Índice general

0. Introducción y objetivos 1

I Estado del arte: el Análisis de Riesgos en la seguridad de presas 5

1. Esquema general del Análisis de Riesgos 7
 1.1. Bases conceptuales 7
 1.2. La gestión de la seguridad basada en riesgo 9
 1.2.1. Los pasos de un análisis de riesgo 11
 1.3. Arquitectura general de un modelo de riesgo 13
 1.3.1. Árboles de eventos y diagramas de influencia 13
 1.3.2. Escenarios de solicitud 15
 1.3.3. Escenario normal 17
 1.3.4. Escenario hidrológico 19
 1.3.5. Escenario sísmico 24
 1.3.6. Discretización de variables continuas 24
 1.3.7. Ajustes relativos a la consideración de varios modos de fallo 27

2. Estudio de solicitudes: avenidas y sismos 31
 2.1. Las solicitudes en el análisis de riesgo 31
 2.2. Determinación de los sismos de cálculo 33
 2.3. Determinación de los hidrogramas de avenida 36
 2.3.1. Cálculo mediante métodos hidrometeorológicos 36
 2.3.2. Escalado de hidrogramas previos 36
 2.4. Los métodos hidrometeorológicos 38
 2.4.1. Clasificación 38
 2.4.2. Procedimiento de cálculo 40
 2.5. Cálculo de lluvias/caudales máximos 44
 2.5.1. Fórmulas empíricas 45
 2.5.2. Extrapolación estadística 45

3. Estudio de niveles de embalse 51
 3.1. Los niveles previos en el análisis de riesgo 51
 3.2. Obtención de la relación entre nivel previo y probabilidad 51
 3.3. Datos necesarios 54
 3.3.1. Registros históricos 54
 3.3.2. Simulaciones del nivel en el embalse 56
ÍNDICE GENERAL

4. Estudio de fiabilidad de órganos de desagüe 59
 4.1. La fiabilidad de los órganos de desagüe en el análisis de riesgo . 59
 4.2. El proceso de estimación de la fiabilidad 61
 4.3. Árboles de fallo ... 64
 4.3.1. Historia ... 64
 4.3.2. Lógica de los árboles de fallo 64
 4.3.3. Simbología ... 67
 4.3.4. Ejemplos ... 68
 4.3.5. Combinación de probabilidades 71
 4.4. Incorporación al modelo de riesgo 74

5. Estudio de laminación 77
 5.1. La laminación en el análisis de riesgo 77
 5.2. Datos de partida ... 80
 5.2.1. Hidrograma de entrada al embalse 80
 5.2.2. Nivel previo .. 80
 5.2.3. Curva característica del embalse 81
 5.2.4. Curvas de gasto de los órganos de desagüe 81
 5.2.5. Consignas de operación de compuertas 82
 5.2.6. Operatividad de órganos de desagüe 82
 5.3. Cálculo de la laminación ... 83
 5.4. Particularidades de la laminación en el análisis de riesgo ... 84
 5.4.1. Sobrevertido por coronación 84
 5.4.2. Existencia de pretiles ... 84
 5.4.3. Tratamiento de relaciones no monótonas 86
 5.4.4. Sistemas de presas .. 87
 5.5. Incorporación al modelo de riesgo 87

6. Identificación y caracterización de modos de fallo 89
 6.1. Definición de modo de fallo ... 89
 6.2. Los modos de fallo en el análisis de riesgo 90
 6.3. Metodologías existentes .. 90
 6.4. Herramienta para la identificación de modos de fallo 94
 6.4.1. Introducción .. 94
 6.4.2. Estructura del proceso de identificación de modos de fallo 94
 6.4.3. Herramienta para la estructuración de modos de fallo 97

7. Estudio de probabilidades de fallo 103
 7.1. La estimación de las probabilidades de fallo en el análisis de riesgo103
 7.2. Tratamiento de la incertidumbre 105
 7.3. El rol de los modelos numéricos en la estimación de probabilidades de fallo ... 106
 7.3.1. Generalidades .. 106
 7.3.2. Los modelos numéricos en las técnicas de fiabilidad 108
 7.3.3. Los modelos numéricos como apoyo al juicio de experto ... 110
 7.3.4. Estimación a partir de coeficientes de seguridad 110
 7.4. Obtención de probabilidades mediante juicio de experto 112
 7.4.1. Introducción .. 112
 7.4.2. Identificación de las necesidades de estudio 113
 7.4.3. Selección del nivel de estudio y del líder del proceso ... 114
<table>
<thead>
<tr>
<th>ÍNDICE GENERAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.4. Selección de expertos y revisores externos</td>
<td>115</td>
</tr>
<tr>
<td>7.4.5. Preparación de las sesiones</td>
<td>115</td>
</tr>
<tr>
<td>7.4.6. Obtención de las probabilidades</td>
<td>116</td>
</tr>
<tr>
<td>7.4.7. Agregación de resultados</td>
<td>119</td>
</tr>
<tr>
<td>7.4.8. Comentarios para la aplicación a la estimación de la fiabilidad de compuertas</td>
<td>120</td>
</tr>
<tr>
<td>7.5. Las técnicas de fiabilidad</td>
<td>121</td>
</tr>
<tr>
<td>7.5.1. Introducción</td>
<td>121</td>
</tr>
<tr>
<td>7.5.2. Clasificación de los métodos de fiabilidad</td>
<td>121</td>
</tr>
<tr>
<td>7.5.3. Metodología</td>
<td>122</td>
</tr>
<tr>
<td>8. Estudio de hidrogramas de rotura</td>
<td>129</td>
</tr>
<tr>
<td>8.1. La determinación de los hidrogramas de rotura en el análisis de riesgo</td>
<td>129</td>
</tr>
<tr>
<td>8.2. Cálculo de hidrogramas de rotura</td>
<td>131</td>
</tr>
<tr>
<td>8.2.1. Introducción</td>
<td>131</td>
</tr>
<tr>
<td>8.2.2. Modelos de base física</td>
<td>132</td>
</tr>
<tr>
<td>8.2.3. Modelos paramétricos</td>
<td>133</td>
</tr>
<tr>
<td>8.2.4. Extrapolación de hidrogramas de rotura</td>
<td>138</td>
</tr>
<tr>
<td>8.3. Cálculo de los caudales pico mediante relaciones empíricas</td>
<td>140</td>
</tr>
<tr>
<td>8.3.1. Uso de relaciones empíricas</td>
<td>140</td>
</tr>
<tr>
<td>8.3.2. Comparación con los caudales de rotura obtenidos del cálculo de hidrogramas completos de rotura</td>
<td>143</td>
</tr>
<tr>
<td>9. Estudio de consecuencias</td>
<td>147</td>
</tr>
<tr>
<td>9.1. La estimación de consecuencias en el análisis de riesgo</td>
<td>147</td>
</tr>
<tr>
<td>9.2. El proceso de estimación de consecuencias</td>
<td>150</td>
</tr>
<tr>
<td>9.2.1. Metodología general</td>
<td>150</td>
</tr>
<tr>
<td>9.2.2. Aprovechamiento de estudios existentes</td>
<td>151</td>
</tr>
<tr>
<td>9.2.3. Análisis de sensibilidad y análisis de incertidumbre</td>
<td>151</td>
</tr>
<tr>
<td>9.3. Estimación de pérdida de vidas</td>
<td>152</td>
</tr>
<tr>
<td>9.3.1. Metodología de Graham (1999)</td>
<td>154</td>
</tr>
<tr>
<td>9.3.2. Modificaciones a la Metodología de Graham (1999)</td>
<td>161</td>
</tr>
<tr>
<td>9.3.3. Otras metodologías</td>
<td>163</td>
</tr>
<tr>
<td>9.4. Estimación de consecuencias económicas</td>
<td>166</td>
</tr>
<tr>
<td>9.4.1. Estimación de daños directos</td>
<td>166</td>
</tr>
<tr>
<td>9.4.2. Estimación del coste de reconstrucción de la presa</td>
<td>172</td>
</tr>
<tr>
<td>9.4.3. Estimación de daños indirectos generales</td>
<td>174</td>
</tr>
<tr>
<td>9.4.4. Estimación de daños debido a la inexistencia de la presa</td>
<td>175</td>
</tr>
<tr>
<td>9.5. Estimación de otros daños</td>
<td>178</td>
</tr>
<tr>
<td>9.5.1. Estimación de daños medioambientales</td>
<td>178</td>
</tr>
<tr>
<td>9.5.2. Estimación de daños al patrimonio histórico-cultural</td>
<td>179</td>
</tr>
<tr>
<td>9.5.3. Estimación de daños sociales</td>
<td>180</td>
</tr>
<tr>
<td>9.6. Obtención de curvas de consecuencias</td>
<td>181</td>
</tr>
<tr>
<td>10. Evaluación del riesgo</td>
<td>185</td>
</tr>
<tr>
<td>10.1. Exposición de conceptos</td>
<td>185</td>
</tr>
<tr>
<td>10.2. Formas de representar el riesgo</td>
<td>188</td>
</tr>
<tr>
<td>10.3. Criterios de tolerabilidad internacionales</td>
<td>190</td>
</tr>
<tr>
<td>10.3.1. Criterios de tolerabilidad del USBR</td>
<td>191</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.3.2. Criterios de tolerabilidad del ANCOLD</td>
<td>191</td>
</tr>
<tr>
<td>10.3.3. Criterios de tolerabilidad del USACE</td>
<td>194</td>
</tr>
<tr>
<td>10.4. Indicadores de eficiencia</td>
<td>194</td>
</tr>
<tr>
<td>10.5. Análisis de riesgo a conjuntos de presas</td>
<td>198</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>II Desarrollo de una herramienta completa de análisis de riesgo</td>
<td>201</td>
</tr>
<tr>
<td>11. Introducción</td>
<td>203</td>
</tr>
<tr>
<td>11.1. Objetivos</td>
<td>203</td>
</tr>
<tr>
<td>11.2. Cálculo de riesgos incrementales</td>
<td>205</td>
</tr>
<tr>
<td>12. Diagramas de influencia y árboles de eventos</td>
<td>207</td>
</tr>
<tr>
<td>12.1. Planteamiento</td>
<td>207</td>
</tr>
<tr>
<td>12.2. Árboles de eventos</td>
<td>208</td>
</tr>
<tr>
<td>12.3. Diagramas de influencia</td>
<td>211</td>
</tr>
<tr>
<td>12.4. Del diagrama de influencia al árbol de eventos</td>
<td>212</td>
</tr>
<tr>
<td>12.4.1. Mecánica general</td>
<td>212</td>
</tr>
<tr>
<td>12.4.2. Bifurcaciones en el diagrama de influencia</td>
<td>216</td>
</tr>
<tr>
<td>12.4.3. Bucles en el diagrama de influencia</td>
<td>218</td>
</tr>
<tr>
<td>13. Implementación</td>
<td>221</td>
</tr>
<tr>
<td>13.1. Mecánica general</td>
<td>221</td>
</tr>
<tr>
<td>13.2. Nodos tipo DC</td>
<td>226</td>
</tr>
<tr>
<td>13.3. Nodos tipo FP</td>
<td>227</td>
</tr>
<tr>
<td>13.4. Nodos tipo FV</td>
<td>228</td>
</tr>
<tr>
<td>13.5. Nodos tipo PE</td>
<td>228</td>
</tr>
<tr>
<td>13.6. Nodos tipo MF</td>
<td>230</td>
</tr>
<tr>
<td>13.6.1. Ajuste de causa común</td>
<td>230</td>
</tr>
<tr>
<td>13.6.2. Congelación</td>
<td>231</td>
</tr>
<tr>
<td>14. Verificación</td>
<td>233</td>
</tr>
<tr>
<td>14.1. Planteamiento</td>
<td>233</td>
</tr>
<tr>
<td>14.2. Modelos de riesgo</td>
<td>233</td>
</tr>
<tr>
<td>14.3. Resultados</td>
<td>236</td>
</tr>
<tr>
<td>14.4. Conclusiones</td>
<td>237</td>
</tr>
<tr>
<td>15. Riesgos incrementales y sistemas de presas</td>
<td>241</td>
</tr>
<tr>
<td>15.1. Metodologías actuales</td>
<td>241</td>
</tr>
<tr>
<td>15.2. Problemática a resolver</td>
<td>242</td>
</tr>
<tr>
<td>15.3. Metodología propuesta</td>
<td>243</td>
</tr>
<tr>
<td>15.4. Justificación</td>
<td>244</td>
</tr>
<tr>
<td>15.4.1. Caso de una presa con un modo de fallo</td>
<td>244</td>
</tr>
<tr>
<td>15.4.2. Caso de una presa con múltiples modos de fallo</td>
<td>245</td>
</tr>
<tr>
<td>15.4.3. Caso general: sistemas de presas</td>
<td>249</td>
</tr>
<tr>
<td>15.4.4. Resumen</td>
<td>253</td>
</tr>
<tr>
<td>15.5. Implementación</td>
<td>254</td>
</tr>
<tr>
<td>15.5.1. Riesgo incremental asociado a una presa</td>
<td>255</td>
</tr>
<tr>
<td>15.5.2. Riesgo incremental asociado a un modo de fallo</td>
<td>256</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

15.5.3. Estrategia de cálculo .. 256

III Casos de aplicación ... 259
16. Sistema Carrión ... 261
 16.1. Introducción y alcance de los trabajos 261
 16.2. Descripción del sistema 261
 16.3. Identificación de los modos de fallo 264
 16.4. Arquitectura del modelo de riesgo 266
 16.4.1. Modelo de riesgo de la presa de Camporredondo 267
 16.4.2. Modelo de riesgo de la presa de Compuerto 267
 16.4.3. Modelo de riesgo del sistema Carrión 269
 16.5. Cálculo de riesgo para la situación actual 270
 16.6. Evaluación de riesgo 271
 16.7. Medidas de reducción y control de riesgo 276
 16.7.1. Medidas a evaluar 276
 16.7.2. Indicadores de efectividad y eficiencia 277
 16.7.3. Reevaluación del riesgo 278
 16.7.4. Secuencias de reducción de riesgo 281
 16.7.5. Evaluación mediante el modelo del sistema completo . 283
 16.8. Conclusiones ... 288
17. Sistema Pisuerga ... 291
 17.1. Introducción y alcance del estudio 291
 17.2. Identificación de los modos de fallo 293
 17.3. Arquitectura del modelo de riesgo 295
 17.3.1. Modelo de riesgo de la presa de Cervera 296
 17.3.2. Modelo de riesgo de la presa de Requejada 297
 17.3.3. Modelo de riesgo de la presa de Aguilar 297
 17.3.4. Modelo de riesgo del sistema Pisuerga 298
 17.4. Cálculo de riesgo para la situación actual 300
 17.5. Evaluación de riesgo 302
 17.6. Medidas de reducción y control de riesgo 307
 17.6.1. Medidas a evaluar 307
 17.6.2. Indicadores de efectividad y eficiencia 309
 17.6.3. Reevaluación del riesgo 311
 17.6.4. Interpretación .. 313
 17.6.5. Secuencias de reducción de riesgo 315
 17.6.6. Evaluación mediante el modelo del sistema completo . 329
 17.7. Conclusiones ... 333
18. Evaluación conjunta de medidas de reducción de riesgo 337
 18.1. Planteamiento .. 337
 18.2. Propuesta de estrategias de priorización 338
 18.2.1. Modificaciones para sistemas de presas 339
 18.3. Aplicación a las 5 presas estudiadas 340
 18.3.1. Aplicación con los resultados de los modelos individuales 340
 18.3.2. Aplicación con los resultados de los modelos de sistemas . 343
ÍNDICE GENERAL

IVConclusiones y futuras líneas de investigación 347
19.Conclusiones 349
20.Futuras líneas de investigación 355
Bibliografía 370

VApéndices 371
A. Artículo publicado en revista indexada 373
B. Discretización de las avenidas 391
B.1. Introducción 391
B.2. Alternativas para la modelización en el diagrama de influencia 391
B.3. Caso de estudio 396
C. Informe completo del sistema Carrión 407
C.1. Introducción y alcance de los trabajos 407
C.2. Revisión de la información 410
C.3. Inspecciones de campo 410
C.3.1. Presa de Camporredondo 411
C.3.2. Presa de Compuerto 413
C.4. Situación actual de la presa 416
C.4.1. Presa de Camporredondo 416
C.4.2. Presa de Compuerto 418
C.5. Identificación de los modos de fallo 420
C.6. Arquitectura del modelo de riesgo 423
C.6.1. Modelo de riesgo de la presa de Camporredondo 426
C.6.2. Modelo de riesgo de la presa de Compuerto 426
C.6.3. Modelo de riesgo del sistema Carrión 427
C.7. Solicitaciones, respuesta del sistema y consecuencias 430
C.8. Cálculo de riesgo para la situación actual 430
C.9. Evaluación de riesgo 432
C.10.Medidas de reducción y control de riesgo 437
C.10.1.Medidas a evaluar 437
C.10.2.Indicadores de efectividad y eficiencia 438
C.10.3.Reevaluación del riesgo 439
C.10.4.Secuencias de reducción de riesgo 442
C.10.5.Evaluación mediante el modelo del sistema completo 444
C.11.Conclusiones 449

D. Estudio hidrológico del sistema Carrión 451
D.1. El estudio hidrológico en el Análisis de Riesgo 451
D.2. Las avenidas del sistema Carrión 451
D.3. Datos introducidos en el modelo 454

E. Estudio de niveles de embalse del sistema Carrión 455
E.1. El estudio de niveles de embalse en el Análisis de Riesgo 455
E.2. Estudio de la presa de Camporredondo 457
<table>
<thead>
<tr>
<th>ÍNDICE GENERAL</th>
<th>XIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>E.3. Estudio de la presa de Compuerto</td>
<td>458</td>
</tr>
<tr>
<td>E.4. Datos introducidos en el modelo</td>
<td>458</td>
</tr>
<tr>
<td>F. Estudio de fiabilidad de órganos de desagüe del sistema Carrión</td>
<td>463</td>
</tr>
<tr>
<td>F.1. La fiabilidad de los órganos de desagüe en el análisis de riesgo</td>
<td>463</td>
</tr>
<tr>
<td>F.2. Estimación de la fiabilidad</td>
<td>465</td>
</tr>
<tr>
<td>F.3. Resultados</td>
<td>466</td>
</tr>
<tr>
<td>G. Estudio de laminación del sistema Carrión</td>
<td>473</td>
</tr>
<tr>
<td>G.1. La laminación en el Análisis de Riesgo</td>
<td>473</td>
</tr>
<tr>
<td>G.2. Resultados a obtener</td>
<td>475</td>
</tr>
<tr>
<td>G.3. Combinaciones a estudiar</td>
<td>475</td>
</tr>
<tr>
<td>G.4. Laminación del sistema</td>
<td>476</td>
</tr>
<tr>
<td>G.5. Datos necesarios</td>
<td>476</td>
</tr>
<tr>
<td>G.5.1. Curvas características</td>
<td>476</td>
</tr>
<tr>
<td>G.5.2. Curvas de gasto</td>
<td>477</td>
</tr>
<tr>
<td>G.5.3. Reglas de gestión de avenidas</td>
<td>478</td>
</tr>
<tr>
<td>G.6. Resumen de resultados</td>
<td>480</td>
</tr>
<tr>
<td>G.7. Resultados a introducir en el modelo</td>
<td>480</td>
</tr>
<tr>
<td>H. Identificación y caracterización de modos de fallo del sistema Carrión</td>
<td>485</td>
</tr>
<tr>
<td>H.1. Definición de modo de fallo</td>
<td>485</td>
</tr>
<tr>
<td>H.2. Los modos de fallo en el análisis de riesgo</td>
<td>486</td>
</tr>
<tr>
<td>H.3. Clasificación de los modos de fallo</td>
<td>486</td>
</tr>
<tr>
<td>H.4. Modos de fallo de la presa de Camporredondo</td>
<td>488</td>
</tr>
<tr>
<td>H.4.1. Modo de fallo RCO</td>
<td>488</td>
</tr>
<tr>
<td>H.4.2. Modo de fallo EYD</td>
<td>491</td>
</tr>
<tr>
<td>H.4.3. Modo de fallo DVC</td>
<td>496</td>
</tr>
<tr>
<td>H.4.4. Modo de fallo IFE</td>
<td>497</td>
</tr>
<tr>
<td>H.4.5. Modo de fallo RAD</td>
<td>500</td>
</tr>
<tr>
<td>H.4.6. Modo de fallo TAI</td>
<td>501</td>
</tr>
<tr>
<td>H.4.7. Modo de fallo EEC</td>
<td>502</td>
</tr>
<tr>
<td>H.4.8. Modo de fallo CPA</td>
<td>503</td>
</tr>
<tr>
<td>H.5. Modos de fallo de la presa de Compuerto</td>
<td>504</td>
</tr>
<tr>
<td>H.5.1. Modo de fallo 1-2</td>
<td>506</td>
</tr>
<tr>
<td>H.5.2. Modo de fallo 3</td>
<td>508</td>
</tr>
<tr>
<td>H.5.3. Modo de fallo 4</td>
<td>509</td>
</tr>
<tr>
<td>H.5.4. Modo de fallo 5</td>
<td>511</td>
</tr>
<tr>
<td>H.5.5. Modo de fallo 6</td>
<td>513</td>
</tr>
<tr>
<td>H.5.6. Modo de fallo 8</td>
<td>516</td>
</tr>
<tr>
<td>H.5.7. Modo de fallo 9</td>
<td>517</td>
</tr>
<tr>
<td>H.5.8. Modo de fallo 10</td>
<td>519</td>
</tr>
<tr>
<td>H.5.9. Modo de fallo 15</td>
<td>520</td>
</tr>
<tr>
<td>I. Estudio de probabilidades de fallo del sistema Carrión</td>
<td>523</td>
</tr>
<tr>
<td>I.1. El estudio de probabilidades de fallo en el análisis de riesgos</td>
<td>523</td>
</tr>
<tr>
<td>I.2. Objetivo</td>
<td>525</td>
</tr>
<tr>
<td>I.3. Presa de Camporredondo, modo de fallo 1</td>
<td>525</td>
</tr>
<tr>
<td>I.4. Presa de Compuerto, modo de fallo 1</td>
<td>528</td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

I.5. Presa de Compuerto, modo de fallo 2 533
I.6. Resumen de resultados introducidos en el modelo 536
I.6.1. Camporredondo . 536
I.6.2. Compuerto, modo de fallo 1 537
I.6.3. Compuerto, modo de fallo 2 538

J. Estudio de hidrogramas de rotura del sistema Carrión 539
J.1. La determinación de los hidrogramas de rotura en el análisis de
riesgo . 539
J.2. Relaciones entre niveles máximos y caudales pico de rotura . . . 541
J.3. Hidrogramas de rotura . 541
J.4. Datos introducidos en el modelo 543

K. Estudio de consecuencias del sistema Carrión 545
K.1. Introducción . 545
K.2. Presa de Camporredondo . 545
K.3. Presa de Compuerto . 550

L. Informe completo del sistema Pisuerga 553
L.1. Introducción y alcance del estudio 553
L.2. Revisión de la información . 557
L.3. Inspecciones de campo . 558
L.3.1. Presa de Cervera . 558
L.3.2. Presa de Requejada . 560
L.3.3. Presa de Aguilar de Campo 562
L.4. Situación actual de la presa . 565
L.4.1. Presa de Cervera . 565
L.4.2. Presa de Requejada . 568
L.4.3. Presa de Aguilar . 572
L.5. Identificación de los modos de fallo 577
L.6. Arquitectura del modelo de riesgo 583
L.6.1. Modelo de riesgo de la presa de Cervera 584
L.6.2. Modelo de riesgo de la presa de Requejada 584
L.6.3. Modelo de riesgo de la presa de Aguilar 585
L.6.4. Modelo de riesgo del sistema Pisuerga 586
L.7. Solicitaciones, respuesta del sistema y consecuencias 587
L.8. Cálculo de riesgo para la situación actual 588
L.9. Evaluación de riesgo . 590
L.10. Medidas de reducción y control de riesgo 596
L.10.1. Medidas a evaluar . 596
L.10.2. Indicadores de efectividad y eficiencia 598
L.10.3. Reevaluación del riesgo . 600
L.10.4. Interpretación . 602
L.10.5. Secuencias de reducción de riesgo 604
L.10.6. Evaluación mediante el modelo del sistema completo 618
L.11. Conclusiones . 622

M. Estudio hidrológico del sistema Pisuerga 627
M.1. El estudio hidrológico en el Análisis de Riesgo 627
M.2. Hidrología del sistema Pisuerga 627
ÍNDICE GENERAL

<p>| M.2.1. Descripción del modelo conceptual de cuenca | 629 |
| M.2.2. Descripción del modelo meteorológico y obtención de los hietogramas de diseño | 630 |
| M.2.3. Hidrología de entrada a Cervera | 631 |
| M.2.4. Hidrología de entrada a Requejada | 635 |
| M.2.5. Hidrología de entrada a Aguilar (intercuenca) | 639 |
| M.2.6. Hidrología de entrada a Aguilar para el modelo individual de riesgo | 643 |
| N. Estudio de niveles de embalse del sistema Pisuerga | 647 |
| N.1. El estudio de niveles de embalse en el Análisis de Riesgo | 647 |
| N.2. Estudio de los niveles del embalse de Cervera | 649 |
| N.3. Estudio de los niveles del embalse de Requejada | 650 |
| N.4. Estudio de los niveles del embalse de Aguilar | 650 |
| N.5. Datos introducidos en el modelo | 652 |
| N.5.1. Problemática | 653 |
| N.5.2. Discretizaciones adoptadas | 654 |
| Ñ. Estudio de fiabilidad de órganos de desagüe del sistema Pisuerga | 661 |
| Ñ.1. La fiabilidad de los órganos de desagüe en el análisis de riesgo | 661 |
| Ñ.2. Estimación de la fiabilidad | 663 |
| Ñ.3. Fiabilidad de los órganos de desagüe de la presa de Cervera | 664 |
| Ñ.3.1. Descripción | 664 |
| Ñ.3.2. Estimación de la fiabilidad | 665 |
| Ñ.4. Fiabilidad de los órganos de desagüe de la presa de Requejada | 669 |
| Ñ.4.1. Descripción | 669 |
| Ñ.4.2. Estimación de la fiabilidad | 673 |
| Ñ.5. Fiabilidad de los órganos de desagüe de la presa de Aguilar de Campoo | 673 |
| Ñ.5.1. Descripción | 673 |
| Ñ.5.2. Estimación de la fiabilidad | 679 |
| O. Estudio de laminación del sistema Pisuerga | 681 |
| O.1. La laminación en el Análisis de Riesgo | 681 |
| O.2. Estudio del sistema Pisuerga | 683 |
| O.3. Resultados a obtener | 683 |
| O.4. Combinaciones a estudiar | 684 |
| O.5. Sistema de presas individuales | 685 |
| O.5.1. Datos necesarios | 685 |
| O.5.2. Cálculo de la laminación | 696 |
| O.5.3. Resumen de resultados | 697 |
| O.5.4. Introducción en el modelo | 705 |
| O.6. Sistema de presas interdependientes | 705 |
| O.6.1. Datos necesarios | 705 |
| O.6.2. Cálculo de la laminación | 707 |
| O.6.3. Introducción en el modelo | 707 |
| P. Identificación y caracterización de modos de fallo del sistema Pisuerga | 709 |
| P.1. Definición de modo de fallo | 709 |</p>
<table>
<thead>
<tr>
<th>P.2.</th>
<th>Los modos de fallo en el análisis de riesgo</th>
<th>710</th>
</tr>
</thead>
<tbody>
<tr>
<td>P.3.</td>
<td>Identificación de modos de fallo</td>
<td>710</td>
</tr>
<tr>
<td>P.3.1. Presa de Cervera</td>
<td>712</td>
<td></td>
</tr>
<tr>
<td>P.3.2. Presa de Requejada</td>
<td>714</td>
<td></td>
</tr>
<tr>
<td>P.3.3. Presa de Aguilar</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>P.4.</td>
<td>Clasificación de los modos de fallo</td>
<td>716</td>
</tr>
<tr>
<td>P.4.1. Presa de Cervera</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>P.4.2. Presa de Requejada</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>P.4.3. Presa de Aguilar</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>P.5.</td>
<td>Modos de fallo seleccionados para la inclusión en el modelo de riesgo</td>
<td>720</td>
</tr>
<tr>
<td>Q.</td>
<td>Estudio de probabilidades de fallo del sistema Pisuerga</td>
<td>721</td>
</tr>
<tr>
<td>Q.1.</td>
<td>El estudio de probabilidades de fallo en el análisis de riesgos</td>
<td>721</td>
</tr>
<tr>
<td>Q.2.</td>
<td>Modos de fallo por sobrevertido</td>
<td>723</td>
</tr>
<tr>
<td>Q.3.</td>
<td>Modo de fallo por erosión interna</td>
<td>724</td>
</tr>
<tr>
<td>Q.4.</td>
<td>Modo de fallo por deslizamiento</td>
<td>727</td>
</tr>
<tr>
<td>Q.4.1. Planteamiento</td>
<td>727</td>
<td></td>
</tr>
<tr>
<td>Q.4.2. Ángulo de fricción en el contacto presa-terreno</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>Q.4.3. Cohesión en el plano de contacto entre presa y terreno</td>
<td>729</td>
<td></td>
</tr>
<tr>
<td>R.</td>
<td>Estudio de hidrogramas de rotura del sistema Pisuerga</td>
<td>735</td>
</tr>
<tr>
<td>R.1.</td>
<td>La determinación de los hidrogramas de rotura en el análisis de riesgo</td>
<td>735</td>
</tr>
<tr>
<td>R.2.</td>
<td>Estudio de los hidrogramas de rotura en la presa de Cervera</td>
<td>737</td>
</tr>
<tr>
<td>R.2.1. Relación entre nivel máximo y el caudal pico de rotura</td>
<td>737</td>
<td></td>
</tr>
<tr>
<td>R.2.2. Hidrogramas de rotura en el embalse de Cervera</td>
<td>737</td>
<td></td>
</tr>
<tr>
<td>R.3.</td>
<td>Estudio de los hidrogramas de rotura en la presa de Requejada</td>
<td>738</td>
</tr>
<tr>
<td>R.3.1. Relación entre nivel máximo y el caudal pico de rotura</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>R.3.2. Hidrogramas de rotura en el embalse de Requejada</td>
<td>738</td>
<td></td>
</tr>
<tr>
<td>R.4.</td>
<td>Estudio de los hidrogramas de rotura en la presa de Aguilar</td>
<td>740</td>
</tr>
<tr>
<td>R.4.1. Relación entre nivel máximo y el caudal pico de rotura</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>R.4.2. Hidrogramas de rotura en el embalse de Aguilar</td>
<td>740</td>
<td></td>
</tr>
<tr>
<td>R.5.</td>
<td>Datos introducidos en el modelo</td>
<td>743</td>
</tr>
<tr>
<td>S.</td>
<td>Estudio de consecuencias del sistema Pisuerga</td>
<td>745</td>
</tr>
<tr>
<td>S.1.</td>
<td>Introducción</td>
<td>745</td>
</tr>
<tr>
<td>S.2.</td>
<td>Estudio de consecuencias en el tramo entre el embalse de Cervera y el embalse de Aguilar</td>
<td>747</td>
</tr>
<tr>
<td>S.2.1. Modelación hidráulica de la inundación</td>
<td>747</td>
<td></td>
</tr>
<tr>
<td>S.2.2. Pérdida de vidas</td>
<td>748</td>
<td></td>
</tr>
<tr>
<td>S.2.3. Consecuencias económicas</td>
<td>751</td>
<td></td>
</tr>
<tr>
<td>S.3.</td>
<td>Estudio de consecuencias en el tramo entre el embalse de Requejada y el embalse de Aguilar</td>
<td>752</td>
</tr>
<tr>
<td>S.3.1. Modelación hidráulica de la inundación</td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>S.3.2. Pérdida de vidas</td>
<td>752</td>
<td></td>
</tr>
<tr>
<td>S.3.3. Consecuencias económicas</td>
<td>753</td>
<td></td>
</tr>
<tr>
<td>S.4.</td>
<td>Estudio de consecuencias en el tramo aguas abajo del embalse de Aguilar</td>
<td>755</td>
</tr>
<tr>
<td>S.4.1. Modelación hidráulica de la inundación</td>
<td>755</td>
<td></td>
</tr>
</tbody>
</table>
ÍNDICE GENERAL

S.4.2. Pérdida de vidas ... 756
S.4.3. Consecuencias económicas 756
S.5. Datos introducidos en el modelo 759