
Relevant Image Search Engine (RISE)

by

Franco Segarra Querol

Final Master Thesis submitted to

Departamento de Sistemas Informáticos y Computación
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Abstract

Digital image retrieval has attracted a surge of research interests in recent years. Most

existing Web search engines usually search images by text only. They have yet to

solve the retrieval tasks very effectively due to unreliable text information. Until now,

general image retrieval is still a challenging research task. In this work, we study

the methodology of cross-media retrieval and its effects on a tailor made visual search

engine.

Content Based Image Retrieval is a very active research topic which aims improving

the performance of image classification. This work shows how to build a content

based image retrieval engine. Later on several experiments consisting in changing

some parameters and adding new retrieval techniques will show how they affect the

global system.
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Chapter 1

Introduction

The number of images in internet is increasing rapidly due to the presence of digital

cameras and social networks. Since the speed on the Internet connection has raised,

it’s easier to access and share digital media such as photos or videos. In the modern

age it is now common-place for private individuals to own at least one digital camera,

either attached to a mobile phone, or as a separate device in its own right . The

ease with which digital cameras allow people to capture, edit, store and share high

quality images in comparison to the old film cameras, coupled with the low cost of

memory and hard disk drives, has undoubtedly been a key driver behind the growth

of personal image archives. Furthermore, the popularity of social networking websites

such as Facebook and Myspace, alongside image sharing websites such as Flickr (see

Figure 1.1) has given users an extra incentive to capture images to share and distribute

amongst friends all over the world [42]. For this reason the correct classification and

storage of images in the net is a studied fact nowadays. A normal person is able to

find a picture between a small amount of them but when the quantity increases to

thousands it can be a very hard effort. Computers are able to help humans in this

task by approaching through several ways. An example of this approach is the textual

description of images using text-based retrieval engines to complete the duty. But

it is not feasible to make the annotations of all images manually, and on the other

hand it is not possible to translate some images and specially abstract concepts in

words. There are other types of automatic annotation based on web page description

or context. Due to the rich content of images and the subjectivity of human perception

no textual description can be absolutely complete or correct [14]. In order to refine

the user search other image searching technique is needed:CBIR (Content Based Image

Retrieval). “Content-based” means that the search will analyze the actual contents of

the image. The term “content” in this context might refer to colors, shapes, textures,

or any other information that can be derived from the image itself. Given an image this

engine will return the most similar images attending to different requirements. This

method is object of study world wide and there exist a great number of databases for

this need.
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Figure 1.1: Flickr image growth over the past years.

Sometimes this systems may need the help of humans (users) in the process of se-

lecting the relevant documents from an initial set. This method is called Relevance

Feedback. Relevance feedback is a feature of some information retrieval systems. The

idea behind relevance feedback is to take the results that are initially returned from a

given query and to use information about whether or not those results are relevant to

perform a new query. The problem of search and retrieval of images using relevance

feedback has attracted tremendous attention in recent years from the research commu-

nity. A real-world-deployable interactive image retrieval system must (1) be accurate,

(2) require minimal user-interaction, (3) be efficient, (4) be scalable to large collections

(millions) of images, and (5) support multi-user sessions. For good accuracy, it needs

effective methods for learning the relevance of image features based on user feedback.

Efficiency and scalability require a good index structure for retrieving results. The

index structure must allow for the relevance of image features to continually change

with fresh queries and user feedback [41].

A correct solution of this problem can lead to a solution in many different fields.

Some applications where is applied and requested nowadays are security; image compar-

ison for corporate security and law enforcement investigations, media archives; retrieve

and manage visual assets, scientific imaging; retrieve and classify images with respect

to specific visual content, art collections, medical diagnosis, architectural and engi-

neering design and many more. In CBIR, there are, roughly speaking, two different
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main approaches: a discrete approach and a continuous approach [13]. (1) The discrete

approach is inspired by textual information retrieval and uses techniques like inverted

files and text retrieval metrics. This approach requires all features to be mapped to

binary features; the presence of a certain image feature is treated like the presence of

a word in a text document. (2) The continuous approach is similar to nearest neigh-

bor classification. Each image is represented by a feature vector and these features

are compared using various distance measures. The images with lowest distances are

ranked highest in the retrieval process.

Image retrieval procedures can be divided into two separate options: query-by-text

(QbT) and query-by-example (QbE). In QbT, queries are texts and targets are images.

That is, QbT is a cross-medium retrieval. In QbE, queries are images and targets

are images [30]. The text based approaches apply regular text retrieval techniques

to images annotations or descriptions. The content-based approaches apply image

processing techniques to extract image features and retrieve relevant images [67]. The

goal of the photographic retrieval task is to find as many relevant images as possible

from an image collection given a statement describing a user information need. When

text retrieval and image retrieval cooperate when searching a unique solution it is called

fusion or multi modal retrieval. The fusion between image retrieval and text retrieval

can happen in many different moments, and depending on these we can have very

different solutions. In other chapters some techniques will be explained and finally one

of them will be selected to be used on the final version of the engine.

1.1 State of the Art

Among the first content based image retrieval systems that were available were the

QBIC system from IBM [25] and the Photo book system from MIT [48]. QBIC uses

color histograms, a moment based shape feature, and a texture descriptor. Photo

book uses appearance features, texture features, and 2D shape features. Another well

known system is Blob world [5], developed at UC Berkeley. In Blob world, images

are represented by regions that are found in an Expectation-Maximization-like (EM)

segmentation process. In this systems, images are retrieved in a nearest-neighbor-

like manner, following the continuous approach to CBIR. Other systems following this

approach include SIMBA [59], CIRES [31], SIMPLIcity [65], and IRMA [35]. Existing

commercial image search engines, such as Google image search, Lycos, AltaVista photo

finder, use text-based image retrieval technique, i.e. without considering image content

and relying on text or keywords only, to look for images on the web. The retrieval

model for text retrieval is different from image retrieval. Images are represented by

low-level features like color, texture, region-based, shape-based descriptors or salient

point descriptor and more. Meanwhile, text documents are represented by the term

weight features.

In fact, recently Google Labs has launched an application for Google Images called

7



Similar Image Search based on CBIR [1] probably using local features, also FIRE

Flexible Image Retrieval Engine by Thomas Deselears works similarly as what it is

done in this work [16], Flickr has an application named Xcavator [2], INRIA has a

project named Imedia based on a visual search engine and soon the rest of search

engines will follow the same path (Yahoo!,Altavista). Some other engines such as

VAST, use a semantic network and relevance feedback based on visual features to

enhance keyword-based retrieval and update the association of keywords with images

[32].

1.2 Goal of this work

The purpose of this work is to build a cross-media retrieval search engine web demo

named RISE (Relevant Image Search Engine) with images annotated automatically.

In this engine the user will start by introducing a query and will end with a certain

number of images relevant to its query. The different possibilities in feature extraction,

distance methods and retrieval techniques will be tested and explained. When building

the web demo we will explain how to automatically download and tag the images. This

images are saved in a huge database. We will talk about the importance of having this

database tidy and clean so that the user can easily query it. In this demo the user will

help in the process of selecting the correct images (Relevance Feedback).

One of the most interesting issues in multimedia information retrieval is to use

different modalities (e.g. text, image) in a cooperative way. We will test this differ-

ent modalities with relevance feedback presenting a Multimodal Relevance Feedback

approach. Our goal is to explore how the output of an image retrieval system in coop-

eration with the annotated text may help the user. The hypothesis is that two images

which are visually similar share some common semantics. Finally we will present sev-

eral experiments demonstrating how different the queries can be and how using several

modalities helps the system perform with a greater precision.
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Chapter 2

Image and Text Representation

In image retrieval there exist many different types of features one can extract from the

pictures. For a web demo like ours with a great amount of images in the database, it

is important to select a method which is fast and accurate. Features can be catego-

rized into the following types:(a) color representation, (b) texture representation, (c)

local features and (d)shape representation. In previous work [56], (a), (b) and (c) are

implemented and explained. The different distance method functions used to compare

images or text are greatly influenced by the representation, causing a difference in the

performance of the system. Next we will present some representations and we will

choose the best option for the web demo.

2.1 Color Histograms

In order to represent an image, one of the most common approaches is color histogram

representation. Each image can be represented as a vector where each position is

the quantity of color in the image. Color Histograms are perhaps one of the most

basic approaches as well as the baseline for many image retrieval systems. Despite

its simplicity they obtain a high precision for some of the databases used, as we will

observe later on. Histograms are independent from size of images since every histogram

is normalized previously.

2.1.1 Unquantified

This type of color histograms are the easiest to obtain but not the most accurate. Once

the image is built in matrix form, we will construct a vector where first 256 positions

correspond to red, next 256 to green and last 256 to blue. Therefore the vector will

have a total of 768 positions. Purple color for example, has a red, green and blue

component so first step is detecting the value of each of this 3 colors. Next step will

be to examine the color matrix and assign a position in the final vector for each of
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the pixels. For the purple pixel in the example, the red, green and blue component

is selected and its value in the vector is increased. If all the values in the vector are

added they will be 3 times more than the total number of pixels in the image. Last

step will be to normalize the vector dividing by the total number of pixels, this way

the vector is no longer exposed to different size of images and now will have a measure

of proportion. For the rest of the text, this feature will be named as Histogram.

This is equal to getting three different color histograms separately and putting one

after the other. This kind of histograms have a main problem: each color component

is treated separately from the others and this may lead to erroneous results.

2.1.2 Quantified

As we previously saw, treating color histograms individually can lead to several prob-

lems. By making multi-dimensional quantified histograms this problems disappears

completely and it helps in making a more trusted vector representation. In order to

understand this concept much better it is important to see the color map as a cube,

because there are three primary colors (red, green, blue), an object that represents the

colors must be a three-dimensional object. Red is represented in the height dimension,

blue in the width dimension and green in the depth dimension.

The cube has 256 possible values per dimension which allows over 16 million differ-

ent colors (16777216). The most accurate possible vector representation occurs when

each position corresponds to a color, but this leads to a huge vector where mainly all

the positions will be zeros(sparse vector). A variation in any of the pixels makes a

complete different color although visually is nearly impossible to say. This leads to the

color space partitioning method. The process consists in partitioning each color into

a number chosen by the user and then counting the number of pixels in this range.

Perceptually, the color space is divided so it no longer consists on 256 values per di-

mension. Each dimension is sliced and it now forms a color space with a lower number

of colors than before as in Fig.2.1.

This way all the values from the same range are considered as the same color. When

choosing a pixel from the original image it is located on the new color space and its

new value is assigned. When making multi-dimensional quantification, this color space

is reduced and vector is less sparse.

2.1.3 Example

For 8 quantification we divide 256 color space in 32 parts each of size 8(positions 0 to

7). For example for pixel (17 19 16) we will add 1 to position (2x32x32)+(2x32)+2

since 17 falls into range 2 (16 to 23) and so does 19 and 16. From now on Q8 will be

used to name the histograms with 8 quantification, Q16 for 16 quantification and so
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Figure 2.1: Sliced representation of color space for quantified histograms.

Quantification Vector Length

1 16777216

8 32768

16 4096

32 512

64 64

Table 2.1: Vector Size when Partitioning.

on.

Position =
2∑

x=0

bV [x]

q
c
(

256

q

)2−x

(2.1)

Where q in Eq.2.1 stands for the range of values of each color and x for the position

of red, green and blue in each pixel. In this case we do take advance of color properties

to create the vector since what this more or less means, is that each different color is

made out of q values. The quantification number is very important since it can lead

to a sparse vector in case the chosen number is really small or to misclassification and

confusion if it is too big as seen in Table 2.1.

The Table 2.1 is really important, since we are not only looking at precision but also

at computational time. The user wants its query to be answered as soon as possible.
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2.2 Tamura Features

Texture is a key component of human visual perception and like color it is an essential

feature when querying image databases [28]. It is very hard to describe texture in words

but we can say that texture involves informal qualitative features such as coarseness,

smoothness, granularity, linearity, directionality, roughness and regularity [29]. After

several studies authors determined that the only meaningful and computable features

where coarseness, directionality and contrast. All the different textures stated by

Tamura can be seen in Fig.2.2.

Coarse Fine Rough Smooth

Directional Non-Directional Regular Irregular

High Contrast Low Contrast Line-like Blob-like

Figure 2.2: Example of Different Textures.

2.3 Histogram Layout

As a particular case of Color Histograms, this representation extracts information of

certain parts of an image. This is, it divides the image in different regions and creates

sub images. Later on, an independent histogram is extracted from each of this sub

images. The main goal of this system is to use position information of images as well

as color.

We can observe how throughout this process there are many adjustments that can
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be made. The number of sub images is definitely very important. Given a photo we

have to decide in how many sub images it is going to be partitioned. For example,

given a photo if it is divided in 9 sub photos and we take a look at each one of them,

we may not appreciate any object if the main photo is too zoomed. In the other hand,

a more detailed image may show complete different objects or scenes in each one of

the sub images. Therefore this means that each picture may need a different partition

number for it does not exist a fixed number of subimages for all the pictures. A more

visual example explaining how the number of images affect the final precision can be

seen in Fig. 2.3.

 60

 65

 70
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 85

2x2 3x3 4x4 5x5 8x8 16x16

P
re

ci
si

on
@

 1
(%

)

Number of Sub images

Corel Database-Histogram Layout Comparison

Euclidean
Jensen-Shannon
Kullback-Leibler

Figure 2.3: Precision@1 for Histogram Layout using Corel Database as seen in [56].

Each number in the x-axis represents the total number of subimages. The different

lines represent different distance measures.

A first approach to this method will be to simply divide each image in different

sub images and extract the color histogram of each one of them and create a large

vector with all the histograms of the image. Then, knowing the number of sub images,

compare this large vector of histograms with all the others. What this means is that

each of the sub images will only be compared to the one on the same position in

different images.
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2.4 Local Features

In a similar way to Histogram Layout, Local Features extract partial information of an

image. But in this case much more detail is extracted. The main goal of this feature

is to compare the different details that appear in all the images.

In this way there is no longer interest in the whole image but in very small regions.

So if this small regions are mainly present in other image as well it is probable that

they pertain to the same class. This will happen in cases like taking a photo of the

same object from different angles, light, position, distance, or cameras, where as before

it was not similar at all. In this case the important information relies on those little

parts of the image.

This type of descriptor is more common in object recognition task. Object Recogni-

tion and CBIR are closely related fields and for some retrieval tasks, object recognition

might be the only feasible solution [16]. This features are part of invariant features. A

feature is called invariant with respect to certain transformation if it does not change

when these transformations are applied to the image. The transformations considered

here are rotation, scaling and translation.

The classification process with local features is a two step process: the training

phase and the testing phase. In the training phase, local features are extracted from

all of the training images, resulting in a huge amount of local features. Then PCA

dimensionality reduction is applied. Although precision results for local features is

higher than any other method, it is a 2 step process and it makes the comparison

slower [56].

2.5 Local Color Histograms

Similar to what is done in local feature’s approach, this time the intent is to select a

portion of the image and later on extract the color histogram of this portion. What is

obtained here is a bit different than before for local feature. By obtaining a histogram

there is no importance on the position of each pixel and color so the comparison is

between the colors of the parts of an image. The window size therefore, can be a bit

bigger since the histogram is invariant to position, and the size of each patch (local

feature) will also be less. Before the window size of 11x11 created an output of 363

bins while now the vector will be formed by 64 bins. Quantified Histograms are used

to extract the main features of each patch and 64 Quantification was chosen to be the

final size of the histogram since the results are really close to those with 512 bins and

it weighs much less.
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2.6 GIST Descriptor

The GIST descriptor was initially proposed in [45]. The idea is to develop a low dimen-

sional representation of the scene, which does not require any form of segmentation.

The authors propose a set of perceptual dimensions (naturalness, openness, roughness,

expansion, ruggedness) that represent the dominant spatial structure of a scene. They

show that these dimensions may be reliably estimated using spectral and coarsely lo-

calized information. The image is divided into a 4-by-4 grid for which orientation

histograms are extracted. Note that the descriptor is similar in spirit to the local SIFT

descriptor [38]. GIST descriptor is more focused to scene recognition.

2.7 TF-IDF

The TF-IDF representation (term frequency-inverse document frequency) is a well-

known method for text-based retrieval [27]. In general, a document and a query can

be represented as a term frequency vector d = (x1, x2, ..., xn) and q = (y1, y2, ..., yn)

respectively, where n is the number of total terms, xi and yi are the frequency (counts)

of term ti in the document vector d and query vector q, respectively. In a retrieval

task, given a document collection C, the IDF of a term t is defined by log(N/nt),

where N is the total number of documents in C, and nt is the number of documents

that contain the term t. For the TF-IDF representation, all terms in the query and

documents vectors are weighted by the TF-IDF weighting formula,

d = (tfd(x1)idf(t1), tfd(x2)idf(t2), ..., tfd(xn)idf(tn)) (2.2)

and

q = (tfq(y1)idf(t1), tfq(y2)idf(t2), ..., tfq(yn)idf(tn)) (2.3)

For a simple TF-IDF retrieval model, one simply takes tfd(xi) = xi. In our case we

are going to use something similar to the TF-IDF representation. It uses the counts

of the different terms but it does not use the inverse document frequency since we

do not have all the vocabulary to find this value. This experimental representation is

explained later on.
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Chapter 3

Relevance Feedback

Relevance feedback enables the user to iteratively refine a query via the specification

of relevant items. By including the user in the loop, better search performance can be

achieved. Typically, the system returns a set of possible matches, and the user gives

feedback by marking items as relevant or not relevant. In this particular case, the user

starts his query with an example image and is then presented with a set of hopefully

relevant images; from these images the user selects those images which are relevant

and which are not (possibly leaving some images unmarked) and then the retrieval

system refines its results, hopefully leading to better results after each iteration of user

feedback [47].

In RISE the user selects the images he/she likes to end up with a bunch of similar

images. Those images marked by the user are considered as relevant. On the other

hand, those images that remain unmarked are considered non relevant. This is a really

important fact since many authors consider another state in the image process; neutral.

We thought to delete this state so images can only be relevant or non relevant. Relevant

and non relevant images are stored for each user query. Let U be the universal set of

images and let C ⊂ U be a fixed, finite collection of images. The initial query image

proposed by the user is q ∈ U . We assume the user has in mind some relevant set

of images R ⊂ C. This set is unknown and the systems objective is to discover n

images of it, among the images in C. The interactive retrieval process starts with the

user proposing a particular query image, q ∈ U . Then the system provides an initial

set X ⊂ C of n images that are similar to q according to a suitable distance measure.

These images are judged by the user who provides a feedback by selecting which images

are relevant (and, implicitly, which are not relevant). Such feedback information is used

by the system to obtain a new set of images X and the process is repeated until the

user is satisfied, which means that he/she considers all images X to be relevant.

At any step of this process, let the user feedback be denoted by F = (Q+
⋃
Q−) ∈

Cm, where m ≥ n is the number of images supervised by the user , Q+ ⊂ R are the

images that the user has considered to be relevant and Q− ⊂ CR are the images that

the user has considered to be non-relevant. Let CF = CF be the set of the images in
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the collection that have not been retrieved. Usually the initial query is considered to

be in the set of relevant images, q ∈ Q+ .

To optimize the user experience, we need to maximize the probability that the

images in X are relevant according to F . That is, the images in X should be similar

to the images in Q+ (and may also be similar among each other) and different from

images in Q .

X = arg max
X∈Cn

Pr(X|C, q, F ) (3.1)

Simplifying the notations as explained in [47], the “relevance” of an image X could

be computed as:

Relevance(X) =

∑
q∈Q+ d(q, x)−1∑
q∈F d(q, x)−1

(3.2)

3.1 Distance Methods

It is necessary to have a certain measure to tell the quality of the system and to compare

several images or words and establish which is the most similar image or word given a

query. As it will be shown, distance methods play an important role in classification

since some may be more suitable for certain features than others.

3.1.1 Euclidean Distance

Euclidean distance or L2 is the most used distance and consist of the straight distance

between 2 points. The representation of all the points that have the same distance to a

particular point in 2-Dimension is a circle, as seen in Fig. 3.1, at 3-Dimension a sphere

and so on...

d2(x, y) =

√∑
d

(xd − yd)2 (3.3)

3.1.2 L1

Euclidean distance calculates squared differences, therefore it may depend too much

on those points far away separated. L1 is more equitative since it only adds differences

in absolute value.
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Figure 3.1: In 2 dimension, Euclidean distance has a circular appearance.

d1(x, y) =
∑
d

|xd − yd| (3.4)

3.1.3 L∞

L∞ only takes to account the maximum difference of 2 points in absolute value. This

distance will not be used but it is important to understand the relationship between

L1 and L2.

d∞(x, y) = max
d
|xd − yd| (3.5)

Figure 3.2: Relations amongst L1, L2 and L∞ distance [7].
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3.1.4 Jensen-Shannon

This method is commonly used in probability and statistics, and measures the similarity

between 2 distributions. In this case we will use it in histograms to determine the degree

of likeness. There are several approaches of implementing this algorithm in case it has

a 0 denominator. Some authors choose to discard that point in histogram, while others

smooth to 0.001. Both Jensen-Shannon and Kullback-Leibler techniques will be to

smoothed in 0-denominator case for the rest of the work.

dJSD(H,H ′) =
M∑
m=1

Hm log
2Hm

Hm +H ′m
+H ′m log

2H ′m
Hm +H ′m

(3.6)

Where H and H ′ are the histograms compared and m is the number of bins in the

vector.

3.1.5 Kullback-Leibler

Kullback-Leibler is the non-symmetric approach of Jensen-Shannon.

dKL(H,H ′) =
M∑
m=1

Hm log
2Hm

Hm +H ′m
(3.7)

3.1.6 Distortion

This type of distance is used when comparing Histogram Layouts. Histogram Layout’s

goal is to compare different small images at different positions that may have similar

appearances. But the distances viewed so far do not let the comparison of small regions

located at different positions. This method compares each sub image with the ones

near it and selects the smallest distance. It has no sense to compare all the sub images

appearing in a photo with all the other ones on another image since the cost of the

process will increase. By the way this solution allows similar objects or scenes to appear

in different positions on another image but still make possible to classify them to the

same class. Both histograms (color and texture) did not recorded any position of the

pixels and the comparison was made with respect to the colors or texture appearing in

the whole image. Histogram Layout extract color characteristics of a concrete zone in

the image and thus it was necessary to allow certain freedom when comparing different

portions of the images.
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3.1.7 Visual Word Distance

This distance was implemented further on and it is based on a threshold method. It

aims to be very fast in calculating the distance between 2 vectors and obtaining a good

result. It works for Local Feature vectors only since there is no sense in using it in

the rest of implemented methods. Once a threshold is defined, this algorithm takes

both vectors and compares position by position each one of them as in Fig.3.3. If both

positions compared are greater than the threshold defined it counts 1. Therefore what

here is really happening is that it is counting how many visual words are in common

between 2 images. The result will be positive and greater if it has many of them in

common. But the system works with distance so it is necessary to translate this answer

for the retrieval to work properly by making it negative. Therefore the more patches

in common, the less distance between them.

A variation of this method is used in the textual retrieval engine. It works the

same way but instead of having visual words (different patches) we have real weighted

keywords. The final result contains how many keywords match in both annotations.

Figure 3.3: Example of the visual word distance applied to 2 different vectors made

up of different local features

Upon all the different measures, Jensen-Shannon is the best for almost every dif-

ferent visual feature extraction technique as it is explained on my final degree thesis

[56]. Therefore the distance methods used for RISE are: word distance for the textual

retrieval engine and Jensen-Shannon distance for the image retrieval engine.

3.2 Evaluation Measures

Let the database {xi, ...xn} be a set of images represented by features. Given a query

image q each database image xi will be measured given a distance method d(q, xi).

Then the database is sorted according to the lowest distance first. To evaluate CBIR

there are 2 main measures; precision P and recall R.
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P =
NR

TR
(3.8)

R =
NR

TI
(3.9)

Where NR stands for number of relevant images retrieved, TR for total number

of images retrieved and TI for total number of relevant images. Precision and recall

are two widely used statistical classifications. Precision can be seen as a measure of

exactness or fidelity, whereas recall is a measure of completeness. Precision vs. Recall

can be explained as it follows:

Example: Asking for 10 objects, we obtain 6 correct results (from the same class)

and 4 wrong results. The desired class has 8 elements, so 2 wanted object did not show

up! We have a precision of 60 percent (6 out of 10) and a recall of 75 percent (6 out of

8). It becomes clear that the higher the recall, the lower the precision (if we want to

obtain all of the interesting results, we get quite a few wrong ones mixed in).

Precision and recall values are usually represented in a precision-recall graph R→
P (R) summarizing (R,P (R)) pairs for varying numbers of retrieved images. The most

common way to summarize this graph into one value is the mean average precision.

The average precision AP for a single query q is the mean over the precision scores

after each retrieved relevant item:

AP (q) =
1

NR

NR∑
n=1

Pq(Rn) (3.10)

Where Rn is the recall after nth relevant image was retrieved, NR is the number

of relevant images for the query. The mean average precision MAP is the mean of the

average precision scores of all the queries.

MAP (q) =
1

|Q|
∑
qεQ

AP (q) (3.11)

In other words, to obtain the MAP for a given query all the distances to the rest of

images have to be ordered using for example quick sort algorithm. Once this is made,

you have to find all the relevant images and divide by the position each one is found,

add all of them and divide by the total number of relevant images.

Having 5 relevant images for a query, we will have complete precision when in the

ordered vector of images the first 5 positions are the relevant images.

1

5

∑ 1

1
+

2

2
+

3

3
+

4

4
+

5

5
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Figure 3.4: Example explaining both mean average precision (MAP) and average

precision (AP).

The main advantage of using this metric is that it contains both precision and recall

aspects and it is sensible to the entire ranking.

Precision@Q is a measure of precision. Given a query image and a number of images

Q, precision is obtained dividing the number of relevant images retrieved between the

total number of images obtained Q.

Precision@Q =
1

|Q|
∑
qεQ

{1 if the most similar image is relevant

0 otherwise
(3.12)

In this case precision is measured, although it is very common to measure error by

doing 1− P (Q) where the most frequent Q number is 1, in order to retrieve the most

similar image for each query.
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Chapter 4

Multimodal Relevance Feedback

Most of research prototypes for web image retrieval use the interactive relevance feed-

back technique to integrate the keywords and visual features. They rely on the users to

complete the combination retrieval and thus add heavy burden to the users. Therefore,

the approach that can improve the retrieval accuracy of a search engine without any

user feedback is valuable [32].

One of the most interesting issues in multimedia information retrieval is to use

different modalities (e.g. text, image) in a cooperative way. The fusion between several

methods usually leads to better results in precision. Some queries may be solved by

just using visual information. If for example we think about “tigers”, the visual part is

really important and therefore the visual retrieval technique will perform much better.

In other cases, visual information may not help in any case and the textual techniques

applied to the annotations will help solving the problem. In many other cases the

fusion between this 2 methods will obtain a higher precision. Moreover visual and

textual information are usually orthogonal, when the tagging is unsupervised as in the

present work, this is, with visual features is easy to find similar looking images. With

textual information we are able to find semantically similar images, but in order to

find this similarity is important to have a clean complete annotation for each image.

A recent tendency to fuse visual and textual features has been observed in different

evaluation tracks such as TRECVID and ImageCLEF , with the belief that these

sources of information more than competing are complementary, and that the actual

problem may be reduced to finding a way of adequately fusing them. This kind of

fusion is a sort of multimedia information retrieval, and it can be performed either as

early or late fusion. Research on these two directions has already been developed, but

current performance of these methods remains poor, showing the need of research to

find better fusion alternatives and to select better individual relevant models.

We talked about the fusion between several methods. Depending on when the

fusion occurs on the process we have several approaches:
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4.1 Fusion by Refining

The first approach is really obvious and was already implemented in the past version

of RISE (see Fig. 4.1). The user introduces a text query in the web browser. Images

have small captions or annotations, therefore the system searches for those images that

textually correspond with the query. Then the system provides the user with visual

examples and the user selects those images he considers relevant. This is a multimodal

approach since first text information is used in the first iteration and then for the next

iterations only visual information is needed. This type of fusion is also called fusion by

refining, since textual information is only used to provide a certain amount of pictures

and later by the use of visual techniques we refine the results.

Figure 4.1: Previous RISE version with several images selected as relevant.

4.2 Early Fusion

It is a supervised learning process in where images are trained manually and classified

into different classes. This type of fusion is commonly used in automatic annotation

problems. It consists in linking image features with semantic concepts. After each

image is elected into a class, a binary classifier is trained to detect the class. When

a new image comes, the visual similarity to each class is computed . More or less,

early fusion tries to discover the statistical link between visual features and semantic

concepts using unsupervised learning methods [64].

There is a common task we participated in named ImageCLEF 2010. In this event,

we had 57 classes and a set of 9000 training images correctly annotated. In this

automatic image annotation task we were supposed to extract strong relations between

visual features and keywords. Then we trained with a classifier and annotated the test

images. We tested with very different visual features (GIST, SIFT, Color Histograms,

Texture, Concatenations...) and different classifiers. The results were not as expected

and we ended in an average position. We learned that early fusion is a hard approach

due to some reasons:
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Figure 4.2: Typical architecture in Annotation Based Image Retrieval systems with

early fusion, where the keywords are combined with low level visual features.

1)

The annotations of the images in ImageCLEF corpus often contain keywords that are

not strongly associated with particular visual features. They correspond to abstract

concepts. Examples of such keywords are “friendship”, “north” or “tournament”.

2)

Even if there are some relationships between keywords and visual features, these rela-

tionships may be difficult to be extracted because there are huge amount of possible

visual features. In fact, visual features are continuous. Even if we use some discretiza-

tion techniques, the number is still to high to be associated to some keywords. For

example, for a set of images associated with the keyword “water”, one would expect to

extract strong relationships between the keyword and the texture or color. However,

water in many images may only take a small portion or region of the image. There

may be many other objects in the image making it really difficult to isolate the typical

features of “water”.

4.3 Late Fusion

Late fusion is the approach chosen for RISE. This is motivated by the hypothesis that

two images with a very strong visual similarity should share some common semantics

[34]. Late fusion of independent retrieval methods is the simpler approach and a widely

used one for combining visual and textual information for the search process. Usually

each retrieval method is based on a single modality, or even, when several methods are

considered per modality, all of them use the same information for indexing/querying

(see Fig. 4.3). The latter reduces the diversity and complementariness of documents

considered for the fusion, as a consequence the performance of the fusion approach is

poor [24]. In multimedia image retrieval, the sources of information are visual features

extracted from the image and textual features in the form of associated captions. These
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sources of information have been mostly used individually and separately. Textual

features have proved to be more effective for this task than their visual counterpart,

and systems based only on these features tend to significantly outperform systems

based merely on visual features, which perform poorly. However, a problem generally

found in both cases is the lack of generalization, which makes systems fail with varied

sets of queries. A more specific diagram showing this behavior for only visual and

textual retrieval engines can be seen in Fig. 4.4.

Figure 4.3: Graphical General Diagram showing Late Fusion for heterogeneous meth-

ods. The output is combined for obtaining a single list of ranked documents.

Figure 4.4: Late Fusion example as implemented in RISE2.

Each time a query q is sent, the N different retrieval methods work separately. The

result for each of the retrieval engines is a set of N ranked list of documents or images.

The information of the N ranked lists is used for obtaining a single list of ranked

documents, which is returned to the user in response the the query q. The final list is

obtained by assigning a score to each document appearing in at least one of the N lists.

A high score value indicates that the document is more likely to be relevant to query

q. Documents are sorted in decreasing order of their score and the topk documents are

considered for the final list of ranked documents. For this work we consider a simple

(yet very effective) score based on a weighted linear combination of the documents

rank through the different lists. The proposed score takes into account redundancy

of documents and the individual performance of each retrieval method. Diversity and

complementariness are bring to play by the heterogeneousness of the considered IRMs
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(Independent Retrieval Methods), while redundancy is considered through the use of

several IRMs per modality. We assign a score to each document dj in at least one of

N lists L{1, ..., N} as described by the following Equation :

Score(dj) = (
N∑
i=1

1dj∈Li
)×

N∑
i=1

(α× 1

ψ(dj, Li)
) (4.1)

Where i indexes the N available lists of documents; ψ(x,H) is the position of

document x in ranked list H; 1a is an indicator function that takes the unit value when

a is true and αi, with
∑N

k=1 αk = 1, is the importance weighting for IRM i. αi’s allow

including prior knowledge into the retrieval process in the form of the confidence we

have on each IRM. If we have only 2 IRMs (visual an textual engines only) we have that

one will be multiplied by α and on the other by 1− α since
∑2

k=1 αk = 1. Respecting

the idea in the general equation presented above, we can use a simpler equation for

just 2 heterogeneous IRM’s (text retrieval and image retrieval):

Rank = αRv + (1− α)Rt (4.2)

Where Rv is the visual ranking and Rt is the textual ranking.

Documents appearing in several lists at the top positions will receive a higher score,

while documents appearing in few lists or appearing at the bottom positions most of

the times will be scored low. Eventually, only relevant documents will be kept. The

more relevant a document is to a query the higher will be its position in the final list.

As we can see this is a simple and intuitive way of merging the output of IRMs proved

to be very useful in practice. A more graphical version can be seen in Fig. 4.5

Ranking Descriptor 1 Ranking Descriptor 2 Ranking Descriptor 3 Late-fusion

Figure 4.5: Example of late fusion ranking algorithm.

The α appearing in the main formula is really important since depending on this

value we give more importance or credibility to the results obtained from one retrieval

engine or another. One of the main experiments will be to observe how changing the

α value affects the final precision in the system.
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4.4 Intuitive Example

The following example shows how visual retrieval and text retrieval techniques behave

by themselves.

tiger, global, team, brandt, tiger, den, tigeren, kan, det

sourcing, services, portfolio, home,

product, contact, shanghai, cost

Figure 4.6: Example of visually relevant images.

In Fig. 4.6 one can observe how similar the images look. In fact these 2 images are

considered relevant to the visual retrieval algorithm explained in previous section. For

the human eye is easy to see that both pictures contain tigers with similar brownish-

nature background. But for the textual retrieval algorithm it is really difficult to

determine this 2 pictures are relevant to one another. If we observe the annotations

we can see how one of them contains enterprise words such as “sourcing” or “portfo-

lio”, mainly because it corresponds to an image extracted from the “about page” of

a China exporting and manufacturer enterprise (http://www.tigerglobal.co.uk). The

other annotation contains words in german or danish collected from Flickr Database.

It is impossible for the textual retrieval engine to determine with these 2 annotations if

they are relevant to one another. This demonstrates it is a visual query. A query that

can be solved with the visual engine better than with the text engine, since mostly,

all the tigers look really alike and the scene we are looking for has similar colors and

backgrounds. But what if the pictures are really different between each other? What

if we are searching more for semantic concepts instead of visual concepts? Here is an

example Fig. 4.7:

In the textual example one can observe how different the images look. In fact, one

picture is taken in the beach with light colors and people in dark shirts with kites

and in the other the people wear white shirt and stand on green grass. In the other

hand the descriptions from each of the images look really similar. Although they are

different words we do have some of them that match. Words like “team”, “members”,

“championship” or “season” appear in both pictures. Showing this examples, we are

trying to visually show the problem in CBIR. At one point, visual features can not

help any more, even with new feature extraction techniques, there is a point in which

a system needs other type of information to raise the overall precision. By introducing

textual techniques and making a multimodal retrieval engine we intend to increase this

precision and therefore provide better results to the user.
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team, flame, kite, world, members, team, golf, fordham, season, score, championship,

sport, competition, flying, championship record, final, match, members, round

national, season, man, festival squad, tournament, morgan, mike, finished

precision, france, person, event play, golfers, federation, club

Figure 4.7: Example of textually relevant images.

4.5 Proposed Approach: Linear Fusion

At a given point, visual retrieval engine and text retrieval engine need to cooperate in

order to obtain a higher precision. But there is a main problem when using late fusion,

the α in the previous equation of Late Fusion needs to be fixed. This means that each

time we use the late fusion approach we have to establish which α value we would like.

α is a value between 0 and 1 which states how important the results are from each of

the retrieval engines, in our case, text engine and visual engine.

As we can see on the previous intuitive example, depending on the type of query

we may need a different α value. This means there does not exist a unique value that

works for all the queries. Some queries may need high values (visual) while other may

need very low values (textual). Intuitively, we may predict that most of the queries

need visual information as well as text information, leading to an average α value far

from the extremes.

We propose to select the value of the α by means of solving this maximization

problem:

arg max
α

∑
x∈R

∑
y∈NR

Rank(y)−Rank(x) (4.3)

Where Rank is the late fusion of both rankings Rv and Rt, and R and NR is the

set of relevant and non relevant images respectively. As it was explained before, the

final ranking in the late fusion approach is made by all the rankings of the different

methods, Rank = αRv + (1− α)Rt.

The idea is for each iteration the system proposes a set of images which later on the

user selects as relevant or non relevant. Without disturbing the user in the process, we

can compare and see how good was our prediction. This way the value is updated with

the users intention. Without the user knowing, he or she participates in the process of

helping the system to show more precise images.
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Given the ranking of the visual engine Rv and text engine Rt, we will have the most

similar images at the top of each ranking. For example for the visual ranking Rv the 10

most visual similar images will be located in positions 0 to 9. Therefore the approach

tries to leave the relevant images at the top positions and the non relevant at the lower

positions.

arg max
α

∑
x∈R

∑
y∈NR

α(Rv(y)−Rv(x)) + (1− α)(Rt(y)−Rt(x)) (4.4)

In the above equation we pretend to choose the α where the difference between

the relevant images and the non relevant images is higher. This is for each α tested,

we want each relevant image to be ranked in the first positions. Moreover we also

want the difference of this relevant image with the non relevants to be as high as

possible. This equation intuitively searches for the area under the ROC curve, trying

to make the difference between the non relevant images and the relevant images very

high by ranking them as far as possible. Given the user selection as test and our

previous hypothesis as training, we can work out a new α which maximizes this result

by making an exhaustive search throughout the different α values in {0, 1}.
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Chapter 5

RISE Database

In order to test the different proposals it is necessary to build an image engine. Building

an engine is a long task with several difficulties. Previously, the demo was built over

the Google Database, therefore nothing was kept in the system (www.rise.iti.upv.es).

We had problems in accessing all the times that we wanted to those images and this

made the system fail continuously. Moreover accessing the images and converting them

to our format and comparing them to see which where most similar was a process too

heavy to be done online. So the idea was to build a system where we kept all the

information, all the images converted and therefore suit faster the user queries. For

the database to be important it is necessary to have a large amount of images correctly

labeled. For this process to be done there are two clearly separated parts: downloading

the images and labeling those images.

5.1 Downloading the Images

First of all it is necessary to design a database in paper and decide the tables and fields

of the future system.

Once this is done it is important to decide how the information is going to be

downloaded. This process is a little bit more difficult. In this case there were several

approximations.

The Database was build in MySQL. Now the problem was, in order to have a

large amount of information kept in this database we need an automatic process of

downloading the images and labeling them since doing this process manually is not

efficient. Labeling the images will be studied in the next section. For each image

downloaded (around 1500 per query) we make a thumbnail of it and convert the original

picture to our feature vector. This vector has histogram layout features. Remember

histogram layout consisted in dividing each image in smaller images and extract a

histogram from each on of them. In this case we divide each image in 9 smaller parts
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Figure 5.1: Database elements.

and we extract a quantified histogram of size 64 for each one of them. This makes a

576 bin vector. Instead of saving all positions we decided to only keep the position and

the value. This representation saves some space since it is a sparse vector.

Keeping the thumbnail saves a lot of space and makes the engine go fast when

retrieving images. Downloading an image is simple with the “wget” command in

Linux, but, where to start downloading images from? As it is well known, Google uses

a spider that crawls through internet and downloads the images from each web, then it

follows all the links in that page and goes to another page continuing with this process.

But in our case we decided to use the information kept by the 3 greatest search engines

in the net, Bing, Google and Yahoo. The three of them have image search engines

already working with weighted images, so why not use this information? The idea was,

given a word, search this word with the three different engines, retrieve the results and

download the correspondent images.

Figure 5.2: Downloading process.

But another question aroused:which word or words will we use to retrieve the dif-

ferent images? This is an important decision since each word will act as a seed. This

is, each word in a list of words or keywords is queried upon the 3 engines. Then all

the images dealing with the query will be downloaded. The first approximation was

to download all images in the english dictionary. But the dictionary has many similar

words that don’t have a real visual meaning such as “along” or “alongside”. So we

created a list of stop-words to prevent the meaningless words to participate as seeds.
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Finally the list of keywords was enriched with the 1000 most common english nouns,

resulting in a particular dictionary.

But a new problem appeared, Google affirms that the brand names are the most

queried words in internet. Unless the brands are “apple” or “jaguar”, the dictionary

won’t have those words. Some examples of brands not appearing in dictionary may be

“toyota” or “iphone”. This particular case will be solved on the following section.

5.2 Labeling the Images: Related Work

A critical point in the advancement of content-based retrieval is the semantic gap,

where the meaning of an image is rarely self-evident. The aim of content-based retrieval

systems must be to provide maximum support in bridging the semantic gap between

the simplicity of available visual features and the richness of the user semantics. The

main question that needs to be answered in this concept is: how does one effectively

map the extremely impoverished low level data representation of the image to the high

level concepts so easily understood by human beings? This is the reason of the semantic

gap issue in Computer Vision (see Figure 5.3).

The context in which an image appears can be abstracted from the containing

HTML document using a method known in the information retrieval community as

Latent Semantic Indexing (LSI). LSI works by statistically associating related words

to the conceptual context of the given document. This structure is estimated by a

truncated singular value decomposition (SVD) [6].

When we retrieve images based on annotations, the quality of the annotations

should be taken into account. We assume that manually assigned annotations are usu-

ally more reliable than automatically assigned ones. Because of the cost, however, an-

notations are sometimes assigned automatically. Two types of methods are frequently

used to assign textual information to images. One method is based on information

extraction techniques. For example, some textual information corresponding to images

on the WWW can be extracted from their surrounding texts or anchor texts linked to

the images. If the extraction rules are carefully designed, the acquired annotations may

be relevant to the images. However, because there are usually exceptions in the data

that are not consistent with the assumptions, the extracted annotations may contain

noise. The other method is based on classification techniques. The goal of this method

is to link visible image features to words but it is really difficult to capture content and

contextual information from images that do not have any associated image features.

The development of procedures for assigning keywords to a given image is an active

research topic [30].

Another interesting technique is tested by Google. It is called Image Labeler (see

Figure 5.4 ), in this web service users compete against each other to assign the most

relevant labels to randomly selected images from Googles index. Given that the search
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Figure 5.3: An illustration of the semantic gap problem. Here we have an image of a

tiger at rest. The concepts likely to be noticed by a human looking at the image are

shown in the box at the top right. On the bottom right we have the feature vector

representation of the same image, detailing properties such as position, color, shape

and so forth.

giant is using this manual means of image tagging demonstrates the difficulty inherent

in the automated image tagging process particularly with regard to scaling those models

suggested in the literature to multi-million scale image libraries. A great deal of work

needs to be completed before the models of the research literature can be migrated as

robust and scalable technologies to the commercial world.

So now we have got a great amount of images saved in the system but we still don’t

have a way we to access them easily. An image has to be labeled with the main concepts

appearing in the photo as explained before, but without human aid is difficult to have

a precise description. The idea is to make an automatic process based on information

extraction techniques over the WWW, where the images are tagged by a computer

without the human interaction, calling this process Unsupervised Image Tagging.
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Figure 5.4: Car labeling in Google Image Labeler.

5.3 Proposed Approach: Unsupervised Image Tag-

ging

The process starts once all the images are downloaded, each image has associated a

web reference. This web reference will help us in the image tagging. The main code

was done in Python and a library called Beautiful Soup. Beautiful Soup is a Python

HTML/XML parser designed for web scraping. This module helps in stripping the

HTML tags out of the web.

For each of the web addresses, we collect all the information with Beautiful Soup.

The first part of the process consists in deleting from the web all those unnecessary

elements such as tables or scripts. Next step is to remove all the HTML tags that

may be contained to end with a full-plain text array. All words in the same HTML

document may not be equally relevant to the document context. Hence words appearing

with specific HTML tags are given special importance by assigning a higher weight as

compared to all other words in the document. The system assigns different weights

to the words appearing in the title, headers and in the “alt” fields of the “img” tags

along with words appearing in the main URL or thew image URL (see Table 5.1).

These weight values have been fixed according to the likelihood of useful information

that may be implied by the text. Weighting selectively the words appearing between

various HTML tags helps in emphasizing the underlying information of that document.

A dictionary is created with the term frequency of each word that appears in the web.

We decided to use some of the search engine’s information. Depending on which page

the image is retrieved originally, more points can be added to the word frequency

dictionary . This is, for example, if we search “cat” in Google Images, the first picture

shown is more important than the last photo shown in the 10th page.

If the keyword satisfies any of this conditions, more points will be added to the term

frequency dictionary. Before writing each word into the database, each of them are
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HTML Tags Weight

URL 4

Img URL 4

Title in Image 2

Alt in Image 3

Src in Image 4

Table 5.1: Word weights based on HTML tags.

lower cased and all the unwanted characters are removed. This is a long process but

it is necessary to think that not all the web pages follow the same structure, therefore

it is mandatory to go through all this steps in order to avoid dirty annotation. Only

those words which weights are above a threshold (initially defined) are written into

the database. These words are written with their term frequency since later on, this

number will help to determine how important an image is to a concept. The goal is

accomplished if by reading the annotations, one can picture mentally how the image

looks like.

Figure 5.5: Labeling Process.

Each time an image is inserted into the database several fields are added:

ID Unique number referenced by the database.

Img URL This URL is where the image is saved originally in the web server.

Refurl Base path where the image comes from. For example

“http://www.cat-pictures.co.uk/cat.jpg” comes from “http://www.cat-pictures.co.uk/”.

Localref Image path in local disk.

Keywords Seed word used during the process.

Annotations Process previously defined. Note that the seed word may not be in the first place

Width, Height, Size Original image information.

Table 5.2: Word weights based on HTML tags.

Figure 5.6: Database view after inserting a couple images.

As it was questioned before, what happens with the brand names and all those

words that don’t appear in the dictionary? Well this words will not be used to start

querying the different engines but this does not mean they will not appear in the

database. While scraping the web page, we don’t select only the words that appear in

our word list, we select all the words and only delete those appearing in the stop word
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list. Words like “Volkswagen” or “google” will not be used as seeds since they are not

in the english dictionary, but if they appear in other web pages, they will end up as

annotations.

The main goal of this automatic tagging process is to have a full database with

images and annotations. These annotations have to be really descriptive and accurate

since the queries initially will be made using this information. If an image can be

pictured while looking at the annotations, this will mean it has rich information about

how the image looks like.

cow:70, tongue:4 tiger:16, air:11, missiles:6, tank:4, mountain:2

Figure 5.7: 2 web pages and their annotations after the automatic image tagging

process.

In above Fig. 5.7 one can observe how the annotations resume the web page topic.

The left web page shows a cow with a big tongue. The final annotation has this exact

2 keywords. The other web page talks about different helicopters, one in particular

named “tiger”. The annotation of the second web, has some keywords such as “missile”

or “tank” which makes us think that this web talks about a different type of tiger than

the ones we are normally used to. This disambiguation is really important since many

words are polysemic (have different meanings although words are written the same

way). If we did not have images annotated correctly we will never know if the engines

work correctly or the descriptions are not really precise.
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Chapter 6

Experiments

Before doing the experiments it is mandatory to have a corpus to simulate the users

relevance feedback. For this reason we select a set of 21 queries with 200 images per

query. A brief description of each query can be found at Table 6.1.

Query Description

Banana Real yellow bananas. Cartoon or drawn bananas are considered not relevant.

Baseball1 Baseball balls.

Baseball2 Baseball players in the baseball pitch.

Bike1 Catalog motorbikes but not only with white background.

Bike2 Catalog bicycles. People can appear but the bike appears completely.

Bird Birds flying.

Car1 Real cars with no people or other cars around. Car appears completely.

Car2 Car engines.

Corn Corn pictures with no human hands.

Cow Real cow on mountain, land or grass.

Gun Catalog guns with white background.

Hat People wearing hat and looking at the camera. Hats by themselves are not relevant.

Horn Trumpets.

Lake Panoramic landscape pictures with or without houses around the lakes.

Rain Pictures where one can appreciate rain falling.

Snake Not only snake heads but also some body must appear in the picture.

Team Group of people.

Tiger1 Full body real tigers.

Tiger2 Tiger Woods by himself. Either playing golf or not, but alone.

Tiger3 Tiger sneakers or shoes.

Volcano With lava or fire around.

Table 6.1: Queries and their descriptions as they appear in the test corpus.

We have a set of images, we know which of them are relevant or irrelevant to a

topic, and we have the descriptions for each image. This way we can create a user

feedback automatically. This will avoid us repeating the whole process manually for

each change applied in any algorithm or the features. In the experiment we will fake

a user who wants N images to be seen at a time. Therefore in each iteration he will

see N images and judge if those are relevant or not (Precision@N), depending on the

criteria specified for each query. Depending on the number of images shown N , we will

have different results.
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Banana Baseball1 Baseball2 Bike1 Bike2 Bird Car1

32 25 19 13 36 9 36

Car2 Corn Cow Gun Hat Horn Lake

9 41 35 26 27 20 59

Rain Snake Team Tiger1 Tiger2 Tiger3 Volcano

26 40 27 26 16 9 25

Figure 6.1: Example of relevant images (and total number of relevants) from each of

the 21 queries in the test corpus.

6.1 Results for each Concept

The first experiment we did was to test how the different values of α affected the

system. As explained on Section 3.3, this α is a parameter between {0, 1} which is

in charge of giving less or more importance to each retrieval engine. If α = 1 (Visual

Percentage=100%) it means we “trust” completely the visual engine while if α = 0

(Visual Percentage=0%), the final ranking will only depend on the textual engine. Our

hypothesis is that the values in between {0, 1} will raise the overall precision of the

system. This hypothesis is based on the examples we gave before, where depending on

the type of query (visual or semantic) we had different results using different retrieval

engines.

For iteration 0 (Table. 6.2) we have the same value for all the different α. If we

remember, this iteration is only text based. The user introduces a query and the system

searches for the words matching this query. No visual information is collected or needed

therefore there is no slope by changing α’s value. Some queries have a precision equal

to 0, this is because none of the images present in the initial query are relevant to the

user.

For the following iterations the parameter α does affect the precision, so the results

are shown using plots showing the precision with respect to the Visual Percentage. As
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Query Precision@20 (%)

Banana 10

Baseball1 10

Baseball2 10

Bike1 0

Bike2 10

Bird 0

Car1 30

Car2 0

Corn 10

Cow 0

Gun 10

Hat 20

Horn 10

Lake 0

Rain 0

Snake 10

Team 0

Tiger1 0

Tiger2 0

Tiger3 0

Volcano 10

MP@20 6.19

Table 6.2: Iteration 0 of User Feedback, showing all the concepts.

we said earlier, α is a value between 0 and 1, where Visual Percentage (%) is a value

between 0 and 100; α = V isualPercentage
100

.

All the 21 different concepts C = 21 don’t fit in the same graph, for this reason we

have 2 graphs showing the same iteration dividing 10 concepts on one graph and 11 on

the next one. For each concept c we have a Precision@N value. In both of the graphs

we can see there is a line named “MP@N” where N is initially 20. The mean precision

for all the concepts is 1
|C|
∑

c∈C Precision@N(c).

This is the first iteration (Fig. 6.3 and Fig. 6.2) in which both retrieval engines

cooperate in the final result. The reason of the slopes for being so squared is the

Precision@20. When measuring this way it is very common to have this type of lines

and values. Some of the queries perform better with only the text retrieval engine

(α = 0) and others better with the image retrieval engine (α = 1). But what is

interesting for the thesis is to observe if the collaboration of both methods helps in

obtaining more relevant images. At iteration 1, very little queries obtain its maximum

precision value on points not located at the extremes. This is caused due to the little

information present in the system. Only 1 iteration has been done therefore we only

have 20 previous images saved on the system. In this 20 previous images we can have

some relevants or perhaps all of them are non relevant as explained before, but no

matter this fact, we have information about what the user wants or does not want to

see. As the iterations pass by, this information increases and the algorithms “learns”

the user needs. It is expected to see the precision grow as the user iterates the query.

In Fig. 6.5 and Fig. 6.4, 2 of our hypothesis have been confirmed. This iteration

has higher mean precision as the MP@20 line shows. Another important fact is that

at this point, more queries have found its maximum precision value at intermediate α
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Figure 6.2: Iteration 1 of User Feedback, first 10 concepts.
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Figure 6.3: Iteration 1 of User Feedback, showing last 11 concepts.

values. Both engines are collaborating and “sharing” information with one another and

this is making some difficult concepts to achieve a higher value than in the extremes.

At iteration 1, the mean precision@20 line had its maximum at α = 1 value. In this
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Figure 6.4: Iteration 2 of User Feedback, showing first 10 concepts.
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Figure 6.5: Iteration 2 of User Feedback, showing last 11 concepts.

iteration, the value α = 0.5 has beaten the visual retrieval precision and the maximum

value is not found on the extreme but found at α = 0.9.
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Figure 6.6: Iteration 3 of User Feedback, showing first 10 concepts.
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Figure 6.7: Iteration 3 of User Feedback, showing last 11 concepts.

For the Fig. 6.7 and Fig. 6.6, many things have changed. Precision in α = 1 is

clearly being passed by α values between 0.4 and 0.9. Highest precision is obtained in

α = 0.8. If we take a look at the queries in the corpus, we can observe how mainly of
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them are visual queries. This fact associated with the fact that visual features perform

better than textual, gives us a slightly shifted global maximum. Moreover we can

observe how at α = 0.4 we have a high precision although is not enough to become the

best value.

6.2 Results with Average Values

So far we have seen how different concept queries behave with different α throughout

several iterations. This type of graphs help to ilustrate the problem that different

concepts have different needs. In the other hand, with this graphs it is difficult to

compare the mean precision in each iteration since we have many lines and things

going on in such a little space. In the following section we will compare the mean

precision values. This value shows more clearly the imporovement in each iteration

and the variation for each α.

In the following Fig. 6.8 we can see how the mean precision raises as the iterations

pass by. Also we can see how the slope changes from clearly ascendant in iteration 1

to a sort of parabola-like with the global maximum in the center values.
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Figure 6.8: Mean Precision@20 Iteration Progression.

Another interesting experiment consists in reducing the number of images shown

to the user in each iteration and see how this affect the mean precision slope. The

number of images shown corresponds to the N of the Precision@N . So far we have
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assumed the user wants to see 20 images ( Precision@20), but it is common to have

around 10 images per iteration.
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Figure 6.9: Mean Precision@10 Iteration Progression.

We can observe how the slope at all iterations is much more centered than before

(Fig 6.9). Before the highest precision was obtained at α = 1 for the first iteration and

at α = 0.8 for the last iteration. This was a little bit higher than expected since we

thought that the best precision should be found at α = 0.5. But now with Precision@10

the best values are found always at the center of the α values. Since now we have less

images per iteration the selection of relevant or non relevant is a far more important

issue. This fact may have made the system find the higher precision values at the

center.

The next experiment consisted in quantifying how much better this precision is in

comparison to full text retrieval and full visual retrieval. For this experiment we got

the maximum values for each of the queries in every α. This is, for query 1, the highest

value may happen at α = 1 and for query 2 it may happen at α = 0.5. This number

will show us if there is any room for improvement. What we are trying to calculate if

implementing another solution (Linear Fusion) has sense.

By looking at Fig. 6.10, we can observe how starting from the same point on

iteration 0, all the other iterations, the best possible α, clearly over performs both

retrieval engines by separate. We know that best values occur for iteration 3 around

α = 0.8, but the maximum for every query is not necessarily at that point. Therefore,

this situation has opened a new problem: how can we automatically establish an α

value for each type of queries?
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Figure 6.10: This graph shows if there is room for improvement while measuring

Precision@20.

As it happened before, it is interesting to see how different this graph will look like

with Precision@10 measured instead of Precision@20.

By taking a look at Fig. 6.11 we observe there are lots of similarities with previous

Fig. 6.10. We still have much room for improvement. In fact, if we take a look there is

much more room for improvement when measuring Precision@10 than when measuring

Precision@20. In one hand, Precision@20, we have around 12 percent of improvement

while on the other hand, Precision@10, we have almost 20 percent. Of course, best

overall precision is obtained when we measure Precision@20, but it is not that much

higher than the one measured by Precision@10.

Now we know that we do have room for a new approach and that it does make

sense implementing one. As said before this approach consists of a method that finds

automatically the best possible α for each type of query; we named this approach linear

fusion. We only need to save the proposed rankings from the visual and text engine

for the previous iterations. The user will select which images he considers relevant and

which images not. With this information we can test how far away was the hypothesis

from the text engine and the visual engine, and which α value will maximize the late

fusion of both rankings.

In Fig. 6.12 we can see how the approach works. It was expected to perform worst

than the average best percentage for each query. Remember this value means finding

the best possible α throughout all possible values and all the relevant images. In our
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Figure 6.11: This graph shows if there is room for improvement while measuring

Precision@10.
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Figure 6.12: This graph shows the automatic α approach.

case we do not have all the relevant images of a concept. We only know the relevant

and non relevant images for one iteration. It was expected that the approach works
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better than the visual engine retrieval approach. Otherwise it will make no sense to

have the linear fusion approach.

An important fact about this linear fusion method is that it has no memory. The

user can change its mind while looking at a query or concept. First he can start looking

at “apples”, choosing real, eatable apples. Then maybe he gets tired of these and starts

selecting as relevant “Apple” the company. The α value is calculated for each iteration

so if the user changes its mind, the online value will detect this issue and next images

shown will have the new α value learned. This gives the user much more flexibility in

the results.
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Chapter 7

Conclusions and Future Work

In this thesis we show how to build a content based image retrieval engine. First

we start defining a set of image features and text features that will later be applied

in the process. We have discussed the different ways of downloading the images and

creating a database with images and annotations. This annotations were obtained

using different methods and finally saved to the database. It is important to have a

well organized database with well annotated captions since the user’s first iteration is

only text based. Moreover we have proposed a set of approaches. The first one, late

fusion, mixes the visual ranking and the text ranking depending on a α value. This is

a fix value we need to know before calling the method. Some experiments were done to

prove that depending on the type of the query a different α is needed. If we took the

best possible α for each query, we would have a much more precise system. This took

us to the next approach; linear fusion. Our second proposed approach learns the user

needs and the type of query the user is searching for and calculates an α. This method

is called Linear Fusion since it is obtained by maximizing the result of Late Fusion

by making an exhaustive search throughout the different α values in {0, 1}. In the

previous experiments we demonstrate that this value performs much better than the

other retrieval engines approaches separatedly. The last of our proposed approaches

was the unsupervised image tagging method. This method consisted in scanning a

web page and obtaining a particular annotation composed of a weight and a term.

Remember this weight is obtained using several ranking techinques. The final result is

a database with annotations and references to each image.

There are many different work-lines we can follow in the future. First of all we can

speed up the download of images. Right now this process runs around 10-12 images

per second. The system is capable of running much faster but threading in Python

has many drawbacks. We have encountered many problems dealing with this issue but

we have managed downloading around 5 million images. Threads in Python don’t run

completely parallel and processes are too heavy and slow. Perhaps another computer

language can perform a better solution. This solution will speed the process and the

amount of images in the database.
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Another future work option might deal with the annotation of images. Right now

all the web page is downloaded and stripped. All the words in the web are counted and

we create a dictionary with each different term. Depending on where does the term

appear, we propose a certain weight. This weighting scheme as well as the stripping

process might be changed. An option may be to download only the terms surrounding

the image we want to download. The problem is that depending on the web page

designer, this space might be empty or full with useless information. This is one of the

problems we found when working with webs. Each web page has a different structure

and doing a script that can work with all the different type of webs was a really difficult

task. If we could only capture those words surrounding an image we could weight each

term with its distance to the image. The idea is that the terms close to an image

usually have a strong relationship with it. This way we may have another type of

weight which determines the importance of each term depending on the distance.

Before we talked about how other search engines such as Google or Yahoo work. I

think an important step is to add more functions to RISE. At this moment RISE does

not save any information on where does the user click. This is, if I select last couple

images of “tiger” query as relevant it would be interesting to use this information for

future “tiger” requests. Perhaps another user thinks this images are relevant, then

if a third user searches for the same query, this images will need to show up first.

User intentions is what have made the big search engines be really precise. When we

search in Google depending on where in the world we are, we have different results

for the same query. At some point, image and text features are not enough. User

intentions might be the next step. We could save how many times a user has selected

an image as relevant, and for next users, this image will show earlier in the process.

This new method might be applied in the late fusion approach. This way we will have

3 heterogeneous methods of finding a ranking: visually, textually and user intention.

When building the system we have discovered that visual retrieval is not enough

for a content based retrieval engine to work precisely. We decided to add some text

measure for those abstract queries where visual features have no effect. But now its

time to think further. Perhaps text and image retrieval is not enough and we may

need to add some other measures to keep on improving the system. In fact, this other

measure needs to be user information. Although computer pattern recognition is each

time more and more precise, at some moment the user information is vital. So far we

have a completely automatic process when a user searches for a particular image. In

the near future, other users will collaborate with this automatic process in the search

of a query with further better results.
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