

AUDITORÍA ENERGÉTICA

BASE DE MANTENIMIENTO DE TRENES

MEMORIA PRESENTADA POR:

Alberto Sánchez Ibáñez

GRADO DE INGENIERÍA ELÉCTRICA

Tutor: Jorge Reig Boronat

Convocatoria de defensa: Septiembre 2018

Resumen

La memoria esta basada en una auditoría energética de un complejo destinado a la reparación y mantenimiento de trenes, situada en Toledo.

El proyecto consiste en el cálculo de una serie de medidas de ahorro energético con su consiguiente estudio económico categorizando las medidas en función del PRS (periódo de retorno simple de la inversión). También se realiza una evaluación de la situación actual de la instalación para la implantación de las medidas de ahorro seleccionadas.

Abstract

The report is based on an energy audit of a complex to repair and maintenance of trains, located in Toledo.

The project consists in the calculation of energy saving measures and their economic study, categorizing the measures according to the PRS (period of simple return of the investment). An evaluation of the current situation of the installation for the implementation of the selected saving measures is also carried out.

Palabras clave

Eficiencia energética, Auditoría energética.

Energy efficiency, Energy audit.

MEMORIA DESCRIPTIVA

ÍNDICE

1	R	ESUMEN EJECUTIVO	1
1	D	ATOS BÁSICOS DEL CENTRO	3
2	М	OTIVACIÓN Y OBJETO	4
3	М	IETODOLOGÍA	5
	3.1	DESARROLLO DEL TRABAJO	5
	3.2 ENE	CRITERIOS AMBIENTALES: NIVEL DE EMISIONES DE CO2 POR CONSUMO D ERGÍA	
	3.3	CRITERIOS ECONÓMICOS: CICLO DE VIDA DE LAS MEDIDAS CON INVERSIÓ	N.6
4	С	ONSUMOS ENERGÉTICOS	7
	4.1	SUMINISTRO DE ELECTRICIDAD	7
	4.2	SUMINISTRO DE GASÓLEO	10
5	D	ESCRIPCIÓN DE INSTALACIONES	11
	5.1	CALEFACCIÓN	11
	5.2	REFRIGERACIÓN	12
	5.3	GENERACIÓN DE ACS	13
	5.4	ILUMINACIÓN	14
	5.5	EQUIPOS	15
	5.6	RENOVABLES	17
6	В	ALANCE ENERGÉTICO	18
	6.1	PROCEDIMIENTO DE CÁLCULO DEL BALANCE ENERGÉTICO	18
	6.2	BALANCE ENERGÉTICO POR USOS	19
	6.3	BALANCE ELÉCTRICO POR USOS	20
	6.4	BALANCE DE GASÓLEO POR USOS	21
7	M	IEDIDAS DE AHORRO ESTUDIADAS	23
	7.1	DESCRIPCIÓN DE MEDIDAS DE AHORRO RECOMENDADAS	24
	7.	.1.1 ILUMINACIÓN	24
		7.1.1.1 Sustitución de lámparas convencionales por LED	24
		7.1.1.2 Instalación de detectores de presencia y sensores de luz natural	29
	7.	.1.2 EQUIPOS	31
		7.1.2.1 Instalación de sobre-enchufes (Plugwise)	31
	7.	.1.3 ENERGÍAS RENOVABLES	32
		7.1.3.1 Solar fotovoltaica	32
	7.2	DESCRIPCIÓN DE MEDIDAS DE AHORRO NO RECOMENDADAS	38
	7.	.2.1 CLIMATIZACIÓN	38
		7.2.1.1 Sustitución de caldera actual por una de condensación de gas natural	38

CAMPUS D'ALCOI

	7	.2.1.2	Sustitución de bombas de calor por otras de mayor rendimiento	39
	7	.2.1.3	Sustitución de calefactores por bombas de calor	40
	7	.2.1.4	Aislamiento del cuerpo de la caldera	41
	7.2.	2 EQI	JIPOS	42
	7	.2.2.1	Instalación de regletas eliminadoras de stand-by	42
8	BUI	ENAS PR	ÁCTICAS Y PROTOCOLOS DE ACTUACIÓN	43
	8.1	REGULA	ACIÓN DE LA TEMPERATURA DE LAS ESTANCIAS	43
	8.2	CONFIG	SURACIÓN CORRECTA DEL PROGRAMA ENERGY STAR	45
9	CO	NCLUSIC	NES	46
	9.1	MEDIDA	S DE AHORRO ESTUDIADAS	46
	9.2	MEDIDA	S DE AHORRO RECOMENDADAS	50
	9.3	REDUC	CIÓN DE EMISIONES	53
	9.4	PLAN D	E ACTUACIÓN	53
1() A	NEXOS.		56
	10.1	CALEFA	CCIÓN	56
	10.2	REFRIG	ERACIÓN	59
	10.3	GENER	ACIÓN DE ACS	63
	10.4	EQUIPO	os	64
	10 5	II I INAINI	ΛΟΙΌΝ	72

ÍNDICE DE TABLAS

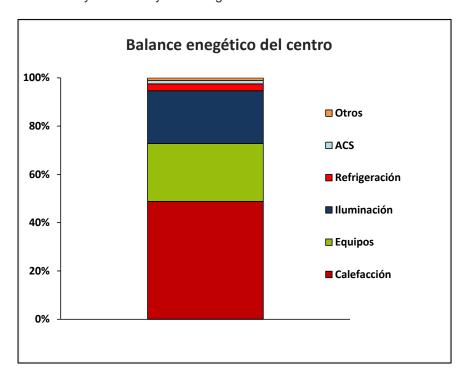
Tabla 1. Tabla resultien de medidas de anomo recomendadas en el centro	∠
Tabla 2. Datos básicos de la instalación	3
Tabla 3. Emisiones unitarias por kWh	6
Tabla 4. Consumos energéticos	7
Tabla 5. Datos mensuales de consumo Electricidad	7
Tabla 6. Evolución del consumo horario	8
Tabla 7. Datos mensuales de consumo de Gasóleo	10
Tabla 8. Características equipos calefacción	11
Tabla 9. Características equipos refrigeración	
Tabla 10. Características equipos generación ACS	13
Tabla 11. Distribución del consumo y del número de lámparas	
Tabla 12. Distribución de consumos	
Tabla 13. Herramientas para el cálculo del balance energético	19
Tabla 14. Distribución global del consumo energético	19
Tabla 15. Distribución global del consumo eléctrico	
Tabla 16. Distribución global del consumo de gasóleo	
Tabla 17. Listado de medidas estudiadas	
Tabla 18. Sustitución de fluorescentes por LED	25
Tabla 19. Sustitución de halógenos por LED	
Tabla 20. Sustitución de downlights por LED	
Tabla 21. Sustitución de luminarias de tipo pantalla estanca por LED	
Tabla 22. Sustitución de luminarias de tipo empotradas por LED	
Tabla 23. Sustitución de proyectores y campanas por LED	
Tabla 24. Instalación de detectores de presencia	
Tabla 25. Instalación del sistema de control de apagado de equipos Plugwise	
Tabla 26. Presupuesto	
Tabla 27. M1 Instalación solar fotovoltaica en la nave I	38
Tabla 28. Sustitución de la caldera actual por una de gas natural	39
Tabla 29. Sustitución bombas de calor actuales por bombas de calor eficientes	40
Tabla 30. Sustitución de calefactores por bombas de calor	41
Tabla 31. Aislamiento del cuerpo de la caldera	42
Tabla 32. Instalación de regletas eliminadoras del stand-by	43
Tabla 33. Tabla resumen de medidas de ahorro estudiadas	47
Tabla 34. Ahorro energético anual de las medidas de ahorro estudiadas en el centro	49
Tabla 35. Tabla resumen de medidas de ahorro recomendadas en el centro	50
Tabla 36. Ahorro energético anual de las medidas de ahorro en el centro	52
Tabla 37. Consumo y coste energético antes y después de la implantación de las medid	as en el
centro	52
Tabla 38. Emisiones contaminantes actualmente y tras la implantación de las medidas	53
Tabla 39. Medidas con PRS bajo	54
Tabla 40. Medidas con PRS medio	54
Tabla 41. Medidas con PRS alto	
Tabla 42. Inventario equipos centralizados calefacción	56
Tabla 43. Inventario equipos individualizados calefacción	
Tabla 44. Inventario equipos centralizados refrigeración	59
Tabla 45. Inventario equipos individualizados refrigeración	59
Tabla 46. Inventario equipos generación ACS	

Tabla 47. Inventario equipos	64
Tabla 48. Inventario y propuestas iluminación	73

ÍNDICE DE GRÁFICAS

Gráfica 1. Balance energético por usos	1
Gráfica 2. Evolución mensual del consumo de Electricidad	8
Gráfica 3. Curva del consumo en días laborables y fines de semana según la hora	10
Gráfica 4. Distribución iluminación existente	14
Gráfica 5. Distribución del consumo de los equipos	16
Gráfica 6. Balance energético por usos	20
Gráfica 7. Balance eléctrico por usos	21
Gráfica 8. Balance de gasóleo por usos	22
Gráfica 9. Potencia demandada y generación	35
Gráfica 10. Generación mensual	36
Gráfica 11. Ahorro energético anual de las medidas de ahorro estudiadas en el centro .	49
Gráfica 12. Ahorro de emisiones de CO2	53

ÍNDICE DE ILUSTRACIONES


Ilustración 1. Fachada del Centro	3
Ilustración 2. Aerotermo	12
Ilustración 3. Equipos VRF	13
Ilustración 4. Caldera	13
Ilustración 5. Luminaria campana	15
Ilustración 6. Compresor	16
Ilustración 7. Instalación solar térmica	17
Ilustración 8. Detector de presencia	30
Ilustración 9. Componentes del sistema de eliminación del modo stand-by de equip	os
ofimáticos	31
Ilustración 10. Imagen de una célula fotoeléctrica y de un panel fotovoltaico	33
Ilustración 11. Imagen de una instalación fotovoltaica estática	34
Ilustración 12. Zona optima para la ubicación de las placas fotovoltaicas	36
Ilustración 13. Ejemplo de estructura para placas fotovoltaicas en cubiertas planas	37
Ilustración 14. Aislamiento tipo manta armada de lana de roca	42
Ilustración 15. Regleta con un maestro, cuatro esclavos y dos tomas convencionale	es43
Ilustración 16. Logotipo del programa ENERGY STAR de ahorro energético en	ordenadores
	45

1 RESUMEN EJECUTIVO

Se ha llevado a cabo una auditoría energética en detalle a la base de mantenimiento de trenes ubicada en Toledo.

Tras la visita y el estudio de los datos recopilados se ha determinado que el consumo energético total asciende a 1.121.684 kWh y se distribuye de la siguiente forma:

Gráfica 1. Balance energético por usos

Se han detectado procesos eficientes desde el punto de vista energético, sin embargo también se han encontrado posibilidades de mejora.

La implantación de las medidas recomendadas generaría un ahorro energético de 232.487 kWh lo cual supone un ahorro económico de 26.239 € con una inversión total de 188.264 €.

A continuación se muestra una tabla con las medidas de ahorro que se proponen para su implementación.

De la totalidad de medidas estudiadas se recomienda la implementación de aquellas con un periodo de retorno inferior a 10 años.

Tabla 1. Tabla resumen de medidas de ahorro recomendadas en el centro

Nº	Descripción de la mejora	Ahorro		Inversión	PRS	Emisiones	VAN	Vida útil	
N°	Descripción de la mejora	kWh / año	% Total	€/año	€	años	kg CO ₂ / año	€	años
M1	Instalación de detectores de presencia	6.686	0,60	813	1.750	2,2	1.725	6.533	10
M2	Instalación de sobre-enchufes Plugwise	6.065	0,54	668	2.108	3,2	1.565	4.700	10
МЗ	Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313	0,03	46	253	5,5	81	213	10
M4	Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477	0,13	201	1.235	6,2	381	813	10
M5	Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305	1,19	1.718	11.926	6,9	3.433	5.611	10
M6	Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764	10,23	13.205	93.441	7,1	29.609	41.393	10
M7	Instalación fotovoltaica	79.553	7,09	8.335	60.000	7,2	20.525	159.405	25
M8	Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439	0,31	412	3.909	9,5	887	304	10
M9	Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955	1,07	1.414	13.643	9,6	3.084	813	10
	TOTAL	232.486,871	20,7%	26.239	188.264	7,2	59.982	-	-

₁ El ahorro total no es igual a la suma del ahorro de cada media, debido a que existen efectos cruzados entre ellas

1 DATOS BÁSICOS DEL CENTRO

El centro motivo de estudio se trata de una base de mantenimiento de trenes. El centro auditado consta de varias zonas como: taller diesel, taller eléctrico, una nave almacén/vestuarios, otra zona dedicada a cuartos técnicos y un edificio auxiliar compuesto por oficinas, centro de formación, centro sanitario y comedor. La parte de taller diesel tiene un total de 6 vias y la eléctrica 2 vias, es hay donde se llevan a cabo las labores de reparación y mantenimiento de trenes.

Ilustración 1. Fachada del Centro

Las principales características del centro objeto de estudio son las siguientes:

Tabla 2. Datos básicos de la instalación

Localidad del centro	Toledo	
Zona climática	C4	
Nº de plantas	2	
Superficie construida (m²)	15.000	
Número de usuarios	50	
Tipología edificatoria	Fábricas y talleres	
Consumo energético anual (kWh)	1.121.684	

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI MOTIVACIÓN Y OBJETO

2

Proyecto Final de Grado en Ingeniería Eléctrica

El consumo energético crece en paralelo al desarrollo económico; es por tanto primordial implantar medidas que optimicen la demanda energética. Desde una planta industrial, un pequeño comercio o un hogar, las medidas encaminadas a la eficiencia energética son múltiples, y a menudo, muy económicas.

La auditoría energética estudia de forma exhaustiva el grado de eficiencia energética de una instalación y analiza los equipos consumidores de energía, la envolvente térmica y los hábitos de consumo. De los resultados obtenidos, se recomiendan las acciones idóneas para optimizar el consumo en función de su potencial de ahorro, la facilidad de implementación y el coste de ejecución. Es decir; la auditoría energética facilita la toma de decisiones de inversión en ahorro y eficiencia energética.

La base de mantenimiento de trenes concienciada con el ahorro y la eficiencia energética, solicita la realización de una auditoría energética en las instalaciones situadas en la C/ Pueblo Saharaui, 12.

Los principales objetivos que se pretenden alcanzar con esta auditoría energética son los siguientes:

- Compilación de datos de diversa índole sobre el comportamiento energético de las instalaciones objeto de estudio.
- Evaluación del estado general de las instalaciones.
- Evaluación del aprovechamiento energético general de las instalaciones.
- Cuantificación, análisis y clasificación de los consumos energéticos.
- Identificación y cuantificación de las oportunidades de ahorro energético.
- Redacción de medidas para la reducción de los consumos energéticos.
- Cuantificación de los ahorros energéticos y económicos y propuesta de una metodología para la implementación de estas medidas.

METODOLOGÍA 3

La metodología utilizada para el desarrollo de esta auditoría energética cumple con los requisitos que establece el Real Decreto 56/2016 de 12 de febrero, por el que se transpone la Directiva 2012/27/UE del Parlamento Europeo y del Consejo, de 25 de octubre de 2012, relativa a la eficiencia energética, en lo referente a auditorías energéticas, acreditación de proveedores de servicios y auditores energéticos y promoción de la eficiencia del suministro de energía.

Así mismo este documento también cumple con los requisitos de la UNE-EN 16247 "Auditorías Energéticas".

DESARROLLO DEL TRABAJO 3.1

Fase I: Recopilación inicial de información.

- Datos de facturación de energía eléctrica y de combustibles.
- Inventario general de instalaciones.
- Superficie, distribución y número de usuarios en las instalaciones.

Fase II: Realización de medidas y toma de datos.

- Toma de datos de las instalaciones consumidoras de energía.
- Toma de datos necesarios para la elaboración del informe de auditoría energética, con el alcance especificado.
- Realización de mediciones sobre los equipos, (analizador de redes, analizador de gases, termográfica, luxómetro, etc.).

Fase III: Análisis y evaluación del estado actual de la instalación.

- Análisis de los registros de energía realizados.
- Análisis técnico de la situación energética actual de las instalaciones.
- Elaboración de un balance energético global.
- Propuestas de mejora y potencialidad de cada mejora.

Fase IV: Elaboración de informe.

- Entrega del informe preliminar.
- Recepción de los comentarios.
- Entrega del informe definitivo.

3.2 CRITERIOS AMBIENTALES: NIVEL DE EMISIONES DE CO2 POR CONSUMO **DE ENERGÍA**

El consumo energético puede tener impactos ambientales asociados con las emisiones de gases de efecto invernadero (GEI), por lo que cualquier reducción del consumo supondría una reducción de las emisiones contaminantes.

El empleo de fuentes de energía no renovables como gas natural, gasóleo, propano o butano, produce la emisión de gases contaminantes como el dióxido de carbono (CO₂), el monóxido de carbono (CO), el metano (CH₄), entre otros. Así mismo, aunque la energía eléctrica no produzca emisiones en las instalaciones donde se consume, si se emiten gases contaminantes en las centrales de generación si estas no emplean fuentes renovables.

En España, durante el año 2015, la mayor parte de la electricidad se generaba en centrales que emiten gases contaminantes (centrales térmicas de carbón, ciclos combinados, centrales de fuel / gas, etc.), si bien el porcentaje de fuentes de energía renovables es cada vez mayor (eólica, solar, etc.)

En la tabla siguiente se muestran las emisiones unitarias por kWh que se han utilizado en el presente informe.

Tabla 3. Emisiones unitarias por kWh

Fuente de energía	Unidades	²Emisión de CO₂
Electricidad	kg CO ₂ / kWh	0,26
Gasóleo	kg CO ₂ / kWh	0,27

3.3 CRITERIOS ECONÓMICOS: CICLO DE VIDA DE LAS MEDIDAS CON INVERSIÓN

En cada una de las medidas de inversión, además de proporcionar parámetros económicos tales como el ahorro económico, energético, y las emisiones de CO2, se aportarán datos pormenorizados sobre el ciclo de vida de los activos de cada una de las medidas. En particular, se aportarán parámetros tales como el VAN para analizar con criterio de rentabilidad económica el análisis del coste del ciclo de vida, a fin de tener en cuenta el ahorro a largo plazo.

² Información obtenida del MAGRAMA

4 CONSUMOS ENERGÉTICOS

La Base de mantenimiento de trenes consta de un único suministro de electricidad, con lo cual hay un contador de compañía instalado dentro del centro, y en este, se incluye el consumo de naves de trabajo, nave almacén/vestuarios, edificio auxiliar, zona de cuartos técnicos y playa de vías.

Por otro lado, existe un consumo de gasóleo usado para la calefacción y para ACS.

La contabilidad energética, económica y en emisiones de CO₂ para el consumo energético evaluado en el presente informe es la siguiente:

Tabla 4. Consumos energéticos

Fuente energética	Consumo energético anual (kWh)	Coste energético anual (€)	Emisiones de CO ₂ anuales (kg)
Electricidad	576.793	63.524	148.813
Gasóleo	544.891	20.490	145.486
Total	1.121.684	84.014	294.299

4.1 SUMINISTRO DE ELECTRICIDAD

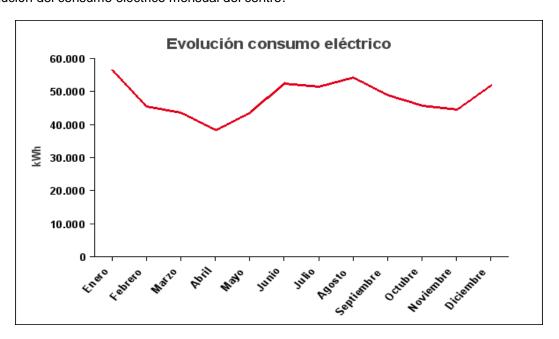

Se han facilitado los consumos eléctricos del último año disponibles, desde Enero 2017 hasta Diciembre 2017. A continuación se muestra una tabla con el consumo eléctrico mensual del centro.

Tabla 5. Datos mensuales de consumo Electricidad

Mes	Consumo eléctrico (kWh)	Coste (€)
Enero 2017	56.480	6.220
Febrero 2017	45.483	5.009
Marzo 2017	43.725	4.816
Abril 2017	38.243	4.212
Mayo 2017	43.727	4.816
Junio 2017	52.437	5.775
Julio 2017	51.491	5.671
Agosto 2017	54.240	5.974
Septiembre 2017	48.839	5.379
Octubre 2017	45.604	5.023
Noviembre 2017	44.611	4.913

Mes	Consumo eléctrico (kWh)	Coste (€)
Diciembre 2017	51.912	5.717
Total	576.793	63.524³

El coste promedio de la energía es de 0,11 €/kWh. A continuación se muestra un gráfico con la evolución del consumo eléctrico mensual del centro.

⁴Gráfica 2. Evolución mensual del consumo de Electricidad

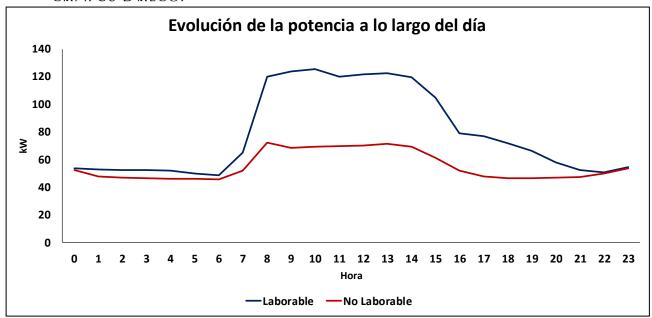
El gráfico anterior muestra un pico de consumo en los meses de invierno debido a que son los meses que más demanda tienen los equipos de climatización en modo calefacción, también debido a que la iluminación tiene más uso, ya que hay menor luz solar en estos meses. A su vez, en los meses más calurosos, se produce otro pico de consumo, puesto que es el período en que se utilizan los mismos equipos pero en modo refrigeración.

Curva de carga eléctrica

A continuación se analizan los consumos horarios y semanales, obtenidos de los datos recogidos por el analizador de redes instalado en el centro o de la curva horaria del mismo.

Tabla 6. Evolución del consumo horario

Consumo (kWh)							
Hora	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
0	53,7	54,5	56,3	55,3	49,2	49,9	54,9
1	53,0	52,4	52,8	54,3	52,2	47,5	48,2


³El coste de la electricidad incluye el coste del término de energía con impuesto eléctrico (IEE)

⁴Los meses de consumo se muestras en año natural

Consumo (kWh)							
Hora	Lunes	Martes	Miércoles	Jueves	Viernes	Sábado	Domingo
2	52,5	52,5	51,9	53,3	52,6	46,5	47,6
3	52,1	52,5	52,2	53,5	51,7	45,8	47,3
4	51,8	51,9	52,0	52,9	51,6	45,5	47,0
5	49,8	49,2	50,5	50,8	49,6	45,5	46,5
6	48,6	48,0	48,5	49,9	47,6	45,2	46,6
7	66,2	65,4	63,8	66,1	65,0	50,9	52,8
8	122,9	116,7	117,5	120,8	122,5	71,3	73,5
9	125,8	118,5	121,0	123,5	129,7	68,1	69,0
10	128,5	120,6	125,8	120,7	132,0	70,5	68,4
11	120,8	115,5	120,2	115,1	127,3	71,5	68,2
12	121,0	116,8	124,0	119,3	127,8	71,6	68,6
13	121,8	119,0	120,9	121,0	129,8	73,3	69,6
14	119,7	116,4	119,4	118,4	123,2	70,8	67,7
15	105,6	104,8	107,1	105,7	101,4	61,8	61,1
16	80,8	80,7	82,5	73,5	77,4	52,3	51,5
17	78,3	82,0	80,3	71,3	72,5	49,5	46,5
18	74,5	75,3	75,4	66,9	68,0	47,8	45,3
19	67,1	70,4	69,4	61,3	64,5	48,1	45,0
20	55,7	60,5	59,8	58,2	56,2	48,6	45,3
21	49,8	53,0	54,1	54,3	50,8	49,5	45,7
22	48,0	51,0	52,8	51,6	50,8	51,2	48,7
23	53,0	55,0	56,7	55,2	52,8	53,8	54,1

En la siguiente gráfica se puede apreciar la evolución del consumo en función de la hora del día y de si se trata de un día laborable, un sábado o un domingo.

Gráfica 3. Curva del consumo en días laborables y fines de semana según la hora

En la gráfica se puede apreciar que en los días laborables a partir de las 7:00 el consumo se incrementa considerablemente, coincidiendo con el comienzo de la jornada laboral. De lunes a sábado a partir de las 08:00 el consumo llega a su máximo y teniendo un consumo constante hasta las 14:00 de la tarde. A partir de esa hora se aprecia un decrecimiento del consumo, hasta las 16:00, coincidiendo con el fin de la jornada laboral para la mayor parte de trabajadores, quedando algo de consumo debido a que algunos trabajadores acaban su jornada, hasta las 22:00. Llegando el consumo al mínimo hasta la jornada siguiente.

En cuanto a los días no laborables se aprecia que la curva de consumo tiene un crecimiento desde las 06:00, llegando a su pico máximo a las 08:00 y manteniéndose constante hasta las 14:00. A partir de esa hora se observa que la curva de consumo presenta un decrecimiento hasta llegar al mínimo. Esta curva de consumo coincide con el horario de trabajo del sábado.

4.2 SUMINISTRO DE GASÓLEO

Se han facilitado por parte de la base de mantenimiento el consumo y coste de gasóleo del último año disponible. A continuación se muestra una tabla con el consumo de gasóleo anual analizado:

Tabla 7. Datos mensuales de consumo de Gasóleo

Año 2017	Consumo gasóleo (litros)	Coste (€)
Total litros	53.005	20.490
Total kWh	544.891 ⁵	20.490

El coste promedio de la energía es de 0,04 €/kWh.

⁵ Consumo en kWh teniendo en cuenta un PCI de 10,28 kWh/l. Este valor es el que se utilizará para el análisis y los cálculos de las instalaciones.

5 DESCRIPCIÓN DE INSTALACIONES

5.1 CALEFACCIÓN

Tras la visita a BM Sevilla Motor se observó que existen dos calderas, para calefacción y ACS. El uso que tienen es para zona de almacén y vestuarios, también se utilizan para dar apoyo a la instalación solar térmica. Para la climatización del centro médico y centro de formación, existen dos equipos VRF. El resto de las instalaciones tienen equipos de climatización individual, excepto en la zona de taller que hay calderas de emisión directa.

Las características de los principales equipos de generación de calor se muestran a continuación:

Tabla 8. Características equipos calefacción

Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Potencia eléctrica (W) ⁶
VRF	Mitsubishi	1	56.500	15.150
VRF	Mitsubishi	1	25.000	5.900
Caldera	Hygas	1	130.000	1.200
Caldera	Hygas	1	130.000	1.200
Generador de aire caliente	Wind	4	334.940	15.000
Generador de aire caliente	Wind	4	140.000	6.000
Aerotermo	-	3	-	400
Aerotermo	-	3	-	400
Aerotermo	-	2	-	400

⁶ Hace referencia a la potencia del quemador en el caso de las calderas y a la potencia absorbida en el caso de las bombas de calor.

Ilustración 2. Aerotermo

El resto de los equipos de calefacción se encuentran detallados en el inventario.

5.2 REFRIGERACIÓN

Tras la visita a BM Sevilla Motor se observó que existen dos equipos de climatización VRF para el centro médico y centro de formación. Para la zona de oficinas, existen equipos de climatización individual.

Las características de los principales equipos de generación de frío se muestran a continuación:

Tabla 9. Características equipos refrigeración

Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W) ⁷	Refrig.
VRF	Mitsubishi	1	50.400	3,43	14.700	R410A
VRF	Mitsubishi	1	22.400	3,80	5.900	R410A

⁷ Hace referencia a la potencia del quemador en el caso de las calderas y a la potencia absorbida en el caso de las bombas de calor.

Ilustración 3. Equipos VRF

El resto de los equipos de refrigeración se encuentran detallados en el inventario.

5.3 GENERACIÓN DE ACS

Tras la visita a BM Sevilla Motor se observó que existe una instalación de solar térmica para la generación de ACS, con apoyo de las calderas, esta generación de ACS se utiliza para cubrir la demanda de vestuarios. Las características de los principales equipos de generación de ACS se muestran a continuación:

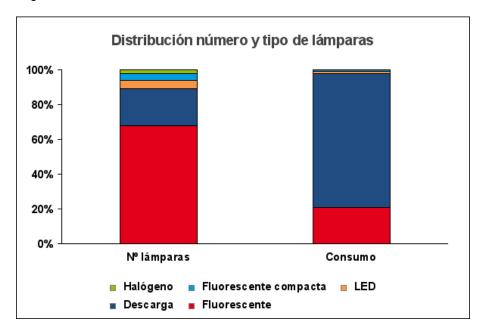
Tabla 10. Características equipos generación ACS

Equipo	Marca / Modelo	Unid	Potencia eléctrica (W)	Potencia térmica (W)
Caldera	Hygas	1	1.200	130.000
Caldera	Hygas	1	1.200	130.000
Termo eléctrico	-	1	1.300	-

Ilustración 4. Caldera

El resto de los equipos asociados a la generación de ACS se encuentran en el inventario.

5.4 ILUMINACIÓN


La potencia total instalada en el centro es de 81,38 kW. La tipología de lámpara más utilizada es la fluorescente, sin embargo las lámparas de descarga son las que tienen mayor consumo, este tipo de lámparas están ubicadas en zona de taller.

A continuación se adjunta una tabla que determina la representatividad de las lámparas y su consumo en el centro:

Tabla 11. Distribución del consumo y del número de lámparas

Tecnología	Lámpa	Lámparas Consumo		ımo
recitologia	Unidades	%	kWh	%
Fluorescente compacta	43	3,89	2.716	1,10
Fluorescente	762	69,02	51.757	21,04
Halógeno	22	1,99	404	0,16
LED	50	4,53	2.657	1,08
Descarga	227	20,56	188.474	76,61
Total	1.104	100%	246.009	100%

La distribución de iluminación, en función de la potencia total instalada por tipo de lámpara, se muestra en la siguiente gráfica.

Gráfica 4. Distribución iluminación existente

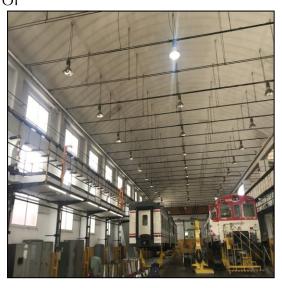


Ilustración 5. Luminaria campana

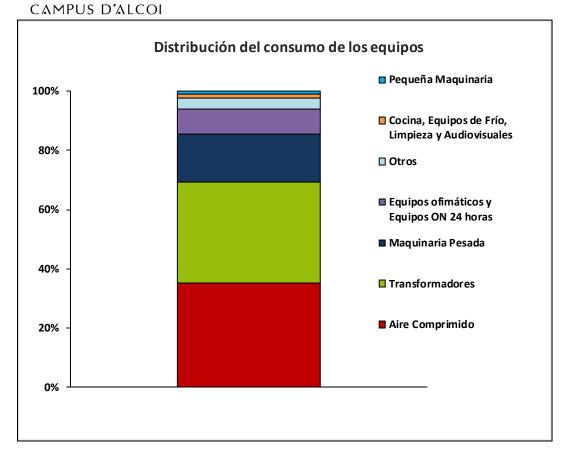
En el anexo se dispone de un inventario detallado de los equipos de iluminación por estancia.

5.5 EQUIPOS

A continuación se adjunta una tabla que determina la representatividad de los equipos y su consumo en el centro:

Tabla 12. Distribución de consumos

Servicio energético	Consumo (kWh)	%
Aire Comprimido	94.307	35,2%
Transformadores	91.980	34,3%
Maquinaria Pesada ⁸	43.062	16,1%
Equipos Ofimáticos y Equipos ON 24 horas9	22.540	8,4%
Otros ¹⁰	10.004	3,7%
Cocina, Equipos frío11, Limpieza y Audiovisuales	3.981	1,5%
Pequeña Maquinaria ¹²	2.328	0,9%
Total	268.202	100%


⁸ Dentro de este grupo se incluyen equipos, como puentes grúa, carretillas elevadoras, gatos de uñas y baja bogies.

⁹ Dentro de este grupo se engloban aquellos equipos que están 24 horas disponibles.

¹⁰ Dentro de este grupo se engloban todos aquellos equipos que no han podido incluirse en ninguno de los otros grupos de consumo.

¹¹ Dentro de este grupo se engloban aquellos equipos relacionados con la generación y conservación del frío.

¹² Dentro de este grupo se incluyen equipos, como amoladoras, taladros, equipos de soldadura y prensas.

Gráfica 5. Distribución del consumo de los equipos

Ilustración 6. Compresor

En el anexo se muestra un inventario detallado de los equipos por estancia.

5.6 RENOVABLES

En el centro hay instalados 6 paneles solares térmicos y genera 9.230 kWh al año.

Ilustración 7. Instalación solar térmica

6.1 PROCEDIMIENTO DE CÁLCULO DEL BALANCE ENERGÉTICO

El balance energético global muestra la distribución de los consumos energéticos en función de las diferentes variables. En un edificio, por ejemplo, es interesante diferenciar su consumo en función de los principales usos, distribuyendo así el consumo anual en climatización, iluminación, equipos, producción de agua caliente sanitaria, etc.

El método utilizado para el cálculo del balance energético se basa en la fórmula de cálculo del consumo. El consumo sigue la siguiente fórmula:

Consumo energético (kWh) = Potencia (kW) x Tiempo (h)

Por lo tanto, para calcular el consumo que se produce en cada área estudiada, es necesario conocer la potencia de los equipos y el tiempo de utilización, es decir las horas en las que están funcionando cada uno de los equipos consumidores de energía.

Para cada uno de los siguientes grupos de consumo es conveniente tener en cuenta:

- Iluminación: es necesario conocer la potencia de la lámpara, el tipo de equipo auxiliar y las horas de funcionamiento.
- Calefacción: la potencia de los equipos, en este caso las calderas y los equipos de aire acondicionado, así como las bombas de recirculación, etc. También es necesario conocer el factor de uso y el horario de funcionamiento.
- Refrigeración: la potencia de los equipos de aire acondicionado, así como las bombas de recirculación, etc. También es necesario conocer el factor de uso y el horario de funcionamiento.
- Equipos: para calcular el consumo de estos equipos es necesario conocer la potencia de cada uno de ellos, así como el factor de uso. Por último, se requiere conocer las horas de funcionamiento.
- Producción de agua caliente sanitaria (ACS): la potencia de las calderas, el número de usuarios y el tipo de actividad que se da en el centro, así como las horas de funcionamiento de las calderas.
- Ventilación: la potencia de los equipos de extracción o renovación de aire, así como las horas de funcionamiento.

Los cálculos de las distribuciones de consumo se realizan utilizando la potencia de los equipos consumidores de energía y el horario de funcionamiento obtenido a través de varias vías, como las entrevistas con los usuarios de la instalación y con el personal de mantenimiento. El consumo obtenido se contrasta con los valores de consumo que reflejan las facturas.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

Parte del consumo queda englobado dentro del apartado de "otros" que incluye aquellos elementos que dadas sus características, no se engloban en ninguno de los grupos anteriormente mencionados, tales como iluminación de emergencia, equipos externos conectados puntualmente a la red, etc.

Esta toma de datos se resume en la siguiente tabla:

Tabla 13. Herramientas para el cálculo del balance energético

Áreas de consumo	Información de potencia	Información de tiempo
Iluminación	Inventario de equipos Toma de datos in situ	
Calefacción	Inventario de equipos Toma de datos in situ	
Refrigeración	Inventario de equipos Toma de datos in situ	Entrevistas con el personal mantenimiento y mediciones de parámetros eléctricos
Equipos	Inventario de equipos Toma de datos in situ	Listado de equipos con horarios de funcionamiento Datos del sistema de control
Producción de ACS	Inventario de equipos Toma de datos in situ	
Ventilación	Inventario de equipos Toma de datos in situ	

6.2 BALANCE ENERGÉTICO POR USOS

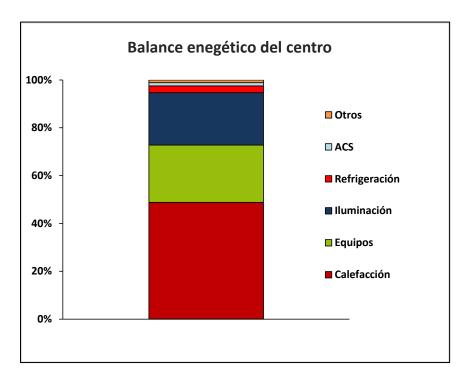
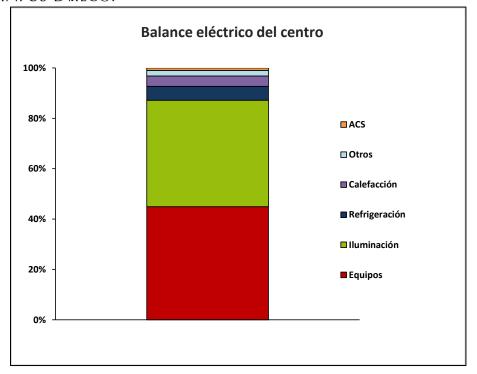

La siguiente tabla muestra la distribución del consumo energético anual.

Tabla 14. Distribución global del consumo energético

Uso energético	Consumo (kWh)	Consumo (%)
Calefacción	547.793	49%
Equipos	268.202	24%
lluminación	246.009	22%
Refrigeración	31.890	3%
ACS	14.955	1%
Otros	12.835	1%
Total	1.121.684	100%

Esta distribución por usos queda reflejada en la siguiente gráfica:

Gráfica 6. Balance energético por usos


6.3 BALANCE ELÉCTRICO POR USOS

La siguiente tabla muestra la distribución del consumo eléctrico anual.

Tabla 15. Distribución global del consumo eléctrico

Uso energético	Consumo (kWh)	Consumo (%)
Equipos	261.509	45,3
lluminación	246.009	42,7
Refrigeración	31.890	5,5
Calefacción	23.980	4,2
Otros	12.835	2,2
ACS	569	0,1
Total	576.793	100%

Esta distribución por usos queda reflejada en la siguiente gráfica:

Gráfica 7. Balance eléctrico por usos

6.4 BALANCE DE GASÓLEO POR USOS

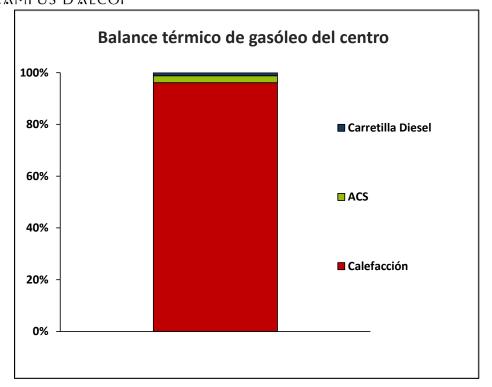

La siguiente tabla muestra la distribución del consumo de gasóleo anual.

Tabla 16. Distribución global del consumo de gasóleo

Uso energético	Consumo (kWh)	Consumo (%)
Calefacción	523.813	96,1
ACS ¹³	14.386	2,6
Carretilla Diesel	6.693	1,2
Total	544.891	100%

Esta distribución por usos queda reflejada en la siguiente gráfica:

¹³ Este consumo corresponde al apoyo que necesita de caldera para la demanda de ACS.

Gráfica 8. Balance de gasóleo por usos

7 MEDIDAS DE AHORRO ESTUDIADAS

Las medidas de ahorro estudiadas son todas aquellas que, dadas las características de las instalaciones son susceptibles de llevarse a cabo desde el punto de vista técnico, sin entrar a valorar la rentablidad a lo largo de su ciclo de vida. Estas medidas se clasificaran en dos grupos atendiendo a diferentes criterios.

A continuación se presentan un listado de todas las medidas estudiadas, independientemente de los resultados que arrojen.

Tabla 17. Listado de medidas estudiadas

Descripción de la mejora	Ahorro (kWh / año)
Instalación de detectores de presencia	6.686
Instalación de regletas eliminadoras de stand-by	1.406
Instalación de sobre-enchufes Plugwise	6.065
Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313
Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477
Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305
Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764
Instalación fotovoltaica	79.553
Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439
Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955
Sustitución de calefactores por bombas de calor	3.401
Aislamiento del cuerpo de la caldera	1.800
Sustitución de bombas de calor por otras de mayor rendimiento	4.131
Sustitución de caldera actual por una de condensación de gas natural	36.714

Entre las **medidas de ahorro recomendadas** se incluyen aquellas qué, habiéndose estudiado, su implantación se considera interesante desde alguno de los siguientes puntos de vista: ahorro económico, ahorro energético, rentabilidad, cumplimento normativa, etc.

En el siguiente punto del informe, se describe en qué consiste cada una de las medidas y, se analizan los resultados obtenidos y se realiza una comparación con el conjunto de medidas recomendadas.

Por último, se analiza la propuesta considerando diferentes aspectos: confort, viabilidad técnica, ahorro económico, rentabilidad, disminución de emisiones y requerimiento legal.

Las **medidas de ahorro no recomendadas** son las que siendo posible su instalación, no se propone ejecutar, ya que desde el punto de vista económico no son rentables. En este apartado se describe cada una de las medidas y se presentan los resultados obtenidos.

7.1 DESCRIPCIÓN DE MEDIDAS DE AHORRO RECOMENDADAS

7.1.1 ILUMINACIÓN

7.1.1.1 Sustitución de lámparas convencionales por LED

El LED es un tipo de luz que usa diodos semiconductores. Cuando un LED se encuentra en polarización directa, los electrones pueden recombinarse con los huecos en el dispositivo, liberando energía en forma de fotones. Este efecto es llamado electroluminiscencia y el color de la luz (correspondiente a la energía del fotón), se determina a partir de la banda de energía del semiconductor. La energía contenida en un fotón de luz es proporcional a su frecuencia, es decir, su color. Cuanto mayor sea el salto de banda de energía del material semiconductor que forma el LED, más elevada será la frecuencia de la luz emitida.

Las lámparas LED presentan las siguientes ventajas:

- El LED se alimenta a baja tensión, consumiendo así poca energía y por lo tanto emitiendo poco calor. Esto es debido a que el LED es un dispositivo que opera a baja temperatura en relación con la luminosidad que proporciona. Los demás sistemas de iluminación en igualdad de condiciones de luminosidad que el LED emiten mucho más calor.
- Larga vida útil (50.000 h).
- Baja depreciación luminosa, del 30% a 50.000 h.
- Índice de reproducción cromática superior a 80.
- Luz blanca a temperaturas de calor entre 3.000 K y 6.000 K.
- No emiten radiación ultravioleta ni infrarroja.
- Encendido instantáneo.
- Excelente direccionalidad de la luz, lo que permite un mayor factor de utilización y mínima contaminación lumínica.
- No contienen componentes contaminantes (mercurio, plomo, etc.).
- Gran capacidad de producción de energía lumínica, por cada watio consumido 90-113 lm/W.

Sin embargo estas lámparas presentan los siguientes inconvenientes:

 Alto coste de las luminarias, es previsible una disminución importante durante los próximos años.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

• La vida útil presenta alta variabilidad en función de la intensidad de corriente y la temperatura.

El ahorro energético se ha calculado como la diferencia entre el consumo eléctrico actual y el consumo eléctrico que tendría tras la propuesta.

El ahorro económico se obtiene como la diferencia del coste económico del consumo energético del sistema de iluminación actual y el coste económico del consumo energético del sistema de iluminación propuesto incluyendo el ahorro por reposición debido a la mayor vida útil de las lámparas LED.

El coste de los equipos se obtiene a partir de los precios obtenidos por el proveedor, mientras que la inversión necesaria se calcula como la suma de todos los costes existentes: costes de equipos y costes de mano de obra.

Las sustituciones de iluminación por LED que se han contemplado se muestran a continuación:

Sustitución de lámparas fluorescentes por LED

Este tipo de lámparas son de vapor de mercurio a baja presión de elevada eficacia y vida. Las cualidades de color y su alto rendimiento las hacen idóneas para interiores de altura reducida La mejora consiste en la sustitución de las lámparas fluorescentes actuales, existiendo varias posibilidades de sustitución, las más comunes son:

- Fluorescentes T8 de 18W por tubos LED de 10W.
- Fluorescentes T8 de 36W por tubos LED de 20W.
- Fluorescentes T8 de 58W por tubos LED de 22W.

Tabla 18. Sustitución de fluorescentes por LED

Sustituc	Sustitución de fluorescentes por LED		
Ahorro			
Ahorro e	nergético	Ahorro económico	
kWh / año	%	Eu / año	
3.439	0,31	412	
Inversión			
Inmovilizado	Mano de obra	Total	
Eu	Eu	Eu	
2.469	1.440	3.909	
Resultados económicos			
PRS	Vida útil	VAN	
años	años	Eu	
9,5	10	304	
Resultados ambientales			
Reducción de emisiones contaminantes			
kg CO₂ / año			
887			

Sustitución de lámparas halógenas por LED

Las lámparas halógenas son variantes de las incandescentes con un filamento de tungsteno dentro de un gas inerte y una pequeña cantidad de halógeno (como bromo o yodo). Estas lámparas desprenden bastante calor en su funcionamiento además de requerir de una manipulación especial. Son un tipo de iluminación bastante ineficiente que se puede sustituir por LED. Dentro de este tipo de lámparas hay varios modelos:

• Halógenos dicroicos de 20W por LED de 4W.

Tabla 19. Sustitución de halógenos por LED

	<u> </u>		
Sustitución de halógenos por LED			
	Ahorro		
Ahorro e	nergético	Ahorro económico	
kWh / año	%	Eu / año	
313	0,03	46	
	Inversión		
Inmovilizado	Mano de obra	Total	
Eu	Eu	Eu	
165	88	253	
Resultados económicos			
PRS	Vida útil	VAN	
años	años	Eu	
5,5	10	213	
Resultados ambientales			
Reducción de emisiones contaminantes			
kg CO ₂ / año			
81			

Sustitución de downlight con bajo consumo por LED

Las lámparas son de bajo consumo idénticas a las mencionadas anteriormente integradas en luminarias de tipo downlight. En este caso se sustituye la luminaria completa, las posibilidades de sustitución son las siguientes

Downlight con lámparas de 2x26 W por downlight LED de 24W.

Tabla 20. Sustitución de downlights por LED

Sustitución de downlights por LED		
Ahorro		
Ahorro energético		Ahorro económico
kWh / año	%	Eu / año
1.477	0,13	201
Inversión		

Inmovilizado	Mano de obra	Total	
Eu	Eu	Eu	
969	266	1.235	
R	Resultados económicos		
PRS	Vida útil	VAN	
años	años	Eu	
6,2	10	813	
Resultados ambientales			
Reducción de emisiones contaminantes			
kg CO ₂ / año			
381			

Sustitución de pantallas estancas con tubos fluorescentes por pantallas LED

Esta medida consiste en la sustitución de las luminarias de tipo pantalla estanca con lámparas fluorescentes por pantallas estancas de LED.

- Pantalla estanca con fluorescente T8 de 1x36W por pantalla LED de 23W.
- Pantalla estanca con fluorescente T8 de 1x58W por pantalla LED de 29W.

Tabla 21. Sustitución de luminarias de tipo pantalla estanca por LED

Sustitución de luminarias de tipo pantalla estanca por LED		
Ahorro		
Ahorro e	nergético	Ahorro económico
kWh / año	%	Eu / año
11.955	1,07	1.414
Inversión		
Inmovilizado	Mano de obra	Total
Eu	Eu	Eu
11.543	2.100	13.643
Resultados económicos		
PRS	Vida útil	VAN
años	años	Eu
9,6	10	813
Resultados ambientales		
Reducción de emisiones contaminantes		
kg CO ₂ / año		
3.084		

Sustitución de luminarias empotradas por otras de LED

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

Esta medida consiste en la sustitución de las luminarias empotradas con lámparas fluorescentes por paneles de LED.

- Empotrada con fluorescente T8 de 4x18W y/o T5 de 4x14W por panel de LED de 41W.
- Empotrada con fluorescente T8 de 2x36W por panel de LED de 31W
- Empotrada con fluorescente T8 de 4x36W por panel de LED de 60W

Tabla 22. Sustitución de luminarias de tipo empotradas por LED

Sustitución de luminarias de tipo empotrada por LED						
Ahorro						
Ahorro energético Ahorro económico						
kWh / año	%	Eu / año				
13.305	1,19	1.718				
	Inversión					
Inmovilizado	Mano de obra	Total				
Eu	Eu	Eu				
10.629	1.297	11.926				
	Resultados econ	ómicos				
PRS	Vida útil	VAN				
años	años	Eu				
6,9	10	5.611				
	Resultados ambi	entales				
Reducción de emisiones contaminantes						
kg CO₂ / año						
	3.433					

Sustitución de proyectores y campanas con lámparas de descarga o halógenos por LED

Esta medida consiste en la sustitución de proyectores de diferentes tecnologías de descarga, halogenuro metálico en su mayoría o fluorescente.

- VSAP o HMC de 150W por Campana LED de 80W.
- VSAP o HMC de 250W por Campana LED de 100W.
- VSAP o HMC de 400W por Proyector LED de 184W.
- Vapor de Mercurio o Fluorescente de 80W por Campana LED de 40W.
- Vapor de Mercurio de 250W por Campana LED de 80W.

Tabla 23. Sustitución de proyectores y campanas por LED

Sustitución de proyectores por LED

Ahorro

Proyecto Final de Grado en Ingeniería Eléctrica

Ahorro e	nergético	Ahorro económico				
kWh / año	%	Eu / año				
114.764	10,23	13.205				
	Inversión					
Inmovilizado	Mano de obra	Total				
Eu	Eu	Eu				
87.366	6.075	93.441				
R	Resultados económicos					
PRS	PRS Vida útil VAN					
años	años	Eu				
7,1	10	41.393				
R	esultados ambi	ientales				
Reducción de emisiones contaminantes						
kg CO₂ / año						
29.609						

7.1.1.2 Instalación de detectores de presencia y sensores de luz natural

El detector de presencia es un equipo que permite reducir el consumo energético apagando aquella iluminación que permanece encendida durante más tiempo del necesario en zonas como pasillos, aseos o ascensores. Por otro lado, los sensores de luz natural son elementos que detectan la luz natural existente en las estancias y, en caso de que las condiciones meteorológicas aporten los niveles de luz necesarios, apagan la iluminación. La unión de estos dos elementos permite un ahorro energético considerable.

La instalación de estos equipos en lámparas que tengan como equipo auxiliar balastos electromagnéticos, como son las lámparas fluorescentes y las de bajo consumo, pueden disminuir la vida útil de las mismas debido al mayor número de encendidos. Para minimizar este tipo de consecuencias negativas, se recomienda la instalación de balastos electrónicos previamente. Hay que tener en cuenta que algunos tipos de lámparas de bajo consumo y los LED ya disponen de esta tecnología para evitar que la vida útil de las lámparas se vea reducida.

El estudio de esta medida consiste en la instalación de detectores de presencia con sensores crepusculares (de luz natural) que controlen electrónicamente el encendido y apagado de las lámparas según un tiempo de retardo programable en función que detecte presencia o no y el aporte de luz natural. Los ahorros que se obtienen por la instalación de estos elementos son debidos a la reducción de horas de funcionamiento.

Ilustración 8. Detector de presencia

Los resultados de la implantación de esta medida son los siguientes:

Tabla 24. Instalación de detectores de presencia

Instalación de detectores de presencia						
Ahorro						
Ahorro e	Ahorro energético Ahorro económico					
kWh / año	%	Eu / año				
6.686	0,60	813				
	Inversión	l e				
Inmovilizado	Mano de obra	Total				
Eu	Eu	Eu				
894	856	1.750				
R	esultados econ	ómicos				
PRS	Vida útil	VAN				
años	años	Eu				
2,2	10	6.533				
R	esultados ambi	ientales				
Reducción de emisiones contaminantes						
kg CO₂ / año						
1.725						

7.1.2.1 Instalación de sobre-enchufes (Plugwise)

Los sobre-enchufes (Plugwise) son un sistema para controlar y reducir el consumo de los equipos ofimáticos y otros que quedan en modo stand-by. El sistema propuesto se compone de los siguientes elementos:

<u>Software</u>: plataforma de visualización de consumos registrados por los sobre-enchufes.
 También permite establecer órdenes de encendido/apagado en función de horarios, agrupaciones de sensores, eventos, etc. Se instalaría en un ordenador de la oficina desde donde se controlarían todos los elementos instalados.

Ilustración 9. Componentes del sistema de eliminación del modo stand-by de equipos ofimáticos

- Sobre-enchufe inalámbrico: mide la energía de los dispositivos conectados, y ejecuta el encendido y apagado según las órdenes programadas en el software. Comunica vía Zigbee con el receptor.
- <u>Receptor</u>: recibe las señales Zigbee de los sobre-enchufes, y las procesa para que puedan ser gestionadas por el software.

Los ahorros obtenidos con la aplicación de esta medida son producidos por la eliminación del consumo en stand-by de equipos ofimáticos: ordenadores de sobremesa (compuestos de monitor más unidad central), ordenadores portátiles, impresoras multifunción o fotocopiadoras. La inversión que se ha considerado para el cálculo de los ahorros incluye el coste del software, el receptor y los sobre-enchufes en función del número de equipos sobre los que aplica.

Los resultados de la implantación de esta medida son los siguientes:

Tabla 25. Instalación del sistema de control de apagado de equipos Plugwise

Instalación del sistema de control de apagado de equipos Plugwise							
Ahorro							
Ahorro en	Ahorro energético						
kWh / año	%	Eu / año					
6.065	0,54	668					
	Inversión						
Inmovilizado	Total						
Eu	Eu Eu						
2.108	2.108 0						
Re	sultados económ	icos					
PRS	Vida útil	VAN					
años	años	Eu					
3,2	10	4.700					
Re	sultados ambient	ales					
Reducción	de emisiones co	ntaminantes					
	kg CO ₂ / año						
1.565							

7.1.3 ENERGÍAS RENOVABLES

7.1.3.1 Solar fotovoltaica

Se va a estudiar la implantación de una instalación de aprovechamiento de energías renovables con el objetivo de generar electricidad para el autoconsumo de las instalaciones.

Introducción

En el centro se propone la instalación de un sistema solar fotovoltaico en la cubierta de la nave almacén, con el fin de reducir el consumo energético del suministro existente, consumiendo la energía producida por los paneles.

Descripción de la medida

Una instalación solar fotovoltaica permite aprovechar la luz del sol para generar electricidad. El principal elemento de una instalación fotovoltaica es el panel fotovoltaico.

Un panel fotovoltaico se compone de un conjunto de células fotoeléctricas conectadas en serie y paralelo para obtener una tensión determinada y una intensidad variable en función de la radiación solar. Una célula fotoeléctrica es un dispositivo que, mediante el efecto fotoeléctrico, es capaz de convertir la energía luminosa en energía eléctrica.

Cuando la luz del sol incide sobre una célula fotoeléctrica, los fotones de la luz solar transmiten su energía a los electrones del semiconductor para que así puedan circular dentro del sólido.

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

Después, la tecnología fotoeléctrica consigue que parte de estos electrones salgan del material semiconductor generándose así una corriente eléctrica capaz de circular por un circuito externo.

Las condiciones de funcionamiento de un módulo fotovoltaico dependen de algunas variables externas como la radiación solar y la temperatura de funcionamiento.

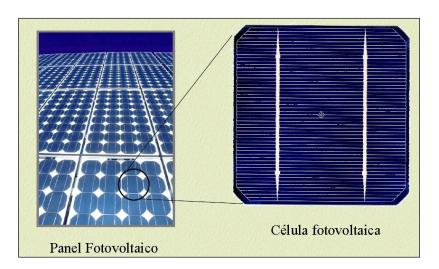


Ilustración 10. Imagen de una célula fotoeléctrica y de un panel fotovoltaico

La potencia de un panel fotovoltaico o de una instalación fotovoltaica se mide en kilovatios pico (kWp). La potencia pico es la potencia máxima de la instalación. Una instalación con una potencia de 1 kWp producirá 1 kW eléctrico cuando la radiación incidente sobre ella sea de 1 sol pico (1 kW/m²).

El ahorro económico vendrá dado por la energía que se generará a través de fuentes renovables y que se deja de demandar de la red.

Los elementos necesarios para llevar a cabo esta instalación son los siguientes:

- Panel fotovoltaico: convierte la luz solar en energía eléctrica.
- Estructura soporte. Mantiene el módulo y lo orienta en la dirección más adecuada.
- Inversor. Convierte la corriente continua a corriente alterna (los módulos fotovoltaicos generan electricidad en corriente continua) para su uso por los diferentes sistemas consumidores.
- Módulo de medida. Contador que registra la energía eléctrica vendida a la red.

Ilustración 11. Imagen de una instalación fotovoltaica estática

• Dimensionamiento de la instalación

Introducción

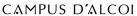
La legislación actual permite volcar parte de la energía generada a red, pero se debe pagar un peaje por verter esta energía. Por eso es interesante autoconsumir el máximo de energía.

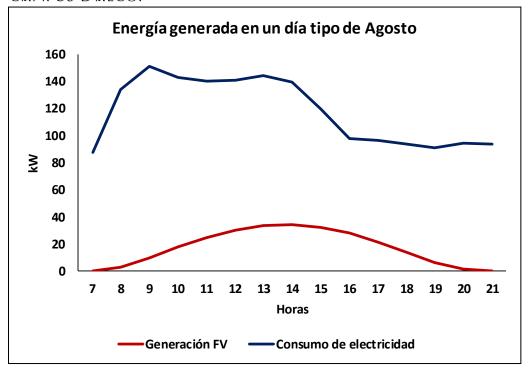
De este modo, se va a dimensionar la instalación de modo que la generación solar sea inferior en todo momento al consumo eléctrico de cada una de las naves.

Curva de carga

A partir de las lecturas del contador obtenidas con el lector óptico, se cuenta con la curva de carga, que puede verse en el punto 5.1. "Suministro de electricidad" del presente informe.

• Dimensionamiento. Tamaño óptimo


Para dimensionar las instalaciones se va a tener en cuenta lo siguiente:


- La generación será la máxima siempre que no se supere nunca la demanda de las instalaciones, de modo que se pueda autoconsumir la energía generada.
- La superficie de la instalación fotovoltaica no debe exceder la superficie disponible en la cubierta.

A partir de esta información, se determina la potencia óptima.

- Potencia pico propuesta = 50¹⁴ kWp para el conjunto de las instalaciones.
- En el gráfico que se muestra a continuación, puede verse la demanda y generación anual:

¹⁴ Potencia pico en base a la superficie disponible en la cubierta (550 m²).

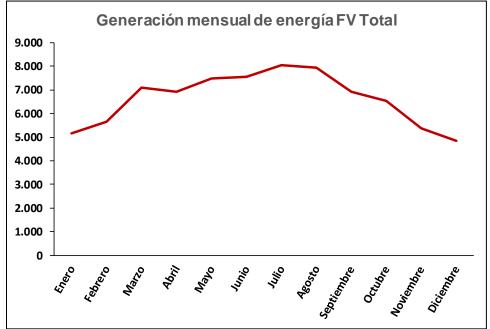
Gráfica 9. Potencia demandada y generación¹⁵

Puede comprobarse que la generación no supera la demanda eléctrica de la nave en ningún momento.

Resultados

Datos de la instalación propuesta para el centro

Potencia pico: 50 kWp


Número de módulos: 200

• Potencia de los módulos: 250 Wp

Inclinación de los módulos: 30°C

La generación mensual de energía de las instalaciones se muestra en la siguiente gráfica:

Gráfica 10. Generación mensual

La generación anual de energía es 79.552,5 kWh.

Localización

Se recomienda instalar los paneles fotovoltaicos en la cubierta de la nave almacén/vestario, con orientación sur. Para esta instalación de una potencia pico estimada de 50 kWp se necesita una superficie aproximada de unos 550 m² en la cubierta.

Ilustración 12. Zona optima para la ubicación de las placas fotovoltaicas

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

Los paneles fotovoltaicos irán sobre una estructura compuesta por perfiles metálicos de aluminio, diseñada para poder soportar cargas de viento y que dará la inclinación apropiada a los paneles para el mayor aprovechamiento de la radiación solar. Dicha estructura irá atornillada mediante fijaciones a la cubierta.

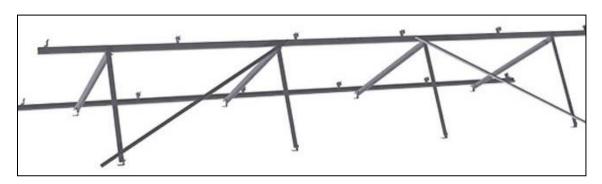


Ilustración 13. Ejemplo de estructura para placas fotovoltaicas en cubiertas planas

En la cubierta, se instalarían 200 módulos de 250 Wp, con una superficie total de 550 m², en los que se incluye la superficie de los paneles y la separación se seguridad entre ellos.

Para conseguir la mejor captación de luz y obtener el máximo rendimiento de los paneles solares es importante que se encuentren bien orientados, por lo que dichos paneles se orientarán hacia el sur.

• Configuración de la instalación

Para la presente instalación se han considerado unos equipos de las siguientes características

Inversor

Unidades: 1

o Potencia nominal: 50 kW

Paneles FV

Potencia pico: 250 Wp

Presupuesto

Tabla 26. Presupuesto

Coste unitario considerado	€/Wp	1,20		
Total	€	60.000		

Resultados energéticos y económicos

Como se ha comentado anteriormente el ahorro económico vendrá dado por la energía que se generará a través de fuentes renovables y que se deja de demandar de la red. Por ello, para el ahorro económico se ha tenido en cuenta un término unitario de la energía de 0,08 €/kWh.

Los resultados de la implantación de esta medida son los siguientes:

Tabla 27. M1 Instalación solar fotovoltaica en la nave I

M1 Instalación solar fotovoltaica en la nave l						
Ahorro						
Generació	Generación de energía Ahorro económico					
<u>kWh / año</u>	<u>%</u>	Eu / año				
79.553	13,79%	8.335€				
	Inversión					
Inmovilizado Mano de obra Total						
Eu	Eu	Eu				
48.000	12.000	60.000				
	Resultados econ	ómicos				
PRS	Vida útil	VAN				
años	años	Eu				
7,2	25	159.405				
	Resultados ambi	entales				
Reducción de emisiones contaminantes						
kg CO ₂ / año						
20.525						

7.2 DESCRIPCIÓN DE MEDIDAS DE AHORRO NO RECOMENDADAS

7.2.1 CLIMATIZACIÓN

7.2.1.1 Sustitución de caldera actual por una de condensación de gas natural

Las calderas de <u>condensación</u> son calderas de alto rendimiento (110% PCI) basadas en el aprovechamiento del calor de <u>condensación</u> de los humos de la combustión. Esta tecnología aprovecha el vapor de agua que se produce en los gases de combustión y lo devuelve en estado líquido.

Con una caldera clásica de tipo atmosférico, los productos de combustión rondan temperaturas del orden de 150°C, lo que implica que una parte no despreciable del calor latente es evacuada por los humos. La caldera de <u>condensación</u> recupera una parte muy importante de ese calor latente, reduciendo considerablemente la temperatura de las gases (65°C).

El ahorro que se obtiene es tanto energético como económico. El origen del ahorro energético viene determinado por el mayor rendimiento de la caldera de condensación, y el ahorro económico viene dado por el menor precio del gas natural frente al combustible actual.

La inversión se estudia teniendo en cuenta la sustitución de la caldera convencional de gasóleo por una caldera de condensación de gas natural con regulación electrónica y sonda de temperatura exterior, el

quemador del grupo térmico, la inertización del tanque de gasóleo, los materiales y medios auxiliares, la puesta en marcha, la mano de obra y otros costes indirectos.

Los resultados de la implantación de esta medida son los siguientes:

Tabla 28. Sustitución de la caldera actual por una de gas natural

Sustitución de la caldera actual por una de gas natural							
Ahorro							
Ahorro energético Ahorro económico							
kWh / año	%	Eu / año					
36.714	3,27	1.861					
	Inversión						
Inmovilizado Mano de obra Total							
Eu	Eu	Eu					
119.268	109.019	228.287					
	Resultados econo	ómicos					
PRS	Vida útil	VAN					
años	años	Eu					
122,6	25	-177.973					
	Resultados ambie	entales					
Reducción de emisiones contaminantes							
kg CO ₂ / año							
	32.595						

7.2.1.2 Sustitución de bombas de calor por otras de mayor rendimiento

Una bomba de calor es una máquina térmica que permite transferir energía en forma de calor de un ambiente a otro, según se requiera. Los equipos instalados actualmente son antiguos y presentan un rendimiento bajo, es por ello que se propone sus sutitución por otros más modernos de tipo Inverter que tienen un rendimiento superior.

La inversión necesaria se calcula como la suma de todos los costes existentes: costes de equipos, costes de mano de obra y costes de proyecto.

Los resultados de la implantación de esta medida son los siguientes:

Tabla 29. Sustitución bombas de calor actuales por bombas de calor eficientes

Sustitución bombas de calor actuales por bombas de calor eficientes						
Ahorro						
Ahorro energético Ahorro económic						
kWh / año	%	Eu / año				
4.131	0,37	455				
	Inversión					
Inmovilizado	Mano de obra	Total				
Eu	Eu	Eu				
27.974	7.955	35.928				
	Resultados económ	icos				
PRS	Vida útil	VAN				
años	años	Eu				
79,0	20	-26.255				
	Resultados ambient	ales				
Reduc	Reducción de emisiones contaminantes					
	kg CO ₂ / año					
1.066						

7.2.1.3 Sustitución de calefactores por bombas de calor

El uso de equipos como calefactores, radiadores eléctricos, resistencias eléctricas para calefacción supone un uso ineficiente de la energía, ya que existen equipos, como las bombas de calor, que tiene rendimientos mucho mayores y ofrecen un mayor confort.

Una bomba de calor es una máquina térmica que permite transferir energía en forma de calor de un ambiente a otro, según se requiera. Estos equipos presentan un rendimiento muy superior al de los equipos anteriormente mencionados, ya que no están basados en la generación de calor, sino en su transferencia.

La mayor eficiencia de estos equipos disminuirá el consumo energético y por lo tanto los costes económicos asociados.

La medida se ha estudiado asumiendo la instalación de una bomba de calor reversible de alta eficiencia energética (clase A) que pueda satisfacer las demandas térmicas de calor. El equipo también tendrá la posibilidad de cubrir la demanda de refrigeración, que actualmente está desatendida.

Los resultados de la implantación de esta medida son los siguientes:

Tabla 30. Sustitución de calefactores por bombas de calor

Sustitución de calefactores por bombas de calor						
Ahorro						
Ahorro e	Ahorro energético Ahorro económico					
kWh / año	%	Eu / año				
3.401	0,30	375				
	Inversión					
Inmovilizado	Mano de obra	Total				
Eu	Eu	Eu				
3.646	911	4.557				
R	esultados econ	ómicos				
PRS	Vida útil	VAN				
años	años	Eu				
12,2	20	3.282				
R	esultados ambi	entales				
Reducción de emisiones contaminantes						
kg CO₂ / año						
877						

7.2.1.4 Aislamiento del cuerpo de la caldera

El cuerpo de la caldera, salvo raras excepciones, se encuentra sin aislar lo que ocasionas pérdidas térmicas a través de ella, que aumentan el consumo energético. La instalación de un aislante en la parte trasera de la caldera o alrededor de la propia cámara de combustión interna, según modelo, ayudará a mejorar la eficiencia del sistema.

El aislamiento propuesto está compuesto por mantas armadas de lana de roca de 4 cm de espesor con una conductividad de 0,035 W/(m°K) apto para temperaturas máximas de 750°C y superficies irregulares.

Para el cálculo del ahorro energético se ha utilizado el software AISLAM, que es documento reconocido por el Ministerio de Industria para facilitar el cumplimiento de las exigencias del RITE. La inversión considerada en el cálculo incluye el coste del material, la mano de obra y otros costes indirectos.

Ilustración 14. Aislamiento tipo manta armada de lana de roca

Los resultados de la implantación de esta medida son los siguientes:

Tabla 31. Aislamiento del cuerpo de la caldera

Aislamiento del cuerpo de la caldera							
Ahorro							
Ahorro e	Ahorro energético Ahorro económico						
kWh / año	%	Eu / año					
1.800	0,16	68					
	Inversión						
Inmovilizado Mano de obra Total							
Eu	Eu	Eu					
1.403	2.201	3.604					
R	esultados econ	ómicos					
PRS	Vida útil	VAN					
años	años	Eu					
53,2	10	-2.897					
R	esultados ambi	ientales					
Reducción de emisiones contaminantes							
kg CO ₂ / año							
481							

7.2.2 EQUIPOS

7.2.2.1 Instalación de regletas eliminadoras de stand-by

Las regletas eliminadoras de stand-by son elementos destinados a reducir el consumo stand-by de los equipos electrónicos (principalmente equipos ofimáticos) que pueden desconectarse completamente de la red eléctrica.

Los eliminadores de stand-by miden la corriente que circula por los aparatos cuando están encendidos, de forma que cuando entran en stand-by detecta la disminución de consumo y corta el paso de corriente, apagándolos por completo. Al encenderlos el eliminador detecta la demanda de potencia y vuelve a conectar el paso de electricidad. Para ello el eliminador queda en modo de espera, por lo que es interesante que se utilice para desconectar varios aparatos a la vez.

La principal ventaja frente a las regletas convencionales de interruptor es que no necesitan la vigilancia permanente del usuario, por lo que se evitan las situaciones de olvido en las que quedaban los equipos encendidos.

El ahorro energético de aplicar esta medida estará dado por la disminución del tiempo que los equipos se encuentran en modo stand-by. La inversión que se ha considerado para el cálculo de los ahorros

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

incluye el coste de la regleta eliminadora de stand-by. No se considera coste asociado a la mano de obra, ya que su instalación es muy sencilla.

Ilustración 15. Regleta con un maestro, cuatro esclavos y dos tomas convencionales

Los resultados de la implantación de esta medida son los siguientes:

Tabla 32. Instalación de regletas eliminadoras del stand-by

Instalación de regletas eliminadoras del stand-by					
Ahorro					
Ahorro energético Ahorro económico					
kWh / año	%	Eu / año			
1.406	0,13	155			
	Inversión				
Inmovilizado	Mano de obra	Total			
Eu	Eu	Eu			
386	0	386			
R	esultados econ	ómicos			
PRS	Vida útil	VAN			
años	años	Eu			
2,5	10	1.191			
R	lesultados ambi	entales			
Reducción de emisiones contaminantes					
kg CO ₂ / año					
363					

8 BUENAS PRÁCTICAS Y PROTOCOLOS DE ACTUACIÓN

8.1 REGULACIÓN DE LA TEMPERATURA DE LAS ESTANCIAS

La regulación de la temperatura en las distintas dependencias es un factor sobre el que se puede actuar para conseguir que el sistema de climatización del centro sea más eficiente.

El Consejo de Ministros en su sesión del 1 de agosto de 2008 aprobó el Plan de Activación del Ahorro y la Eficiencia Energética 2008-2011 que contiene 32 medidas, entre las que se encuentra la obligación

UNIVERSITAT POLITÈCNICA DE VALÈNCIA CAMPUS D'ALCOI

Proyecto Final de Grado en Ingeniería Eléctrica

de limitar las temperaturas a mantener en el interior de los establecimientos de edificios y locales climatizados destinados a usos administrativos, comerciales, culturales, de ocio y en estaciones de transporte, con el fin de reducir su consumo de energía. También propone la exhibición de la gama de temperaturas interiores registradas en los recintos de los edificios y locales que son frecuentados habitualmente por un número importante de personas o tienen una superficie superior a 1.000 m², reforzando de esta forma el Real Decreto 47/2007, de 19 de enero, por el que se aprueba el Procedimiento Básico para la certificación de eficiencia energética de edificios de nueva construcción, que sólo lo recomendaba.

Las medidas que se proponen en este Plan justifican que se haya aprobado el Real Decreto 1826/2009, de 27 de noviembre, por el que se modifica el Reglamento de Instalaciones Térmicas en los Edificios (RITE), aprobado por Real Decreto 1027/2007, de 20 de julio, y en concreto de su Instrucción Técnica IT-3 dedicada al mantenimiento y uso de estas instalaciones.

Dentro de esta Instrucción Técnica IT-3 se recoge en su apartado "I.T.3.8.2 Valores límite de las temperaturas del aire" lo siguiente:

La temperatura del aire en los recintos habitables acondicionados que se indican en la I.T. 3.8.1 apartado 2, y entre los que se encuentran los edificios administrativos, se limitará a los siguientes valores:

- La temperatura del aire en los recintos calefactados no será superior a 21 °C, cuando para ello se requiera consumo de energía convencional para la generación de calor por parte del sistema de calefacción.
- La temperatura del aire en los recintos refrigerados no será inferior a 26 °C, cuando para ello se requiera consumo de energía convencional para la generación de frío por parte del sistema de refrigeración.
- Las condiciones de temperatura anteriores estarán referidas al mantenimiento de una humedad relativa comprendida entre el 30% y el 70%.

A través de los datos de los termostatos tomados de las estancias se puede determinar el ahorro potencial a través de la regulación de la temperatura de las estancias, ya que por cada °C que se aumente la temperatura de consigna en refrigeración se puede ahorrar un 8% del consumo, mientras que por cada °C que se reduzca la temperatura de consigna en calefacción se puede ahorrar un 7% del consumo. Esta medida no lleva asociada ningún coste.

Partiendo de la hipótesis de que la temperatura de consigna de las estancias está por encima de lo recomendado en invierno con una consigna de 22,5°C y por debajo en verano, 24,5°C, se podría obtener un ahorro del 10,3% del consumo en invierno y del 11,8% en verano, lo que supone un ahorro energético de 110.115 kWh. La inversión que lleva aparejada esta medida es nula puesto que es meramente de gestión.

8.2 CONFIGURACIÓN CORRECTA DEL PROGRAMA ENERGY STAR

Los tres sistemas operativos más importantes actualmente; Windows, Mac OS X y Linux (en la mayoría de sus distribuciones) llevan implementados economizadores basados en el programa ENERGY STAR de la Agencia de Protección Ambiental de los Estados Unidos, creado en 1992 para promover los productos eléctricos con consumo eficiente de electricidad, reduciendo de esta forma las emisiones de gas de efecto invernadero por parte de las centrales eléctricas.

Ilustración 16. Logotipo del programa ENERGY STAR de ahorro energético en ordenadores

- Reducción de brillo en pantalla: el usuario puede establecer un tiempo de inactividad a partir del cual el ordenador atenúa el brillo del monitor, disminuyendo la potencia necesaria para alimentar el LCD.
- Apagado de pantalla: el usuario puede establecer un tiempo de inactividad a partir del cual el ordenador mandará una orden al monitor para que éste se apague, pasando al modo Standby.
- Poner el equipo en estado de suspensión: el usuario puede establecer un tiempo de inactividad a partir del cual el ordenador guarda su estado actual, detiene los discos duros y reduce su actividad hasta prácticamente su apagado total. Queda un remanente de alimentación hacia las memorias RAM, CPU y fuente de alimentación. En este estado el consumo total del ordenador es muy reducido. Cuando termina el periodo de inactividad, el ordenador vuelve a un estado exactamente igual al que tenía antes de la suspensión.
- Poner el equipo en estado de hibernación: el usuario puede establecer un tiempo de inactividad a partir del cual el ordenador guarda su estado actual y hace una copia del contenido de la memoria RAM en el disco duro, tras lo que el ordenador se apaga completamente. Al volver a iniciarlo, el usuario se encuentra con todas las aplicaciones abiertas en el estado en el que éstas se encontraban antes de hibernar. Este modo se suele usar para largos periodos de inactividad, consumiendo menos energía que en el modo suspensión y asegurándose de no

UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Proyecto Final de Grado en Ingeniería Eléctrica

CAMPUS D'ALCOI

perder ningún dato ante un corte de tensión o descarga completa de la batería en el caso de un portátil.

Gestionando eficientemente los equipos ofimáticos con este programa se puede conseguir un ahorro de 3.960 kWh. En cuanto a la inversión, es un programa implementado en todos los sistemas operativos, por lo que se considera gratuita.

9 CONCLUSIONES

9.1 MEDIDAS DE AHORRO ESTUDIADAS

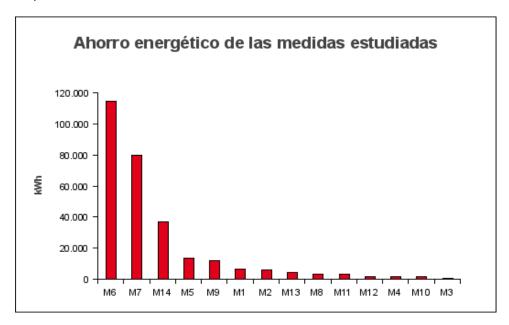
A continuación se presenta una tabla con los resultados energéticos de la totalidad de las medidas de ahorro analizadas en el presente estudio.

En la tabla se muestra la siguiente información:

- Ahorro energético. Se muestra el ahorro de energía generado por la medida.
- Ahorro económico. Se muestra el ahorro económico anual derivado de la implantación de la medida de ahorro.
- Inversión. Se muestra la inversión necesaria para implementar la medida de ahorro.
- Periodo de retorno simple de la inversión¹⁶. Se muestra en años el periodo que, debido al ahorro económico generado por la medida, lleva recuperar la inversión realizada para su implementación.
- Emisiones evitadas. Se muestran las emisiones de CO₂ evitadas debido a la disminución del consumo de electricidad generada por la medida

¹⁶En este apartado no se ha considerado la evolución de los precios de la energía

Tabla 33. Tabla resumen de medidas de ahorro estudiadas


Nº	Descripción de la mejora	Ahorro		Inversión	PRS	Emisiones	VAN	Vida útil	
N°		kWh / año	% Total	€ / año	€	años	kg CO₂ / año	€	años
M1	Instalación de detectores de presencia	6.686	0,60	813	1.750	2,2	1.725	6.533	10
M10	Instalación de regletas eliminadoras de stand-by	1.406	0,13	155	386	2,5	363	1.191	10
M2	Instalación de sobre-enchufes Plugwise	6.065	0,54	668	2.108	3,2	1.565	4.700	10
МЗ	Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313	0,03	46	253	5,5	81	213	10
M4	Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477	0,13	201	1.235	6,2	381	813	10
M5	Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305	1,19	1.718	11.926	6,9	3.433	5.611	10
M6	Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764	10,23	13.205	93.441	7,1	29.609	41.393	10
M7	Instalación fotovoltaica	79.553	7,09	8.335	60.000	7,2	20.525	159.405	25
M8	Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439	0,31	412	3.909	9,5	887	304	10
M9	Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955	1,07	1.414	13.643	9,6	3.084	813	10
M11	Sustitución de calefactores por bombas de calor	3.401	0,30	375	4.557	12,2	877	3.282	20

Nº	Descripción de la mejora	Ahorro			Inversión	PRS	Emisiones	VAN	Vida útil
IN ³	Descripcion de la mejora		% Total	€ / año	€	años	kg CO ₂ / año	€	años
M12	Aislamiento del cuerpo de la caldera		0,16	68	3.604	53,2	481	-2.897	10
M13	Sustitución de bombas de calor por otras de mayor rendimiento	4.131	0,37	455	35.928	79,0	1.066	-26.255	20
M14	Sustitución de caldera actual por una de condensación de gas natural	36.714	3,27	1.861	228.287	122,6	32.595	-177.973	25

En el gráfico que se muestra a continuación se compara el ahorro energético anual conseguido mediante la aplicación de las diferentes medidas.

Gráfica 11. Ahorro energético anual de las medidas de ahorro estudiadas en el centro

Tabla 34. Ahorro energético anual de las medidas de ahorro estudiadas en el centro

Nº	Descripción de la mejora	Ahorro de energía mejora (kWh/año)
M6	Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764
M7	Instalación fotovoltaica	79.553
M14	Sustitución de caldera actual por una de condensación de gas natural	36.714
M5	Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305
M9	Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955
M1	Instalación de detectores de presencia	6.686
M2	Instalación de sobre-enchufes Plugwise	6.065
M13	Sustitución de bombas de calor por otras de mayor rendimiento	4.131
M8	Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439
M11	Sustitución de calefactores por bombas de calor	3.401
M12	Aislamiento del cuerpo de la caldera	1.800
M4	Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477
M10	Instalación de regletas eliminadoras de stand-by	1.406
М3	Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313

9.2 MEDIDAS DE AHORRO RECOMENDADAS

A continuación se muestra una tabla con las medidas de ahorro que se proponen para su implementación.

De la totalidad de medidas estudiadas se recomienda la implementación de aquellas con un periodo de retorno inferior a 10,0 años.

Tabla 35. Tabla resumen de medidas de ahorro recomendadas en el centro

Nº	Departuaión de la majora		Ahorro		Inversión	PRS	Emisiones	VAN	Vida útil
N°	Descripción de la mejora	kWh / año	% Total	€ / año	€	años	kg CO₂ / año	€	años
M1	Instalación de detectores de presencia	6.686	0,60	813	1.750	2,2	1.725	6.533	10
M2	Instalación de sobre-enchufes Plugwise	6.065	0,54	668	2.108	3,2	1.565	4.700	10
МЗ	Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313	0,03	46	253	5,5	81	213	10
M4	Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477	0,13	201	1.235	6,2	381	813	10
M5	Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305	1,19	1.718	11.926	6,9	3.433	5.611	10
M6	Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764	10,23	13.205	93.441	7,1	29.609	41.393	10
M7	Instalación fotovoltaica	79.553	7,09	8.335	60.000	7,2	20.525	159.405	25
M8	Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439	0,31	412	3.909	9,5	887	304	10
M9	Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955	1,07	1.414	13.643	9,6	3.084	813	10

N ₀	Descripción de la mejora	Ahorro			Inversión	PRS	Emisiones	VAN	Vida útil
	Descripcion de la mejora	kWh / año	% Total	€/año	€	años	kg CO₂ / año	€	años
TOTAL		232.486,87 ¹⁷	20,7%	26.239	188.264	7,2	59.982	-	-

¹⁷ El ahorro total no es igual a la suma del ahorro de cada media, debido a que existen efectos cruzados entre ellas

El ahorro energético que se consigue mediante la implantación conjunta de todas las medidas de ahorro no es igual a la suma del ahorro individualizado de cada medida. En una instalación de este tipo el ahorro de la implantación del total de las medidas es inferior a la suma de los ahorros de cada una de ellas. Esto se debe a que algunas de las medidas recomendadas presentan efectos cruzados.

Dos medidas presentan efectos cruzados cuando afectan al mismo consumo. Cuando esto ocurra, el ahorro de la acción conjunta de las dos medidas será inferior a la suma de los efectos de cada una ellas.

Tabla 36. Ahorro energético anual de las medidas de ahorro en el centro

IMPLANTACIÓN CO	NJUNTA DE TODAS	LAS MEDIDAS DE AHORRO
Ahorro energético		Total
Allollo ellelgetico	[kWh/año]	232.487
Ahorro energético sobre el		Total
consumo total del centro	[%]	20,7
Emisiones evitadas	[kg CO ₂ / año]	59.982
Reducción de emisiones sobre el total	[%]	20,4
Ahorro económico	[€ / año]	26.239
Inversión necesaria	[€]	188.264
Periodo de retorno simple de la inversión	[Años]	7,2

Para los resultados que se muestran de ahora en adelante, se han tenido en cuenta los efectos de la implantación conjunta de todas las medidas de ahorro recomendadas.

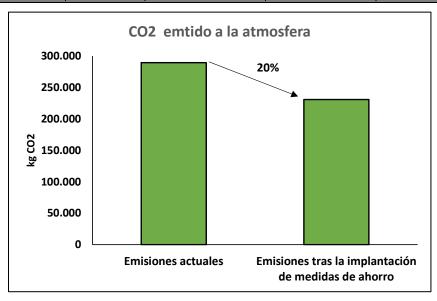
En la tabla que se muestra a continuación se puede ver el consumo total del centro anterior y posteriormente a la implantación de las medidas. Del mismo modo se muestra el coste energético actual y el que tendrá el centro tras la implantación de las medidas.

Tabla 37. Consumo y coste energético antes y después de la implantación de las medidas en el centro

Concepto	Unidades	Situación inicial	Situación ¹⁸ final	Ahorro
Consumo energético	[kWh / año]	1.121.684	889.197	232.487
Coste energético	[€ / año]	84.014	57.775	26.239

¹⁸ Después de la implantación de las medidas

_



9.3 REDUCCIÓN DE EMISIONES

A continuación se muestra una tabla y un gráfico con las emisiones contaminantes procedentes del consumo energético de las instalaciones, las que se emitirán tras la implantación de todas las medidas de ahorro y la disminución de emisiones que supondrá dicha implantación.

Tabla 38. Emisiones contaminantes actualmente y tras la implantación de las medidas

Contaminante	Unidades	Emisión por cons	sumo energético	Disminución
Contaminante	Unidades	Situación actual	Situación final ¹⁹	
Consumo energético	[kWh / año]	1.121.684	889.197	232.487
Emisiones de CO ₂	[kg / año]	294.299	234.317	59.982

Gráfica 12. Ahorro de emisiones de CO₂

9.4 PLAN DE ACTUACIÓN

El objetivo de un plan de actuación es optimizar el orden de las inversiones realizadas para poder llevarlas a cabo con un desembolso económico mínimo. Para conseguir esto se deben ordenar las inversiones en función de su rentabilidad, para aprovechar al máximo los ahorros que se consiguen con la implantación de las medidas.

El plan de actuación podría aplicarse de la siguiente manera. Se implantarán las medidas con mayores ahorros y periodos de retornos más cortos.

Se ha realizado una clasificación de las medidas según su periodo de retorno. Se han dividido en tres grupos: PRS menor de 3 años, PRS entre 3 y 7 años y PRS mayor de 7 años.

A continuación se van a clasificar las diferentes medidas en función de su rentabilidad:

¹⁹Después de la implantación de las medidas-

Medidas de ahorro con PRS menor de 3 años

Tabla 39. Medidas con PRS bajo

Nº	Resumen de medidas de ahorro	Ahorro de energía (kWh/año)	Ahorro económico anual (€/año)	Inversión asociada (€)	Periodo de retorno (años)
M1	Instalación de detectores de presencia	6.686	813	1.750	2,2

Medidas de ahorro con PRS entre 3 y 7 años

Tabla 40. Medidas con PRS medio

Nº	Resumen de medidas de ahorro	Ahorro de energía (kWh/año)	Ahorro económico anual (€/año)	Inversión asociada (€)	Periodo de retorno (años)
M2	Instalación de sobre-enchufes Plugwise	6.065	668	2.108	3,2
М3	Iluminación. Cambio de Potencia: Sustitución de lámparas halógenas por LED	313	46	253	5,5
M4	Iluminación. Cambio de Potencia: Sustitución de downlights por LED	1.477	201	1.235	6,2
M5	Iluminación. Cambio de Potencia: Sustitución de luminarias empotradas por LED	13.305	1.718	11.926	6,9

Medidas de ahorro con PRS mayor de 7 años

Tabla 41. Medidas con PRS alto

Nº	Resumen de medidas de ahorro	Ahorro de energía (kWh/año)	Ahorro económico anual (€/año)	Inversión asociada (€)	Periodo de retorno (años)
M6	Iluminación. Cambio de Potencia: Sustitución de proyectores por LED	114.764	13.205	93.441	7,1
M7	Instalación fotovoltaica	79.553	8.335	60.000	7,2
M8	Iluminación. Cambio de Potencia: Sustitución de tubos fluorescentes por LED	3.439	412	3.909	9,5

Nº	Resumen de medidas de ahorro	Ahorro de energía (kWh/año)	Ahorro económico anual (€/año)	Inversión asociada (€)	Periodo de retorno (años)
M9	Iluminación. Cambio de Potencia: Sustitución de pantallas estancas por LED	11.955	1.414	13.643	9,6

10 ANEXOS

10.1 CALEFACCIÓN

Tabla 42. Inventario equipos centralizados calefacción

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	VRF	Mitsubishi	1	56.500	3,73	15.150
Base de mantenimiento	Formación	0	Formación	VRF	Mitsubishi	1	25.000	4,24	5.900
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Calderas	Caldera	-	1	130.000	-	1.200
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Calderas	Caldera	-	1	130.000	-	1.200
Base de mantenimiento	Nave Taller	0	Taller	Generador de aire caliente	Wind	4	334.940	-	15.000
Base de mantenimiento	Nave Taller	0	Taller	Generador de aire caliente	Wind	4	140.000	-	6.000
Base de mantenimiento	Almacén	1	Vestuario Masculino	Aerotermo	-	3	400	-	400
Base de mantenimiento	Almacén	1	Vestuario Femenino	Aerotermo	-	3	400	-	400

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Almacén	0	Almacén	Aerotermo	•	2	400	-	400

Tabla 43. Inventario equipos individualizados calefacción

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Split	Daikin	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Bomba de calor (calor)	Daikin	1	3.400	3,70	920
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Split	Panasonic	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Bomba de calor (calor)	Panasonic	1	3.150	3,50	900
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Split	Carrier	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Bomba de calor (calor)	Carrier	1	2.900	3,63	800
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Cassette	Carrier Pura	1	-	-	50

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Bomba de calor (calor)	Carrier Pura	1	2.900	3,63	800
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Split	Carrier	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Bomba de calor (calor)	Carrier	1	2.900	3,63	800
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Cassette	Fujitsu	1	-	-	60
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Bomba de calor (calor)	Fujitsu	1	4.100	3,73	1.100
Base de mantenimiento	Seguridad en la Circulación	1	Seguridad en la Circulación	Split	-	2	-	-	50
Base de mantenimiento	Seguridad en la Circulación	1	Seguridad en la Circulación	Bomba de calor (calor)	-	1	3.200	4,00	800
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Split	-	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Bomba de calor (calor)	-	1	3.200	4,00	800
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Split	General	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Bomba de calor (calor)	General	1	3.200	4,00	800

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Radiador eléctrico	-	2	-	-	1.500
Base de mantenimiento	Formación	1	Oficina	Calefactor	-	2	-	-	2.000
Base de mantenimiento	Formación	1	Cuarto Técnico	Split	Mitsubishi	1	-	-	50
Base de mantenimiento	Formación	1	Cuarto Técnico	Bomba de calor (calor)	Mitsubishi	1	3.600	3,69	975
Base de mantenimiento	Nave Taller Eléctrico	0	Oficina 1	Calefactor	-	1	-	-	2.000

10.2 REFRIGERACIÓN

Tabla 44. Inventario equipos centralizados refrigeración

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)	Refrig.
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	VRF	Mitsubishi	1	50.400	3,43	14.700	R410A
Base de mantenimiento	Formación	0	Formación	VRF	Mitsubishi	1	22.400	3,80	5.900	R410A

Tabla 45. Inventario equipos individualizados refrigeración

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Split	Daikin	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Bomba de calor (frío)	Daikin	1	2.500	3,64	685
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Split	Panasonic	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Bomba de calor (frío)	Panasonic	1	2.500	3,13	800
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Split	Carrier	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Bomba de calor (frío)	Carrier	1	2.700	3,00	900
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Cassette	Carrier Pura	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Bomba de calor (frío)	Carrier Pura	1	2.700	3,00	900
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Split	Carrier	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Bomba de calor (frío)	Carrier	1	2.700	3,00	900
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Cassette	Fujitsu	1	-	-	60

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Bomba de calor (frío)	Fujitsu	1	3.500	3,33	1.050
Base de mantenimiento	Seguridad en la Circulación	1	Seguridad en la Circulación	Split	-	2	-	-	50
Base de mantenimiento	Seguridad en la Circulación	1	Seguridad en la Circulación	Bomba de calor (frío)	-	1	2.500	3,57	700
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Split	-	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Bomba de calor (frío)	-	1	2.500	3,57	700
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Split	General	1	-	-	50
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Bomba de calor (frío)	General	1	2.500	3,57	700
Base de mantenimiento	Formación	1	Cuarto Técnico	Split	Mitsubishi	1	0	0,00	50
Base de mantenimiento	Formación	1	Cuarto Técnico	Bomba de calor (frío)	Mitsubishi	1	3.150	3,09	1.020
Base de mantenimiento	Almacén	0	Oficina	Bomba de calor (frío)	-	1	5.232	3,49	1.500
Base de mantenimiento	Almacén	0	Oficina	Bomba de calor (frío)	-	4	5.232	3,49	1.500

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia térmica (W)	Rto.	Potencia eléctrica (W)
Base de mantenimiento	Nave Taller Eléctrico	0	Oficina OPT	Bomba de calor (frío)	-	3	5.232	3,49	1.500
Base de mantenimiento	Nave Taller Eléctrico	0	Oficina 1	Bomba de calor (frío)	-	1	5.232	3,49	1.500

10.3 GENERACIÓN DE ACS

Tabla 46. Inventario equipos generación ACS

Centro	Zona	Planta	Estancia	Equipo	Marca / Modelo	Unid	Potencia eléctrica (W)
Base de mantenimiento	Nave Taller Eléctrico	0	Aseos	Termo eléctrico		1	1.300
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Calderas	Caldera	Hygis	1	1.200
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Calderas	Caldera	Hygis	1	1.200

10.4 EQUIPOS

Tabla 47. Inventario equipos

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Seguridad en la Circulación	0	Seguridad en la Circulación	Impresora pequeña	1	200	5
Base de mantenimiento	Seguridad en la Circulación	0	Seguridad en la Circulación	Ordenador+LCD	6	100	17
Base de mantenimiento	Edificio de Oficinas	0	Entrada	Puerta eléctrica	1	150	0
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Ordenador+LCD	5	100	17
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Impresora pequeña	2	200	5
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Multifunción	1	370	9
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Ordenador+LCD	7	100	17
Base de mantenimiento	Edificio de Oficinas	1	Pasillo	Fuente Agua	1	150	0
Base de mantenimiento	Edificio de Oficinas	1	Pasillo	Altavoz	1	20	0
Base de mantenimiento	Edificio de Oficinas	1	Pasillo	Impresora pequeña	1	200	5

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Multifunción	1	370	9
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 2	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 2	Impresora pequeña	1	200	5
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Escáner	1	30	9
Base de mantenimiento	Edificio de Oficinas	1	Oficina 4	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 5	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 5	Impresora pequeña	1	200	5
Base de mantenimiento	Edificio de Oficinas	1	Oficina 5	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 6	Ordenador+LCD	1	100	17

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Multifunción	2	370	9
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Impresora pequeña	1	200	5
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Microondas	1	2.000	0
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Cafetera	1	150	0
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Frigorifico pequeño	1	70	0
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Impresora pequeña	1	200	5
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Rack	1	150	0
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Multifunción	2	370	9
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Ordenador+LCD	2	100	17

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Escáner	1	30	9
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Plotter	1	150	3
Base de mantenimiento	Edificio de Oficinas	1	Aseo Masculino	Secador de manos	1	2.000	0
Base de mantenimiento	Edificio de Oficinas	1	Aseo Femenino	Secador de manos	1	2.000	0
Base de mantenimiento	Edificio de Oficinas	1	Despacho Jefe de Base	Ordenador+LCD	1	100	17
Base de mantenimiento	Edificio de Oficinas	1	Despacho Jefe de Base	Impresora pequeña	1	200	5
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Destructor de Papel	1	350	0
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Impresora pequeña	2	200	5
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Multifunción	1	370	9
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Frigorifico pequeño	1	70	0
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Extractor aseos	1	50	0

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Formación	1	Aulas	Proyector	1	400	5
Base de mantenimiento	Formación	1	Aulas	Ordenador+LCD	1	100	17
Base de mantenimiento	Formación	1	Aseos	Secador de manos	2	2.000	0
Base de mantenimiento	Formación	1	Pasillo y Escaleras	Fuente Agua	1	150	0
Base de mantenimiento	Formación	1	Cuarto Técnico	Impresora pequeña	1	200	5
Base de mantenimiento	Formación	1	Cuarto Técnico	Rack	1	150	0
Base de mantenimiento	Formación	1	Cuarto Técnico	Multifunción	1	370	9
Base de mantenimiento	Formación	1	Oficina	Ordenador+LCD	2	100	17
Base de mantenimiento	Depuradora	1	Depuradora	Bombas varias	4	750	0
Base de mantenimiento	Depuradora	1	Depuradora	Compresor pequeño	1	1.500	0
Base de mantenimiento	Almacén Pequeño	0	Almacén Pequeño	Granalladora	1	2.000	0

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Almacén	0	Oficina	Ordenador+LCD	1	100	17
Base de mantenimiento	Almacén	0	Aseo	Secador de manos	1	2.000	0
Base de mantenimiento	Almacén	0	Almacén	Fuente Agua	1	150	0
Base de mantenimiento	Almacén	0	Oficina	Ordenador+LCD	1	100	17
Base de mantenimiento	Almacén	0	Oficina	Impresora pequeña	1	200	5
Base de mantenimiento	Almacén	0	Oficina	Fax	1	100	4
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Calderas	Bombas varias	2	320	0
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Compresores	Compresor grande	1	55.000	0
Base de mantenimiento	Cuartos Técnicos	0	Cuarto de Compresores	Secador aire compriimido	1	2.400	0
Base de mantenimiento	Cuartos Técnicos	0	Centro de Transformación	Transformador	3	250.000	0
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Máquina de Información	1	60	13

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Máquina expendedora bebidas	1	600	0
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Máquina expendedora bebidas	1	600	0
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Amoladora	1	750	0
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Taladro	1	370	0
Base de mantenimiento	Nave Taller	0	Aseos	Secador de manos	1	2.000	0
Base de mantenimiento	Nave Taller	0	Oficina OPT	Ordenador+LCD	6	100	17
Base de mantenimiento	Nave Taller	0	Oficina OPT	Impresora pequeña	1	200	5
Base de mantenimiento	Nave Taller	0	Oficina OPT	Fax	1	100	4
Base de mantenimiento	Nave Taller	0	Oficina OPT	Multifunción	1	370	9
Base de mantenimiento	Nave Taller	0	Oficina OPT	Cafetera	2	150	0
Base de mantenimiento	Nave Taller	0	Oficina Técnico de Producción	Ordenador+LCD	1	100	17

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Nave Taller	0	Oficina Técnico de Producción	Fax	1	100	4
Base de mantenimiento	Nave Taller	0	Oficina 1	Ordenador+LCD	1	100	17
Base de mantenimiento	Nave Taller	0	Oficina 3	Ordenador portátil	1	40	8
Base de mantenimiento	Nave Taller	0	Sala de Aceite	Bombas varias	3	1.500	0
Base de mantenimiento	Nave Taller	0	Sala de Aceite	Bombas varias	1	250	0
Base de mantenimiento	Nave Taller	0	Taller	Gato de Uña 25 Tn	8	6.000	0
Base de mantenimiento	Nave Taller	0	Taller	Gato de Uña 15 Tn	2	5.000	0
Base de mantenimiento	Nave Taller	0	Taller	Puente Grúa 20 Tn	2	20.000	0
Base de mantenimiento	Nave Taller	0	Taller	Extractor de Gases	6	250	0
Base de mantenimiento	Nave Taller	0	Taller	Prensa	1	2.200	0
Base de mantenimiento	Nave Taller	0	Taller	Puente Grúa 10 Tn	1	10.000	0

Centro	Zona	Planta	Estancia	Equipo	Unid	Potencia ON (W)	Potencia Stand-by (W)
Base de mantenimiento	Nave Taller	0	Taller	Puente Grúa 30 Tn	1	25.000	0
Base de mantenimiento	Nave Taller	0	Taller	Baja Bogies	1	11.000	0
Base de mantenimiento	Nave Taller	0	Taller	Plataforma Elevadora	2	14.400	0
Base de mantenimiento	Nave Taller	0	Taller	Soldadora	1	2.000	0
Base de mantenimiento	Nave Taller	0	Taller	Carretilla eléctrica	1	14.400	0
Base de mantenimiento	Nave Taller	0	Taller	Carretilla diesel	1	29.100	0

10.5 ILUMINACIÓN

Tabla 48. Inventario y propuestas iluminación

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Seguridad en la Circulación	0	Seguridad en la Circulación	Empotrada	Fluorescen te T8	18	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Edificio de Oficinas	0	Seguridad en la Circulación	Downlight	LED	3	1	15	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	0	Sala de Usos Multiples	Empotrada	LED	4	1	40	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	0	Aseos	Downlight	LED	3	1	15	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	0	Pasillo	Downlight	LED	6	1	15	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Empotrada	LED	18	1	40	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	0	Servicios Médicos	Downlight	LED	7	1	15	Driver	-	-
Base de mantenimiento	Edificio de Oficinas	1	Comedor	Regleta	Fluorescen te T8	14	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Comedor	Empotrada	Halógena dicroica	6	1	20	Trafo electromag nético	LEDSpot MR16 12V. 207 Im	-
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Decorativa	Fluorescen te T8	2	1	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Empotrada	Fluorescen te T8	8	3	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Edificio de Oficinas	0	Sindicato	Empotrada	Fluorescen te T8	4	4	36	Balasto electromag nético	Panel LED empotrad o 6000 lm/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Pasillo	Empotrada	Fluorescen te T8	11	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	LRM 1020 Detector Occuswitc h, pasillos
Base de mantenimiento	Edificio de Oficinas	1	Oficina 1	Empotrada	Fluorescen te T8	2	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Oficina 2	Empotrada	Fluorescen te T8	2	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 3	Empotrada	Fluorescen te T8	3	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 4	Empotrada	Fluorescen te T8	2	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 5	Empotrada	Fluorescen te T8	2	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 6	Empotrada	Fluorescen te T8	2	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Empotrada	Fluorescen te T8	9	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 7	Empotrada	Fluorescen te T8	2	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Empotrada	Fluorescen te T8	3	4	36	Balasto electromag nético	Panel LED empotrad o 6000 lm/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 8	Empotrada	Fluorescen te T8	1	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Edificio de Oficinas	1	Oficina 9	Empotrada	Fluorescen te T8	4	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Archivo	Adosada	Fluorescen te T8	2	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Archivo	Empotrada	Fluorescen te T8	1	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Edificio de Oficinas	1	Sala Técnica	Empotrada	Fluorescen te T8	1	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Sala de Reuniones 1	Empotrada	Fluorescen te T8	3	4	36	Balasto electromag nético	Panel LED empotrad o 6000 lm/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Sala de Reuniones 1	Empotrada	Fluorescen te T8	3	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	1	Aseo Masculino	Empotrada	Fluorescen te T8	4	4	18	Balasto electromag nético	Panel LED 3400 Im	LRM 1000 Detector Occuswitc h, aseos y aulas

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Aseo Femenino	Empotrada	Fluorescen te T8	4	4	18	Balasto electromag nético	Panel LED 3400 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Edificio de Oficinas	1	Despacho de Jefe de Base	Empotrada	Fluorescen te T8	4	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	0	Entrada	Empotrada	Fluorescen te T8	1	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Edificio de Oficinas	0	Escaleras	Decorativa	Fluorescen te compacta no integrada	1	1	26	Balasto electromag nético	-	-
Base de mantenimiento	Edificio de Oficinas	0	Escaleras	Empotrada	Halógena dicroica	4	1	20	Trafo electromag nético	LEDSpot MR16 12V. 207 Im	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Edificio de Oficinas	1	Entrada	Empotrada	Fluorescen te T8	1	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Formación	1	Aulas	Empotrada	Fluorescen te T5	11	4	14	Balasto electrónico	Panel LED 3400 Im	-
Base de mantenimiento	Formación	1	Aseos	Empotrada	Halógena dicroica	8	1	20	Trafo electromag nético	LEDSpot MR16 12V. 207 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Formación	1	Pasillo y Escaleras	Downlight	Fluorescen te compacta no integrada	19	2	26	Balasto electromag nético	Downlight LED 2100 Im	LRM 1020 Detector Occuswitc h, pasillos
Base de mantenimiento	Formación	1	Pasillo y Escaleras	Aplique	Fluorescen te compacta no integrada	2	2	26	Balasto electromag nético	-	-
Base de mantenimiento	Formación	1	Pasillo y Escaleras	Empotrada	Fluorescen te T5	2	4	14	Balasto electrónico	Panel LED 3400 lm	LRM 1020 Detector Occuswitc h, pasillos

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Formación	1	Cuarto Técnico	Empotrada	Fluorescen te T5	2	4	14	Balasto electrónico	Panel LED 3400 Im	-
Base de mantenimiento	Formación	1	Oficina	Empotrada	LED	3	1	15	Driver	-	-
Base de mantenimiento	Depuradora	0	Depuradora	Regleta	Fluorescen te T8	2	1	58	Balasto electromag nético	LedTUBE 1500mm. 2000 lm	-
Base de mantenimiento	Exterior	0	-	Proyector	Halogenur o metálico	30	1	400	Balasto electromag nético	Proyector LED 19360 lm	-
Base de mantenimiento	Exterior	0	-	Proyector	Halogenur o metálico	10	1	400	Balasto electromag nético	Proyector LED 19360 lm	-
Base de mantenimiento	Exterior	0	-	Proyector	Halogenur o metálico	10	1	400	Balasto electromag nético	Proyector LED 19360 lm	-
Base de mantenimiento	Almacén	0	Oficina	Empotrada	Fluorescen te T8	2	4	18	Balasto electromag nético	Panel LED 3400 Im	-
Base de mantenimiento	Almacén	0	Oficina	Decorativa	Fluorescen te T8	1	1	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Almacén	0	Aseo	Adosada	Fluorescen te T8	2	2	18	Balasto electromag nético	LedTUBE 600mm. 800 lm	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Almacén	0	Almacén	Campana	Fluorescen te	3	1	80	Balasto electromag nético	Proyector LED 4000 Im	-
Base de mantenimiento	Almacén	0	Almacén	Campana	Vapor sodio alta presión	1	1	250	Balasto electromag nético	Campana LED 10500 lm	-
Base de mantenimiento	Almacén	0	Almacén	Pantalla estanca	Fluorescen te T8	74	1	36	Balasto electromag nético	Pantalla Estanca LED 1200 mm. 2200 Im	-
Base de mantenimiento	Almacén	1	Oficina	Regleta	Fluorescen te T8	8	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Almacén	1	Oficina	Decorativa	Fluorescen te T8	2	1	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Almacén	1	Vestuario Masculino	Pantalla estanca	Fluorescen te T8	30	1	36	Balasto electromag nético	Pantalla Estanca LED 1200 mm. 2200 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Almacén	1	Vestuario Femenino	Pantalla estanca	Fluorescen te T8	30	1	36	Balasto electromag nético	Pantalla Estanca LED 1200 mm. 2200 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Campana	Vapor mercurio	15	1	80	Balasto electromag nético	Proyector LED 4000 Im	-
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Campana	Fluorescen te	6	1	80	Balasto electromag nético	Proyector LED 4000 Im	-
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Decorativa	Fluorescen te T8	2	1	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Regleta	Fluorescen te T8	2	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Nave Taller	0	Taller Pequeño	Regleta	Fluorescen te T8	2	1	58	Balasto electromag nético	LedTUBE 1500mm. 2000 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Nave Taller	0	Aseos	Pantalla estanca	Fluorescen te T8	4	1	36	Balasto electromag nético	Pantalla Estanca LED 1200 mm. 2200 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Nave Taller	0	Aseos	Pantalla estanca	Fluorescen te T8	1	1	18	Balasto electromag nético	LedTUBE 600mm. 800 lm	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Nave Taller	0	Aseos	Empotrada	Halógena dicroica	4	1	20	Trafo electromag nético	LEDSpot MR16 12V. 207 Im	LRM 1000 Detector Occuswitc h, aseos y aulas
Base de mantenimiento	Nave Taller	0	Oficina OPT	Empotrada	Fluorescen te T8	6	4	36	Balasto electromag nético	Panel LED empotrad o 6000 Im/LED	-
Base de mantenimiento	Nave Taller	0	Oficina Técnico de Producción	Empotrada	Fluorescen te T8	12	3	18	Balasto electromag nético	LedTUBE 600mm. 800 lm	-
Base de mantenimiento	Nave Taller	0	Oficina Técnico de Producción	Adosada	Fluorescen te T8	2	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Nave Taller	0	Oficina Técnico de Producción	Proyector	LED	6	1	20	Driver	-	-
Base de mantenimiento	Nave Taller	0	Oficina 1	Empotrada	Fluorescen te T8	2	2	36	Balasto electromag nético	Empotrabl e LED 1200 mm. 3400 lm	-
Base de mantenimiento	Nave Taller	1	Oficina 2	Regleta	Fluorescen te T8	8	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Nave Taller	0	Oficina 3	Empotrada	Fluorescen te T8	2	4	18	Balasto electromag nético	Panel LED 3400 Im	•
Base de mantenimiento	Nave Taller	-1	Sala de Aceite	Pantalla estanca	Fluorescen te T8	2	1	36	Balasto electromag nético	Pantalla Estanca LED 1200 mm. 2200 Im	-
Base de mantenimiento	Nave Taller	-1	Cuarto de Herramientas	Regleta	Fluorescen te T8	6	2	36	Balasto electromag nético	LedTUBE 1200mm. 1600 lm	-
Base de mantenimiento	Nave Taller	0	Taller	Campana	Vapor mercurio	10	1	250	Balasto electromag nético	Campana LED 10500 lm	-

Centro	Zona	Planta	Estancia	Tipo Luminaria	Tipo Lámpara	Nº lum	Lámp por grupo	Pot. lámp (W)	Tipo equipo auxiliar	Propuest a potencia	Propuest a tiempo
Base de mantenimiento	Nave Taller	0	Taller	Proyector	Vapor sodio alta presión	46	1	80	Balasto electromag nético	Proyector LED 4000 Im	-
Base de mantenimiento	Nave Taller	0	Taller	Pantalla estanca	Fluorescen te T8	10	1	58	Balasto electromag nético	Pantalla Estanca LED 1500 mm. 3400 Im	-
Base de mantenimiento	Nave Taller	0	Taller	Campana	Vapor sodio alta presión	96	1	150	Balasto electromag nético	Campana LED 8130 Im	-