

• M = {1, . . . ,m} : A set of machines that is indexed with the letter i.

• N = {1, . . . , n} : A number of jobs to process that is indexed with the

letters j and k.

• T = {1, . . . , tmax} : Set of instants.

For modeling purposes, we define the set N0 = {0, 1, . . . , n} where 0 is

a dummy job. We will assume that the sequence of jobs processed on

machine i starts from the dummy job and ends with the dummy job.

3.1.2 Variables

We now introduce the variables needed for modeling the problem.

• Cmax: Objective variable, makespan.

• Xijk: Binary variable takes value 1 if the job k is processed right after j

on machine i (with the corresponding setup), it takes value 0 otherwise.

This variable designs the sequences of jobs on each machine.

• Yij: Binary variable takes value 1 if job j is processed on machine i, it

takes value 0 otherwise. This variable designs the assignment of jobs to

machines.

• Hijkt: Binary variable takes value 1 if the setup, on the machine i,

between consecutive jobs j and k, finishes at the time t. Otherwise, it

takes value 0. This variable designs the timing of the setups.

27

3.1.3 Parameters

In this part, we will show the input data, which are known and

different for each UPMR-S instance.

• sijk: Setup time between consecutive jobs j and k on machine i.

• pij: Processing time of job j on machine i.

• rijk: Resources needed for the setup between job j and job k on machine

i.

• tmax: The upper bound of the completion time.

• Rmax: Amount of resources available for setups.

3.2 MILP Model

In this section we introduce a Mixed-Integer Linear Programming

(MILP) model, for solving the UPMR-S. Mixed Integer Linear Pro-

gramming is rigorous, flexible, and has a wide range of modeling capa-

bilities. This method is widely explored for scheduling problems, since

a scheduling problem is essentially equivalent to a combination of sev-

eral discrete decisions, such as equipment allocation and job assignment

over time (Floudas & Lin, 2005).

The following is a Mixed-integer Linear Programming (MILP)

Model for the UPMR-S problem, and it was presented in (Yepes, 2017).

28

min Cmax (3.1)

s.t.
∑
k∈M

Xi0k ≤ 1, i ∈M (3.2)

∑
i∈M

Yij = 1, j ∈ N (3.3)

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈ j ∈ N (3.4)

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N (3.5)

∑
t≤tmax

Hijkt = Xijk, ∀i ∈M, j ∈ N0, k ∈ N, k 6= j (3.6)

∑
t

tHijkt ≥
∑

k′∈N0

∑
t∈tmax

Hik′jt(t+ sijk + pij)−B(1−Xijk),

∀i ∈M, j ∈ N0, k ∈ N, k 6= j (3.7)∑
i∈M,j∈N0,k∈N,t′∈{t,...,t+sijk−1}

rijkHijkt′ ≤ Rmax,

∀t ≤ tmax (3.8)∑
t≤tmax

Hijkt ≤ Cmax, ∀i ∈M, j ∈ N0, k ∈ N0, k 6= j (3.9)

Xijk ≥ 0, Yij ≥ 0, Hijkt ∈ {0, 1}

• Equation 3.1 indicates the objective to be minimized (completion time

or makespan).

• Constraint 3.2 ensures that at most one job is assigned to the first

position in the job sequence on each machine.

• Constraint 3.3 guarantees that each job is assigned to one and only one

machine.

• Constraint 3.4 guarantees that each job j that is processed on machine

29

i only has one successor k.

• Constraint 3.5 guarantees that each job k that is processed on machine

i only has one predecessor j.

• Constraint 3.6 indicates that for each machine i, and for each pair of

consecutive jobs j and k on machine i, the setup between j and k must

end before tmax.

• In Constraint 3.7, B is a large number. This ensures breaking the cycle

of two consecutive jobs. The completion time of the previous job with

the addition of processing time of the job j and plus the setup time

between two successive jobs, job j and job k on the same machine is

equal to the completion time of the current job.

• Constraint 3.8 ensures that the amount of resources used can not exceed

Rmax at any time.

• Constraint 3.9 imposes that the Cmax must be greater than or equal to

the final time of all the setups, including the final dummy setup between

the last job and the dummy job 0.

As we will see in the experiments, this model can only solve very small

instances of the UPMR-S. For this reason, in the next chapter we in-

troduce more efficient approaches.

30

Chapter 4

Matheuristics Proposed

This chapter describes two matheuristic algorithms that for

UPMR-S problem. A heuristic algorithm is an approximate good solu-

tion, but can not guarantee the result is optimal. Metaheuristic is an

advanced strategy, which directs some underlying heuristic algorithms

to solve a particular problem. In other words, a metaheuristic is an

interactive generation process which guides a subordinate heuristic by

combining in a smart way different concepts for discovering and exploit-

ing the search spaces, utilizing learning strategies to form information

in order to find efficiently near-optimal solutions (Said et al., 2014).

The two matheuristic algorithms proposed are divided into two

main parts:

1. A constructive part in which we find an initial solution, and regardless

of resources, only consider the assignment of jobs and the processing

sequence of jobs on machines.

31

2. The other part is a repairing phase, which takes into account the re-

source constraints, making the sequence obtained in the constructive

part become feasible.

In Chapter 6, we will compare the computation times and makespans of

these two heuristic algorithms (which differ in the constructive phase)

and the MILP. Figure 4.1 summarizes the matheurists proposed below:

Figure 4.1: The flow chart of matheuristics algorithm.

32

4.1 Algorithm 1

In this section, we introduce the first algorithm, which consists of

two stages. The two stages of this algorithm correspond to two models,

model 1 and model 2. This algorithm works by solving an Unrelated

Parallel Machines Scheduling Problem without the resources constraint,

obtaining the job-machine assignment and job sequence and repairing

the job sequence.

The first stage of this algorithm does not consider the resource

limits required for the setup time. That is, the Constraint 3.8 of the

MILP model in the previous chapter is ignored.

∑
i∈M,j∈N0,k∈N,t′∈{t,...,t+sijk−1}

rijkHijkt′ ≤ Rmax,∀t ≤ tmax

In other words, the first stage obtains a solution to the UPMS problem

associated. Xijk are the sequences of jobs processed on machine i, the

order of all jobs is determined and cannot be changed in the next phase.

Yij are the job assignments on the machines, the job j runs on machine

i. We obtain job sequences and job assignments from the first stage

(Model 1), and put X∗ijk and Y ∗ij (the optimal values of Xijk and Yij

in Model 1) as parameters into the second stage (Model 2). In the

second phase, since we already know the assignments of jobs on each

machine, what we need to consider is whether the available resources

are sufficient when the setups are overlapping. If the available resources

are not enough, the setup operation of certain machines will be delayed

33

until resources are released.

4.1.1 Model 1 of Algorithm 1: The Constructive

Phase

Model 1 of Algorithm 1 is the MILP Model in Chapter 3 without

the resource constraint. This is the construction part of the Algorithm

1, and this part finds the assignment of jobs to machines and the order

in which they are proposed. This model does not consider the resource

constraints required during the setup phase between the jobs. The fol-

lowing is Model 1 of Algorithm 1:

min Cmax

s.t.
∑
k∈M

Xi0k ≤ 1, i ∈M
∑
i∈M

Yij = 1, j ∈ N

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈ j ∈ N

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N
∑

t≤tmax

Hijkt = Xijk, ∀i ∈M, j ∈ N0, k ∈ N, k 6= j

∑
t

tHijkt ≥
∑

k′∈N0

∑
t∈tmax

Hik′jt(t+ sijk + pij)−B(1−Xijk),

∀i ∈M, j ∈ N0, k ∈ N, k 6= j∑
t≤tmax

Hijkt ≤ Cmax, ∀i ∈M, j ∈ N0, k ∈ N0, k 6= j

Xijk ≥ 0, Yij ≥ 0, Hijkt ∈ {0, 1}

34

This model yields a sequence given by X∗ijk, the value of Xijk in

an optimal solution.

4.1.2 Model 2 of Algorithm 1: The Repairing

Phase

Model 2 is the repairing phase of the Algorithm 1. This phase

adds constraint on resources, considering that the setup phases between

jobs on different machines may overlap, and the limited resources may

not be able to satisfy overlapping multiple setup processes. Model 2

is designed to modify and repair the sequence X∗ijk obtained in Model

1. This model is obtained from the complete model in Chapter 3 by

assuming that the variables X and Y are now parameters, and we only

need to find the values of variables H:

min Cmax

s.t.
∑

t≤tmax

Hijkt = X∗ijk, ∀i ∈M, j ∈ N0, k ∈ N, k 6= j

∑
t

tHijkt ≥
∑

k′∈N0

∑
t∈tmax

Hik′jt(t+ sijk + pij)−B(1−X∗ijk),∀i ∈M, j ∈ N0,

k ∈ N, k 6= j∑
t≤tmax

Hijkt ≤ Cmax, ∀i ∈M, j ∈ N0, k ∈ N0, k 6= j

∑
i∈M,j∈N0,k∈N,t′∈{t,...,t+sijk−1}

rijkHijkt′ ≤ Rmax,∀t ≤ tmax

• X∗ijk are parameters (the sequence of jobs processing on the machines

obtained in Model 1).

35

• Hijkt ∈ {0, 1} are binary variables.

The solution to Model 2 is a feasible solution to the UPMR-S problem.

4.2 Algorithm 2

This section describes the second algorithm proposed in this the-

sis, which has two stages. Similar to the first algorithm, Algorithm 2

also ignores the resource constraints in Model 1, and repairs the job

sequence in Model 2. The biggest difference between the first algorithm

and the second is that the second one uses the MILP model proposed

in (Fanjul-Peyro et al., in press) instead of the MILP model in Chapter

3 for finding the sequence X∗ijk.

4.2.1 Model 1 of Algorithm 2: The Constructive

Phase

This section is the construction part of Algorithm 2. The following

model, presented in an earlier research (Fanjul-Peyro et al., in press),

finds a sequence of jobs on machines without considering resources.

min Cmax (4.1)

s.t.
∑

j∈N0,k∈N,k 6=j

sijkXijk +
∑
j∈N

pijYij ≤ Cmax, i ∈M (4.2)

∑
k∈N

Xi0k ≤ 1, i ∈M (4.3)

∑
i∈M

Yij = 1, j ∈ N (4.4)

36

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈M, j ∈ N (4.5)

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N (4.6)

Uj − Uk + n
∑
i∈M

Xijk ≤ n− 1, j ∈ N, k ∈ N, j ≤ k(4.7)

Xijk ∈ {0, 1}, Yij ≥ 0

This model uses a new set of variables, Uj ≥ 0, to define the number

of jobs processed before job j on the machine that processes job j.

• Equation 4.1 represents the objective to be minimized (makespan).

• Constraint 4.2 defines that the sum of the setup times and the sum of

all the jobs running on the machine are smaller than makespan.

• Constraint 4.3 ensures that at least one job starts running on the ma-

chine following the dummy job.

• Constraint 4.4 defines that each job must have a certain machine to

execute this job. In other words, all jobs must be executed, no matter

to which machine they are assigned.

• Constraint 4.5 and constraint 4.6 ensure that each job has a successor

and a predecessor on the same machine. This successor and predecessor

can be virtual jobs.

• Constraint 4.7 ensures that when job k is the successor of job j, Xijk = 1,

that means Uk ≥ Uj + 1. In contrast, if job k is not a successor of job j,

Xijk = 0, that means Uj ≤ n − 1. These constraints are used to break

subtours.

37

4.2.2 Model 2 of Algorithm 2: The Repairing

Phase

The repair phase of Algorithm 2 is the same as the repair phase of

Algorithm 1.

38

Chapter 5

Computational Experiments

In this chapter, the results obtained by the algorithms proposed

over a number of randomly generated instances will be given. The re-

sults of the algorithms proposed will also be compared with the results

obtained by the MILP in Chapter 3.

5.1 Solver and Computer

For these experiments, GAMS 23.1 was the modeling language,

and the solver used is CPLEX 11.2. The computer used was a laptop

with Windows 10 and an Intel core i5 processor with 4GB of RAM

memory.

39

5.2 Generation of Instances

For these experiments, a group of test instances is employed. The

generation of these instances is done by varying the following parame-

ters:

• Number of machines n ∈ {6, 8}

• Number of jobs m ∈ {2, 3, 4, 5}

• Setup times between jobs sijk ∈ {U(1, 9), U(1, 49), U(1, 99), U(1, 124)}.

In words, the setup times are calculated randomly by means of a discrete

uniform distribution between 1 and 9, between 1 and 49, between 1 and

99, and between 1 and 124.

Combining these three factors gives us 32 instances. The other input

data are generated as follows:

• Rmax = U(3, 4)

• rijk = U(1, Rmax)

• tmax = mini
∑n−1

j=0 pij + si,j,j+1

5.3 Results

Tables 4.2 and 4.3 show the results of the MILP Model and the

two matheuristics proposed. The meaning of each column is :

• cpuM1 shows the computing time of model 1, the constructive time.

40

• cpuM2 shows the computing time of model 2, the repairing time.

• cpuT shows the total computing time of each algorithm, and is equal

to cpuM1+cpuM2.

• VM1 shows the value of the best solution achieved by the model 1.

• VM2 shows the value of the best solution achieved by the algorithm.

• VMILP displays the best solution found by the MILP after one hour of

time.

• RPD shows the relative percent deviation of the solution found by each

of our matheuristics with respect to the solution found by the MILP,

and is computed with this formula:

RPD = 100
VM2− VMILP

VM2
(5.1)

• GAP shows the gap of the solution found by MILP, with respect to the

MILP lower bound given by the solver.

41

A
lg
or
it
h
m

1
A
lg
o
ri
th
m

2
M
IL
P

In
st
an

ce
cp
u
M
1

cp
u
M
2

cp
u
T

V
M
1

V
M
2

R
P
D
1

cp
u
M
1

cp
u
M
2

cp
u
T

V
M
1

V
M
2

R
P
D
2

V
M
IL
P

G
A
P

8*
2

75
7.
23

0.
55

75
7.
78

89
8
9

-1
.1
2

1
0
.5
3

1
.5
3

8
8

8
9

-1
.1
2

9
0

3
0
.4
0
%

8*
2

10
00
.0
9

1.
91

10
02

16
8

1
6
8

-5
2
.3
8

0
.2
8

1
.4
1

1
.6
9

1
6
7

1
6
8

-5
2
.3
8

2
5
6

8
0
.1
6
%

8*
2

10
00
.0
9

2.
11

10
02
.2

26
4

2
6
4

-1
1
.3
6

0
.2
2

2
.3
1

2
.5
3

2
6
3

2
6
4

-1
1
.3
6

2
9
4

6
7
.4
6
%

8*
2

10
00
.0
9

2.
39

10
02
.4
8

21
2

2
1
2

-2
2
.6
4

0
.3
8

1
.8
6

2
.2
4

2
1
1

2
1
2

-2
2
.6
4

2
6
0

7
5
%

8*
3

45
4.
5

0.
78

45
5.
28

73
7
3

-2
9
3
.1
5

0
.5
3

0
.7
7

1
.3

7
2

7
3

-2
9
3
.1
5

2
8
7

9
8
.4
6
%

8*
3

10
00
.1
6

1.
25

10
01
.4
1

10
4

1
0
4

-7
8
.8
5

0
.1
3

1
.2

1
.3
3

1
0
3

1
0
4

-7
8
.8
5

1
8
6

7
1
.8
1
%

8*
3

10
00
.1
7

4.
14

10
04
.3
1

14
0

1
7
2

-1
8
3
.7
2

0
.3
3

3
.2
8

3
.6
1

1
2
6

1
6
5

-1
9
5
.7
6

4
8
8

9
9
.3
9
%

8*
3

10
00
.1
9

1.
86

10
02
.0
5

14
1

1
4
1

-2
1
.2
8

0
.4
2

3
.0
2

3
.4
4

1
4
0

1
5
6

-9
.6
2

1
7
1

6
2
.7
9
%

8*
4

59
1.
73

0.
8

59
2.
53

63
6
3

1
.5
9

0
.3
3

0
.8
1

1
.1
4

6
2

6
3

1
.5
9

6
2

0
.0
0
%

8*
4

76
0.
02

2.
61

76
2.
63

88
8
8

-1
1
.3
6

0
.4
5

1
.9
7

2
.4
2

8
7

8
8

-1
1
.3
6

9
8

4
5
.4
5
%

8*
4

94
2.
61

2.
28

94
4.
89

75
7
5

1
0
0
.0
0

0
.4
4

2
.1
3

2
.5
7

7
4

7
5

1
0
0
.0
0

8*
4

10
00
.2
2

2.
45

10
02
.6
7

11
2

1
1
2

1
0
0
.0
0

0
.5

2
.3
9

2
.8
9

1
0
6

1
0
7

1
0
0
.0
0

8*
5

25
0.
03

0.
94

25
0.
97

44
4
4

2
.2
7

0
.3
9

0
.8
6

1
.2
5

4
3

4
4

2
.2
7

4
3

0
.0
0
%

8*
5

42
4.
94

1.
23

42
6.
17

43
4
3

-4
6
.5
1

0
.6
7

1
.3
3

2
4
2

4
3

-4
6
.5
1

6
3

9
6
.8
7
%

8*
5

79
6.
53

1.
89

79
8.
42

51
5
1

1
0
0
.0
0

0
.7

1
.8
4

2
.5
4

5
0

5
1

1
0
0
.0
0

8*
5

58
8.
02

2.
86

59
0.
88

56
6
0

-7
4
6
.6
7

0
.4
5

2
.8
8

3
.3
3

5
5

6
0

-7
4
6
.6
7

5
0
8

1
0
0
.0
0
%

av
er
ag
e

78
5.
41

1.
87

78
7.
29

10
7.
6
9

1
0
9
.9
4

-7
2
.8
2

0
.4
5

1
.7
8

2
.2
3

1
0
5
.5
6

1
1
0
.1
3

-7
2
.8
5

2
1
5
.8
5

6
3
.6
8
%

T
ab

le
5.

1:
R

es
u
lt

s
of

8
m

ac
h
in

es

42

A
lg
or
it
h
m

1
A
lg
o
ri
th
m

2
M
IL
P

in
st
an

ce
cp
u
M
1

cp
u
M
2

cp
u
T

V
M
1

V
M
2

R
P
D
1

cp
u
M
1

cp
u
M
2

cp
u
T

V
M
1

M
2

R
P
D
2

V
M
IL
P

G
A
P

6*
2

12
.9
1

0.
20

1
3.
11

75
.0
0

7
5
.0
0

0
.0
0

0
.2
3

0
.3
0

0
.5
3

7
4
.0
0

7
5
.0
0

0
.0
0

7
5

0
.0
0
%

6*
2

22
.9
4

0.
67

2
3.
61

96
.0
0

1
0
2
.0
0

2
.9
4

0
.1
3

0
.8
4

0
.9
7

9
5
.0
0

1
0
2
.0
0

2
.9
4

9
9

6*
2

58
.3
9

1.
91

6
0.
30

18
8
.0
0

2
0
0
.0
0

-2
.0
0

0
.0
5

1
.6
3

1
.6
8

1
8
7
.0
0

1
8
8
.0
0

-8
.5
1

2
0
4

6
6
.6
7
%

6*
2

52
.9
9

1.
98

5
4.
97

16
5.
00

1
7
1
.0
0

-1
3
5
.6
7

0
.0
9

1
.9
8

2
.0
7

1
6
4
.0
0

1
7
1
.0
0

-1
3
5
.6
7

4
0
3

8
6
.0
0
%

6*
3

20
.9
7

0.
36

2
1.
33

53
.0
0

5
3
.0
0

0
.0
0

0
.1
7

0
.4
4

0
.6
1

5
2
.0
0

5
3
.0
0

0
.0
0

5
3

0
.0
0
%

6*
3

75
.4
4

0.
59

7
6.
03

96
.0
0

9
6
.0
0

0
.0
0

0
.0
9

0
.5
5

0
.6
4

9
5
.0
0

9
6
.0
0

0
.0
0

9
6

0
.0
0
%

6*
3

17
.6
9

0.
47

1
8.
16

59
.0
0

5
9
.0
0

0
.0
0

0
.1
7

0
.5
5

0
.7
2

5
8
.0
0

5
9
.0
0

0
.0
0

5
9

0
.0
0
%

6*
3

66
.3
8

1.
53

6
7.
91

12
0
.0
0

1
3
0
.0
0

-2
0
4
.6
2

0
.3
4

1
.6
9

2
.0
3

1
1
9
.0
0

1
2
0
.0
0

-2
3
0

3
9
6

9
2
.4
0
%

6*
4

23
.7
7

0.
44

2
4.
21

43
.0
0

4
3
.0
0

0
.0
0

0
.2
3

0
.2
8

0
.5
1

4
2
.0
0

4
3
.0
0

0
.0
0

4
3

0
.0
0
%

6*
4

75
.8
0

0.
94

7
6.
74

76
.0
0

7
6
.0
0

0
.0
0

0
.3
4

1
.0
2

1
.3
6

7
5
.0
0

7
6
.0
0

0
.0
0

7
6

0
.0
0
%

6*
4

26
.5
3

1.
00

2
7.
53

27
.0
0

2
7
.0
0

0
.0
0

0
.0
5

0
.8
0

0
.8
5

2
6
.0
0

2
7
.0
0

0
.0
0

2
7

0
.0
0
%

6*
4

62
.8
6

1.
19

6
4.
05

78
.0
0

7
8
.0
0

0
.1
9

1
.3
6

1
.5
5

7
7
.0
0

7
8
.0
0

6*
5

36
.3
0

0.
34

3
6.
64

53
.0
0

5
3
.0
0

0
.0
0

0
.0
5

0
.4
2

0
.4
7

5
2
.0
0

5
3
.0
0

0
.0
0

5
3

0
.0
0
%

6*
5

47
.8
9

0.
55

4
8.
44

48
.0
0

4
8
.0
0

0
.0
0

0
.1
4

0
.7
2

0
.8
6

4
7
.0
0

4
8
.0
0

0
.0
0

4
8

0
.0
0
%

6*
5

43
.9
4

1.
16

4
5.
10

70
.0
0

7
0
.0
0

0
.0
6

1
.1
3

1
.1
9

6
9
.0
0

7
0
.0
0

6*
5

42
.9
3

1.
16

4
4.
09

53
.0
0

5
3
.0
0

0
.0
0

0
.5
5

1
.4
4

1
.9
9

5
2
.0
0

5
3
.0
0

0
.0
0

5
3

0
.0
0
%

av
er
ag
e

42
.9
8

0.
91

43
.8
9

81
.2
5

8
3
.3
8

-2
4
.2
4

0
.1
8

0
.9
5

1
.1
3

8
0
.2
5

8
2
.0
0

-2
6
.5
2

1
2
0
.3
6

0
.1
9

T
ab

le
5.

2:
R

es
u
lt

s
of

6
m

ac
h
in

es

43

According to Table 5.1 and Table 5.2 above, it can be clearly seen

that the amount of computing times varied considerably across the two

algorithms. Comparing the computing times of the first stage (cpuM1)

of the two algorithms: in Table 5.1, the average of cpuM1 of Algorithm

1 is 1745 times more than the average of cpuM1 of Algorithm 2; in

Table 5.2, the average of cpuM1 of Algorithm 1 is 240 times more

than the average of cpuM1 of Algorithm 2. The average of computing

times of the first phase of Algorithm 2 is much faster than Algorithm

1. Comparing the computing times of the second stage (cpuM2) of

the two algorithms: in these two tables, the average of cpuM2 of the

two algorithms are not much different, they are almost the same. The

average of total computing times of both phases (cpuT) of Algorithm

2 is much faster than Algorithm 1.

In these two tables, the value of the best solution achieved by the

model 1 (VM1) of both algorithms are almost same. However, the av-

erage value of VM1 of Algorithm 2 is a little lower than the average of

VM1 of Algorithm 1. Similarly, the average value of VM2 of Algorithm

2 is slightly lower than the average of VM2 of Algorithm 1. In addi-

tion, the average of VM2 of Algorithm 1 and the average of VM2 of

Algorithm 2 are both less than the average of the best solution found

by the MILP (VMILP). Moreover, the RPD1 is larger than the RPD2,

and the difference is very small.

The computing times of the two algorithms are greatly improved

compared to the computing times of the MILP, and the average of

computing times of the Algorithm 2 is the shortest. We use the best

44

solution obtained by two matheuristic algorithms and MILP Model to

generate RPD index (Equation 5.1), as we can see, RPD1 is slightly

larger than RPD2.

In short, the performances of both matheuristic algorithms are

superior to MILP in terms of computing times and the optimal value

obtained. Furthermore, the performance of Algorithm 2 is better than

that of Algorithm 1.

45

Chapter 6

Conclusion

In this thesis, a complex Unrelated Parallel Machines Scheduling

problem with resources in setups (UPMR-S) is addressed. Two two-

stage matheuristics have been proposed for this problem.

Table 5.1 and Table 5.2 in Chapter 5 show that the two two-

stage matheuristic algorithms have a better performance for small-sized

instances than medium-sized instances. Both algorithms are capable of

obtaining an optimal solution for some instances of small size.

Comparing the computation time of the two matheuristics and

the relative percent deviation of the solution found by each of our two

matheuristic algorithms with respect to the solution found by the MILP

(RPD), we conclude that Algorithm 2 uses less computation times.

Furthermore, Algorithm 2 has smaller RPD indicators than Algorithm

1, which means that Algorithm 2 is capable of obtaining solutions closer

to optimal. Overall, the performance of Algorithm 2 is deemed better

46

considering the computing times and the best value obtained, as well

as the large number of constraints and variables required.

There are still some issues to be resolved in this thesis: First of all,

this thesis does not use large-sized instances in experiments. Second,

the number of instances is not large enough, so the results may not

be significant. Finally, for further research, it would be useful to apply

the proposed algorithms to other parallel machine scheduling problems

that are more complex. It would also be interesting to extend this work

by improving Model 1 (the constructive phase) and investigate more

new changes of Model 2 (the repairing phase) for other problems.

During this thesis I have improved my skills in the following sci-

entific tools: modelling language GAMS, data analysis with Excel, and

scientific writing with latex. Besides, I have faced a serious optimiza-

tion problem for the first time in my life, which I think will be of great

help in my future career.

47

References

Blazewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007).

Handbook on scheduling: from theory to applications. Springer Science &

Business Media.

Edis, E. B., & Oguz, C. (2011). Parallel machine scheduling with additional

resources: a lagrangian-based constraint programming approach. In Inter-

national conference on ai and or techniques in constriant programming for

combinatorial optimization problems (pp. 92–98).

Fanjul-Peyro, L., & Ruiz, R. (2010). Iterated greedy local search methods

for unrelated parallel machine scheduling. European Journal of Operational

Research, 207 (1), 55–69.

Fanjul-Peyro, L., Ruiz, R., & Perea, F. (in press). Reformulations and an

exact algorithm for unrelated parallel machine scheduling problems with

setup times. Computers and Operations Research.

Floudas, C. A., & Lin, X. (2005). Mixed integer linear programming in

process scheduling: Modeling, algorithms, and applications. Annals of

Operations Research, 139 (1), 131–162.

48

German, Y., Badi, I., Bakir, A., & Shetwan, A. (2016). Scheduling to

minimize makespan on identical parallel machines. International Journal

of Scientific, Engineering Research, 7 , Issue 3.

Kayvanfar, V., Aalaei, A., Hosseininia, M., & Rajabi, M. (2014). Unre-

lated parallel machine scheduling problem with sequence dependent setup

times. In International conference on industrial engineering and operations

management, bali (pp. 7–9).

Lenstra, J. K., Shmoys, D. B., & Tardos, E. (1990). Approximation algo-

rithms for scheduling unrelated parallel machines. Mathematical program-

ming , 46 (1-3), 259–271.

Leung, J. Y. (2004). Handbook of scheduling: algorithms, models, and per-

formance analysis. CRC Press.

Lin, S.-W., & Ying, K.-C. (2017). Uniform parallel-machine scheduling for

minimizing total resource consumption with a bounded makespan. IEEE

Access , 5 , 15791–15799.

Ouazene, Y., Yalaoui, F., Chehade, H., & Yalaoui, A. (2014). Workload

balancing in identical parallel machine scheduling using a mathematical

programming method. International Journal of Computational Intelligence

Systems , 7 , 58–67.

Ruiz, R., & Andrés-Romano, C. (2011). Scheduling unrelated parallel ma-

chines with resource-assignable sequence-dependent setup times. The In-

ternational Journal of Advanced Manufacturing Technology , 57 (5-8), 777–

794.

49

Said, G. A. E.-N. A., Mahmoud, A. M., & El-Horbaty, E.-S. M. (2014).

A comparative study of meta-heuristic algorithms for solving quadratic

assignment problem. arXiv preprint arXiv:1407.4863 .

T’kindt, V., & Billaut, J.-C. (2006). Multicriteria scheduling: theory, models

and algorithms. Springer Science & Business Media.

Toksarı, M. D., Oron, D., Aydoğan, E. K., & Barbosa, J. G. (2014). New

developments in scheduling applications. The Scientific World Journal ,

2014 .

Vallada, E., & Ruiz, R. (2011). A genetic algorithm for the unrelated par-

allel machine scheduling problem with sequence dependent setup times.

European Journal of Operational Research, 211 (3), 612–622.

Yepes, J. C. (2017). Una metaheuŕıstica para un problema de secuenciación

con necesidad de recursos en los ajustes (Unpublished master’s thesis).

Valencia/Universidad Politécnica de Valencia.

50

