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Abstract

In the current industry, component development that satisfies the customer require-

ments evolves quickly. Therefore, the companies are asked for quick and efficient

solutions for the optimization of their component models. In this sense, it is very

useful to use a technique called Topology Optimization, which has been extensively

used to optimize, at a structural level, the geometry of many components. By using

this technique, a given amount of material is distributed in the best possible way in

order to maximize the component’s stiffness. The results obtained by this method

allow the user to change the topology in a simple way, by removing or adding ma-

terial (appearance or collapse of holes). However, this type of optimization entails

a greater difficulty than other types of optimization. That has led to the develop-

ment of specific methods, considering that the main goal of this optimization is the

manufacturing of components using the additive manufacturing process. In order to

alleviate this difficulty, the work proposes the combination of two techniques. The

first one subdivide the whole component in cells and generates an optimized mate-

rial structure in each cell. The second one is a balancing technique that ensures the

continuity of tractions between cells, thus ensuring the material continuity after the

cell optimization process. In this way the additive manufacturing is only required for

the manufacturing of those cells and not for the whole component, thus being able to

manufacture larger components. The results obtained by using this method prove its

viability and the continuity at cell level.
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Resumen

En la industria actual, el desarrollo de componentes que satisfagan las necesidades de

los usuarios evoluciona rápidamente. Por ello, las empresas se ven obligadas a generar

modelos óptimos para los componentes de sus productos de manera rápida y eficaz.

En este sentido, es de gran utilidad el uso de una técnica denominada Optimización

Topológica, que ha sido usada para optimizar, a nivel estructural, la geometŕıa de

diversos componentes. En esta técnica se busca la distribución óptima de una can-

tidad de material prescrita por el analista de modo que se maximice la rigidez del

componente. Los resultados son mucho más ricos permitiendo cambios topológicos

importantes (aparición o colapso de agujeros) de manera sencilla. No obstante, el

proceso de optimización, es decir, la búsqueda de la distribución de material óptima,

conlleva una mayor dificultad que otros tipos de optimización, lo que ha forzado el

desarrollo de métodos espećıficos. Además, las estructuras resultantes requieren ser

fabricadas mediante fabricación aditiva debido a su complejidad, que si la estructura

es grande puede resultar costoso. Para paliar esta dificultad, en este trabajo se pro-

pone un método que, en vez de obtener la estructura optimizada del componente en su

totalidad, subdivide el componente en celdas de tamaño manejable y son éstas las que

son optimizadas y se plantea un método que tiene como objetivo garantizar la con-

tinuidad de la estructura entre las celdas basado en técnicas de equilibrado utilizadas

en procesos de acotación del error de discretización. De este modo, la fabricación

aditiva sólo es necesaria para la construcción de las celdas y no para el componente

entero, pudiendo aśı llegar a fabricar componentes de mayores dimensiones. Los resul-

tados obtenidos demuestran la viabilidad del método y la continuidad de la estructura.
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Resum

En la indústria actual, el desenvolupament de components que satisfacen les necessi-

tats dels usuaris evoluciona ràpidament. És el motiu pel qual les empreses es veuen

obligades a generar models òptims per als components dels seus productes de manera

ràpida i eficaç. En aquest sentit, és de gran utilitat l’ús d’una tècnica denominada Op-

timització Topològica, que ha sigut usada per a optimitzar, en l’àmbit estructural, la

geometria de diversos components. En aquesta tècnica es busca la distribució òptima

d’una quantitat de material prescrita per l’analista de manera que es maximitze la

rigidesa del component. Els resultats són molt més rics permetent canvis topològics

importants (aparició o col·lapse de forats) de manera senzilla. No obstant això, el

procés d’optimització, és a dir, la cerca de la distribució de material òptima, comporta

una major dificultat que altres tipus d’optimització, la qual cosa ha forçat el desen-

volupament de mètodes espećıfics. A més, les estructures resultants requereixen ser

fabricades mitjançant fabricació additiva a causa de la seua complexitat, si l’estructura

és gran, pot resultar costós. Per a pal·liar aquesta dificultat, en aquest treball es pro-

posa un mètode que, en comptes d’obtindre l’estructura optimitzada del component

ı́ntegrament, subdivideix el component en cel·les de grandària manejable i són aque-

stes les que són optimitzades i es planteja un mètode per a garantir la continüıtat

de l’estructura entre les cel·les fonamentat en tècniques d’equilibrament utilitzades

en processos d’acotació de l’error de discretització. D’aquesta manera, la fabricació

additiva només és necessària per a la construcció de les cel·les i no per al component

sencer, podent aix́ı arribar a fabricar components de majors dimensions. Els resultats

obtinguts demostren la viabilitat del mètode i la continüıtat de l’estructura.
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1 Introduction

1 Introduction

From the industrial point of view, the optimization of mechanical components has

been, and currently is, a challenge for the engineers. In this work the optimization

should be understood as an appropriate distribution of certain amount of material in

a given domain, to maximize the stiffness of the component, considering predefined

loads. Since ancient times, engineers have successfully found solutions to an enormous

amount of problems generated by the needs of the constant evolution of the society.

Most outstanding structures can be found on bridges (Figure 1) and cathedrals, also

the nature has developed very efficient structures, like the internal structure of the

bones (Figure 2). All the optimized structures designed by the human being are the

result of experience among years and development of new technologies.

Figure 1: Lattice beam of a bridge

Nowadays, numerical simulation of structural problems considerably helps in decision

making along the design phase of complex structures. These numerical methods, e. g.

the Finite Element Method (FEM), allow us to know the structural response to given

external loads in a very detailed way. In that way the decisions can be made when

talking about material types and its own design before the construction. It is easy

to find out that the FEM has helped the development of new increasingly complex

structures, by streamlining the design phase. However the distribution of the material

is not yet optimized, thus it depends on the decisions made by the engineer. This

is why a third step in this regard is the use of automated structural optimization

techniques. These optimization techniques use numeric simulation (FEM), not only

evaluating the structural behavior, but to propose new modifications in the material

distribution. Therefore a complete new range of possibilities opens in front of the

engineer. By exploring and studying these different new structures the engineer will

be capable of making a better decision.

Mikel Barral 1



2 Level continuous topology optimization in structural mechanics

Figure 2: Internal structure of a femour bone [1]

In this sense there are currently two clearly differentiated optimization techniques.

The first one defines a base structure parametrically (dimensions, shape,...) [2]. The

algorithm will decide the value of each parameter of the structure in order to get

the best stiffness with the minimum required material, while preserving the topology

of the structure. The second type of optimization technique, known as Topology

Optimization was mainly developed by Professor O. Sigmund [3], precursor of the

SIMP method, (Solid Isotropic Material with Penalization), which even allowed to

obtain topologically optimized structures for an aircraft wing [4].

Figure 3: Topology optimization example

However, the previously mentioned methods are based on a single scale study. The

SIMP method produces an optimal topology by means of an iterative process that

involves the use of the FEM to evaluate the results needed to update the material

distribution at each step. Nevertheless, the work done by Professor Oliver [5] and

his co-workers deals with a new dimension in this problem. In this case the topology

optimization is done in two different levels. This means that the microstructure is

the one that is optimized and not the macrostructure as in Figure 3. Precisely, the

information obtained from a stress analysis in each of the integration points of the

macro scale is used to define a local (micro) problem that is solved satisfying the stress

requirements of the global (macro) problem. The topology obtained at the microscale

2 Mikel Barral
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1 Introduction

is processed by a homogenization process and the properties of the equivalent mate-

rial are used to define the material at each integration point for solving the macro

problem. This iteration continues until a convergence criteria is fulfilled. This process

indeed has a high computational cost, this is why the authors of this method propose

a new method based on precalculating all the problems in the micro scale. However,

the solution obtained by this method is difficult to manufacture because the method

doesn’t take care of the continuity between the cells.

Therefore, the objective of this work is to develop a two level topology optimiza-

tion process that provides continuous material distributions across the cells of

the global level.

The proposed method initially solves the global optimization problem using the SIMP

technique which distributes the material in a soft way through the analyzed area. Af-

ter that, also using the SIMP technique the optimization problem in a local (micro)

scale is solved. The boundary conditions of this problem are obtained considering a

stress equilibration technique, introduced by Professor Ladevèze and Professor Maun-

der [6], that is used to guarantee the continuity of the topology between local cells.

Mikel Barral 3
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2 Problem Statement

In this section, the two main problems presented in this work will be considered, the

linear elastic problem and the topology optimization problem.

2.1 Linear Elastic Problem

This work is devoted to solve the 2D linear elasticity problem by means of the FEM.

The notation used all along the contribution is settled in this section. The Cauchy

stress field is denoted as σ, the displacement field as u, and the strain field as ε, all

these fields being defined over the domain Ω ⊂ R3, with boundary denoted by ∂Ω.

Prescribed tractions denoted by t are imposed over the part ΓN of the boundary,

while displacements denoted by ū are prescribed over the complementary part ΓD of

the boundary. Body loads are denoted as b.

The elasticity problem takes the following form. We seek (σ,u) satisfying:

• Static admissibility:

LTσ + b = 0 in Ω (1)

Gσ = t on ΓN , (2)

where L is the differential operator defined as:

L =


∂
∂x 0

0 ∂
∂y

∂
∂y

∂
∂x

 (3)

and G is the projection operator that projects the stress field into traction over

the boundary. The operator G is the matrix form of Cauchy’s law considering

the unit normal n = {nx ny}T to ΓN such that:

G =

[
nx 0 ny
0 ny nx

]
. (4)

4 Mikel Barral
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2 Problem Statement

• Kinematic admissibility:

u = ū on ΓD. (5)

• Constitutive relation:

σ = Dε(u), with ε(u) = Lu in Ω, (6)

where the matrix D contains the elasticity coefficients of the usual linear isotropic

constitutive law relating the stress field with strain field.

The problem above takes the primal variational form:

Find u ∈ (V + {w}) : ∀v ∈ V
a(u,v) = l(v) where

a(u,v) =

∫
Ω

ε(u)TDε(v) dΩ

l(v) =

∫
Ω

bTv dΩ +

∫
ΓN

tTv dΓ,

(7)

where V = {v | v ∈
[
H1(Ω)

]3
,v|ΓD

= 0} and w is a particular displacement field

satisfying the Dirichlet boundary conditions. The problem raised in (7) is solved using

FEM after the discretization of the domain Ω, in elements of characteristic size h.

2.2 Topology optimization problem

The topology optimization problem is based on getting the best distribution of a

given amount of material in a defined domain Ω, so that the stiffness of the com-

ponent obtained is maximized. With this statement, a new variable is defined,

ρ(x) ∈ [0, 1]∀x ∈ Ω, which will determine the material distribution inside the domain.

This means that the elements with value equal to 1 will be filled with material, on the

other side, the elements with value equal to 0 will be empty. Initially the variable ρ

would take 0 or 1 values, but the SIMP method allows the variable to be continuous

and therefore to acquire values between 0 and 1, even though the intermediate values

are penalized. Considering that, the optimization problem can be stated as follows:

Mikel Barral 5
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min ψ(ρ,u) =

∫
Ω

ρνε(u(ρ))TDε(u(ρ)) dΩ

Subject to: V =

∫
Ω

ρ dΩ ≤ V0

(8)

With ν defined as the penalty coefficient used to penalize intermediate values of ρ,

u the displacement solution form problem (7) for a determined ρ field value, V0 the

material volume to be distributed. The problem in (8) is a nonlinear problem that

requires advanced methods like the SIMP method [3] for solving it. The SIMP method

follows the following steps:

1. An initial value is set for ρ0, fulfilling the volume restriction.

2. The problem in (7) is solved considering the defined density, by redefining

a(u,v; ρ) =
∫

Ω
ρνε(u)TDε(v) dΩ.

3. The sensibility of the functional ψ with respect to the variation of ρ is evaluated
∂Ψ(ρ;u)
∂ρe

. For the topology optimization problem (8) to have solution, the sensi-

bility problem must be filtered as described in [3], affecting the element value

by the surrounding ones to a maximum distance of rmin.

4. The value of ρ is updated in each element e with the following criteria:

ρnewe =


max(ρmin, ρe −m) if ρeB

η
e ≤ max(ρmin, ρe −m)

ρeB
η
e if max(ρmin, ρe −m) < ρeB

η
e < min(1, ρe +m)

min(1, ρe +m) if min(1, ρe +m) < ρeB
η
e

(9)

Being m = 0.2 and η = 0.5 standard values of the parameters used to control

the method. Be is known as the factor multiplying the current density of the

element in order to obtain a new density, so that the initially defined material

volume is maintained:

Be = −
∂Ψ(ρ;u)
∂ rhoe

λ∂V (ρ)
∂ρe

, (10)

where λ is the Lagrange multiplier, common for all elements, whose value is

found by the bisection method.

5. With the new density values in each element the procedure returns to step 2

and the whole process is repeated until a convergence criteria is satisfied.

6 Mikel Barral
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3 The proposed 2-level topology optimization technique

3 The proposed 2-level topology optimization tech-

nique

As shown in the method, a certain material value V0 is defined into the domain.

However the analyst does not know a-priori the minimum amount of material required

to withstand the loads applied on the component. In this work we consider that the

maximum von Mises stress must be less than the considered material’s yield stress,

σmaxvm ≤ Sy. The value of V0 can be calculated using the iterative process shown

below.

1. Two different density values are assumed, commonly V1 = 1 and V2 = 0.5,

and the topology optimization program gets the material distribution for each

of them. The maximum value of Von Mises stress will be obtained, as shown

below (represented by black dots) in Figure 4, for each of these two cases.

2. With those two values and by intersecting the function obtained with the yield

stress (red line), a new value can be obtained. The new density value is then

used to optimize the topology and again the maximum stress for the solution

obtained is calculated, this allowing to correct the position of the value of V

that would provide a material distribution where σvmmax
= Sy.

Figure 4: Linear interpolation for initial material volume.

Mikel Barral 7



2 Level continuous topology optimization in structural mechanics

3. Once the third point is completely defined, by intersecting the parabolic function

created with those three points and the yielding stress value, a fourth value is

obtained. After that, the process for correcting the position of the new value is

applied as explained in step 2.

Figure 5: Quadratic interpolation for initial material volume.

4. The loop continues using the last density value and the two closest values to

that last one, to get a new density value as explained before and, therefore,

repeating step 3 until a convergence criteria is satisfied.

This process allows to obtain the optimum topology using the minimum required ma-

terial volume that satisfies the Von Mises stress criteria, under given load situations.

For all the calculations performed with the FE method a cartesian mesh is used to

discretize the domain, using quadrilateral elements.

3.1 Traction equilibrium between elements

As explained in the introduction, a topology optimization process is done in the Ω

global domain, but another one is also done in each of the elements used to discretize

8 Mikel Barral
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3 The proposed 2-level topology optimization technique

the domain Ω. The loads for each of the local topology optimization problems are

obtained from the global solution. The fastest way to do that would probably be to use

the obtained stress from the FEM analysis, as presented in [5]. However, this method

present many difficulties if a continuous stress field between elements is desired, and

also causes local stress concentration due to non-equilibrated stress conditions. This

thesis presents the alternative of generating an equilibrated traction field, continuous

along the edges between elements, as shown in Figure 6. This way, and only imposing

constraints to prevent rigid body motions, the topology optimization problem of each

element can be solved.

Figure 6: Isolated element with forces resulting from the global problem (F) and equili-

brated traction field (t) equivalent to nodal forces.

The method used to obtain the traction field was introduced in [6], where an equi-

librated traction field and continuous field in an element was originally used to find

a statically admissible stress field to obtain an upper bound of the FE discretization

error in energy form. The method presented in [6] uses the Maxwell diagram to obtain

an equivalent traction field. The method followed in this project is explained below.

This method first analyzes the type of node to work on, that will result on two

main groups. The first one considers nodes located on the domain’s boundary and

divides them in three groups: nodes with Dirichlet boundary conditions, nodes with

Neumann boundary conditions and free nodes. The second main group contains the

internal nodes. Once determined the node type to be analyzed, we take the elements

surrounding the node and calculate the interface force.

Mikel Barral 9
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3.1.1 Internal nodes

The nodes where no boundary conditions are applied, i.e., nodes without any external

force or reaction directly acting on them, are considered as free nodes. The most

common case is the internal node, which are those surrounded by 4 elements. In

this case all four elements will have no other forces than the internal forces to be

considered for the equilibrium. This case produces a particular Maxwell diagram,

that is the simplest one to be analyzed.

The known variables are the corner node force (Fn) from the FE solution, equation

(11), for each element and side.

F e = [Ke] · {Ue} (11)

The goal is to obtain the interface forces (Pin), to finally complete the traction field

(FElm) matrix for each node and side of the element.

Since there are many solutions to the problem of evaluating the equilibrated traction

field due to having two undetermined degrees of freedom, this method uses a graphical

solution known as the Maxwell diagram [7] [8]. The main polygon of the diagram is

built using the force vectors (−F̂En ) for node n taking in an anticlockwise sequence.

This will always produce a closed polygon because of these force vectors form a

balanced set. Each of the vertices represents the side of the elements, therefore the

4 elements surrounding a node will form a 4 vertice polygon and so on. Then, a

pole point P is positioned inside the polygon. Adding this point will define a unique

solution for the problem and create a triangle for each element built with the force

vector (−F̂En ) and two components that represent the interface forces P̂Ein and P̂Ejn.

As an example to explain how the system of equations is built, the case of 4 elements

surrounding a node will be used.

The diagram shown in Figure 8 is built following the base diagrams that [6] proposes.

With this in mind, a series of equations are written based on the relations seen in the

diagram.

10 Mikel Barral
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Figure 7: Isolated internal node surrounded by 4 elements.

PEin + PEjn = FEn

PAjn + PAln = FAn

PBln + PBkn = FBn

PMkn + PMin = FMn

PEin + PMin = 0

PEjn + PAjn = 0

PAln + PBln = 0

PBkn + PMkn = 0

PEin = −F
M
n

2

(12)

These equations are then placed in a matrix format for programming purposes. Note

that the last equation of the system is not directly obtained from the diagram, this

equation is added to the system to define the pole point (P). Therefore it will constrain

the whole diagram in the 2D space. This is accomplished when the equations for

both x and y directions are implemented, meaning that for each direction a constrain

Mikel Barral 11
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Figure 8: Maxwell diagram for four element surrounding a free node.

equation must be placed. Here the general case is presented, thus this system of

equations derives into two systems, one for each direction.



1 1 0 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0

0 0 0 0 0 1 1 0 0

1 0 0 0 0 0 0 0 0





PEin
PEjn
PAjn
PAln
PBln
PBkn
PMkn
PMin
λ


=



−F̂En
−F̂An
−F̂Bn
−F̂Mn

0

0

0

0

− F̂
M
n

2


(13)

Once the relations are established and the equations are written the program will

follow the following steps to obtain the desired equilibrated traction field:

1. Build the relations matrix between the interface forces and the nodal forces

resulting from the FE analysis, depending on each case, as explained in the

sections below.

12 Mikel Barral
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2. Get each element’s stiffness matrix and calculate the resulting nodal forces with

the known nodal displacements from the global FE analysis.

3. Solve the system of equations.

4. Save the obtained interface forces in a predefined order according to the problem

configuration.

5. Knowing that the integration of T (T = Ni · Ti + Nj · Tj) in one side must

be equivalent to the interface force Pn on each side, Ti and Tj will define the

traction field used in the micro scale topology optimization.

Equation (13) represents equilibrium of one component of the forces. A similar system

of equations will be needed to represent the full 2D equilibrated forces. The resolution

of the full system of equations will provide us with the interface forces of each side of an

element (remember that each element will have a total of 8 internal force component

per axis (x and y), two per side of each element).

The case with nodes surrounded by one or two elements is considered below, as they

will be a special case of the nodes with Neumann boundary conditions.

3.1.2 Nodes with Dirichlet boundary conditions

The nodes on the a Dirichlet boundary are studied in this section. In the case of 2D

Cartesian grids these nodes will be surrounded by one or two elements.

3.1.2.1 Corner node

The first case corresponds to corner with a Dirichlet boundary condition. The fol-

lowing figure represents this case, where the reaction R, resulting from the Dirichlet

condition, is applied on the node.

In this particular case, the reaction’s module is equal to the node force, but with

opposite sign. This means that there is no force left to add, as this node will be

Mikel Barral 13
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Figure 9: Isolated corner node where a Dirichlet boundary condition is applied.

equilibrated. Therefore the forces applied on this node are obtained straight away

and are introduced in the FElm vector.

3.1.2.2 Standard case

The second case is defined by two elements surrounding a node on the Dirichlet

boundary. In this case, the reaction force will be divided into two components that

are calculated together with the interface forces (Pin).

The Maxwell diagram shown in Figure 10 is then converted in a system of equations

that allows us to get the previously mentioned forces.


1 1 0 0 −1

0 0 1 1 1

0 1 0 1 0

1 0 1 0 −1

−1 1 0 −1 0




PEin
REn
PMin
RMn
λ

 =


F̂En
F̂Mn
Rn
0

0

 (14)

This system of equations represents equilibrium along each direction on space. In

practical terms, the program will take into account both x and y component of each

variable, in this case resulting in a system of equations with 10 unknowns. This

specific case will introduce the Pin and Rn values in the FElm matrix.
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Figure 10: Isolated contour node where a Dirichlet condition is applied and its Maxwell

diagram.

In (14), the last row will fix the solid body translation of the Maxwell diagram along

one of the dimensions of the 2D space.

3.1.3 Nodes with Neumann boundary conditions

The way to work with nodes under Neumann boundary conditions is quite similar to

the one used in 3.1.2. However, the external forces will all be known as the program

calculates previously in the FEM analysis of the optimization process, where a given

load has to be distributed along the specified nodes.

3.1.3.1 Corner node

The case of corner nodes is as simple as the one with Dirichlet condition, but here

instead of using the reaction force, the external force (Tn) is applied.

Mikel Barral 15
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Figure 11: Isolated corner node where a Neumann condition is applied.

Once again the resulting force, that is afterwards entered in FElm, is obtained straight-

away as the two forces are equilibrated.

When no fores are applied but the same conditions are fulfilled, we are facing the

previously described free node. This node will only be affected by the corner node

force (Fn), thus being the force introduced in the traction field (FElm) matrix.

3.1.3.2 Standard case

For the second case, where a boundary node, surrounded by two elements, is under

Neumann boundary conditions, the external forces applied in each element of the

same node are obtained previously when the load distribution is calculated for each

node. This way the resulting equation system is much smaller and thus, faster to

calculate.

As in the second case of nodes with Dirichlet boundary conditions, the Maxwell

diagram in Figure 12 is then materialized in the system of equations (15).

1 0 1

0 1 1

1 1 0

PEinPMin
λ

 =

 F̂En − TEnF̂Mn − TEn
0

 (15)
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Figure 12: Isolated contour node where a Neumann condition is applied and its Maxwell

diagram.

As well as in 3.1.3.1, the standard case considers also free nodes where no external

forces are applied. The Figure 13 shows which forces take part in this case.

Figure 13: Isolated contour node surrounded by 2 elements.

The resulting diagram of this case does not help in any way, as FEn + FMn = 0 and

PEin + PMin = 0, resulting on the following system of equations obtained directly from

Figure 13.
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1 0 1

0 1 1

1 1 0

PEinPMin
λ

 =

 F̂EnF̂Mn
0

 (16)

3.2 Developed program structure

This section aims to present how the developed program in MatLabR is structured

and therefore, offer a better understanding on how the previously explained methods

are implemented and work together to obtain the results that are shown below.

Figure 14: Structure of the developed program, represented as a block diagram.
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4 Implementation and numeric results

As this project has shown until now, the main objective of the present work is the

topology optimization of an structural component by topologically optimizing each

of the cells contained in the problem domain. In the current implementation, each of

the defined cells corresponds to an element in the component mesh. This restriction is

not mandatory, but helps to create a first implementation of the technique proposed

in the previous section. In the present section, the topology optimization process

is described using two numerical examples. Both problems are based on the classic

cantilever beam problem, where one of the edges is fixed, and the other one is free.

In both problems the same material properties are used: Young’s modulus E =

210GPa, Poisson’s coefficient ν = 0, 3 and Yield strength Sy = 400MPa. The applied

load will be distributed as a parable representing a tangential load, where 5 · 107Pa

is the maximum value. Also the same mesh dimensions are used in both problems:

Macro mesh size 30x20 elements, micro mesh size 50x50 elements and 2D bilinear

quadrilateral elements in all cases.
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4.1 Problem 1

In the first example the applied load is defined as a parabolic distribution of a pure

tangential load in the free edge of the beam, as shown in Figure 15.

Figure 15: Scheme used to represent the first numeric problem.

The algorithm presented in this work solves the global topology optimization problem

in the first place as described in the point 2.2 applied to the global problem shown

in Figure 16, using a penalty value of ν = 1 and rmin = 0.1003 calculated as rmin =√
h2
x + h2

y being hx and hy the element dimensions. This combination of values

generates a very smooth distribution along the elements in the global problem domain,

caused mainly because of the low value defined for the penalty parameter that will

not penalize intermediate density values. The iteration to reach the optimal volume

fraction is shown below in Table 1.
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It.1 - Vol. fraction = 1

It.2 - Vol. fraction = 0.5

It.3 - Vol. fraction = 0.73

It.4 - Vol. fraction = 0.62

It.5 - Vol. fraction = 0.60

0 0.5 1 1.5 2 2.5 3 3.5 4

·108VM Stress(Pa)

Table 1: First problem optimization iteration results.
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The material distribution of the last iteration (Figure 16) and its FE results are saved

in order to proceed with the traction equilibrating process afterwards.

Figure 16: Material distribution proposed by the topology optimization algorithm in the

first problem.

As described above, the material distribution obtained in Figure 16 will be used as

input for the local (cell level) topology optimization. This means that the density

(ρ) obtained in each element from the global topology optimization will be used as

the volume fraction at the cell level, meaning that it will be a fixed value in each

one of the optimizations in the micro level. Prior to the topology optimization on

each cell, the boundary conditions to be applied in each one need to be evaluated.

With that purpose, the results obtained from the global FEM analysis (from the last

optimized geometry) are postprocessed in order to obtain, as described in section 3.1,

the equivalent equilibrated traction field in each of the cells. Once the traction field

is defined for each cell in the problem, the micro level topology optimization problem

is solved also as shown in 2.2, but this time there is no need to optimize the amount

of material as it has been assigned before. This last topology optimization algorithm

is run using the following parameters: ν = 3 and rmin = 1.5, these allow a higher

penalty for the intermediate density value areas.
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Figure 17: End solution of the second problem.
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This problem, where a parabolic load typed is applied, produces a symmetrical opti-

mization about an xz plane that can be easily identified looking to Figure 17. If right

corner top and bottom elements are thoroughly analyzed and compared looking for

symmetry, differences can be seen as shown in Figure 18.

Figure 18: Top and bottom left elements compared to show lack of symmetry.

As the loads and volume fraction are exactly symmetrical, the only variable that

could have altered the symmetry is the imposed constraints to eliminate rigid body

motions in the micro scale topology optimization, as they are always the same. Two

vertical displacement restrictions on both bottom corner nodes and one horizontal

displacement restriction on left bottom corner node. This difference leads to non

symmetrical elements.
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4.2 Problem 2

In order to obtain a different and non symmetric solution, a second problem is pro-

posed as a modification of the first one, adding a linear load in x direction as shown

in Figure 19, which will show how the program adapts to the new load state.

Figure 19: Scheme used to represent the second numeric problem.

Following the same procedure explained for the first problem, the program will opti-

mize the material distribution for the given loads resulting on the table shown below.

The optimization parameters for the macro scale problem are ν = 1 and given the

fact that the element size is the same as the first problem rmin = 0.1003.
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It.1 - Vol. fraction = 1

It.2 - Vol. fraction = 0.5

It.3 - Vol. fraction = 0.727

It.4 - Vol. fraction = 0.617

It.5 - Vol. fraction = 0.606

0 0.5 1 1.5 2 2.5 3 3.5 4

·108VM Stress(Pa)

Table 2: Second problem optimization iteration results.
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Once the iteration is finished and the criteria is reached, the last iteration’s material

distribution and FE results are saved for the traction equilibrating process.

Figure 20: Material distribution proposed by the topology optimization algorithm in the

second problem.

The last step provides the topology optimization code for each of the cells of the lower

level. Figure 21 shows the end result of the whole optimization process.
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Figure 21: Final solution of the second problem.

28 Mikel Barral



“Libro˙2LevelContinuousTopologyOptimizationInStructuralMechanics” — 2018/9/21 — 16:55

page 29 — #20

4 Implementation and numeric results

A detailed section of the optimization result is shown in Figure 22, where the continu-

ity between cells can be observed. Finally, each of these cells could be materialized by

additive manufacturing techniques and place them in the established order to build

the desired component.

Figure 22: Various cell detail of the final result.

One of the main advantages of this technique, compared to classic topology optimiza-

tion [9][10], is that it allows greater tolerance to unexpected variation of applied load

[11].

Mikel Barral 29



2 Level continuous topology optimization in structural mechanics

5 Conclusions

In the present work, a two level topology optimization technique based on the SIMP

method is purposed. In the first level, a global topology optimization problem is

solved, which will fix the needed material distribution for the component. In the

second level and after evaluating the boundary conditions in each cell using a trac-

tion equilibrating method, a new topology problem is solved for each cell, resulting

in a continuous material distribution along the cells according to the previously es-

tablished requirements. This is a very interesting result as this methodology allows

to adequately decouple the different levels of multi-level analysis techniques. This

continuity allows a posterior manufacturing of each cell, with the benefit of a greater

tolerance to unexpected load variations. All this leads to the proposed method being

of interest to the industry and justifies continuing its development and implementa-

tion in a 3D environment, as well as parallel processing of each cell’s optimization

allowing a significant reduction computational cost.

On the other hand, the results show that the continuity is not strictly satisfied. There

are a number of causes for this lack of continuity that should be taken into account

in future work:

- Each of the elements in the 1st level is assigned a constant value of relative density ρ,

resulting in a non continuous relative density distribution that would lead to material

discontinuities between adjacent cells.

- Intermediate values of relative density have not been fully eliminated in the cells.

We believe that eliminating these intermediate values would lead to a higher material

continuity. To do this we could follow the process developed by G. Cortes at the DIMM

[12] who proposed to refine the elements of the resulting topology optimization with

intermediate values of relative density and run a new topology optimization loop,

repeating the process until a prescribed element size is reached.

- The individual optimization of each cell could also lead to this type of problems. The

method could be improved if each optimized cell could somehow take into account its

adjacent cells.

This work has considered that each cell of the lower level is obtained from only one

element of the higher level, but the size of the cells of the lower level should be

prescribed by manufacturing constrains. This could lead to too big elements in the

higher level and the corresponding high discretization error of the solution. To solve

this, it would be possible to reduce the size of the elements to warranty the required
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5 Conclusions

accuracy level of the solution and then to create cells defined by groups of elements

from the higher level.
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Appendix. Programmer’s manual.

Introduction

The main objective of the programmer’s manual is the creation of a document that

details the most important variables and functions used in the developed program.

In this way anyone that is interested on the improvement or implementation of this

program will have a basic reference.

The program will be initialized from the file Main.m, where also some of the functions

are written.

The following sections will describe some of the more important variables and func-

tions used, in order to understand the program’s behavior.
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Structure Variables

This section analyzes the main variables used in the program, those which the user

can change to modify the component and its analysis. Most of the Param. vari-

ables are used for FEM related programs developed in the Department of Mechanic

Engineering, and the structure is kept in case this program is improved.

Variable Description

NElem xy coarse 1x2 vector that defines the coarse problem mesh size

as the number of elements per axis [x y].

NElem xy fine 1x2 vector that defines the fine problem mesh size as

the number of elements per axis [x y].

XIni, XEnd, YIni,

YEnd

Variables that define the component’s edge coordi-

nates.

Param.NGP Variable that defines the number of integration

points.

Param.NSpE Variable that defines the number of sides per ele-

ment.

Param.NNpE Variable that defines the number of nodes per ele-

ment.

Param.Dim Variable that defines the problem’s dimensions, this

program is only implemented in a 2D space.

Param.Mode Variable (0/1) that defines whether plane strain or

plane stress state is being analyzed.

Param.ElmType Variable that defines the element type, in this pro-

gram 1 is selected, which corresponds to linear ele-

ments.

Param.LoadCase Variable (1/2) that defines the load state to be ap-

plied. The first load case applies a vertical load with

a parabolic distribution. The second load case, adds

a horizontal linearly distributed to the first load case.

E, nu, Sy Variables that define the component’s properties.

Young’s Modulus (E), Poisson’s ratio (ν) and Yield

strength (Sy).

Py, Px Variables that define the horizontal and vertical force

values.
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The following variables are calculated from the ones defined before.

Variable Description

hx, hy Variable that defines the mesh element dimensions.

Lx, Ly Variable that defines the components dimensions, as-

suming the components is rectangular shaped.

Param.NNod xy Variable that contains the total number of nodes per

dimension (x and y), calculated adding 1 to the num-

ber of elements of each dimension (NElem xy coarse

+ 1).

Param.NumElm Variable that contains the total number of elements,

calculated from the product of both dimensions ele-

ment numbers (NElem xy coarse).

Param.NumNodes Variable that contains the total number of nodes, cal-

culated from the product of both dimensions element

numbers (Param.NNod xy).

Param.NDoF Variable that contains the degree of freedom, calcu-

lated from the problem dimensions.

Ending with the variable list, the table below shows the variables calculated in the

main functions, and which are the most used and larger ones.

Variable Description

q This variable is found in the main program and will

be an output of the Macro Load function, it contains

the resulting nodal forces calculated from the trac-

tion field defined in the beginning.
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TLoad This variable is also an output of the Macro Load

function and contains the force in the node of each

element separately, thus there will be 2 forces in each

direction per element, that are later required by the

traction equilibrating function.

xcoarse This variable is the main output of the

CoarseProblem function and contains the ma-

terial distribution of the coarse level problem.

F Output variable of the CoarseProblem function that

contains the nodal forces of the coarse problem.

U Output variable of the CoarseProblem function that

contains the nodal displacements of the coarse prob-

lem.

TElm x, TElm y These variables are the unique output of the traction

equilibrating function (EvaluateForces), and each

of them contains the values of the equilibrated forces

grouped by element in both x and y directions.

The same structure of variables is also used in the micro scale topology optimization,

the explanation for those is therefore omitted.
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Main Functions

This section will provide to the reader with a quick guide of the main functions. The

order they are presented is the one used in the program’s code, so the reader can have

a quicker reference to what is looking for.

NodalCoords 2D

This function is found in the main program and evaluates the nodal coordinates of a

1D bar for a given number of elements NumElms of a given degree FEDegree. The bar

is defined form the coordinate X Ini to the coordinate X End. The returning variable

XY Nod contains coordinates of each node in the mesh.

ElmTopology 2D

This function, found in the main program, evaluates the topology of a 1D bar for a

given number of elements NumElms of a given degree FEDegree. The returning variable

ElmTop contains each element’s nodes.

NodalConectivity 2D

This function, found in the main program, evaluates the nodal connectivity of each

node for a given topology ElmTop. Returning the variable NodCon contains the el-

ements connected to each node, always anticlockwise starting from the bottom left

element.

Macro Load

This function, found in the main program, evaluates the applied load for a given load

state Param.LoadCase and loads (qx,qy).
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DHooks2D

This function, found in the main program, evaluates the D matrix for given material

properties E and ν. And for a given stress mode Param.Mode, defined for both plane

stress and plane strain.

CoarseProblem

This function, found in the main program, evaluates the first level (macro) topology

optimization and will return the last optimized geometry and forces of the iteration.

As explained in section, this function will study the different geometries resulting

from the iterations where the density and the maximum Von Mises stress is analyzed.

OptimCoarse

Found inside of the CoarseProblem function, this one will apply the topology op-

timization code from [3]. The finite element solver is changed to one used in the

Mechanical Department of the UPV, to alleviate the different element numeration.

Sigma

This function will be launched after each optimization (OptimCoarse) with the dis-

placement results amongst other variables needed. It will calculate the Von Mises

nodal stress and discard the edge values as they will be affected by the fix constrain

and generate a much bigger values than they actually are. Specifically the top left

and bottom left nodal stresses will be discarded.

This function will also be able to represent the nodal stress values in a figure when

needed by changing the fig.stress value to 1 in the Main function.

EvaluateForces

The purpose of this function is to evaluate the forces in each of the nodes of the

coarse mesh and get an equilibrated and continuous distribution of forces between

elements, keeping the same load applied in each element. This way program will later
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be able to optimize the geometry of all the micro elements without being affected by

the constrains applied in the topology optimization.

This function is executed after the coarse problem is solved, allowing to provide

the function with the results from the stress/material optimized distribution and

forces/displacements. The first part of the function will define some variables that

are needed afterwards, after that the main loop starts and will run over each and

everyone of the nodes. In order to differentiate the nodes depending on where are

placed and what conditions are applied to them, a series of if statements are used,

and each node will fall under one of the group as follows:

The evaluation boxes refer to whether is a 1, 2 or 4 element surrounded node case.
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TopologyOpt

This function in charge to send information of each cell to the FineElm function as

well as generating the end result figure. With that purpose, a loop is defined to travel

around the mesh and send each cell’s information to the FineElm function, which is

defined below. The main information to be sent is, on the one hand the equilibrated

forces in that element’s nodes. On the other hand, the previously obtained density

for each cell is now used as the input volume fraction accordingly.

In order to represent the end result, a matrix X is defined with the required size to

insert each of the optimized cell next to each other.

FineElm

This function will gather the information for each of the cells coming from the

TopologyOpt function and adapt it for the topology optimization. As the topol-

ogy optimization program will use a different element numeration and the tractions

gathered from the equilibrating function are applied in the nodes, some functions are

created.

1. XYCords

Function that generates new coordinates for the micro scale mesh.

2. TopoElem

Function that generates new element topology for the micro scale mesh.

3. TInterp

This function will interpolate the tractions applied in nodes coming from the

equilibrating process along the nodes of the micro scale mesh side nodes.

4. VectorCargas

This function is in charge to generate a matrix that will be used afterwards by

the Vector Ft function to obtain the equivalent forces in each side node. This

matrix will contain the traction values of an element’s side defined by the node

numbers and both x and y tractions.

42 Mikel Barral



“Libro˙2LevelContinuousTopologyOptimizationInStructuralMechanics” — 2018/9/21 — 16:55

page 43 — #27

References

5. Vector Ft

As mentioned before, this function will use the CargasL variable generated in

the VectorCargas function to obtain the equivalent forces in each node of the

mesh’s side.

6. OptimFine

Finally the topology optimization program is launched with all the previously

generated information.

The resulting topology will be then sent back to the TopologyOpt and this process

will repeat for each and everyone of the cells in the macro scale mesh.
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